USRE45403E1 - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
USRE45403E1
USRE45403E1 US14/148,180 US200814148180A USRE45403E US RE45403 E1 USRE45403 E1 US RE45403E1 US 200814148180 A US200814148180 A US 200814148180A US RE45403 E USRE45403 E US RE45403E
Authority
US
United States
Prior art keywords
laser light
region
cut
modified region
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/148,180
Inventor
Masayoshi Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to US14/148,180 priority Critical patent/USRE45403E1/en
Application granted granted Critical
Publication of USRE45403E1 publication Critical patent/USRE45403E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Definitions

  • the present invention relates to a laser processing method for cutting a planar object to be processed comprising a GaAs substrate along a line to cut.
  • a conventional laser processing method in the above-mentioned technical field is one irradiating a planar object to be processed comprising an Si substrate with laser while locating a converging point within the object, so as to form a modified region to become a starting point region for cutting in the Si substrate along a line to cut the object (see, for example, Patent Literature 1).
  • the pulse width of pulsed laser light irradiating the object is an extremely important parameter. That is, fractures are likely to occur in the thickness direction of the object in modified regions formed in GaAs substrates irradiated with pulsed laser light having a pulse width of 31 to 54 ns. By contrast, fractures are hard to occur in the thickness direction of the object in modified regions formed in GaAs substrates irradiated with pulsed laser light having a pulse width shorter than 31 ns or longer than 54 ns.
  • the inventor further conducted studies based on these findings and has completed the present invention.
  • the laser processing method in accordance with the present invention is a laser processing method irradiating a planar object to be processed comprising a GaAs substrate with laser light while locating a converging point within the object, so as to form a modified region to become a starting point region for cutting in the GaAs substrate along a line to cut the object; wherein the laser light is pulsed laser light having a pulse width of 31 to 54 ns.
  • This laser processing method emits pulsed laser light with a pulse width of 31 to 54 ns, thereby forming a modified region to become a starting point region for cutting in a GaAs substrate along a line to cut.
  • the modified region formed in the GaAs substrate along the line to cut is likely to generate fractures in the thickness direction of the object. Therefore, this laser processing method can form a modified region having a high function as a starting point region for cutting in a planar object to be processed comprising a GaAs substrate.
  • the laser light has a pulse pitch of 7.5 to 10 ⁇ m.
  • This can form a modified region having a higher function as a starting point region for cutting in the planar object to be processed comprising the GaAs substrate.
  • the pulse pitch of laser light refers to a value obtained by dividing “the scanning rate (moving speed) of the converging point of laser light with respect to the object to be processed” by “the repetition frequency of the pulsed laser light”.
  • the laser processing method cuts the object along the line to cut from the modified region acting as a start point after forming the modified region. This can accurately cut the object along the line to cut.
  • the modified region may include a molten processed region.
  • the present invention can form a modified region having a high function as a starting point region for cutting in a planar object to be processed comprising a GaAs substrate.
  • FIG. 1 is a schematic structural diagram of a laser processing apparatus used for forming a modified region
  • FIG. 2 is a plan view of an object to be processed for which the modified region is formed
  • FIG. 3 is a sectional view of the object taken along the line III-III of FIG. 2 ;
  • FIG. 4 is a plan view of the object after laser processing
  • FIG. 5 is a sectional view of the object taken along the line V-V of FIG. 4 ;
  • FIG. 6 is a sectional view of the object taken along the line VI-VI of FIG. 4 ;
  • FIG. 7 is a view illustrating a photograph of a cut section of a silicon wafer after laser processing
  • FIG. 8 is a graph illustrating relationships between the laser light wavelength and the transmittance within a silicon substrate
  • FIG. 9 is a graph illustrating relationships between the peak power density of laser light and crack spot size
  • FIG. 10 is a plan view of an object to be processed to which the laser processing method in accordance with an embodiment is applied;
  • FIG. 11 is a partial sectional view of the object of FIG. 10 taken along a line to cut;
  • FIG. 12 is a partial sectional view of the object for explaining the laser processing method in accordance with the embodiment.
  • FIG. 13 is a partial sectional view of the object for explaining the laser processing method in accordance with the embodiment.
  • FIG. 14 is a graph illustrating relationships between the pulse width and division ratio when laser processing methods in accordance with examples and comparative examples were performed;
  • FIG. 15 is a graph illustrating relationships between the pulse pitch and division ratio when laser processing methods in accordance with examples and comparative examples were performed;
  • FIG. 16 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 7 in Table 1;
  • FIG. 17 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 8 in Table 1;
  • FIG. 18 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 9 in Table 1;
  • FIG. 19 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 10 in Table 1;
  • FIG. 20 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 11 in Table 1.
  • the laser processing method in accordance with this embodiment irradiates a planar object to be processed with laser light while locating a converging point at the object, so as to form a modified region in the object along a line to cut the object.
  • a laser processing apparatus 100 comprises a laser light source 101 for pulsatingly oscillating laser light (processing laser light) L, a dichroic mirror 103 arranged such as to change the direction of the optical axis of the laser light L by 90°, and a condenser lens 105 for converging the laser light L.
  • the laser processing apparatus 100 further comprises a support table 107 for supporting an object to be processed 1 which is irradiated with the laser light L converged by the condenser lens 105 , a stage 111 for moving the support table 107 along X, Y, and Z axes, a laser light source controller 102 for regulating the laser light source 101 in order to adjust the output, pulse width, and the like of the laser light L, and a stage controller 115 for regulating movements of the stage 111 .
  • the laser light L emitted from the laser light source 101 changes the direction of its optical axis by 90° with the dichroic mirror 103 , and then is converged by the condenser lens 105 into the object 1 on the support table 107 .
  • the stage 111 is shifted, so that the object 1 is moved relative to the laser light L along a line to cut 5 .
  • a modified region to become a starting point region for cutting is formed in the object 1 along the line to cut 5 . This modified region will be explained in detail in the following.
  • the line to cut 5 for cutting the planar object 1 is set therein.
  • the line to cut 5 is a virtual line extending straight.
  • the laser light L is relatively moved along the line to cut 5 (i.e., in the direction of arrow A in FIG. 2 ) while locating a converging point P within the object 1 as illustrated in FIG. 3 .
  • This forms a modified region 7 within the object 1 along the line to cut 5 as illustrated in FIGS. 4 to 6 , whereby the modified region 7 formed along the line to cut 5 becomes a starting point region for cutting 8 .
  • the converging point P is a position at which the laser light L is converged.
  • the line to cut 5 may be curved instead of being straight, and may be a line actually drawn on the front face 3 of the object 1 without being restricted to the virtual line.
  • the modified region 7 may be formed either continuously or intermittently. It will be sufficient if the modified region 7 is formed at least within the object 1 . There are cases where fractures are formed from the modified region acting as a start point, mid the fractures and modified region may be exposed at outer surfaces (the front face, rear face, and outer peripheral face) of the object 1 .
  • the laser light L is absorbed in particular in the vicinity of the converging point within the object 1 while being transmitted therethrough, whereby the modified region 7 is formed in the object 1 (i.e., internal absorption type laser processing). Therefore, the front face 3 of the object 1 hardly absorbs the laser light L and thus does not melt. In the case of forming a removing part such as a hole or groove by melting it away from the front face 3 (i.e., surface absorption type laser processing), the processing region gradually progresses from the front face 3 side to the rear face side in general.
  • the modified region formed by the laser processing method in accordance with this embodiment refers to regions whose physical characteristics such as density, refractive index, and mechanical strength have attained states different from those of their surroundings.
  • Examples of the modified region include (1) molten processed regions, (2) crack regions or dielectric breakdown regions, (3) refractive index changed regions, and their mixed regions.
  • the modified region in the laser processing method in accordance with this embodiment can be formed by local absorption of laser light or a phenomenon known as multiphoton absorption.
  • a material becomes transparent when its absorption bandgap E G is greater than photon energy h ⁇ , so that a condition under which absorption occurs in the material is h ⁇ >E G .
  • modified regions formed by employing ultrashort-pulsed laser light having a pulse width of several picoseconds to femtoseconds may be utilized as described in D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser Induced Breakdown by Impact Ionization in SiO 2 with Pulse Widths from 7 ns to 150 fs”, Appl. Phys. Lett. 64(23), Jun. 6, 1994.
  • An object to be processed e.g., semiconductor material such as silicon
  • An object to be processed is irradiated with the laser light L while locating a converging point within the object under a condition with a field intensity of at least 1 ⁇ 10 8 (W/cm 2 ) at the converging point and a pulse width of 1 ⁇ s or less.
  • the laser light L is absorbed in the vicinity of the converging point, so that the inside of the object is locally heated, and this heating forms a molten processed region within the object.
  • the molten processed region encompasses regions once molten and then re-solidified, regions just in a molten state, and regions in the process of being re-solidified from the molten state, and can also be referred to as a region whose phase has changed or a region whose crystal structure has changed.
  • the molten processed region may also be referred to as a region in which a certain structure changes to another structure among monocrystal, amorphous, and polycrystal structures.
  • the molten processed region is an amorphous silicon structure, for example.
  • FIG. 7 is a view illustrating a photograph of a cross section in a part of a silicon wafer (semiconductor substrate) irradiated with laser light. As illustrated in FIG. 7 , a molten processed region 13 is formed within a semiconductor substrate 11 .
  • FIG. 8 is a graph illustrating relationships between the laser light wavelength and the transmittance within the silicon substrate.
  • the respective reflected components on the front and rear face sides of the silicon substrate are eliminated, so as to indicate the internal transmittance alone.
  • the respective relationships are represented in the cases where the thickness t of the silicon substrate is 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 500 ⁇ m, and 1000 ⁇ m.
  • the laser light L appears to be transmitted through the silicon substrate by at least 80% when the silicon substrate has a thickness of 500 ⁇ m or less. Since the semiconductor substrate 11 represented in FIG. 7 has a thickness of 350 ⁇ m, the molten processed region 13 caused by multiphoton absorption is formed near the center of the semiconductor substrate 11 , i.e., at a part distanced from the front face by 175 ⁇ m.
  • the transmittance in this case is 90% or more with reference to a silicon wafer having a thickness of 200 ⁇ m, whereby the laser light L is absorbed only slightly within the semiconductor substrate 11 but is substantially transmitted therethrough.
  • the laser light L When converged within the silicon wafer under the condition of at least 1 ⁇ 10 8 (W/cm 2 ) with a pulse width of 1 ⁇ s or less, however, the laser light L is locally absorbed at the converging point and its vicinity, whereby the molten processed region 13 is formed within the semiconductor substrate 11 .
  • fractures occur in the silicon wafer from the molten processed region acting as a start point.
  • fractures are formed as being incorporated in the molten processed region.
  • the fractures may be formed over the whole surface of the molten processed region or in only a part or a plurality of parts thereof. These fractures may grow naturally or as a force is exerted on the silicon wafer.
  • the fractures naturally growing from the molten processed region include both of cases where they grow from a state in which the molten processed region is molten and where they grow when the molten processed region is re-solidified from the molten state. In either case, the molten processed region is formed only within the silicon wafer and, when at a cut section, within the cut section as illustrated in FIG. 7 .
  • An object to be processed e.g., glass or a piezoelectric material made of LiTaO 3
  • An object to be processed is irradiated with the laser light L while locating a converging point therewithin under a condition with a field intensity of at least 1 ⁇ 10 8 (W/cm 2 ) at the converging point and a pulse width of 1 ⁇ s or less.
  • This magnitude of pulse width is a condition under which the laser light L is absorbed within the object so that a crack region is formed therein.
  • This optical damage induces a thermal distortion within the object, thereby forming a crack region including a crack or a plurality of cracks within the object.
  • the crack region may also be referred to as a dielectric breakdown region.
  • FIG. 9 is a graph illustrating results of experiments concerning relationships between the field intensity and crack size.
  • the abscissa indicates the peak power density. Since the laser light L is pulsed laser light, the field intensity is represented by the peak power density.
  • the ordinate indicates the size of a crack part (crack spot) formed within the object by one pulse of laser light L. Crack spots gather to yield a crack region.
  • the crack spot size is the size of a part yielding the maximum length among forms of crack spots.
  • Data represented by black circles in the graph refer to a case where the condenser lens (C) has a magnification of ⁇ 100 and a numerical aperture (NA) of 0.80.
  • data represented by whitened circles in the graph refer to a case where the condenser lens (C) has a magnification of ⁇ 50 and a numerical aperture (NA) of 0.55. Crack spots are seen to occur within the object from when the peak power density is about 10 11 (W/cm 2 ) and become greater as the peak power density increases.
  • An object to be processed e.g., glass
  • An object to be processed is irradiated with the laser light L while locating a converging point within the object under a condition with a field intensity of at least 1 ⁇ 10 8 (W/cm 2 ) at the converging point and a pulse width of 1 ns or less.
  • the laser light L is thus absorbed within the object while having a very short pulse width, its energy is not converted into thermal energy, whereby an eternal structure change such as ion valence change, crystallization, or orientation polarization is induced within the object, thus forming a refractive index changed region.
  • the modified region which encompasses the molten processed regions, dielectric breakdown regions, refractive index changed regions, and their mixed regions, may be an area where the density of the modified region has changed from that of an unmodified region in the material or an area formed with a lattice defect. They can collectively be referred to as a high-density transitional region.
  • the molten processed regions, refractive index changed regions, areas where the modified region has a density different from that of the unmodified region, or areas formed with a lattice defect may further incorporate a fracture (cut or microcrack) therewithin or at an interface between the modified and unmodified regions.
  • the incorporated fracture may be formed over the whole surface of the modified region or in only a part or a plurality of parts thereof.
  • the object can be cut with a favorable precision if the modified region is formed as follows while taking account of the crystal structure of the object, its cleavage characteristic, and the like.
  • the modified region is formed in a direction extending along a (111) plane (first cleavage plane) or a (110) plane (second cleavage plane).
  • a substrate made of a group III-V compound semiconductor of sphalerite structure such as GaAs
  • the modified region is formed in a direction extending along a (1120) plane (A plane) or a (1100) plane (M plane) while using a (0001) plane (C plane) as a principal plane.
  • the substrate is formed with an orientation flat in a direction to be formed with the above-mentioned modified region (e.g., a direction extending along a (111) plane in a monocrystal silicon substrate) or a direction orthogonal to the direction to be formed therewith, the modified region can be formed easily and accurately in the substrate with reference to the orientation flat.
  • a direction to be formed with the above-mentioned modified region e.g., a direction extending along a (111) plane in a monocrystal silicon substrate
  • the modified region can be formed easily and accurately in the substrate with reference to the orientation flat.
  • FIG. 10 is a plan view of an object to be processed to which the laser processing method in accordance with this embodiment is applied, while FIG. 11 is a partial sectional view of the object taken along a line to cut in FIG. 10 .
  • the planar object to be processed 1 comprises a GaAs substrate 12 and a functional device layer 16 which is formed on a main face of the GaAs substrate 12 while including a plurality of functional devices 15 .
  • the GaAs substrate 12 has a sphalerite structure, in which, when the main face is taken as a (100) surface, a surface parallel to an orientation flat 6 is a (011) or (0-1-1) surface, and a surface perpendicular to the orientation flat 6 is a (0-11) or (01-1) surface.
  • a number of functional devices 15 examples of which include semiconductor operating layers formed by crystal growth, light-receiving devices such as photodiodes, light-emitting devices such as laser diodes, and circuit devices formed as circuits, are formed like a matrix in directions parallel and perpendicular to the orientation flat 6 of the GaAs substrate 12 .
  • the laser processing method in accordance with this embodiment is applied to thus constructed object 1 .
  • an expandable tape 23 is attached to the rear face 21 of the object 1 .
  • the object 1 is secured onto a support table (not depicted) of the laser processing apparatus such that the functional device layer 16 faces up.
  • lines to cut 5 are set like grids passing between adjacent functional devices 15 , 15 in directions perpendicular and parallel to the orientation flat 6 .
  • the object 1 is irradiated with the laser light L while using the front face 3 as a laser light entrance surface and locating the converging point P within the GaAs substrate 12 , and the support table is moved, so as to shift the converging point P relatively along the lines to cut 5 set like grids in the directions perpendicular and parallel to the orientation flat 6 .
  • the laser light L is pulsed laser light which is emitted with a pulse width of 31 to 54 ns and a pulse pitch of 7.5 to 10 ⁇ m.
  • the converging point P is relatively moved along each line to cut 5 a plurality of times (e.g., two times) with respective distances from the surface 3 to the position where the converging point P is located, whereby a plurality of rows of modified regions 7 are formed within the GaAs substrate 12 with respect to each line to cut 5 one by one in order from the rear face 21 side.
  • the number of rows of modified regions 7 formed within the GaAs substrate 12 for each line to cut 5 is variable depending on the thickness of the GaAs substrate 12 and the like and may be 1 without being restricted to plurals.
  • the expandable tape 23 is expanded.
  • the object 1 is stretched, so as to be cut into chips from the modified regions 7 acting as start points, whereby a number of semiconductor chips 25 each having one functional device 15 are obtained. Since the expandable tape 23 is in an expanded state at this time, the semiconductor chips 25 are separated from each other as illustrated in FIG. 13(b) .
  • the laser processing method in accordance with this embodiment emits the laser light L at a pulse width of 31 to 54 ns and a pulse pitch of 7.5 to 10 ⁇ m, so as to form the modified regions 7 to become starting point regions for cutting in the GaAs substrate 12 along the lines to cut 5 .
  • the modified regions 7 formed in the GaAs substrate 12 along the lines to cut 5 become those which are likely to generate fractures in the thickness direction of the object 1 . Therefore, the laser processing method in accordance with this embodiment can form the modified regions 7 having an extremely high function as a starting point region for cutting in the planar object 1 comprising the GaAs substrate 12 .
  • the laser processing method in accordance with this embodiment forms the modified regions 7 having an extremely high function as a starting point region for cutting and then cuts the object 1 along the line to cut 5 from the modified regions 7 acting as start points, and thus can achieve an extremely high cutting accuracy.
  • the modified regions 7 formed in the laser processing method in accordance with this embodiment include molten processed regions. Fractures starting from the forming of modified regions and contributing to cutting are accurately formed on a surface on a side opposite to the laser light entrance surface.
  • Table 1 lists laser light irradiation conditions and respective division ratios under the irradiation conditions.
  • pulse width refers to the pulse width of pulsed laser light.
  • Pulse pitch indicates the interval with which converging points of the pulsed laser light are formed.
  • “Division ratio” is a ratio at which chips each having an outer shape of 1 mm ⁇ 1 mm were actually obtained when an object to be processed occupying 1 ⁇ 4 of a GaAs substrate having an outer diameter of 2 inches and a thickness of 100 ⁇ m was irradiated with the pulsed laser light under the irradiation conditions and processing conditions which will be explained later so as to be divided into the chips each having an outer shape of 1 mm ⁇ 1 mm.
  • the object to be processed which was a 1 ⁇ 4 portion of a GaAs substrate having an outer diameter of 2 inches and a thickness of 100 ⁇ m, was irradiated with the laser light converged at a position distanced by 70 ⁇ m from the front face that is the laser light entrance surface thereof (whereby a modified region was formed at a position ranging from 57 to 70 ⁇ m from the laser light entrance surface) and then with the laser light converged at a position distanced by 40 ⁇ m from the front face that is the laser light entrance surface thereof (whereby a modified region was formed at a position ranging from 33 to 48 ⁇ m from the laser light entrance surface), so that two rows of modified regions were formed for each line to cut.
  • the laser light When forming the modified region at the position distanced by 70 ⁇ m from the front face of the object, the laser light had a converged diameter of 0.86 ⁇ m and an energy density of 1.20 ⁇ 10 7 (W/cm 2 ) at the converging point.
  • the laser light When forming the modified region at the position distanced by 40 ⁇ m from the front face of the object, the laser light had a converged diameter of 0.86 ⁇ m and an energy density of 9.64 ⁇ 10 6 (W/cm 2 ) at the converging point.
  • the expandable tape was expanded by an amount of expansion of 15 mm and an expanding rate of 10 mm/s over the whole rear face of the object.
  • FIG. 14 is a graph illustrating relationships between the pulse width and division ratio when laser processing methods in accordance with examples and comparative examples were performed
  • FIG. 15 is a graph illustrating relationships between the pulse pitch and division ratio when laser processing methods in accordance with examples and comparative examples were performed.
  • the division ratio exceeds 90% when modified regions are formed by irradiation with pulsed laser light at a pulse width of 31 to 54 ns and a pulse pitch of 7.5 to 10 ⁇ m.
  • FIGS. 16 to 20 are views illustrating photographs of a surface and cut sections of the object after division under conditions 7 to 11 of Table 1.
  • modified regions illustrated in FIGS. 17 to 19 i.e., modified regions whose division ratio exceeded 90%
  • the fractures starting from the forming of modified regions and contributing to cutting are accurately formed on a surface on a side opposite to the laser light entrance surface.
  • the present invention is not limited to the above-mentioned embodiment.
  • the rear face 21 of the object 1 may be employed as the laser light entrance surface.
  • the object 1 is cut into a plurality of semiconductor chips 25 as follows, for example. That is, a protective tape is attached to the front face of the functional device layer 16 , and is secured to the support table of the laser processing apparatus while protecting the functional device layer 16 . Then, the object 1 is irradiated with the laser light L while using its rear face 21 as the laser light entrance surface and locating the converging point P within the object 1 , so as to form the modified regions 7 in the GaAs substrate 12 along the lines to cut 5 .
  • the protective tape secured to the support table is released therefrom together with the object 1 .
  • the expandable tape 23 is attached to the rear face 21 of the object 1 , the protective tape is peeled off from the front face of the functional device layer 16 , and then the object 1 is cut along the lines to cut 5 from the modified regions 7 acting as starting point regions for cutting while the expandable tape 23 is in an expanded state.
  • the present invention can form a modified region having a high function as a starting point region for cutting in a planar object to be processed comprising a GaAs substrate.

Abstract

A modified region 7 to become a starting point region for cutting is formed in a GaAs substrate 12 along a line to cut 5 upon radiation with laser light L which is pulsed laser light. As a consequence, the modified region 7 formed in the GaAs substrate 12 along the line to cut 5 is likely to generate fractures in the thickness direction of an object to be processed 1. Therefore, the modified region 7 having an extremely high function as a starting point region for cutting can be formed in the planar object to be processed 1 comprising the GaAs substrate 12.

Description

TECHNICAL FIELD
The present invention relates to a laser processing method for cutting a planar object to be processed comprising a GaAs substrate along a line to cut.
BACKGROUND ART
Known as a conventional laser processing method in the above-mentioned technical field is one irradiating a planar object to be processed comprising an Si substrate with laser while locating a converging point within the object, so as to form a modified region to become a starting point region for cutting in the Si substrate along a line to cut the object (see, for example, Patent Literature 1).
  • Patent Literature 1: Japanese Patent Application Laid-Open No. 2004-343008
DISCLOSURE OF INVENTION Technical Problem
However, a technique for forming a modified region which can further improve reliability in cutting has been expected for planar objects to be processed comprising GaAs substrates.
In view of such circumstances, it is an object of the present invention to provide a laser processing method which can form a modified region having a high function as a starting point region for cutting.
Solution to Problem
The inventor conducted diligent studies in order to achieve the above-mentioned object and, as a result, has found that, for forming a modified region having a high function as a starting point region for cutting in a planar object to be processed comprising a GaAs substrate, the pulse width of pulsed laser light irradiating the object is an extremely important parameter. That is, fractures are likely to occur in the thickness direction of the object in modified regions formed in GaAs substrates irradiated with pulsed laser light having a pulse width of 31 to 54 ns. By contrast, fractures are hard to occur in the thickness direction of the object in modified regions formed in GaAs substrates irradiated with pulsed laser light having a pulse width shorter than 31 ns or longer than 54 ns. The inventor further conducted studies based on these findings and has completed the present invention.
Hence, the laser processing method in accordance with the present invention is a laser processing method irradiating a planar object to be processed comprising a GaAs substrate with laser light while locating a converging point within the object, so as to form a modified region to become a starting point region for cutting in the GaAs substrate along a line to cut the object; wherein the laser light is pulsed laser light having a pulse width of 31 to 54 ns.
This laser processing method emits pulsed laser light with a pulse width of 31 to 54 ns, thereby forming a modified region to become a starting point region for cutting in a GaAs substrate along a line to cut. As a consequence, the modified region formed in the GaAs substrate along the line to cut is likely to generate fractures in the thickness direction of the object. Therefore, this laser processing method can form a modified region having a high function as a starting point region for cutting in a planar object to be processed comprising a GaAs substrate.
Preferably, in the laser processing method in accordance with the present invention, the laser light has a pulse pitch of 7.5 to 10 μm. This can form a modified region having a higher function as a starting point region for cutting in the planar object to be processed comprising the GaAs substrate. Here, the pulse pitch of laser light refers to a value obtained by dividing “the scanning rate (moving speed) of the converging point of laser light with respect to the object to be processed” by “the repetition frequency of the pulsed laser light”.
Preferably, the laser processing method cuts the object along the line to cut from the modified region acting as a start point after forming the modified region. This can accurately cut the object along the line to cut.
In the laser processing method in accordance with the present invention, the modified region may include a molten processed region.
Advantageous Effects of Invention
The present invention can form a modified region having a high function as a starting point region for cutting in a planar object to be processed comprising a GaAs substrate.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic structural diagram of a laser processing apparatus used for forming a modified region;
FIG. 2 is a plan view of an object to be processed for which the modified region is formed;
FIG. 3 is a sectional view of the object taken along the line III-III of FIG. 2;
FIG. 4 is a plan view of the object after laser processing;
FIG. 5 is a sectional view of the object taken along the line V-V of FIG. 4;
FIG. 6 is a sectional view of the object taken along the line VI-VI of FIG. 4;
FIG. 7 is a view illustrating a photograph of a cut section of a silicon wafer after laser processing;
FIG. 8 is a graph illustrating relationships between the laser light wavelength and the transmittance within a silicon substrate;
FIG. 9 is a graph illustrating relationships between the peak power density of laser light and crack spot size;
FIG. 10 is a plan view of an object to be processed to which the laser processing method in accordance with an embodiment is applied;
FIG. 11 is a partial sectional view of the object of FIG. 10 taken along a line to cut;
FIG. 12 is a partial sectional view of the object for explaining the laser processing method in accordance with the embodiment;
FIG. 13 is a partial sectional view of the object for explaining the laser processing method in accordance with the embodiment;
FIG. 14 is a graph illustrating relationships between the pulse width and division ratio when laser processing methods in accordance with examples and comparative examples were performed;
FIG. 15 is a graph illustrating relationships between the pulse pitch and division ratio when laser processing methods in accordance with examples and comparative examples were performed;
FIG. 16 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 7 in Table 1;
FIG. 17 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 8 in Table 1;
FIG. 18 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 9 in Table 1;
FIG. 19 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 10 in Table 1; and
FIG. 20 is a view illustrating photographs of a surface and cut sections of the object after division in the case of condition 11 in Table 1.
REFERENCE SIGNS LIST
1 . . . object to be processed; 5 . . . line to cut; 7 . . . modified region; 12 . . . GaAs substrate; 13 . . . molten processed region; L . . . laser light; P . . . converging point
DESCRIPTION OF EMBODIMENTS
In the following, a preferred embodiment of the present invention will be explained in detail with reference to the drawings. In the drawings, the same or equivalent parts will be referred to with the same signs while omitting their overlapping explanations.
The laser processing method in accordance with this embodiment irradiates a planar object to be processed with laser light while locating a converging point at the object, so as to form a modified region in the object along a line to cut the object.
Therefore, to begin with, the forming of a modified region in the laser processing method in accordance with this embodiment will be explained with reference to FIGS. 1 to 9.
As illustrated in FIG. 1, a laser processing apparatus 100 comprises a laser light source 101 for pulsatingly oscillating laser light (processing laser light) L, a dichroic mirror 103 arranged such as to change the direction of the optical axis of the laser light L by 90°, and a condenser lens 105 for converging the laser light L. The laser processing apparatus 100 further comprises a support table 107 for supporting an object to be processed 1 which is irradiated with the laser light L converged by the condenser lens 105, a stage 111 for moving the support table 107 along X, Y, and Z axes, a laser light source controller 102 for regulating the laser light source 101 in order to adjust the output, pulse width, and the like of the laser light L, and a stage controller 115 for regulating movements of the stage 111.
In the laser processing apparatus 100, the laser light L emitted from the laser light source 101 changes the direction of its optical axis by 90° with the dichroic mirror 103, and then is converged by the condenser lens 105 into the object 1 on the support table 107. At the same time, the stage 111 is shifted, so that the object 1 is moved relative to the laser light L along a line to cut 5. As a consequence, a modified region to become a starting point region for cutting is formed in the object 1 along the line to cut 5. This modified region will be explained in detail in the following.
As illustrated in FIG. 2, the line to cut 5 for cutting the planar object 1 is set therein. The line to cut 5 is a virtual line extending straight. When forming a modified region within the object 1, the laser light L is relatively moved along the line to cut 5 (i.e., in the direction of arrow A in FIG. 2) while locating a converging point P within the object 1 as illustrated in FIG. 3. This forms a modified region 7 within the object 1 along the line to cut 5 as illustrated in FIGS. 4 to 6, whereby the modified region 7 formed along the line to cut 5 becomes a starting point region for cutting 8.
The converging point P is a position at which the laser light L is converged. The line to cut 5 may be curved instead of being straight, and may be a line actually drawn on the front face 3 of the object 1 without being restricted to the virtual line. The modified region 7 may be formed either continuously or intermittently. It will be sufficient if the modified region 7 is formed at least within the object 1. There are cases where fractures are formed from the modified region acting as a start point, mid the fractures and modified region may be exposed at outer surfaces (the front face, rear face, and outer peripheral face) of the object 1.
Here, the laser light L is absorbed in particular in the vicinity of the converging point within the object 1 while being transmitted therethrough, whereby the modified region 7 is formed in the object 1 (i.e., internal absorption type laser processing). Therefore, the front face 3 of the object 1 hardly absorbs the laser light L and thus does not melt. In the case of forming a removing part such as a hole or groove by melting it away from the front face 3 (i.e., surface absorption type laser processing), the processing region gradually progresses from the front face 3 side to the rear face side in general.
The modified region formed by the laser processing method in accordance with this embodiment refers to regions whose physical characteristics such as density, refractive index, and mechanical strength have attained states different from those of their surroundings. Examples of the modified region include (1) molten processed regions, (2) crack regions or dielectric breakdown regions, (3) refractive index changed regions, and their mixed regions.
The modified region in the laser processing method in accordance with this embodiment can be formed by local absorption of laser light or a phenomenon known as multiphoton absorption. A material becomes transparent when its absorption bandgap EG is greater than photon energy hν, so that a condition under which absorption occurs in the material is hν>EG. However, even when optically transparent, the material generates absorption under a condition of nhν>EG (where n=2, 3, 4, . . . ) if the intensity of laser light becomes very high. This phenomenon is known as multiphoton absorption. The forming of a molten processed region by multiphoton absorption is disclosed, for example, in “Silicon Processing Characteristic Evaluation by Picosecond Pulse Laser”, Preprints of the National Meetings of Japan Welding Society, Vol. 66 (April, 2000), pp. 72-73.
Also, modified regions formed by employing ultrashort-pulsed laser light having a pulse width of several picoseconds to femtoseconds may be utilized as described in D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser Induced Breakdown by Impact Ionization in SiO2 with Pulse Widths from 7 ns to 150 fs”, Appl. Phys. Lett. 64(23), Jun. 6, 1994.
(1) Case where the Modified Region Includes a Molten Processed Region
An object to be processed (e.g., semiconductor material such as silicon) is irradiated with the laser light L while locating a converging point within the object under a condition with a field intensity of at least 1×108 (W/cm2) at the converging point and a pulse width of 1 μs or less. As a consequence, the laser light L is absorbed in the vicinity of the converging point, so that the inside of the object is locally heated, and this heating forms a molten processed region within the object.
The molten processed region encompasses regions once molten and then re-solidified, regions just in a molten state, and regions in the process of being re-solidified from the molten state, and can also be referred to as a region whose phase has changed or a region whose crystal structure has changed. The molten processed region may also be referred to as a region in which a certain structure changes to another structure among monocrystal, amorphous, and polycrystal structures. For example, it means a region having changed from the monocrystal structure to the amorphous structure, a region having changed from the monocrystal structure to the polycrystal structure, or a region having changed from the monocrystal structure to a structure containing amorphous and polycrystal structures. When the object to be processed is of a silicon monocrystal structure, the molten processed region is an amorphous silicon structure, for example.
FIG. 7 is a view illustrating a photograph of a cross section in a part of a silicon wafer (semiconductor substrate) irradiated with laser light. As illustrated in FIG. 7, a molten processed region 13 is formed within a semiconductor substrate 11.
The fact that the molten processed region 13 is formed within a material transparent to the wavelength of laser light incident thereon will now be explained. FIG. 8 is a graph illustrating relationships between the laser light wavelength and the transmittance within the silicon substrate. Here, the respective reflected components on the front and rear face sides of the silicon substrate are eliminated, so as to indicate the internal transmittance alone. The respective relationships are represented in the cases where the thickness t of the silicon substrate is 50 μm, 100 μm, 200 μm, 500 μm, and 1000 μm.
For example, at the Nd:YAG laser wavelength of 1064 nm, the laser light L appears to be transmitted through the silicon substrate by at least 80% when the silicon substrate has a thickness of 500 μm or less. Since the semiconductor substrate 11 represented in FIG. 7 has a thickness of 350 μm, the molten processed region 13 caused by multiphoton absorption is formed near the center of the semiconductor substrate 11, i.e., at a part distanced from the front face by 175 μm. The transmittance in this case is 90% or more with reference to a silicon wafer having a thickness of 200 μm, whereby the laser light L is absorbed only slightly within the semiconductor substrate 11 but is substantially transmitted therethrough. When converged within the silicon wafer under the condition of at least 1×108 (W/cm2) with a pulse width of 1 μs or less, however, the laser light L is locally absorbed at the converging point and its vicinity, whereby the molten processed region 13 is formed within the semiconductor substrate 11.
There is a case where fractures occur in the silicon wafer from the molten processed region acting as a start point. There is also a case where fractures are formed as being incorporated in the molten processed region. In the latter case, the fractures may be formed over the whole surface of the molten processed region or in only a part or a plurality of parts thereof. These fractures may grow naturally or as a force is exerted on the silicon wafer. The fractures naturally growing from the molten processed region include both of cases where they grow from a state in which the molten processed region is molten and where they grow when the molten processed region is re-solidified from the molten state. In either case, the molten processed region is formed only within the silicon wafer and, when at a cut section, within the cut section as illustrated in FIG. 7.
(2) Case where the Modified Region Includes a Crack Region
An object to be processed (e.g., glass or a piezoelectric material made of LiTaO3) is irradiated with the laser light L while locating a converging point therewithin under a condition with a field intensity of at least 1×108 (W/cm2) at the converging point and a pulse width of 1 μs or less. This magnitude of pulse width is a condition under which the laser light L is absorbed within the object so that a crack region is formed therein. This generates a phenomenon of optical damage within the object. This optical damage induces a thermal distortion within the object, thereby forming a crack region including a crack or a plurality of cracks within the object. The crack region may also be referred to as a dielectric breakdown region.
FIG. 9 is a graph illustrating results of experiments concerning relationships between the field intensity and crack size. The abscissa indicates the peak power density. Since the laser light L is pulsed laser light, the field intensity is represented by the peak power density. The ordinate indicates the size of a crack part (crack spot) formed within the object by one pulse of laser light L. Crack spots gather to yield a crack region. The crack spot size is the size of a part yielding the maximum length among forms of crack spots. Data represented by black circles in the graph refer to a case where the condenser lens (C) has a magnification of ×100 and a numerical aperture (NA) of 0.80. On the other hand, data represented by whitened circles in the graph refer to a case where the condenser lens (C) has a magnification of ×50 and a numerical aperture (NA) of 0.55. Crack spots are seen to occur within the object from when the peak power density is about 1011 (W/cm2) and become greater as the peak power density increases.
(3) Case where the Modified Region Includes a Refractive Index Changed Region
An object to be processed (e.g., glass) is irradiated with the laser light L while locating a converging point within the object under a condition with a field intensity of at least 1×108 (W/cm2) at the converging point and a pulse width of 1 ns or less. When the laser light L is thus absorbed within the object while having a very short pulse width, its energy is not converted into thermal energy, whereby an eternal structure change such as ion valence change, crystallization, or orientation polarization is induced within the object, thus forming a refractive index changed region.
The modified region, which encompasses the molten processed regions, dielectric breakdown regions, refractive index changed regions, and their mixed regions, may be an area where the density of the modified region has changed from that of an unmodified region in the material or an area formed with a lattice defect. They can collectively be referred to as a high-density transitional region.
The molten processed regions, refractive index changed regions, areas where the modified region has a density different from that of the unmodified region, or areas formed with a lattice defect may further incorporate a fracture (cut or microcrack) therewithin or at an interface between the modified and unmodified regions. The incorporated fracture may be formed over the whole surface of the modified region or in only a part or a plurality of parts thereof.
The object can be cut with a favorable precision if the modified region is formed as follows while taking account of the crystal structure of the object, its cleavage characteristic, and the like.
That is, in the case of a substrate made of a monocrystal semiconductor having a diamond structure such as silicon, it will be preferred if the modified region is formed in a direction extending along a (111) plane (first cleavage plane) or a (110) plane (second cleavage plane). In the case of a substrate made of a group III-V compound semiconductor of sphalerite structure such as GaAs, it will be preferred if the modified region is formed in a direction extending along a (110) plane. In the case of a substrate having a crystal structure of hexagonal system such as sapphire (Al2O3), it will be preferred if the modified region is formed in a direction extending along a (1120) plane (A plane) or a (1100) plane (M plane) while using a (0001) plane (C plane) as a principal plane.
When the substrate is formed with an orientation flat in a direction to be formed with the above-mentioned modified region (e.g., a direction extending along a (111) plane in a monocrystal silicon substrate) or a direction orthogonal to the direction to be formed therewith, the modified region can be formed easily and accurately in the substrate with reference to the orientation flat.
The laser processing method in accordance with this embodiment will now be explained.
FIG. 10 is a plan view of an object to be processed to which the laser processing method in accordance with this embodiment is applied, while FIG. 11 is a partial sectional view of the object taken along a line to cut in FIG. 10. As illustrated in FIGS. 10 and 11, the planar object to be processed 1 comprises a GaAs substrate 12 and a functional device layer 16 which is formed on a main face of the GaAs substrate 12 while including a plurality of functional devices 15. The GaAs substrate 12 has a sphalerite structure, in which, when the main face is taken as a (100) surface, a surface parallel to an orientation flat 6 is a (011) or (0-1-1) surface, and a surface perpendicular to the orientation flat 6 is a (0-11) or (01-1) surface. A number of functional devices 15, examples of which include semiconductor operating layers formed by crystal growth, light-receiving devices such as photodiodes, light-emitting devices such as laser diodes, and circuit devices formed as circuits, are formed like a matrix in directions parallel and perpendicular to the orientation flat 6 of the GaAs substrate 12.
The laser processing method in accordance with this embodiment is applied to thus constructed object 1.
First, as illustrated in FIG. 12(a), an expandable tape 23 is attached to the rear face 21 of the object 1. Subsequently, the object 1 is secured onto a support table (not depicted) of the laser processing apparatus such that the functional device layer 16 faces up. Then, as illustrated in FIG. 10, lines to cut 5 are set like grids passing between adjacent functional devices 15, 15 in directions perpendicular and parallel to the orientation flat 6.
Next, as illustrated in FIG. 12(b), the object 1 is irradiated with the laser light L while using the front face 3 as a laser light entrance surface and locating the converging point P within the GaAs substrate 12, and the support table is moved, so as to shift the converging point P relatively along the lines to cut 5 set like grids in the directions perpendicular and parallel to the orientation flat 6. Here, the laser light L is pulsed laser light which is emitted with a pulse width of 31 to 54 ns and a pulse pitch of 7.5 to 10 μm.
The converging point P is relatively moved along each line to cut 5 a plurality of times (e.g., two times) with respective distances from the surface 3 to the position where the converging point P is located, whereby a plurality of rows of modified regions 7 are formed within the GaAs substrate 12 with respect to each line to cut 5 one by one in order from the rear face 21 side. The number of rows of modified regions 7 formed within the GaAs substrate 12 for each line to cut 5 is variable depending on the thickness of the GaAs substrate 12 and the like and may be 1 without being restricted to plurals.
Subsequently, as illustrated in FIG. 13(a), the expandable tape 23 is expanded. As the expandable tape expands, the object 1 is stretched, so as to be cut into chips from the modified regions 7 acting as start points, whereby a number of semiconductor chips 25 each having one functional device 15 are obtained. Since the expandable tape 23 is in an expanded state at this time, the semiconductor chips 25 are separated from each other as illustrated in FIG. 13(b).
As explained in the foregoing, the laser processing method in accordance with this embodiment emits the laser light L at a pulse width of 31 to 54 ns and a pulse pitch of 7.5 to 10 μm, so as to form the modified regions 7 to become starting point regions for cutting in the GaAs substrate 12 along the lines to cut 5. As a consequence, the modified regions 7 formed in the GaAs substrate 12 along the lines to cut 5 become those which are likely to generate fractures in the thickness direction of the object 1. Therefore, the laser processing method in accordance with this embodiment can form the modified regions 7 having an extremely high function as a starting point region for cutting in the planar object 1 comprising the GaAs substrate 12.
The laser processing method in accordance with this embodiment forms the modified regions 7 having an extremely high function as a starting point region for cutting and then cuts the object 1 along the line to cut 5 from the modified regions 7 acting as start points, and thus can achieve an extremely high cutting accuracy.
The modified regions 7 formed in the laser processing method in accordance with this embodiment include molten processed regions. Fractures starting from the forming of modified regions and contributing to cutting are accurately formed on a surface on a side opposite to the laser light entrance surface.
Results of experiments with laser processing methods in accordance with examples and comparative examples will now be explained.
Table 1 lists laser light irradiation conditions and respective division ratios under the irradiation conditions. In Table 1, “pulse width” refers to the pulse width of pulsed laser light. “Pulse pitch” indicates the interval with which converging points of the pulsed laser light are formed. “Division ratio” is a ratio at which chips each having an outer shape of 1 mm×1 mm were actually obtained when an object to be processed occupying ¼ of a GaAs substrate having an outer diameter of 2 inches and a thickness of 100 μm was irradiated with the pulsed laser light under the irradiation conditions and processing conditions which will be explained later so as to be divided into the chips each having an outer shape of 1 mm×1 mm.
TABLE 1
Pulse Scanning Pulse Division
Frequency width rate pitch ratio
Condition [kHz] [ns] [min/s] [μm] [%]
1 30 13 225 7.5 40
2 5 31 25 5 0
3 5 31 37.5 7.5 100
4 5 31 50 10 100
5 5 31 62.5 12.5 92.1
6 5 31 75 15 79.2
7 10 41 50 5 0
8 10 41 75 7.5 96.8
9 10 41 100 10 99
10 10 41 125 12.5 93.5
11 10 41 150 15 79.3
12 10 48 50 5 8.3
13 10 48 75 7.5 99
14 10 48 100 10 99.2
15 10 48 125 12.5 100
16 10 48 150 15 82.5
17 10 54 50 5 1
18 10 54 75 7.5 100
19 10 54 100 10 91.7
20 10 54 125 12.5 75.8
21 10 61 50 5 0
22 10 61 75 7.5 87.5
23 10 61 100 10 81.7
24 10 61 125 12.5 4.2
The following are other processing conditions. The object to be processed, which was a ¼ portion of a GaAs substrate having an outer diameter of 2 inches and a thickness of 100 μm, was irradiated with the laser light converged at a position distanced by 70 μm from the front face that is the laser light entrance surface thereof (whereby a modified region was formed at a position ranging from 57 to 70 μm from the laser light entrance surface) and then with the laser light converged at a position distanced by 40 μm from the front face that is the laser light entrance surface thereof (whereby a modified region was formed at a position ranging from 33 to 48 μm from the laser light entrance surface), so that two rows of modified regions were formed for each line to cut. When forming the modified region at the position distanced by 70 μm from the front face of the object, the laser light had a converged diameter of 0.86 μm and an energy density of 1.20×107 (W/cm2) at the converging point. When forming the modified region at the position distanced by 40 μm from the front face of the object, the laser light had a converged diameter of 0.86 μm and an energy density of 9.64×106 (W/cm2) at the converging point. After forming the modified regions, the expandable tape was expanded by an amount of expansion of 15 mm and an expanding rate of 10 mm/s over the whole rear face of the object.
FIG. 14 is a graph illustrating relationships between the pulse width and division ratio when laser processing methods in accordance with examples and comparative examples were performed, while FIG. 15 is a graph illustrating relationships between the pulse pitch and division ratio when laser processing methods in accordance with examples and comparative examples were performed. As clear from Table 1 and FIGS. 14 and 15, the division ratio exceeds 90% when modified regions are formed by irradiation with pulsed laser light at a pulse width of 31 to 54 ns and a pulse pitch of 7.5 to 10 μm.
FIGS. 16 to 20 are views illustrating photographs of a surface and cut sections of the object after division under conditions 7 to 11 of Table 1. In the modified regions illustrated in FIGS. 17 to 19 (i.e., modified regions whose division ratio exceeded 90%), unlike those illustrated in FIGS. 16 and 20, the fractures starting from the forming of modified regions and contributing to cutting are accurately formed on a surface on a side opposite to the laser light entrance surface.
The present invention is not limited to the above-mentioned embodiment.
For example, though the front face 3 of the object 1 is used as the laser light entrance surface, the rear face 21 of the object 1 may be employed as the laser light entrance surface. When the rear face 21 of the object 1 is employed as the laser light entrance surface, the object 1 is cut into a plurality of semiconductor chips 25 as follows, for example. That is, a protective tape is attached to the front face of the functional device layer 16, and is secured to the support table of the laser processing apparatus while protecting the functional device layer 16. Then, the object 1 is irradiated with the laser light L while using its rear face 21 as the laser light entrance surface and locating the converging point P within the object 1, so as to form the modified regions 7 in the GaAs substrate 12 along the lines to cut 5. Subsequently, the protective tape secured to the support table is released therefrom together with the object 1. Thereafter, the expandable tape 23 is attached to the rear face 21 of the object 1, the protective tape is peeled off from the front face of the functional device layer 16, and then the object 1 is cut along the lines to cut 5 from the modified regions 7 acting as starting point regions for cutting while the expandable tape 23 is in an expanded state.
INDUSTRIAL APPLICABILITY
The present invention can form a modified region having a high function as a starting point region for cutting in a planar object to be processed comprising a GaAs substrate.

Claims (3)

The invention claimed is:
1. A laser processing method including:
irradiating a planar object to be processed comprising a GaAs substrate with laser light;
locating a converging point within the object, so as to form a modified region,
wherein said modified region is formed to become a starting point region for cutting in the GaAs substrate along a line to cut the object,
wherein the laser light is pulsed laser light having a pulse width of 31 to 54 48 ns, and
wherein the laser light has a pulse pitch of 7.5 to 10 12.5 μm.
2. A laser processing method according to claim 1, wherein, after forming the modified region, the object is cut along the line to cut from the modified region acting as a start point.
3. A laser processing method according to claim 1, wherein the modified region includes a molten processed region.
US14/148,180 2007-10-30 2008-10-27 Laser processing method Active 2029-12-20 USRE45403E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/148,180 USRE45403E1 (en) 2007-10-30 2008-10-27 Laser processing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007282065A JP5449665B2 (en) 2007-10-30 2007-10-30 Laser processing method
JPP2007-282065 2007-10-30
US12/670,029 US8420507B2 (en) 2007-10-30 2008-10-27 Laser processing method
US14/148,180 USRE45403E1 (en) 2007-10-30 2008-10-27 Laser processing method
PCT/JP2008/069462 WO2009057558A1 (en) 2007-10-30 2008-10-27 Laser processing method

Publications (1)

Publication Number Publication Date
USRE45403E1 true USRE45403E1 (en) 2015-03-03

Family

ID=40590949

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/148,180 Active 2029-12-20 USRE45403E1 (en) 2007-10-30 2008-10-27 Laser processing method
US12/670,029 Ceased US8420507B2 (en) 2007-10-30 2008-10-27 Laser processing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/670,029 Ceased US8420507B2 (en) 2007-10-30 2008-10-27 Laser processing method

Country Status (6)

Country Link
US (2) USRE45403E1 (en)
JP (1) JP5449665B2 (en)
KR (1) KR101549271B1 (en)
CN (4) CN105364321A (en)
TW (1) TWI510322B (en)
WO (1) WO2009057558A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (en) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
EP2216128B1 (en) * 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Method of cutting object to be processed
EP2400539B1 (en) 2002-03-12 2017-07-26 Hamamatsu Photonics K.K. Substrate dividing method
TWI520269B (en) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (en) 2003-03-11 2009-07-24 Jean Luc Jouvin PROTECTIVE SHEATH FOR CANNULA, AN INJECTION KIT COMPRISING SUCH ANKLE AND NEEDLE EQUIPPED WITH SUCH ANKLE
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
EP2269765B1 (en) * 2003-07-18 2014-10-15 Hamamatsu Photonics K.K. Cut semiconductor chip
JP4563097B2 (en) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 Semiconductor substrate cutting method
JP4598407B2 (en) * 2004-01-09 2010-12-15 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP4509578B2 (en) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP4601965B2 (en) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
KR101336523B1 (en) 2004-03-30 2013-12-03 하마마츠 포토닉스 가부시키가이샤 Laser processing method and semiconductor chip
JP4200177B2 (en) * 2004-08-06 2008-12-24 浜松ホトニクス株式会社 Laser processing method and semiconductor device
JP4762653B2 (en) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 Laser processing method and laser processing apparatus
JP4907965B2 (en) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 Laser processing method
JP4804911B2 (en) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 Laser processing equipment
JP4907984B2 (en) * 2005-12-27 2012-04-04 浜松ホトニクス株式会社 Laser processing method and semiconductor chip
US7897487B2 (en) 2006-07-03 2011-03-01 Hamamatsu Photonics K.K. Laser processing method and chip
JP5183892B2 (en) 2006-07-03 2013-04-17 浜松ホトニクス株式会社 Laser processing method
US8188404B2 (en) * 2006-09-19 2012-05-29 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
JP4954653B2 (en) 2006-09-19 2012-06-20 浜松ホトニクス株式会社 Laser processing method
JP5101073B2 (en) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 Laser processing equipment
JP4964554B2 (en) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 Laser processing method
JP5132911B2 (en) * 2006-10-03 2013-01-30 浜松ホトニクス株式会社 Laser processing method
EP2070636B1 (en) * 2006-10-04 2015-08-05 Hamamatsu Photonics K.K. Laser processing method
JP5336054B2 (en) * 2007-07-18 2013-11-06 浜松ホトニクス株式会社 Processing information supply system provided with processing information supply device
JP5225639B2 (en) 2007-09-06 2013-07-03 浜松ホトニクス株式会社 Manufacturing method of semiconductor laser device
JP5054496B2 (en) * 2007-11-30 2012-10-24 浜松ホトニクス株式会社 Processing object cutting method
JP5134928B2 (en) * 2007-11-30 2013-01-30 浜松ホトニクス株式会社 Workpiece grinding method
JP5692969B2 (en) 2008-09-01 2015-04-01 浜松ホトニクス株式会社 Aberration correction method, laser processing method using this aberration correction method, laser irradiation method using this aberration correction method, aberration correction apparatus, and aberration correction program
JP5254761B2 (en) 2008-11-28 2013-08-07 浜松ホトニクス株式会社 Laser processing equipment
JP5241527B2 (en) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 Laser processing equipment
JP5241525B2 (en) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 Laser processing equipment
JP5632751B2 (en) 2009-02-09 2014-11-26 浜松ホトニクス株式会社 Processing object cutting method
CN102317030B (en) 2009-04-07 2014-08-20 浜松光子学株式会社 Laser machining device and laser machining method
JP5491761B2 (en) 2009-04-20 2014-05-14 浜松ホトニクス株式会社 Laser processing equipment
TWI517922B (en) 2009-05-13 2016-01-21 康寧公司 Methods for cutting a fragile material
CN102470484B (en) * 2009-08-11 2015-09-30 浜松光子学株式会社 Laser processing device and laser processing
DE102010009015A1 (en) * 2010-02-24 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Method for producing a plurality of optoelectronic semiconductor chips
KR101164418B1 (en) * 2010-06-16 2012-07-12 한국과학기술원 Substrate Dicing Method by Nonlinear Focal Shift using Femtosecond Pulse Lasers
US8722516B2 (en) 2010-09-28 2014-05-13 Hamamatsu Photonics K.K. Laser processing method and method for manufacturing light-emitting device
JP5670764B2 (en) * 2011-01-13 2015-02-18 浜松ホトニクス株式会社 Laser processing method
JP5480169B2 (en) * 2011-01-13 2014-04-23 浜松ホトニクス株式会社 Laser processing method
JP2013042119A (en) * 2011-07-21 2013-02-28 Hamamatsu Photonics Kk Light-emitting element manufacturing method
JP5894754B2 (en) * 2011-09-16 2016-03-30 浜松ホトニクス株式会社 Laser processing method
CN102699526A (en) * 2012-06-01 2012-10-03 苏州德龙激光有限公司 Method and device for cutting machined object by using laser
JP6000700B2 (en) * 2012-07-10 2016-10-05 株式会社ディスコ Laser processing method
KR20160126175A (en) * 2015-04-22 2016-11-02 삼성디스플레이 주식회사 Method of cutting a substrate and method of manufacturing a display apparatus
CN104868017A (en) * 2015-06-01 2015-08-26 大族激光科技产业集团股份有限公司 GaAs cell laser processing method
US10589445B1 (en) * 2018-10-29 2020-03-17 Semivation, LLC Method of cleaving a single crystal substrate parallel to its active planar surface and method of using the cleaved daughter substrate
CN109909608B (en) * 2019-04-03 2021-10-12 大族激光科技产业集团股份有限公司 Wafer processing method and apparatus
JP7286464B2 (en) * 2019-08-02 2023-06-05 株式会社ディスコ Laser processing equipment
CN114853325B (en) * 2022-06-06 2023-09-05 安徽光智科技有限公司 Isolation bonding method of chalcogenide glass

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
CN1160228A (en) 1995-12-08 1997-09-24 现代电子产业株式会社 Illumination method and apparatus for formation of micro patterns
US20040232124A1 (en) 2003-05-19 2004-11-25 Yusuke Nagai Workpiece dividing method utilizing laser beam
JP2005109442A (en) 2003-09-10 2005-04-21 Hamamatsu Photonics Kk Method of cutting semiconductor substrate
JP2005166728A (en) 2003-11-28 2005-06-23 Mitsubishi Cable Ind Ltd Method of manufacturing nitride-based semiconductor element
US20050173387A1 (en) 2000-09-13 2005-08-11 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20050202596A1 (en) 2002-03-12 2005-09-15 Fumitsugu Fukuyo Laser processing method
US20050272223A1 (en) 2002-03-12 2005-12-08 Yoshimaro Fujii Method for dicing substrate
JP2006514886A (en) 2003-02-19 2006-05-18 ジェイピー・サーセル・アソシエイツ・インコーポレーテッド Cutting apparatus and method using variable astigmatic beam spot
WO2006051866A1 (en) 2004-11-12 2006-05-18 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
US20060144828A1 (en) 2002-12-06 2006-07-06 Kenshi Fukumitsu Device and method for laser processing
US20060148212A1 (en) 2002-12-03 2006-07-06 Fumitsugu Fukuyo Method for cutting semiconductor substrate
US20060255024A1 (en) 2003-03-11 2006-11-16 Fumitsufu Fukuyo Laser beam machining method
US20070125757A1 (en) 2003-03-12 2007-06-07 Fumitsugu Fukuyo Laser beam machining method
US20070158314A1 (en) 2003-03-12 2007-07-12 Kenshi Fukumitsu Laser processing method
US20070170159A1 (en) 2003-07-18 2007-07-26 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US20070252154A1 (en) 2003-09-11 2007-11-01 Shoichi Uchiyama Semiconductor Chip Manufacturing Method, Semiconductor Chip, Semiconductor Thin Film Chip, Electron Tube and Photo-Detecting Device
US20080035611A1 (en) 2004-08-06 2008-02-14 Koji Kuno Laser Processing Method And Semiconductor Device
US20080037003A1 (en) 2004-01-09 2008-02-14 Kazuhiro Atsumi Laser Processing Method And Device
US20080218735A1 (en) 2004-01-09 2008-09-11 Hamamatsu Photonics K.K. Laser Processing Method And Device
US20080251506A1 (en) 2004-01-09 2008-10-16 Kazuhiro Atsumi Laser Processing Method and Device
US20090008373A1 (en) 2005-11-25 2009-01-08 Hamamatsu Photonics K.K. Laser Processing Method
US20090032509A1 (en) 2005-03-22 2009-02-05 Koji Kuno Laser Machining Method
US7489454B2 (en) 2002-12-05 2009-02-10 Hamamatsu Photonics K.K. Laser processing device
US20090098713A1 (en) 2007-10-12 2009-04-16 Hamamatsu Photonics K.K. Object cutting method
US20090107967A1 (en) 2005-07-04 2009-04-30 Hamamatsu Photonics K.K. Method for cutting workpiece
US20090117712A1 (en) 2005-08-12 2009-05-07 Takeshi Sakamoto Laser processing method
US20090166342A1 (en) 2005-12-22 2009-07-02 Hamamatsu Photonics K.K. Laser Material Processing System
US20090166808A1 (en) 2004-03-30 2009-07-02 Takeshi Sakamoto Laser processing method and semiconductor chip
US7592237B2 (en) 2004-03-30 2009-09-22 Hamamatsu Photonics K.K. Laser processing method and object to be processed
US20090236324A1 (en) 2006-03-14 2009-09-24 Hamamatsu Photonics K.K. Laser processing method and laser processing system
US20090250446A1 (en) 2006-09-19 2009-10-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20090261083A1 (en) 2005-09-16 2009-10-22 Hamamatsu Photonics K.K. Laser processing method and laser processing device
US7608214B2 (en) 2004-10-13 2009-10-27 Hamamatsu Photonics K.K. Laser beam machining method
US20090302428A1 (en) 2005-12-27 2009-12-10 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
US20100006548A1 (en) 2006-10-03 2010-01-14 Kazuhiro Atsumi Laser working method
US20100009547A1 (en) 2006-07-03 2010-01-14 Hamamatsu Photonics K.K. Laser working method
US20100012632A1 (en) 2006-09-19 2010-01-21 Hamamatsu Photonics K.K. Laser processing method
US20100012633A1 (en) 2006-10-03 2010-01-21 Kazuhiro Atsumi Laser processing method
US20100025386A1 (en) 2006-10-02 2010-02-04 Hammamatsu Photonics K.K. Laser processing device
US20100032418A1 (en) 2006-10-04 2010-02-11 Hamamatsu Photonics K.K. Laser processing method
US7709767B2 (en) 2004-07-30 2010-05-04 Hamamatsu Photonics K.K. Laser processing method
US7718510B2 (en) 2004-03-30 2010-05-18 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
US7719017B2 (en) 2004-01-07 2010-05-18 Hamamatsu Photonics K.K. Semiconductor light-emitting device and its manufacturing method
US7754583B2 (en) 2005-11-18 2010-07-13 Hamamatsu Photonics K.K. Laser processing method
US20100184271A1 (en) 2006-07-03 2010-07-22 Hamamatsu Photonics K.K. Laser processing method and chip
US20100240159A1 (en) 2007-09-06 2010-09-23 Hamamatsu Photonics K.K. Manufacturing method of semiconductor laser element
US20100258539A1 (en) 2007-07-18 2010-10-14 Hamamatsu Photonics K.K. Machining information supply equipment and supply system
US20100301521A1 (en) 2007-11-30 2010-12-02 Hamamatsu Photonics K.K. Working object cutting method
US20100311313A1 (en) 2007-11-30 2010-12-09 Hamamatsu Photonics K.K. Working object grinding method
US20110000897A1 (en) 2007-08-03 2011-01-06 Hamamatsu Photonics K.K. Laser working method, laser working apparatus, and its manufacturing method
US7939430B2 (en) 2004-11-12 2011-05-10 Hamamatsu Photonics K.K. Laser processing method
US20110274128A1 (en) 2009-01-09 2011-11-10 Hamamatsu Photonics K.K. Laser beam working machine
US8090233B2 (en) * 2002-08-02 2012-01-03 Oz Optics Ltd Microstructuring optical wave guide devices with femtosecond optical pulses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302906A (en) * 1993-04-12 1994-10-28 Mitsubishi Electric Corp Semiconductor laser and its manufacture
DE4331654C1 (en) * 1993-09-17 1994-10-20 Marcus Dr Morstein Organoarsenido and organophosphido metallanes, preparation thereof and use thereof
US7977253B2 (en) * 2004-08-31 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device

Patent Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
CN1160228A (en) 1995-12-08 1997-09-24 现代电子产业株式会社 Illumination method and apparatus for formation of micro patterns
US7547613B2 (en) 2000-09-13 2009-06-16 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20110037149A1 (en) 2000-09-13 2011-02-17 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US7615721B2 (en) 2000-09-13 2009-11-10 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20110021004A1 (en) 2000-09-13 2011-01-27 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US20050173387A1 (en) 2000-09-13 2005-08-11 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20050181581A1 (en) 2000-09-13 2005-08-18 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20110027972A1 (en) 2000-09-13 2011-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US20110027971A1 (en) 2000-09-13 2011-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US6992026B2 (en) 2000-09-13 2006-01-31 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20100055876A1 (en) 2000-09-13 2010-03-04 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7825350B2 (en) 2000-09-13 2010-11-02 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7732730B2 (en) 2000-09-13 2010-06-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7626137B2 (en) 2000-09-13 2009-12-01 Hamamatsu Photonics K.K. Laser cutting by forming a modified region within an object and generating fractures
US7592238B2 (en) 2000-09-13 2009-09-22 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20100176100A1 (en) 2000-09-13 2010-07-15 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7396742B2 (en) 2000-09-13 2008-07-08 Hamamatsu Photonics K.K. Laser processing method for cutting a wafer-like object by using a laser to form modified regions within the object
US7749867B2 (en) 2002-03-12 2010-07-06 Hamamatsu Photonics K.K. Method of cutting processed object
US7566635B2 (en) 2002-03-12 2009-07-28 Hamamatsu Photonics K.K. Substrate dividing method
US20100015783A1 (en) 2002-03-12 2010-01-21 Hamamatsu Photonics K.K. Method of cutting an object to be processed
US20100203707A1 (en) 2002-03-12 2010-08-12 Hamamatsu Photonics K.K. Substrate dividing method
US20050272223A1 (en) 2002-03-12 2005-12-08 Yoshimaro Fujii Method for dicing substrate
US20050202596A1 (en) 2002-03-12 2005-09-15 Fumitsugu Fukuyo Laser processing method
US20080090382A1 (en) 2002-03-12 2008-04-17 Hamamatsu Photonics K.K. Substrate dividing method
US8090233B2 (en) * 2002-08-02 2012-01-03 Oz Optics Ltd Microstructuring optical wave guide devices with femtosecond optical pulses
US20060148212A1 (en) 2002-12-03 2006-07-06 Fumitsugu Fukuyo Method for cutting semiconductor substrate
US7489454B2 (en) 2002-12-05 2009-02-10 Hamamatsu Photonics K.K. Laser processing device
US20060144828A1 (en) 2002-12-06 2006-07-06 Kenshi Fukumitsu Device and method for laser processing
JP2006514886A (en) 2003-02-19 2006-05-18 ジェイピー・サーセル・アソシエイツ・インコーポレーテッド Cutting apparatus and method using variable astigmatic beam spot
US20060255024A1 (en) 2003-03-11 2006-11-16 Fumitsufu Fukuyo Laser beam machining method
US20070158314A1 (en) 2003-03-12 2007-07-12 Kenshi Fukumitsu Laser processing method
US20070125757A1 (en) 2003-03-12 2007-06-07 Fumitsugu Fukuyo Laser beam machining method
US20040232124A1 (en) 2003-05-19 2004-11-25 Yusuke Nagai Workpiece dividing method utilizing laser beam
JP2004343008A (en) 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd Workpiece dividing method utilizing laser beam
US7605344B2 (en) 2003-07-18 2009-10-20 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US20100151202A1 (en) 2003-07-18 2010-06-17 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US20070170159A1 (en) 2003-07-18 2007-07-26 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US20100327416A1 (en) 2003-07-18 2010-12-30 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US20070085099A1 (en) 2003-09-10 2007-04-19 Kenshi Fukumitsu Semiconductor substrate cutting method
US20100203678A1 (en) 2003-09-10 2010-08-12 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
JP2005109442A (en) 2003-09-10 2005-04-21 Hamamatsu Photonics Kk Method of cutting semiconductor substrate
US20070252154A1 (en) 2003-09-11 2007-11-01 Shoichi Uchiyama Semiconductor Chip Manufacturing Method, Semiconductor Chip, Semiconductor Thin Film Chip, Electron Tube and Photo-Detecting Device
JP2005166728A (en) 2003-11-28 2005-06-23 Mitsubishi Cable Ind Ltd Method of manufacturing nitride-based semiconductor element
US7719017B2 (en) 2004-01-07 2010-05-18 Hamamatsu Photonics K.K. Semiconductor light-emitting device and its manufacturing method
US20080037003A1 (en) 2004-01-09 2008-02-14 Kazuhiro Atsumi Laser Processing Method And Device
US20080218735A1 (en) 2004-01-09 2008-09-11 Hamamatsu Photonics K.K. Laser Processing Method And Device
US20080251506A1 (en) 2004-01-09 2008-10-16 Kazuhiro Atsumi Laser Processing Method and Device
US7947574B2 (en) 2004-03-30 2011-05-24 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
US20090166808A1 (en) 2004-03-30 2009-07-02 Takeshi Sakamoto Laser processing method and semiconductor chip
US7592237B2 (en) 2004-03-30 2009-09-22 Hamamatsu Photonics K.K. Laser processing method and object to be processed
US7718510B2 (en) 2004-03-30 2010-05-18 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
US7709767B2 (en) 2004-07-30 2010-05-04 Hamamatsu Photonics K.K. Laser processing method
US20080035611A1 (en) 2004-08-06 2008-02-14 Koji Kuno Laser Processing Method And Semiconductor Device
US7608214B2 (en) 2004-10-13 2009-10-27 Hamamatsu Photonics K.K. Laser beam machining method
US20110001220A1 (en) 2004-11-12 2011-01-06 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
WO2006051866A1 (en) 2004-11-12 2006-05-18 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
US7939430B2 (en) 2004-11-12 2011-05-10 Hamamatsu Photonics K.K. Laser processing method
US7902636B2 (en) * 2004-11-12 2011-03-08 Hamamatsu Photonics K.K. Semiconductor chip including a substrate and multilayer part
US20090032509A1 (en) 2005-03-22 2009-02-05 Koji Kuno Laser Machining Method
US20090107967A1 (en) 2005-07-04 2009-04-30 Hamamatsu Photonics K.K. Method for cutting workpiece
US20090117712A1 (en) 2005-08-12 2009-05-07 Takeshi Sakamoto Laser processing method
US20090261083A1 (en) 2005-09-16 2009-10-22 Hamamatsu Photonics K.K. Laser processing method and laser processing device
US7754583B2 (en) 2005-11-18 2010-07-13 Hamamatsu Photonics K.K. Laser processing method
US20100227453A1 (en) 2005-11-18 2010-09-09 Hamamatsu Photonics K.K. Laser processing method
US20090008373A1 (en) 2005-11-25 2009-01-08 Hamamatsu Photonics K.K. Laser Processing Method
US20090166342A1 (en) 2005-12-22 2009-07-02 Hamamatsu Photonics K.K. Laser Material Processing System
US20090302428A1 (en) 2005-12-27 2009-12-10 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
US20090236324A1 (en) 2006-03-14 2009-09-24 Hamamatsu Photonics K.K. Laser processing method and laser processing system
US20100184271A1 (en) 2006-07-03 2010-07-22 Hamamatsu Photonics K.K. Laser processing method and chip
US7897487B2 (en) 2006-07-03 2011-03-01 Hamamatsu Photonics K.K. Laser processing method and chip
US20100009547A1 (en) 2006-07-03 2010-01-14 Hamamatsu Photonics K.K. Laser working method
US20100012632A1 (en) 2006-09-19 2010-01-21 Hamamatsu Photonics K.K. Laser processing method
US20090250446A1 (en) 2006-09-19 2009-10-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US20100025386A1 (en) 2006-10-02 2010-02-04 Hammamatsu Photonics K.K. Laser processing device
US20100012633A1 (en) 2006-10-03 2010-01-21 Kazuhiro Atsumi Laser processing method
US20100006548A1 (en) 2006-10-03 2010-01-14 Kazuhiro Atsumi Laser working method
US20100032418A1 (en) 2006-10-04 2010-02-11 Hamamatsu Photonics K.K. Laser processing method
US20100258539A1 (en) 2007-07-18 2010-10-14 Hamamatsu Photonics K.K. Machining information supply equipment and supply system
US20110000897A1 (en) 2007-08-03 2011-01-06 Hamamatsu Photonics K.K. Laser working method, laser working apparatus, and its manufacturing method
US20100240159A1 (en) 2007-09-06 2010-09-23 Hamamatsu Photonics K.K. Manufacturing method of semiconductor laser element
US20090098713A1 (en) 2007-10-12 2009-04-16 Hamamatsu Photonics K.K. Object cutting method
US20100311313A1 (en) 2007-11-30 2010-12-09 Hamamatsu Photonics K.K. Working object grinding method
US20100301521A1 (en) 2007-11-30 2010-12-02 Hamamatsu Photonics K.K. Working object cutting method
US20110274128A1 (en) 2009-01-09 2011-11-10 Hamamatsu Photonics K.K. Laser beam working machine

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
D. Du et al., "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns To 150 fs," Appl. Phys. Lett. 64(23), Jun. 6, 1994, pp. 3071-3073.
K. Hayashi, "Inner Glass Marking by Harmonies of Solid State Laser," Proceedings of 45th Laser Materials Processing Conference, Dec. 1998, pp. 23-28, including English Abstract.
K. Miura et al., "Formation of Photo-induced Structures in Glasses with Femtosecond Laser," Proceedings of 42nd Laser Materials Processing Conference, Nov. 1997, pp. 105-111, including English Abstract.
T. Sano et al., "Evaluation of Processing Characteristics of Silicon with Picosecond Pulse Laser," Preprints of the National Meeting of Japan Welding Society, No. 66, Apr. 2000, pp. 72-73, including English Translation.
U.S. Appl. No. 13/061,438, filed Apr. 26, 2011.
U.S. Appl. No. 13/107,056, filed May 13, 2011.
U.S. Appl. No. 13/131,429, filed Jun. 28, 2011.
U.S. Appl. No. 13/143,636, filed Sep. 21, 2011.
U.S. Appl. No. 13/148,097, filed Aug. 26, 2011.
U.S. Appl. No. 13/151,877, filed Jun. 2, 2011.
U.S. Appl. No. 13/206,181, filed Aug. 9, 2011.
U.S. Appl. No. 13/213,175, filed Aug. 19, 2011.
U.S. Appl. No. 13/233,662, filed Sep. 15, 2011.
U.S. Appl. No. 13/235,936, filed Sep. 19, 2011.
U.S. Appl. No. 13/262,995, filed Oct. 5, 2011.
U.S. Appl. No. 13/265,027, filed Oct. 18, 2011.
U.S. Appl. No. 13/269,274, filed Oct. 7, 2011.
X. Liu et al., "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE Journal of Quantum Electronics, vol. 33, No. 10, Oct. 1997, pp. 1706-1716.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US11219966B1 (en) 2018-12-29 2022-01-11 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US11826846B2 (en) 2018-12-29 2023-11-28 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US11901181B2 (en) 2018-12-29 2024-02-13 Wolfspeed, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US11911842B2 (en) 2018-12-29 2024-02-27 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11034056B2 (en) 2019-05-17 2021-06-15 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11654596B2 (en) 2019-05-17 2023-05-23 Wolfspeed, Inc. Silicon carbide wafers with relaxed positive bow and related methods

Also Published As

Publication number Publication date
CN105364321A (en) 2016-03-02
JP2009106977A (en) 2009-05-21
WO2009057558A1 (en) 2009-05-07
US20100200550A1 (en) 2010-08-12
TWI510322B (en) 2015-12-01
US8420507B2 (en) 2013-04-16
CN103934578A (en) 2014-07-23
CN101842184A (en) 2010-09-22
JP5449665B2 (en) 2014-03-19
TW200927354A (en) 2009-07-01
CN105364322A (en) 2016-03-02
KR20100076918A (en) 2010-07-06
KR101549271B1 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
USRE45403E1 (en) Laser processing method
US10315403B2 (en) Method for cutting object to be processed
US8828306B2 (en) Working object cutting method
US8513567B2 (en) Laser processing method for forming a modified region for cutting in an object
US8759948B2 (en) Laser beam machining method and semiconductor chip
US7592237B2 (en) Laser processing method and object to be processed
US8431467B2 (en) Laser working method
US8338271B2 (en) Laser processing method and chip
EP2070636B1 (en) Laser processing method
US8138450B2 (en) Method for cutting workpiece
US8188404B2 (en) Laser processing method and laser processing apparatus
EP2460633B1 (en) Method for cutting processing target

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8