USRE44476E1 - Constrained prosthetic knee with rotating bearing - Google Patents

Constrained prosthetic knee with rotating bearing Download PDF

Info

Publication number
USRE44476E1
USRE44476E1 US12/776,224 US77622410A USRE44476E US RE44476 E1 USRE44476 E1 US RE44476E1 US 77622410 A US77622410 A US 77622410A US RE44476 E USRE44476 E US RE44476E
Authority
US
United States
Prior art keywords
hinge post
femoral component
hinge
aperture
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12/776,224
Inventor
John E. Meyers
Jerry L. Aikins
Rodney L. Bays
Michael Cook
Marvin Figueroa
Adam M. Griner
Bill H. Haywood
Bill N. Sisk
Vincent A. Webster
George D Letson
Peter S. Walker
Russell Windsor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer Inc
Original Assignee
Zimmer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25090569&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE44476(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/234,362 external-priority patent/US6773461B2/en
Application filed by Zimmer Inc filed Critical Zimmer Inc
Priority to US12/776,224 priority Critical patent/USRE44476E1/en
Application granted granted Critical
Publication of USRE44476E1 publication Critical patent/USRE44476E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3868Joints for elbows or knees with sliding tibial bearing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3836Special connection between upper and lower leg, e.g. constrained
    • A61F2/384Special connection between upper and lower leg, e.g. constrained hinged, i.e. with transverse axle restricting the movement
    • A61F2/385Special connection between upper and lower leg, e.g. constrained hinged, i.e. with transverse axle restricting the movement also provided with condylar bearing surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0095Packages or dispensers for prostheses or other implants

Definitions

  • the present invention relates to prosthetic joints, and, more particularly to a constrained prosthetic knee having a modular hinge post and a rotating bearing.
  • the knee is formed by the pair of condyles at the distal portion of the femur, the lower surfaces of which bear upon the correspondingly shaped proximal surface plateau of the tibia.
  • the femur and tibia are connected by means of ligaments such as, the posterior cruciate ligament, the lateral collateral ligament, the medial collateral ligament, and the anterior cruciate ligament. These ligaments provide stability to the joint formed by the femur and tibia (i.e., the knee).
  • prosthetic knee joints can be considered either constrained or unconstrained.
  • constrained prosthetic knees include femoral and tibial prosthetic components which are mechanically linked or constrained to each other by a hinge structure.
  • An unconstrained prosthetic knee includes femoral and tibial components which are not mechanically linked.
  • An unconstrained knee utilizes the patient's existing ligaments to provide joint stability.
  • Tibial components of a prosthetic knee can be formed as a one-piece configuration in which the tibial tray forms the meniscal component of the prosthetic knee.
  • Various other prosthetic knees utilize a modular meniscal component separate from the tibial component.
  • Devices utilizing modular meniscal components include those in which the meniscal component (i.e., tibial bearing surface) is fixed to the tibial tray portion of the tibial component and is incapable of movement relative thereto.
  • Alternative devices utilize a modular meniscal component capable of movement relative to the tibial tray.
  • Devices in which relative rotational movement occurs between the meniscal component and the tibial component are typically referred to as rotating bearing knees. Rotating bearing knees thus allow movement between the bearing (i.e., meniscal component) and the tibial tray, as well as movement between the femoral component and the tibial bearing.
  • Constrained knees of the prior art include constructions in which a hinge post extension is first positioned within a tibial component (with an end protruding therefrom) and is thereafter connected to the femoral component by positioning the hinge post (rotatably attached to the femoral component) over the top of the protruding end of the hinge post extension and thereafter connecting the hinge post extension to the hinge post, e.g., by threading the hinge post extension into the hinge post. After making this connection, the meniscal component is thereafter slid into position between the femoral component and the tibial component. Meniscal components utilized with these prior art prosthetic knees were fixed to the tibial component.
  • the present invention is directed to a constrained knee prosthesis with a rotating bearing.
  • the knee prosthesis of the present invention is structured to facilitate implantation thereof.
  • the present invention is further directed to a prosthetic knee implant set having a plurality of matched modular hinge post and meniscal component pairs.
  • the present invention provides an improved constrained knee prosthesis having a cannulated hinge post facilitating implantation of the knee prosthesis in a relatively minimally invasive procedure.
  • the prosthetic knee implant set of the current invention includes a separately packaged femoral component, a separately packaged tibial component, and a third package containing a hinge post extension and the meniscal component. Packaging the individual components of a knee prosthesis in this fashion insures that the appropriate hinge post extension is readily available.
  • a bearing box is interposed between the hinge post and the femoral component.
  • the bearing box includes a hyperextension stop which cooperates with the hinge post to prevent hyperextension of the knee prosthesis.
  • Various structures are utilized to prevent the disengagement of the constrained knee prosthesis of the present invention.
  • a prosthetic knee constructed in accordance with the present invention includes a femoral component having a pair of condyler surfaces and a hinge post rotatably connected to the femoral component between the condyler surfaces.
  • the hinge post is cannulated and accommodates insertion of a hinge post extension shaft therein.
  • the hinge post and hinge post extension include cooperating locking tapers for locking the hinge post extension to the hinge post.
  • the hinge post includes internal threads so that a set screw may be threaded therein to further hold the hinge post extension in place.
  • the tibial component includes a hinge post extension aperture into which the hinge post is seated.
  • the meniscal component similarly includes an aperture to accommodate the hinge post and hinge post extension.
  • the meniscal component of the current invention is free to rotate about the hinge post during flexion and extension of the knee joint.
  • Having a cannulated hinge post through which a hinge post extension may be anteriorly positioned and secured advantageously allows for a relatively minimally invasive knee replacement procedure.
  • the present invention advantageously provides a constrained prosthetic knee having a rotating bearing flush with the condyler surfaces of the femoral component.
  • Another advantage of the present invention is the packaging of the prosthesis components and specifically the packaging of the appropriate hinge post extension together with a meniscal component.
  • FIG. 1 is a perspective view of an assembled knee prosthesis in accordance with the present invention
  • FIG. 2 is an exploded view thereof
  • FIG. 3 is a cutaway, exploded view illustrating assembly of the knee prosthesis of the current invention including the anterior positioning of the hinge post extension into the hinge post;
  • FIG. 4 is a cutaway view illustrating securement of the hinge plug (i.e., set screw) in the hinge post to facilitate locking of the hinge post extension therein;
  • FIG. 5 is a cutaway, exploded view illustrating removal of the hinge post extension
  • FIG. 6 is a bottom elevational view of the meniscal component of the present invention.
  • FIG. 7 is a front elevational view thereof
  • FIG. 8 is a top elevational view of a tibial component in accordance with the present invention.
  • FIG. 9 is a sectional view of a hinge plug in accordance with the present invention.
  • FIG. 10 is a side elevational view of a bearing box in accordance with the present invention.
  • FIG. 11 is a front elevational view thereof
  • FIG. 12 is a top elevational view thereof
  • FIG. 13 is a cutaway, exploded view of an alternative embodiment of the knee prosthesis of the present invention.
  • FIG. 14 is a cutaway view of an assembled knee prosthesis in accordance with the embodiment illustrated in FIG. 13 ;
  • FIG. 15 is a fragmentary, cutaway view of an alternative embodiment of the hinge post extension and tibial bushing of the present invention.
  • FIG. 16 is a fragmentary, cutaway view of the embodiment of FIG. 15 illustrating insertion of the hinge post extension into the tibial bushing;
  • FIG. 17 is a fragmentary, cutaway view of the embodiment of FIG. 15 illustrating the hinge post extension fully inserted into the tibial bushing;
  • FIG. 18 is an exploded view of an alternative embodiment of the knee prosthesis of the current invention.
  • FIG. 19 is a sectional view of a meniscal component in accordance with an alternative embodiment of the present invention.
  • FIG. 20 is an elevational view of a hinge post in accordance with an alternative embodiment of the present invention.
  • Knee prosthesis 20 in accordance with the present invention is illustrated.
  • Knee prosthesis 20 generally includes femoral component 22 , tibial component 24 , and meniscal component 26 .
  • Hinge post 40 is rotatably connected to femoral component 22 and includes elongate hinge post extension aperture 112 ( FIGS. 3-6 , 13 , and 14 ).
  • Elongate aperture 112 accommodates placement of hinge post extension 42 therein.
  • Hinge post extension 42 thereafter traverses hinge post aperture 114 in meniscal component 26 and hinge post extension aperture 110 ( FIGS. 3-6 , 13 and 14 ) in tibial component 24 .
  • Elongate hinge post extension aperture 112 of hinge post 40 advantageously allows for anterior placement of hinge post extension 42 during surgical implantation of knee prosthesis 20 of the present invention.
  • hinge post extension 42 includes locking taper 46 and cylindrical extension 48 .
  • Hinge post extension aperture 112 includes a mating locking taper to cooperate with locking taper 46 and lock hinge post extension 42 to hinge post 40 .
  • hinge plug 38 may be threaded into hinge plug threads 54 in elongate aperture 112 of hinge post 40 ( FIG. 4 ).
  • Hinge plug 38 abuts the end of hinge post extension 42 and thereby facilitates locking of morse taper 46 in elongate aperture 112 .
  • locking taper 46 comprises a two degree locking taper.
  • Hinge post extension 42 is typically formed as a one-piece construction of an inert metal such as, e.g., a cobalt-chromium alloy. Hinge post extension 42 may, however, be constructed of other bio-compatible metals or alloys, such as titanium. Throughout this document reference will be made to various components formed of a cobalt-chromium alloy. Any such component may also be constructed of other bio-compatible metals or alloys such as titanium, as is well-known. As illustrated in FIG. 4 , hinge plug wrench 102 is utilized to thread hinge plug 38 into hinge plug threads 54 of hinge post 40 . As illustrated in FIG. 9 , hinge plug 38 includes locking material 100 to provide a locking connection between hinge plug 38 and hinge plug threads 54 in hinge post 40 . Hinge plug 38 is, in one exemplary embodiment formed of a cobalt-chromium alloy. Locking material 100 comprises any suitable biocompatible polymer such as, e.g., ultra-high molecular weight polyethylene (UHMWPE).
  • femoral component 22 includes condyler bearing surfaces 28 , 30 with bearing box wall 76 positioned therebetween.
  • Femoral component 22 further includes external side walls 82 , only one of which can be seen in FIG. 2 .
  • Condyler bearing surfaces 28 , 30 are smooth and highly polished, generally spheroidally shaped and extend outwardly from external side walls 82 , as is well known in the industry.
  • Femoral component 22 further includes modular femoral stem 32 for insertion into femur 116 ( FIGS. 3-5 , 13 , and 14 ), as is known in the art.
  • Femoral component 22 further includes internal side walls 80 , only one of which is illustrated in FIG. 2 .
  • Femoral component 22 is typically formed as a one-piece construction of an inert metal such as, e.g., a cobalt-chromium alloy.
  • Bearing box 70 is designed for placement between condyler bearing surfaces 28 , 30 of femoral component 22 as illustrated, e.g., in FIG. 1 .
  • Bearing box 70 is further illustrated in FIGS. 10-12 and includes affixing protrusions 72 , hinge pin aperture 62 , hyperextension stop 66 , and anti-rotation surface 78 .
  • femoral component 22 includes affixing protrusion apertures 74 sized to receive affixing protrusions 72 .
  • bearing box 70 operably positioned on femoral component 22 , with anti-rotation surface 78 flush with bearing box wall 76 of femoral component 22 , and affixing protrusions 72 received in affixing protrusion apertures 74 .
  • the abutting relationship of anti-rotation surface 78 with bearing box wall 76 discourages rotation of bearing box 70 about the longitudinal axis of affixing protrusions 72 .
  • hinge pin apertures 62 of bearing box 70 align with threaded hinge pin aperture 56 and hinge pin aperture 58 of femoral component 22 .
  • Bearing box 70 can be formed of any suitable plastic, such as, e.g., UHMWPE.
  • Hinge post 40 is rotatably connected to femoral component 22 via hinge pin 34 .
  • Hinge post 40 is placed between opposing walls of bearing box 70 and is positioned so that hinge pin aperture 52 is aligned with apertures 56 , 58 , and 62 .
  • the opposing walls of bearing box 70 thus act as a bearing surface between hinge post 40 and internal side walls 80 of femoral component 22 .
  • hinge pin sleeve 36 Prior to placement of hinge post 40 between opposing walls of bearing box 70 , hinge pin sleeve 36 is operably positioned within hinge pin aperture 52 of hinge post 40 .
  • Hinge post 40 is formed from a cobalt-chromium alloy, while hinge pin sleeve 36 is formed from a suitable plastic, such as, e.g., UHMWPE.
  • Hinge pin sleeve 36 acts as a bearing between hinge pin aperture 52 of hinge post 40 and hinge pin 34 . Accordingly, hinge pin sleeve 36 includes hinge pin aperture 50 sized to accommodate hinge pin 34 . After positioning of hinge post 40 between the opposing walls of bearing box 70 , hinge pin 34 is positioned through apertures 56 , 62 , 50 , and 58 . Hinge pin threads 60 are thereafter threadedly engaged in the threads of threaded hinge pin aperture 56 until the head of hinge pin 34 is flush with external side wall 82 .
  • hinge pin plug 120 is positioned within the hexagonal indentation of hinge pin 34 after installation of hinge pin 34 as described above. When positioned within the hexagonal indentation of hinge pin 34 , hinge pin plug 120 is flush with the head of hinge pin 34 . In use, hinge pin plug 120 substantially prohibits the entry of foreign materials into the hexagonal indentation of hinge pin 34 . For example, hinge pin plug 120 substantially prohibits bone growth into the hexagonal indentation of hinge pin 34 , as well as prohibiting positioning of bone cement therein.
  • the above-described connection of hinge post 40 to femoral component 22 is performed prior to implantation of femoral component 22 . Femoral component 22 is packaged and sold with bearing box 70 , hinge post 40 , hinge pin sleeve 36 , hinge pin 34 , and hinge pin plug 120 preassembled as described above, with the assembly preferably occurring in the manufacturing environment.
  • hinge post 40 to femoral component 22 eliminates a number of meticulous assembly steps (many of which were performed during implantation) which were required with constrained knees of the prior art. Furthermore, the assembly of hinge post 40 and femoral component 22 as described above facilitates replacement of various portions of knee prosthesis 20 . Specifically, the threaded connection of hinge pin 34 to femoral component 22 allows for removal and replacement of various components of knee prosthesis including, e.g., bearing box 70 , hinge pin sleeve 36 , and hinge post 40 .
  • femoral bone stock may abut external side walls 82 of femoral component 22 and extend to the underside of condyler bearing surfaces 28 , 30 .
  • a hole saw is utilized to remove a relatively small portion of femoral bone stock to provide access to hinge pin 34 .
  • femoral component 22 does not require extensive removal of femoral bone stock for implantation thereof (since bone stock can extend to the underside of condylar bearing surfaces 28 , 30 ), and, furthermore, does not require removal of femoral component 22 to effect replacement of, e.g., hinge post 40 , bearing box 70 , or hinge pin sleeve 36 .
  • hinge pin plug 120 Upon accessing hinge pin 34 (e.g., utilizing a hole saw as described above), hinge pin plug 120 is removed, e.g., with a scalpel and forceps to provide access to the hexagonal indentation of hinge pin 34 so that a hexagonal wrench may be inserted therein to unthread hinge pin 34 from femoral component 22 .
  • Knee prosthesis 20 includes a pair of hyperextension stop mechanisms.
  • the first hyperextension stop comprises a portion of condylar bearing surfaces 28 , 30 of increased radius of curvature as compared to the remaining condylar bearing surface. At three degrees of hyperextension this portion of increased radius of curvature will contact meniscal component 26 and act to retard further hyperextension. If hyperextension continues, the area of increased radius of curvature will cause femoral component 22 to lift away from meniscal component 26 .
  • the second hyperextension stop mechanism functions at four degrees of hyperextension to prohibit further hyperextension of knee prosthesis 20 .
  • the second hyperextension stop mechanism comprises hyperextension stop surface 66 of hinge post 40 and hyperextension stop 68 of bearing box 70 .
  • Hyperextension stop surface 66 comprises the concave back wall of cannulated hinge post 40 as illustrated, e.g., in FIGS. 2 and 3 .
  • Hyperextension stop 68 of bearing box 70 comprises a protrusion extending from the back wall of bearing box 70 opposite anti-rotation surface 78 .
  • Hyperextension stop 68 includes a convex outer surface as illustrated, e.g., in FIG. 12 .
  • Hyperextension stop surface 66 of hinge post 40 cooperates with hyperextension stop 68 of bearing box 70 to provide a hyperextension stop for knee prosthesis 20 .
  • Concave hyperextension stop surface 66 becomes flush with the convex outer surface of hyperextension stop 68 of bearing box 70 at four degrees of hyperextension to prevent further hyperextension of knee prosthesis 20 .
  • Tibial component 24 is depicted in FIGS. 1-5 , 8 , 13 , and 14 . As illustrated, e.g., in FIG. 2 , tibial component 24 includes tibial tray 98 connected to tibial stem 92 . Stabilizing ribs 94 stabilize tibial tray 98 relative to tibial stem 92 and impede rotation of tibial component 24 in tibia 118 (see, e.g., FIG. 3 ). In one exemplary embodiment, tibial component 24 is formed from a cobalt-chromium alloy. Tibial component 24 further includes tibial bushing 64 positioned within hinge post extension aperture 110 .
  • Tibial bushing 64 is formed of plastic, such as, e.g., UHMWPE and provides a bearing surface between hinge post extension 42 and hinge post extension aperture 110 of tibial component 24 .
  • meniscal component 26 comprises a rotating bearing, and, thus, hinge post extension 42 will rotate relative to tibial component 24 .
  • Tibial bushing 64 facilitates this rotation of hinge post extension 42 .
  • Tibial component 24 further includes rotation protrusion 96 .
  • rotation protrusion 96 protrudes upwardly from tibial tray 98 of tibial component 24 and further extends in a plane substantially parallel to tibial tray 98 .
  • Rotation protrusion 96 cooperates with cutout 90 of meniscal component 26 to guide rotation of meniscal component 26 about hinge post extension 42 , as further described hereinbelow.
  • meniscal component 26 is illustrated in FIGS. 1-7 , 13 , and 14 .
  • Meniscal component 26 is formed from a suitable plastic such as, e.g., UHMWPE and provides a rotating bearing surface between femoral component 22 and tibial component 24 .
  • Meniscal component 26 includes bearing surfaces 86 , 88 which contact condylar bearing surfaces 28 , 30 of femoral component 22 during movement of knee prosthesis 20 .
  • meniscal component 26 further includes hinge post aperture 114 accommodating passage of hinge post 40 and, consequently, hinge post extension 42 therethrough.
  • Meniscal component 26 is operable to rotate about the longitudinal axis of hinge post extension 42 to form a rotating bearing.
  • Meniscal components of varying heights may be constructed in accordance with the present invention.
  • meniscal component 26 is packaged for sale and use together with hinge post extension 42 to facilitate component choice and, in one embodiment, to ensure proper extension of hinge post extension 42 into tibial component 24 .
  • the extension of hinge post extension 42 into tibial component 24 functions to prevent separation of knee prosthesis 20 after implantation thereof.
  • the femoral component of a knee prosthesis may, in some situations, move relative to and away from the tibial component in a direction parallel to the longitudinal axis of the hinge post extension.
  • hinge post extension 42 is made to be of sufficient length to be retained within tibial component 24 even in situations in which femoral component 22 moves as described immediately supra. In one exemplary embodiment, hinge post extension 42 extends four centimeters into hinge post extension aperture 110 in tibial component 24 .
  • Meniscal component 26 includes cutout 90 which cooperates with rotation protrusion 96 of tibial component 24 to guide rotation of meniscal component 26 and to resist lifting of meniscal component 26 from tibial tray 98 of tibial component 24 .
  • cutout 90 accommodates the portion (i.e., lip) of rotation protrusion 96 extending in a plane substantially parallel to the plane containing tibial tray 98 , with a portion (i.e., lip) of meniscal component 26 being positioned between rotation protrusion 96 and tibial tray 98 in a direction substantially perpendicular to the plane containing tibial tray 98 .
  • This configuration functions to discourage displacement of meniscal component 26 away from tibial tray 98 in a direction parallel to the longitudinal axis of hinge post extension 42 . Furthermore, rotation protrusion 96 acts against the back of cutout 90 to limit rotation of meniscal component 26 about the longitudinal axis of hinge post extension 42 .
  • meniscal component 26 may be slid out from between tibial component 24 and femoral component 22 when the hinge post extension 42 has been removed from knee prosthesis 20 .
  • hinge post aperture 114 is sized to allow rotation of hinge post 40 so that meniscal component 26 may be slid out from its position between femoral component 22 and tibial component 24 .
  • FIG. 5 illustrates removal of hinge post extension 42 to accommodate replacement of meniscal component 26 .
  • hinge plug wrench 102 engages hinge plug 38 for removal thereof.
  • slap hammer 104 is threadedly engaged with threaded aperture 44 in hinge post extension 42 . Slap hammer 104 may then be utilized to unlock the engagement of locking taper 46 in elongate hinge post extension aperture 112 so that hinge post extension 42 may be removed.
  • FIGS. 13 and 14 illustrate an alternative embodiment of the knee prosthesis of the current invention.
  • This alternative embodiment utilizes hinge post extension 42 a having locking taper 46 a, cylindrical extension 48 a, and flange 106 .
  • a locking instrument may be utilized to apply force atop hinge post extension 42 a so that locking taper 46 a is seated in elongate hinge post extension aperture 112 and locked therein.
  • Flange 106 may be utilized to facilitate removal of hinge post extension 42 a.
  • set screw 108 may be utilized as a secondary lock for hinge post extension 42 a.
  • the knee prosthesis illustrated in FIGS. 13 and 14 is constructed as described above with respect to the first embodiment of the knee prosthesis in accordance with the present invention.
  • FIGS. 15 , 16 and 17 illustrate an alternative embodiment of the hinge post extension and tibial bushing of the present invention.
  • tibial component 24 a includes annular tibial bushing expansion groove 122 formed in hinge post extension aperture 110 .
  • Tibial bushing 64 a includes retaining flange 130 positioned within annular tibial bushing expansion groove 122 .
  • FIG. 15 illustrates insertion of cylindrical extension 48 b of the hinge post extension into tibial bushing 64 a positioned within tibial component 24 a.
  • annular locking protrusion 128 of tibial bushing 64 a As cylindrical extension 48 b proceeds into tibial bushing 64 a, bevel 126 contacts annular locking protrusion 128 of tibial bushing 64 a and causes outward movement of retaining flange 130 to allow cylindrical extension 48 b to proceed to its seated position as illustrated in FIG. 17 .
  • Annular tibial bushing expansion groove 122 is sized to allow radial expansion of retaining flange 130 to accommodate placement of cylindrical extension 48 b within tibial bushing 64 a. In the fully seated position ( FIG. 17 ) cylindrical extension 48 b is locked in place by the engagement of annular locking protrusion 128 in annular locking groove 124 .
  • Tibial bushing 64 a is, in one exemplary embodiment, formed of UHMWPE
  • FIGS. 18 and 19 illustrate another alternative embodiment of the knee prosthesis of the current invention.
  • locking clip 134 is utilized to retain the position of hinge post 40 b within hinge post aperture 114 of meniscal component 26 a.
  • Hinge post 40 b is rotatably attached to femoral component 22 utilizing hinge pin 34 as described above.
  • hinge post 40 b includes locking clip grooves 132
  • meniscal component 26 a includes locking clip apertures 136 .
  • locking clip 134 is positioned as illustrated in FIG. 19 with each prong of locking clip 134 being inserted into locking clip apertures 136 of meniscal component 26 a. As illustrated in FIG.
  • This embodiment of the knee prosthesis of the current invention may further utilize a meniscal component cutout together with a rotation protrusion on the tibial component to resist lifting of the meniscal component from the tibial tray as described above.
  • FIG. 20 illustrates a further alternative embodiment of the hinge post of the present invention.
  • Hinge post 40 c illustrated in FIG. 20 includes reinforcing material 138 to strengthen hinge post 40 c.

Abstract

A constrained prosthetic knee having a modular hinge post and a rotating bearing. A cannulated hinge post is rotatably connected to the femoral component of the knee prosthesis so that a hinge post extension may be anteriorly positioned through the hinge post and into the tibial component of the knee prosthesis, after positioning of the femoral component in the femur and the tibial component in the tibia. The hinge post is preassembled to the femoral component so that such assembly is not required during the implantation procedure. A meniscal component forming the rotating bearing of the knee prosthesis is packaged together with the hinge post extension so that the appropriate hinge post extension is readily available.

Description

CROSS-REFERENCED TO RELATED APPLICATIONS
This is a continuation of application Ser. No. 09/771,061, filed Jan. 29, 2001, now U.S. Pat. No. 6,485,519.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to prosthetic joints, and, more particularly to a constrained prosthetic knee having a modular hinge post and a rotating bearing.
2. Description of the Related Art
Generally, the knee is formed by the pair of condyles at the distal portion of the femur, the lower surfaces of which bear upon the correspondingly shaped proximal surface plateau of the tibia. The femur and tibia are connected by means of ligaments such as, the posterior cruciate ligament, the lateral collateral ligament, the medial collateral ligament, and the anterior cruciate ligament. These ligaments provide stability to the joint formed by the femur and tibia (i.e., the knee).
In a broad sense, prosthetic knee joints can be considered either constrained or unconstrained. For the purposes of this discussion, constrained prosthetic knees include femoral and tibial prosthetic components which are mechanically linked or constrained to each other by a hinge structure. An unconstrained prosthetic knee includes femoral and tibial components which are not mechanically linked. An unconstrained knee utilizes the patient's existing ligaments to provide joint stability. With this in mind, constrained prosthetic knees have particular applicability to cases in which a patient has experienced ligament loss and/or the existing ligaments do not provide adequate support and stability to the knee.
Tibial components of a prosthetic knee can be formed as a one-piece configuration in which the tibial tray forms the meniscal component of the prosthetic knee. Various other prosthetic knees utilize a modular meniscal component separate from the tibial component. Devices utilizing modular meniscal components include those in which the meniscal component (i.e., tibial bearing surface) is fixed to the tibial tray portion of the tibial component and is incapable of movement relative thereto. Alternative devices utilize a modular meniscal component capable of movement relative to the tibial tray. Devices in which relative rotational movement occurs between the meniscal component and the tibial component are typically referred to as rotating bearing knees. Rotating bearing knees thus allow movement between the bearing (i.e., meniscal component) and the tibial tray, as well as movement between the femoral component and the tibial bearing.
Constrained knees of the prior art include constructions in which a hinge post extension is first positioned within a tibial component (with an end protruding therefrom) and is thereafter connected to the femoral component by positioning the hinge post (rotatably attached to the femoral component) over the top of the protruding end of the hinge post extension and thereafter connecting the hinge post extension to the hinge post, e.g., by threading the hinge post extension into the hinge post. After making this connection, the meniscal component is thereafter slid into position between the femoral component and the tibial component. Meniscal components utilized with these prior art prosthetic knees were fixed to the tibial component.
The present invention is directed to a constrained knee prosthesis with a rotating bearing. The knee prosthesis of the present invention is structured to facilitate implantation thereof. The present invention is further directed to a prosthetic knee implant set having a plurality of matched modular hinge post and meniscal component pairs.
SUMMARY OF THE INVENTION
The present invention provides an improved constrained knee prosthesis having a cannulated hinge post facilitating implantation of the knee prosthesis in a relatively minimally invasive procedure. The prosthetic knee implant set of the current invention includes a separately packaged femoral component, a separately packaged tibial component, and a third package containing a hinge post extension and the meniscal component. Packaging the individual components of a knee prosthesis in this fashion insures that the appropriate hinge post extension is readily available. A bearing box is interposed between the hinge post and the femoral component. The bearing box includes a hyperextension stop which cooperates with the hinge post to prevent hyperextension of the knee prosthesis. Various structures are utilized to prevent the disengagement of the constrained knee prosthesis of the present invention.
A prosthetic knee constructed in accordance with the present invention includes a femoral component having a pair of condyler surfaces and a hinge post rotatably connected to the femoral component between the condyler surfaces. The hinge post is cannulated and accommodates insertion of a hinge post extension shaft therein. The hinge post and hinge post extension include cooperating locking tapers for locking the hinge post extension to the hinge post. Additionally, the hinge post includes internal threads so that a set screw may be threaded therein to further hold the hinge post extension in place. The tibial component includes a hinge post extension aperture into which the hinge post is seated. The meniscal component similarly includes an aperture to accommodate the hinge post and hinge post extension. The meniscal component of the current invention is free to rotate about the hinge post during flexion and extension of the knee joint.
Having a cannulated hinge post through which a hinge post extension may be anteriorly positioned and secured advantageously allows for a relatively minimally invasive knee replacement procedure.
The present invention advantageously provides a constrained prosthetic knee having a rotating bearing flush with the condyler surfaces of the femoral component.
Another advantage of the present invention is the packaging of the prosthesis components and specifically the packaging of the appropriate hinge post extension together with a meniscal component.
BRIEF DESCRIPTION OF THE DRAWINGS
The above-mentioned and other features and advantages of this invention, and the manner of attaining of them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a perspective view of an assembled knee prosthesis in accordance with the present invention;
FIG. 2 is an exploded view thereof;
FIG. 3 is a cutaway, exploded view illustrating assembly of the knee prosthesis of the current invention including the anterior positioning of the hinge post extension into the hinge post;
FIG. 4 is a cutaway view illustrating securement of the hinge plug (i.e., set screw) in the hinge post to facilitate locking of the hinge post extension therein;
FIG. 5 is a cutaway, exploded view illustrating removal of the hinge post extension;
FIG. 6 is a bottom elevational view of the meniscal component of the present invention;
FIG. 7 is a front elevational view thereof;
FIG. 8 is a top elevational view of a tibial component in accordance with the present invention;
FIG. 9 is a sectional view of a hinge plug in accordance with the present invention;
FIG. 10 is a side elevational view of a bearing box in accordance with the present invention;
FIG. 11 is a front elevational view thereof;
FIG. 12 is a top elevational view thereof;
FIG. 13 is a cutaway, exploded view of an alternative embodiment of the knee prosthesis of the present invention;
FIG. 14 is a cutaway view of an assembled knee prosthesis in accordance with the embodiment illustrated in FIG. 13;
FIG. 15 is a fragmentary, cutaway view of an alternative embodiment of the hinge post extension and tibial bushing of the present invention;
FIG. 16 is a fragmentary, cutaway view of the embodiment of FIG. 15 illustrating insertion of the hinge post extension into the tibial bushing;
FIG. 17 is a fragmentary, cutaway view of the embodiment of FIG. 15 illustrating the hinge post extension fully inserted into the tibial bushing;
FIG. 18 is an exploded view of an alternative embodiment of the knee prosthesis of the current invention;
FIG. 19 is a sectional view of a meniscal component in accordance with an alternative embodiment of the present invention; and
FIG. 20 is an elevational view of a hinge post in accordance with an alternative embodiment of the present invention.
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the invention, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain the invention. The exemplifications set out herein illustrate embodiments of the invention, in alternative forms, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
DETAILED DESCRIPTION
Referring now to the drawings and particularly to FIG. 2, knee prosthesis 20 in accordance with the present invention is illustrated. Knee prosthesis 20 generally includes femoral component 22, tibial component 24, and meniscal component 26. Hinge post 40 is rotatably connected to femoral component 22 and includes elongate hinge post extension aperture 112 (FIGS. 3-6, 13, and 14). Elongate aperture 112 accommodates placement of hinge post extension 42 therein. Hinge post extension 42 thereafter traverses hinge post aperture 114 in meniscal component 26 and hinge post extension aperture 110 (FIGS. 3-6, 13 and 14) in tibial component 24. Elongate hinge post extension aperture 112 of hinge post 40 advantageously allows for anterior placement of hinge post extension 42 during surgical implantation of knee prosthesis 20 of the present invention.
As illustrated in FIG. 2, hinge post extension 42 includes locking taper 46 and cylindrical extension 48. Hinge post extension aperture 112 includes a mating locking taper to cooperate with locking taper 46 and lock hinge post extension 42 to hinge post 40. After positioning of hinge post extension 42 through apertures 112, 114, and 110, hinge plug 38 may be threaded into hinge plug threads 54 in elongate aperture 112 of hinge post 40 (FIG. 4). Hinge plug 38 abuts the end of hinge post extension 42 and thereby facilitates locking of morse taper 46 in elongate aperture 112. In one exemplary embodiment, locking taper 46 comprises a two degree locking taper. When prosthetic knee 20 is assembled as illustrated in FIG. 1, condyler bearing surfaces 28, 30 abut bearing surfaces 86, 88 (see, e.g., FIG. 2) in meniscal component 26.
Hinge post extension 42 is typically formed as a one-piece construction of an inert metal such as, e.g., a cobalt-chromium alloy. Hinge post extension 42 may, however, be constructed of other bio-compatible metals or alloys, such as titanium. Throughout this document reference will be made to various components formed of a cobalt-chromium alloy. Any such component may also be constructed of other bio-compatible metals or alloys such as titanium, as is well-known. As illustrated in FIG. 4, hinge plug wrench 102 is utilized to thread hinge plug 38 into hinge plug threads 54 of hinge post 40. As illustrated in FIG. 9, hinge plug 38 includes locking material 100 to provide a locking connection between hinge plug 38 and hinge plug threads 54 in hinge post 40. Hinge plug 38 is, in one exemplary embodiment formed of a cobalt-chromium alloy. Locking material 100 comprises any suitable biocompatible polymer such as, e.g., ultra-high molecular weight polyethylene (UHMWPE).
As illustrated, e.g., in FIG. 2, femoral component 22 includes condyler bearing surfaces 28, 30 with bearing box wall 76 positioned therebetween. Femoral component 22 further includes external side walls 82, only one of which can be seen in FIG. 2. Condyler bearing surfaces 28, 30 are smooth and highly polished, generally spheroidally shaped and extend outwardly from external side walls 82, as is well known in the industry. Femoral component 22 further includes modular femoral stem 32 for insertion into femur 116 (FIGS. 3-5, 13, and 14), as is known in the art. Femoral component 22 further includes internal side walls 80, only one of which is illustrated in FIG. 2. Internal side walls 80 are substantially perpendicular to bearing box wall 76 and extend outwardly therefrom. Femoral component 22 is typically formed as a one-piece construction of an inert metal such as, e.g., a cobalt-chromium alloy.
Bearing box 70 is designed for placement between condyler bearing surfaces 28, 30 of femoral component 22 as illustrated, e.g., in FIG. 1. Bearing box 70 is further illustrated in FIGS. 10-12 and includes affixing protrusions 72, hinge pin aperture 62, hyperextension stop 66, and anti-rotation surface 78. As illustrated in FIG. 2, femoral component 22 includes affixing protrusion apertures 74 sized to receive affixing protrusions 72. FIG. 1 illustrates bearing box 70 operably positioned on femoral component 22, with anti-rotation surface 78 flush with bearing box wall 76 of femoral component 22, and affixing protrusions 72 received in affixing protrusion apertures 74. The abutting relationship of anti-rotation surface 78 with bearing box wall 76 discourages rotation of bearing box 70 about the longitudinal axis of affixing protrusions 72. When bearing box 70 is positioned on femoral component 22, hinge pin apertures 62 of bearing box 70 align with threaded hinge pin aperture 56 and hinge pin aperture 58 of femoral component 22. Bearing box 70 can be formed of any suitable plastic, such as, e.g., UHMWPE.
Hinge post 40 is rotatably connected to femoral component 22 via hinge pin 34. Hinge post 40 is placed between opposing walls of bearing box 70 and is positioned so that hinge pin aperture 52 is aligned with apertures 56, 58, and 62. The opposing walls of bearing box 70 thus act as a bearing surface between hinge post 40 and internal side walls 80 of femoral component 22. Prior to placement of hinge post 40 between opposing walls of bearing box 70, hinge pin sleeve 36 is operably positioned within hinge pin aperture 52 of hinge post 40. Hinge post 40 is formed from a cobalt-chromium alloy, while hinge pin sleeve 36 is formed from a suitable plastic, such as, e.g., UHMWPE. Hinge pin sleeve 36 acts as a bearing between hinge pin aperture 52 of hinge post 40 and hinge pin 34. Accordingly, hinge pin sleeve 36 includes hinge pin aperture 50 sized to accommodate hinge pin 34. After positioning of hinge post 40 between the opposing walls of bearing box 70, hinge pin 34 is positioned through apertures 56, 62, 50, and 58. Hinge pin threads 60 are thereafter threadedly engaged in the threads of threaded hinge pin aperture 56 until the head of hinge pin 34 is flush with external side wall 82.
As illustrated in FIG. 1, hinge pin plug 120 is positioned within the hexagonal indentation of hinge pin 34 after installation of hinge pin 34 as described above. When positioned within the hexagonal indentation of hinge pin 34, hinge pin plug 120 is flush with the head of hinge pin 34. In use, hinge pin plug 120 substantially prohibits the entry of foreign materials into the hexagonal indentation of hinge pin 34. For example, hinge pin plug 120 substantially prohibits bone growth into the hexagonal indentation of hinge pin 34, as well as prohibiting positioning of bone cement therein. The above-described connection of hinge post 40 to femoral component 22 is performed prior to implantation of femoral component 22. Femoral component 22 is packaged and sold with bearing box 70, hinge post 40, hinge pin sleeve 36, hinge pin 34, and hinge pin plug 120 preassembled as described above, with the assembly preferably occurring in the manufacturing environment.
Pre-assembly of hinge post 40 to femoral component 22 eliminates a number of meticulous assembly steps (many of which were performed during implantation) which were required with constrained knees of the prior art. Furthermore, the assembly of hinge post 40 and femoral component 22 as described above facilitates replacement of various portions of knee prosthesis 20. Specifically, the threaded connection of hinge pin 34 to femoral component 22 allows for removal and replacement of various components of knee prosthesis including, e.g., bearing box 70, hinge pin sleeve 36, and hinge post 40.
In use, femoral bone stock may abut external side walls 82 of femoral component 22 and extend to the underside of condyler bearing surfaces 28, 30. To remove hinge pin 34, a hole saw is utilized to remove a relatively small portion of femoral bone stock to provide access to hinge pin 34. Advantageously, femoral component 22 does not require extensive removal of femoral bone stock for implantation thereof (since bone stock can extend to the underside of condylar bearing surfaces 28, 30), and, furthermore, does not require removal of femoral component 22 to effect replacement of, e.g., hinge post 40, bearing box 70, or hinge pin sleeve 36. Upon accessing hinge pin 34 (e.g., utilizing a hole saw as described above), hinge pin plug 120 is removed, e.g., with a scalpel and forceps to provide access to the hexagonal indentation of hinge pin 34 so that a hexagonal wrench may be inserted therein to unthread hinge pin 34 from femoral component 22.
Knee prosthesis 20 includes a pair of hyperextension stop mechanisms. The first hyperextension stop comprises a portion of condylar bearing surfaces 28, 30 of increased radius of curvature as compared to the remaining condylar bearing surface. At three degrees of hyperextension this portion of increased radius of curvature will contact meniscal component 26 and act to retard further hyperextension. If hyperextension continues, the area of increased radius of curvature will cause femoral component 22 to lift away from meniscal component 26. The second hyperextension stop mechanism functions at four degrees of hyperextension to prohibit further hyperextension of knee prosthesis 20. The second hyperextension stop mechanism comprises hyperextension stop surface 66 of hinge post 40 and hyperextension stop 68 of bearing box 70. Hyperextension stop surface 66 comprises the concave back wall of cannulated hinge post 40 as illustrated, e.g., in FIGS. 2 and 3. Hyperextension stop 68 of bearing box 70 comprises a protrusion extending from the back wall of bearing box 70 opposite anti-rotation surface 78. Hyperextension stop 68 includes a convex outer surface as illustrated, e.g., in FIG. 12. Hyperextension stop surface 66 of hinge post 40 cooperates with hyperextension stop 68 of bearing box 70 to provide a hyperextension stop for knee prosthesis 20. Concave hyperextension stop surface 66 becomes flush with the convex outer surface of hyperextension stop 68 of bearing box 70 at four degrees of hyperextension to prevent further hyperextension of knee prosthesis 20.
Tibial component 24 is depicted in FIGS. 1-5, 8, 13, and 14. As illustrated, e.g., in FIG. 2, tibial component 24 includes tibial tray 98 connected to tibial stem 92. Stabilizing ribs 94 stabilize tibial tray 98 relative to tibial stem 92 and impede rotation of tibial component 24 in tibia 118 (see, e.g., FIG. 3). In one exemplary embodiment, tibial component 24 is formed from a cobalt-chromium alloy. Tibial component 24 further includes tibial bushing 64 positioned within hinge post extension aperture 110. Tibial bushing 64 is formed of plastic, such as, e.g., UHMWPE and provides a bearing surface between hinge post extension 42 and hinge post extension aperture 110 of tibial component 24. As described above, meniscal component 26 comprises a rotating bearing, and, thus, hinge post extension 42 will rotate relative to tibial component 24. Tibial bushing 64 facilitates this rotation of hinge post extension 42.
Tibial component 24 further includes rotation protrusion 96. As illustrated, e.g., in FIG. 3, rotation protrusion 96 protrudes upwardly from tibial tray 98 of tibial component 24 and further extends in a plane substantially parallel to tibial tray 98. Rotation protrusion 96 cooperates with cutout 90 of meniscal component 26 to guide rotation of meniscal component 26 about hinge post extension 42, as further described hereinbelow.
One embodiment of meniscal component 26 is illustrated in FIGS. 1-7, 13, and 14. Meniscal component 26 is formed from a suitable plastic such as, e.g., UHMWPE and provides a rotating bearing surface between femoral component 22 and tibial component 24. Meniscal component 26 includes bearing surfaces 86, 88 which contact condylar bearing surfaces 28, 30 of femoral component 22 during movement of knee prosthesis 20. As described above, meniscal component 26 further includes hinge post aperture 114 accommodating passage of hinge post 40 and, consequently, hinge post extension 42 therethrough. Meniscal component 26 is operable to rotate about the longitudinal axis of hinge post extension 42 to form a rotating bearing.
Meniscal components of varying heights may be constructed in accordance with the present invention. In one advantageous aspect of the present invention, meniscal component 26 is packaged for sale and use together with hinge post extension 42 to facilitate component choice and, in one embodiment, to ensure proper extension of hinge post extension 42 into tibial component 24. The extension of hinge post extension 42 into tibial component 24 functions to prevent separation of knee prosthesis 20 after implantation thereof. As is known in the art, the femoral component of a knee prosthesis may, in some situations, move relative to and away from the tibial component in a direction parallel to the longitudinal axis of the hinge post extension. With this in mind, hinge post extension 42 is made to be of sufficient length to be retained within tibial component 24 even in situations in which femoral component 22 moves as described immediately supra. In one exemplary embodiment, hinge post extension 42 extends four centimeters into hinge post extension aperture 110 in tibial component 24.
Meniscal component 26 includes cutout 90 which cooperates with rotation protrusion 96 of tibial component 24 to guide rotation of meniscal component 26 and to resist lifting of meniscal component 26 from tibial tray 98 of tibial component 24. As illustrated, e.g., in FIG. 3, cutout 90 accommodates the portion (i.e., lip) of rotation protrusion 96 extending in a plane substantially parallel to the plane containing tibial tray 98, with a portion (i.e., lip) of meniscal component 26 being positioned between rotation protrusion 96 and tibial tray 98 in a direction substantially perpendicular to the plane containing tibial tray 98. This configuration functions to discourage displacement of meniscal component 26 away from tibial tray 98 in a direction parallel to the longitudinal axis of hinge post extension 42. Furthermore, rotation protrusion 96 acts against the back of cutout 90 to limit rotation of meniscal component 26 about the longitudinal axis of hinge post extension 42.
As illustrated in FIG. 5, meniscal component 26 may be slid out from between tibial component 24 and femoral component 22 when the hinge post extension 42 has been removed from knee prosthesis 20. As illustrated, hinge post aperture 114 is sized to allow rotation of hinge post 40 so that meniscal component 26 may be slid out from its position between femoral component 22 and tibial component 24. This configuration allows for replacement of an implanted meniscal component 26 without requiring removal of hinge post 40. FIG. 5 illustrates removal of hinge post extension 42 to accommodate replacement of meniscal component 26. As illustrated, hinge plug wrench 102 engages hinge plug 38 for removal thereof. After removal of hinge plug 38, slap hammer 104 is threadedly engaged with threaded aperture 44 in hinge post extension 42. Slap hammer 104 may then be utilized to unlock the engagement of locking taper 46 in elongate hinge post extension aperture 112 so that hinge post extension 42 may be removed.
FIGS. 13 and 14 illustrate an alternative embodiment of the knee prosthesis of the current invention. This alternative embodiment utilizes hinge post extension 42a having locking taper 46a, cylindrical extension 48a, and flange 106. In this embodiment, a locking instrument may be utilized to apply force atop hinge post extension 42a so that locking taper 46a is seated in elongate hinge post extension aperture 112 and locked therein. Flange 106 may be utilized to facilitate removal of hinge post extension 42a. As illustrated in FIG. 13, set screw 108 may be utilized as a secondary lock for hinge post extension 42a. In all other respects, the knee prosthesis illustrated in FIGS. 13 and 14 is constructed as described above with respect to the first embodiment of the knee prosthesis in accordance with the present invention.
FIGS. 15, 16 and 17 illustrate an alternative embodiment of the hinge post extension and tibial bushing of the present invention. In this embodiment, tibial component 24a includes annular tibial bushing expansion groove 122 formed in hinge post extension aperture 110. Tibial bushing 64a includes retaining flange 130 positioned within annular tibial bushing expansion groove 122. FIG. 15 illustrates insertion of cylindrical extension 48b of the hinge post extension into tibial bushing 64a positioned within tibial component 24a. As cylindrical extension 48b proceeds into tibial bushing 64a, bevel 126 contacts annular locking protrusion 128 of tibial bushing 64a and causes outward movement of retaining flange 130 to allow cylindrical extension 48b to proceed to its seated position as illustrated in FIG. 17. Annular tibial bushing expansion groove 122 is sized to allow radial expansion of retaining flange 130 to accommodate placement of cylindrical extension 48b within tibial bushing 64a. In the fully seated position (FIG. 17) cylindrical extension 48b is locked in place by the engagement of annular locking protrusion 128 in annular locking groove 124. Furthermore, retaining flange 130 cooperates with annular tibial bushing expansion groove 122 to prohibit axial displacement of tibial bushing 64a and, consequently, cylindrical extension 48b. In this embodiment, the femoral component is retained in abutting relationship to the meniscal component and lift off of the femoral component is substantially prohibited. Tibial bushing 64a is, in one exemplary embodiment, formed of UHMWPE
FIGS. 18 and 19 illustrate another alternative embodiment of the knee prosthesis of the current invention. In this embodiment, locking clip 134 is utilized to retain the position of hinge post 40b within hinge post aperture 114 of meniscal component 26a. Hinge post 40b is rotatably attached to femoral component 22 utilizing hinge pin 34 as described above. In this embodiment, hinge post 40b includes locking clip grooves 132, and meniscal component 26a includes locking clip apertures 136. Upon positioning of hinge post 40b within hinge post aperture 114, locking clip 134 is positioned as illustrated in FIG. 19 with each prong of locking clip 134 being inserted into locking clip apertures 136 of meniscal component 26a. As illustrated in FIG. 19, locking clip 134 engages locking clip grooves 132 to retain hinge post 40b within hinge post aperture 114 of meniscal component 26a. In this embodiment, lift off of femoral component 22 is prohibited by the engagement of hinge post 40b with meniscal component 26a. This embodiment of the knee prosthesis of the current invention may further utilize a meniscal component cutout together with a rotation protrusion on the tibial component to resist lifting of the meniscal component from the tibial tray as described above.
FIG. 20 illustrates a further alternative embodiment of the hinge post of the present invention. Hinge post 40c illustrated in FIG. 20 includes reinforcing material 138 to strengthen hinge post 40c.
While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims (22)

What is claimed is:
1. A prosthetic femoral component, comprising:
a femoral component body;
a hinge post having a longitudinal axis, said hinge post rotatably connected to said femoral component body, said hinge post rotatable relative to said femoral component body bout an axis of rotation, said hinge post including an elongate aperture, along said longitudinal axis aid elongate aperture transverse to said axis of rotation.
2. The prosthetic femoral component of claim 1, further comprising: A prosthetic knee assembly, comprising:
a femoral component body that includes a first internal side wall opposing a second internal side wall;
a hinge pin having a longitudinal hinge pin axis;
a hinge post positioned between the first internal side wall and the second internal side wall of the femoral component body and having a longitudinal hinge post axis, said hinge pin fixed to said femoral component body and passing through a hinge pin aperture in said hinge post for rotatably, hingedly connecting said hinge post to said femoral component body so that rotation of said hinge post relative to said femoral component body is defined about the longitudinal hinge pin axis, said hinge post including an elongate hinge post extension aperture along said longitudinal hinge post axis, said elongate hinge post extension aperture transverse to said longitudinal hinge pin axis; and
a hinge post extension removeably locked to said hinge post, said elongate hinge post extension aperture of said hinge post sized for placement of said hinge post extension therein, whereby said hinge post extension traverses a first end of said elongate hinge post extension aperture of said hinge post and protrudes from a second end of said elongate hinge post extension aperture of said hinge post.
3. The prosthetic femoral component knee assembly of claim 2, further comprising:
securing means for securing said hinge post extension to said hinge post further comprising a tibial component into which the hinge post extension can be received, wherein, when the femoral component is attached to a femur and the tibial component is attached to a tibia opposite the femur, said hinge post extension can be separated from said hinge post to allow rotation of said hinge post about said longitudinal hinge pin axis without having to rotate the femur or tibia about said longitudinal hinge pin axis.
4. The prosthetic femoral component knee assembly of claim 3, wherein said securing means comprises:
a male taper positioned on said hinge post extension; and
a female taper positioned in said elongate aperture, said male taper engageable in said female taper to secure said hinge post extension to said hinge post 2 including cooperating locking tapers removeably locking the hinge post extension to the hinge post.
5. The prosthetic femoral component knee assembly of claim 1 2, further comprising:
a bearing box connected to said femoral component body, said bearing box interposed between said hinge post and said femoral component body, said bearing box including a hyperextension stop, said hinge post including a hyperextension stop surface, said hyperextension stop contacting said hyperextension stop surface to prevent further hyperextension of the prosthetic femoral component body beyond a predetermined point of hyperextension.
6. The prosthetic femoral component knee assembly of claim 5, wherein said predetermined point of hyperextension comprises four degrees of hyperextension of the prosthetic knee femoral component body.
7. The prosthetic femoral component knee assembly of claim 5, wherein said hyperextension stop comprises a convex protrusion.
8. The prosthetic femoral component knee assembly of claim 5, wherein said hinge post includes an internal wall, said hyperextension stop surface comprising said internal wall of said hinge post.
9. A prosthetic femoral component, comprising:
a femoral component body;
a hinge post rotatably connected to said femoral component body; and
a bearing box connected to said femoral component body, said bearing box interposed between said hinge post and said femoral component body, said bearing box including a hyperextension stop, said hinge post including a hyperextension stop surface, said hyperextension stop contacting said hyperextension stop surface to prevent further hyperextension of the prosthetic femoral component body beyond a predetermined point of hyperextension.
10. The prosthetic femoral component of claim 9, further comprising: A prosthetic knee assembly, comprising:
a femoral component body;
a hinge post rotatably connected to said femoral component body about a rotational axis;
a bearing box connected to said femoral component body, said bearing box interposed between said hinge post and said femoral component body, said bearing box including a hyperextension stop, said hinge post including a hyperextension stop surface, said hyperextension stop contacting said hyperextension stop surface to prevent further hyperextension of the prosthetic femoral component body beyond a predetermined point of hyperextension; and
a hinge post extension having a longitudinal axis and being removeably locked to said hinge post, an elongate aperture of said hinge post sized for placement of said hinge post extension therein, whereby said hinge post extension traverses a first end of said elongate aperture of said post and protrudes from a second end of said elongate aperture of said hinge post, wherein the longitudinal axis of said hinge post extension is non-intersecting with said rotational axis.
11. The prosthetic femoral component knee assembly of claim 10, further comprising:
securing means for securing said hinge post extension to said hinge post.
12. The prosthetic femoral component knee assembly of claim 11, wherein said securing means comprises:
a male taper positioned on said hinge post extension; and
a female taper positioned in said elongate aperture, said male taper engageable in said female taper to secure said hinge post extension to said hinge post.
13. The prosthetic femoral component knee assembly of claim 9 10, wherein said predetermined point of hyperextension comprises four degrees of hyperextension of the prosthetic femoral component body.
14. The prosthetic femoral component knee assembly of claim 9 10, wherein said hyperextension stop comprises a convex protrusion.
15. The prosthetic femoral component knee assembly of claim 9 10, wherein said hinge post includes an internal wall, said hyperextension stop surface comprising said internal wall of said hinge post.
16. A prosthetic knee, comprising:
a femoral component;
a tibial component;
a meniscal component positioned between said femoral component and said tibial component, said femoral component including a condylar bearing surface, said meniscal component including a cooperative bearing surface facing said condylar bearing surface of said femoral component for contacting said condylar bearing surface, said femoral component rotatably connected to said tibial component;
a hinge pin having a longitudinal hinge pin axis;
a hinge post rotatably connected to said femoral component which includes said hinge pin passing through a hinge pin aperture in said hinge post for rotatably, hingedly connecting said hinge post to said femoral component so that rotation of said hinge post relative to said femoral component is defined about the longitudinal hinge pin axis, said meniscal component including an a hinge post aperture with a longitudinal hinge post aperture axis that is non-intersecting with said longitudinal hinge pin axis, said hinge post positioned within said hinge post aperture; and
a locking clip, said meniscal component including a locking clip aperture, said hinge post including a locking clip groove, said locking clip traversing said locking clip aperture and engaging said locking clip groove to retain said hinge post within said hinge post aperture.
17. A prosthetic knee, comprising:
a femoral component;
a tibial component;
a meniscal component positioned between said femoral component and said tibial component, said femoral component including a condylar bearing surface, said meniscal component including a cooperative bearing surface facing said condylar bearing surface of said femoral component, said femoral component rotatably connected to said tibial component;
a hinge post extension, said hinge post extension rotatably connected to said femoral component, said hinge post extension including an annular groove; and
a tibial bushing including an annular locking protrusion and a retaining flange, said tibial component having a tibial bushing expansion groove, said retaining flange positioned in said tibial bushing expansion groove, said annular locking protrusion engaged in said annular groove.
18. A prosthetic knee, comprising:
a femoral component having a hinge post rotatably connected thereto about a rotational axis;
a tibial component;
a meniscal component positioned between said femoral component and said tibial component, said femoral component including a condylar bearing surface, said meniscal component including a cooperative bearing surface facing said condylar bearing surface of said femoral component for contacting said condylar bearing surface, said meniscal component including an a hinge post aperture having a longitudinal axis that is non-intersecting with said rotational axis, whereby said hinge post is positioned within said hinge post aperture when the prosthetic knee is operably assembled; and
a locking clip, said meniscal component including a locking clip aperture, said hinge post including a locking clip groove, said locking clip traversing said locking clip aperture and engaging said locking clip groove to retain said hinge post within said hinge post aperture.
19. The prosthetic femoral component of claim 2, wherein said first end of said elongate aperture of said hinge post is positioned closer to said hinge pin than said second end of said elongate aperture so that said hinge post extension protrudes from said second end of said elongate aperture of said hinge post in a direction away from said hinge pin.
20. The prosthetic femoral component of claim 10, wherein said first end of said elongate aperture of said hinge post is positioned closer to said femoral component body than said second end of said elongate aperture of said hinge post so that said hinge post extension protrudes from said second end of said elongate aperture of said hinge post in a direction away from said femoral component body.
21. The prosthetic femoral component of claim 2, wherein said hinge pin includes a hexagonal indentation on a first end thereof, said first end being flush with said femoral component, said prosthetic femoral component further comprising a hinge pin plug positioned within said hexagonal indentation and being flush with said first end of said hinge pin.
22. The prosthetic femoral component of claim 2, wherein said longitudinal hinge post axis is non-intersecting with said longitudinal hinge pin axis.
US12/776,224 2001-01-29 2010-05-07 Constrained prosthetic knee with rotating bearing Expired - Lifetime USRE44476E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/776,224 USRE44476E1 (en) 2001-01-29 2010-05-07 Constrained prosthetic knee with rotating bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/771,061 US6485519B2 (en) 2001-01-29 2001-01-29 Constrained prosthetic knee with rotating bearing
US10/234,362 US6773461B2 (en) 2001-01-29 2002-09-04 Constrained prosthetic knee with rotating bearing
US12/776,224 USRE44476E1 (en) 2001-01-29 2010-05-07 Constrained prosthetic knee with rotating bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/234,362 Reissue US6773461B2 (en) 2001-01-29 2002-09-04 Constrained prosthetic knee with rotating bearing

Publications (1)

Publication Number Publication Date
USRE44476E1 true USRE44476E1 (en) 2013-09-03

Family

ID=25090569

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/771,061 Expired - Lifetime US6485519B2 (en) 2001-01-29 2001-01-29 Constrained prosthetic knee with rotating bearing
US12/776,224 Expired - Lifetime USRE44476E1 (en) 2001-01-29 2010-05-07 Constrained prosthetic knee with rotating bearing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/771,061 Expired - Lifetime US6485519B2 (en) 2001-01-29 2001-01-29 Constrained prosthetic knee with rotating bearing

Country Status (5)

Country Link
US (2) US6485519B2 (en)
EP (4) EP2272468B1 (en)
JP (1) JP4205346B2 (en)
AU (1) AU780963B2 (en)
CA (1) CA2367652C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120136452A1 (en) * 2009-07-10 2012-05-31 Medizinische Hochschule Hannover Knee joint prosthesis and related method
US20120330430A1 (en) * 2001-01-29 2012-12-27 Meyers John E Constrained prosthetic knee with rotating bearing
US20180049880A1 (en) * 2015-03-05 2018-02-22 Corentec Co., Ltd. Insert unit for artificial knee joint
US20180256346A1 (en) * 2017-03-10 2018-09-13 Brian D. Byrd Tibial prosthesis with tibial bearing component securing feature
US10835380B2 (en) 2018-04-30 2020-11-17 Zimmer, Inc. Posterior stabilized prosthesis system
US10898337B2 (en) 2011-11-18 2021-01-26 Zimmer, Inc. Tibial bearing component for a knee prosthesis with improved articular characteristics
US11160659B2 (en) 2015-09-21 2021-11-02 Zimmer, Inc. Prosthesis system including tibial bearing component
US11224519B2 (en) 2010-07-24 2022-01-18 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
US11324599B2 (en) 2017-05-12 2022-05-10 Zimmer, Inc. Femoral prostheses with upsizing and downsizing capabilities
US11324598B2 (en) 2013-08-30 2022-05-10 Zimmer, Inc. Method for optimizing implant designs
US11426282B2 (en) 2017-11-16 2022-08-30 Zimmer, Inc. Implants for adding joint inclination to a knee arthroplasty
US11471288B2 (en) 2010-09-10 2022-10-18 Zimmer, Inc. Motion facilitating tibial components for a knee prosthesis

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695848B2 (en) 1994-09-02 2004-02-24 Hudson Surgical Design, Inc. Methods for femoral and tibial resection
US8603095B2 (en) 1994-09-02 2013-12-10 Puget Bio Ventures LLC Apparatuses for femoral and tibial resection
US6972039B2 (en) * 1999-03-01 2005-12-06 Biomet, Inc. Floating bearing knee joint prosthesis with a fixed tibial post
US6558426B1 (en) 2000-11-28 2003-05-06 Medidea, Llc Multiple-cam, posterior-stabilized knee prosthesis
US6485519B2 (en) 2001-01-29 2002-11-26 Bristol-Myers Squibb Company Constrained prosthetic knee with rotating bearing
US6773461B2 (en) * 2001-01-29 2004-08-10 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US8062377B2 (en) 2001-03-05 2011-11-22 Hudson Surgical Design, Inc. Methods and apparatus for knee arthroplasty
ES2271368T3 (en) 2001-12-21 2007-04-16 SMITH & NEPHEW, INC. ARTICULATED ARTICULATION SYSTEM.
JP4193177B2 (en) * 2002-02-20 2008-12-10 ジンマー インコーポレーテッド Prosthesis and tibial implant device for knee arthroplasty
US20030204268A1 (en) * 2002-04-25 2003-10-30 Medicinelodge, Inc. Binary attachment mechanism and method for a modular prosthesis
US7182786B2 (en) 2002-04-25 2007-02-27 Zimmer Technology, Inc. Modular bone implant, tool, and method
US7105021B2 (en) * 2002-04-25 2006-09-12 Scimed Life Systems, Inc. Implantable textile prostheses having PTFE cold drawn yarns
AU2003236750B2 (en) 2002-08-22 2006-08-10 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
JP4943655B2 (en) 2002-12-20 2012-05-30 スミス アンド ネフュー インコーポレーテッド High performance knee prosthesis
US7025789B2 (en) * 2003-04-29 2006-04-11 The University Of Hong Kong Prosthetic device and method for total joint replacement in small joint arthroplasty
US20050143832A1 (en) 2003-10-17 2005-06-30 Carson Christopher P. High flexion articular insert
US7261740B2 (en) * 2003-10-29 2007-08-28 Wright Medical Technology, Inc. Tibial knee prosthesis
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US20050107889A1 (en) 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US8114083B2 (en) 2004-01-14 2012-02-14 Hudson Surgical Design, Inc. Methods and apparatus for improved drilling and milling tools for resection
US8021368B2 (en) 2004-01-14 2011-09-20 Hudson Surgical Design, Inc. Methods and apparatus for improved cutting tools for resection
US20060030854A1 (en) 2004-02-02 2006-02-09 Haines Timothy G Methods and apparatus for wireplasty bone resection
US20060030855A1 (en) 2004-03-08 2006-02-09 Haines Timothy G Methods and apparatus for improved profile based resection
US7637959B2 (en) 2004-02-12 2009-12-29 össur hf Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle
US7753960B2 (en) * 2004-02-26 2010-07-13 Omni Life Science, Inc. Modular knee prosthesis
US20050246028A1 (en) * 2004-04-28 2005-11-03 Buechel-Pappas Trust Prosthetic knee
US7455696B2 (en) 2004-05-07 2008-11-25 össur hf Dynamic seals for a prosthetic knee
US20060014677A1 (en) * 2004-07-19 2006-01-19 Isotechnika International Inc. Method for maximizing efficacy and predicting and minimizing toxicity of calcineurin inhibitor compounds
CA2592042C (en) 2004-12-22 2014-12-16 Oessur Hf Systems and methods for processing limb motion
US20060142869A1 (en) * 2004-12-23 2006-06-29 Gross Thomas P Knee prosthesis
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
DE102005015598B4 (en) * 2005-03-24 2015-07-30 Smith & Nephew Orthopaedics Ag Knee joint endoprosthesis and prosthesis set with such a knee joint endoprosthesis
SE528516C2 (en) 2005-04-19 2006-12-05 Lisa Gramnaes Combined active and passive leg prosthesis system and a method for performing a movement cycle with such a system
DE102005022584B4 (en) * 2005-05-09 2007-03-08 Aesculap Ag & Co. Kg Coupled knee endoprosthesis
WO2007027808A2 (en) 2005-09-01 2007-03-08 össur hf System and method for determining terrain transitions
US8211181B2 (en) * 2005-12-14 2012-07-03 New York University Surface guided knee replacement
US7658767B2 (en) 2006-06-30 2010-02-09 Depuy Products, Inc. Hinged orthopaedic prosthesis
WO2008005905A1 (en) * 2006-06-30 2008-01-10 Smith & Nephew, Inc. Anatomical motion hinged prosthesis
US8114164B2 (en) * 2006-11-21 2012-02-14 Zafer Termanini Bicondylar resurfacing prosthesis and method for insertion through direct lateral approach
US8579985B2 (en) 2006-12-07 2013-11-12 Ihip Surgical, Llc Method and apparatus for hip replacement
US8029573B2 (en) 2006-12-07 2011-10-04 Ihip Surgical, Llc Method and apparatus for total hip replacement
US8974540B2 (en) 2006-12-07 2015-03-10 Ihip Surgical, Llc Method and apparatus for attachment in a modular hip replacement or fracture fixation device
US8562616B2 (en) 2007-10-10 2013-10-22 Biomet Manufacturing, Llc Knee joint prosthesis system and method for implantation
US8187280B2 (en) 2007-10-10 2012-05-29 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8163028B2 (en) 2007-01-10 2012-04-24 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8328873B2 (en) 2007-01-10 2012-12-11 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
EP2104474B1 (en) * 2007-01-10 2012-08-29 Biomet Manufacturing Corp. Knee joint prosthesis system
US8128703B2 (en) 2007-09-28 2012-03-06 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US9204967B2 (en) 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
US7918893B2 (en) * 2007-09-30 2011-04-05 Depuy Products, Inc. Hinged orthopaedic prosthesis
US7871442B2 (en) * 2007-11-30 2011-01-18 Howmedica Osteonics Corp. Knee prosthesis with four degrees freedom
CN102036626B (en) 2008-03-24 2014-07-02 奥瑟Hf公司 Transfemoral prosthetic systems and methods for operating the same
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
US8828086B2 (en) 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US9119723B2 (en) 2008-06-30 2015-09-01 Depuy (Ireland) Posterior stabilized orthopaedic prosthesis assembly
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US9168145B2 (en) 2008-06-30 2015-10-27 Depuy (Ireland) Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US9011547B2 (en) 2010-01-21 2015-04-21 Depuy (Ireland) Knee prosthesis system
US8308808B2 (en) 2010-02-19 2012-11-13 Biomet Manufacturing Corp. Latent mobile bearing for prosthetic device
US8545571B2 (en) 2010-07-30 2013-10-01 Howmedica Osteonics Corp. Stabilized knee prosthesis
EP2603173B1 (en) 2010-08-12 2016-03-23 Smith & Nephew, Inc. Structures for use in orthopaedic implant fixation
US8287601B2 (en) 2010-09-30 2012-10-16 Depuy Products, Inc. Femoral component of a knee prosthesis having an angled cement pocket
US8317870B2 (en) 2010-09-30 2012-11-27 Depuy Products, Inc. Tibial component of a knee prosthesis having an angled cement pocket
US8808388B2 (en) 2011-01-27 2014-08-19 Smith & Nephew, Inc. Constrained knee prosthesis
WO2012145043A2 (en) * 2011-04-21 2012-10-26 Signal Medical Corporation Implant with multi-directional pivoting
US9161761B2 (en) 2011-05-13 2015-10-20 Biomet Manufacturing, Llc Bi-cruciate knee system
US11771442B2 (en) 2011-05-13 2023-10-03 Biomet Manufacturing Llc Bi-cruciate knee system
US8617250B2 (en) * 2011-06-17 2013-12-31 Biomet Manufacturing, Llc Revision knee tibial locking mechanism
US8961612B2 (en) 2012-08-30 2015-02-24 Biomet Manufacturing, Llc Knee component having orbital interface boss
EP3427702A1 (en) 2013-02-26 2019-01-16 Össur HF Prosthetic foot with enhanced stability and elastic energy return
GB2512609A (en) * 2013-04-03 2014-10-08 Fitzbionics Ltd Total knee replacement prosthesis assembly
US9194403B2 (en) 2014-02-23 2015-11-24 Dylan Pierre Neyme Modular hinged joint for use with agonist-antagonist tensile inputs
DE102014106012B9 (en) 2014-04-29 2015-09-17 Aesculap Ag Knee endoprosthesis
JP5663692B1 (en) * 2014-07-17 2015-02-04 経憲 武井 Knee joint, and prosthetic leg and power assist device using the same
CN107072788B (en) * 2014-09-23 2019-08-13 泰克里斯公司 For kneed controlled spacer device
DE102015119105A1 (en) 2015-11-06 2017-05-11 Aesculap Ag Knee endoprosthesis
US10925743B2 (en) * 2017-09-26 2021-02-23 Stephen J. Incavo Knee arthroplasty with modular femoral adapters
WO2019210323A1 (en) * 2018-04-27 2019-10-31 Delta Ortho, Llc Hinge joint system with distal femoral replacement prosthetic knee
US10736748B2 (en) 2018-05-02 2020-08-11 Depuy Ireland Unlimited Company Orthopaedic prosthetic system for a hinged-knee prosthesis
US11033396B2 (en) 2019-02-05 2021-06-15 Depuy Ireland Unlimited Company Orthopaedic prosthetic system for a rotating hinged-knee prosthesis
US11116641B2 (en) 2019-02-05 2021-09-14 Depuy Ireland Unlimited Company Orthopaedic prosthetic system for a rotating hinged-knee prosthesis
US11723775B2 (en) * 2020-08-12 2023-08-15 Asheesh BEDI Magnetic medical implants
TR202101656A2 (en) * 2021-02-03 2022-08-22 Hipokrat Tibbi Malzemeler Imalat Ve Pazarlama Anonim Sirketi INNOVATION IN THE WORKING PRINCIPLE OF ROTATIONAL HINGED KNEE PROSTHESES

Citations (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1504903A (en) 1924-05-05 1924-08-12 James F Rowley Artificial foot
US2183076A (en) 1938-09-16 1939-12-12 Joseph Spievak Artificial ankle joint
US3696446A (en) 1970-01-30 1972-10-10 Ass De L Ecole Catholique D Ar Total knee prosthesis
DE2122390A1 (en) 1971-05-06 1973-01-04 Aesculap Werke Ag KNEE JOINT ENDOPROTHESIS
US3708805A (en) 1969-12-24 1973-01-09 Nat Res Dev Prosthetic elbow joint
DE2154338A1 (en) 1971-11-02 1973-05-17 Eduard Hartmann JOINT PROSTHESIS
GB1328497A (en) 1969-09-16 1973-08-30 Nat Res Dev Artificial knee joint
US3813700A (en) 1973-04-16 1974-06-04 S Tennant Prosthetic knee device
US3816853A (en) 1971-11-18 1974-06-18 R Elson Implantable prosthetic knee joint
US3824630A (en) 1972-06-23 1974-07-23 Zimmer Mfg Co Prosthetic joint for total knee replacement
US3837009A (en) 1972-12-07 1974-09-24 New York Soc Relief Of Rupture Knee prosthesis
US3869729A (en) 1972-01-05 1975-03-11 Nat Res Dev Bone joint prosthesis
US3909854A (en) 1973-05-03 1975-10-07 Ysidore M Martinez Knee implant prosthesis
GB1409150A (en) 1972-09-01 1975-10-08 Sulzer Ag Prosthetic implant for a knee joint
US3918101A (en) 1973-10-02 1975-11-11 Jean Lagrange Total knee-joint prosthesis
US3924277A (en) 1971-05-04 1975-12-09 Nat Res Dev Knee joint prosthesis
US3934272A (en) 1974-11-19 1976-01-27 The University Of Melbourne Knee prosthesis
GB1457147A (en) 1974-11-19 1976-12-01 Univ Melbourne Prosthetic knee joint
US3996624A (en) 1975-02-28 1976-12-14 United States Surgical Corporation Prosthetic knee joint
US4016606A (en) 1975-07-14 1977-04-12 Research Corporation Knee joint prosthesis
GB1475688A (en) 1974-04-03 1977-06-01 Silentbloc Flexible joints
US4064568A (en) 1975-11-06 1977-12-27 Sanitatshaus Schuutt & Grundei Knee-joint endoprostheses
GB1507309A (en) 1974-10-14 1978-04-12 Atomic Energy Authority Uk Prosthetic knee joints
US4092740A (en) 1975-10-03 1978-06-06 Salomao Eshriqui Articulated joint prosthesis
US4094017A (en) 1977-02-16 1978-06-13 Larry Stanford Matthews Knee joint prosthesis with patellar-femoral contact
GB1514479A (en) 1974-10-01 1978-06-14 Elson R Prosthetic joints
US4112522A (en) 1975-11-04 1978-09-12 Aram Dadurian Knee-joint prosthesis
DE2810748A1 (en) 1977-05-09 1978-11-23 Hauni Werke Koerber & Co Kg Artificial knee joint with shafts for fitting into thigh and leg bones - has hinge link with pref. polyethylene guide box and pressure ring
US4134158A (en) 1977-08-22 1979-01-16 Laure Prosthetics, Inc. Knee joint prosthesis
US4136405A (en) 1977-04-29 1979-01-30 Zimmer U.S.A. Rotational offset knee prosthesis
DE2906458A1 (en) 1978-02-22 1979-08-23 Howmedica JOINT PROSTHESIS
CA1073151A (en) 1977-01-10 1980-03-11 Bristol-Myers Squibb Company Prosthetic joint for total knee replacement
FR2445137A1 (en) 1978-12-29 1980-07-25 Deaux Ets Knee prosthesis permitting rotary and bending motion - has hinge joint between tibial and femoral components with cammed, profiled surfaces cooperating with tibial stem
US4215439A (en) 1978-10-16 1980-08-05 Zimmer, USA Semi-restraining knee prosthesis
US4216549A (en) 1977-06-02 1980-08-12 Purdue Research Foundation Semi-stable total knee prosthesis
US4219893A (en) 1977-09-01 1980-09-02 United States Surgical Corporation Prosthetic knee joint
US4224697A (en) 1978-09-08 1980-09-30 Hexcel Corporation Constrained prosthetic knee
DE3013155A1 (en) 1979-04-05 1980-10-23 Minnesota Mining & Mfg TIBIA PROSTHESIS
WO1981000606A1 (en) 1979-08-31 1981-03-05 Caterpillar Tractor Co Mount to absorb shocks
US4257129A (en) 1979-05-21 1981-03-24 Volz Robert G Prosthetic knee joint tibial implant
US4262368A (en) 1979-09-24 1981-04-21 Wright Manufacturing Company Rotating and hinged knee prosthesis
DE3039992A1 (en) 1979-10-26 1981-05-14 National Research Development Corp., London ENDOPROTHETIC BONE JOINT DEVICE, IN PARTICULAR FOR THE KNEE JOINT
US4268920A (en) 1977-10-05 1981-05-26 GMT Gesellschaft fur med. Technik mbH Endoprosthesis for a knee joint
GB2070939A (en) 1980-03-11 1981-09-16 Howmedica Prosthetic joint
US4301553A (en) 1975-08-15 1981-11-24 United States Surgical Corporation Prosthetic knee joint
EP0046926A2 (en) 1980-09-03 1982-03-10 Waldemar Link (GmbH & Co.) Knee joint endoprosthesis
US4340978A (en) 1979-07-02 1982-07-27 Biomedical Engineering Corp. New Jersey meniscal bearing knee replacement
US4358859A (en) 1979-10-04 1982-11-16 Schurman David J Articulated prosthetic knee and method for implanting same
EP0069683A1 (en) 1981-07-06 1983-01-12 André Rambert Full knee-joint prosthesis
US4383337A (en) 1980-10-22 1983-05-17 Zimmer Usa, Inc. Elbow prosthesis
EP0083155A1 (en) 1981-12-07 1983-07-06 Dow Corning Corporation Shock absorbing stop for prosthetic devices
US4404691A (en) 1980-03-11 1983-09-20 Howmedica International Inc. Modular prosthesis assembly
GB2120943A (en) 1982-03-13 1983-12-14 Thackray C F Ltd Knee prosthesis
DE3339102A1 (en) 1982-11-04 1984-05-10 Howmedica International Inc., Shannon, Clare Joint prosthesis
EP0126978A1 (en) 1983-04-28 1984-12-05 Feldmühle Aktiengesellschaft Knee endoprosthesis
US4538305A (en) 1981-05-19 1985-09-03 Gmt Gesellschaft Fur Medizinische Technik Mbh Articulated prosthesis
US4578081A (en) 1982-02-17 1986-03-25 Howmedica International, Inc. Bone prosthesis
EP0177755A1 (en) 1984-09-07 1986-04-16 S + G Implants Gmbh Tibial-prosthetic part of a knee joint endoprosthesis
EP0178445A1 (en) 1984-09-11 1986-04-23 S + G Implants Gmbh Knee joint endoprosthesis
EP0194326A1 (en) 1983-09-23 1986-09-17 orthoplant Endoprothetik GmbH Knee-joint endoprosthesis
EP0198163A2 (en) 1985-04-15 1986-10-22 GebràœDer Sulzer Aktiengesellschaft Connection of two parts of an implant
DE3529894A1 (en) 1985-08-21 1987-03-05 Orthoplant Endoprothetik Knee-joint endoprosthesis
EP0214773A2 (en) 1985-08-12 1987-03-18 Harrington Arthritis Research Center Joint Prosthesis
FR2601873A1 (en) 1986-07-25 1988-01-29 Cuilleron J Intracondylar total knee prosthesis
EP0265325A1 (en) 1986-10-14 1988-04-27 S.N.R. Roulements Knee articulation prosthesis
FR2612767A1 (en) 1987-03-23 1988-09-30 Letournel Emile Total knee prosthesis
US4790853A (en) 1984-08-29 1988-12-13 Gmt Gesellschaft Fur Medizinische Technik Mbh Knee joint prosthesis
US4790854A (en) 1982-02-17 1988-12-13 Howmedica International Inc. Bone prosthesis assembly
US4822366A (en) 1986-10-16 1989-04-18 Boehringer Mannheim Corporation Modular knee prosthesis
US4828564A (en) 1983-03-22 1989-05-09 National Research Development Corporation Endoprosthetic bone joint devices
US4834758A (en) 1988-05-26 1989-05-30 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Bone prosthesis for the leg and thigh
WO1989006947A1 (en) 1988-02-02 1989-08-10 Joint Medical Products Corporation Prosthetic joint
US4865606A (en) 1987-08-13 1989-09-12 Friedrichsfeld Gmbh Keramik Und Kunststoffwerke Endoprosthesis for a knee-joint
FR2628316A1 (en) 1988-03-08 1989-09-15 Lebeguec Pierre Whole knee prosthesis - has one piece implanted at end of femur, other at end of tibia articulating around cross member of T=piece
US4923472A (en) 1988-01-22 1990-05-08 Salus S.R.L. Artificial knee-joint
US4936853A (en) 1989-01-11 1990-06-26 Kirschner Medical Corporation Modular knee prosthesis
US4938769A (en) 1989-05-31 1990-07-03 Shaw James A Modular tibial prosthesis
FR2641966A1 (en) 1989-01-23 1990-07-27 Implants Instr Ch Fab Device adaptable to total intracondylar prostheses of the knee
US4944757A (en) 1988-11-07 1990-07-31 Martinez David M Modulator knee prosthesis system
US4950298A (en) 1988-04-08 1990-08-21 Gustilo Ramon B Modular knee joint prosthesis
EP0410237A1 (en) 1989-07-26 1991-01-30 Bristol-Myers Squibb Company Knee joint endoprosthesis
EP0420460A1 (en) 1989-09-27 1991-04-03 University College London Knee prosthesis
US5007933A (en) 1989-01-31 1991-04-16 Osteonics Corp. Modular knee prosthesis system
US5011496A (en) 1988-02-02 1991-04-30 Joint Medical Products Corporation Prosthetic joint
US5015255A (en) 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5019103A (en) 1990-02-05 1991-05-28 Boehringer Mannheim Corporation Tibial wedge system
US5037439A (en) 1988-04-11 1991-08-06 Albrektsson Bjoern Knee-joint prosthesis
US5061271A (en) 1989-02-27 1991-10-29 Boehringer Mannheim Corporation Tool for separating components of a modular joint prosthesis
EP0472475A2 (en) 1990-07-11 1992-02-26 Gilles Bousquet Bicondylar knee prosthesis
US5116375A (en) 1990-08-27 1992-05-26 Hofmann Aaron A Knee prosthesis
US5123928A (en) 1989-07-07 1992-06-23 Eska Medical Luebeck Medizintechnik Gmbh Knee joint endoprosthesis
DE4110048C1 (en) 1991-03-27 1992-07-30 S + G Implants Gmbh, 2400 Luebeck, De Knee joint prosthesis with femur and tibia portions - has femur condylar shells recessed on ventral side towards shell inside
DE4102509A1 (en) 1991-01-29 1992-07-30 Peter Brehm Knee-joint prosthesis - where femur part has bearing housing with two-part plastic bearing insert in which connecting rod can pivot but not rotate
US5139521A (en) 1990-01-27 1992-08-18 Ingrid Schelhas Knee prosthesis
US5171283A (en) 1989-07-11 1992-12-15 Biomedical Engineering Trust Compound shape rotating bearing
US5180383A (en) 1991-10-09 1993-01-19 Haydon Frank A Method and device for attaching artificial joint implants to the ends of bones
US5194066A (en) 1988-01-11 1993-03-16 Boehringer Mannheim Corporation Modular joint prosthesis
US5246459A (en) 1992-02-24 1993-09-21 Elias Sarmed G Modular tibial support pegs for the tibial component of a prosthetic knee replacement system
FR2692475A1 (en) 1992-06-19 1993-12-24 Montpellier Chirurgie Total knee replacement.
US5282867A (en) 1992-05-29 1994-02-01 Mikhail Michael W E Prosthetic knee joint
US5290313A (en) 1992-11-23 1994-03-01 Zimmer, Inc. Offset prosthetic stem extension
FR2696926A1 (en) 1992-10-19 1994-04-22 Cuilleron J Total knee prosthesis - has axis with bearing rollers set transversely in upper end of vertical pivot, held in place by rings
US5314481A (en) 1992-11-12 1994-05-24 Wright Medical Technology, Inc. Hinged knee prosthesis with extended patellar track
US5326368A (en) 1992-09-22 1994-07-05 Howmedica, Inc. Modular acetabular cup
US5330534A (en) 1992-02-10 1994-07-19 Biomet, Inc. Knee joint prosthesis with interchangeable components
FR2702651A1 (en) 1993-03-16 1994-09-23 Erato Knee prosthesis
WO1994021198A1 (en) 1993-03-15 1994-09-29 University College London Total knee replacement prosthesis
US5358527A (en) 1991-03-22 1994-10-25 Forte Mark R Total knee prosthesis with resurfacing and posterior stabilization capability
US5370701A (en) 1990-09-28 1994-12-06 Arch Development Corporation Rotating/sliding contrained prosthetic knee
US5370700A (en) 1993-02-19 1994-12-06 Sarkisian; James S. Prosthetic knee joint
DE9414970U1 (en) 1994-09-15 1994-12-22 Diehl Klaus Prof Dr Partially coupled knee prosthesis
US5387240A (en) 1990-11-14 1995-02-07 Arch Development Corporation Floating bearing prosthetic knee
US5395401A (en) 1991-06-17 1995-03-07 Bahler; Andre Prosthetic device for a complex joint
US5405398A (en) 1993-08-30 1995-04-11 Intermedics Orthopedics, Inc. Prosthetic knee with posterior stabilized femoral component
US5411555A (en) 1991-06-11 1995-05-02 Gmt Gesellschaft Fur Medizinische Technik Gmbh Knee joint prosthesis kit
FR2711750A1 (en) 1993-10-28 1995-05-05 Fii Device for immobilising a body in a bore
US5413607A (en) 1990-11-29 1995-05-09 Gmt Gesellschaft Fur Medizinische Technik Mbh Knee joint prosthesis
US5427586A (en) 1992-05-07 1995-06-27 Ingrid Schelhas Knee-joint endoprosthesis
US5458644A (en) 1991-12-18 1995-10-17 Eska Medical Gmbh & Co. Knee joint endoprosthesis
US5489311A (en) 1994-01-21 1996-02-06 Joint Medical Products Corporation Prosthesis with orientable bearing surface
US5489307A (en) 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
DE4434806A1 (en) 1994-09-29 1996-04-04 Peter Brehm Prosthesis for knee joints
EP0716839A1 (en) 1994-12-12 1996-06-19 Biomedical Engineering Trust I Hinged knee prothesis with condylar bearing
JPH08173464A (en) 1994-12-26 1996-07-09 Kyocera Corp Artificial knee joint
DE69206397T2 (en) 1991-12-31 1996-08-01 Cuilleron J Total intracondylar knee prosthesis.
EP0724868A1 (en) 1995-01-31 1996-08-07 SULZER Medizinaltechnik AG Joint prothesis, in particular a knee prosthesis
US5549689A (en) 1994-11-28 1996-08-27 Epstein; Norman Prosthetic knee
US5549687A (en) 1992-12-10 1996-08-27 Wright Medical Technology, Inc. Retrofit posterior stabilizing housing implant for replacement knee prosthesis
US5609643A (en) 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
US5609639A (en) 1991-02-04 1997-03-11 Walker; Peter S. Prosthesis for knee replacement
RU2080840C1 (en) 1993-07-08 1997-06-10 Онкологический научный центр РАМН Knee joint endoprosthesis and device for fixing it in tibia and femur
US5658342A (en) 1992-11-16 1997-08-19 Arch Development Stabilized prosthetic knee
US5683468A (en) 1995-03-13 1997-11-04 Pappas; Michael J. Mobile bearing total joint replacement
DE69305434T2 (en) 1992-06-23 1997-11-06 Medinov Amp S A Total sliding prosthesis for the knee
EP0812582A2 (en) 1996-06-13 1997-12-17 Industrias Quirurgicas De Levante, S.A. Knee substitution prosthesis
US5702466A (en) 1992-04-23 1997-12-30 Biomedical Engineering Trust I Rotational and translational bearing combination in biological joint replacement
US5702458A (en) 1994-12-09 1997-12-30 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Joint prosthesis
JPH1014935A (en) 1996-07-02 1998-01-20 Homuzu Giken:Kk Cover member for member buried in vivo and member to be buried in vivo
FR2751204A1 (en) 1996-07-16 1998-01-23 Landanger Camus Sa Knee prosthesis
US5725580A (en) 1994-12-16 1998-03-10 Exactech, Inc. Hole caps for prosthetic implants
US5755804A (en) 1996-02-21 1998-05-26 Plus Endoprothetik Ag Endoprosthetic knee joint
US5766257A (en) 1997-01-28 1998-06-16 Implant Manufacturing And Testing Corporation Artificial joint having natural load transfer
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5776200A (en) 1995-02-15 1998-07-07 Smith & Nephew, Inc. Tibial trial prosthesis and bone preparation system
US5776201A (en) 1995-10-02 1998-07-07 Johnson & Johnson Professional, Inc. Modular femoral trial system
FR2760352A1 (en) 1997-03-10 1998-09-11 Philippe Berret Total knee joint prosthesis
US5824102A (en) 1992-06-19 1998-10-20 Buscayret; Christian Total knee prosthesis
US5879392A (en) 1996-05-08 1999-03-09 Mcminn; Derek James Wallace Knee prosthesis
US5879394A (en) 1996-05-28 1999-03-09 Howmedica International Inc. Tibial element for a replacement knee prosthesis
EP0653194B1 (en) * 1992-10-20 1999-03-17 Fabrique D'implants Et D'instruments Chirurgicaux Societe A Responsabilite Limitee Total knee prosthesis
US5906643A (en) 1994-07-28 1999-05-25 Walker; Peter Stanley Stabilised mobile bearing knee
FR2771283A1 (en) 1997-11-24 1999-05-28 Implants & Instr Chirurg Tibial implant for knee prosthesis
EP0923916A1 (en) 1997-12-19 1999-06-23 Sulzer Orthopädie AG Knee joint prosthesis
DE19809041A1 (en) 1998-03-04 1999-09-09 Engelbrecht Knee joint prosthesis of support plus tibia and femur parts
US5954770A (en) 1996-02-21 1999-09-21 Plus Endoprothetik Ag Endoprosthetic knee joint
DE19915053A1 (en) 1998-04-02 1999-10-07 Beguec Pierre Le Total knee prosthesis with femur and tibia joint
US5964808A (en) 1996-07-11 1999-10-12 Wright Medical Technology, Inc. Knee prosthesis
FR2777453A1 (en) 1998-04-20 1999-10-22 Andre Raoult Complete knee prosthesis
US6004352A (en) 1997-01-10 1999-12-21 Sulzer Orthopaedie Ag Tibia platform for an artificial knee joint
US6080195A (en) 1998-07-08 2000-06-27 Johnson & Johnson Professional, Inc. Rotatable and translatable joint prosthesis with posterior stabilization
FR2787992A1 (en) 1999-01-04 2000-07-07 Aesculap Sa TIBIAL KNEE PROSTHESIS WITH DOUBLE INSERTED BALL JOINT
US6099570A (en) 1997-10-28 2000-08-08 Sulzer Orthopaedie Ag Knee joint prothesis
US6099571A (en) 1997-07-16 2000-08-08 Knapp; John G. Joint prosthesis
US6117175A (en) 1994-08-22 2000-09-12 Bosredon; Jean Spherical knee joint prosthesis
US6126692A (en) 1998-06-25 2000-10-03 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Retaining mechanism for a modular tibial component of a knee prosthesis
US6143034A (en) 1998-07-30 2000-11-07 Sulzer Orthopedics Inc. Implantable hinged knee prosthesis having tibial baseplate
WO2000066043A1 (en) * 1999-04-28 2000-11-09 Depuy France Total knee prosthesis comprising hinge with automatic wear take-up
FR2793677A1 (en) 1999-05-18 2000-11-24 Depuy France Total knee prosthesis has femoral section with bone growth sleeve having length adjustment
FR2793676A1 (en) 1999-05-18 2000-11-24 Depuy France Total knee joint prosthesis has tibial section with intramedullary nail anchored on prosthesis by locking screw
US6162255A (en) 1998-10-15 2000-12-19 Depuy Orthopaedics, Inc. Stem offset mechanism for joint prosthesis
WO2001000606A1 (en) 1999-06-29 2001-01-04 Kaneka Corporation Process for selective lactonization
US6171342B1 (en) 1996-07-23 2001-01-09 Depuy Orthopaedics, Inc. Medical fastening system
US20010003803A1 (en) 1999-12-13 2001-06-14 Sulzer Orthopedics Ltd. Kit for a knee joint prosthesis
EP1108403A1 (en) 1999-12-13 2001-06-20 Sulzer Orthopedics Ltd. Assembly set for a knee prosthesis
US6267763B1 (en) 1999-03-31 2001-07-31 Surgical Dynamics, Inc. Method and apparatus for spinal implant insertion
EP1132064A2 (en) 2000-03-06 2001-09-12 Louis A. Serafin Modular joint prosthesis
US20010025199A1 (en) 2000-03-21 2001-09-27 Markus Rauscher Artificial finger joint
DE10012059A1 (en) 2000-03-14 2001-09-27 Saint Paul Bernd Endoprosthesis for knee joint; has femur and tibia components, where femur component has curved condyle running surface, where curve axis is ventrally and medially offset from knee bending axis
US6296666B1 (en) 2000-03-13 2001-10-02 Encore Medical Corporation Mobile bearing knee with center post
US6306172B1 (en) 1999-01-28 2001-10-23 Johnson & Johnson Professional, Inc. Modular tibial insert for prosthesis system
US6306171B1 (en) 1998-12-09 2001-10-23 Iowa State University Research Foundation, Inc. Total elbow arthroplasty system
US20010034554A1 (en) 2000-03-08 2001-10-25 Pappas Michael J. Posterior stabilized prosthetic knee replacement with bearing translation and dislocation prevention features
US6319283B1 (en) 1999-07-02 2001-11-20 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
US6361564B1 (en) 1999-02-02 2002-03-26 Aesculap Total knee joint comprising an insert movable relative to a tenon
EP1226800A2 (en) 2001-01-29 2002-07-31 Zimmer Inc. Constrained Prosthetic knee with rotating bearing
US6428577B1 (en) 1998-05-20 2002-08-06 Smith & Nephew, Inc. Mobile bearing knee prosthesis
US20020107576A1 (en) 2001-01-29 2002-08-08 Meyers John E. Constrained prosthetic knee with rotating bearing
US6436145B1 (en) 2000-06-02 2002-08-20 Zimmer, Inc. Plug for a modular orthopaedic implant and method for assembly
US6443991B1 (en) 1998-09-21 2002-09-03 Depuy Orthopaedics, Inc. Posterior stabilized mobile bearing knee
US6447549B1 (en) 2000-10-06 2002-09-10 Sulzer Orthopedics Inc. Modular knee prosthesis system
US20020161448A1 (en) 2000-07-20 2002-10-31 Hayes, Jr. Daniel E. E. Bimetal tibial component construct for knee joint prosthesis
US6500208B1 (en) 1998-10-16 2002-12-31 Biomet, Inc. Nonmodular joint prosthesis convertible in vivo to a modular prosthesis
US20030009232A1 (en) 1999-03-01 2003-01-09 Robert Metzger Floating bearing knee joint prosthesis with a fixed tibial post
US20030009228A1 (en) 2001-01-29 2003-01-09 Meyers John E. Constrained prosthetic knee with rotating bearing
US6506215B1 (en) 1998-05-12 2003-01-14 Patrick Letot Synthetic knee system
US20030153980A1 (en) 2002-01-07 2003-08-14 Rene Brack Tibial component of a knee-joint endoprosthesis
US6620198B2 (en) 1999-10-07 2003-09-16 Exactech, Inc. Composite bearing inserts for total knee joints
US20040054416A1 (en) 2002-09-12 2004-03-18 Joe Wyss Posterior stabilized knee with varus-valgus constraint
US6743258B1 (en) 1999-11-09 2004-06-01 Waldemar Link (Gmbh & Co.) Knee prosthesis system
US6755864B1 (en) 1999-09-24 2004-06-29 Sulzer Orthopedics Ltd. Tibia part for a knee joint prosthesis and a kit with a tibia part of this kind
US20040162620A1 (en) 2002-06-28 2004-08-19 Joseph Wyss Modular knee joint prosthesis
US20040186584A1 (en) 2001-04-25 2004-09-23 Arnold Keller Knee prosthesis with a flexion hinge
US20040186583A1 (en) 2001-04-25 2004-09-23 Arnold Keller Knee prosthesis with rotation bearing
US20040220676A1 (en) 2001-06-27 2004-11-04 Arnold Keller Coupled knee prosthesis with a rotational bearing
US20050107886A1 (en) 2001-12-21 2005-05-19 Paul Crabtree Hinged joint system
US20050246028A1 (en) 2004-04-28 2005-11-03 Buechel-Pappas Trust Prosthetic knee
US7070622B1 (en) 2002-07-03 2006-07-04 Biomet, Inc. Prosthesis having a modular soft tissue fixation mechanism
US7172628B2 (en) 2004-07-27 2007-02-06 Lonnie Jay Lamprich Spinal disc prosthesis and methods
US7175665B2 (en) 2002-09-09 2007-02-13 Depuy Products, Inc. Universal tibial augment
US20070100463A1 (en) 2005-10-31 2007-05-03 Aram Luke J Modular fixed and mobile bearing prosthesis system
US7232465B2 (en) 2002-07-26 2007-06-19 Waldemar Link Gmbh & Co. Kg Knee prosthesis
US20080004708A1 (en) 2006-06-30 2008-01-03 Wyss Joseph G Hinged orthopaedic prosthesis
US7326252B2 (en) 2002-12-20 2008-02-05 Smith & Nephew, Inc. High performance knee prostheses
US7357817B2 (en) 2005-05-19 2008-04-15 Howmedica Osteonics Corp. Modular keel tibial component
US20080167722A1 (en) 2007-01-10 2008-07-10 Biomet Manufacturing Corp. Knee Joint Prosthesis System and Method for Implantation
US20080255671A1 (en) 2005-02-21 2008-10-16 Hans Rudolf Kriek Joint Devices
US20090024221A1 (en) 2004-10-29 2009-01-22 Ball Robert J Modular total elbow prosthesis, humeral component and associated kit
US20090082873A1 (en) 2007-09-25 2009-03-26 Hazebrouck Stephen A Fixed-bearing knee prosthesis
US20090088860A1 (en) 2007-09-30 2009-04-02 Romeis Kristen L Hinged orthopaedic prosthesis
US20090149964A1 (en) 2007-10-10 2009-06-11 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US7569054B2 (en) 1988-06-13 2009-08-04 Warsaw Orthopedic, Inc. Tubular member having a passage and opposed bone contacting extensions
US20090299482A1 (en) 2007-01-10 2009-12-03 Biomet Manufacturing Corp. Knee Joint Prosthesis System and Method for Implantation
US20090326665A1 (en) 2008-06-30 2009-12-31 Wyss Joseph G Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US20090326666A1 (en) 2008-06-30 2009-12-31 Wyss Joseph G Posterior stabilized orthopaedic prosthesis
US20100016980A1 (en) 2008-07-18 2010-01-21 Zimmer Gmbh Base component for a tibial implant
US20100016978A1 (en) 2008-07-16 2010-01-21 Depuy Products, Inc. Antero-posterior placement of axis of rotation for a rotating platform
US20100063594A1 (en) 2007-09-28 2010-03-11 Hazebrouck Stephen A Fixed-bearing knee prosthesis having interchangeable components
US20100100189A1 (en) 2008-10-17 2010-04-22 Biomet Manufacturing Corp. High flexion tibial tray
US7753960B2 (en) 2004-02-26 2010-07-13 Omni Life Science, Inc. Modular knee prosthesis
US7871442B2 (en) 2007-11-30 2011-01-18 Howmedica Osteonics Corp. Knee prosthesis with four degrees freedom
JP5241775B2 (en) 2010-06-11 2013-07-17 住友ゴム工業株式会社 Rubber composition and paper feed roller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1045752A (en) 1975-05-26 1979-01-09 Robert W. Jackson Prosthetic implant
US4834081A (en) 1988-01-11 1989-05-30 Boehringer Mannheim Corporation Tool for removing modular joint prosthesis
DE10103359C2 (en) * 2001-01-25 2003-11-27 Ruediger Thrun Device and method for cleaning food or means of production

Patent Citations (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1504903A (en) 1924-05-05 1924-08-12 James F Rowley Artificial foot
US2183076A (en) 1938-09-16 1939-12-12 Joseph Spievak Artificial ankle joint
GB1328497A (en) 1969-09-16 1973-08-30 Nat Res Dev Artificial knee joint
US3708805A (en) 1969-12-24 1973-01-09 Nat Res Dev Prosthetic elbow joint
US3696446A (en) 1970-01-30 1972-10-10 Ass De L Ecole Catholique D Ar Total knee prosthesis
US3924277A (en) 1971-05-04 1975-12-09 Nat Res Dev Knee joint prosthesis
DE2122390A1 (en) 1971-05-06 1973-01-04 Aesculap Werke Ag KNEE JOINT ENDOPROTHESIS
DE2122390C3 (en) 1971-05-06 1974-03-21 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen
DE2154338A1 (en) 1971-11-02 1973-05-17 Eduard Hartmann JOINT PROSTHESIS
US3816853A (en) 1971-11-18 1974-06-18 R Elson Implantable prosthetic knee joint
US3869729A (en) 1972-01-05 1975-03-11 Nat Res Dev Bone joint prosthesis
US3824630A (en) 1972-06-23 1974-07-23 Zimmer Mfg Co Prosthetic joint for total knee replacement
GB1409150A (en) 1972-09-01 1975-10-08 Sulzer Ag Prosthetic implant for a knee joint
US3837009A (en) 1972-12-07 1974-09-24 New York Soc Relief Of Rupture Knee prosthesis
US3813700A (en) 1973-04-16 1974-06-04 S Tennant Prosthetic knee device
US3909854A (en) 1973-05-03 1975-10-07 Ysidore M Martinez Knee implant prosthesis
US3918101A (en) 1973-10-02 1975-11-11 Jean Lagrange Total knee-joint prosthesis
GB1475688A (en) 1974-04-03 1977-06-01 Silentbloc Flexible joints
GB1514479A (en) 1974-10-01 1978-06-14 Elson R Prosthetic joints
GB1507309A (en) 1974-10-14 1978-04-12 Atomic Energy Authority Uk Prosthetic knee joints
US3934272A (en) 1974-11-19 1976-01-27 The University Of Melbourne Knee prosthesis
GB1457147A (en) 1974-11-19 1976-12-01 Univ Melbourne Prosthetic knee joint
US3996624A (en) 1975-02-28 1976-12-14 United States Surgical Corporation Prosthetic knee joint
GB1509366A (en) 1975-07-14 1978-05-04 Research Corp Knee joint prosthesis
US4016606A (en) 1975-07-14 1977-04-12 Research Corporation Knee joint prosthesis
US4301553A (en) 1975-08-15 1981-11-24 United States Surgical Corporation Prosthetic knee joint
US4092740A (en) 1975-10-03 1978-06-06 Salomao Eshriqui Articulated joint prosthesis
US4112522A (en) 1975-11-04 1978-09-12 Aram Dadurian Knee-joint prosthesis
US4064568A (en) 1975-11-06 1977-12-27 Sanitatshaus Schuutt & Grundei Knee-joint endoprostheses
CA1073151A (en) 1977-01-10 1980-03-11 Bristol-Myers Squibb Company Prosthetic joint for total knee replacement
US4094017A (en) 1977-02-16 1978-06-13 Larry Stanford Matthews Knee joint prosthesis with patellar-femoral contact
US4136405A (en) 1977-04-29 1979-01-30 Zimmer U.S.A. Rotational offset knee prosthesis
DE2810748A1 (en) 1977-05-09 1978-11-23 Hauni Werke Koerber & Co Kg Artificial knee joint with shafts for fitting into thigh and leg bones - has hinge link with pref. polyethylene guide box and pressure ring
US4216549A (en) 1977-06-02 1980-08-12 Purdue Research Foundation Semi-stable total knee prosthesis
US4134158A (en) 1977-08-22 1979-01-16 Laure Prosthetics, Inc. Knee joint prosthesis
US4219893A (en) 1977-09-01 1980-09-02 United States Surgical Corporation Prosthetic knee joint
US4268920A (en) 1977-10-05 1981-05-26 GMT Gesellschaft fur med. Technik mbH Endoprosthesis for a knee joint
DE2906458A1 (en) 1978-02-22 1979-08-23 Howmedica JOINT PROSTHESIS
US4224697A (en) 1978-09-08 1980-09-30 Hexcel Corporation Constrained prosthetic knee
US4215439A (en) 1978-10-16 1980-08-05 Zimmer, USA Semi-restraining knee prosthesis
FR2445137A1 (en) 1978-12-29 1980-07-25 Deaux Ets Knee prosthesis permitting rotary and bending motion - has hinge joint between tibial and femoral components with cammed, profiled surfaces cooperating with tibial stem
DE3013155A1 (en) 1979-04-05 1980-10-23 Minnesota Mining & Mfg TIBIA PROSTHESIS
US4257129A (en) 1979-05-21 1981-03-24 Volz Robert G Prosthetic knee joint tibial implant
US4340978A (en) 1979-07-02 1982-07-27 Biomedical Engineering Corp. New Jersey meniscal bearing knee replacement
WO1981000606A1 (en) 1979-08-31 1981-03-05 Caterpillar Tractor Co Mount to absorb shocks
US4262368A (en) 1979-09-24 1981-04-21 Wright Manufacturing Company Rotating and hinged knee prosthesis
US4358859A (en) 1979-10-04 1982-11-16 Schurman David J Articulated prosthetic knee and method for implanting same
DE3039992A1 (en) 1979-10-26 1981-05-14 National Research Development Corp., London ENDOPROTHETIC BONE JOINT DEVICE, IN PARTICULAR FOR THE KNEE JOINT
GB2070939A (en) 1980-03-11 1981-09-16 Howmedica Prosthetic joint
US4404691A (en) 1980-03-11 1983-09-20 Howmedica International Inc. Modular prosthesis assembly
EP0046926A2 (en) 1980-09-03 1982-03-10 Waldemar Link (GmbH & Co.) Knee joint endoprosthesis
EP0046926B1 (en) 1980-09-03 1985-12-11 Waldemar Link (GmbH & Co.) Knee joint endoprosthesis
US4383337A (en) 1980-10-22 1983-05-17 Zimmer Usa, Inc. Elbow prosthesis
US4538305A (en) 1981-05-19 1985-09-03 Gmt Gesellschaft Fur Medizinische Technik Mbh Articulated prosthesis
EP0069683A1 (en) 1981-07-06 1983-01-12 André Rambert Full knee-joint prosthesis
US4462120A (en) 1981-07-06 1984-07-31 Andre Rambert Total knee prosthesis
EP0083155A1 (en) 1981-12-07 1983-07-06 Dow Corning Corporation Shock absorbing stop for prosthetic devices
US4790854A (en) 1982-02-17 1988-12-13 Howmedica International Inc. Bone prosthesis assembly
US4578081A (en) 1982-02-17 1986-03-25 Howmedica International, Inc. Bone prosthesis
US4764171A (en) 1982-02-17 1988-08-16 Howmedica International Inc. Bone prosthesis assembly for a knee joint
GB2120943A (en) 1982-03-13 1983-12-14 Thackray C F Ltd Knee prosthesis
GB2129306B (en) 1982-11-04 1986-02-19 Howmedica Joint prosthesis
GB2129306A (en) 1982-11-04 1984-05-16 Howmedica Joint prosthesis
DE3339102A1 (en) 1982-11-04 1984-05-10 Howmedica International Inc., Shannon, Clare Joint prosthesis
US4828564A (en) 1983-03-22 1989-05-09 National Research Development Corporation Endoprosthetic bone joint devices
EP0126978A1 (en) 1983-04-28 1984-12-05 Feldmühle Aktiengesellschaft Knee endoprosthesis
EP0126978B1 (en) 1983-04-28 1986-09-10 Feldmühle Aktiengesellschaft Knee endoprosthesis
US4662889A (en) 1983-04-28 1987-05-05 Feldmuhle Aktiengesellschaft Knee joint prosthesis
EP0194326A1 (en) 1983-09-23 1986-09-17 orthoplant Endoprothetik GmbH Knee-joint endoprosthesis
US4790853A (en) 1984-08-29 1988-12-13 Gmt Gesellschaft Fur Medizinische Technik Mbh Knee joint prosthesis
EP0177755B1 (en) 1984-09-07 1988-11-02 S + G Implants Gmbh Tibial-prosthetic part of a knee joint endoprosthesis
EP0177755A1 (en) 1984-09-07 1986-04-16 S + G Implants Gmbh Tibial-prosthetic part of a knee joint endoprosthesis
EP0178445A1 (en) 1984-09-11 1986-04-23 S + G Implants Gmbh Knee joint endoprosthesis
EP0198163A2 (en) 1985-04-15 1986-10-22 GebràœDer Sulzer Aktiengesellschaft Connection of two parts of an implant
EP0214773A2 (en) 1985-08-12 1987-03-18 Harrington Arthritis Research Center Joint Prosthesis
US4655778A (en) 1985-08-12 1987-04-07 Harrington Arthritis Research Center Joint prosthesis
DE3529894A1 (en) 1985-08-21 1987-03-05 Orthoplant Endoprothetik Knee-joint endoprosthesis
FR2601873A1 (en) 1986-07-25 1988-01-29 Cuilleron J Intracondylar total knee prosthesis
US4919660A (en) 1986-10-14 1990-04-24 S. N. R. Roulementsi Prosthetic knee joint with roller bearings
EP0265325A1 (en) 1986-10-14 1988-04-27 S.N.R. Roulements Knee articulation prosthesis
EP0265325B1 (en) 1986-10-14 1990-11-22 S.N.R. Roulements Knee articulation prosthesis
US4822366A (en) 1986-10-16 1989-04-18 Boehringer Mannheim Corporation Modular knee prosthesis
FR2612767A1 (en) 1987-03-23 1988-09-30 Letournel Emile Total knee prosthesis
US4865606A (en) 1987-08-13 1989-09-12 Friedrichsfeld Gmbh Keramik Und Kunststoffwerke Endoprosthesis for a knee-joint
US5194066A (en) 1988-01-11 1993-03-16 Boehringer Mannheim Corporation Modular joint prosthesis
US4923472A (en) 1988-01-22 1990-05-08 Salus S.R.L. Artificial knee-joint
US4888021A (en) 1988-02-02 1989-12-19 Joint Medical Products Corporation Knee and patellar prosthesis
US5011496A (en) 1988-02-02 1991-04-30 Joint Medical Products Corporation Prosthetic joint
WO1989006947A1 (en) 1988-02-02 1989-08-10 Joint Medical Products Corporation Prosthetic joint
FR2628316A1 (en) 1988-03-08 1989-09-15 Lebeguec Pierre Whole knee prosthesis - has one piece implanted at end of femur, other at end of tibia articulating around cross member of T=piece
US4950298A (en) 1988-04-08 1990-08-21 Gustilo Ramon B Modular knee joint prosthesis
US5037439A (en) 1988-04-11 1991-08-06 Albrektsson Bjoern Knee-joint prosthesis
US4834758A (en) 1988-05-26 1989-05-30 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Bone prosthesis for the leg and thigh
US7569054B2 (en) 1988-06-13 2009-08-04 Warsaw Orthopedic, Inc. Tubular member having a passage and opposed bone contacting extensions
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US4944757A (en) 1988-11-07 1990-07-31 Martinez David M Modulator knee prosthesis system
US4936853A (en) 1989-01-11 1990-06-26 Kirschner Medical Corporation Modular knee prosthesis
FR2641966A1 (en) 1989-01-23 1990-07-27 Implants Instr Ch Fab Device adaptable to total intracondylar prostheses of the knee
US5007933A (en) 1989-01-31 1991-04-16 Osteonics Corp. Modular knee prosthesis system
US5061271A (en) 1989-02-27 1991-10-29 Boehringer Mannheim Corporation Tool for separating components of a modular joint prosthesis
US5015255A (en) 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US4938769A (en) 1989-05-31 1990-07-03 Shaw James A Modular tibial prosthesis
US5123928A (en) 1989-07-07 1992-06-23 Eska Medical Luebeck Medizintechnik Gmbh Knee joint endoprosthesis
US5171283A (en) 1989-07-11 1992-12-15 Biomedical Engineering Trust Compound shape rotating bearing
EP0410237A1 (en) 1989-07-26 1991-01-30 Bristol-Myers Squibb Company Knee joint endoprosthesis
EP0420460A1 (en) 1989-09-27 1991-04-03 University College London Knee prosthesis
US5139521A (en) 1990-01-27 1992-08-18 Ingrid Schelhas Knee prosthesis
US5019103A (en) 1990-02-05 1991-05-28 Boehringer Mannheim Corporation Tibial wedge system
EP0472475A2 (en) 1990-07-11 1992-02-26 Gilles Bousquet Bicondylar knee prosthesis
US5116375A (en) 1990-08-27 1992-05-26 Hofmann Aaron A Knee prosthesis
US5370701A (en) 1990-09-28 1994-12-06 Arch Development Corporation Rotating/sliding contrained prosthetic knee
US5387240A (en) 1990-11-14 1995-02-07 Arch Development Corporation Floating bearing prosthetic knee
US5413607A (en) 1990-11-29 1995-05-09 Gmt Gesellschaft Fur Medizinische Technik Mbh Knee joint prosthesis
DE4102509A1 (en) 1991-01-29 1992-07-30 Peter Brehm Knee-joint prosthesis - where femur part has bearing housing with two-part plastic bearing insert in which connecting rod can pivot but not rotate
US5609639A (en) 1991-02-04 1997-03-11 Walker; Peter S. Prosthesis for knee replacement
US5358527A (en) 1991-03-22 1994-10-25 Forte Mark R Total knee prosthesis with resurfacing and posterior stabilization capability
US5800552A (en) 1991-03-22 1998-09-01 Forte; Mark R. Mechanically linked hinged total knee prosthesis
DE4110048C1 (en) 1991-03-27 1992-07-30 S + G Implants Gmbh, 2400 Luebeck, De Knee joint prosthesis with femur and tibia portions - has femur condylar shells recessed on ventral side towards shell inside
US5411555A (en) 1991-06-11 1995-05-02 Gmt Gesellschaft Fur Medizinische Technik Gmbh Knee joint prosthesis kit
US5395401A (en) 1991-06-17 1995-03-07 Bahler; Andre Prosthetic device for a complex joint
US5180383A (en) 1991-10-09 1993-01-19 Haydon Frank A Method and device for attaching artificial joint implants to the ends of bones
US5458644A (en) 1991-12-18 1995-10-17 Eska Medical Gmbh & Co. Knee joint endoprosthesis
DE69206397T2 (en) 1991-12-31 1996-08-01 Cuilleron J Total intracondylar knee prosthesis.
US5330534A (en) 1992-02-10 1994-07-19 Biomet, Inc. Knee joint prosthesis with interchangeable components
US5246459A (en) 1992-02-24 1993-09-21 Elias Sarmed G Modular tibial support pegs for the tibial component of a prosthetic knee replacement system
US5702466A (en) 1992-04-23 1997-12-30 Biomedical Engineering Trust I Rotational and translational bearing combination in biological joint replacement
US5427586A (en) 1992-05-07 1995-06-27 Ingrid Schelhas Knee-joint endoprosthesis
US5282867A (en) 1992-05-29 1994-02-01 Mikhail Michael W E Prosthetic knee joint
FR2692475A1 (en) 1992-06-19 1993-12-24 Montpellier Chirurgie Total knee replacement.
US5824102A (en) 1992-06-19 1998-10-20 Buscayret; Christian Total knee prosthesis
DE69305434T2 (en) 1992-06-23 1997-11-06 Medinov Amp S A Total sliding prosthesis for the knee
US5326368A (en) 1992-09-22 1994-07-05 Howmedica, Inc. Modular acetabular cup
FR2696926A1 (en) 1992-10-19 1994-04-22 Cuilleron J Total knee prosthesis - has axis with bearing rollers set transversely in upper end of vertical pivot, held in place by rings
EP0653194B1 (en) * 1992-10-20 1999-03-17 Fabrique D'implants Et D'instruments Chirurgicaux Societe A Responsabilite Limitee Total knee prosthesis
DE69324016T2 (en) 1992-10-20 1999-10-07 Implants & Instr Chirurg Whole knee prosthesis
US5314481A (en) 1992-11-12 1994-05-24 Wright Medical Technology, Inc. Hinged knee prosthesis with extended patellar track
US5658342A (en) 1992-11-16 1997-08-19 Arch Development Stabilized prosthetic knee
US5290313A (en) 1992-11-23 1994-03-01 Zimmer, Inc. Offset prosthetic stem extension
US5549687A (en) 1992-12-10 1996-08-27 Wright Medical Technology, Inc. Retrofit posterior stabilizing housing implant for replacement knee prosthesis
US5489307A (en) 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
US5370700A (en) 1993-02-19 1994-12-06 Sarkisian; James S. Prosthetic knee joint
US6019794A (en) 1993-03-15 2000-02-01 University College London Total knee replacement prosthesis
WO1994021198A1 (en) 1993-03-15 1994-09-29 University College London Total knee replacement prosthesis
FR2702651A1 (en) 1993-03-16 1994-09-23 Erato Knee prosthesis
FR2702651B1 (en) 1993-03-16 1995-04-28 Erato Knee prosthesis.
RU2080840C1 (en) 1993-07-08 1997-06-10 Онкологический научный центр РАМН Knee joint endoprosthesis and device for fixing it in tibia and femur
US5405398A (en) 1993-08-30 1995-04-11 Intermedics Orthopedics, Inc. Prosthetic knee with posterior stabilized femoral component
FR2711750A1 (en) 1993-10-28 1995-05-05 Fii Device for immobilising a body in a bore
US5489311A (en) 1994-01-21 1996-02-06 Joint Medical Products Corporation Prosthesis with orientable bearing surface
US5906643A (en) 1994-07-28 1999-05-25 Walker; Peter Stanley Stabilised mobile bearing knee
US6117175A (en) 1994-08-22 2000-09-12 Bosredon; Jean Spherical knee joint prosthesis
DE9414970U1 (en) 1994-09-15 1994-12-22 Diehl Klaus Prof Dr Partially coupled knee prosthesis
DE4434806A1 (en) 1994-09-29 1996-04-04 Peter Brehm Prosthesis for knee joints
US5549689A (en) 1994-11-28 1996-08-27 Epstein; Norman Prosthetic knee
US5702458A (en) 1994-12-09 1997-12-30 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Joint prosthesis
EP0716839A1 (en) 1994-12-12 1996-06-19 Biomedical Engineering Trust I Hinged knee prothesis with condylar bearing
US5824096A (en) 1994-12-12 1998-10-20 Biomedical Engineering Trust I Hinged knee prosthesis with condylar bearing
US5725580A (en) 1994-12-16 1998-03-10 Exactech, Inc. Hole caps for prosthetic implants
JPH08173464A (en) 1994-12-26 1996-07-09 Kyocera Corp Artificial knee joint
EP0724868A1 (en) 1995-01-31 1996-08-07 SULZER Medizinaltechnik AG Joint prothesis, in particular a knee prosthesis
US5776200A (en) 1995-02-15 1998-07-07 Smith & Nephew, Inc. Tibial trial prosthesis and bone preparation system
US5609643A (en) 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
US5683468A (en) 1995-03-13 1997-11-04 Pappas; Michael J. Mobile bearing total joint replacement
US5776201A (en) 1995-10-02 1998-07-07 Johnson & Johnson Professional, Inc. Modular femoral trial system
US5954770A (en) 1996-02-21 1999-09-21 Plus Endoprothetik Ag Endoprosthetic knee joint
US5755804A (en) 1996-02-21 1998-05-26 Plus Endoprothetik Ag Endoprosthetic knee joint
US5879392A (en) 1996-05-08 1999-03-09 Mcminn; Derek James Wallace Knee prosthesis
US5879394A (en) 1996-05-28 1999-03-09 Howmedica International Inc. Tibial element for a replacement knee prosthesis
EP0812582A2 (en) 1996-06-13 1997-12-17 Industrias Quirurgicas De Levante, S.A. Knee substitution prosthesis
DE69712258T2 (en) 1996-06-13 2003-03-06 Levante Ind Quirurgicas knee prosthesis
JPH1014935A (en) 1996-07-02 1998-01-20 Homuzu Giken:Kk Cover member for member buried in vivo and member to be buried in vivo
US5964808A (en) 1996-07-11 1999-10-12 Wright Medical Technology, Inc. Knee prosthesis
US6013103A (en) 1996-07-11 2000-01-11 Wright Medical Technology, Inc. Medial pivot knee prosthesis
FR2751204A1 (en) 1996-07-16 1998-01-23 Landanger Camus Sa Knee prosthesis
US6171342B1 (en) 1996-07-23 2001-01-09 Depuy Orthopaedics, Inc. Medical fastening system
US6004352A (en) 1997-01-10 1999-12-21 Sulzer Orthopaedie Ag Tibia platform for an artificial knee joint
US5766257A (en) 1997-01-28 1998-06-16 Implant Manufacturing And Testing Corporation Artificial joint having natural load transfer
FR2760352A1 (en) 1997-03-10 1998-09-11 Philippe Berret Total knee joint prosthesis
US6099571A (en) 1997-07-16 2000-08-08 Knapp; John G. Joint prosthesis
US6099570A (en) 1997-10-28 2000-08-08 Sulzer Orthopaedie Ag Knee joint prothesis
FR2771283A1 (en) 1997-11-24 1999-05-28 Implants & Instr Chirurg Tibial implant for knee prosthesis
EP0923916A1 (en) 1997-12-19 1999-06-23 Sulzer Orthopädie AG Knee joint prosthesis
DE19809041A1 (en) 1998-03-04 1999-09-09 Engelbrecht Knee joint prosthesis of support plus tibia and femur parts
DE19915053A1 (en) 1998-04-02 1999-10-07 Beguec Pierre Le Total knee prosthesis with femur and tibia joint
FR2777453A1 (en) 1998-04-20 1999-10-22 Andre Raoult Complete knee prosthesis
US6506215B1 (en) 1998-05-12 2003-01-14 Patrick Letot Synthetic knee system
US6428577B1 (en) 1998-05-20 2002-08-06 Smith & Nephew, Inc. Mobile bearing knee prosthesis
US6126692A (en) 1998-06-25 2000-10-03 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Retaining mechanism for a modular tibial component of a knee prosthesis
US6080195A (en) 1998-07-08 2000-06-27 Johnson & Johnson Professional, Inc. Rotatable and translatable joint prosthesis with posterior stabilization
US6143034A (en) 1998-07-30 2000-11-07 Sulzer Orthopedics Inc. Implantable hinged knee prosthesis having tibial baseplate
US6443991B1 (en) 1998-09-21 2002-09-03 Depuy Orthopaedics, Inc. Posterior stabilized mobile bearing knee
US6162255A (en) 1998-10-15 2000-12-19 Depuy Orthopaedics, Inc. Stem offset mechanism for joint prosthesis
US6500208B1 (en) 1998-10-16 2002-12-31 Biomet, Inc. Nonmodular joint prosthesis convertible in vivo to a modular prosthesis
US6306171B1 (en) 1998-12-09 2001-10-23 Iowa State University Research Foundation, Inc. Total elbow arthroplasty system
FR2787992A1 (en) 1999-01-04 2000-07-07 Aesculap Sa TIBIAL KNEE PROSTHESIS WITH DOUBLE INSERTED BALL JOINT
US6264696B1 (en) 1999-01-04 2001-07-24 Aesculap Tibial knee prosthesis comprising a ball joint with double inserts
US6306172B1 (en) 1999-01-28 2001-10-23 Johnson & Johnson Professional, Inc. Modular tibial insert for prosthesis system
US6361564B1 (en) 1999-02-02 2002-03-26 Aesculap Total knee joint comprising an insert movable relative to a tenon
US20030009232A1 (en) 1999-03-01 2003-01-09 Robert Metzger Floating bearing knee joint prosthesis with a fixed tibial post
US6629999B1 (en) 1999-03-08 2003-10-07 Louis A. Serafin, Jr. Modular joint
US6267763B1 (en) 1999-03-31 2001-07-31 Surgical Dynamics, Inc. Method and apparatus for spinal implant insertion
WO2000066043A1 (en) * 1999-04-28 2000-11-09 Depuy France Total knee prosthesis comprising hinge with automatic wear take-up
FR2793676A1 (en) 1999-05-18 2000-11-24 Depuy France Total knee joint prosthesis has tibial section with intramedullary nail anchored on prosthesis by locking screw
FR2793677A1 (en) 1999-05-18 2000-11-24 Depuy France Total knee prosthesis has femoral section with bone growth sleeve having length adjustment
WO2001000606A1 (en) 1999-06-29 2001-01-04 Kaneka Corporation Process for selective lactonization
US6319283B1 (en) 1999-07-02 2001-11-20 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
US6755864B1 (en) 1999-09-24 2004-06-29 Sulzer Orthopedics Ltd. Tibia part for a knee joint prosthesis and a kit with a tibia part of this kind
US6620198B2 (en) 1999-10-07 2003-09-16 Exactech, Inc. Composite bearing inserts for total knee joints
US6743258B1 (en) 1999-11-09 2004-06-01 Waldemar Link (Gmbh & Co.) Knee prosthesis system
US20010003803A1 (en) 1999-12-13 2001-06-14 Sulzer Orthopedics Ltd. Kit for a knee joint prosthesis
US6770097B2 (en) 1999-12-13 2004-08-03 Centerpulse Orthopedics Ltd. Kit for a knee joint prosthesis
EP1108403A1 (en) 1999-12-13 2001-06-20 Sulzer Orthopedics Ltd. Assembly set for a knee prosthesis
EP1132064A2 (en) 2000-03-06 2001-09-12 Louis A. Serafin Modular joint prosthesis
US6491726B2 (en) 2000-03-08 2002-12-10 Biomedical Engineering Trust I Posterior stabilized prosthetic knee replacement with bearing translation and dislocation prevention features
US20010034554A1 (en) 2000-03-08 2001-10-25 Pappas Michael J. Posterior stabilized prosthetic knee replacement with bearing translation and dislocation prevention features
US6296666B1 (en) 2000-03-13 2001-10-02 Encore Medical Corporation Mobile bearing knee with center post
DE10012059A1 (en) 2000-03-14 2001-09-27 Saint Paul Bernd Endoprosthesis for knee joint; has femur and tibia components, where femur component has curved condyle running surface, where curve axis is ventrally and medially offset from knee bending axis
US20010025199A1 (en) 2000-03-21 2001-09-27 Markus Rauscher Artificial finger joint
US6436145B1 (en) 2000-06-02 2002-08-20 Zimmer, Inc. Plug for a modular orthopaedic implant and method for assembly
US20020161448A1 (en) 2000-07-20 2002-10-31 Hayes, Jr. Daniel E. E. Bimetal tibial component construct for knee joint prosthesis
US6652588B2 (en) 2000-07-20 2003-11-25 Hayes Medical, Inc. Bimetal tibial component construct for knee joint prosthesis
US6447549B1 (en) 2000-10-06 2002-09-10 Sulzer Orthopedics Inc. Modular knee prosthesis system
US20020107576A1 (en) 2001-01-29 2002-08-08 Meyers John E. Constrained prosthetic knee with rotating bearing
US6773461B2 (en) 2001-01-29 2004-08-10 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US8268006B2 (en) 2001-01-29 2012-09-18 Zimmer, Inc. Constrained prosthetic knee with rotating bearing
US20100234962A1 (en) 2001-01-29 2010-09-16 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US6719800B2 (en) 2001-01-29 2004-04-13 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US20030009228A1 (en) 2001-01-29 2003-01-09 Meyers John E. Constrained prosthetic knee with rotating bearing
US6485519B2 (en) 2001-01-29 2002-11-26 Bristol-Myers Squibb Company Constrained prosthetic knee with rotating bearing
US20040249467A1 (en) 2001-01-29 2004-12-09 Meyers John E. Constrained prosthetic knee with rotating bearing
EP1226800A3 (en) 2001-01-29 2004-01-07 Zimmer Inc. Constrained Prosthetic knee with rotating bearing
EP1447060A3 (en) 2001-01-29 2006-03-22 Zimmer Inc. Constrained prosthetic knee with rotating bearing
US20020103541A1 (en) 2001-01-29 2002-08-01 Meyers John E. Constrained prosthetic knee with rotating bearing
EP1447060A2 (en) 2001-01-29 2004-08-18 Zimmer Inc. Constrained prosthetic knee with rotating bearing
US20080097616A1 (en) 2001-01-29 2008-04-24 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
EP1226800A2 (en) 2001-01-29 2002-07-31 Zimmer Inc. Constrained Prosthetic knee with rotating bearing
US7591855B2 (en) 2001-04-25 2009-09-22 Waldemar Link Gmbh & Co. Kg Knee prosthesis with rotation bearing
US20040186583A1 (en) 2001-04-25 2004-09-23 Arnold Keller Knee prosthesis with rotation bearing
US20040186584A1 (en) 2001-04-25 2004-09-23 Arnold Keller Knee prosthesis with a flexion hinge
US6984249B2 (en) 2001-04-25 2006-01-10 Walde Mar Link Gmbh & Co. Kg Knee prosthesis with a flexion hinge
US20040220676A1 (en) 2001-06-27 2004-11-04 Arnold Keller Coupled knee prosthesis with a rotational bearing
US20050107886A1 (en) 2001-12-21 2005-05-19 Paul Crabtree Hinged joint system
US7572292B2 (en) 2001-12-21 2009-08-11 Smith & Nephew, Inc. Hinged joint system
US20090125116A1 (en) 2001-12-21 2009-05-14 Smith & Nephew, Inc. Hinged joint system
US20030153980A1 (en) 2002-01-07 2003-08-14 Rene Brack Tibial component of a knee-joint endoprosthesis
US20040162620A1 (en) 2002-06-28 2004-08-19 Joseph Wyss Modular knee joint prosthesis
US7070622B1 (en) 2002-07-03 2006-07-04 Biomet, Inc. Prosthesis having a modular soft tissue fixation mechanism
US7232465B2 (en) 2002-07-26 2007-06-19 Waldemar Link Gmbh & Co. Kg Knee prosthesis
EP1417938A1 (en) 2002-09-04 2004-05-12 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearning
US7175665B2 (en) 2002-09-09 2007-02-13 Depuy Products, Inc. Universal tibial augment
US20040054416A1 (en) 2002-09-12 2004-03-18 Joe Wyss Posterior stabilized knee with varus-valgus constraint
US20050192672A1 (en) 2002-09-12 2005-09-01 Joe Wyss Posterior stabilized knee with varus-valgus constraint
US7326252B2 (en) 2002-12-20 2008-02-05 Smith & Nephew, Inc. High performance knee prostheses
US20100042224A1 (en) 2002-12-20 2010-02-18 Smith & Nephew, Inc. High performance knee prostheses
US7753960B2 (en) 2004-02-26 2010-07-13 Omni Life Science, Inc. Modular knee prosthesis
US20050246028A1 (en) 2004-04-28 2005-11-03 Buechel-Pappas Trust Prosthetic knee
US7172628B2 (en) 2004-07-27 2007-02-06 Lonnie Jay Lamprich Spinal disc prosthesis and methods
US20090024221A1 (en) 2004-10-29 2009-01-22 Ball Robert J Modular total elbow prosthesis, humeral component and associated kit
US20080255671A1 (en) 2005-02-21 2008-10-16 Hans Rudolf Kriek Joint Devices
US7357817B2 (en) 2005-05-19 2008-04-15 Howmedica Osteonics Corp. Modular keel tibial component
US20070100463A1 (en) 2005-10-31 2007-05-03 Aram Luke J Modular fixed and mobile bearing prosthesis system
US20080004708A1 (en) 2006-06-30 2008-01-03 Wyss Joseph G Hinged orthopaedic prosthesis
US7658767B2 (en) 2006-06-30 2010-02-09 Depuy Products, Inc. Hinged orthopaedic prosthesis
US20080167722A1 (en) 2007-01-10 2008-07-10 Biomet Manufacturing Corp. Knee Joint Prosthesis System and Method for Implantation
US20090299482A1 (en) 2007-01-10 2009-12-03 Biomet Manufacturing Corp. Knee Joint Prosthesis System and Method for Implantation
US20090082873A1 (en) 2007-09-25 2009-03-26 Hazebrouck Stephen A Fixed-bearing knee prosthesis
US20100063594A1 (en) 2007-09-28 2010-03-11 Hazebrouck Stephen A Fixed-bearing knee prosthesis having interchangeable components
US20090088860A1 (en) 2007-09-30 2009-04-02 Romeis Kristen L Hinged orthopaedic prosthesis
US20090149964A1 (en) 2007-10-10 2009-06-11 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US7871442B2 (en) 2007-11-30 2011-01-18 Howmedica Osteonics Corp. Knee prosthesis with four degrees freedom
US20090326666A1 (en) 2008-06-30 2009-12-31 Wyss Joseph G Posterior stabilized orthopaedic prosthesis
US20090326665A1 (en) 2008-06-30 2009-12-31 Wyss Joseph G Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US20100016978A1 (en) 2008-07-16 2010-01-21 Depuy Products, Inc. Antero-posterior placement of axis of rotation for a rotating platform
US20100016980A1 (en) 2008-07-18 2010-01-21 Zimmer Gmbh Base component for a tibial implant
US20100100189A1 (en) 2008-10-17 2010-04-22 Biomet Manufacturing Corp. High flexion tibial tray
JP5241775B2 (en) 2010-06-11 2013-07-17 住友ゴム工業株式会社 Rubber composition and paper feed roller

Non-Patent Citations (44)

* Cited by examiner, † Cited by third party
Title
"European Application Serial No. 03255512.0, European Search Report mailed Dec. 5, 2004", 19 pgs.
"European Application Serial No. 04012041.2, European Search Report mailed Mar. 22, 2006", 24 pgs.
"European Application Serial No. 10012582.2, Amendment filed Sep. 30, 2010".
"European Application Serial No. 10012582.2, Response filed May 12, 2011 to Search Opinion mailed Dec. 20, 2010".
"U.S. Appl. No. 12/776,218, Final Office Action mailed Apr. 24, 2012", 9 pgs.
"U.S. Appl. No. 12/776,221, Final Office Action mailed Apr. 12, 2012", 5 pgs.
"U.S. Appl. No. 12/776,221, Response filed Apr. 4, 2011 to Non Final Office Action mailed Nov. 19, 2010", 14 pgs.
"U.S. Appl. No. 12/776,221, Response filed Mar. 28, 2012 to Non Final Office Action mailed Oct. 28, 2011", 15 pgs.
"U.S. Appl. No. 12/790,181, 312 Amendment filed Oct. 19, 2011", 13 pgs.
"U.S. Appl. No. 12/790,181, Notice of Allowance mailed May 9, 2012", 7 pgs.
"U.S. Appl. No. 12/790,181, Preliminary Amendment filed Apr. 26, 2012", 13 pgs.
"U.S. Appl. No. 12/790,181, Preliminary Amendment filed Jul. 15, 2011", 12 pgs.
"U.S. Appl. No. 12/790,181, PTO Response to 312 Amendment mailed Oct. 31, 2011", 2 pgs.
European office action mailed Nov. 2, 2010 in European Patent Application No. 02250512.7.
European Search Report completed Dec. 10, 2010 in European Patent Application No. 10012582.2.
European Search Report completed Dec. 13, 2010 in European Patent Application No. 10012581.4.
Machine generated translation of DE 2 154 338 (published on May 17, 1973). *
The Amendment filed Apr. 3, 2007 in U.S. Appl. No. 10/805,056.
The Amendment filed Apr. 4, 2011 in U.S. Appl. No. 12/776,218.
The Amendment filed Apr. 4, 2011 in U.S. Appl. No. 12/776,221.
The Amendment filed Apr. 4, 2011 in U.S. Appl. No. 12/790,181.
The Amendment filed Aug. 18, 2011 in U.S. Appl. No. 12/776,218.
The Amendment filed Jul. 25, 2003 in U.S. Appl. No. 10/001,000.
The Amendment filed Mar. 7, 2012 in U.S. Appl. No. 12/776,218.
The Amendment filed May 28, 2002 in U.S. Appl. No. 09/771,061.
The Amendment filed Oct. 18, 2011 in U.S. Appl. No. 12/776,221.
The Canadian Office Action mailed Mar. 2, 2009 in related Canadian Application No. 2,367,652.
The European Office Action mailed Jul. 3, 2007 in related European Application No. EP04012041.2.
The European Office Action mailed Sep. 26, 2007 in related European Application No. EP03255512.0.
The European Search Report issued Feb. 3, 2006 in related European Application No. EP04012041.2.
The Office Action mailed Apr. 18, 2011 in U.S. Appl. No. 12/776,218.
The Office Action mailed Apr. 18, 2011 in U.S. Appl. No. 12/776,221.
The Office Action mailed Dec. 1, 2009 in U.S. Appl. No. 11/956,998.
The Office Action mailed Dec. 11, 2009 in U.S. Appl. No. 11/956,998.
The Office Action mailed Dec. 2, 2010 in U.S. Appl. No. 12/776,218.
The Office Action mailed Feb. 28, 2002 in U.S. Appl. No. 09/771,061.
The Office Action mailed Jan. 3, 2007 in related Application No. 10/805,056.
The Office Action mailed Jun. 15, 2007 in U.S. Appl. No. 10/805,056.
The Office Action mailed Mar. 3, 2011 in U.S. Appl. No. 12/790,181.
The Office Action mailed May 2, 2003 in U.S. Appl. No. 10/001,000.
The Office Action mailed Nov. 19, 2010 in U.S. Appl. No. 12/776,221.
The Office Action mailed Oct. 28, 2011 in U.S. Appl. No. 12/776,221.
The Office Action mailed Sep. 8, 2011 in U.S. Appl. No. 12/776,218.
The Response filed Sep. 2, 2009 to the Canadian Office Action mailed Mar. 2, 2009 in related Canadian Application No. 2,367,652.

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120330430A1 (en) * 2001-01-29 2012-12-27 Meyers John E Constrained prosthetic knee with rotating bearing
US8888857B2 (en) * 2001-01-29 2014-11-18 Zimmer, Inc. Constrained prosthetic knee with rotating bearing
US9833323B2 (en) * 2009-07-10 2017-12-05 Aesculap Ag Knee joint prosthesis and related method
US9999512B2 (en) 2009-07-10 2018-06-19 Aesculap Ag Knee joint prosthesis and related method
US20120136452A1 (en) * 2009-07-10 2012-05-31 Medizinische Hochschule Hannover Knee joint prosthesis and related method
US11224519B2 (en) 2010-07-24 2022-01-18 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
US11471288B2 (en) 2010-09-10 2022-10-18 Zimmer, Inc. Motion facilitating tibial components for a knee prosthesis
US10898337B2 (en) 2011-11-18 2021-01-26 Zimmer, Inc. Tibial bearing component for a knee prosthesis with improved articular characteristics
US11324598B2 (en) 2013-08-30 2022-05-10 Zimmer, Inc. Method for optimizing implant designs
US10470888B2 (en) * 2015-03-05 2019-11-12 Corentec Co., Ltd. Insert unit for artificial knee joint
US20180049880A1 (en) * 2015-03-05 2018-02-22 Corentec Co., Ltd. Insert unit for artificial knee joint
US11160659B2 (en) 2015-09-21 2021-11-02 Zimmer, Inc. Prosthesis system including tibial bearing component
US20200237518A1 (en) * 2017-03-10 2020-07-30 Zimmer, Inc. Tibial prosthesis with tibial bearing component securing feature
US10675153B2 (en) * 2017-03-10 2020-06-09 Zimmer, Inc. Tibial prosthesis with tibial bearing component securing feature
US20180256346A1 (en) * 2017-03-10 2018-09-13 Brian D. Byrd Tibial prosthesis with tibial bearing component securing feature
US11547571B2 (en) * 2017-03-10 2023-01-10 Zimmer, Inc. Tibial prosthesis with tibial bearing component securing feature
US11324599B2 (en) 2017-05-12 2022-05-10 Zimmer, Inc. Femoral prostheses with upsizing and downsizing capabilities
US11426282B2 (en) 2017-11-16 2022-08-30 Zimmer, Inc. Implants for adding joint inclination to a knee arthroplasty
US10835380B2 (en) 2018-04-30 2020-11-17 Zimmer, Inc. Posterior stabilized prosthesis system
US11911279B2 (en) 2018-04-30 2024-02-27 Zimmer, Inc. Posterior stabilized prosthesis system

Also Published As

Publication number Publication date
EP1226800A3 (en) 2004-01-07
EP2272469A3 (en) 2011-01-19
EP2272468B1 (en) 2012-05-09
EP1447060A2 (en) 2004-08-18
AU1196502A (en) 2002-08-01
EP2272468A3 (en) 2011-01-19
EP2272469B1 (en) 2015-07-01
EP1447060B1 (en) 2013-11-06
EP1226800B1 (en) 2014-07-02
EP2272468A2 (en) 2011-01-12
EP1226800A2 (en) 2002-07-31
EP1447060A3 (en) 2006-03-22
AU780963B2 (en) 2005-04-28
CA2367652C (en) 2010-09-14
JP2002253586A (en) 2002-09-10
CA2367652A1 (en) 2002-07-29
EP2272469A2 (en) 2011-01-12
JP4205346B2 (en) 2009-01-07
US6485519B2 (en) 2002-11-26
US20020103541A1 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
USRE44476E1 (en) Constrained prosthetic knee with rotating bearing
US6773461B2 (en) Constrained prosthetic knee with rotating bearing
US6719800B2 (en) Constrained prosthetic knee with rotating bearing
US5147406A (en) Femoral component for a knee joint prosthesis having a modular cam and stem
EP0850606B1 (en) Modular joint prosthesis stabilization and augmentation system
US5181925A (en) Femoral component for a knee joint prosthesis having a modular cam and stem
US5824103A (en) Tibial prosthesis
US5658344A (en) Tibial insert reinforcement pin
US6206926B1 (en) Prosthetic knee joint with enhanced posterior stabilization and dislocation prevention features
US10130481B2 (en) Patellar ligament spacer for ACL injuries
US6413279B1 (en) Floating bearing knee joint prosthesis with a fixed tibial post
EP1064889B1 (en) Tibial knee component with a mobile bearing
EP0916321B1 (en) Prosthetic knee joint with enhanced posterior stabilization and dislocation prevention features

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12