USRE44407E1 - Space transformers employing wire bonds for interconnections with fine pitch contacts - Google Patents

Space transformers employing wire bonds for interconnections with fine pitch contacts Download PDF

Info

Publication number
USRE44407E1
USRE44407E1 US12/646,661 US64666109A USRE44407E US RE44407 E1 USRE44407 E1 US RE44407E1 US 64666109 A US64666109 A US 64666109A US RE44407 E USRE44407 E US RE44407E
Authority
US
United States
Prior art keywords
contacts
shelf
pitch contacts
fine pitch
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/646,661
Inventor
January Kister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FormFactor Inc
MicroProbe Inc
Original Assignee
FormFactor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FormFactor Inc filed Critical FormFactor Inc
Priority to US12/646,661 priority Critical patent/USRE44407E1/en
Assigned to MICROPROBE, INC. reassignment MICROPROBE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KISTER, JANUARY
Application granted granted Critical
Publication of USRE44407E1 publication Critical patent/USRE44407E1/en
Assigned to HSBC BANK USA, NATIONAL ASSOCIATION reassignment HSBC BANK USA, NATIONAL ASSOCIATION SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS Assignors: Astria Semiconductor Holdings, Inc., CASCADE MICROTECH, INC., FORMFACTOR, INC., MICRO-PROBE INCORPORATED
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07357Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with flexible bodies, e.g. buckling beams

Definitions

  • This invention relates generally to apparatus and method using wire bonds for making electrical connections between low pitch signal contacts and fine pitch contacts to probes used for applying test signals to a device under test.
  • DUTs devices under test
  • chips are getting smaller and they have more tightly spaced contact pads.
  • the pads are no longer located about the circuit perimeter, but in some designs may be found within the area occupied by the circuit itself.
  • the spacing or pitch of probe arrays required to establish electrical contact with the pads or bumps is decreasing.
  • the requirements on planarity are increasing.
  • this probe structure can only address a limited number of pads and is thus only suitable for devices with a small number of pads located along the die perimeter. Devices that have a large number of fine pitch pads located along the perimeter or arranged in an array cannot be tested with such probe structure.
  • probe cards employing such space transformers can be made cheaply and relatively quickly, they experience unacceptably high levels of electrical cross-talk and self-inductance with an upper bound on test frequency of about 0.9 GHz at a 3 dB bandwidth. Furthermore, such probe cards can only be made with up to about 1,500 connections, since the wiring process becomes too cumbersome at higher connection counts.
  • Some probe cards avoid the use of wires and employ instead a space transformer made of an organic substrate (e.g., MLC or MLD) with solder reflow connections to a connection board (typically a printed circuit board to which the test signals are applied).
  • a space transformer made of an organic substrate (e.g., MLC or MLD) with solder reflow connections to a connection board (typically a printed circuit board to which the test signals are applied).
  • Such probe cards exhibit much improved high frequency performance, typically up to 3 GHz at a 3 dB bandwidth, but are hard to make and require expensive lithographic processing.
  • the object of the invention is to provide a low-cost method and apparatus for electrically testing devices under test (DUTs) that have densely spaced arrays of contact pads or bumps. More precisely, the object is to provide such apparatus with a space transformer that takes advantage of low-cost wire bonding for interconnections with the fine pitch contacts.
  • the apparatus has a connection board that has signal contacts for applying test signals and a space transformer with intermediate contacts connected to the signal contacts.
  • the space transformer has low pitch contacts that are connected to the intermediate contacts.
  • the low pitch contacts are arranged on one or more circumferential shelves that define an enclosure.
  • a substrate with fine pitch contacts is positioned such that the fine pitch contacts are within the enclosure.
  • a set of wire bonds is used for pitch reduction by interconnecting the fine pitch contacts with the low pitch contacts on the shelves by any suitable wire bonding or wedge bonding including ribbon bonding for power/ground technique.
  • the probes are connected to the fine pitch contacts and are used to apply the test signals to a DUT by contacting its pads.
  • the fine pitch contacts are made of contact plugs that are lodged or secured by epoxy in corresponding vias made in the substrate.
  • the vias can be etched or laser machined, depending on the material of which the substrate is made.
  • the plugs are preferably mico-electro machined, i.e., they are MEMs plugs.
  • the substrate itself can be made of any suitable material including ceramics, organics such as MLC or MLD, or, preferably Al 2 O 3 .
  • the space transformer has a lower circumferential shelf bearing a lower set of low pitch contacts and at least one upper circumferential shelf bearing an upper set of the low pitch contacts.
  • the one or more upper circumferential shelves are recessed or inset from the lower circumferential shelf.
  • the lower set of low pitch contact arranged on the lower shelf usually includes a ground contact.
  • the wire bonds are made between the lower set of low pitch contacts and the fine pitch contacts and also between the upper set of low pitch contacts and the fine pitch contacts.
  • the wire bonds include a short set of wire bonds interconnecting a set of the fine pitch contacts proximal the lower shelf with the lower set of low pitch contacts arranged on the lower shelf. Since this set contains the shortest wire bonds it is preferable that the ground contact be included in this set, as mentioned above.
  • the wire bonds further include a long set of wire bonds interconnecting a set of the fine pitch contacts remote from the lower shelf with the upper set of low pitch contacts arranged on the one or more upper shelves. It is preferable for high-frequency operation that the longest wire bonds in the long set of wire bonds be at most a few millimeters in length.
  • the enclosure is preferably filled with a dielectric material. This is done after all the wire bonds have been made in order to ensure stability and insulation.
  • the step down or pitch reduction from the intermediate contacts to the fine pitch contacts is preferably about ten to one.
  • the intermediate contacts are at a pitch of about 1 mm and the fine pitch contacts are at a pitch of about 0.1 mm or 100 ⁇ m.
  • the apparatus of the invention is preferably employed in a probe card for testing a DUT by delivering the test signals to the pads of the DUT when the pads are contacted by the probes.
  • the DUT is typically an integrated circuit.
  • the method of invention for electrically testing the DUT includes the steps of providing the connection board with signal contacts and providing the space transformer.
  • the space transformer has intermediate contacts and low pitch contacts connected to the intermediate contacts.
  • the low pitch contacts are arranged on one or more circumferential shelves that define the enclosure, and the signal contacts are connected to the intermediate contacts.
  • a substrate with fine pitch contacts is provided and positioned such that the fine pitch contacts are within the enclosure.
  • the fine pitch contacts are interconnected with the low pitch contacts by a set of wire bonds and the probes are connected to the fine pitch contacts. Then, the test signals are applied to the signal contacts and the probes are contacted with the pads of the DUT for performing the electrical test.
  • the fine pitch contacts are made by producing vias in the substrate and lodging contact plugs in the vias.
  • the vias can be laser machined and the plugs can be made by a micro-electro machining technique.
  • the space transformer has a lower circumferential shelf bearing a lower set of low pitch contacts and one or more upper circumferential shelves bearing an upper set of low pitch contacts.
  • the one or more upper circumferential shelves are recessed or inset from the lower circumferential shelf, and a set of fine pitch contacts proximal the lower shelf is interconnected with the lower set of low pitch contacts by a short set of wire bonds.
  • a set of fine pitch contacts remote from the lower shelf is interconnected with the upper set of the low pitch contacts by a long set of wire bonds.
  • FIG. 1 is a partial three-dimensional diagram illustrating an apparatus of the invention.
  • FIG. 2 is cross-sectional side view of a portion of the apparatus of FIG. 1 .
  • FIG. 3 is a side cross-sectional view of an assembled apparatus according to the invention.
  • FIG. 4 is a cross-sectional side view of a portion of another apparatus according to the invention.
  • FIG. 5 is a top plan view illustrating interconnections in a space transformer according to the invention.
  • Apparatus 10 has a space transformer 12 with intermediate contacts 14 located on a ledge 16 .
  • Space transformer also has low pitch contacts 18 that are arranged on a lower circumferential shelf 20 and an upper circumferential shelf 22 .
  • a lower set 18 A of low pitch contacts 18 is located on lower circumferential shelf 20 and an upper set 18 B of low pitch contacts 18 is located on upper circumferential shelf 22 .
  • upper shelf 22 is recessed or inset from lower shelf 20 to enable easy access by wire bonding equipment to low pitch contacts 18 on both shelves.
  • Ledge 16 and shelves 20 , 22 extend circumferentially (only partially shown in FIG. 1 ) to define a structure 24 that has an internal enclosure 26 .
  • Any suitable, mechanically stable dielectric material or materials can be used to construct structure 24 that includes ledge 16 and shelves 20 , 22 .
  • structure 24 can be made layer-by-layer, thus defining lower shelf 20 first, then upper shelf 22 and finally ledge 16 .
  • embedded electrical connections 28 are made to connect intermediate contacts 14 with corresponding low pitch contacts 18 .
  • Space transformer 12 has a substrate 30 with a number of fine pitch contacts 32 .
  • Substrate 30 is positioned below structure 24 such that fine pitch contacts 32 are within enclosure 26 .
  • Substrate 30 can be permanently attached to structure 24 by any suitable bonding method. It should be noted that in some embodiments it is useful when structure 24 is removable. For example, this is of value when substrate 30 is a mini printed circuit board and the contacts 32 are blind metal vias.
  • a set of wire bonds 34 is used for pitch reduction by interconnecting fine pitch contacts 32 with low pitch contacts 18 on shelves 20 , 22 .
  • Wire bonding is a technique well known in the art and typically involves one of the following three major techniques: thermocompression bonding, ultrasonic bonding, and thermosonic bonding.
  • ultrasonic bonding will be preferred for Aluminum wire bonding
  • thermosonic bonding will be preferred for Au wire bonding.
  • the maximum length of any particular wire bond 34 should not exceed a few millimeters and preferably be at most 5 millimeters.
  • the specific techniques for bonding to low pitch contacts 18 include wire bonding or wedge bonding, including ribbon bonding used for power/ground technique.
  • fine pitch contacts 32 are made of contact plugs 36 that are lodged or secured by epoxide in corresponding vias 38 in substrate 30 .
  • Vias 38 can be etched or laser machined, depending on the material of which substrate 30 is made.
  • substrate 30 can be made of a ceramic or an organic such as MLC or MLD in which case the “plugs” equivalent would be electroplated vias. In this case there would be no need for MEMS plugs and epoxide.
  • substrate 30 is made of Al 2 O 3 so that it lends itself well to laser machining, which is the preferred technique due to its high accuracy and speed.
  • Plugs 36 are preferably mico-electro machined, i.e., they are MEMs plugs made of a nickel and cobalt alloy plated with gold.
  • vias 38 are filled with metal and thus themselves constitute fine pitch contacts 32 .
  • vias 38 are blind metal vias and serve as fine pitch contacts 32 .
  • probes 40 are connected to fine pitch contacts 32 .
  • probes 40 are connected to the bottoms of plugs 36 or blind metal vias 38 , depending on the embodiment.
  • probes 40 are non-linear, it will be appreciated by one skilled in the art that they can be of any variety, including buckling beam probes.
  • probes 40 can be held together in any suitable mechanical retention device or be otherwise configured in a suitable head unit. Such head unit can be removable or permanently attached to space transformer 12 , depending on application.
  • connection board 42 with signal contacts 44 .
  • connection board 42 is a printed circuit board (PCB) with appropriate primary contacts 46 for applying test signals 48 .
  • Primary contacts 46 are electrically connected to corresponding signal contacts 44 for delivering test signals 48 .
  • Test signals 48 are usually generated by a testing circuit (not shown) and applied to primary contacts 46 with the aid of spring pins or other suitable mechanism.
  • Intermediate contacts 14 of space transformer 12 are connected to signal contacts 44 . In the present embodiment, this is accomplished with solder reflow junctions 50 .
  • primary contacts 46 are in electrical communication with corresponding low pitch contacts 18 on shelves 20 , 22 . More specifically, lower set of low pitch contacts 18 A arranged on lower circumferential shelf 20 and upper set of low pitch contacts 18 B arranged on upper circumferential shelf 22 are in electrical communication with primary contacts 46 via signal contacts 44 , intermediate contacts 14 and embedded electrical connections 28 . Therefore, test signals 48 can be delivered directly to the appropriate low pitch contacts 18 of space transformer 12 .
  • Wire bonds 34 between lower set of low pitch contacts 18 A and fine pitch contacts 32 and also between the upper set of low pitch contacts 18 B and fine pitch contacts 32 are made in accordance with a certain scheme.
  • wire bonds 34 include a short set of wire bonds 34 A interconnecting a set of fine pitch contacts 32 A proximal lower shelf 20 with lower set of low pitch contacts 18 A arranged on lower shelf 20 . Since this set contains the shortest wire bonds it is preferable that the ground contact be included in this set.
  • Wire bonds 34 further include a long set of wire bonds 34 B interconnecting a set of the fine pitch contacts 32 B remote from lower shelf 20 with upper set of low pitch contacts 18 B arranged on upper shelf 22 . It is preferable for high-frequency operation that the longest wire bonds in long set of wire bonds 32 B be at most 5 millimeters in length. This is done in order to reduce cross-talk between wire bonds 34 and self-inductance to permit the application of high frequency test signals 48 , e.g., test signals in the range of several GHz.
  • test signals 48 e.g., test signals in the range of several GHz.
  • reference ⁇ denotes the pitch of intermediate contacts 14 and reference ⁇ denotes the pitch of fine pitch contacts 32 .
  • the step down or pitch reduction from pitch ⁇ of intermediate contacts 14 to pitch ⁇ of fine pitch contacts 32 is preferably about ten to one.
  • is on the order of about 1 mm and ⁇ is on the order of about 0.1 mm or 100 ⁇ m.
  • the pitch is as small as 35 ⁇ m today.
  • the minimum pitch is about 140 ⁇ m today.
  • FIG. 3 is a cross-sectional side view of a fully assembled apparatus 10 .
  • space transformer 12 has its enclosure 26 filled with a dielectric material 52 .
  • This is done after all wire bonds 34 have been made in order to ensure stability and insulation.
  • the wires used in bonds 34 can be already insulated, e.g., with a non-conductive ink or by other means, thus making the presence of material 52 unnecessary.
  • non-insulated wires can also be used, and in this case material 52 must be used to avoid shorts.
  • Material 52 also provides mechanical stability to space transformer 12 and apparatus 10 as a whole. This is especially important, to sustain the aggregate forces acting on probes 40 and apparatus 10 during normal operation due to the deflection of probes 40 .
  • Such forces can be quite large—for example, with 2000 probes 40 each exerting 10 grams of force the total force pushing on the assembly of apparatus 10 is about 20 kg. It should be noted that at the present time, as many as 5,000 probes 40 can be used in one apparatus 10 .
  • Apparatus 10 is used for electrical testing of a device under test (DUT) 54 .
  • DUT 54 has a number of pads or bumps 56 , which have to be contacted by probes 40 to apply test signals 48 thereto and thus conduct the test.
  • Apparatus 10 is preferably employed in a probe card for testing integrated circuits with high-frequency test signals 48 .
  • DUT 54 is an integrated circuit on a wafer that requires testing prior to dicing.
  • DUT 54 is an electronic device or circuit that is already mounted and whose functionality needs to be verified by applying test signals 48 to a number of its bumps or pads 56 .
  • FIG. 4 is a cross-sectional side view of a portion of an apparatus 100 according to the invention.
  • Apparatus 100 employs a space transformer 102 with a structure 104 that has three circumferential shelves 106 , 108 , 110 bearing low pitch contacts 112 .
  • a ledge 114 of structure 104 bears connection intermediate contacts 116 that are connected to corresponding low pitch contacts 112 .
  • a connection board 118 with signal contacts 120 that are reflow soldered to intermediate contacts 116 is used to deliver test signals to low pitch contacts 112 .
  • Space transformer 102 employs a mini printed circuit board 122 as a substrate.
  • Board 122 is attached to structure 104 as shown and positioned such that its set of fine pitch contacts 124 is contained within an enclosure 126 defined by shelves 106 , 108 , 110 .
  • Board 122 has a set of blind metal vias 128 that serve as fine pitch contacts.
  • a set of wire bonds 130 interconnects fine pitch contacts 124 or the tops of blind vias 128 with low pitch contacts 112 .
  • any suitable wire bonding technique can be employed to accomplish this connection.
  • the probes (not shown) are attached to the bottoms of vias 128 .
  • wire bonds 130 it is preferable to keep the lengths of wire bonds 130 as short as possible, and most preferably under 5 mm. This limitation places the toughest restrictions on wire bonds 130 interconnecting low pitch contacts 112 from top shelf 110 and vias 128 that are remote from bottom shelf 106 . In addition, in this embodiment it is essential to use insulated wire for wire bonds 130 to further counteract any possibility of shorts.
  • a dielectric material 132 is used for potting wire bonds 130 .
  • the potting is performed sequentially by first interconnecting and potting the shortest wire bonds 130 between lowest shelf 106 and vias 128 closest to structure 104 . Then repeating the process for the second shelf 108 wire bonds and finally for third shelf 110 wire bonds.
  • a space transformer 140 has a structure 142 with three circumferential shelves 144 , 146 , 148 .
  • Low pitch contacts 150 are staggered with respect to each other and with respect to fine pitch contacts 152 .
  • interconnections performed with wire bonds 154 are non-overlapping because the wires from different shelves 144 , 146 , 148 tend to fall in-between each other.
  • appropriate potting can be employed in this embodiment to further aid in accommodating more shelves and making more secure over-arching wire bonds 154 .

Abstract

Method and apparatus for electrical testing of a device under test (DUT) that employs a connection board with signal contacts for applying test signals and a space transformer that has low pitch contacts arranged on one or more circumferential shelves that define an enclosure in the space transformer. The apparatus has a substrate with fine pitch contacts positioned such that these are within the enclosure. A set of wire bonds is used for pitch reduction by interconnecting the fine pitch contacts with the low pitch contacts arranged on the shelves. The probes are connected to the fine pitch contacts and are used to apply the test signals to a DUT by contacting its pads. In some embodiments, the fine pitch contacts may be embodied by plugs or by blind metal vias.

Description

FIELD OF THE INVENTION
This invention relates generally to apparatus and method using wire bonds for making electrical connections between low pitch signal contacts and fine pitch contacts to probes used for applying test signals to a device under test.
BACKGROUND ART
The testing of semiconductor wafers and other types of integrated circuits (ICs), collectively known as devices under test (DUTs), needs to keep pace with technological advances. Each IC has to be individually tested, typically before dicing, in order to ensure that it is functioning properly. The demand for testing products is driven by considerations of new chip designs and higher volumes.
In particular, chips are getting smaller and they have more tightly spaced contact pads. The pads are no longer located about the circuit perimeter, but in some designs may be found within the area occupied by the circuit itself. As a result, the spacing or pitch of probe arrays required to establish electrical contact with the pads or bumps is decreasing. In addition, the requirements on planarity are increasing.
To address the increasingly fine pitch of the pads, several prior art solutions have resorted to using more effective space transformers for achieving pitch reduction and improved probe performance. Several examples of recent space transformers for probe contact assemblies are found in the patent literature, including U.S. Pat. Nos. 6,676,438 and 6,917,102 to Zhou et al. These teachings include several contact structures and production methods, including an embodiment using the flip-chip bonding process to attach the space transformer. Still other prior art, such as U.S. application Ser. No. 2006/0033516 to Rincon et al. teaches a probe and universal tester contact assemblage that is capable of testing multiple chips. This assemblage employs a wire bond between the end of a trace that is connected to a probe and a fan-out trace that belongs to an intermediate element or interposer made of a dielectric material to step up from low pitch contacts to fine pitch contacts.
In addition to the finer pitch of the pads to be tested, there has also been a move to increase the test signal frequencies. Some prior art probe devices address the coupling and noise problems arising at such higher frequencies. For example, U.S. Pat. No. 6,714,034 discusses the inclusion of an inductive (magnetic) filter to suppress AC noise on the DUT ground and U.S. application Ser. No. 2005/0012513 to Cheng et al. teaches a probe card assembly with a stiffener ring and a set of coaxial transmitters. Furthermore, U.S. application Ser. No. 2005/0099191 talks about the design of a multi-GHz probe structure for optimizing the signal path to improve bandwidth. Unfortunately, this probe structure can only address a limited number of pads and is thus only suitable for devices with a small number of pads located along the die perimeter. Devices that have a large number of fine pitch pads located along the perimeter or arranged in an array cannot be tested with such probe structure.
Clearly, as more complicated arrays of pads having a fine pitch are to be tested at high frequencies the prior art space transformers and high-frequency handling can not be integrated to produce suitable solutions. In particular, the high-frequency performance of typical wired space transformers that employ via holes and copper wires that use heads equipped with buckling beam or similar probes is insufficient. Even though probe cards employing such space transformers can be made cheaply and relatively quickly, they experience unacceptably high levels of electrical cross-talk and self-inductance with an upper bound on test frequency of about 0.9 GHz at a 3 dB bandwidth. Furthermore, such probe cards can only be made with up to about 1,500 connections, since the wiring process becomes too cumbersome at higher connection counts.
Some probe cards avoid the use of wires and employ instead a space transformer made of an organic substrate (e.g., MLC or MLD) with solder reflow connections to a connection board (typically a printed circuit board to which the test signals are applied). Such probe cards exhibit much improved high frequency performance, typically up to 3 GHz at a 3 dB bandwidth, but are hard to make and require expensive lithographic processing.
Employing wire bonding techniques and wire bonds is in general a very low-cost and mature method of making electrical connections and is used in various related contexts including interposers, probes and space transformers. For example, U.S. application Ser. No. 2002/0125584 discusses using wire bonding to ensure high bond strength between the bonding pads and conducting wires when wire-bonding chips to carriers. Specifically, the weak bonding strength problem is solved by designating a separate section of the IC pad for probing and a separate section for wire-bonding. U.S. application Ser. No. 2002/0194730 teaches how to repair probes mounted on a space transformer that were shaped and made using wire-bonding. U.S. application Ser. No. 2003/0116346 shows how to use a wire-bonding machine to make stud-bumped probes.
Although the prior art solutions individually address some of the problems associated with pitch step up and reliable connections, there is no apparatus or method that combines the requisite characteristics in a single space transformer that can be used in a probe card or testing apparatus. Specifically, what is needed is a space transformer that is compatible with high frequency test signals, easy to make, low cost and can address densely packed pads or bumps arranged in arrays.
OBJECTS AND ADVANTAGES
In view of the above prior art limitations, it is an object of the invention to provide a low-cost method and apparatus for electrically testing devices under test (DUTs) that have densely spaced arrays of contact pads or bumps. More precisely, the object is to provide such apparatus with a space transformer that takes advantage of low-cost wire bonding for interconnections with the fine pitch contacts.
It is another object of the invention, to ensure that the space transformer is capable of handling high-frequency test signals.
It is still another object of the invention to ensure that the method and apparatus can be easily integrated with any conventional head designs to take advantage of any available probe geometry.
These and other objects and advantages of the invention will become apparent from the ensuing description.
SUMMARY OF THE INVENTION
The objects and advantages of the invention are secured by a method and an apparatus for electrical testing of a device under test (DUT). The apparatus has a connection board that has signal contacts for applying test signals and a space transformer with intermediate contacts connected to the signal contacts. The space transformer has low pitch contacts that are connected to the intermediate contacts. The low pitch contacts are arranged on one or more circumferential shelves that define an enclosure. A substrate with fine pitch contacts is positioned such that the fine pitch contacts are within the enclosure. A set of wire bonds is used for pitch reduction by interconnecting the fine pitch contacts with the low pitch contacts on the shelves by any suitable wire bonding or wedge bonding including ribbon bonding for power/ground technique. The probes are connected to the fine pitch contacts and are used to apply the test signals to a DUT by contacting its pads.
In a preferred embodiment, the fine pitch contacts are made of contact plugs that are lodged or secured by epoxy in corresponding vias made in the substrate. The vias can be etched or laser machined, depending on the material of which the substrate is made. The plugs are preferably mico-electro machined, i.e., they are MEMs plugs. The substrate itself, can be made of any suitable material including ceramics, organics such as MLC or MLD, or, preferably Al2O3.
The space transformer has a lower circumferential shelf bearing a lower set of low pitch contacts and at least one upper circumferential shelf bearing an upper set of the low pitch contacts. In accordance with the invention, the one or more upper circumferential shelves are recessed or inset from the lower circumferential shelf. The lower set of low pitch contact arranged on the lower shelf usually includes a ground contact.
The wire bonds are made between the lower set of low pitch contacts and the fine pitch contacts and also between the upper set of low pitch contacts and the fine pitch contacts. In particular, the wire bonds include a short set of wire bonds interconnecting a set of the fine pitch contacts proximal the lower shelf with the lower set of low pitch contacts arranged on the lower shelf. Since this set contains the shortest wire bonds it is preferable that the ground contact be included in this set, as mentioned above. The wire bonds further include a long set of wire bonds interconnecting a set of the fine pitch contacts remote from the lower shelf with the upper set of low pitch contacts arranged on the one or more upper shelves. It is preferable for high-frequency operation that the longest wire bonds in the long set of wire bonds be at most a few millimeters in length.
In the fully assembled space transformer according to the invention, the enclosure is preferably filled with a dielectric material. This is done after all the wire bonds have been made in order to ensure stability and insulation.
The step down or pitch reduction from the intermediate contacts to the fine pitch contacts is preferably about ten to one. In numerical terms the intermediate contacts are at a pitch of about 1 mm and the fine pitch contacts are at a pitch of about 0.1 mm or 100 μm.
The apparatus of the invention is preferably employed in a probe card for testing a DUT by delivering the test signals to the pads of the DUT when the pads are contacted by the probes. The DUT is typically an integrated circuit.
The method of invention for electrically testing the DUT includes the steps of providing the connection board with signal contacts and providing the space transformer. The space transformer has intermediate contacts and low pitch contacts connected to the intermediate contacts. The low pitch contacts are arranged on one or more circumferential shelves that define the enclosure, and the signal contacts are connected to the intermediate contacts. Furthermore, a substrate with fine pitch contacts is provided and positioned such that the fine pitch contacts are within the enclosure. The fine pitch contacts are interconnected with the low pitch contacts by a set of wire bonds and the probes are connected to the fine pitch contacts. Then, the test signals are applied to the signal contacts and the probes are contacted with the pads of the DUT for performing the electrical test.
Preferably, the fine pitch contacts are made by producing vias in the substrate and lodging contact plugs in the vias. The vias can be laser machined and the plugs can be made by a micro-electro machining technique. The space transformer has a lower circumferential shelf bearing a lower set of low pitch contacts and one or more upper circumferential shelves bearing an upper set of low pitch contacts. The one or more upper circumferential shelves are recessed or inset from the lower circumferential shelf, and a set of fine pitch contacts proximal the lower shelf is interconnected with the lower set of low pitch contacts by a short set of wire bonds. A set of fine pitch contacts remote from the lower shelf is interconnected with the upper set of the low pitch contacts by a long set of wire bonds. After the interconnections are made, the enclosure is filled with the dielectric material.
A detailed description of the preferred embodiments of the invention is presented below in reference to the appended drawing figures.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
FIG. 1 is a partial three-dimensional diagram illustrating an apparatus of the invention.
FIG. 2 is cross-sectional side view of a portion of the apparatus of FIG. 1.
FIG. 3 is a side cross-sectional view of an assembled apparatus according to the invention.
FIG. 4 is a cross-sectional side view of a portion of another apparatus according to the invention.
FIG. 5 is a top plan view illustrating interconnections in a space transformer according to the invention.
DETAILED DESCRIPTION
The present invention will be best understood by first reviewing an apparatus 10 of the invention as shown in a partial three-dimensional diagram of FIG. 1. Apparatus 10 has a space transformer 12 with intermediate contacts 14 located on a ledge 16. Space transformer also has low pitch contacts 18 that are arranged on a lower circumferential shelf 20 and an upper circumferential shelf 22. Specifically, a lower set 18A of low pitch contacts 18 is located on lower circumferential shelf 20 and an upper set 18B of low pitch contacts 18 is located on upper circumferential shelf 22. Furthermore, upper shelf 22 is recessed or inset from lower shelf 20 to enable easy access by wire bonding equipment to low pitch contacts 18 on both shelves.
Ledge 16 and shelves 20, 22 extend circumferentially (only partially shown in FIG. 1) to define a structure 24 that has an internal enclosure 26. Any suitable, mechanically stable dielectric material or materials can be used to construct structure 24 that includes ledge 16 and shelves 20, 22. For example, structure 24 can be made layer-by-layer, thus defining lower shelf 20 first, then upper shelf 22 and finally ledge 16. During the formation of the structure, embedded electrical connections 28 are made to connect intermediate contacts 14 with corresponding low pitch contacts 18.
Space transformer 12 has a substrate 30 with a number of fine pitch contacts 32. Substrate 30 is positioned below structure 24 such that fine pitch contacts 32 are within enclosure 26. Substrate 30 can be permanently attached to structure 24 by any suitable bonding method. It should be noted that in some embodiments it is useful when structure 24 is removable. For example, this is of value when substrate 30 is a mini printed circuit board and the contacts 32 are blind metal vias.
A set of wire bonds 34 is used for pitch reduction by interconnecting fine pitch contacts 32 with low pitch contacts 18 on shelves 20, 22. Wire bonding is a technique well known in the art and typically involves one of the following three major techniques: thermocompression bonding, ultrasonic bonding, and thermosonic bonding. In general, ultrasonic bonding will be preferred for Aluminum wire bonding, and thermosonic bonding will be preferred for Au wire bonding. In order to accrue the full benefit of the invention including low electric cross-talk and low self-inductance, the maximum length of any particular wire bond 34 should not exceed a few millimeters and preferably be at most 5 millimeters. The specific techniques for bonding to low pitch contacts 18 include wire bonding or wedge bonding, including ribbon bonding used for power/ground technique.
In the preferred embodiment, fine pitch contacts 32 are made of contact plugs 36 that are lodged or secured by epoxide in corresponding vias 38 in substrate 30. Vias 38 can be etched or laser machined, depending on the material of which substrate 30 is made. For example, substrate 30 can be made of a ceramic or an organic such as MLC or MLD in which case the “plugs” equivalent would be electroplated vias. In this case there would be no need for MEMS plugs and epoxide. Preferably, however, substrate 30 is made of Al2O3 so that it lends itself well to laser machining, which is the preferred technique due to its high accuracy and speed. Plugs 36 are preferably mico-electro machined, i.e., they are MEMs plugs made of a nickel and cobalt alloy plated with gold. In an alternative embodiment, vias 38 are filled with metal and thus themselves constitute fine pitch contacts 32. In other words, vias 38 are blind metal vias and serve as fine pitch contacts 32.
A number of probes 40 are connected to fine pitch contacts 32. Specifically, probes 40 are connected to the bottoms of plugs 36 or blind metal vias 38, depending on the embodiment. Although in the embodiment shown, probes 40 are non-linear, it will be appreciated by one skilled in the art that they can be of any variety, including buckling beam probes. Moreover, probes 40 can be held together in any suitable mechanical retention device or be otherwise configured in a suitable head unit. Such head unit can be removable or permanently attached to space transformer 12, depending on application.
Referring now to the partial cross-sectional side view of FIG. 2 for more detail, we see that apparatus 10 also has a connection board 42 with signal contacts 44. Typically, connection board 42 is a printed circuit board (PCB) with appropriate primary contacts 46 for applying test signals 48. Primary contacts 46 are electrically connected to corresponding signal contacts 44 for delivering test signals 48. Test signals 48 are usually generated by a testing circuit (not shown) and applied to primary contacts 46 with the aid of spring pins or other suitable mechanism.
Intermediate contacts 14 of space transformer 12 are connected to signal contacts 44. In the present embodiment, this is accomplished with solder reflow junctions 50. Thus, primary contacts 46 are in electrical communication with corresponding low pitch contacts 18 on shelves 20, 22. More specifically, lower set of low pitch contacts 18A arranged on lower circumferential shelf 20 and upper set of low pitch contacts 18B arranged on upper circumferential shelf 22 are in electrical communication with primary contacts 46 via signal contacts 44, intermediate contacts 14 and embedded electrical connections 28. Therefore, test signals 48 can be delivered directly to the appropriate low pitch contacts 18 of space transformer 12.
Wire bonds 34 between lower set of low pitch contacts 18A and fine pitch contacts 32 and also between the upper set of low pitch contacts 18B and fine pitch contacts 32 are made in accordance with a certain scheme. In particular, wire bonds 34 include a short set of wire bonds 34A interconnecting a set of fine pitch contacts 32A proximal lower shelf 20 with lower set of low pitch contacts 18A arranged on lower shelf 20. Since this set contains the shortest wire bonds it is preferable that the ground contact be included in this set.
Wire bonds 34 further include a long set of wire bonds 34B interconnecting a set of the fine pitch contacts 32B remote from lower shelf 20 with upper set of low pitch contacts 18B arranged on upper shelf 22. It is preferable for high-frequency operation that the longest wire bonds in long set of wire bonds 32B be at most 5 millimeters in length. This is done in order to reduce cross-talk between wire bonds 34 and self-inductance to permit the application of high frequency test signals 48, e.g., test signals in the range of several GHz.
In FIG. 2, reference Δ denotes the pitch of intermediate contacts 14 and reference δ denotes the pitch of fine pitch contacts 32. In accordance with the invention, the step down or pitch reduction from pitch Δ of intermediate contacts 14 to pitch δ of fine pitch contacts 32 is preferably about ten to one. In numerical terms Δ is on the order of about 1 mm and δ is on the order of about 0.1 mm or 100 μm. For peripheral IC pad test application the pitch is as small as 35 μm today. For full grid array flip-chip bump test the minimum pitch is about 140 μm today.
FIG. 3 is a cross-sectional side view of a fully assembled apparatus 10. In this fully assembled state, space transformer 12 has its enclosure 26 filled with a dielectric material 52. This is done after all wire bonds 34 have been made in order to ensure stability and insulation. Of course, the wires used in bonds 34 can be already insulated, e.g., with a non-conductive ink or by other means, thus making the presence of material 52 unnecessary. However, non-insulated wires can also be used, and in this case material 52 must be used to avoid shorts. Material 52 also provides mechanical stability to space transformer 12 and apparatus 10 as a whole. This is especially important, to sustain the aggregate forces acting on probes 40 and apparatus 10 during normal operation due to the deflection of probes 40. Such forces can be quite large—for example, with 2000 probes 40 each exerting 10 grams of force the total force pushing on the assembly of apparatus 10 is about 20 kg. It should be noted that at the present time, as many as 5,000 probes 40 can be used in one apparatus 10.
Apparatus 10 is used for electrical testing of a device under test (DUT) 54. DUT 54 has a number of pads or bumps 56, which have to be contacted by probes 40 to apply test signals 48 thereto and thus conduct the test. Apparatus 10 is preferably employed in a probe card for testing integrated circuits with high-frequency test signals 48. For example, DUT 54 is an integrated circuit on a wafer that requires testing prior to dicing. Alternatively, DUT 54 is an electronic device or circuit that is already mounted and whose functionality needs to be verified by applying test signals 48 to a number of its bumps or pads 56.
FIG. 4 is a cross-sectional side view of a portion of an apparatus 100 according to the invention. Apparatus 100 employs a space transformer 102 with a structure 104 that has three circumferential shelves 106, 108, 110 bearing low pitch contacts 112. A ledge 114 of structure 104 bears connection intermediate contacts 116 that are connected to corresponding low pitch contacts 112. A connection board 118 with signal contacts 120 that are reflow soldered to intermediate contacts 116 is used to deliver test signals to low pitch contacts 112.
Space transformer 102 employs a mini printed circuit board 122 as a substrate. Board 122 is attached to structure 104 as shown and positioned such that its set of fine pitch contacts 124 is contained within an enclosure 126 defined by shelves 106, 108, 110. Board 122 has a set of blind metal vias 128 that serve as fine pitch contacts. A set of wire bonds 130 interconnects fine pitch contacts 124 or the tops of blind vias 128 with low pitch contacts 112. As before, any suitable wire bonding technique can be employed to accomplish this connection. In this embodiment, the probes (not shown) are attached to the bottoms of vias 128.
As in the previous embodiment, it is preferable to keep the lengths of wire bonds 130 as short as possible, and most preferably under 5 mm. This limitation places the toughest restrictions on wire bonds 130 interconnecting low pitch contacts 112 from top shelf 110 and vias 128 that are remote from bottom shelf 106. In addition, in this embodiment it is essential to use insulated wire for wire bonds 130 to further counteract any possibility of shorts.
As before, a dielectric material 132 is used for potting wire bonds 130. Preferably, the potting is performed sequentially by first interconnecting and potting the shortest wire bonds 130 between lowest shelf 106 and vias 128 closest to structure 104. Then repeating the process for the second shelf 108 wire bonds and finally for third shelf 110 wire bonds.
In any of the above embodiments, or in still other embodiments, it is important to optimize the localization of low pitch contacts and fine pitch contacts. One approach involves staggering of contacts, as shown in the top plan view of FIG. 5. In this example a space transformer 140 has a structure 142 with three circumferential shelves 144, 146, 148. Low pitch contacts 150 are staggered with respect to each other and with respect to fine pitch contacts 152. Thus, interconnections performed with wire bonds 154 are non-overlapping because the wires from different shelves 144, 146, 148 tend to fall in-between each other. It should be noted that appropriate potting can be employed in this embodiment to further aid in accommodating more shelves and making more secure over-arching wire bonds 154.
A person skilled in the art will recognize that the above are merely a few exemplary embodiments and that many other embodiments of the apparatus and method are possible. Therefore, the scope of the invention should be judged by the appended claims and their legal equivalents.

Claims (68)

I claim:
1. An apparatus for electrical testing, comprising:
a) a connection board having signal contacts for applying test signals;
b) a space transformer having intermediate contacts connected to said signal contacts, said space transformer further having low pitch contacts connected to said intermediate contacts and arranged on at least one circumferential shelf, said at least one circumferential shelf defining an enclosure;
c) a substrate having fine pitch contacts and positioned such that said fine pitch contacts are within said enclosure;
d) a set of wire bonds interconnecting said fine pitch contacts with said low pitch contacts;
e) probes connected to said fine pitch contacts.
2. The apparatus of claim 1, wherein said fine pitch contacts comprise contact plugs lodged in corresponding vias in said substrate.
3. The apparatus of claim 2, wherein said vias are laser machined and said plugs are made by a micro-electro machining technique.
4. The apparatus of claim 2, wherein said substrate comprises a material selected from the group consisting of ceramics, organics and Al2O3.
5. The apparatus of claim 1, wherein said fine pitch contacts comprise blind metal vias.
6. The apparatus of claim 1, wherein said space transformer comprises a lower circumferential shelf bearing a lower set of said low pitch contacts and at least one upper circumferential shelf bearing an upper set of said low pitch contacts, said at least one upper circumferential shelf being inset from said lower circumferential shelf.
7. The apparatus of claim 6, wherein said lower set of said low pitch contacts comprises a ground contact.
8. The apparatus of claim 6, wherein said set of wire bonds comprises a short set of wire bonds interconnecting a set of said fine pitch contacts proximal said lower shelf with said lower set of said low pitch contacts.
9. The apparatus of claim 6, wherein said set of wire bonds comprises a long set of wire bonds interconnecting a set of said fine pitch contacts remote said lower shelf with said upper set of said low pitch contacts.
10. The apparatus of claim 9, wherein said long set of wire bonds comprises wire bonds of at most 5 millimeters in length.
11. The apparatus of claim 1, wherein said enclosure is filled with a dielectric material.
12. The apparatus of claim 1, wherein a pitch reduction from said intermediate contacts to said fine pitch contacts is about ten to one.
13. The apparatus of claim 1, employed in a probe card for testing a device under test by delivering said test signals to pads of said device under test by contacting said pads with said probes.
14. The apparatus of claim 13, wherein said device under test comprises an integrated circuit.
15. A method for electrically testing a device under test, said method comprising:
a) providing a connection board having signal contacts;
b) providing a space transformer having intermediate contacts and low pitch contacts connected to said intermediate contacts, said low pitch contacts being arranged on at least one circumferential shelf, said at least one circumferential shelf defining an enclosure;
c) connecting said signal contacts to said intermediate contacts;
d) providing a substrate having fine pitch contacts and positioned such that said fine pitch contacts are within said enclosure;
e) interconnecting said fine pitch contacts with said low pitch contacts by a set of wire bonds;
f) connecting probes to said fine pitch contacts;
g) applying test signals to said signal contacts; and
h) contacting said probes with pads of said device under test for electrically testing said device under test.
16. The method of claim 15, wherein said fine pitch contacts are made by producing vias in said substrate and lodging contact plugs in said vias.
17. The method of claim 16, wherein said vias are laser machined and said plugs are made by a micro-electro machining technique.
18. The method of claim 15, wherein said space transformer comprises a lower circumferential shelf bearing a lower set of said low pitch contacts and at least one upper circumferential shelf bearing an upper set of said low pitch contacts, said at least one upper circumferential shelf being inset from said lower circumferential shelf, and wherein said method further comprises interconnecting a set of said fine pitch contacts proximal said lower shelf with said lower set of said low pitch contacts by a short set of wire bonds, and interconnecting a set of said fine pitch contacts remote said lower shelf with said upper set of said low pitch contacts by a long set of wire bonds.
19. The method of claim 15, further comprising filling said enclosure with a dielectric material.
20. An apparatus for electrical testing comprising:
a layered space transformer;
a first layer of said layered space transformer comprising a substrate;
said substrate comprising a plurality of fine pitch contacts;
a second layer of said layered space transformer comprising a structure disposed around an outside circumference of said substrate;
said structure comprising at least one shelf, said shelf comprising a plurality of low pitch contacts;
said structure further comprising a ledge disposed above said shelf;
said ledge comprising a plurality of intermediate contacts;
said intermediate contacts electrically connected to corresponding said low pitch contacts via electrical connections embedded within said structure; and
a plurality of bonds interconnecting said fine pitch contacts with corresponding said low pitch contacts.
21. The apparatus of claim 20 further comprising an enclosure defined by said shelf.
22. The apparatus of claim 21 wherein said fine pitch contact is within said enclosure.
23. The apparatus of claim 21 further comprising a dielectric material filling the enclosure.
24. The apparatus of claim 20 comprising a pitch reduction from said intermediate contact to said fine pitch contact of about ten to one.
25. The apparatus of claim 20 further comprising at least one signal contact and wherein said signal contact is connected to said intermediate contact.
26. The apparatus of claim 25 wherein said connection between said signal contact and said intermediate contact comprises a solder reflow junction.
27. The apparatus of claim 25 further comprising a connection board connected to said signal contact.
28. The apparatus of claim 27 wherein said connection board comprises a printed circuit board.
29. The apparatus of claim 27 wherein said connection board comprises a primary contact connected to said signal contact.
30. The apparatus of claim 27 further comprising a probe connected to said fine pitch contact.
31. The apparatus of claim 20 wherein said shelf comprises a circumferential shelf.
32. The apparatus of claim 20 comprising an upper shelf and a lower shelf.
33. The apparatus of claim 32 comprising a lower set of low pitch contacts located on said lower shelf and an upper set of low pitch contacts located on said upper shelf.
34. The apparatus of claim 33 comprising a short set of wire bonds interconnecting a set of said fine pitch contacts proximal to said lower shelf with said lower set of low pitch contacts.
35. The apparatus of claim 33 wherein said lower set of low pitch contacts comprises a ground contact.
36. The apparatus of claim 33 comprising a long set of wire bonds interconnecting a set of said fine pitch contacts remote to said lower shelf with said upper set of said low pitch contacts.
37. The apparatus of claim 32 wherein said upper shelf is recessed from said lower shelf.
38. The apparatus of claim 32 wherein said shelves are made layer-by-layer.
39. The apparatus of claim 20 wherein said substrate is positioned below said shelf.
40. The apparatus of claim 39 wherein said substrate is permanently attached to said shelf.
41. The apparatus of claim 39 wherein said substrate is removably attached to said shelf.
42. The apparatus of claim 20 wherein said substrate comprises a circuit board.
43. The apparatus of claim 20 wherein said fine pitch contact comprises a via.
44. The apparatus of claim 43 wherein said via comprises a blind via.
45. The apparatus of claim 44 wherein said blind via comprises a blind metal via.
46. The apparatus of claim 20 wherein said wire bond is equal to or less than 5 millimeters.
47. The apparatus of claim 20 wherein said at least one fine pitch contact comprising a contact plug.
48. The apparatus of claim 47 further comprising a via, wherein said contact plug is secured in said substrate by said via.
49. The apparatus of claim 47 wherein said plug is micro-electro machined.
50. The apparatus of claim 20 wherein said substrate comprises aluminum oxide.
51. The apparatus of claim 20 wherein said substrate comprises ceramic.
52. The apparatus of claim 20 wherein said substrate comprises organics.
53. The apparatus of claim 20 wherein said wire bond comprises a short wire bond for bonding.
54. The apparatus of claim 20 wherein said apparatus is employed in a probe card.
55. The apparatus of claim 20 comprising three shelves.
56. The apparatus of claim 20 comprising a plurality of low pitch contacts staggered with respect to a plurality of fine pitch contacts.
57. The apparatus of claim 20 wherein said bond comprises a wire bond.
58. A method for testing a device under test comprising:
providing a layered space transformer comprising a first layer of the layered space transformer having a substrate, a second layer of the layered space transformer having a structure disposed around an outside circumference of the substrate, the structure comprising at least one shelf, the shelf comprising a plurality of low pitch contacts, the structure further comprising a ledge disposed above the shelf, the ledge comprising a plurality of intermediate contacts;
disposing a plurality of fine pitch contacts on the substrate;
interconnecting the low pitch contacts to corresponding intermediate contacts via electrical connections embedded within the structure;
interconnecting the fine pitch contacts with corresponding low pitch contacts by at least one wire bond; and
applying a high frequency test signal to a device under test.
59. The method of claim 58 further comprising connecting the intermediate contact to a signal contact located on a connection board.
60. The method of claim 59 further comprising applying a test signal to the signal contact.
61. The method of claim 58 further comprising connecting at least one probe to the fine pitch contact.
62. The method of claim 61 further comprising contacting the probe with a pad of the device under test for electrically testing the device under test.
63. The method of claim 58 wherein said fine pitch contact comprises producing a via in said substrate and lodging a contact plug in the via.
64. The method of claim 63 further comprising laser-machining the via.
65. The method of claim 63 further comprising micro-electro machining the plug.
66. The method of claim 58 wherein the space transformer comprises a lower shelf bearing a lower set of low pitch contacts and at least one upper shelf bearing an upper set of the low pitch contacts.
67. The method of claim 66 further comprising interconnecting a set of fine pitch contacts proximal to the lower shelf with the lower set of low pitch contacts by a short set of wire bonds.
68. The method of claim 66 further comprising interconnecting a set of fine pitch contacts remote to the lower shelf with the upper set of low pitch contacts by a long set of wire bonds.
US12/646,661 2006-03-20 2009-12-23 Space transformers employing wire bonds for interconnections with fine pitch contacts Expired - Fee Related USRE44407E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/646,661 USRE44407E1 (en) 2006-03-20 2009-12-23 Space transformers employing wire bonds for interconnections with fine pitch contacts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/385,289 US7312617B2 (en) 2006-03-20 2006-03-20 Space transformers employing wire bonds for interconnections with fine pitch contacts
US12/646,661 USRE44407E1 (en) 2006-03-20 2009-12-23 Space transformers employing wire bonds for interconnections with fine pitch contacts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/385,289 Reissue US7312617B2 (en) 2006-03-20 2006-03-20 Space transformers employing wire bonds for interconnections with fine pitch contacts

Publications (1)

Publication Number Publication Date
USRE44407E1 true USRE44407E1 (en) 2013-08-06

Family

ID=38517150

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/385,289 Ceased US7312617B2 (en) 2006-03-20 2006-03-20 Space transformers employing wire bonds for interconnections with fine pitch contacts
US12/646,661 Expired - Fee Related USRE44407E1 (en) 2006-03-20 2009-12-23 Space transformers employing wire bonds for interconnections with fine pitch contacts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/385,289 Ceased US7312617B2 (en) 2006-03-20 2006-03-20 Space transformers employing wire bonds for interconnections with fine pitch contacts

Country Status (1)

Country Link
US (2) US7312617B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313621A1 (en) * 2008-05-29 2012-12-13 Microprobe, Inc. Probe bonding method having improved control of bonding material
US8723546B2 (en) 2007-10-19 2014-05-13 Microprobe, Inc. Vertical guided layered probe
US8907689B2 (en) 2006-10-11 2014-12-09 Microprobe, Inc. Probe retention arrangement
US8988091B2 (en) 2004-05-21 2015-03-24 Microprobe, Inc. Multiple contact probes
US9097740B2 (en) 2004-05-21 2015-08-04 Formfactor, Inc. Layered probes with core
US9121868B2 (en) 2004-07-09 2015-09-01 Formfactor, Inc. Probes with offset arm and suspension structure
US9274143B2 (en) 2007-04-10 2016-03-01 Formfactor, Inc. Vertical probe array arranged to provide space transformation
US9476911B2 (en) 2004-05-21 2016-10-25 Microprobe, Inc. Probes with high current carrying capability and laser machining methods
USRE46221E1 (en) 2004-05-21 2016-11-29 Microprobe, Inc. Probe skates for electrical testing of convex pad topologies

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659739B2 (en) 2006-09-14 2010-02-09 Micro Porbe, Inc. Knee probe having reduced thickness section for control of scrub motion
US7649367B2 (en) 2005-12-07 2010-01-19 Microprobe, Inc. Low profile probe having improved mechanical scrub and reduced contact inductance
US7312617B2 (en) 2006-03-20 2007-12-25 Microprobe, Inc. Space transformers employing wire bonds for interconnections with fine pitch contacts
US7786740B2 (en) 2006-10-11 2010-08-31 Astria Semiconductor Holdings, Inc. Probe cards employing probes having retaining portions for potting in a potting region
US7827452B2 (en) * 2007-08-24 2010-11-02 Verigy (Singapore) Pte. Ltd. Error catch RAM support using fan-out/fan-in matrix
US8384410B1 (en) 2007-08-24 2013-02-26 Advantest (Singapore) Pte Ltd Parallel test circuit with active devices
US7928755B2 (en) * 2008-02-21 2011-04-19 Verigy (Singapore) Pte. Ltd. Methods and apparatus that selectively use or bypass a remote pin electronics block to test at least one device under test
US8242796B2 (en) * 2008-02-21 2012-08-14 Advantest (Singapore) Pte Ltd Transmit/receive unit, and methods and apparatus for transmitting signals between transmit/receive units
US8344746B2 (en) * 2008-09-29 2013-01-01 Thermo Fisher Scientific Inc. Probe interface for electrostatic discharge testing of an integrated circuit
TW201134317A (en) * 2010-03-29 2011-10-01 Hon Hai Prec Ind Co Ltd Pins assignment for circuit board
US9891273B2 (en) * 2011-06-29 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Test structures and testing methods for semiconductor devices
WO2014087906A1 (en) * 2012-12-04 2014-06-12 日本電子材料株式会社 Electrical contact
KR101431915B1 (en) * 2012-12-21 2014-08-26 삼성전기주식회사 Pre space transformer and space transformer manufactured by the pre space transformer, and apparatus for inspecting semiconductor device with the space transformer
WO2016204749A1 (en) * 2015-06-17 2016-12-22 Intel Corporation Directional pulse injection into a microelectronic system for electrostatic test
US20170330677A1 (en) * 2016-05-11 2017-11-16 Cascade Microtech, Inc. Space transformers, planarization layers for space transformers, methods of fabricating space transformers, and methods of planarizing space transformers
US10120020B2 (en) 2016-06-16 2018-11-06 Formfactor Beaverton, Inc. Probe head assemblies and probe systems for testing integrated circuit devices
CN110736938A (en) * 2019-10-23 2020-01-31 中国电子科技集团公司第四十四研究所 detection structure and method for judging whether wire bonding is short-circuited
IT201900024889A1 (en) * 2019-12-19 2021-06-19 Technoprobe Spa Contact probe for high frequency applications with improved current carrying capacity

Citations (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518612A (en) 1966-08-06 1970-06-30 Ibm Connector assembly
US3599093A (en) 1969-04-28 1971-08-10 Rca Corp Apparatus including a wire tipped probe for testing semiconductor wafers
US3710251A (en) 1971-04-07 1973-01-09 Collins Radio Co Microelectric heat exchanger pedestal
US3812311A (en) 1972-12-11 1974-05-21 Electronic Memories & Magnetic Miniature type switch probe for testing integrated circuit assemblies or the like
US4027935A (en) 1976-06-21 1977-06-07 International Business Machines Corporation Contact for an electrical contactor assembly
US4115736A (en) 1977-03-09 1978-09-19 The United States Of America As Represented By The Secretary Of The Air Force Probe station
US4116523A (en) 1976-01-23 1978-09-26 James M. Foster High frequency probe
US4423376A (en) 1981-03-20 1983-12-27 International Business Machines Corporation Contact probe assembly having rotatable contacting probe elements
US4525697A (en) 1982-12-13 1985-06-25 Eaton Corporation Thermally responsive controller and switch assembly therefor
US4532423A (en) 1982-05-31 1985-07-30 Tokyo Shibaura Denki Kabushiki Kaisha IC Tester using an electron beam capable of easily setting a probe card unit for wafers & packaged IC's to be tested
US4567433A (en) 1980-05-27 1986-01-28 Nihon Denshi Zairo Kabushiki Kaisha Complex probe card for testing a semiconductor wafer
US4593961A (en) 1984-12-20 1986-06-10 Amp Incorporated Electrical compression connector
US4618767A (en) 1985-03-22 1986-10-21 International Business Machines Corporation Low-energy scanning transmission electron microscope
US4618821A (en) 1983-09-19 1986-10-21 Lenz Seymour S Test probe assembly for microelectronic circuits
WO1987004568A1 (en) 1986-01-15 1987-07-30 Rogers Corporation Electrical circuit board interconnect
US4706019A (en) 1985-11-15 1987-11-10 Fairchild Camera And Instrument Corporation Electron beam test probe system for analyzing integrated circuits
US4730158A (en) 1986-06-06 1988-03-08 Santa Barbara Research Center Electron-beam probing of photodiodes
US4747698A (en) 1986-04-30 1988-05-31 International Business Machines Corp. Scanning thermal profiler
US4757255A (en) 1986-03-03 1988-07-12 National Semiconductor Corporation Environmental box for automated wafer probing
US4772846A (en) 1986-12-29 1988-09-20 Hughes Aircraft Company Wafer alignment and positioning apparatus for chip testing by voltage contrast electron microscopy
US4773877A (en) 1986-08-19 1988-09-27 Feinmetall Gmbh Contactor for an electronic tester
JPS63307678A (en) 1987-06-09 1988-12-15 Texas Instr Japan Ltd Socket
US4807159A (en) 1985-08-19 1989-02-21 Kabushiki Kaisha Toshiba Apparatus and method for controlling irradiation of an electron beam at a fixed position in an electron beam tester system
JPH01128535A (en) 1987-11-13 1989-05-22 Hitachi Ltd Probe for measuring semiconductor element
EP0144682B1 (en) 1983-11-07 1989-08-09 Martin Maelzer Adapter for a printed-circuit board testing device
US4901013A (en) 1988-08-19 1990-02-13 American Telephone And Telegraph Company, At&T Bell Laboratories Apparatus having a buckling beam probe assembly
US4967148A (en) 1987-03-31 1990-10-30 Siemens Aktiengesellschaft Apparatus for electrical function testing of wiring matrices, particularly of printed circuit boards
US4973903A (en) 1986-12-23 1990-11-27 Texas Instruments Incorporated Adjustable probe for probe assembly
US5015947A (en) 1990-03-19 1991-05-14 Tektronix, Inc. Low capacitance probe tip
US5026291A (en) 1990-08-10 1991-06-25 E. I. Du Pont De Nemours And Company Board mounted connector system
US5030318A (en) 1989-09-28 1991-07-09 Polycon Corporation Method of making electrical probe diaphragms
US5061192A (en) 1990-12-17 1991-10-29 International Business Machines Corporation High density connector
US5067007A (en) 1988-06-13 1991-11-19 Hitachi, Ltd. Semiconductor device having leads for mounting to a surface of a printed circuit board
WO1992010010A1 (en) 1989-05-16 1992-06-11 Phillipe Billette De Villemeur Contact element for electrical connector
US5145384A (en) 1990-09-10 1992-09-08 Molex Incorporated Electrical connector and terminal therefor
US5205739A (en) 1989-11-13 1993-04-27 Augat Inc. High density parallel interconnect
US5207585A (en) 1990-10-31 1993-05-04 International Business Machines Corporation Thin interface pellicle for dense arrays of electrical interconnects
US5225771A (en) 1988-05-16 1993-07-06 Dri Technology Corp. Making and testing an integrated circuit using high density probe points
US5230632A (en) 1991-12-19 1993-07-27 International Business Machines Corporation Dual element electrical contact and connector assembly utilizing same
US5237743A (en) 1992-06-19 1993-08-24 International Business Machines Corporation Method of forming a conductive end portion on a flexible circuit member
DE4237591A1 (en) 1992-11-06 1994-05-11 Mania Gmbh PCB test facility with foil adapter
US5354205A (en) 1991-08-26 1994-10-11 Hughes Aircraft Company Electrical connections with shaped contacts
US5399982A (en) 1989-11-13 1995-03-21 Mania Gmbh & Co. Printed circuit board testing device with foil adapter
JPH0721968Y2 (en) 1984-06-06 1995-05-17 ジャニアン ロバート Mechanical spring seal
US5422574A (en) 1993-01-14 1995-06-06 Probe Technology Corporation Large scale protrusion membrane for semiconductor devices under test with very high pin counts
US5430614A (en) 1990-02-14 1995-07-04 Particle Interconnect Inc. Electrical interconnect using particle enhanced joining of metal surfaces
US5436571A (en) 1990-08-20 1995-07-25 Tokyo Electron Limited Probing test method of contacting a plurality of probes of a probe card with pads on a chip on a semiconductor wafer
US5468994A (en) * 1992-12-10 1995-11-21 Hewlett-Packard Company High pin count package for semiconductor device
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
JPH07333232A (en) 1994-06-13 1995-12-22 Canon Inc Formation of cantilever having probe
WO1996015458A1 (en) 1994-11-15 1996-05-23 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US5531022A (en) 1992-10-19 1996-07-02 International Business Machines Corporation Method of forming a three dimensional high performance interconnection package
US5576631A (en) 1992-03-10 1996-11-19 Virginia Panel Corporation Coaxial double-headed spring contact probe assembly
WO1996037332A1 (en) 1995-05-26 1996-11-28 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US5632631A (en) 1994-06-07 1997-05-27 Tessera, Inc. Microelectronic contacts with asperities and methods of making same
US5642056A (en) * 1993-12-22 1997-06-24 Tokyo Electron Limited Probe apparatus for correcting the probe card posture before testing
US5644249A (en) 1996-06-07 1997-07-01 Probe Technology Method and circuit testing apparatus for equalizing a contact force between probes and pads
US5676599A (en) 1993-05-03 1997-10-14 Lohr & Bromkamp Gmbh Outer joint part for a tripod joint
US5701085A (en) * 1995-07-05 1997-12-23 Sun Microsystems, Inc. Apparatus for testing flip chip or wire bond integrated circuits
US5720098A (en) 1995-05-12 1998-02-24 Probe Technology Method for making a probe preserving a uniform stress distribution under deflection
US5742174A (en) 1995-11-03 1998-04-21 Probe Technology Membrane for holding a probe tip in proper location
US5751157A (en) 1996-07-22 1998-05-12 Probe Technology Method and apparatus for aligning probes
US5764070A (en) 1995-02-28 1998-06-09 Plessey Semiconductors Limited Structure for testing bare integrated circuit devices
US5764072A (en) 1996-12-20 1998-06-09 Probe Technology Dual contact probe assembly for testing integrated circuits
US5764409A (en) 1996-04-26 1998-06-09 Alpha Innotech Corp Elimination of vibration by vibration coupling in microscopy applications
US5767691A (en) 1993-12-22 1998-06-16 International Business Machines Corporation Probe-oxide-semiconductor method and apparatus for measuring oxide charge on a semiconductor wafer
US5773987A (en) 1996-02-26 1998-06-30 Motorola, Inc. Method for probing a semiconductor wafer using a motor controlled scrub process
US5772451A (en) 1993-11-16 1998-06-30 Form Factor, Inc. Sockets for electronic components and methods of connecting to electronic components
JPH10221374A (en) 1997-02-03 1998-08-21 Nippon Denshi Zairyo Kk Perpendicularly operating probe card and probe unit used in the same and manufacture of probe unit
US5802699A (en) 1994-06-07 1998-09-08 Tessera, Inc. Methods of assembling microelectronic assembly with socket for engaging bump leads
US5806181A (en) 1993-11-16 1998-09-15 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US5829128A (en) 1993-11-16 1998-11-03 Formfactor, Inc. Method of mounting resilient contact structures to semiconductor devices
US5832601A (en) 1993-11-16 1998-11-10 Form Factor, Inc. Method of making temporary connections between electronic components
US5847936A (en) * 1997-06-20 1998-12-08 Sun Microsystems, Inc. Optimized routing scheme for an integrated circuit/printed circuit board
US5884395A (en) 1997-04-04 1999-03-23 Probe Technology Assembly structure for making integrated circuit chip probe cards
US5892539A (en) 1995-11-08 1999-04-06 Alpha Innotech Corporation Portable emission microscope workstation for failure analysis
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US5917707A (en) 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US5923178A (en) 1997-04-17 1999-07-13 Cerprobe Corporation Probe assembly and method for switchable multi-DUT testing of integrated circuit wafers
US5932323A (en) 1992-03-10 1999-08-03 Texas Instruments Incorporated Method and apparatus for mounting, inspecting and adjusting probe card needles
US5936421A (en) 1994-10-11 1999-08-10 Virginia Panel Corporation Coaxial double-headed spring contact probe assembly and coaxial surface contact for engagement therewith
US5945836A (en) 1996-10-29 1999-08-31 Hewlett-Packard Company Loaded-board, guided-probe test fixture
JPH11241690A (en) 1998-02-26 1999-09-07 Sanden Corp Scroll type fluid machinery
US5952843A (en) 1998-03-24 1999-09-14 Vinh; Nguyen T. Variable contact pressure probe
US5969533A (en) 1997-05-15 1999-10-19 Mitsubishi Denki Kabushiki Kaisha Probe card and LSI test method using probe card
US5970167A (en) 1995-11-08 1999-10-19 Alpha Innotech Corporation Integrated circuit failure analysis using color voltage contrast
US5974662A (en) 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US5994152A (en) 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US6027630A (en) 1997-04-04 2000-02-22 University Of Southern California Method for electrochemical fabrication
US6031282A (en) 1998-08-27 2000-02-29 Advantest Corp. High performance integrated circuit chip package
US6029344A (en) 1993-11-16 2000-02-29 Formfactor, Inc. Composite interconnection element for microelectronic components, and method of making same
US6064215A (en) 1998-04-08 2000-05-16 Probe Technology, Inc. High temperature probe card for testing integrated circuits
US6066957A (en) 1997-09-11 2000-05-23 Delaware Capital Formation, Inc. Floating spring probe wireless test fixture
US6071630A (en) 1996-03-04 2000-06-06 Shin-Etsu Chemical Co., Ltd. Electrostatic chuck
US6086386A (en) 1996-05-24 2000-07-11 Tessera, Inc. Flexible connectors for microelectronic elements
US6133072A (en) 1996-12-13 2000-10-17 Tessera, Inc. Microelectronic connector with planar elastomer sockets
US6184576B1 (en) 1998-09-21 2001-02-06 Advantest Corp. Packaging and interconnection of contact structure
WO2001009623A1 (en) 1999-07-28 2001-02-08 Nanonexus, Inc. Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
US6204674B1 (en) 1997-10-31 2001-03-20 Probe Technology, Inc. Assembly structure for making integrated circuit chip probe cards
US6215320B1 (en) 1998-10-23 2001-04-10 Teradyne, Inc. High density printed circuit board
US6218203B1 (en) 1999-06-28 2001-04-17 Advantest Corp. Method of producing a contact structure
US6246245B1 (en) 1998-02-23 2001-06-12 Micron Technology, Inc. Probe card, test method and test system for semiconductor wafers
US6246247B1 (en) 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US6247228B1 (en) 1996-08-12 2001-06-19 Tessera, Inc. Electrical connection with inwardly deformable contacts
US6255126B1 (en) 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements
US6259261B1 (en) 1999-04-16 2001-07-10 Sony Corporation Method and apparatus for electrically testing semiconductor devices fabricated on a wafer
US20010012739A1 (en) 1997-03-17 2001-08-09 Grube Gary W. Composite microelectronic spring structure and method for making same
US6278284B1 (en) 1998-02-16 2001-08-21 Nec Corporation Testing IC socket
US6292003B1 (en) 1998-07-01 2001-09-18 Xilinx, Inc. Apparatus and method for testing chip scale package integrated circuits
US20010040460A1 (en) 1998-11-23 2001-11-15 Brian Samuel Beaman Method of making a high density integral test probe
US6336259B1 (en) 1999-05-28 2002-01-08 Fritz Stahlecker Apparatus and method for condensing a drafted fiber strand
US6344753B1 (en) 1999-06-18 2002-02-05 Mitsubishi Denki Kabushiki Kaisha Test socket having improved contact terminals, and method of forming contact terminals of the test socket
US20020070743A1 (en) 2000-08-04 2002-06-13 Technoprobe S.R.L. Testing head having vertical probes
US6411112B1 (en) 1998-02-19 2002-06-25 International Business Machines Corporation Off-axis contact tip and dense packing design for a fine pitch probe
US6419500B1 (en) 1999-03-08 2002-07-16 Kulicke & Soffa Investment, Inc. Probe assembly having floatable buckling beam probes and apparatus for abrading the same
US6420887B1 (en) 2000-06-13 2002-07-16 Kulicke & Soffa Investment, Inc. Modulated space transformer for high density buckling beam probe and method for making the same
US6424164B1 (en) 2000-06-13 2002-07-23 Kulicke & Soffa Investment, Inc. Probe apparatus having removable beam probes
US6433571B1 (en) 1998-07-06 2002-08-13 Motorola, Inc. Process for testing a semiconductor device
US6441315B1 (en) 1998-11-10 2002-08-27 Formfactor, Inc. Contact structures with blades having a wiping motion
US6443784B1 (en) 1999-09-24 2002-09-03 Gunsei Kimoto Contact and contact assembly using the same
US20020125584A1 (en) 2000-05-29 2002-09-12 Norito Umehara Semiconductor device and method of manufacturing same
US20020153913A1 (en) 2000-11-28 2002-10-24 Japan Electronic Materials Corp. Probe for the probe card
US6482013B2 (en) 1993-11-16 2002-11-19 Formfactor, Inc. Microelectronic spring contact element and electronic component having a plurality of spring contact elements
US6483328B1 (en) * 1995-11-09 2002-11-19 Formfactor, Inc. Probe card for probing wafers with raised contact elements
US6486689B1 (en) 1999-05-26 2002-11-26 Nidec-Read Corporation Printed circuit board testing apparatus and probe device for use in the same
US6496026B1 (en) 2000-02-25 2002-12-17 Microconnect, Inc. Method of manufacturing and testing an electronic device using a contact device having fingers and a mechanical ground
US20020190738A1 (en) * 1993-04-30 2002-12-19 Beaman Brian Samuel Probe structure having a plurality of discrete insulated probe tips projecting from a support surface, apparatus for use thereof and methods of fabrication thereof
US20020194730A1 (en) 2001-06-21 2002-12-26 Da-Yuan Shih Process and structure to repair damaged probes mounted on a space transformer
US20030027423A1 (en) 1998-11-30 2003-02-06 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6525552B2 (en) 2001-05-11 2003-02-25 Kulicke And Soffa Investments, Inc. Modular probe apparatus
US6529021B1 (en) 2000-04-25 2003-03-04 International Business Machines Corporation Self-scrub buckling beam probe
US6538336B1 (en) * 2000-11-14 2003-03-25 Rambus Inc. Wirebond assembly for high-speed integrated circuits
US6566898B2 (en) 2000-03-06 2003-05-20 Wentworth Laboratories, Inc. Temperature compensated vertical pin probing device
US6570396B1 (en) 2000-11-24 2003-05-27 Kulicke & Soffa Investment, Inc. Interface structure for contacting probe beams
US6573738B1 (en) 1999-03-25 2003-06-03 Tokyo Cathode Laboratory Co., Ltd. Multi-layered probe for a probecard
US6575767B2 (en) 2000-05-17 2003-06-10 Enplas Corporation Contact pin assembly, contact pin assembly manufacturing method, contact pin assembling structure, contact pin assembling structure manufacturing method, and socket for electrical parts
US20030116346A1 (en) 2001-12-21 2003-06-26 Forster James Allam Low cost area array probe for circuits having solder-ball contacts are manufactured using a wire bonding machine
US6586955B2 (en) 2000-03-13 2003-07-01 Tessera, Inc. Methods and structures for electronic probing arrays
US6624648B2 (en) 1993-11-16 2003-09-23 Formfactor, Inc. Probe card assembly
US6633176B2 (en) 1998-08-31 2003-10-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor device test probe having improved tip portion and manufacturing method thereof
US6641430B2 (en) 2000-02-14 2003-11-04 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6646455B2 (en) 1997-07-24 2003-11-11 Mitsubishi Denki Kabsuhiki Kaisha Test probe for semiconductor devices, method of manufacturing of the same, and member for removing foreign matter
US6676438B2 (en) 2000-02-14 2004-01-13 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6677245B2 (en) 1998-11-30 2004-01-13 Advantest Corp. Contact structure production method
US6690185B1 (en) * 1997-01-15 2004-02-10 Formfactor, Inc. Large contactor with multiple, aligned contactor units
US20040036493A1 (en) 2002-05-08 2004-02-26 Miller Charles A. High performance probe system
US20040046579A1 (en) * 2002-05-08 2004-03-11 Formfactor, Inc. High performance probe system
US6707311B2 (en) 2002-07-09 2004-03-16 Advantest Corp. Contact structure with flexible cable and probe contact assembly using same
US6727719B2 (en) 2002-01-11 2004-04-27 Taiwan Semiconductor Manufacturing Co., Ltd. Piercer combined prober for CU interconnect water-level preliminary electrical test
US6731123B2 (en) 2001-09-03 2004-05-04 Gunsei Kimoto Probe device
EP0764352B1 (en) 1994-06-07 2004-05-19 Tessera, Inc. Microelectronic contacts and assemblies
US20040104737A1 (en) 2001-12-25 2004-06-03 Tsuyoshi Haga Contact probe
US20040119485A1 (en) 2002-12-20 2004-06-24 Koch Daniel J. Probe finger structure and method for making a probe finger structure
US6765228B2 (en) 2002-10-11 2004-07-20 Taiwan Semiconductor Maunfacturing Co., Ltd. Bonding pad with separate bonding and probing areas
US6768331B2 (en) 2002-04-16 2004-07-27 Teradyne, Inc. Wafer-level contactor
US20040239352A1 (en) 2003-05-26 2004-12-02 Nec Electronics Corporation Probe card used for inspecting semiconductor devices
US6842023B2 (en) 2000-04-13 2005-01-11 Innotech Corporation Probe card apparatus and electrical contact probe having curved or sloping blade profile
US20050012513A1 (en) 2003-07-17 2005-01-20 Shih-Jye Cheng Probe card assembly
US6847221B2 (en) 2001-03-29 2005-01-25 Gunsei Kimoto Probe pin assembly
US6853208B2 (en) 2000-08-09 2005-02-08 Nihon Denshizairyo Kabushiki Kaisha Vertical probe card
US6881974B2 (en) 2002-08-29 2005-04-19 Micron Technology, Inc. Probe card for testing microelectronic components
US6890185B1 (en) 2003-11-03 2005-05-10 Kulicke & Soffa Interconnect, Inc. Multipath interconnect with meandering contact cantilevers
US6897666B2 (en) 2002-12-31 2005-05-24 Intel Corporation Embedded voltage regulator and active transient control device in probe head for improved power delivery and method
USD507198S1 (en) 2003-06-11 2005-07-12 K&S Interconnect, Inc. Straight protruding probe beam contour surfaces
US6917525B2 (en) 2001-11-27 2005-07-12 Nanonexus, Inc. Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US6917102B2 (en) 2002-10-10 2005-07-12 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US20050179458A1 (en) 2003-02-04 2005-08-18 Microfabrica Inc. Cantilever microprobes for contacting electronic components and methods for making such probes
US20050184743A1 (en) * 2004-02-24 2005-08-25 Nihon Denshizairyo Kabushiki Kaisha Probe card
US6945827B2 (en) 2002-12-23 2005-09-20 Formfactor, Inc. Microelectronic contact structure
US6956389B1 (en) 2004-08-16 2005-10-18 Jem America Corporation Highly resilient cantilever spring probe for testing ICs
US6965245B2 (en) 2003-05-01 2005-11-15 K&S Interconnect, Inc. Prefabricated and attached interconnect structure
US6970005B2 (en) 2000-08-24 2005-11-29 Texas Instruments Incorporated Multiple-chip probe and universal tester contact assemblage
US20060040417A1 (en) * 2004-08-19 2006-02-23 Formfactor, Inc. Method to build a wirebond probe card in a many at a time fashion
US7015707B2 (en) 2002-03-20 2006-03-21 Gabe Cherian Micro probe
US20060073712A1 (en) 2004-10-05 2006-04-06 Ephraim Suhir Apparatus and test device for the application and measurement of prescribed, predicted and controlled contact pressure on wires
US20060082380A1 (en) 2004-03-19 2006-04-20 Nec Corporation Inspection probe, method for preparing the same, and method for inspecting elements
US7036221B2 (en) 1996-07-09 2006-05-02 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor element-mounting board
US7046021B2 (en) 2004-06-30 2006-05-16 Microprobe Double acting spring probe
US7059865B2 (en) 2004-01-16 2006-06-13 K & S Interconnect, Inc. See-saw interconnect assembly with dielectric carrier grid providing spring suspension
US7064564B2 (en) 2001-02-01 2006-06-20 Antares Contech, Inc. Bundled probe apparatus for multiple terminal contacting
US7068057B2 (en) 1997-06-10 2006-06-27 Cascade Microtech, Inc. Low-current pogo probe card
US7071715B2 (en) 2004-01-16 2006-07-04 Formfactor, Inc. Probe card configuration for low mechanical flexural strength electrical routing substrates
US7073254B2 (en) 1993-11-16 2006-07-11 Formfactor, Inc. Method for mounting a plurality of spring contact elements
USD525207S1 (en) 2003-12-02 2006-07-18 Antares Contech, Inc. Sheet metal interconnect array
US20060170440A1 (en) 2005-02-02 2006-08-03 Mjc Probe Incorporation Vertical probe card, probes for vertical probe card and method of making the same
US20060171425A1 (en) 2003-03-17 2006-08-03 Phicom Corporation Probe and method of making same
US7088118B2 (en) * 2004-12-15 2006-08-08 Chipmos Technologies (Bermuda) Ltd. Modularized probe card for high frequency probing
US7091729B2 (en) 2004-07-09 2006-08-15 Micro Probe Cantilever probe with dual plane fixture and probe apparatus therewith
US20060186905A1 (en) 2005-02-22 2006-08-24 Fujitsu Limited Contactor for electronic parts and a contact method
US7108546B2 (en) * 2001-06-20 2006-09-19 Formfactor, Inc. High density planar electrical interface
US20060208752A1 (en) 2003-04-15 2006-09-21 Michinobu Tanioka Inspection probe
US20060261828A1 (en) 2004-04-28 2006-11-23 Cram Daniel P Resilient contact probe apparatus
US7143500B2 (en) 2001-06-25 2006-12-05 Micron Technology, Inc. Method to prevent damage to probe card
US7148709B2 (en) 2004-05-21 2006-12-12 Microprobe, Inc. Freely deflecting knee probe with controlled scrub motion
US7150658B1 (en) 2006-06-19 2006-12-19 Excel Cell Electronic Co., Ltd. Terminal for an electrical connector
US7202682B2 (en) 2002-12-20 2007-04-10 Formfactor, Inc. Composite motion probing
US7218127B2 (en) 2004-02-18 2007-05-15 Formfactor, Inc. Method and apparatus for probing an electronic device in which movement of probes and/or the electronic device includes a lateral component
US7225538B2 (en) 1993-11-16 2007-06-05 Formfactor, Inc. Resilient contact structures formed and then attached to a substrate
US20070145989A1 (en) * 2005-12-27 2007-06-28 Hua Zhu Probe card with improved transient power delivery
US20070167022A1 (en) 2005-12-30 2007-07-19 Industrial Technology Research Institute Method of fabricating vertical probe head
US7281305B1 (en) 2006-03-31 2007-10-16 Medtronic, Inc. Method of attaching a capacitor to a feedthrough assembly of a medical device
US7312617B2 (en) 2006-03-20 2007-12-25 Microprobe, Inc. Space transformers employing wire bonds for interconnections with fine pitch contacts
US7345492B2 (en) 2005-12-14 2008-03-18 Microprobe, Inc. Probe cards employing probes having retaining portions for potting in a retention arrangement
US20080074132A1 (en) 2006-09-27 2008-03-27 Formfactor, Inc. Single support structure probe group with staggered mounting pattern
US7436192B2 (en) 2006-06-29 2008-10-14 Microprobe, Inc. Probe skates for electrical testing of convex pad topologies
US7514948B2 (en) 2007-04-10 2009-04-07 Microprobe, Inc. Vertical probe array arranged to provide space transformation
US7649367B2 (en) 2005-12-07 2010-01-19 Microprobe, Inc. Low profile probe having improved mechanical scrub and reduced contact inductance
US7659739B2 (en) 2006-09-14 2010-02-09 Micro Porbe, Inc. Knee probe having reduced thickness section for control of scrub motion
US7671610B2 (en) 2007-10-19 2010-03-02 Microprobe, Inc. Vertical guided probe array providing sideways scrub motion
US7733101B2 (en) 2004-05-21 2010-06-08 Microprobe, Inc. Knee probe having increased scrub motion
US20100176832A1 (en) 2007-10-19 2010-07-15 Microprobe, Inc. Vertical Guided Layered Probe
US7759949B2 (en) 2004-05-21 2010-07-20 Microprobe, Inc. Probes with self-cleaning blunt skates for contacting conductive pads
US20100182031A1 (en) 2004-05-21 2010-07-22 Microprobe, Inc. Layered Probes With Core
US7786740B2 (en) 2006-10-11 2010-08-31 Astria Semiconductor Holdings, Inc. Probe cards employing probes having retaining portions for potting in a potting region
US20110006796A1 (en) 2006-10-11 2011-01-13 Microprobe, Inc. Probe retention arrangement
US20110062978A1 (en) 2004-05-21 2011-03-17 Microprobe, Inc. Multiple contact probes
US8230593B2 (en) 2008-05-29 2012-07-31 Microprobe, Inc. Probe bonding method having improved control of bonding material

Patent Citations (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518612A (en) 1966-08-06 1970-06-30 Ibm Connector assembly
US3599093A (en) 1969-04-28 1971-08-10 Rca Corp Apparatus including a wire tipped probe for testing semiconductor wafers
US3710251A (en) 1971-04-07 1973-01-09 Collins Radio Co Microelectric heat exchanger pedestal
US3812311A (en) 1972-12-11 1974-05-21 Electronic Memories & Magnetic Miniature type switch probe for testing integrated circuit assemblies or the like
US4116523A (en) 1976-01-23 1978-09-26 James M. Foster High frequency probe
US4027935A (en) 1976-06-21 1977-06-07 International Business Machines Corporation Contact for an electrical contactor assembly
US4115736A (en) 1977-03-09 1978-09-19 The United States Of America As Represented By The Secretary Of The Air Force Probe station
US4567433A (en) 1980-05-27 1986-01-28 Nihon Denshi Zairo Kabushiki Kaisha Complex probe card for testing a semiconductor wafer
US4423376A (en) 1981-03-20 1983-12-27 International Business Machines Corporation Contact probe assembly having rotatable contacting probe elements
US4532423A (en) 1982-05-31 1985-07-30 Tokyo Shibaura Denki Kabushiki Kaisha IC Tester using an electron beam capable of easily setting a probe card unit for wafers & packaged IC's to be tested
US4525697A (en) 1982-12-13 1985-06-25 Eaton Corporation Thermally responsive controller and switch assembly therefor
US4618821A (en) 1983-09-19 1986-10-21 Lenz Seymour S Test probe assembly for microelectronic circuits
EP0144682B1 (en) 1983-11-07 1989-08-09 Martin Maelzer Adapter for a printed-circuit board testing device
JPH0721968Y2 (en) 1984-06-06 1995-05-17 ジャニアン ロバート Mechanical spring seal
US4593961A (en) 1984-12-20 1986-06-10 Amp Incorporated Electrical compression connector
US4618767A (en) 1985-03-22 1986-10-21 International Business Machines Corporation Low-energy scanning transmission electron microscope
US4807159A (en) 1985-08-19 1989-02-21 Kabushiki Kaisha Toshiba Apparatus and method for controlling irradiation of an electron beam at a fixed position in an electron beam tester system
US4706019A (en) 1985-11-15 1987-11-10 Fairchild Camera And Instrument Corporation Electron beam test probe system for analyzing integrated circuits
WO1987004568A1 (en) 1986-01-15 1987-07-30 Rogers Corporation Electrical circuit board interconnect
US4757255A (en) 1986-03-03 1988-07-12 National Semiconductor Corporation Environmental box for automated wafer probing
US4747698A (en) 1986-04-30 1988-05-31 International Business Machines Corp. Scanning thermal profiler
US4730158A (en) 1986-06-06 1988-03-08 Santa Barbara Research Center Electron-beam probing of photodiodes
US4773877A (en) 1986-08-19 1988-09-27 Feinmetall Gmbh Contactor for an electronic tester
US4973903A (en) 1986-12-23 1990-11-27 Texas Instruments Incorporated Adjustable probe for probe assembly
US4772846A (en) 1986-12-29 1988-09-20 Hughes Aircraft Company Wafer alignment and positioning apparatus for chip testing by voltage contrast electron microscopy
US4967148A (en) 1987-03-31 1990-10-30 Siemens Aktiengesellschaft Apparatus for electrical function testing of wiring matrices, particularly of printed circuit boards
JPS63307678A (en) 1987-06-09 1988-12-15 Texas Instr Japan Ltd Socket
JPH01128535A (en) 1987-11-13 1989-05-22 Hitachi Ltd Probe for measuring semiconductor element
US5225771A (en) 1988-05-16 1993-07-06 Dri Technology Corp. Making and testing an integrated circuit using high density probe points
US5067007A (en) 1988-06-13 1991-11-19 Hitachi, Ltd. Semiconductor device having leads for mounting to a surface of a printed circuit board
US4901013A (en) 1988-08-19 1990-02-13 American Telephone And Telegraph Company, At&T Bell Laboratories Apparatus having a buckling beam probe assembly
WO1992010010A1 (en) 1989-05-16 1992-06-11 Phillipe Billette De Villemeur Contact element for electrical connector
US5030318A (en) 1989-09-28 1991-07-09 Polycon Corporation Method of making electrical probe diaphragms
US5399982A (en) 1989-11-13 1995-03-21 Mania Gmbh & Co. Printed circuit board testing device with foil adapter
US5205739A (en) 1989-11-13 1993-04-27 Augat Inc. High density parallel interconnect
US5430614A (en) 1990-02-14 1995-07-04 Particle Interconnect Inc. Electrical interconnect using particle enhanced joining of metal surfaces
US5015947A (en) 1990-03-19 1991-05-14 Tektronix, Inc. Low capacitance probe tip
US5026291A (en) 1990-08-10 1991-06-25 E. I. Du Pont De Nemours And Company Board mounted connector system
US5436571A (en) 1990-08-20 1995-07-25 Tokyo Electron Limited Probing test method of contacting a plurality of probes of a probe card with pads on a chip on a semiconductor wafer
US5145384A (en) 1990-09-10 1992-09-08 Molex Incorporated Electrical connector and terminal therefor
US5207585A (en) 1990-10-31 1993-05-04 International Business Machines Corporation Thin interface pellicle for dense arrays of electrical interconnects
US5061192A (en) 1990-12-17 1991-10-29 International Business Machines Corporation High density connector
US5354205A (en) 1991-08-26 1994-10-11 Hughes Aircraft Company Electrical connections with shaped contacts
US5230632A (en) 1991-12-19 1993-07-27 International Business Machines Corporation Dual element electrical contact and connector assembly utilizing same
US5576631A (en) 1992-03-10 1996-11-19 Virginia Panel Corporation Coaxial double-headed spring contact probe assembly
US5932323A (en) 1992-03-10 1999-08-03 Texas Instruments Incorporated Method and apparatus for mounting, inspecting and adjusting probe card needles
US5237743A (en) 1992-06-19 1993-08-24 International Business Machines Corporation Method of forming a conductive end portion on a flexible circuit member
US6334247B1 (en) 1992-10-19 2002-01-01 International Business Machines Corporation High density integrated circuit apparatus, test probe and methods of use thereof
US5531022A (en) 1992-10-19 1996-07-02 International Business Machines Corporation Method of forming a three dimensional high performance interconnection package
US5821763A (en) 1992-10-19 1998-10-13 International Business Machines Corporation Test probe for high density integrated circuits, methods of fabrication thereof and methods of use thereof
US5635846A (en) 1992-10-19 1997-06-03 International Business Machines Corporation Test probe having elongated conductor embedded in an elostomeric material which is mounted on a space transformer
DE4237591A1 (en) 1992-11-06 1994-05-11 Mania Gmbh PCB test facility with foil adapter
US5468994A (en) * 1992-12-10 1995-11-21 Hewlett-Packard Company High pin count package for semiconductor device
US5422574A (en) 1993-01-14 1995-06-06 Probe Technology Corporation Large scale protrusion membrane for semiconductor devices under test with very high pin counts
US20020190738A1 (en) * 1993-04-30 2002-12-19 Beaman Brian Samuel Probe structure having a plurality of discrete insulated probe tips projecting from a support surface, apparatus for use thereof and methods of fabrication thereof
US5676599A (en) 1993-05-03 1997-10-14 Lohr & Bromkamp Gmbh Outer joint part for a tripod joint
US5832601A (en) 1993-11-16 1998-11-10 Form Factor, Inc. Method of making temporary connections between electronic components
US5806181A (en) 1993-11-16 1998-09-15 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US6029344A (en) 1993-11-16 2000-02-29 Formfactor, Inc. Composite interconnection element for microelectronic components, and method of making same
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US5974662A (en) 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US7225538B2 (en) 1993-11-16 2007-06-05 Formfactor, Inc. Resilient contact structures formed and then attached to a substrate
US6482013B2 (en) 1993-11-16 2002-11-19 Formfactor, Inc. Microelectronic spring contact element and electronic component having a plurality of spring contact elements
US5926951A (en) 1993-11-16 1999-07-27 Formfactor, Inc. Method of stacking electronic components
US6624648B2 (en) 1993-11-16 2003-09-23 Formfactor, Inc. Probe card assembly
US5917707A (en) 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US7073254B2 (en) 1993-11-16 2006-07-11 Formfactor, Inc. Method for mounting a plurality of spring contact elements
US5864946A (en) 1993-11-16 1999-02-02 Form Factor, Inc. Method of making contact tip structures
US5852871A (en) 1993-11-16 1998-12-29 Form Factor, Inc. Method of making raised contacts on electronic components
US5772451A (en) 1993-11-16 1998-06-30 Form Factor, Inc. Sockets for electronic components and methods of connecting to electronic components
US6615485B2 (en) 1993-11-16 2003-09-09 Formfactor, Inc. Probe card assembly and kit, and methods of making same
US5829128A (en) 1993-11-16 1998-11-03 Formfactor, Inc. Method of mounting resilient contact structures to semiconductor devices
US5767691A (en) 1993-12-22 1998-06-16 International Business Machines Corporation Probe-oxide-semiconductor method and apparatus for measuring oxide charge on a semiconductor wafer
US5642056A (en) * 1993-12-22 1997-06-24 Tokyo Electron Limited Probe apparatus for correcting the probe card posture before testing
EP0764352B1 (en) 1994-06-07 2004-05-19 Tessera, Inc. Microelectronic contacts and assemblies
US5802699A (en) 1994-06-07 1998-09-08 Tessera, Inc. Methods of assembling microelectronic assembly with socket for engaging bump leads
US6205660B1 (en) 1994-06-07 2001-03-27 Tessera, Inc. Method of making an electronic contact
US5934914A (en) 1994-06-07 1999-08-10 Tessera, Inc. Microelectronic contacts with asperities and methods of making same
US5632631A (en) 1994-06-07 1997-05-27 Tessera, Inc. Microelectronic contacts with asperities and methods of making same
JPH07333232A (en) 1994-06-13 1995-12-22 Canon Inc Formation of cantilever having probe
US5936421A (en) 1994-10-11 1999-08-10 Virginia Panel Corporation Coaxial double-headed spring contact probe assembly and coaxial surface contact for engagement therewith
WO1996015458A1 (en) 1994-11-15 1996-05-23 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US6246247B1 (en) 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US5764070A (en) 1995-02-28 1998-06-09 Plessey Semiconductors Limited Structure for testing bare integrated circuit devices
US5720098A (en) 1995-05-12 1998-02-24 Probe Technology Method for making a probe preserving a uniform stress distribution under deflection
WO1996037332A1 (en) 1995-05-26 1996-11-28 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
JPH10506238A (en) 1995-05-26 1998-06-16 フォームファクター,インコーポレイテッド Fabrication of interconnects and tips using sacrificial substrates
US5701085A (en) * 1995-07-05 1997-12-23 Sun Microsystems, Inc. Apparatus for testing flip chip or wire bond integrated circuits
US5742174A (en) 1995-11-03 1998-04-21 Probe Technology Membrane for holding a probe tip in proper location
US5970167A (en) 1995-11-08 1999-10-19 Alpha Innotech Corporation Integrated circuit failure analysis using color voltage contrast
US5892539A (en) 1995-11-08 1999-04-06 Alpha Innotech Corporation Portable emission microscope workstation for failure analysis
US6483328B1 (en) * 1995-11-09 2002-11-19 Formfactor, Inc. Probe card for probing wafers with raised contact elements
US5994152A (en) 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US5773987A (en) 1996-02-26 1998-06-30 Motorola, Inc. Method for probing a semiconductor wafer using a motor controlled scrub process
US6071630A (en) 1996-03-04 2000-06-06 Shin-Etsu Chemical Co., Ltd. Electrostatic chuck
US5764409A (en) 1996-04-26 1998-06-09 Alpha Innotech Corp Elimination of vibration by vibration coupling in microscopy applications
US6086386A (en) 1996-05-24 2000-07-11 Tessera, Inc. Flexible connectors for microelectronic elements
US5644249A (en) 1996-06-07 1997-07-01 Probe Technology Method and circuit testing apparatus for equalizing a contact force between probes and pads
US7036221B2 (en) 1996-07-09 2006-05-02 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor element-mounting board
US5751157A (en) 1996-07-22 1998-05-12 Probe Technology Method and apparatus for aligning probes
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US7109731B2 (en) 1996-08-08 2006-09-19 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6437584B1 (en) 1996-08-08 2002-08-20 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6247228B1 (en) 1996-08-12 2001-06-19 Tessera, Inc. Electrical connection with inwardly deformable contacts
US5945836A (en) 1996-10-29 1999-08-31 Hewlett-Packard Company Loaded-board, guided-probe test fixture
US6414502B1 (en) 1996-10-29 2002-07-02 Agilent Technologies, Inc. Loaded-board, guided-probe test fixture
US6133072A (en) 1996-12-13 2000-10-17 Tessera, Inc. Microelectronic connector with planar elastomer sockets
US5764072A (en) 1996-12-20 1998-06-09 Probe Technology Dual contact probe assembly for testing integrated circuits
US6690185B1 (en) * 1997-01-15 2004-02-10 Formfactor, Inc. Large contactor with multiple, aligned contactor units
JPH10221374A (en) 1997-02-03 1998-08-21 Nippon Denshi Zairyo Kk Perpendicularly operating probe card and probe unit used in the same and manufacture of probe unit
US20010012739A1 (en) 1997-03-17 2001-08-09 Grube Gary W. Composite microelectronic spring structure and method for making same
US5884395A (en) 1997-04-04 1999-03-23 Probe Technology Assembly structure for making integrated circuit chip probe cards
US6027630A (en) 1997-04-04 2000-02-22 University Of Southern California Method for electrochemical fabrication
US5923178A (en) 1997-04-17 1999-07-13 Cerprobe Corporation Probe assembly and method for switchable multi-DUT testing of integrated circuit wafers
US5969533A (en) 1997-05-15 1999-10-19 Mitsubishi Denki Kabushiki Kaisha Probe card and LSI test method using probe card
US7068057B2 (en) 1997-06-10 2006-06-27 Cascade Microtech, Inc. Low-current pogo probe card
US5847936A (en) * 1997-06-20 1998-12-08 Sun Microsystems, Inc. Optimized routing scheme for an integrated circuit/printed circuit board
US6646455B2 (en) 1997-07-24 2003-11-11 Mitsubishi Denki Kabsuhiki Kaisha Test probe for semiconductor devices, method of manufacturing of the same, and member for removing foreign matter
US6066957A (en) 1997-09-11 2000-05-23 Delaware Capital Formation, Inc. Floating spring probe wireless test fixture
US6204674B1 (en) 1997-10-31 2001-03-20 Probe Technology, Inc. Assembly structure for making integrated circuit chip probe cards
US6278284B1 (en) 1998-02-16 2001-08-21 Nec Corporation Testing IC socket
US6411112B1 (en) 1998-02-19 2002-06-25 International Business Machines Corporation Off-axis contact tip and dense packing design for a fine pitch probe
US6246245B1 (en) 1998-02-23 2001-06-12 Micron Technology, Inc. Probe card, test method and test system for semiconductor wafers
JPH11241690A (en) 1998-02-26 1999-09-07 Sanden Corp Scroll type fluid machinery
US5952843A (en) 1998-03-24 1999-09-14 Vinh; Nguyen T. Variable contact pressure probe
US6064215A (en) 1998-04-08 2000-05-16 Probe Technology, Inc. High temperature probe card for testing integrated circuits
US6292003B1 (en) 1998-07-01 2001-09-18 Xilinx, Inc. Apparatus and method for testing chip scale package integrated circuits
US6433571B1 (en) 1998-07-06 2002-08-13 Motorola, Inc. Process for testing a semiconductor device
US6031282A (en) 1998-08-27 2000-02-29 Advantest Corp. High performance integrated circuit chip package
US7274195B2 (en) 1998-08-31 2007-09-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device test probe
US20050189955A1 (en) 1998-08-31 2005-09-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device test probe having improved tip portion
US6633176B2 (en) 1998-08-31 2003-10-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor device test probe having improved tip portion and manufacturing method thereof
US6184576B1 (en) 1998-09-21 2001-02-06 Advantest Corp. Packaging and interconnection of contact structure
US6215320B1 (en) 1998-10-23 2001-04-10 Teradyne, Inc. High density printed circuit board
US6441315B1 (en) 1998-11-10 2002-08-27 Formfactor, Inc. Contact structures with blades having a wiping motion
US6825422B2 (en) 1998-11-10 2004-11-30 Formfactor, Inc. Interconnection element with contact blade
US20010040460A1 (en) 1998-11-23 2001-11-15 Brian Samuel Beaman Method of making a high density integral test probe
US20030027423A1 (en) 1998-11-30 2003-02-06 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6576485B2 (en) 1998-11-30 2003-06-10 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6677245B2 (en) 1998-11-30 2004-01-13 Advantest Corp. Contact structure production method
US6255126B1 (en) 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements
US6419500B1 (en) 1999-03-08 2002-07-16 Kulicke & Soffa Investment, Inc. Probe assembly having floatable buckling beam probes and apparatus for abrading the same
US6530148B1 (en) 1999-03-08 2003-03-11 Kulicke And Soffa Investments, Inc. Method for making a probe apparatus for testing integrated circuits
US6573738B1 (en) 1999-03-25 2003-06-03 Tokyo Cathode Laboratory Co., Ltd. Multi-layered probe for a probecard
US6259261B1 (en) 1999-04-16 2001-07-10 Sony Corporation Method and apparatus for electrically testing semiconductor devices fabricated on a wafer
US6486689B1 (en) 1999-05-26 2002-11-26 Nidec-Read Corporation Printed circuit board testing apparatus and probe device for use in the same
US6336259B1 (en) 1999-05-28 2002-01-08 Fritz Stahlecker Apparatus and method for condensing a drafted fiber strand
US6344753B1 (en) 1999-06-18 2002-02-05 Mitsubishi Denki Kabushiki Kaisha Test socket having improved contact terminals, and method of forming contact terminals of the test socket
US6218203B1 (en) 1999-06-28 2001-04-17 Advantest Corp. Method of producing a contact structure
WO2001009623A1 (en) 1999-07-28 2001-02-08 Nanonexus, Inc. Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
US6443784B1 (en) 1999-09-24 2002-09-03 Gunsei Kimoto Contact and contact assembly using the same
US6641430B2 (en) 2000-02-14 2003-11-04 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6676438B2 (en) 2000-02-14 2004-01-13 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6496026B1 (en) 2000-02-25 2002-12-17 Microconnect, Inc. Method of manufacturing and testing an electronic device using a contact device having fingers and a mechanical ground
US6566898B2 (en) 2000-03-06 2003-05-20 Wentworth Laboratories, Inc. Temperature compensated vertical pin probing device
US6586955B2 (en) 2000-03-13 2003-07-01 Tessera, Inc. Methods and structures for electronic probing arrays
US6842023B2 (en) 2000-04-13 2005-01-11 Innotech Corporation Probe card apparatus and electrical contact probe having curved or sloping blade profile
US6529021B1 (en) 2000-04-25 2003-03-04 International Business Machines Corporation Self-scrub buckling beam probe
US6575767B2 (en) 2000-05-17 2003-06-10 Enplas Corporation Contact pin assembly, contact pin assembly manufacturing method, contact pin assembling structure, contact pin assembling structure manufacturing method, and socket for electrical parts
US20020125584A1 (en) 2000-05-29 2002-09-12 Norito Umehara Semiconductor device and method of manufacturing same
US6420887B1 (en) 2000-06-13 2002-07-16 Kulicke & Soffa Investment, Inc. Modulated space transformer for high density buckling beam probe and method for making the same
US6424164B1 (en) 2000-06-13 2002-07-23 Kulicke & Soffa Investment, Inc. Probe apparatus having removable beam probes
US20020070743A1 (en) 2000-08-04 2002-06-13 Technoprobe S.R.L. Testing head having vertical probes
US6853208B2 (en) 2000-08-09 2005-02-08 Nihon Denshizairyo Kabushiki Kaisha Vertical probe card
US6970005B2 (en) 2000-08-24 2005-11-29 Texas Instruments Incorporated Multiple-chip probe and universal tester contact assemblage
US20060033516A1 (en) 2000-08-24 2006-02-16 Rincon Reynaldo M Multiple-chip probe and universal tester contact assemblage
US6538336B1 (en) * 2000-11-14 2003-03-25 Rambus Inc. Wirebond assembly for high-speed integrated circuits
US6570396B1 (en) 2000-11-24 2003-05-27 Kulicke & Soffa Investment, Inc. Interface structure for contacting probe beams
US20020153913A1 (en) 2000-11-28 2002-10-24 Japan Electronic Materials Corp. Probe for the probe card
US7064564B2 (en) 2001-02-01 2006-06-20 Antares Contech, Inc. Bundled probe apparatus for multiple terminal contacting
US6847221B2 (en) 2001-03-29 2005-01-25 Gunsei Kimoto Probe pin assembly
US6525552B2 (en) 2001-05-11 2003-02-25 Kulicke And Soffa Investments, Inc. Modular probe apparatus
US7108546B2 (en) * 2001-06-20 2006-09-19 Formfactor, Inc. High density planar electrical interface
US20020194730A1 (en) 2001-06-21 2002-12-26 Da-Yuan Shih Process and structure to repair damaged probes mounted on a space transformer
US7143500B2 (en) 2001-06-25 2006-12-05 Micron Technology, Inc. Method to prevent damage to probe card
US6731123B2 (en) 2001-09-03 2004-05-04 Gunsei Kimoto Probe device
US6917525B2 (en) 2001-11-27 2005-07-12 Nanonexus, Inc. Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US20030116346A1 (en) 2001-12-21 2003-06-26 Forster James Allam Low cost area array probe for circuits having solder-ball contacts are manufactured using a wire bonding machine
US7078921B2 (en) 2001-12-25 2006-07-18 Sumitomo Electric Industries, Ltd. Contact probe
US20040104737A1 (en) 2001-12-25 2004-06-03 Tsuyoshi Haga Contact probe
US6727719B2 (en) 2002-01-11 2004-04-27 Taiwan Semiconductor Manufacturing Co., Ltd. Piercer combined prober for CU interconnect water-level preliminary electrical test
US7015707B2 (en) 2002-03-20 2006-03-21 Gabe Cherian Micro probe
US6768331B2 (en) 2002-04-16 2004-07-27 Teradyne, Inc. Wafer-level contactor
US7227371B2 (en) 2002-05-08 2007-06-05 Formfactor, Inc. High performance probe system
US6965244B2 (en) 2002-05-08 2005-11-15 Formfactor, Inc. High performance probe system
US20070229100A1 (en) * 2002-05-08 2007-10-04 Formfactor, Inc. High Performance Probe System
US20040036493A1 (en) 2002-05-08 2004-02-26 Miller Charles A. High performance probe system
US20040046579A1 (en) * 2002-05-08 2004-03-11 Formfactor, Inc. High performance probe system
US6707311B2 (en) 2002-07-09 2004-03-16 Advantest Corp. Contact structure with flexible cable and probe contact assembly using same
US6881974B2 (en) 2002-08-29 2005-04-19 Micron Technology, Inc. Probe card for testing microelectronic components
US6917102B2 (en) 2002-10-10 2005-07-12 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
US6765228B2 (en) 2002-10-11 2004-07-20 Taiwan Semiconductor Maunfacturing Co., Ltd. Bonding pad with separate bonding and probing areas
US7202682B2 (en) 2002-12-20 2007-04-10 Formfactor, Inc. Composite motion probing
US20040119485A1 (en) 2002-12-20 2004-06-24 Koch Daniel J. Probe finger structure and method for making a probe finger structure
US6945827B2 (en) 2002-12-23 2005-09-20 Formfactor, Inc. Microelectronic contact structure
US6897666B2 (en) 2002-12-31 2005-05-24 Intel Corporation Embedded voltage regulator and active transient control device in probe head for improved power delivery and method
US20050179458A1 (en) 2003-02-04 2005-08-18 Microfabrica Inc. Cantilever microprobes for contacting electronic components and methods for making such probes
US7511523B2 (en) 2003-02-04 2009-03-31 Microfabrica Inc. Cantilever microprobes for contacting electronic components and methods for making such probes
US7265565B2 (en) 2003-02-04 2007-09-04 Microfabrica Inc. Cantilever microprobes for contacting electronic components and methods for making such probes
US20060171425A1 (en) 2003-03-17 2006-08-03 Phicom Corporation Probe and method of making same
US7285966B2 (en) 2003-03-17 2007-10-23 Phicom Corporation Probe and method of making same
US20060208752A1 (en) 2003-04-15 2006-09-21 Michinobu Tanioka Inspection probe
US6965245B2 (en) 2003-05-01 2005-11-15 K&S Interconnect, Inc. Prefabricated and attached interconnect structure
US7173441B2 (en) 2003-05-01 2007-02-06 Sv Probe Pte., Ltd. Prefabricated and attached interconnect structure
US20040239352A1 (en) 2003-05-26 2004-12-02 Nec Electronics Corporation Probe card used for inspecting semiconductor devices
USD507198S1 (en) 2003-06-11 2005-07-12 K&S Interconnect, Inc. Straight protruding probe beam contour surfaces
USD510043S1 (en) 2003-06-11 2005-09-27 K&S Interconnect, Inc. Continuously profiled probe beam
US20050012513A1 (en) 2003-07-17 2005-01-20 Shih-Jye Cheng Probe card assembly
US7217138B2 (en) 2003-11-03 2007-05-15 Antares Contech, Inc. Multipath interconnect with meandering contact cantilevers
US6890185B1 (en) 2003-11-03 2005-05-10 Kulicke & Soffa Interconnect, Inc. Multipath interconnect with meandering contact cantilevers
USD525207S1 (en) 2003-12-02 2006-07-18 Antares Contech, Inc. Sheet metal interconnect array
US7059865B2 (en) 2004-01-16 2006-06-13 K & S Interconnect, Inc. See-saw interconnect assembly with dielectric carrier grid providing spring suspension
US7071715B2 (en) 2004-01-16 2006-07-04 Formfactor, Inc. Probe card configuration for low mechanical flexural strength electrical routing substrates
US7189078B2 (en) 2004-01-16 2007-03-13 Antares Contech, Inc. See-saw interconnect assembly with dielectric carrier grid providing spring suspension
US7218127B2 (en) 2004-02-18 2007-05-15 Formfactor, Inc. Method and apparatus for probing an electronic device in which movement of probes and/or the electronic device includes a lateral component
US20050184743A1 (en) * 2004-02-24 2005-08-25 Nihon Denshizairyo Kabushiki Kaisha Probe card
US20060082380A1 (en) 2004-03-19 2006-04-20 Nec Corporation Inspection probe, method for preparing the same, and method for inspecting elements
US7218131B2 (en) 2004-03-19 2007-05-15 Renesas Technology Corp. Inspection probe, method for preparing the same, and method for inspecting elements
US20060261828A1 (en) 2004-04-28 2006-11-23 Cram Daniel P Resilient contact probe apparatus
US7759949B2 (en) 2004-05-21 2010-07-20 Microprobe, Inc. Probes with self-cleaning blunt skates for contacting conductive pads
US7148709B2 (en) 2004-05-21 2006-12-12 Microprobe, Inc. Freely deflecting knee probe with controlled scrub motion
US20100182031A1 (en) 2004-05-21 2010-07-22 Microprobe, Inc. Layered Probes With Core
US20100182030A1 (en) 2004-05-21 2010-07-22 Microprobe, Inc. Knee Probe Having Reduced Thickness Section for Control of Scrub Motion
US7733101B2 (en) 2004-05-21 2010-06-08 Microprobe, Inc. Knee probe having increased scrub motion
US20110062978A1 (en) 2004-05-21 2011-03-17 Microprobe, Inc. Multiple contact probes
US7046021B2 (en) 2004-06-30 2006-05-16 Microprobe Double acting spring probe
US20100289512A1 (en) 2004-07-09 2010-11-18 Microprobe, Inc. Probes with offset arm and suspension structure
US7091729B2 (en) 2004-07-09 2006-08-15 Micro Probe Cantilever probe with dual plane fixture and probe apparatus therewith
US6956389B1 (en) 2004-08-16 2005-10-18 Jem America Corporation Highly resilient cantilever spring probe for testing ICs
US20060040417A1 (en) * 2004-08-19 2006-02-23 Formfactor, Inc. Method to build a wirebond probe card in a many at a time fashion
US20060073712A1 (en) 2004-10-05 2006-04-06 Ephraim Suhir Apparatus and test device for the application and measurement of prescribed, predicted and controlled contact pressure on wires
US7088118B2 (en) * 2004-12-15 2006-08-08 Chipmos Technologies (Bermuda) Ltd. Modularized probe card for high frequency probing
US20060170440A1 (en) 2005-02-02 2006-08-03 Mjc Probe Incorporation Vertical probe card, probes for vertical probe card and method of making the same
US20060186905A1 (en) 2005-02-22 2006-08-24 Fujitsu Limited Contactor for electronic parts and a contact method
US20110273198A1 (en) 2005-12-07 2011-11-10 Microprobe, Inc. Low profile probe having improved mechanical scrub and reduced contact inductance
US7649367B2 (en) 2005-12-07 2010-01-19 Microprobe, Inc. Low profile probe having improved mechanical scrub and reduced contact inductance
US20100109691A1 (en) 2005-12-07 2010-05-06 Microprobe, Inc. Low Profile Probe Having Improved Mechanical Scrub and Reduced Contact Inductance
US7417447B2 (en) 2005-12-14 2008-08-26 Microprobe, Inc. Probe cards employing probes having retaining portions for potting in a retention arrangement
US7345492B2 (en) 2005-12-14 2008-03-18 Microprobe, Inc. Probe cards employing probes having retaining portions for potting in a retention arrangement
US20070145989A1 (en) * 2005-12-27 2007-06-28 Hua Zhu Probe card with improved transient power delivery
US20070167022A1 (en) 2005-12-30 2007-07-19 Industrial Technology Research Institute Method of fabricating vertical probe head
US7312617B2 (en) 2006-03-20 2007-12-25 Microprobe, Inc. Space transformers employing wire bonds for interconnections with fine pitch contacts
US7281305B1 (en) 2006-03-31 2007-10-16 Medtronic, Inc. Method of attaching a capacitor to a feedthrough assembly of a medical device
US7150658B1 (en) 2006-06-19 2006-12-19 Excel Cell Electronic Co., Ltd. Terminal for an electrical connector
US7436192B2 (en) 2006-06-29 2008-10-14 Microprobe, Inc. Probe skates for electrical testing of convex pad topologies
US7659739B2 (en) 2006-09-14 2010-02-09 Micro Porbe, Inc. Knee probe having reduced thickness section for control of scrub motion
US20080074132A1 (en) 2006-09-27 2008-03-27 Formfactor, Inc. Single support structure probe group with staggered mounting pattern
US7786740B2 (en) 2006-10-11 2010-08-31 Astria Semiconductor Holdings, Inc. Probe cards employing probes having retaining portions for potting in a potting region
US20110006796A1 (en) 2006-10-11 2011-01-13 Microprobe, Inc. Probe retention arrangement
US20090201041A1 (en) 2007-04-10 2009-08-13 Microprobe, Inc. Vertical Probe Array Arranged to Provide Space Transformation
US7514948B2 (en) 2007-04-10 2009-04-07 Microprobe, Inc. Vertical probe array arranged to provide space transformation
US20110273199A1 (en) 2007-04-10 2011-11-10 Microprobe, Inc. Vertical probe array arranged to provide space transformation
US20100176832A1 (en) 2007-10-19 2010-07-15 Microprobe, Inc. Vertical Guided Layered Probe
US7671610B2 (en) 2007-10-19 2010-03-02 Microprobe, Inc. Vertical guided probe array providing sideways scrub motion
US8230593B2 (en) 2008-05-29 2012-07-31 Microprobe, Inc. Probe bonding method having improved control of bonding material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Levy, Larry, "Water Probe TM System", Southwest Workshop formfactor inc. Jun. 1997, 1-19.
Sporck, Nicholas , "A New Probe Card Technology Using Compliant Microsprings", Proceedings 1997 IEEE International Test Conference Nov. 1, 1997 , 527-532.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988091B2 (en) 2004-05-21 2015-03-24 Microprobe, Inc. Multiple contact probes
US9097740B2 (en) 2004-05-21 2015-08-04 Formfactor, Inc. Layered probes with core
US9316670B2 (en) 2004-05-21 2016-04-19 Formfactor, Inc. Multiple contact probes
US9476911B2 (en) 2004-05-21 2016-10-25 Microprobe, Inc. Probes with high current carrying capability and laser machining methods
USRE46221E1 (en) 2004-05-21 2016-11-29 Microprobe, Inc. Probe skates for electrical testing of convex pad topologies
US9121868B2 (en) 2004-07-09 2015-09-01 Formfactor, Inc. Probes with offset arm and suspension structure
US8907689B2 (en) 2006-10-11 2014-12-09 Microprobe, Inc. Probe retention arrangement
US9310428B2 (en) 2006-10-11 2016-04-12 Formfactor, Inc. Probe retention arrangement
US9274143B2 (en) 2007-04-10 2016-03-01 Formfactor, Inc. Vertical probe array arranged to provide space transformation
US8723546B2 (en) 2007-10-19 2014-05-13 Microprobe, Inc. Vertical guided layered probe
US20120313621A1 (en) * 2008-05-29 2012-12-13 Microprobe, Inc. Probe bonding method having improved control of bonding material
US9250266B2 (en) * 2008-05-29 2016-02-02 Microprobe, Inc. Probe bonding method having improved control of bonding material

Also Published As

Publication number Publication date
US7312617B2 (en) 2007-12-25
US20070216432A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
USRE44407E1 (en) Space transformers employing wire bonds for interconnections with fine pitch contacts
US11585831B2 (en) Test probing structure
US8322020B2 (en) Method for fabricating a semiconductor test probe card space transformer
US6351133B1 (en) Packaging and interconnection of contact structure
US7180318B1 (en) Multi-pitch test probe assembly for testing semiconductor dies having contact pads
US20080018350A1 (en) Test probe for integrated circuits with ultra-fine pitch terminals
KR20170131678A (en) Probe card for test apparatus of electronic apparatus having improved filtering characteristic
TWI416121B (en) Probe card
KR20100052959A (en) Interface structure for wafer test equipments
US20170192037A1 (en) Testing of electronic devices through capacitive interface
JP2008532042A (en) Probe card having a multilayer substrate
US6255585B1 (en) Packaging and interconnection of contact structure
CN110531125B (en) Space transformer, probe card and manufacturing method thereof
US11162980B2 (en) Coaxial via arrangement in probe card for automated test equipment
US7474113B2 (en) Flexible head probe for sort interface units
US11333683B2 (en) Transposed via arrangement in probe card for automated test equipment
US20030234660A1 (en) Direct landing technology for wafer probe
JP2001242195A (en) Contact structure
JPH06308155A (en) Probe device
KR20240040494A (en) Ceramic Interface Board for Semiconductor Test and Manufacturing Method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROPROBE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KISTER, JANUARY;REEL/FRAME:024569/0085

Effective date: 20100618

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

AS Assignment

Owner name: HSBC BANK USA, NATIONAL ASSOCIATION, CALIFORNIA

Free format text: SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS;ASSIGNORS:FORMFACTOR, INC.;ASTRIA SEMICONDUCTOR HOLDINGS, INC.;CASCADE MICROTECH, INC.;AND OTHERS;REEL/FRAME:039184/0280

Effective date: 20160624

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY