USRE43865E1 - Dehumidifying element and manufacturing method for the same - Google Patents

Dehumidifying element and manufacturing method for the same Download PDF

Info

Publication number
USRE43865E1
USRE43865E1 US13/032,573 US200213032573A USRE43865E US RE43865 E1 USRE43865 E1 US RE43865E1 US 200213032573 A US200213032573 A US 200213032573A US RE43865 E USRE43865 E US RE43865E
Authority
US
United States
Prior art keywords
sap
salt solution
carrier
dehumidifying element
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US13/032,573
Inventor
Stephan Faust
Guido Falk
Dae-Young Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Priority to US13/032,573 priority Critical patent/USRE43865E1/en
Application granted granted Critical
Publication of USRE43865E1 publication Critical patent/USRE43865E1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28028Particles immobilised within fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/2804Sheets with a specific shape, e.g. corrugated, folded, pleated, helical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details

Definitions

  • the elements can be included in a sheet composed of inorganic fiber, or can be included in a device formed by the sheet.
  • nucleus and bio-film are formed while the element dehumidifies, thereby closing pores of the humidity exchanger element.
  • a dehumidifying element which comprises a step of engaging a SAP to a carrier; a step of drying the carrier to which the SAP is engaged; a step of selecting a salt solution; a step of contacting the carrier with the salt solution in order to perform an ionic modification of the SAP; and a step of drying the carrier to which the SAP is engaged.
  • the preferable SAPs include polymers and copolymers in which acryl acid and acrylamide are weakly cross-linked, and propfpolymers graft polymers of starch, cross-linked amylum, and cellulose derivative.
  • the dehumidifying element including the SAP can be fabricated to have a predetermined shape, can be contained in a container formed of material which permits gas to pass, or can be contained in a porous carrier or attached to an outer surface of the porous carrier. That is, the dehumidifying element can be constructed variously.
  • a particle diameter of the respective granules is selected in a range of 0.1 ⁇ m ⁇ 10,000 ⁇ m; grain fraction in a range of 1 ⁇ m ⁇ 5,000 ⁇ m is more preferable, and grain fraction in a range of 20 ⁇ m ⁇ 1,000 ⁇ m is most preferable.
  • the dehumidifying element including the SAP When the dehumidifying element including the SAP is realized as fibers, it can be used in many fields. Especially, if the porous carrier includes the dehumidifying element including the SAP, the dehumidifying element can be realized as a textile, meshed textile, knitted fabric, knit, or bonded fabric. It is also possible to combine the aforementioned embodiments of the porous carrier.
  • Methods for providing the dehumidifying element including the SAP in the carrier or on a surface of the carrier include a method for coating the dehumidifying element on the porous carrier or a method for inserting the dehumidifying element in the porous carrier.
  • the porous carrier as a fiber composite formed of natural fiber and artificial fiber
  • humidity carrying characteristics of the natural fiber and mechanical characteristics of the porous carrier formed by the artificial fiber can be improved.
  • the porous carrier can be formed with a single layer or multiple layers, or can be flat or structured.
  • the porous carrier is formed with one or plural sheets, it is formed as a dehumidifying body along the periphery of which air flows along, or which air passes through.
  • the sheet is structured by forming a wave-shape of the sheet as a trapezoid or a triangle in a horizontal sectional surface. Then, plural and smooth sheets are arranged in such a method that spatial 3-dimensional channels are generated. Through the channels, air from which humidity will be removed is guided.
  • the hygroscopic characteristics of the element fabricated in the 3-dimension shape can be realized by selecting the salt solution.
  • the SAP takes a granular form or the SAP is included in the carrier, by drying the SAP at first, the SAP can absorb the salt solution much more.
  • the SAP can be contacted to the hygroscopic salt.
  • the SAP is provided with the hygroscopic salt by contacting the salt solution with the SAP.
  • the hydrogel generated by contacting the granules with the salt solution or SAP is dried, thereby being converted into a state capable of absorbing moisture.
  • the agglomeration of the SAP is crushed to pieces and the granules are classified before contacting with the salt solution. According to this, uniform characteristics of the element can be realized.
  • the SAP is engaged to each other and forms large agglomeration after the step of final drying, it is also desirable that the agglomeration of the modified SAP is crushed to pieces and the granules are classified.
  • Another method for fabricating a dehumidifying element with an SAP desiccant modified ionically is making contact the carrier including the SAP with a salt solution.
  • the carrier including the SAP is contacted to the salt solution, dried slowly, and the drying temperature is increased slowly, an adequate regeneration is possible and the salt solution is excellently absorbed by the SAP. On the contrary, it has been observed that the salt is extracted from the surface of the carrier instead of being absorbed perfectly into the SAP when the regeneration temperature is increased fast to level.
  • the most important in the preparation of the desiccant is to select the concentration of the salt solution between 5-15 wt %.
  • the sorption capacity of the modified SAP can be optimized between the restrictions in the liquid sorption capacity and in the highest concentration of the salt solution. That is, the hygroscopic salt of the maximum amount can be contacted to the SAP by selecting the salt concentration between 5-15 wt %, or more preferably as 10 wt %.
  • the reason is that the salt solution cannot be absorbed properly into the SAP in case of using too high concentrated solution due to the inherent characteristics of the SAP restraining itself from swelling in high ion density, and that the salt ions are not absorbed sufficiently into the SAP in case of using too low concentrated solution due to the limitation on the liquid sorption capacity of the SAP.
  • the carrier including the SAP of a granular form When the carrier including the SAP of a granular form is contacted with the salt solution, if the absorption capacity for the salt solution of the SAP is very high, the granule particles tend to be agglomerated to form a large lump after a step of drying. Therefore, it is preferred that the carrier is contacted with the salt solution in several steps. At this time, at each step, the carrier is partly contacted with the salt solution, and the contact is realized by drizzling, sprinkling, spraying, etc.
  • FIG. 1 is a longitudinal sectional view of the dehumidifying element according to the present invention.
  • the dehumidifying element of the present invention is composed of a porous carrier 2 to the surface or the inside of which SAP is attached.
  • the SAP is formed in the porous carrier or at a surface thereof as granular particles 1 .
  • the granular particles 1 include the SAP, and the SAP is contacted to a hygroscopic base (not shown).
  • the carrier 2 consists of fiber composed of natural or composite polymer and a filament.
  • the carrier 2 includes fibers 3 containing the SAP therein, in which the fibers 3 are inserted into the porous carrier 2 .
  • the fibers 3 are contacted to the hygroscopic base in a finely distributed form like the granules 1 , and can be applied to a surface of the porous carrier 2 .
  • a particle diameter of the granules 1 is approximately identical for all granular particles and is in a range of 20 ⁇ m ⁇ 1,000 ⁇ m. Less preferably, but always suitably, a diameter of grain fraction is in a range of 1 ⁇ m ⁇ 5,000 ⁇ m, in which particles of 20 ⁇ m ⁇ 1,000 ⁇ m are basically considered.
  • the SAP forming the granules includes polymer and copolymer in which acryl acid and acrylamide are weakly cross-linked, and amylum and cellulose derivatives corresponding to propfpolymer graft polymer of starch and cross-linked.
  • the fiber composite is a matrix and includes natural fibers or one or plural artificial fiber materials corresponding to reinforcing fibers.
  • the artificial fiber material improves mechanical characteristics of the porous carrier 2 or the fiber composite, and the natural fiber carries humidity better.
  • the SAP is contacted to the hygroscopic base by soaking a water-based solution of the hygroscopic base into the granules of the SAP or the SAP fibers, drizzling, sprinkling or by other methods.
  • the SAP absorbs the salt solution by its own absorption characteristics.
  • the modification of the SAP in other words, contacting the SAP with the salt solution, the SAP can be modified before the granules of the SAP or the SAP fibers are included in the carrier or at a surface of the carrier, or can be modified after the SAP granules or the SAP fibers are already included in the carrier or at the surface of the carrier.
  • FIG. 4C illustrates a plurality of layers according to the arrangement of FIG. 4B , by which a dehumidifying body having 3-dimensional channels can be formed.

Abstract

A dehumidifying element includes a super absorbing polymer (SAP), and a hygroscopic base, thereby maintaining hygroscopic characteristics regardless of aging and a high humidity absorbing rate and needing a smaller amount of energy for regeneration.

Description

The present application is a divisional reissue application of U.S. patent application Ser. No. 12/698,842, filed Feb. 2, 2010, now U.S. Pat. No. Re. 42,282 which is a reissue application under 35 U.S.C. §251 of U.S. patent application Ser. No. 10/500,254, filed Nov. 29, 2004, now U.S. Pat. No. 7,326,363, issued Feb. 5, 2008, which claims priority to International Application No. PCT/KR02/02456, filed Dec. 27, 2002, which claims priority to German Application No. 101 64 632.1-43, filed Dec. 27, 2001, the disclosure of each which is hereby incorporated by reference in its entirety for all purposes.
TECHNICAL FIELD
The present invention relates to a desiccant, dehumidifying element and a manufacturing method for the same.
BACKGROUND ART
A humidity exchanger element dehumidifies gas by sorption mechanism of the desiccants such as aluminum oxide-silicate or titanium silicate/titanium-aluminum silicate.
According to U.S. Pat. No. 5,505,769, the elements can be included in a sheet composed of inorganic fiber, or can be included in a device formed by the sheet.
However, the conventional humidity exchanger element necessitates regeneration at excessively elevated temperatures (approximately 90˜150° C.). In addition, the element has demerits that a sorption capacity thereof is limited and that it causes a large amount of pressure loss of supply air for being dehumidified. Also, a sorption capacity of the humidity exchanger element is decreased over time, that is, the element is greatly influenced by aging.
Also, nucleus and bio-film are formed while the element dehumidifies, thereby closing pores of the humidity exchanger element.
According to G. Heinrich's paper entitled “sorption-supported air-conditioning” published by the C.F. Müller Publishing Company in 1997, the dehumidifying element is made by containing lithium chloride in corrugated cardboard, wherein hygroscopic characteristics of the lithium chloride are used for dehumidifying.
However, The humidity exchanger element containing lithium chloride can not be used in highly humid environment. This is because the lithium chloride tends to liquefy after absorbing the moisture in the air especially in a highly humid condition.
That is, when a solid lithium chloride is changed into a liquid lithium chloride and the cellulose, the carrier thereof, comes to be unable to absorb and maintain the liquid lithium chloride due to its limited sorption capacity, then excessive liquid lithium chloride is dripping away from the element resulting in a reduced content of the lithium chloride in the element.
DISCLOSURE OF THE INVENTION
Therefore, an object of the present invention is to provide a desiccant and a dehumidifying element which shows high humidity absorbing capacity without the aging influence while necessitating a small amount of energy for regeneration and a methods for fabricating the same. To achieve these and other objects and advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, there is provided a desiccant which has an improved sorption capacity prepared by the ionic modification of a super absorbing polymer (SAP) through contacting it with a salt solution.
There is also provided two methods for fabricating a dehumidifying element. The one method for fabricating a dehumidifying element which consists of a desiccant itself, comprises a step of selecting a salt solution; a step of drying a super absorbing polymer (SAP), a step of contacting the dried SAP with the salt solution; and a step of drying a hydrogel generated by the contact between the SAP and the salt solution.
There is provided another method for fabricating a dehumidifying element which comprises a step of engaging a SAP to a carrier; a step of drying the carrier to which the SAP is engaged; a step of selecting a salt solution; a step of contacting the carrier with the salt solution in order to perform an ionic modification of the SAP; and a step of drying the carrier to which the SAP is engaged.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a longitudinal sectional view showing a porous carrier including fibers and granules having a super absorbing polymer (SAP), in which the granules are applied to an upper portion thereof;
FIG. 2 is a longitudinal sectional view of a porous carrier having a wave shape of a trapezium and formed by a structured sheet;
FIG. 3 is a perspective view of the porous carrier of FIG. 2; and
FIGS. 4A, 4B, and 4C are schematic views showing methods by which three dimensional channels are generated in which the plural porous carriers are structured and/or flat sheets are arranged.
MODE FOR CARRYING OUT THE PREFERRED EMBODIMENTS
The present invention will now be described with reference to accompanying drawings.
The desiccant according to the present invention is prepared by the ionic modification of a super absorbing polymer (SAP). The desiccant can absorb more than four times larger amount of the moisture as compared with conventional desiccants such as silica-gels and zeolites. When the relative humidity is 50%, the desiccant can absorb the moisture approximately as much as its dry mass.
A hygroscopic salt such as lithium chloride is used in the ionic modification of the SAP. It has been found that the hygroscopic salt such as lithium chloride has an excellent bonding force with the SAP by substitution of Na+ by Li+).
That is, by the bonding with the SAP, the hygroscopic salt is prevented from weeping after absorbing moisture from the air. At the same time, the hygroscopic characteristics of the SAP are improved enormously by the ionic modification with the hygroscopic salt.
One of the most important finding as in the present invention is that the improvement in the sorption capacity by the ionic modification is strongly dependent upon the concentration of the hygroscopic salt solution. When too high concentration of the salt solution is used in order to allow the SAP to contact with sufficiently large amount of hygroscopic salt ions, the salt solution is found not to be absorbed at all or completely into the SAP. The reason for this is considered that the swelling of the SAP is restrained in a high concentration of the salt solution and thus the amount of the absorbed solution into the SAP is reduced. Consequently, the ionic modification is not performed to a proper extent and the sorption capacity is not improved sufficiently.
On the other hand, if too low concentration of the salt solution is used, the absorbed amount of the salt ions is not sufficiently large even though the SAP absorbs large amount of the liquid solution. As a consequence, the ionic modification thereof is not performed to a proper extent and the sorption capacity is not improved sufficiently.
The hydrogel generated by contacting the SAP with a salt solution can be changed into a proper state capable of absorbing moisture via a step of drying.
In the present invention, the preferable SAPs include polymers and copolymers in which acryl acid and acrylamide are weakly cross-linked, and propfpolymers graft polymers of starch, cross-linked amylum, and cellulose derivative.
The dehumidifying element including the SAP can be fabricated to have a predetermined shape, can be contained in a container formed of material which permits gas to pass, or can be contained in a porous carrier or attached to an outer surface of the porous carrier. That is, the dehumidifying element can be constructed variously.
The dehumidifying element including the SAP can be formed with granules, and the dehumidifying element formed with the granules is contained in a container through which air passes or fixed on a carrier having a predetermined shape.
In case that the dehumidifying element is formed with granules, a particle diameter of the respective granules is selected in a range of 0.1 μm˜10,000 μm; grain fraction in a range of 1 μm˜5,000 μm is more preferable, and grain fraction in a range of 20 μm˜1,000 μm is most preferable.
The base of the SAP is a water swelling polymer and/or copolymer based on (methyl-)acryl acid, (methyl-)acrylonitrile, (methyl-)acrylamide, vinyl-acetate, vinyl-pyrrolidone, vinyl-pyridine, maleic acid (anhydride), itaconic acid (anhydride), fumaric acid, and vinyl sulfone acid, base, amide, N-alkyl derivative, N,N-dialkyl derivative and five-acid ester which can be polymerized, or natural ingredients such as a product made of rubber, that is, carboxymethyl cellulose, xanthan alginate, gum Arabic, hydroxyethylcellulose, methylcellulose, starch and amylum derivative, and a product of said components combined or partially cross-linked.
When the dehumidifying element including the SAP is realized as fibers, it can be used in many fields. Especially, if the porous carrier includes the dehumidifying element including the SAP, the dehumidifying element can be realized as a textile, meshed textile, knitted fabric, knit, or bonded fabric. It is also possible to combine the aforementioned embodiments of the porous carrier.
Methods for providing the dehumidifying element including the SAP in the carrier or on a surface of the carrier include a method for coating the dehumidifying element on the porous carrier or a method for inserting the dehumidifying element in the porous carrier.
Preferably, by realizing the porous carrier as a fiber composite formed of natural fiber and artificial fiber, humidity carrying characteristics of the natural fiber and mechanical characteristics of the porous carrier formed by the artificial fiber can be improved.
The porous carrier can be formed with a single layer or multiple layers, or can be flat or structured. Herein, if the porous carrier is formed with one or plural sheets, it is formed as a dehumidifying body along the periphery of which air flows along, or which air passes through. More preferably, the sheet is structured by forming a wave-shape of the sheet as a trapezoid or a triangle in a horizontal sectional surface. Then, plural and smooth sheets are arranged in such a method that spatial 3-dimensional channels are generated. Through the channels, air from which humidity will be removed is guided.
Then, the hygroscopic characteristics of the element fabricated in the 3-dimension shape can be realized by selecting the salt solution. Regardless of the realization form that the SAP takes a granular form or the SAP is included in the carrier, by drying the SAP at first, the SAP can absorb the salt solution much more. According to this, the SAP can be contacted to the hygroscopic salt. The SAP is provided with the hygroscopic salt by contacting the salt solution with the SAP. The hydrogel generated by contacting the granules with the salt solution or SAP is dried, thereby being converted into a state capable of absorbing moisture.
When the granules of the SAP is engaged to each other and forms large agglomeration, it is preferable that the agglomeration of the SAP is crushed to pieces and the granules are classified before contacting with the salt solution. According to this, uniform characteristics of the element can be realized. Likewise, if the SAP is engaged to each other and forms large agglomeration after the step of final drying, it is also desirable that the agglomeration of the modified SAP is crushed to pieces and the granules are classified.
Another method for fabricating a dehumidifying element with an SAP desiccant modified ionically is making contact the carrier including the SAP with a salt solution.
If the carrier including the SAP is contacted to the salt solution, dried slowly, and the drying temperature is increased slowly, an adequate regeneration is possible and the salt solution is excellently absorbed by the SAP. On the contrary, it has been observed that the salt is extracted from the surface of the carrier instead of being absorbed perfectly into the SAP when the regeneration temperature is increased fast to level.
The most important in the preparation of the desiccant is to select the concentration of the salt solution between 5-15 wt %. In case of using the salt solution of the concentration between 5-15 wt %, the sorption capacity of the modified SAP can be optimized between the restrictions in the liquid sorption capacity and in the highest concentration of the salt solution. That is, the hygroscopic salt of the maximum amount can be contacted to the SAP by selecting the salt concentration between 5-15 wt %, or more preferably as 10 wt %. The reason is that the salt solution cannot be absorbed properly into the SAP in case of using too high concentrated solution due to the inherent characteristics of the SAP restraining itself from swelling in high ion density, and that the salt ions are not absorbed sufficiently into the SAP in case of using too low concentrated solution due to the limitation on the liquid sorption capacity of the SAP.
When the carrier including the SAP of a granular form is contacted with the salt solution, if the absorption capacity for the salt solution of the SAP is very high, the granule particles tend to be agglomerated to form a large lump after a step of drying. Therefore, it is preferred that the carrier is contacted with the salt solution in several steps. At this time, at each step, the carrier is partly contacted with the salt solution, and the contact is realized by drizzling, sprinkling, spraying, etc.
Preferred Embodiment
FIG. 1 is a longitudinal sectional view of the dehumidifying element according to the present invention.
As shown in FIG. 1, the dehumidifying element of the present invention is composed of a porous carrier 2 to the surface or the inside of which SAP is attached. The SAP is formed in the porous carrier or at a surface thereof as granular particles 1.
The granular particles 1 include the SAP, and the SAP is contacted to a hygroscopic base (not shown). At this time, the carrier 2 consists of fiber composed of natural or composite polymer and a filament. Further, the carrier 2 includes fibers 3 containing the SAP therein, in which the fibers 3 are inserted into the porous carrier 2. The fibers 3 are contacted to the hygroscopic base in a finely distributed form like the granules 1, and can be applied to a surface of the porous carrier 2.
A particle diameter of the granules 1 is approximately identical for all granular particles and is in a range of 20 μm˜1,000 ˜m. Less preferably, but always suitably, a diameter of grain fraction is in a range of 1 ˜m˜5,000 μm, in which particles of 20 μm˜1,000 μm are basically considered. The SAP forming the granules includes polymer and copolymer in which acryl acid and acrylamide are weakly cross-linked, and amylum and cellulose derivatives corresponding to propfpolymer graft polymer of starch and cross-linked.
Also, the granules 1 having a hygroscopic base as a finely distributed shape can form the carrier itself without an additional carrier and perform a dehumidifying function. Also, the granules 1 can be applied on the surface of the porous carrier 2 by coating and included in the porous carrier 2. Also, in case that the porous carrier 2 is a fiber composite, the SAP can be integrated in the carrier 2 as a part of the fibers.
The fiber composite is a matrix and includes natural fibers or one or plural artificial fiber materials corresponding to reinforcing fibers. The artificial fiber material improves mechanical characteristics of the porous carrier 2 or the fiber composite, and the natural fiber carries humidity better.
Also, the natural fiber stores its humidity, that is, water vapor, water or aqueous solution. The porous carrier composed of fiber or filament includes textile, meshed textile, knitted fabric, knit, a combination therebetween, bonded fabric, etc.
The SAP is contacted to the hygroscopic base by soaking a water-based solution of the hygroscopic base into the granules of the SAP or the SAP fibers, drizzling, sprinkling or by other methods. Herein, the SAP absorbs the salt solution by its own absorption characteristics.
As a modification method, the modification of the SAP, in other words, contacting the SAP with the salt solution, the SAP can be modified before the granules of the SAP or the SAP fibers are included in the carrier or at a surface of the carrier, or can be modified after the SAP granules or the SAP fibers are already included in the carrier or at the surface of the carrier.
If the porous carrier is modified in several fabrication steps, structured, or arranged, the modification of the SAP and the salt solution can be performed at any fabrication step in consideration with a time point of the most preferable modification.
In order to modify the SAP granules or the SAP fibers, first of all, the salt solution has to be selected. The salt solution includes a strong hygroscopic base such as lithium chloride, magnesium chloride, calcium chloride, or lithium bromide, and includes water as solvent.
The salt solution is completely desalinated, deionized, and distilled, wherein a base concentration is 5˜15 wt % and a maximum concentration is 15 wt %.
In order to maintain the residual content of the moisture in the SAP to a minimum extent and thus to allow the SAP to absorb the salt solution as much as possible in contacting with the salt solution afterwards, it is necessary that the granules or fibers be dried completely before contacting with the salt solution. For this purpose, a vacuum drier can be used preferably. The vacuum drier exerts very small thermal influence on the granules at the time of drying, thereby preventing a stability depreciation by temperature change through a long term view.
Then, the dried SAP granules are modified ionically by the salt solution, and can be variously processed. For example, the SAP granules can be provided in the salt solution or the solution can be added to the granules.
After the ionic modification, the hydrogel generated from the SAP granules is dried, thereby regenerating the granules. The hydrogel can be layered on a plate as thin as possible thereby restricting the formation of the lump in the step of drying. In case of lump formation, it is necessary to crush the lump. It is suitable to use an impact crusher or a breaker for this end.
When the SAP granules or the SAP fibers are located within the carrier or thereon, in order to perform an ionic modification of the SAP, firstly it is required for the carrier including the SAP to be dried, thereby reducing the amount of the water contained therein to a minimum extent. And the selection of the salt solution is carried out similar to the aforementioned methods.
When the porous carrier 2 including the SAPs 1 and 3 is contacted with the salt solution, it would be better to contact in multistage plural times between the porous carrier 2 and the salt solution. The reason is that the granular particles 1 can be engaged and agglomerated into a lump in or on the porous carrier 2. Although it is possible to crush a lump formed through an ionic modification of the SAP itself, it would be impossible to crush a lump formed through an ionic modification of a SAP engaged into a carrier. Therefore, it is important to restrict the generation of the lump in a step of contacting the carrier containing the SAP with the salt solution. The solution can be prudently contacted with the carrier including the SAP in multistage by drizzling, sprinkling, or spraying.
Finally, the carrier 2 including the SAP is dried slowly, wherein the drying temperature is gradually increased through the drying process until it rises to the maximum regeneration temperature.
This step of slowly drying of the carrier 2 including the SAP by slowly increasing the temperature causes to maintains the structure of the modified SAP. That is, the SAP is not decomposed. The drying method includes a freeze drying, a microwave drying, a normal drying, or a combination drying therebetween.
A method for fabricating the dehumidifying element, which is formed to increase the contact area with air, with modified SAP granules or the modified SAP fiber can be properly performed. The structure of the porous carrier, as shown in FIGS. 2 and 3, includes a trapezoid wave shape as a structured sheet, and at the same time, a sheet of a corrugated reed shape has a ripple of 2.5˜7 mm, an interval length (a), a ripple of 1˜5 mm, and a wave height (b).
The forming is attained by an embossing process using a rippling or a stamping in heat reaction at a 180° C. temperature.
FIGS. 4A, 4B, and 4C are schematic views showing the respective embodiments in which the plural sheets according to FIGS. 1 and 2 are arranged by a method such that 3-dimensional channels are generated.
The channels permit gas from which the humidity will be removed, for example, air, to penetrate or to flow at the periphery.
In FIG. 4A, one structure is generated by a combination between flat sheets and shaped sheets. The structure is coiled to the dehumidifying body simply or laminated, thereby properly being arranged like a general humidity exchanging body.
FIG. 4B shows two sheets structured as a trapezoid. The sheets form a honeycombed structure, and form 3-dimensional channels like in FIG. 4A. Through the channels, gas from which humidity will be removed can flow.
FIG. 4C illustrates a plurality of layers according to the arrangement of FIG. 4B, by which a dehumidifying body having 3-dimensional channels can be formed.
Regardless of the point in time of the ionic modification, that is, regardless of whether the SPA granules or the SAP fiber is contacted to the hygroscopic base or not, whether the SPA granules or the SAP fiber is contacted to the hygroscopic base with a location in the porous carrier or thereon or not (FIG. 1), or whether the modification is started after the porous carrier passes several transformation steps or not (FIGS. 3, 4B, and 4C), lithium chloride adjacent on the surface of the SAP permits not only water to be added but also water to be guided inside of the superabsorber.
At this time, preferably, on one hand, the base is spontaneously regenerated as water is guided into the superabsorber. And, on the other hand, humidity is removed into the superabsorber and thus does not remain on the surface any longer.
INDUSTRIAL APPLICABILITY
As so far described, according to the dehumidifying element and the method for fabricating the same, hygroscopic characteristics regardless of aging and high humidity absorbing rate are maintained and a small amount of energy for regeneration is required.

Claims (17)

1. A method of preparing a desiccant comprising the steps of:
selecting a salt solution;
drying a super absorbing polymer (SAP);
contacting the dried SAP with the salt solution in order to perform an ionic modification of the SAP; and
drying a hydrogel generated by the contact between the SAP and the salt solution.
2. The method of claim 1, wherein the concentration of the salt solution is between 5-15 wt %.
3. The method of claim 1, wherein the salt solution comprises water as a solvent.
4. A method of making a dehumidifying element comprising the steps of:
engaging a SAP to a carrier;
drying the carrier to which the SAP is engaged;
selecting a salt solution;
contacting the carrier with the salt solution in order to perform an ionic modification of the SAP; and
drying the carrier to which the SAP is engaged.
5. The method of claim 4, wherein the concentration of the salt solution is between 5-15 wt %.
6. The method of claim 4, wherein the salt solution comprises water as a solvent.
7. The method of claim 4, wherein the carrier is contacted with the salt solution by soaking or spraying the salt solution into the carrier.
8. The method of claim 4, wherein the step of contacting the carrier with the salt solution is repeated.
9. A dehumidifying element, comprising:
a superabsorbing polymer (SAP);
a hygroscopic salt contacted with the SAP; and
a porous carrier configured to contain the SAP and the hygroscopic salt.
10. The dehumidifying element of claim 9, wherein the SAP is formed with granules having a diameter equal to or less than 1,000 μm.
11. The dehumidifying element of claim 9, wherein the hygroscopic salt includes one of lithium chloride, magnesium chloride, calcium chloride, and lithium bromide.
12. The dehumidifying element of claim 9, wherein the porous carrier includes a 3-dimensional channel through which air having humidity to be removed is guided.
13. The dehumidifying element of claim 12, wherein the carrier is a fiber composite of natural fiber and artificial fiber.
14. The dehumidifying element of claim 12, wherein the SAP is contained in the carrier while being contained in a textile, meshed textile, knitted fabric, knit, or bonded fabric.
15. The dehumidifying element of claim 9, wherein the SAP comprises an acryl acid cross-linked with at least one of acrylamide, starch, and cellulose.
16. The dehumidifying element of claim 9, wherein the SAP includes polymer in which acryl acid and acyrlamide are cross-linked.
17. The dehumidifying element of claim 9, wherein the SAP includes polymer in which amylum and cellulose are cross-linked.
US13/032,573 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same Expired - Lifetime USRE43865E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/032,573 USRE43865E1 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10164632A DE10164632B4 (en) 2001-12-27 2001-12-27 Dehumidifying elements for dehumidifying gas and a method for producing the same
DE10164632 2001-12-27
US12/698,842 USRE42282E1 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same
US10/500,254 US7326363B2 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same
US13/032,573 USRE43865E1 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same
PCT/KR2002/002456 WO2003055595A1 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/500,254 Reissue US7326363B2 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same

Publications (1)

Publication Number Publication Date
USRE43865E1 true USRE43865E1 (en) 2012-12-18

Family

ID=7711242

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/500,254 Ceased US7326363B2 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same
US13/032,573 Expired - Lifetime USRE43865E1 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same
US12/698,842 Expired - Lifetime USRE42282E1 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/500,254 Ceased US7326363B2 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/698,842 Expired - Lifetime USRE42282E1 (en) 2001-12-27 2002-12-27 Dehumidifying element and manufacturing method for the same

Country Status (6)

Country Link
US (3) US7326363B2 (en)
KR (1) KR100704235B1 (en)
CN (1) CN1620335A (en)
AU (1) AU2002359046A1 (en)
DE (1) DE10164632B4 (en)
WO (1) WO2003055595A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773048B2 (en) 2018-02-13 2020-09-15 Cool Vapor Solutions Methods and compositions for humidification and cooling of gas streams

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591881B2 (en) * 2004-09-29 2009-09-22 Artifex Equipment, Inc. Methods and devices for humidity control of materials
FR2879109B1 (en) * 2004-12-10 2007-04-27 Jean Francois Lafougere ABSORBENT COMPOSITION OF HUMIDITY
US20070012186A1 (en) * 2005-03-11 2007-01-18 Wilson Todd S System and method of dehumidifying and filtering air
DE102005059952A1 (en) * 2005-12-15 2007-06-28 Mahle International Gmbh Filling material for air dryer, used in vehicle compressed air-braking system, comprises hygroscopic silica gel or zeolite particles on fleece backing wound to spiral form
KR100652903B1 (en) 2005-12-21 2006-12-04 한국과학기술연구원 Manufacturing method of dehumidifying agent having superabsorbing polymer and manufacturing apparatus thereof
EP1864917B1 (en) * 2006-06-06 2008-08-13 Nestec S.A. Capsule with reduced dripping
US7824766B2 (en) * 2007-11-20 2010-11-02 Energy Wall, Llc Sorption paper and method of producing sorption paper
US8101543B2 (en) * 2008-06-30 2012-01-24 Weyerhaeuser Nr Company Biodegradable superabsorbent particles
US7833384B2 (en) * 2008-06-30 2010-11-16 Weyerhaeuser Nr Company Method for making fiber having biodegradable superabsorbent particles attached thereto
US8641869B2 (en) * 2008-06-30 2014-02-04 Weyerhaeuser Nr Company Method for making biodegradable superabsorbent particles
US20090325797A1 (en) * 2008-06-30 2009-12-31 Weyerhaeuser Co. Biodegradable Superabsorbent Particles
US7959762B2 (en) * 2008-06-30 2011-06-14 Weyerhaeuser Nr Company Method for making biodegradable superabsorbent particles
US20090326180A1 (en) * 2008-06-30 2009-12-31 Weyerhaeuser Co. Biodegradable Superabsorbent Particles Containing Cellulose Fiber
US8084391B2 (en) * 2008-06-30 2011-12-27 Weyerhaeuser Nr Company Fibers having biodegradable superabsorbent particles attached thereto
KR100963116B1 (en) * 2008-07-24 2010-06-16 한국과학기술연구원 Desiccant, dehumidifying element and manufacturing methods for them
US8177151B2 (en) 2009-05-16 2012-05-15 Knowaste International, Llc Separation of materials comprising super absorbent polymers using reduced water
FR2947417B1 (en) 2009-06-25 2011-08-26 Centre Nat Rech Scient ELECTRONIC DEVICE COMPRISING A MOISTURE ADSORPTION DEVICE
US8622231B2 (en) * 2009-09-09 2014-01-07 Roche Diagnostics Operations, Inc. Storage containers for test elements
FR2951589B1 (en) * 2009-10-20 2012-06-01 Radiall Sa COAXIAL EMBASE
KR100955770B1 (en) 2009-11-06 2010-04-30 한상철 Composition of dehumidifying agent
US8500880B2 (en) * 2009-11-24 2013-08-06 Corning Incorporated Amino acid salt articles and methods of making and using them
MY163213A (en) * 2010-03-26 2017-08-30 Joseph Ellsworth Composite desiccant and air-to-water system and method
US20120131938A1 (en) 2010-05-25 2012-05-31 7Ac Technologies, Inc. Air conditioning system with integrated solar inverter
KR101736435B1 (en) 2010-06-23 2017-05-16 삼성전자주식회사 Household appliance having drying duct
ITTO20111090A1 (en) 2011-11-28 2013-05-29 Fater Spa EQUIPMENT AND PROCEDURE FOR THE RECYCLING OF ABSORBENT SANITARY PRODUCTS
ITTO20111092A1 (en) 2011-11-28 2013-05-29 Fater Spa EQUIPMENT AND PROCEDURE FOR THE RECYCLING OF ABSORBENT SANITARY PRODUCTS
ITTO20111091A1 (en) 2011-11-28 2013-05-29 Fater Spa EQUIPMENT AND PROCEDURE FOR THE RECYCLING OF ABSORBENT SANITARY PRODUCTS
ITTO20130116A1 (en) 2013-02-13 2014-08-14 Propack S P A COMPOSITION FOR THE SETTING OF ENVIRONMENTAL HUMIDITY
CN103230727B (en) * 2013-04-22 2015-06-24 陕西科技大学 Drying agent for organic light-emitting device and preparation method for same
CN104783340B (en) * 2015-04-28 2017-04-05 苏州舒而适纺织新材料科技有限公司 A kind of heat-protective clothing moisture absorption gas-guiding structure
FR3037258B1 (en) * 2015-06-15 2020-10-16 Eurotab MOISTURE ABSORBING COMPOSITION INCLUDING A SEQUESTRANT AGENT
KR102023097B1 (en) * 2017-08-25 2019-09-19 국민대학교산학협력단 Functional paper sheet for functional mask, functional mask including the same, and method of preparing the functional mask
KR102114649B1 (en) * 2018-11-23 2020-05-25 호서대학교 산학협력단 Filter Replaceable Nasal Mask
CN109943002B (en) * 2019-04-02 2020-08-07 武汉大学 Self-moisture-absorption hydrogel, preparation method and heat management method based on same
CN110156943B (en) * 2019-06-24 2022-02-01 四川轻化工大学 Preparation method and application of hydrogel material
WO2024000383A1 (en) * 2022-06-30 2024-01-04 广州工程技术职业学院 Method for repairing acrylate polymer material

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997484A (en) 1974-04-03 1976-12-14 The United States Of America As Represented By The Secretary Of Agriculture Highly-absorbent starch-containing polymeric compositions
US4116899A (en) 1977-08-15 1978-09-26 The United States Of America As Represented By The Secretary Of Agriculture Increasing absorbency of polymeric compositions by curing
US4911775A (en) 1985-04-22 1990-03-27 Kabushiki Kaisha Seibu Giken Method of manufacturing dehumidifier element
US5143773A (en) 1990-03-29 1992-09-01 Showa Denko Kabushiki Kaisha Highly hygroscopic laminate
US5254195A (en) 1992-05-08 1993-10-19 Industrial Technology Research Institute Process for manufacturing moisture exchange element
US5292822A (en) 1991-11-11 1994-03-08 Toyo Boseki Kabushiki Kaisha High moisture-absorbing and releasing fibers and process for producing the same
JPH08225610A (en) 1994-12-13 1996-09-03 Japan Exlan Co Ltd Highly moisture-absorbing and releasing microparticle and its production
US5637105A (en) * 1993-06-21 1997-06-10 Kao Corporation Absorbent article
US5753345A (en) 1995-05-11 1998-05-19 Kabushiki Kaisha Seibu Giken Adsorber for humidity and odorous gas exchange
EP0882502A1 (en) 1996-08-07 1998-12-09 Nippon Shokubai Co., Ltd. Water-absorbent and process for preparing the same
US6080797A (en) 1998-07-01 2000-06-27 Japan Exlan Company Limited Porous moisture-absorbing and desorbing polymer and a method for manufacturing the same
WO2000053816A1 (en) * 1999-03-11 2000-09-14 Snf S.A. Use of superabsorbent polymers for treating raw skins, corresponding compositions and methods and resulting treated skins
US20010001312A1 (en) 1997-11-19 2001-05-17 Mitchell Michael A. Multicomponent superabsorbent gel particles
US6265030B1 (en) 1998-12-01 2001-07-24 Proflute Ab Method of producing a dehumidifying element
US20060137530A1 (en) 2004-09-29 2006-06-29 Artifex Equipment, Inc. Methods and devices for humidity control of materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273035A (en) * 1986-05-22 1987-11-27 Nippon Synthetic Chem Ind Co Ltd:The Humidity control agent
JPS62286519A (en) * 1986-06-03 1987-12-12 Nippon Synthetic Chem Ind Co Ltd:The Sheet-shaped humidity conditioning material
JPS6384617A (en) * 1986-09-26 1988-04-15 Nippon Synthetic Chem Ind Co Ltd:The Laminating type humidity conditioning material
JPH02178337A (en) * 1988-12-29 1990-07-11 Tokuyama Soda Co Ltd Cellulose composition
JPH05143773A (en) * 1991-11-22 1993-06-11 Asutemu Eng:Kk Marking, marking device, and metho and device for identifying marking
JP3553980B2 (en) * 1992-03-10 2004-08-11 セイコーエプソン株式会社 Printer
JPH05292822A (en) * 1992-04-21 1993-11-09 Kubota Corp Reaping blade device for agricultural working machine
JP3071574B2 (en) * 1992-09-01 2000-07-31 帝人株式会社 Polyester film for metal plate lamination processing
JP3143243B2 (en) * 1992-11-27 2001-03-07 株式会社大阪製薬 Dehumidifier

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997484A (en) 1974-04-03 1976-12-14 The United States Of America As Represented By The Secretary Of Agriculture Highly-absorbent starch-containing polymeric compositions
US4116899A (en) 1977-08-15 1978-09-26 The United States Of America As Represented By The Secretary Of Agriculture Increasing absorbency of polymeric compositions by curing
US4911775A (en) 1985-04-22 1990-03-27 Kabushiki Kaisha Seibu Giken Method of manufacturing dehumidifier element
US5143773A (en) 1990-03-29 1992-09-01 Showa Denko Kabushiki Kaisha Highly hygroscopic laminate
US5292822A (en) 1991-11-11 1994-03-08 Toyo Boseki Kabushiki Kaisha High moisture-absorbing and releasing fibers and process for producing the same
US5254195A (en) 1992-05-08 1993-10-19 Industrial Technology Research Institute Process for manufacturing moisture exchange element
US5637105A (en) * 1993-06-21 1997-06-10 Kao Corporation Absorbent article
JPH08225610A (en) 1994-12-13 1996-09-03 Japan Exlan Co Ltd Highly moisture-absorbing and releasing microparticle and its production
US5753345A (en) 1995-05-11 1998-05-19 Kabushiki Kaisha Seibu Giken Adsorber for humidity and odorous gas exchange
EP0882502A1 (en) 1996-08-07 1998-12-09 Nippon Shokubai Co., Ltd. Water-absorbent and process for preparing the same
US20010001312A1 (en) 1997-11-19 2001-05-17 Mitchell Michael A. Multicomponent superabsorbent gel particles
US6080797A (en) 1998-07-01 2000-06-27 Japan Exlan Company Limited Porous moisture-absorbing and desorbing polymer and a method for manufacturing the same
US6265030B1 (en) 1998-12-01 2001-07-24 Proflute Ab Method of producing a dehumidifying element
WO2000053816A1 (en) * 1999-03-11 2000-09-14 Snf S.A. Use of superabsorbent polymers for treating raw skins, corresponding compositions and methods and resulting treated skins
US6964745B1 (en) * 1999-03-11 2005-11-15 Snf S.A. Use of superabsorbent polymers for treating raw skins, corresponding compositions and methods and resulting treated skins
US20060137530A1 (en) 2004-09-29 2006-06-29 Artifex Equipment, Inc. Methods and devices for humidity control of materials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An Office Action of the corresponding Chinese patent application No. 02828323.6 mailed Jun. 2, 2006 (4 pages) with the English translation thereof (4 pages).
Heinrich, G., "Sorption-Supported Air Conditioning", 1997.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773048B2 (en) 2018-02-13 2020-09-15 Cool Vapor Solutions Methods and compositions for humidification and cooling of gas streams

Also Published As

Publication number Publication date
DE10164632B4 (en) 2007-02-08
KR20040071246A (en) 2004-08-11
DE10164632A1 (en) 2003-07-10
US20050155491A1 (en) 2005-07-21
CN1620335A (en) 2005-05-25
KR100704235B1 (en) 2007-04-27
US7326363B2 (en) 2008-02-05
AU2002359046A1 (en) 2003-07-15
WO2003055595A1 (en) 2003-07-10
USRE42282E1 (en) 2011-04-12

Similar Documents

Publication Publication Date Title
USRE43865E1 (en) Dehumidifying element and manufacturing method for the same
CA2152360C (en) Desiccant-coated substrate and method of manufacture
US5300138A (en) Langmuir moderate type 1 desiccant mixture for air treatment
KR100963116B1 (en) Desiccant, dehumidifying element and manufacturing methods for them
JP4840685B2 (en) Sorptive heat exchange module and method for producing the same
AU2017208389A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
JP2006200850A (en) Sorption type heat exchange module, and its manufacturing method
US11794144B2 (en) Gas adsorbent body, method for producing thereof, and carbon dioxide gas concentration device
KR101641985B1 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
CN102369247A (en) Sorbent coated aluminum band
JP7344474B2 (en) High-speed moisture absorption and desorption polymers, fiber structures containing the polymers, resin moldings, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles
US5254195A (en) Process for manufacturing moisture exchange element
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP2004209420A (en) Dehumidification element and dehumidification apparatus
JPH08187429A (en) Adsorbing material and adsorbent using the same
JPH06104350B2 (en) Adsorbent
JPH0115780B2 (en)
WO1999012641A1 (en) Desiccant
JP2007117942A (en) Dehumidifying element and dehumidifying device
JPH02187127A (en) Dehumidifier
JPH0143218B2 (en)
JPH0154613B2 (en)

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12