Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE43350 E1
Publication typeGrant
Application numberUS 12/847,931
Publication date8 May 2012
Filing date30 Jul 2010
Priority date5 May 1995
Fee statusPaid
Publication number12847931, 847931, US RE43350 E1, US RE43350E1, US-E1-RE43350, USRE43350 E1, USRE43350E1
InventorsWilliam B. Kerfoot
Original AssigneeThink Village-Kerfoot, Llc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Microporous diffusion apparatus
US RE43350 E1
Abstract
Apparatuses for removal of volatile organic compounds in a soil formation include a microporous diffuser for injecting air and gaseous ozone as bubbles into water in the soil formation. The gaseous ozone is present at concentrations to effect removal of volatile organic compounds by the gaseous ozone reacting with the volatile organic compound(s). Injection of air and gaseous ozone is controlled by a timer to allow separation of bubbles by size. In various embodiments, a plurality of microporous diffusers may be controlled by a single timer or each of the plurality of microporous diffusers may be controlled by one of a plurality of timers.
Images(13)
Previous page
Next page
Claims(45)
1. An apparatus for removal of volatile organic compounds in a soil formation comprising:
a diffuser for injecting air and gaseous ozone as bubbles into water in the soil formation, the gaseous ozone at concentrations to effect removal of volatile organic compounds by the gaseous ozone reacting with the volatile organic compounds,
wherein injection of air and gaseous ozone is controlled by a timer to allow separation of bubbles by size,
wherein the bubbles range in size from about 5 to 200 μm.
2. The apparatus of claim 1 wherein the air and gaseous ozone are mixed and injected into the water as bubbles with an initial bubble size in a range of about 5 to 200 μm.
3. The apparatus of claim 1 wherein the timer periodically pulses the injected air and gaseous ozone.
4. The apparatus of claim 1 further comprising a bubble sizing chamber.
5. The apparatus of claim 1 further comprising a pump for agitating water to disperse the bubbles through the soil formation.
6. The apparatus of claim 1 wherein the diffuser has a pore size selected to match a porosity of a surrounding soil formation.
7. The apparatus of claim 1 further comprising:
a casing;
a packer disposed through the casing; and
an outlet screen coupled to the casing.
8. The apparatus of claim 7 wherein the outlet screen is coupled to the casing at a lower portion of the casing and the apparatus further comprises an inlet screen coupled to the casing at an upper portion of the casing.
9. An apparatus for removal of volatile organic compounds in a soil formation comprising:
a plurality of diffusers for injecting air and gaseous ozone as bubbles into water in the soil formation, the gaseous ozone at concentrations to effect removal of volatile organic compounds by the gaseous ozone reacting with the volatile organic compounds,
wherein injection of air and gaseous ozone is controlled by at least one timer to allow separation of bubbles by size,
wherein the bubbles range in size from about S5 to 200 μm.
10. The apparatus of claim 9 wherein the plurality of diffusers is arranged in series.
11. The apparatus of claim 9 wherein the plurality of diffusers is controlled by a single timer.
12. The apparatus of claim 9 wherein each diffuser is coupled to one of a plurality of timers.
13. The apparatus of claim 9 wherein the air and gaseous ozone are mixed and injected into the water as bubbles with an initial bubble size in a range of about 5 to 200 μm.
14. The apparatus of claim 9 wherein the timer periodically pulses the injected air and gaseous ozone.
15. The apparatus of claim 9 further comprising a bubble sizing chamber.
16. The apparatus of claim 9 further comprising a pump for agitating water to disperse the bubbles through the soil formation.
17. The apparatus of claim 9 wherein microporous material of the diffusers has a pore size selected to match a porosity of a surrounding soil formation.
18. The apparatus of claim 9 further comprising:
a casing;
a packer disposed through the casing; and
an outlet screen coupled to the casing.
19. The apparatus of claim 18 wherein the outlet screen is coupled to the casing at a lower portion of the casing and the apparatus further comprises an inlet screen coupled to the casing at an upper portion of the casing.
20. The apparatus of claim 18 wherein the packer is disposed through the casing between the inlet and outlet screens.
21. A method of treating a groundwater or soil formation in situ, comprising: injecting gaseous ozone and air through porous materials to produce bubbles in the groundwater or soil formation at concentrations sufficient to react with, and effect removal of, one or more contaminants in the groundwater or soil formation,
wherein the step of producing bubbles comprises producing bubbles encapsulating ozone and air to convert the contaminants from a dissolved state to a gaseous state and encapsulating the contaminants as a vapor therein.
22. The method of claim 21, wherein the bubbles encapsulating air and ozone increase a transfer rate of the contaminants from a dissolved state to a gaseous state.
23. The method of claim 22 further comprising the step of decomposing the contaminants with the encapsulated air and ozone.
24. The method of claim 23 wherein the step of decomposing the contaminants decomposes the contaminants at a rate that exceeds a rise time of bubble formation.
25. A method of treating a groundwater or soil formation in situ, comprising: injecting gaseous ozone and air through porous materials to produce bubbles in the groundwater or soil formation at concentrations sufficient to react with, and effect removal of, one or more contaminants in the groundwater or soil formation,
wherein the step of producing ozone bubbles comprises increasing a half-life of the ozone.
26. A method for remediating contaminants in a groundwater or soil formation in situ, comprising: injecting a multi-gas oxidizing agent into the groundwater or soil formation through one or more tubes such that the multi-gas oxidizing agent produces bubbles in said groundwater or soil formation that react with the contaminants and encapsulate the contaminants as vapor inside the bubbles.
27. The method of claim 26, wherein the step of injecting further comprises the step of injecting the multi-gas oxidizing agent through a slotted well screen at said groundwater or soil formation.
28. The method of claim 26, wherein the step of injecting further comprises the step of injecting the multi-gas oxidizing agent through a diffuser at said groundwater or soil formation.
29. The method of claim 26, wherein the multi-gas oxidizing agent comprises air and ozone.
30. The method of claim 26, wherein the gaseous bubbles increase a half-life of the ozone.
31. The method of claim 26, wherein the bubbles have reduced bubble sizes to increase surface area to gas volume ratios.
32. The method of claim 26, wherein the bubbles have an initial bubble diameter in a range of about 5 to 200 μm.
33. The method of claim 26, wherein injecting produces the bubbles encapsulating ozone and air to convert the contaminants from a dissolved state to a gaseous state.
34. The method of claim 33, wherein the bubbles increase a transfer rate of the contaminants from a dissolved state to a gaseous state.
35. The method of claim 34, further comprising the step of decomposing the contaminants in the encapsulated air and ozone.
36. The method of claim 35, wherein the step of decomposing the contaminants comprises decomposing the contaminants at a rate that exceeds a rise time of bubble formation.
37. The method of claim 26, wherein the step of injecting produces bubbles with a diameter slightly smaller than a pore size of the soil formation.
38. The method of claim 26, wherein the step of injecting the multi-gas oxidizing agent further comprises injecting the multi-gas oxidizing agent through a slotted well screen surrounded with porous materials to produce bubbles.
39. The method of claim 26, further comprising decomposing the contaminants in said groundwater or soil formation by ozone interaction with double bonded carbon atoms of the contaminants.
40. The method of claim 26, said groundwater or soil formation containing chlorinated hydrocarbons.
41. The method of claim 26, said groundwater or soil formation containing organic and/or hydrocarbon material.
42. The method claim 26, wherein the step of injecting the multi-gas oxidizing agent comprises injecting aerated and ozonated water.
43. The method of claim 26, further comprising intermittently agitating water in said groundwater or soil formation.
44. The method of claim 26, further comprising periodically pulsing the injected multi-gas oxidizing agent.
45. The method of claim 26, wherein the porous material comprises a material selected from the group consisting of PVC, HDPE porous material, sand, and gravel.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a reissue of U.S. Pat. No. 7,645,380, which is a continuation of U.S. patent application Ser. No. 10/997,452, filed Nov. 24, 2004, now U.S. Pat. No. 7,537,706, which is a continuation of U.S. patent application Ser. No. 09/943,111, filed Aug. 30, 2001, now U.S. Pat. No. 6,872,318, which is a continuation of U.S. patent application Ser. No. 09/606,952, filed Jun. 29, 2000, now U.S. Pat. No. 6,284,143, which is a continuation of U.S. patent application Ser. No. 09/220,401, filed Dec. 24, 1998, now U.S. Pat. No. 6,083,407, which is a continuation of U.S. patent application Ser. No. 08/756,273, filed Nov. 25, 1996, now U.S. Pat. No. 5,855,775, which is a-continuation-in-part of U.S. patent application Ser. No. 08/638,017, filed Apr. 25, 1996, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 29/038,499, filed May 5, 1995, now abandoned. Each of these applications is incorporated by reference in its entirety.

BACKGROUND

1. Field of Invention (Technical Field)

The present disclosure relates to apparatuses for remediation of dissolved chlorinated hydrocarbons in aquifer regions by injecting micro-fine bubbles effective for active in situ groundwater remediation for removal of dissolved chlorinated hydrocarbon solvents and dissolved hydrocarbon petroleum products. Remediation of saturated soils may also be obtained by employment of the present apparatuses.

2. Background Prior Art

There is a well recognized need to cleanup subsurface leachate plumes in aquifer regions and contaminated sites including, in particular, dry-cleaning establishments and U.S. Military Air bases. Applicant is aware of prior art devices that have used injection of air to facilitate biodegradation of plumes.

However, an apparatus using micro-fine bubbles including a multi-gas oxidizing agent for the controlled remediation of a site containing poorly biodegradable organics, particularly dissolved chlorinated solvents, has not been shown.

In fact the Federal Agency (EPA, KERR Environmental Laboratory, ADA, Oklahoma) responsible for review of clean-up procedures at Marine Corp Air Base at Yuma, Ariz. has determined that there is no prior reference which discloses the use of the present apparatuses and has ordered independent pilot tests to provide test results confirming the results previously obtained by the present apparatuses.

U.S. Pat. No. 5,221,159, to Billings, shows injection of air into aquifer regions to encourage biodegradation of leachate plumes which contain biodegradable organics together with simultaneous soil vacuum extraction.

U.S. Pat. No. 5,269,943, METHOD FOR TREATMENT OF SOILS CONTAMINATED WITH ORGANIC POLLUTANTS, to Wickramanayake, shows a method for treating soil contaminated by organic compounds where an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone is applied to the contaminated soil to decompose the organic compounds.

U.S. Pat. No. 5,525,008, REMEDIATION APPARATUS AND METHOD FOR ORGANIC CONTAMINATION IN SOIL AND GROUNDWATER, to Wilson, provides a method and apparatus for in-situ treatment of soil and groundwater contaminated with organic pollutants. It involves concentration of a reactive solution required to effect treatment of the contaminated area and injecting the reactive solution into one or more injectors that are inserted into the ground. The apparatus is scaled and positioned so as to assure flow and to allow reactive solution to flow through the contaminated area thereby reacting chemically. Preferably, the reactive solution is an aqueous solution of hydrogen peroxide and metallic salts.

U.S. Pat. No. 5,178,755, UV-ENHANCED OZONE WASTEWATER TREATMENT SYSTEM, to Lacrosse, mixes wastewater with ozonated liquid within a multi-stage clarifier system and suspended solids are removed.

Notwithstanding the teachings of the prior art, there has not been shown an apparatus for remediating a site contaminated with poorly biodegradable organics, particularly dissolved chlorinated solvents, with micro-fine bubbles including an encapsulated multi-gas oxidizing agent in a controlled manner. In situ remediation is accomplished using the present instrumentalities by employing microporous diffusers which inject multi-gas bubbles containing an ozone oxidizing agent into aquifer regions to strip and rapidly decompose poorly biodegradable organics or to accelerate biodegradation of leachate plumes which contain biodegradable organics thereby overcoming at least some disadvantages of the prior art.

SUMMARY

The present disclosure relates to sparging apparatuses for injection of oxidizing gas, in the form of small bubbles, into aquifer regions to encourage in situ remediation of subsurface leachate plumes.

In particular, sparging apparatuses are disclosed for employing microporous diffusers to inject micro-fine bubbles containing encapsulated gas bubbles into aquifer regions to encourage biodegradation of leachate plumes which contain biodegradable organics, or Criegee decomposition of leachate plumes containing dissolved chlorinated hydrocarbons. The sparging apparatuses, employing microporous diffusers for injecting an encapsulated multi-gas oxidizing agent, are particularly useful in promoting extremely efficient removal of poorly biodegradable organics, such as dissolved chlorinated solvents, without the use of vacuum extraction of undesirable by-products of remediation. Furthermore, remediation occurs by employing encapsulated multi-gas oxidizing agent for destroying organic and hydrocarbon material in place with out release of contaminating vapors.

Unlike the prior art, the contaminated groundwater is injected with an air/ozone mixture wherein micro-fine air bubbles strip the solvents from the groundwater and the encapsulated ozone acts as an oxidizing agent in a gas/gas reaction to break down the contaminates into carbon dioxide, very dilute HCl and water. This system is known as the C-Sparger® system.

The present system, hereinafter C-Sparger® system, is directed to low-cost removal of dissolved chlorinated hydrocarbon solvents such as perc from contaminated soil and groundwater aquifers. The C-Sparger® system employs microporous diffusers, hereinafter Spargepoints®, for producing micro-fine bubbles containing an oxidizing agent that decomposes chlorinated hydrocarbons into harmless byproducts. The C-Sparger® system also incorporates: means for pumping a multi-gas oxidizing mixture through the Spargepoint® into groundwater in a soil formation, a bubble production chamber to generate bubbles of differing size, a timer to delay pumping until large bubbles have segregated from small bubbles by rise time, and a pump which forces the fine bubbles and liquid out into the soil formation. The pumping means intermittently agitates the water in the well in which the C-Sparger® is installed in order to effectively disturb the normal inverted cone-shaped path of the bubbles injected by the Spargepoint®. Water agitation results in random bubble dispersion to ensure improved contact between the oxidizing agent (contained in each bubble) and the pollutant. The pulsing action promotes movement of the bubbles through the porous formation. It is the in situ stripping action and maintenance of low solvent gas concentration in the bubbles which increases the efficacy and speed of remediation of a site.

The apparatus of the present disclosure is particularly useful in efficiently removing poorly biodegradable organics, particularly dissolved chlorinated solvents, without the use of vacuum extraction, wherein remediation occurs by destroying organic and hydrocarbon material in place without the release of contaminating vapors.

The multi-gas system comprises an oxidizing gas encapsulated in micro-bubbles, generated from microporous diffusers, that are matched to soil porosity. A unique bubble size range is matched to underground formation porosity and achieves dual properties of fluid like transmission and rapid extraction of selected volatile gases. Bubble size is selected so as to maintain vertical mobility. In order to accomplish a proper matching, a prior site evaluation test procedure is devised to assess the effectiveness of fluid transmission at the remediation site.

Small bubbles with a high surface to gas volume ratio are advantageous in promoting rapid extraction of volatile organic compounds, such as PCE, TCE, or DCE. Pulsed injection of small bubbles and consequent rise time is matched to the short half-life of an oxidative gas, such as ozone, to allow rapid bubble dispersion into predominantly water-saturated geological formations, and extraction and rapid decomposition of the volatile organic material. The unique apparatus of the present disclosure provides for extraction efficiency with resulting economy of operation by maximizing contaminant contact with oxidant by selective rapid extraction providing for optimum fluidity of bubbles through media which can be monitored.

The use of microporous diffuser points provides a more even distribution of air into a saturated formation than the use of pressurized wells. A sparge system installed to remediate contaminated groundwater is made more cost-effective by sparging different parts of the plume area at sequenced times. Through the proper placement of sparge locations and sequence control, any possible off-site migration of floating product is eliminated. With closely spaced Spargepoints®, water mounding is advantageous because it prevents any off-site escape of contaminant. Water mounding is used to direct floating product toward extraction sites.

The microporous diffusers and multi-gas system, referred to as Spargepoints® and C-Sparger® Systems, are designed to remove dissolved organics and solvents (chlorinated hydrocarbons) such as PCE, TCE, and DCE from contaminated groundwater. The micro-fine bubbles, produced by the Spargepoints®, contain oxygen and ozone which oxidize the chlorinated hydrocarbons to harmless gases and weak acids. High initial concentrations of these dissolved organics have been, under some specific-circumstances, reduced to levels of 1 ppb or less in periods of a few weeks. None of the models to date are designed for explosive environments.

The present systems employ a plurality of configurations consisting of Series 3500 and Series 3600 C-Sparger® models. The 3600 Series is larger and has more capacity. Specifically, the 3600 Series has a better compressor rated for continuous use, a larger ozone generator, a second Spargepoint® below the first Spargepoint® in each well, and larger diameter gas tubing. Both model series have control units that can support: one (Models 3501 & 3601), two (Models 3502 & 3602) and three separate wells (Models 3503 & 3603). The one, two, and three well models differ in the number of relays, internal piping, external ports and programming of the timer/controller.

Normal operation for C-Sparger® systems includes carrying out, in series for each well, the following functions on a timed basis: pumping air and ozone through Spargepoint® diffusers into the soil formation, pumping aerated/ozonated water into the soils and recovering treated water above. Treatment is followed by a programmable period of no external treatment and multiple wells are sequenced in turn. Agitation with pumped water disturbs the usually inverted cone-shaped path of bubbles through the soils and disperses them much more widely. This increases contact and greatly improves efficiency and speed of remediation. Vapor capture is not normally necessary.

Series 3500 and 3600 systems include a control module, one to three well assemblies depending on specific model selected, a 1.0 ft. long submersible pump power-gas line for each well and a flow meter (to check Spargepoint® flow rates). Model Series 3500 & 3600 control modules have been successfully deployed outdoors in benign and moderate environments for prolonged periods of time. The control module must be firmly mounted vertically on 4×4 posts or on a building wall near the wells.

The actual placement depths, separations, number/size of wells and overall remediation system geometry are highly variable. Differences in specific pollutant, spill, soil, groundwater and climate characteristics can greatly influence the design and geometry of the overall remediation system. Monitoring wells are usually also needed. In short, specific circumstances and conditions are often critical, however, a generic or typical overall system is shown on FIG. 1.

FIG. 13 provides the basic specification for the Series 3500 & 3600 systems. The drawing shows a single well system Series 3600 (M-3601). The Series 3500 does not have the lower Spargepoint® multiple well models (3502, 3503, 3602 & 3603), rather multiple M-3601 well units use a single control module. FIG. 2 shows a piping schematic. FIG. 3 shows an electrical schematic for a three well system (Model 3503 or 3603). Current production 3500 and 3600 Series models have an internal ground fault interrupter and surge buffers incorporated into various electrical components. FIG. 4 shows an internal layout of the control module box for a three well system (M-3503 or M-3603). FIG. 5 shows the geometry of the bottom panel on the control module identifying the external connections and ports for three well units (M-3503 & 3603). FIGS. 3 and 4 also illustrate fuses and their locations.

The Unique Use of Microfine Bubbles for Simultaneous Extraction/Decomposition.

The use of microporous Spargepoint® diffusers to create fine bubbles, which easily penetrate sandy formations to allow fluid flow, has unexpected benefits when used with multiple gas systems. Microfine bubbles accelerate the transfer rate of PCE from aqueous to gaseous state. The bubble rise transfers the PCE to the vadose zone. The ten-fold difference in surface-to-volume ratio of Spargepoint® diffuser microbubbles compared to bubbles from well screens results in a four-fold improvement in transfer rates. To block the gaseous state from reverting to a surface dissolved state in the vadose (unsaturated) zone, a microprocessor system shuttles an oxidizing gas through the vadose zone to chemically degrade the transported PCE.

Gaseous Exchange

If gaseous exchange is proportional to available surface area, with partial pressures and mixtures of volatile gases being held constant, a halving of the radius of bubbles would quadruple (i.e. 4×), the exchange rate. If, in the best case, a standard well screen creates air bubbles the size of a medium sand porosity, a microporous diffuser of 20 micron size creates a bubble one tenth ( 1/10) the diameter and then times the volume/surface ratio (Table 1).

TABLE 1
Diameter Surface Area Volume Surface
(microns) (4 πr2) (4/3 r3) Area/Volume
200 124600 4186666 .03
20 1256 4186 .3

Theoretically, the microporous bubbles exhibit an exchange rate of ten times the rate of a comparable bubble from a standard ten slot well screen.

Partitioning Enhancement

Soil Vapor concentrations are related to two governing systems: water phase and (non-aqueous) product phase. Henry's and Raoult's Laws (DiGiulio, 1990) are commonly used to understand equilibrium-vapor concentrations governing volatization from liquids. When soils are moist, the relative volatility is dependent upon Henry's Law. Under normal conditions (free from product) where volatile organic carbons (VOC's) are relatively low, an equilibrium of soil, water, and air is assumed to exist. The compound, tetrachloroethene (PCE), has a high exchange coefficient with a high vapor pressure (atm) and low aqueous solubility (μmole/l). By enhancing the exchange capacity at least ten fold, the rate of removal should be accelerated substantially.

Ozone is an effective oxidant used for the breakdown of organic compounds during water treatment. The major problem in effectiveness is ozone's short half-life. If ozone is mixed with sewage-containing water above-ground, the half-life is normally minutes. However, if maintained in the gaseous form, the half-life of ozone can be extended up to 15 hours. Microbubbles can be used as extracting agents by pulling chlorinated solvents out of solution into the gaseous ozone as they enter the microbubble. The small bubble's high surface-to-volume ratio increases the exchange area and accelerates the consumption of HVOC within the bubble maximizing the concentration of gas transferred into the bubble (CS−C). The rate-limiting process is the area-specific diffusion (dominated by Henry's Constant), while the decomposition reaction occurs rapidly (assuming sufficient ozone).

Ozone reacts quickly and quantitatively with PCE to yield breakdown products of hydrochloric acid, carbon dioxide, and water.

Using microporous diffusers to inject ozone-containing bubbles may offset ozone's relatively short half-life. By encapsulating the ozone in fine bubbles, the bubbles would preferentially extract volatile compounds like PCE from the mixtures of soluble organic compounds they encountered. The ozone-mediated destruction of organics may then selectively target volatile organics pulled into the fine air bubbles. Even in a groundwater mixture of high organic content like diluted sewage, PCE removal could be rapid.

The unique combination of microbubble extraction and ozone-mediated degradation can be generalized to render volatile organic compounds amenable to rapid removal. The efficiency of extraction is directly proportional to Henry's Constant which serves as a diffusion coefficient for gaseous exchange (Kg).

In wastewater treatment the two-film theory of gas transfer (Metcalf and Eddy, Inc, 1991) states the rate of transfer between gas and liquid phases is generally proportional to the surface area of contact and the difference between the existing concentration and the equilibrium concentration of the gas in solution. Simply stated, if the surface-to-volume ratio of contact is increased, the rate of exchange will increase. If the gas (volatile organic compound, hereinafter “VOC”) entering the bubble (or micropore space bounded by a liquid film) is consumed, the difference is maintained at a higher entry rate than if the VOC is allowed to reach saturation equilibrium. In the present case, the consumptive gas/gas reaction of PCE to by-products of HCl, CO2, and H2O drives the transfer of PCE into the bubble.

The normal equation for the two-film theory of gas transfer is (Metcalf and Eddy, 1991):
Vm=KgA(CS−C)
where:

    • Vm=rate of mass transfer
    • Kg=coefficient of diffusion for gas
    • A=area through which gas is diffusing
    • CS=saturation concentration of gas phase in bubble
    • C=initial concentration of gas phase in bubble volume

Table 2 gives Henry's Constants (Hc) for a selected number of organic compounds and the second rate constants (Rc) for the ozone radical rate of reaction. The fourth column presents the product of both Hc and Rc (RRC) as a ranking of effectiveness. In actual practice diffusion is rate-limiting, resulting in the most effective removal with PCE (tetrachloroethylene).

TABLE 2
REMOVAL RATE COEFFICIENTS FOR THE
MICROBUBBLE/OZONE PROCESS - C-SPARGE
Ozone K2
Second order K1 Rate
Organic Rate Constanta Henry's Removal
Compound (M−1 SEC−1) Constantb Coefficient
Benzene 2 5.59 × 10−3 .0110
Toluene 14 6.37 × 10−3 .0890
Chlorobenzene 0.75 3.72 × 10−3 .0028
Trichloroethylene 17 9.10 × 10−3 .1540
Tetrachloroethylene 0.1 2.59 × 10−2 .026
Ethanol .02 4.48 × 10−5 .0000008
Rc · Hc = RRC
aFrom Hoigne and Bader, 1983
bFrom EPA 540/1-86/060, Superfund Public Health Evaluation Manual

Elimination of the Need for Vapor Extraction

The need for vapor control exists when vapors of VOC's partitioned from the dissolved form into the microbubbles, reach the unsaturated zone, releasing vapors. Without reaction with a decomposing gas, such as ozone, a large mass can be transmitted in a short time, creating potential health problems near residential basement areas.

The combined extraction/decomposition process has the capacity to eliminate the need for vapor capture. If the ozone-mediated decomposition rate exceeds the vertical time-of-travel, vapors will either not be produced or their concentration will be so low as to eliminate the requirement for capture. By controlling the size of microbubbles and matching them to suitable slow rise times, the need for vapor control is eliminated.

The rise time of bubbles of different sizes was computed for water, producing the upwards gravitational velocity (Table 3). The upwards velocity provides the positive pressure to push the bubbles through the porous media, following Darcy's equation. By determining the rise rate in the field, the rise time, proportional to upwards pressure, can be calculated. The bubble size is very important. Once a bubble exceeds the pore cavity size, it is significantly retarded or trapped. Pulsing of the water phase provides a necessary boost to assure steady upwards migration and reduction of coalescence.

TABLE 3
TIME (MINUTES FOR
UPWARD UPWARDS MIGRATION
BUBBLE VELOCITY (3 METERS) (Coarse
DIAMETER IN WATER Sand and Gravel)
10 mm .25 m/s 19 min
 2 mm .16 m/s 30 min
.2 mm .018 m/s  240 min 

Elimination Rate of PCE Relative to Ozone Content

The reaction of ozone with tetrachloroethene (PCE) will produce degradation products of hydrochloric acid, carbon dioxide, and water. By adjusting the ozone concentration to match the dissolved PCE level, the PCE can be removed rapidly without excess ozone release to the air or release of PCE vapor into the unsaturated zone.

Accordingly, the object and purpose of the present disclosure is to provide microporous diffusers for removal of contaminants from soil and associated subsurface ground water aquifer, without applying a vacuum for extraction or relying on biodegradation processes.

Another object of the present disclosure is to provide multi-gas systems to be used in combination with the microporous diffusers to promote an efficient removal of poorly biodegradable organics, particularly dissolved chlorinated solvents, without vacuum extraction.

A further object of the present disclosure is to provide that remediation occurs by destroying organic and hydrocarbon material in place without release of contaminating vapors to the atmosphere.

The instrumentalities will be described for the purposes of illustration only in connection with certain embodiments; however, it is recognized that those persons skilled in the art may make various changes, modifications, improvements and additions on the illustrated embodiments all without departing from the spirit and scope of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross sectional schematic illustration of a soil formation showing an apparatus according to an embodiment.

FIG. 2 is an enlarged piping schematic of the apparatus of FIG. 1 showing the unique fine bubble production chamber.

FIG. 3 is an electrical schematic for a three well system (Model 3503 or 3603) of the apparatus of FIG. 1.

FIG. 4 shows an internal layout of a control module box for a three well system (M-3503 or M-3603) of FIG. 1.

FIG. 5A shows the geometry of a bottom panel on the control module identifying external connections and ports for three well units (M-3503 & 3603) of the apparatus of FIG. 1.

FIG. 5B is a left side view of FIG. 5A.

FIG. 6 is a schematic illustration of a soil formation showing the apparatus of FIG. 1.

FIG. 7 is a perspective view of a bubbler sparge unit for groundwater treatment shown partly in section.

FIG. 8 is a front view of the bubbler sparge unit of FIG. 7.

FIG. 9 is a top elevational view of the bubbler sparge unit of FIG. 7.

FIG. 10 is a bottom elevational view of the bubbler sparge unit of FIG. 7.

FIG. 11 is a front elevational view of the bubbler sparge unit of FIG. 7; the broken line shows the bubbler sparge unit in situ for groundwater treatment.

FIG. 12 is an alternate embodiment of a microporous Spargepoint® assembly of the apparatus of FIG. 1.

FIG. 13 describes Series 3500 & 3600 systems.

DETAILED DESCRIPTION

The present instrumentalities are directed to sparging apparatus for injection of an oxidizing gas in the form of small bubbles into aquifer regions to encourage in situ remediation of subsurface leachate plumes. In particular, microporous diffusers inject multi-gas bubbles into aquifer regions to encourage biodegradation of leachate plumes which contain biodegradable organics, or Criegee decomposition of leachate plumes containing dissolved chlorinated hydrocarbons.

Referring to FIGS. 1 through 6, there is shown a C-Sparger® System (10) consisting of multiple microporous diffusers (26) in combination with an encapsulated multi-gas system, the system (10) consists of a master unit (12) and one or more in-well sparging units (14). Each master unit (12) can operate up to a total of three wells simultaneously, and treat an area up to 50 feet wide and 100 feet long. Actual performance depends upon site conditions. Vapor capture is not normally necessary.

In an embodiment, as shown in FIG. 1 and FIG. 2, master unit (12) consists of the following: a gas generator (16), a gas feed line (15), a compressor (18), a power source (19), a pump control unit (20), and a timer (2). Master unit (12) must be firmly mounted on 4×4 posts (40) or a building wall (42) near in-well sparging units (14). A heavy-duty power cable (44), not over 50 feet in length, may be used to run from the power source to master unit (12).

Referring to FIGS. 1 and 2, in-well sparging unit (14) consists of a casing (56), an inlet screen (50), an expandable packer (52), an upper site grout (54), an outlet screen (58), and lower grout (62). Each in-well unit (14) includes a fixed packer (24), at least two microporous diffusers (26), a water pump (28), ozone line (30), check valve (32), and fittings (34). As shown in FIGS. 1 and 2, diffuser (26) employs a microporous diffuser in place of a standard slotted well screen to improve dispersion of bubbles (60) through soil shown at (84) and to improve rate of gaseous exchange. A normal 10-slot PVC well screen contains roughly twelve percent (12%) open area. Under pressure most air exits the top slits and radiates outward in a star-like fracture pattern, evidencing fracturing of the formation.

Referring to FIG. 2 there is shown a fine bubble production chamber (46) positioned in the well casing (56) between the upper well screen (50) positioned immediately below fixed packer (24) consisting of a removable closure plug and the lower plug (48) consisting of the fine bubble production chamber (46) containing bubbles (60) including upper Spargepoint® (26) positioned above lower well screen (58) including pump (28) and check valve (32). Referring to FIG. 4 there is shown the internal layout of the control module box (12) including an AC/DC power converter (71), and ozone generator (72), well gas relays (73) (three wells shown), a compressor (74), a master relay (75), a main fuse (76). There is also shown a programmable timer controller (77), a power strip (78), a gas regulator and pressure gauge (79), together with a solenoid manifold (80), a ground fault interrupter (81) and a cooling fan (82).

Spargepoint® diffusers include several unique configurations as follows:

a. A direct substitute for a well screen comprising 30% porosity, 5-50 micron channel size and resistance to flow from 1 to 3 PSI. This configuration can take high volume flow and needs a selective annular pack (sized to formation). The use of high density polyethylene or polypropylene is light-weight, rugged and inexpensive.

b. A microporous diffuser can be placed on the end of a narrow diameter pipe riser KVA 14-291. This reduces the residence time in the riser volume.

c. A shielded microporous diffuser which is injected with a hand-held or hydraulic vibratory hammer. The microporous material is molded around an internal metal (copper) perforated tubing and attached to an anchor which pulls the Spargepoint® out when the protective insertion shaft is retracted. The unit is connected to the surface with 3/16 or ¼ inch polypropylene tubing with a compression fitting.

d. A thin Spargepoint® with molded tubing can be inserted down a narrow shaft for use with push or vibratory tools with detachable points. The shaft is pushed to the depth desired, then the Spargepoint® is inserted, the shaft is pulled upwards, pulling off the detachable drive point and exposing the Spargepoint®.

e. A microporous diffuser/pump combination placed within a well screen in such a manner that bubble production and pumping is sequenced with a delay to allow separation of large bubbles from the desired fine “champagne” bubbles. The pressure from the pump is allowed to offset the formation back pressure to allow injection of the remaining fine bubbles into the formation.

Improvements

In the present apparatuses an improvement comprises several new equipment designs associated with the Spargepoint® diffusers. Most important is the submittal for HDPE porous material with well fittings and pass-through design which allows individual pressure and flow control as shown in FIGS. 7-11.

Secondly, the push-probe points have been developed for use with pneumatic tools, instead of drilling auger insertion.

Improvements on C-Sparger®/microporous Spargepoint® diffuser. One of the major pass-through Spargepoint® problems in horizontal sparging is the even distribution of air bubbles. If an inlet is attached to the end of a screen, the pressure drops continuously as air is released from the screen. The resulting distribution of flow causes most bubbles to be produced where the connection occurs with flow alternating outwards. The end of the screen produces little or no bubbles.

To allow even distribution of bubbles, either individual Spargepoints® are bundled (spaghetti tube approach) or the Spargepoints® are constructed in a unique way which allows interval tubing connections with flow and pressure control for each Spargepoint® region within the proposed arrangement. Tubing connected to a Spargepoint® passes through the Spargepoint® internally without interfering with the function of producing small bubbles on a smooth external surface. The tubing penetration reduces the internal gas volume of the Spargepoint®, thereby reducing residence time for oxidative gases (important since ozone has a certain half-life before decomposition), and allows three to four Spargepoints® to be operated simultaneously with equal flow and pressure. Each Spargepoint® can also be programmed to pulse on a timed sequencer, saving electrical costs and allowing certain unique vertical and horizontal bubble patterns. Spargepoint® diffusers can be fitted with an F480 thread with internal bypass and compression fittings, FIG. 12. Some advantages are as follows:

(1) fits standard well screen;

(2) allows individual flow/pressure control;

(3) reduces residence time; and

(4) allows for casing/sparge instead of continuous bubbler.

Use of injectable points configured as molded, 18 Inch×40 inch HDPE molded into ¼ inch pp tubing or HDPE tubing allows a smooth tube to be inserted into a push probe with a detachable point. Use of “Bullet” prepacked Spargepoint® diffusers with a KVA “hefty system” prepacked sand cylinder and bentonite cylinder placed over tubing and porous point is advantageous. Also use of a porous point reinforced with inner metal tube (perforated) to allow strength throughout tubing resists disintegration of plastic during insertion.

Use of pressure/flow headers: Rotameter/mirror: A mirror placed at an angle in a well hole to allow site of a flowmeter reading scale to a point.

It is well recognized that the effectiveness of treatment is dependent upon the uniformity of gas dispersion as it travels through the formation. A porous structure, with appropriate packing, matches the condition of the pores of the soil with thirty percent (30%) pore distribution. The dispersion of bubbles as a fluid can be checked using Darcy's equation.

The use of microporous materials in the Spargepoint® to inject gases into groundwater saturated formations has special advantages for the following reasons:

    • 1. Matching permeability and channel size;
    • 2. Matching porosity;
    • 3. Enhancing fluidity, which can be determined in situ.

The most effective range of pore space for the diffuser material selected depends upon the nature of the unconsolidated formation to be injected. The following serves as a general guide:

    • 1. Porosity of porous material: thirty percent (30%);
    • 2. Pore space: 5-200 microns;
      • a. 5-20 very fine silty sand;
      • b. 20-50 medium sand;
      • c. 50-200 coarse sand and gravel.

The surrounding sand pack placed between the Spargepoint® and natural material to fill the zone after drilling and excavation should also be compatible in channel size to reduce coalescing of the produced bubbles.

The permeability range for fluid injection function without fracturing would follow:

    • 1. 10−2 to 10−6 cm/sec, corresponding to 2 to 2000 Darcy's; or
    • 2. 10−2 to 10−6 cm/sec; or
    • 3. 100 to 0.01 ft/day hydraulic conductivity.

Permeability is defined as a measure of the ease of movement of a gas through the soil. The ability of a porous soil to pass any fluid, including gas, depends upon its internal resistance to flow, dictated largely by the forces of attraction, adhesion, cohesion, and viscosity. Because the ratio of surface area to porosity increases as particle size decreases, permeability is often related to particle size see Table 3.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US19207199 Jan 19321 Aug 1933Stich EugenAerating device
US251752513 Oct 19471 Aug 1950Sun Oil CoCatalytic reaction apparatus
US28451855 Oct 195429 Jul 1958Winderweedle Jr Howell WShoe hanger
US294644617 Sep 195826 Jul 1960Permanent Filter CorpFiltration units
US302700928 Jan 195927 Mar 1962Permanent Filter CorpFiltration equipment
US320617816 Nov 196014 Sep 1965Fmc CorpDiffuser tube
US321952021 Oct 196023 Nov 1965Hawley Products CoPaper making apparatus and aerating device with electrical cleaning means
US32769949 Mar 19664 Oct 1966Charles W AndrewsSewage treatment
US344121616 Nov 196429 Apr 1969Raymond J GoodAir diffuser unit for aerating sewage
US3545731 *8 Nov 19668 Dec 1970Gen Dynamics CorpApparatus for producing bubbles of very small,microscopic size
US357021811 Dec 196816 Mar 1971Universal Oil Prod CoElectrode configuration in an electrical precipitator
US36692766 Nov 197013 Jun 1972Wilwood IncShoe display bag and system
US3670817 *5 Nov 197020 Jun 1972Shell Oil CoMethod of gravel-packing a production well borehole
US370820620 Jul 19702 Jan 1973Union Carbide CorpProcess for leaching base elements, such as uranium ore, in situ
US3808123 *14 Dec 197130 Apr 1974Buford CMethod and apparatus for the treatment of influent waters such as sewage
US381439417 Nov 19714 Jun 1974M MurrayApparatus for encapsulating hot gases from high stacks
US382377626 Apr 197316 Jul 1974Mobil Oil CorpOil recovery method by oxidation and forming surfactants in situ
US39974477 Jun 197414 Dec 1976Composite Sciences, Inc.Fluid processing apparatus
US400711816 Oct 19758 Feb 1977Cubic CorporationOzone oxidation of waste water
US40213479 Jan 19763 May 1977Teller Ray ESewage treatment system
US404807223 Oct 197513 Sep 1977Schramm, Inc.Air diffusers
US404955217 Nov 197520 Sep 1977Oregon Patent Development CompanyOzone generating system
US406416330 Dec 197620 Dec 1977Amchem Products, Inc.Process for the manufacture of aliphatic phosphonic acids
US411844720 Jun 19773 Oct 1978Xodar CorporationAerator containing a ballast charge
US417823913 Nov 197411 Dec 1979Union Carbide CorporationBiological intermediate sewage treatment with ozone pretreatment
US420383716 Dec 197720 May 1980Hoge John HProcess for removal of discrete particulates and solutes from liquids by foam flotation
US426828331 Dec 197919 May 1981W-K-M Wellhead Systems, Inc.Fluid control means for geothermal wells
US42984675 Jun 19803 Nov 1981Panlmatic CompanyWater treatment system
US431005730 May 198012 Jan 1982Brame Durward BApparatus for extracting subterranean gas samples
US43518109 Jul 198128 Sep 1982The United States Of America As Represented By The Secretary Of CommerceMethod for removing sulfur dioxide from a gas stream
US436023420 Sep 197623 Nov 1982Kennecott Copper CorporationIn-situ method and apparatus for sparging gas bubbles
US461459610 Jan 198530 Sep 1986Wyness David KApparatus and method for dissolving a gas in an aqueous stream
US462213920 Mar 198511 Nov 1986Brown Charles JAerator device
US463931418 Jan 198527 Jan 1987Tyer Robert RFine bubble diffuser and diffuser system having filtered blow-down tube
US468447914 Aug 19854 Aug 1987Arrigo Joseph S DSurfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures
US469544717 Dec 198522 Sep 1987Detox International CorporationDestruction of inorganic hazardous wastes
US469673911 Aug 198629 Sep 1987Aqua Strip CorporationWater purification apparatus
US47306724 Mar 198715 Mar 1988Midwest Water Resource, Inc.Method of removing and controlling volatile contaminants from the vadose layer of contaminated earth
US4780215 *8 Jun 198725 Oct 1988Carlson Russell LWater purification device
US480405030 Apr 198714 Feb 1989K-V Associates, Inc.Method of underground fluid sampling
US483212225 Aug 198823 May 1989The United States Of America As Represented By The United States Department Of EnergyIn-situ remediation system and method for contaminated groundwater
US483715322 Aug 19846 Jun 1989Laurenson Jr John GCompost air injection and evacuation system with improved air control
US483843417 May 198813 Jun 1989University Of UtahAir sparged hydrocyclone flotation apparatus and methods for separating particles from a particulate suspension
US484479513 May 19884 Jul 1989Bassim HalwaniMethod and apparatus for decontaminating the aquifer of hydrocarbons
US4849114 *4 Mar 198818 Jul 1989Ultrox InternationalOxidation of toxic compounds in water
US488358917 May 198828 Nov 1989New Jersey Institute Of TechnologySystem for removing contaminants from ground water
US494195730 Sep 198817 Jul 1990Ultrox InternationalDecomposition of volatile ogranic halogenated compounds contained in gases and aqueous solutions
US494330526 May 198924 Jul 1990Bruno BernhardtAerating apparatus for expelling volatile impurities from ground water
US496070627 Mar 19892 Oct 1990Baxter International, Inc.Static oxygenator for suspension culture of animal cells
US496671710 Feb 198930 Oct 1990Kern Donald WOzone injection system and method
US49717311 Dec 198920 Nov 1990Deister Concentrator Company, Inc.Method and apparatus for generating microbubbles in froth flotation mineral concentration systems
US50062504 Dec 19879 Apr 1991The Board Of Trustees Of The Leland Stanford Junior UniversityPulsing of electron donor and electron acceptor for enhanced biotransformation of chemicals
US507892112 Jul 19907 Jan 1992The Deister Concentrator Company, Inc.Froth flotation apparatus
US508080511 Oct 198814 Jan 1992Helen HouserMethod and apparatus for removing iron from well water
US511616316 Jan 199126 May 1992Ieg Industrie-Engineering GmbhArrangement for driving out volatile impurities from ground water
US512044216 May 19919 Jun 1992Dr. Karl Thomae GmbhProcess for the simultaneous chemical and biological elimination of solid and liquid organic waste
US512216511 Jun 199116 Jun 1992International Environmental Systems, Inc.Removal of volatile compounds and surfactants from liquid
US512611120 May 199130 Jun 1992Nutech Energy Systems Inc.Fluid purification
US51339069 Oct 199028 Jul 1992Tony LouisAerator
US516065515 Nov 19913 Nov 1992Lever Brothers Company, Division Of Conopco, Inc.Aqueous structured liquid detergent compositions containing selected peroxygen bleach compounds
US516780629 May 19911 Dec 1992International Environmental Systems, Inc.Gas dissolving and releasing liquid treatment system
US517849119 Jun 199112 Jan 1993International Technology CorporationVapor-phase nutrient delivery system for in situ bioremediation of soil
US517875520 Feb 199212 Jan 1993Estr Inc.UV-enhanced ozone wastewater treatment system
US518050310 May 199119 Jan 1993The Board Of Trustees Of The Leland Stanford Junior UniversityIn-situ vapor stripping for removing volatile organic compounds from groundwater
US5190648 *3 Apr 19902 Mar 1993Ramsauer Larry RWater purifying method and apparatus
US52059271 Aug 199027 Apr 1993Battelle Memorial InstituteApparatus for treatment of soils contaminated with organic pollutants
US521568010 Jul 19901 Jun 1993Cavitation-Control Technology, Inc.Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles
US52211597 Jun 199122 Jun 1993Environmental Improvement Technologies, Inc.Subsurface contaminant remediation, biodegradation and extraction methods and apparatuses
US522718429 May 199213 Jul 1993American Water Purification, Inc.Method for sanitizing food products
US52384377 Feb 199224 Aug 1993Mattel, Inc.Bubble dispensing doll
US524630916 May 199121 Sep 1993Hobby Michael MSystem and method for decontamination of contaminated ground
US524839526 Dec 198928 Sep 1993UopProcess for purifying aqueous media
US525425321 Aug 199219 Oct 1993Zenon Environmental Inc.Modular shipboard membrane bioreactor system for combined wastewater streams
US525996231 Aug 19929 Nov 1993Later Roger CMethod and apparatus for decontamination of soils and other particulate materials
US526994313 Jul 199214 Dec 1993Battelle Memorial InstituteMethod for treatment of soils contaminated with organic pollutants
US527751827 Nov 199111 Jan 1994Environmental Improvement Technologies, Inc.Contaminant remediation, biodegradation and removel methods and apparatus
US530228617 Mar 199212 Apr 1994The Board Of Trustees Of The Leland Stanford Junior UniversityMethod and apparatus for in situ groundwater remediation
US533233327 Jan 199326 Jul 1994Bentley Harold WVacuum extraction method and apparatus for removing volatile contaminants from the vadose layer of contaminated earth
US534866428 Oct 199220 Sep 1994Stranco, Inc.Process for disinfecting water by controlling oxidation/reduction potential
US536240026 Jun 19918 Nov 1994Paref AbProcess for the purification of water
US536453716 Jan 199215 Nov 1994Otv (Omnium De Traitements Et De Valorisation)Process for the oxidation of organic micropollutants in water using the O.sub.3 /H.sub.2 O.sub.2 combination
US537553921 Sep 199227 Dec 1994Rippberger; Mark L.Efficient removal of volatile compounds from soil or water
US538926718 Dec 199214 Feb 1995The Board Of Trustees Of The Leland Stanford Junior UniversityIn-situ vapor stripping for removing volatile organic compounds from groundwater
US539875722 Feb 199421 Mar 1995K N Energy, Inc.Mono-well for soil sparging and soil vapor extraction
US54028487 Apr 19944 Apr 1995Kelly; Leo G.Method and apparatus for conducting environmental procedures
US540347628 May 19934 Apr 1995Ieg Industrie-Engineering GmbhArrangement for removing impurities from ground water
US540695023 Dec 199318 Apr 1995Mallinckrodt Medical, Inc.Inhalable contrast agent
US542559812 Aug 199320 Jun 1995Pennington; Leslie H.System for sparging ground water contaminants
US542769319 Apr 199327 Jun 1995O-Three LimitedModular ozone water treatment apparatus and associated method
US543022824 Feb 19934 Jul 1995Hughes Aircraft CompanyOzone methods for the destruction of chemical weapons
US54312866 Jan 199411 Jul 1995Inco LimitedRecirculating column flotation apparatus
US545132010 Jul 199019 Sep 1995International Environmental Systems, Inc., UsaBiological process for groundwater and wastewater treatment
US546430920 Oct 19947 Nov 1995Xerox CorporationDual wall multi-extraction tube recovery well
US547229410 Jan 19945 Dec 1995Environmental Improvement Technologies, Inc.Contaminant remediation, biodegradation and volatilization methods and apparatuses
US548054925 Jan 19942 Jan 1996The United States Of America As Represented By The United States Department Of EnergyMethod for phosphate-accelerated bioremediation
US548263020 Jun 19949 Jan 1996Board Of Regents, The University Of Texas SystemControlled denitrification process and system
US552048310 Feb 199428 May 1996Vigneri; Ronald J.Method and system for remediation of groundwater contamination
US552500811 Jan 199511 Jun 1996Wilson; James T.Remediation apparatus and method for organic contamination in soil and groundwater
US55453301 Dec 199413 Aug 1996Amerada Hess CorporationWater treatment system
US556073715 Aug 19951 Oct 1996New Jersey Institute Of TechnologyPneumatic fracturing and multicomponent injection enhancement of in situ bioremediation
US558849031 May 199531 Dec 1996Geraghty & Miller, Inc.Method and system to achieve two dimensional air sparging
US56097987 Jun 199511 Mar 1997Msp CorporationHigh output PSL aerosol generator
US56159744 Feb 19941 Apr 1997Terra Vac, Inc.Process for soil decontamination by oxidation and vacuum extraction
US562059312 Jun 199615 Apr 1997Stagner; Joseph C.Multi-stage in-well aerator
USRE3489023 Sep 19934 Apr 1995Gore Enterprise Holdings, Inc.Waterproof shoe construction
JPH07178391A * Title not available
Non-Patent Citations
Reference
1Abstract JP 6-238260, Aug. 30, 1994, Karuto.
2Canadian Application No. 2,441,259 Office Action dated Oct. 14, 2009, 7 pages.
3Canadian Patent Application No. 2,351,257, Office Action dated May 1, 2009, 4 pages.
4Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Objections and Answers To Plaintiff's Interrogatories, Mar. 4, 2009, 10 pages.
5Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Objections and Responses To Plaintiff's Requests For Production of Documents and Things, Mar. 4, 2009, 54 pages.
6Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Supplemental Response to Plaintiffs Interrogatories Three and Four, Jul. 6, 2009, 164 pages.
7Civil Action No. 1:08-cv-11711-GAO, Groundwater & Environmental Services, Inc.'s Supplemental Response to Plaintiffs Interrogatory Three, Jun. 25, 2009, 36 pages.
8Civil Action No. 1:08-cv-11711-GAO, ThinkVillage-Kerfoot, LLC's Objections and Responses To Defendant's First Set of Requests For Production (Nos. 1-98) Apr. 9, 2009, 37 pages.
9Civil Action No. 1:08-cv-11711-GAO, ThinkVillage-Kerfoot, LLC's Responses To Defendant's Interrogatories (Nos. 1-11) Apr. 9, 2009, 12 pages.
10Civil Action No. 1:08-cv-11711-GAO, ThinkVillage-Kerfoot, LLC's Supplemental Responses To Defendant's Interrogatories (Nos. 7 and 8) Jun. 2, 2009, 9 pages.
11European Application No. 05793889.6 Extended European Search Report dated Dec. 15, 2011, 7 pages.
12Makarov , A. M. & Sorokin, S.S., "Heat Exchange of a Bubble Coated with a Liquid Film on the Rear Surface," Chemical and Petroleum Engineering, vol. 30, No. 2, 1994, pp. 78-81.
13PCT/US04/43634 International Search Report mailed May 18, 2005, 1 page.
14PCT/US05/25478, International Preliminary Report on Patentability, Jan. 23, 2007, 4 pages.
15PCT/US05/25478, International Search Report & Written Opinion, mailed Feb. 15, 2006, 4 pages.
16PCT/USO4/43634 International Preliminary Report on Patentability, Jun. 26, 2006, 5 pages.
17ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Amended Answer and Counterclaims, Civil Action No. 1:08-cv-11711-GAO, Dec. 15, 2008, 7 pages.
18ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Answer and Counterclaims, Civil Action No. 1:08-cv-11711-GAO, Dec. 5, 2008, 7 pages.
19ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Complaint for Patent Infringement, US District Court for the District of Massachusetts, Oct. 7, 2008, 5 pages.
20ThinkVillage-Kerfoot LLC v. Groundwater & Environmental Services, Inc., Plaintiff's Response to Defendant Groundwater & Environmental Services, Inc.'s Amended Counterclaims, Civil Action No. 1:08-cv-11711-GAO, Dec. 30, 2008, 5 pages.
21U.S. Appl. No. 09/470,167 (U.S. 6,436,285) Selected pages from File History dated Aug. 23, 2002 through Mar. 29, 2001, 38 pages.
22U.S. Appl. No. 09/860,659, Selected pages from Image File Wrapper dated Aug. 13, 2002 through Aug. 23, 2004, 68 pages.
23U.S. Appl. No. 09/943,111, Selected pages from Image File Wrapper dated Jan. 30, 2003 through Feb. 19, 2005, 47 pages.
24U.S. Appl. No. 09/993,152, Selected pages from Image File Wrapper dated Sep. 4, 2007 through Mar. 10, 2009, 59 pages.
25U.S. Appl. No. 10/223,166 (U.S. 6,596,161) Selected pages from File History dated Nov. 6, 2002 through Jul. 22, 2003, 22 pages.
26U.S. Appl. No. 10/354,584 Selected pages from Image File Wrapper dated Jul. 30, 2003 through Jul. 6, 2004, 32 pages.
27U.S. Appl. No. 10/365,027, Selected pages from Image File Wrapper dated Apr. 16, 2004 through May 2, 2005, 53 pages.
28U.S. Appl. No. 10/602,256, Selected pages from Image File Wrapper dated Jan. 11, 2005 through Dec. 12, 2002, 33 pages.
29U.S. Appl. No. 10/745,939, Selected pages from Image File Wrapper dated Jun. 22, 2006 through Jul. 22, 2008, 110 pages.
30U.S. Appl. No. 10/794,994 Selected pages from Image File Wrapper dated Jul. 6, 2006 through Apr. 18, 2007,48 pages.
31U.S. Appl. No. 10/895,015, Selected pages from Image File Wrapper dated Jul. 14, 2006 through Feb. 9, 2009, 102 pages.
32U.S. Appl. No. 10/910,441 Selected pages from Image File Wrapper dated Dec. 1, 2004 through Sep. 12, 2005, 36 pages.
33U.S. Appl. No. 10/916,863 Selected pages from Image File Wrapper dated Dec. 28, 2006 through Oct. 8, 2008, 39 pages.
34U.S. Appl. No. 10/963,353 Selected pages from Image File Wrapper dated Aug. 23, 2005 through Dec. 13, 2006, 46 pages.
35U.S. Appl. No. 10/963,361 Selected pages from Image File Wrapper dated Jul. 19, 2005 through Nov. 7, 2007, 99 pages.
36U.S. Appl. No. 10/994,960 Selected pages from Image File Wrapper dated Mar. 11, 2005 through Dec. 2, 2005, 36 pages.
37U.S. Appl. No. 10/997,452 Selected pages from Image File Wrapper dated Jun. 27, 2007 through Mar. 23, 2009, 144 pages.
38U.S. Appl. No. 11/145,871 , Notice of Allowance dated Sep. 9, 2009, 7 pages.
39U.S. Appl. No. 11/145,871 Response to Office Action filed Jun. 18, 2009.
40U.S. Appl. No. 11/145,871 selected pages from Image File Wrapper, Jun. 12, 2007 through Jun. 27, 2008, 82 pages.
41U.S. Appl. No. 11/145,871, Office Action mailed Mar. 18, 2009, 16 pages.
42U.S. Appl. No. 11/145,871, Response to Office Action filed Dec. 16, 2008, 12 pages.
43U.S. Appl. No. 11/146,722 Selected pages from Image File Wrapper dated Jun. 7, 2005 through Sep. 18, 2006, 70 pages.
44U.S. Appl. No. 11/272,446 Selected pages from File History dated Jan. 22, 2008 through May 1, 2009, 60 pages.
45U.S. Appl. No. 11/328,475 Selected pages from Image File Wrapper dated Jun. 30, 2006 through Aug. 15, 2007, 45 pages.
46U.S. Appl. No. 11/409,892 Selected pages from Image File Wrapper dated Jul. 31, 2006 through May 21, 2009, 94 pages.
47U.S. Appl. No. 11/409,892, Notice of Allowance dated Oct. 1, 2009,5 pages.
48U.S. Appl. No. 11/485,080 Selected pages from Image File Wrapper dated May 11, 2007 through Jan. 9, 2009, 83 pages.
49U.S. Appl. No. 11/485,080, Notice of Allowance dated Jul. 9, 2009, 4 pages.
50U.S. Appl. No. 11/485,080, Response to Office Action filed May 8, 2009, 4 pages.
51U.S. Appl. No. 11/485,223 Notice of Allowance dated Sep. 2, 2009, 7 pages.
52U.S. Appl. No. 11/485,223 Office Action mailed Jun. 15, 2009, 8 pages.
53U.S. Appl. No. 11/485,223 Selected pages from Image File Wrapper dated Feb. 26, 2008 through Mar. 11, 2009, 36 pages.
54U.S. Appl. No. 11/594,019 Selected pages from Image File Wrapper dated Apr. 25, 2007 through Oct. 29, 2008, 45 pages.
55U.S. Appl. No. 11/849,413 Selected pages from Image File Wrapper dated Sep. 4, 2007 through Mar. 10, 2009, 94 pages.
56U.S. Appl. No. 12/177,467 Notice of Allowance dated Sep. 2, 2009, 8 pages.
57U.S. Appl. No. 12/177,467 Selected pages from Image File Wrapper dated Dec. 29, 2008 through Jun. 12, 2009, 20 pages.
58U.S. Appl. No. 12/254,359, Notice of Allowance dated Apr. 1, 2009, 7 pages.
59U.S. Appl. No. 12/254,359, Notice of Allowance dated Jul. 6, 2009, 4 pages.
60U.S. Appl. No. 12/259,051 Notice of Allowance dated Aug. 24, 2009, 7 pages.
61U.S. Appl. No. 12/259,051, Office Action dated Mar. 24, 2009, 6 pages.
62U.S. Appl. No. 12/259,051, Response to Office Action filed Jun. 23, 2009, 8 pages.
63U.S. Appl. No. 12/272,462 Notice of Allowance dated Sep. 21, 2009, 8 pages.
64U.S. Appl. No. 12/272,462, Response to Restriction Requirement filed Jul. 2, 2009, 12 pages.
65U.S. Appl. No. 12/272,462, Restriction Requirement mailed Jun. 2, 2009, 5 pages.
66U.S. Appl. No. 12/483,048 Office Action dated Jan. 13, 2010 , 18 pages.
67U.S. Appl. No. 12/483,048, Advisory Action mailed Jun. 27, 2011, 4 pages.
68U.S. Appl. No. 12/483,048, Office Action mailed Jul. 12, 2010, 19 pages.
69U.S. Appl. No. 12/483,048, Office Action mailed Oct. 7, 2010, 21 pages.
70U.S. Appl. No. 12/483,048, Response to Office Action filed Apr. 13, 2010, 20 pages.
71U.S. Appl. No. 12/483,048, Response to Office Action filed Jan. 7, 2011, 10 pages.
72U.S. Appl. No. 12/483,048, Response to Office Action filed May 31, 2011, 6 pages.
73U.S. Appl. No. 12/483,048, Response to Office Action filed Sep. 10, 2010, 13 pages.
74U.S. Appl. No.12/483,048, Office Action mailed Mar. 30, 2011, 18 pages.
75Wilkins (ed.) et al. "Workshop on Monitoring Oxidation-Reduction Processes for Ground-water Restoration," EPA, (2000), 148 pages.
Classifications
U.S. Classification210/741, 210/760, 210/198.1, 210/908, 210/758, 210/170.07, 210/747.7, 405/128.75
International ClassificationB09B3/00, C02F1/78
Cooperative ClassificationC02F2103/06, B09C1/00, C02F1/78, B09C1/10, B09C1/08, B09C1/002
European ClassificationB09C1/08, B09C1/00B, C02F1/78, B09C1/00, B09C1/10
Legal Events
DateCodeEventDescription
12 Jun 2013FPAYFee payment
Year of fee payment: 4
21 Feb 2013ASAssignment
Owner name: KERFOOT TECHNOLOGIES, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KERFOOT, WILLIAM B.;REEL/FRAME:029849/0615
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KERFOOT TECHNOLOGIES, INC.;REEL/FRAME:029849/0751
Effective date: 20090306
Owner name: THINKVILLAGE-KERFOOT, LLC, COLORADO