USRE41333E1 - Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction - Google Patents

Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction Download PDF

Info

Publication number
USRE41333E1
USRE41333E1 US11/046,673 US4667305A USRE41333E US RE41333 E1 USRE41333 E1 US RE41333E1 US 4667305 A US4667305 A US 4667305A US RE41333 E USRE41333 E US RE41333E
Authority
US
United States
Prior art keywords
measurements
tissue
feature
exemplar
classifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/046,673
Inventor
Thomas B. Blank
Stephen L. Monfre
Timothy L. Ruchti
Suresh N. Thennadill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GLT Acquisition Corp
Original Assignee
Sensys Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/359,191 external-priority patent/US6280381B1/en
Priority claimed from US09/825,687 external-priority patent/US6512937B2/en
Priority to US11/046,673 priority Critical patent/USRE41333E1/en
Application filed by Sensys Medical Inc filed Critical Sensys Medical Inc
Priority to US11/065,223 priority patent/US20060167350A1/en
Assigned to Glenn Patent Group reassignment Glenn Patent Group LIEN (SEE DOCUMENT FOR DETAILS). Assignors: SENSYS MEDICAL, INC.
Assigned to SENSYS MEDICAL, INC. reassignment SENSYS MEDICAL, INC. LIEN RELEASE Assignors: Glenn Patent Group
Publication of USRE41333E1 publication Critical patent/USRE41333E1/en
Application granted granted Critical
Assigned to SENSYS MEDICAL, LTD reassignment SENSYS MEDICAL, LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SENSYS MEDICAL, INC.
Assigned to GLT ACQUISITION CORP. reassignment GLT ACQUISITION CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SENSYS MEDICAL, LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4785Standardising light scatter apparatus; Standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0228Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards
    • A61B2560/0233Optical standards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the invention relates to non-invasive blood analyte predication using near IR tissue absorption spectra. More particularly, the invention relates to a method of classifying sample spectra into groups having a high degree of internal consistency to minimized prediction error due to spectral interferents.
  • NIR near infrared
  • Tissue layers each containing a unique heterogeneous chemistry and particulate distribution, result in light absorption and scattering of the incident radiation.
  • T is a matrix representing the concentration or magnitude of interferents in all samples, and P represents the pure spectra of the interfering substances or effects present. Any spectral distortion can be considered an interferent in this formulation. For example, the effects of variable sample scattering and deviations in optical sampling volume must be included as sources of interference in this formulation.
  • y GLS (K T — ⁇ 1 K) ⁇ 1 K T — ⁇ 1 (x ⁇ k 0 ) (8)
  • _ is defined as the covariance matrix of the interfering substances or spectral effects
  • is defined as the measurement noise
  • x is the spectral measurement
  • k 0 is the instrument baseline component present in the spectral measurement.
  • NIRI Imaging
  • NIRS quantitation
  • the invention provides a Multi-Tier method for classifying tissue absorbance spectra that localizes calibration and sample spectra into local groups that are used to reduce variation in sample spectra due to co-variation of spectral interferents, sample heterogeneity, state variation and structural variation.
  • Measurement spectra are associated with localized calibration models that are designed to produce the most accurate estimates for the patient at the time of measurement. Classification occurs through extracted features of the tissue absorbance spectrum related to the current patient state and structure.
  • the invention also provides a method of developing localized calibration models from tissue absorbance spectra from a representative population of patients or physiological states of individual patients that have been segregated into groups.
  • the groups or classes are defined on the basis of structural and state similarity such that the variation in tissue characteristics within a class is smaller than the variation between classes.
  • FIG. 1 provides a representation of a Multi-Tiered Classification Tree structure, according to the invention
  • FIG. 2 is a block diagram of the architecture of an intelligent system for the noninvasive measurement of blood analytes, according to the invention
  • FIG. 3 is a block diagram of a pattern classification system, according to the invention.
  • FIG. 4 is a noninvasive absorbance spectrum collected using a diffuse reflectance NIR spectrometer
  • FIG. 5 shows the spectra of repeated noninvasive measurements with no attempt to control tissue hydration
  • FIG. 6 shows the spectra of repeated noninvasive measurements using ambient humidity to control hydration, according to the invention
  • FIG. 7 shows a noninvasive absorbance spectrum having a pronounced fat band at 1710 nm
  • FIG. 8 is a block schematic diagram of a general calibration system for mutually exclusive classes, according to the invention.
  • FIG. 9 is a block schematic diagram of a general calibration system for fuzzy class assignments, according to the invention.
  • FIG. 10 is a block schematic diagram showing an example of parallel calibration models for fuzzy set assignments, according to the invention.
  • the classification of tissue samples using spectra and other electronic and demographic information can be approached using a wide variety of algorithms.
  • a wide range of classifiers exists for separating tissue states into groups having high internal similarity: for example, Bayesian classifiers utilizing statistical distribution information; or non-parametric neural network classifiers that assume little a priori information. See K. Funkunaga, Intro to Statistical Pattern Recognition, Academic Pres, San Diego, Calif. (1990); and J. Hertz, A. Krogh, R. Palmer, Introduction To The Theory Of Neural Computation, Addison-Wesley Publishing Co., Redwood City, Calif. (1991).
  • the multi-tiered classification approach selected here provides the opportunity to grow and expand the classification database as more data become available.
  • the multi-tiered classifier is similar to a hierarchic classification tree, but unlike a classification tree, the decision rules can be defined by crisp or fuzzy functions and the classification algorithm used to define the decision rule can vary throughout the tree structure.
  • a first tier 11 assigns sample spectra according to pre-defined age groups: 18-27 (15), 28-40 (14), 40-54 (13) and 55-80 years old (12). As indicated, a sample has been assigned to the 28-40 age group.
  • a second tier 16 assigns samples to classes 18, 17 according to sex, in this case female.
  • a third tier 19 groups according to stratum corneum hydration: 31-60 (20); ⁇ 30 (21) and >61 corneometer units (22); in this case, >61.
  • a fourth tier 23 groups according to skin temperature: 88-90 (24); 86-88 (25); 84-86 and ⁇ 84 degrees; in this case 84-86 degrees. In this way, a determination of class membership is made within each tier in the multi-tiered structure. Finally, in a last tier 28 , a final class assignment is made into one of three pre-defined groups 29, 30 and 31 according to relative optical thickness of the dermis.
  • classification is made based on a priori knowledge of the sample, or on the basis of instrumental measurements made at the tissue measurement site.
  • the first two tiers utilize a priori information about the sample: subject age and sex.
  • Successive tiers utilize information gained from instrumental measurements at the tissue measurement site. Further classification occurs on the basis of extracted features from the tissue absorbance spectra themselves.
  • FIG. 2 shows a block diagram of an intelligent measurement system for noninvasive blood analyte prediction, fully described in the parent application to the current application: S. Malin and T. Ruchti, An Intelligent System For Noninvasive Blood Analyte Prediction, U.S. patent application Ser. No. 09/359,191; Jul. 22, 1999,
  • the purpose of feature extraction 41 in FIG. 2 is to concisely represent the structural properties and physiological state of the tissue measurement site.
  • the set of features is used to classify the patient and determine the calibration model(s) most useful for blood analyte prediction.
  • the dimension, M i indicates whether the i th feature is a scalar or a vector and the aggregation of all features is the vector z. When a feature is represented as a vector or a pattern, it exhibits a certain structure indicative of an underlying physical phenomenon.
  • Abstract features do not necessarily have a specific interpretation related to the physical system. Specifically, the scores of a principal component analysis are useful features although their physical interpretation is not always known.
  • the utility of the principal component analysis is related to the nature of the tissue absorbance spectrum. The most significant variation in the tissue spectral absorbance is not caused by a blood analyte but is related to the state, structure and composition of the measurement site. This variation is modeled by the primary principal components. Therefore, the leading principal components tend to represent variation related to the structural properties and physiological state of the tissue measurement site.
  • Simple features are derived from an a priori understanding of the sample and can be related directly to a physical phenomenon. Useful features that can be calculated from NIR spectral absorbance measurements include but are not limited to:
  • Spectral decomposition is employed to determine the features related to a known spectral absorbance pattern.
  • Protein and fat for example, have known absorbance signatures that can be used to determine their contribution to the tissue spectral absorbance.
  • the measured contribution is used as a feature and represents the underlying variable through a single value.
  • the goal of feature extraction is to define the salient characteristics of measurements that are relevant for classification. Feature extraction is performed at branching junctions of the multi-tiered classification tree structure.
  • the goal of the classification step is to assign the calibration model(s) most appropriate for a particular noninvasive measurement. In this step the patient is assigned to one of many predefined classes for which a calibration model has been developed and tested. Since the applied calibration model is developed for similar tissue absorbance spectra, the blood analyte predictions are more accurate than those obtained from a universal calibration model.
  • pattern classification generally involves two steps:
  • Class definition is the assignment of the measurements in the exploratory data set to classes. After class definition, the measurements and class assignments are used to determine the mapping from the features to class assignments.
  • Class definition is performed through either a supervised or an unsupervised approach. See Y. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing Co., Reading, Mass. (1989).
  • supervised classes are defined through known differences in the data.
  • the use of a priori information in this manner is the first step in supervised pattern recognition, which develops classification models when the class assignment is known. For example, the majority of observed spectral variation can be modeled by three abstract factors, which are related to several physical properties including body fat, tissue hydration and skin thickness. Categorizing patients on the basis of these three features produces eight different classes if each feature is assigned a “high” and “low” value.
  • the drawback to this approach is that attention is not given to spectral similarity and the number of classes tends to increase exponentially with the number of features.
  • Unsupervised methods rely solely on the spectral measurements to explore and develop clusters or natural groupings of the data in feature space. Such an analysis optimizes the within cluster homogeneity and the between cluster separation. Clusters formed from features with physical meaning can be interpreted based on the known underlying phenomenon causing variation in the feature space. However, cluster analysis does not utilize a priori information and can yield inconsistent results.
  • a combination of the two approaches utilizes a priori knowledge and exploration of the feature space for naturally occurring spectral classes.
  • classes are first defined from the features in a supervised manner. Each set of features is divided into two or more regions and classes are defined by combinations of the feature divisions.
  • a cluster analysis is performed on the data and the results of the two approaches are compared. Systematically, the clusters are used to determine groups of classes that can be combined. After conglomeration, the number of final class definitions is significantly reduced according to natural divisions in the data.
  • a classifier is designed through supervised pattern recognition. A model is created, based on class definitions, that transforms a measured set of features to an estimated classification. Since the ultimate goal of the classifier is to produce robust and accurate calibration models, an iterative approach must be followed in which class definitions are optimized to satisfy the specifications of the measurement system.
  • the statistical classification methods are applied to mutually exclusive classes whose variation can be described statistically. See J. Bezdek, S. Pal, eds, Fuzzy Models for Pattern Recognition, IEEE Press, Piscataway, N.J. (1992).
  • classifier is designed by determining an optimal mapping or transformation from the feature space to a class estimate which minimizes the number of misclassifications.
  • the form of the mapping varies by method as does the definition of “optimal”.
  • Existing methods include linear Discriminant analysis, SIMCA, k nearest-neighbor and various forms of artificial neural networks.
  • the class is used to select or adapt the calibration model as discussed in the Calibration Section. Fuzzy Classification
  • a more versatile method of class assignment is based on fuzzy set theory. See Bezdek, et al., supra; and C. Chen, ed., Fuzzy Logic and Neural Network Handbook, IEEE Press, Piscataway, N.J. (1996); and L. Zadeh, Fuzzy Sets, Inform. Control, vol. 8, pp. 338-353 (1965).
  • membership in fuzzy sets is defined by a continuum of grades and a set of membership functions that map the feature space into the interval [0,1] for each class.
  • the assigned membership grade represents the degree of class membership with “1” corresponding to the highest degree. Therefore, a sample can simultaneously be a member of more than one class.
  • the membership vector provides the degree of membership in each of the predefined classes and is passed to the calibration algorithm.
  • fuzzy class definitions similar to the methods previously described. Fuzzy cluster analysis can be applied and several methods, differing according to structure and optimization approach can be used to develop the fuzzy classifier. All methods attempt to minimize the estimation error of the class membership over a population of samples.
  • Blood analyte prediction occurs by the application of a calibration model to the preprocessed measurement as depicted in FIG. 2 .
  • the proposed prediction system involves a calibration or a set of calibration models that are adaptable or selected on the basis of the classification step.
  • Accurate blood analyte prediction requires calibration models that are capable of compensating for the co-varying interferents, sample heterogeneity, state and structural variations encountered. Complex mixtures of chemically absorbing species that exhibit substantial spectral overlap between the system components are solvable only with the use of multivariate statistical models. However, prediction error increases with increasing variation in interferents that also co-vary with analyte concentration in calibration data. Therefore, blood analyte prediction is best performed on measurements exhibiting smaller interference variations that correlate poorly with analyte concentration in the calibration set data. Since it may not be possible to make all interference variations random, it is desirable to limit the range of spectral interferent variation in general.
  • the principle behind the multi-tiered classification and calibration system is based on the properties of a generalized class of algorithm that are required to compensate for overlapped interfering signals in the presence of the desired analyte signal. See H. Martens, T. Naes, Multivariate Calibration, John Wiley and Sons, New York (1989).
  • the models used in this application require the measurement of multiple independent variables, designated as x, to estimate a single dependent variable, designated as y.
  • y may be tissue glucose concentration
  • x may represent a vector, [x 1 x 2 . . . x i ], consisting of the noninvasive spectrum signal intensities at each of n wavelengths.
  • Equation 4 The generalized form of a model to be used in the calculation of a single glucose estimate uses a weighted summation of the noninvasive spectrum as in Equation 4.
  • the weights, w are referred to as the regression vector.
  • y ⁇ w i x i (4)
  • the modeling error that might be expected in a multivariate system using Equation 5 can be estimated using a linear additive mixture model.
  • Linear additive mixtures are characterized by the definition that the sum of the pure spectra of the individual constituents in a mixture equals the spectra of the mixture.
  • Linear mixture models are useful in assessing the general limitations of multivariate models that are based on linear additive systems and those, noninvasive blood analysis, for example, that can be expected to deviate somewhat from linear additive behavior.
  • FIG. 4 shows an exemplary noninvasive absorbance spectrum.
  • a set of spectral measurements may be represented as a matrix X where each row corresponds to an individual sample spectrum and each column represents the signal magnitude at a single wavelength.
  • the measurement matrix can be represented as a linear additive mixture model with a matrix of instrument baseline variations B 0 , a matrix of spectra of the pure components K, and the concentrations of the pure components, Y, and random measurement noise present in the measurement of each spectrum, E.
  • X B 0 +YK T +E (6)
  • the linear additive model can be broken up further into interferents and analytes as an extended mixture model.
  • X B 0 +YK T +TP T +E (7)
  • T is a matrix representing the concentration or magnitude of interferents in all samples, and P represents the pure spectra of the interfering substances or effects present. Any spectral distortion can be considered an interferent in this formulation. For example, the effects of variable sample scattering and deviations in optical sampling volume must be included as sources of interference in this formulation.
  • MSE mean squared error
  • Equation 10 describes the generalized limitations of least squares predictors in the presence of interferents. If K represents the concentrations of blood glucose, a basic interpretation of Equation 10 is: the mean squared error in glucose estimates increases with increased variation in interferences that also co-vary with glucose concentration in calibration data. Therefore, the accurate estimation of glucose is best performed on measurements exhibiting smaller interference variations that poorly correlate with glucose concentration in the calibration set data. Since it may not be possible to make all interference variations random with glucose, it is desirable to limit the range of spectral interference variation in general.
  • the Multi-Tier Classification provides a method for limiting variation of spectral interferents by placing sample measurements into groups having a high degree of internal consistency.
  • Tissue parameters to be utilized in class definition may include: stratum corneum hydration, tissue temperature, and dermal thickness.
  • the stratum corneum (SC), or horny cell layer covers about 10-15 ⁇ m thickness of the underside of the arm.
  • the SC is composed mainly of keratinous dead cells, water and some lipids. See D. Bommannan, R. Potts, R. Guy, Examination of the Stratum Corneum Barrier Function In Vivo by Infrared Spectroscopy, J. Invest. Dermatol., vol. 95, pp 403-408 (1990). Hydration of the SC is known to vary over time as a function of room temperature and relative humidity. See J. Middleton, B. Allen, Influence of temperature and humidity on stratum corneum and its relation to skin chapping, J. Soc. Cosmet. Chem., vol. 24, pp.
  • the temperature of the measured tissue volume varies from the core body temperature, at the deepest level of penetration, to the skin surface temperature, which is generally related to ambient temperature, location and the amount of clothing at the tissue measurement site.
  • the spectrum of water, which comprises about 65% of living human tissue is the most dominant spectral component at all depths sampled in the 1100-2500 nm wavelength range.
  • the first tissue layer under the skin is the subcutaneous adipose tissue, consisting mainly of fat.
  • the strength of the fat absorbance band can be used to assess the relative photon flux that has penetrated to the subcutaneous tissue level.
  • a more pronounced fat band means that a greater photon flux has reached the adipose tissue and returned to the detector.
  • FIG. 7 spectra with pronounced 71 and normal 72 fat bands are presented.
  • the most important use of the optical thickness is to assess the degree of hydration in the interior tissue sampled by the optical probe.
  • Optical thickness may also be a strong function of gender and body type, therefore this property measurement would be useful for assessing interior hydration states within a single individual.
  • the designated classification is passed to a nonlinear model that provides a blood analyte prediction based on the patient classification and spectral measurement.
  • This process illustrated in FIG. 8 , involves the modification of the estimation strategy for the current subject according to the structural tissue properties and physiological state manifested in the absorbance spectrum.
  • This general architecture necessitates a nonlinear calibration model 101 such as nonlinear partial least squares or artificial neural networks since the mapping is highly nonlinear.
  • a different calibration is realized for each class.
  • the estimated class is used to select one of p calibration models most appropriate for blood analyte prediction using the current measurement.
  • k is the class estimate for the measurement
  • the calibrations are developed from a set of exemplar absorbance spectra with reference blood analyte values and pre-assigned classification definitions. This set, denoted the “calibration set”, must have sufficient samples to completely represent the range of physiological states to be encountered in the patient population.
  • the p different calibration models are developed individually from the measurements assigned to each of the p classes. The models are realized using known methods including principal component regression, partial least squares regression and artificial neural networks. See Hertz, et al., supra; and Pao, supra; and Haykin, supra; and Martens, et al., supra; and N. Draper, H. Smith, Applied Regression Analysis, 2 nd ed., John Wiley and Sons, New York (1981).
  • the various models associated with each class are evaluated on the basis of an independent test set or cross validation and the “best” set of models are incorporated into the Multi-tier Classification. Each class of patients then has a calibration model specific to that class.
  • the calibration is passed a vector of memberships rather than a single estimated class.
  • the vector, c is utilized to determine an adaptation of the calibration model suitable for blood analyte prediction or an optimal combination of several blood analyte predictions.
  • the membership vector and the preprocessed absorbance spectrum are both used by a single calibration 111 for blood analyte prediction.
  • the preferred realization, shown in FIG. 10 has separate calibrations 121 for each class. However, each calibration is generated using all measurements in the calibration set by exploiting the membership vector assigned to each measurement. In addition, the membership vector is used to determine an optimal combination of the p blood analyte predictions from all classes through defuzzification 122 . Therefore, during calibration development, a given measurement of the calibration set has the opportunity to impact more than one calibration model. Similarly, during prediction more than one calibration model is used to generate the blood analyte estimate.
  • Each of the p calibration models is developed using the entire set of calibration data. However, when the k th calibration model is calculated, the calibration measurements are weighted by their respective membership in the k th class. As a result, the influence of a sample on the calibration model of a particular class is a function of its membership in the class.
  • an iterative method such as artificial neural networks
  • the membership is used to determine the frequency the samples are presented to the learning algorithm.
  • an extended Kalman filter is applied with a covariance matrix scaled according to V.
  • defuzzification is a mapping from the vector of blood analyte predictions and the vector of class memberships to a single analyte prediction.
  • Existing methods of defuzzification such as the centroid or weighted average, are applied for small calibration sets. However, if the number of samples is sufficient, d(•) is generated through a constrained nonlinear model.
  • the Multi-tiered Classification and Calibration is implemented in a scanning spectrometer which determines the NIR absorbance spectrum of the subject forearm through a diffuse reflectance measurement.
  • the instrument employs a quartz halogen lamp, a monochromator, and InGaAs detectors.
  • the detected intensity from the sample is converted to a voltage through analog electronics and digitized through a 16-bit A/D converter.
  • the spectrum is passed to the Intelligent Measuring System (IMS) for processing and results in either a glucose prediction or a message indicating an invalid scan.
  • IMS Intelligent Measuring System

Abstract

A method of multi-tier classification and calibration in noninvasive blood analyte prediction minimizes prediction error by limiting co-varying spectral interferents. Tissue samples are categorized based on subject demographic and instrumental skin measurements, including in vivo near-IR spectral measurements. A multi-tier intelligent pattern classification sequence organizes spectral data into clusters having a high degree of internal consistency in tissue properties. In each tier, categories are successively refined using subject demographics, spectral measurement information and other device measurements suitable for developing tissue classifications.
The multi-tier classification approach to calibration utilizes multivariate statistical arguments and multi-tiered classification using spectral features. Variables used in the multi-tiered classification can be skin surface hydration, skin surface temperature, tissue volume hydration, and an assessment of relative optical thickness of the dermis by the near-IR fat band. All tissue parameters are evaluated using the NIR spectrum signal along key wavelength segments.

Description

CROSS-REFERENCE TO RELATED APPLICATION
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,512,937. The reissue applications are application Ser. No. 11/046,673 (the present application) and Ser. No. 11/065,223, all of which are divisional reissues of U.S. Pat. No. 6,512,937. This application is a Continuation-in-part of U.S. patent application Ser. No. 09/359,191; filed on Jul. 22, 1999, now U.S. Pat. No. 6,280,381, which is incorporated herein in its entirety by this reference thereto.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to non-invasive blood analyte predication using near IR tissue absorption spectra. More particularly, the invention relates to a method of classifying sample spectra into groups having a high degree of internal consistency to minimized prediction error due to spectral interferents.
2. Description of Related Technology
The goal of noninvasive blood analyte measurement is to determine the concentration of targeted blood analytes without penetrating the skin. Near infrared (NIR) spectroscopy is a promising noninvasive technology that bases measurements on the absorbance of low energy NIR light transmitted into a subject. The light is focused onto a small area of the skin and propagates through subcutaneous tissue. The reflected or transmitted light that escapes and is detected by a spectrometer provides information about the contents of the tissue that the NIR light has penetrated and sampled. The absorption of light at each wavelength is determined by the structural properties and chemical composition of the tissue. Tissue layers, each containing a unique heterogeneous chemistry and particulate distribution, result in light absorption and scattering of the incident radiation. Chemical components such as water, protein, fat and blood analytes absorb light proportionally to their concentration through unique absorption profiles. The sample tissue spectrum contains information about the targeted analyte, as well as a large number of other substances that interfere with the measurement of the analyte. Consequently, analysis of the analyte signal requires the development of a mathematical model for extraction of analyte spectral signal from the heavily overlapped spectral signatures of interfering substances. Defining a model that produces accurate compensation for numerous interferents may require spectral measurements at one hundred or more frequencies for a sizeable number of tissue samples.
In equation 7, T is a matrix representing the concentration or magnitude of interferents in all samples, and P represents the pure spectra of the interfering substances or effects present. Any spectral distortion can be considered an interferent in this formulation. For example, the effects of variable sample scattering and deviations in optical sampling volume must be included as sources of interference in this formulation. The direct calibration for a generalized least squares model on analyte y is
yGLS=(KT −1K)−1KT −1(x−k0)  (8)
where _ is defined as the covariance matrix of the interfering substances or spectral effects, Û is defined as the measurement noise, x is the spectral measurement, and k0 is the instrument baseline component present in the spectral measurement.
Accurate noninvasive estimation of blood analytes is also limited by the dynamic nature of the sample, the skin and living tissue of the patient. Chemical, structural and physiological variations occur produce dramatic changes in the optical properties of the measured tissue sample. See R. Anderson, J. Parrish. The optics of human skin, Journal of Investigative Dermatology, vol. 77(1), pp. 13-19 (1981); and W. Cheong, S. Prahl, A. Welch, A review of the optical properties of biological tissues, IEEE Journal of Quantum Electronics, vol. 26(12), pp. 2166-2185 (December 1990); and D. Benaron, D. Ho, Imaging (NIRI) and quantitation (NIRS) in tissue using time-resolved spectrophotometry: the impact of statically and dynamically variable optical path lengths, SPIE, vol. 1888, pp.10-21 (1993); and J. Conway, K. Norris, C. Bodwell, A new approach for the estimation of body composition: infrared interactance, The American Journal of Clinical Nutrition, vol. 40, pp. 1123-1140 (December 1984); and S. Homma, T. Fukunaga, A. Kagaya, Influence of adipose tissue thickness in near infrared spectroscopic signals in the measurement of human muscle, Journal of Biomedical Optics, vol. 1(4), pp. 418-424 (October 1996); and A. Profio, Light transport in tissue, Applied Optics, vol. 28(12), pp. 2216-2222 (June 1989); and M. Van Gemert, S. Jacques, H. Sterenborg, W. Sta, Skin optics, IEEE Transactions on Biomedical Engineering, vol. 36(12), pp. 1146-1154 (December 1989); and B. Wilson, S. Jacques, Optical reflectance and transmittance of tissues: principles and applications, IEEE Journal of Quantum Electronics, vol. 26(12), pp. 2186-2199.
Overall sources of spectral variations include the following general categories:
    • 1. Co-variation of spectrally interfering species. The near infrared spectral absorption profiles of blood analytes tend to overlap and vary simultaneously over brief time periods. This overlap leads to spectral interference and necessitates the measurement of absorbance at more independently varying wavelengths than the number of interfering species.
    • 2. Sample heterogeneity. The tissue measurement site has multiple layers and compartments of varied composition and scattering. The spectral absorbance versus wavelength measurement is related to a complex combination of the optical properties and composition of these tissue components. Therefore, the spectral response with changing blood analyte concentration is likely to deviate from a simple linear model.
    • 3. State Variations. Variations in the subject's physiological state effect the optical properties of tissue layers and compartments over a relatively short period of time. Such variations, for example, may be related to hydration levels, changes in the volume fraction of blood in the tissue, hormonal stimulation, skin temperature fluctuations and blood hemoglobin levels. Subtle variations may even be expected in response to contact with an optical probe.
    • 4. Structural Variations. The tissue characteristics of individuals differ as a result of factors that include hereditary, environmental influences, the aging process, sex and body composition. These differences are largely anatomical and can be described as slowly varying structural properties producing diverse tissue geometry. Consequently, the tissue of a given subject may have distinct systematic spectral absorbance features or patterns that can be related directly to specific characteristics such as dermal thickness, protein levels and percent body fat. While the absorbance features may be repeatable within a patient, the structural variations in a population of patients may not be amenable to the use of a single mathematical calibration model. Therefore, differences between patients are a significant obstacle to the noninvasive measurement of blood analytes through NIR spectral absorbance.
In a non-dispersive system, variations similar to (1) above are easily modeled through multivariate techniques such as multiple linear regression and factor-based algorithms. Significant effort has been expended to model the scattering properties of tissue in diffuse reflectance, although the problem outlined in (2) above has been largely unexplored. Variation of the type listed in (3) and (4) above causes significant nonlinear spectral response for which an effective solution has not been reported. For example, several reported methods of noninvasive glucose measurement develop calibration models that are specific to an individual over a short period of time. See K. Hazen, Glucose determination in biological matrices using near-infrared spectroscopy, Doctoral Dissertation, University of Iowa (August 1995); and J. Burmeister, In vitro model for human noninvasive blood glucose measurements, Doctoral Dissertation, University of Iowa (December 1997); and M. Robinson, R. Eaton, D. Haaland, G. Koepp, E. Thomas, B. Stallard and P. Robinson, Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation, Clin. Chem, vol. 38 (9), pp. 1618-1622 (1992). This approach avoids modeling the differences between patients and therefore cannot be generalized to more individuals. However, the calibration models have not been tested over long time periods during which variation of type (4) may require recalibration. Furthermore, the reported methods have not been shown to be effective over a range of type (3) variations.
SUMMARY OF THE INVENTION
The invention provides a Multi-Tier method for classifying tissue absorbance spectra that localizes calibration and sample spectra into local groups that are used to reduce variation in sample spectra due to co-variation of spectral interferents, sample heterogeneity, state variation and structural variation. Measurement spectra are associated with localized calibration models that are designed to produce the most accurate estimates for the patient at the time of measurement. Classification occurs through extracted features of the tissue absorbance spectrum related to the current patient state and structure.
The invention also provides a method of developing localized calibration models from tissue absorbance spectra from a representative population of patients or physiological states of individual patients that have been segregated into groups. The groups or classes are defined on the basis of structural and state similarity such that the variation in tissue characteristics within a class is smaller than the variation between classes.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 provides a representation of a Multi-Tiered Classification Tree structure, according to the invention;
FIG. 2 is a block diagram of the architecture of an intelligent system for the noninvasive measurement of blood analytes, according to the invention;
FIG. 3 is a block diagram of a pattern classification system, according to the invention;
FIG. 4 is a noninvasive absorbance spectrum collected using a diffuse reflectance NIR spectrometer;
FIG. 5 shows the spectra of repeated noninvasive measurements with no attempt to control tissue hydration;
FIG. 6 shows the spectra of repeated noninvasive measurements using ambient humidity to control hydration, according to the invention;
FIG. 7 shows a noninvasive absorbance spectrum having a pronounced fat band at 1710 nm;
FIG. 8 is a block schematic diagram of a general calibration system for mutually exclusive classes, according to the invention;
FIG. 9 is a block schematic diagram of a general calibration system for fuzzy class assignments, according to the invention; and
FIG. 10 is a block schematic diagram showing an example of parallel calibration models for fuzzy set assignments, according to the invention.
DETAILED DESCRIPTION
MULTI-TIERED CLASSIFICATION
The classification of tissue samples using spectra and other electronic and demographic information can be approached using a wide variety of algorithms. A wide range of classifiers exists for separating tissue states into groups having high internal similarity: for example, Bayesian classifiers utilizing statistical distribution information; or non-parametric neural network classifiers that assume little a priori information. See K. Funkunaga, Intro to Statistical Pattern Recognition, Academic Pres, San Diego, Calif. (1990); and J. Hertz, A. Krogh, R. Palmer, Introduction To The Theory Of Neural Computation, Addison-Wesley Publishing Co., Redwood City, Calif. (1991). The multi-tiered classification approach selected here provides the opportunity to grow and expand the classification database as more data become available. The multi-tiered classifier is similar to a hierarchic classification tree, but unlike a classification tree, the decision rules can be defined by crisp or fuzzy functions and the classification algorithm used to define the decision rule can vary throughout the tree structure.
Referring now to FIG. 1, an example of a Multi-Tiered Classification scheme is represented. A first tier 11 assigns sample spectra according to pre-defined age groups: 18-27 (15), 28-40 (14), 40-54 (13) and 55-80 years old (12). As indicated, a sample has been assigned to the 28-40 age group. A second tier 16 assigns samples to classes 18, 17 according to sex, in this case female. A third tier 19, groups according to stratum corneum hydration: 31-60 (20); <30 (21) and >61 corneometer units (22); in this case, >61. A fourth tier 23, groups according to skin temperature: 88-90 (24); 86-88 (25); 84-86 and <84 degrees; in this case 84-86 degrees. In this way, a determination of class membership is made within each tier in the multi-tiered structure. Finally, in a last tier 28, a final class assignment is made into one of three pre-defined groups 29, 30 and 31 according to relative optical thickness of the dermis.
For economy's sake, only the branching adjacent the selected classes is completely shown in FIG. 1, though there would be many more intermediate and final classification categories in a full multi-tiered classification structure. For example, at the fourth tier 23 of Figure, there would be ninety-six possible classifications for a tissue measurement spectrum; at the final tier, there would be two hundred eighty-eight possible classifications. The foregoing description of a Multi-Tier Classification structure is meant to be exemplary only. One skilled in the art will appreciate that an actual classification structure could have more or fewer tiers, and different decision rules could be utilized at each tier than have been utilized in the example.
FEATURE EXTRACTION
As previously indicated, at each tier in the classification structure, classification is made based on a priori knowledge of the sample, or on the basis of instrumental measurements made at the tissue measurement site. In the example of FIG. 1, the first two tiers utilize a priori information about the sample: subject age and sex. Successive tiers utilize information gained from instrumental measurements at the tissue measurement site. Further classification occurs on the basis of extracted features from the tissue absorbance spectra themselves.
Feature extraction is any mathematical transformation that enhances a quality or aspect of the sample measurement for interpretation. See R. Duda, P. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons, New York (1973). FIG. 2 shows a block diagram of an intelligent measurement system for noninvasive blood analyte prediction, fully described in the parent application to the current application: S. Malin and T. Ruchti, An Intelligent System For Noninvasive Blood Analyte Prediction, U.S. patent application Ser. No. 09/359,191; Jul. 22, 1999, The purpose of feature extraction 41 in FIG. 2 is to concisely represent the structural properties and physiological state of the tissue measurement site. The set of features is used to classify the patient and determine the calibration model(s) most useful for blood analyte prediction.
The features are represented in a vector, zε
Figure USRE041333-20100511-P00900
M that is determined from the preprocessed measurement through
z=f(λ,x)  (1)
where f:
Figure USRE041333-20100511-P00900
N→RM is a mapping from the measurement space to the feature space. Decomposing f(•) will yield specific transformations, fi(•):
Figure USRE041333-20100511-P00900
N
Figure USRE041333-20100511-P00900
M i for determining a specific feature. The dimension, Mi, indicates whether the ith feature is a scalar or a vector and the aggregation of all features is the vector z. When a feature is represented as a vector or a pattern, it exhibits a certain structure indicative of an underlying physical phenomenon.
The individual features are divided into two categories:
    • 1. abstract and
    • 2. simple.
Abstract features do not necessarily have a specific interpretation related to the physical system. Specifically, the scores of a principal component analysis are useful features although their physical interpretation is not always known. The utility of the principal component analysis is related to the nature of the tissue absorbance spectrum. The most significant variation in the tissue spectral absorbance is not caused by a blood analyte but is related to the state, structure and composition of the measurement site. This variation is modeled by the primary principal components. Therefore, the leading principal components tend to represent variation related to the structural properties and physiological state of the tissue measurement site. Simple features are derived from an a priori understanding of the sample and can be related directly to a physical phenomenon. Useful features that can be calculated from NIR spectral absorbance measurements include but are not limited to:
    • 1. Thickness of adipose tissue. See J. Conway, K. Norris, C. Bodwell, A new approach for the estimation of body composition: infrared interactance, The American Journal of Clinical Nutrition, vol. 40, pp. 1123-1140 (December 1984) and S. Homma, T. Fukunaga, A. Kagaya, Influence of adipose tissue thickness in near infrared spectroscopic signals in the measurement of human muscle, Journal of Biomedical Optics, vol.1(4), pp. 418-424 (October 1996).
    • 2. Tissue hydration. See K. Martin, Direct measurement of moisture in skin by NIR spectroscopy, J. Soc. Cosmet. Chem., vol. 44, pp. 249-261 (September/October 1993).
    • 3. Magnitude of protein absorbance. See J. Conway, et al., supra.
    • 4. Scattering properties of the tissue. See A. Profio, Light transport in tissue, Applied Optics, vol. 28(12), pp. 2216-2222 (June 1989) and W. Cheong, S. Prahl, A. Welch, A review of the optical properties of biological tissues, IEEE Journal of Quantum Electronics, vol. 26(12), pp. 2166-2185 (December 1990); and R. Anderson, J. Parrish. The optics of human skin, Journal of Investigative Dermatology, vol. 77(1), pp. 13-19 (1981).
    • 5. Skin thickness. See Anderson, et al., supra; and Van Gemmert, et al., supra.
    • 6. Temperature related effects. See Funkunga, supra.
    • 7. Age related effects. See W. Andrew, R. Behnke, T. Sato, Changes with advancing age in the cell population of human dermis, Gerontologia, vol. 10, pp. 1-19 (1964/65); and W. Montagna, K. Carlisle, Structural changes in aging human skin, The Journal of Investigative Dermatology, vol. 73, pp. 47-53 (1979; and 19 J. Brocklehurst, Textbook of Geriatric Medicine and Gerontology, pp.593-623, Churchill Livingstone, Edinburgh and London (1973).
    • 8. Spectral characteristics relates to sex. See T. Ruchti, Internal Reports and Presentations, Instrumentation Metrics, Inc.
    • 9. Pathlength estimates. See R. Anderson, et al., supra and S. Matcher, M. Cope, D. Delpy, Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy, Phys.
    • Med. Biol., vol. 38, pp. 177-196 (1993).
    • 10. Volume fraction of blood in tissue. See Wilson, et al., supra.
    • 11. Spectral characteristics related to environmental influences.
Spectral decomposition is employed to determine the features related to a known spectral absorbance pattern. Protein and fat, for example, have known absorbance signatures that can be used to determine their contribution to the tissue spectral absorbance. The measured contribution is used as a feature and represents the underlying variable through a single value.
Features relates to demographic information, such as age, are combinations of many different effects that cannot be represented by a single absorbance profile. Furthermore, the relationship of demographic variables and the tissue spectral absorbance is not deterministic. For example, dermal thickness and many other tissue properties are statistically related to age but also vary substantially as a result of hereditary and environmental influences. Therefore, factor based methods are employed to build models capable of representing variation in the measured absorbance related to the demographic variable. The projection of a measured absorbance spectrum onto the model constitutes a feature that represents the spectral variation related to the demographic variable. The compilation of the abstract and simple features constitutes the M-dimensional feature space. Due to redundancy of information across the set of features, optimum feature selection and/or data compression is applied to enhance the robustness of the classifier.
CLASSIFICATION
The goal of feature extraction is to define the salient characteristics of measurements that are relevant for classification. Feature extraction is performed at branching junctions of the multi-tiered classification tree structure. The goal of the classification step is to assign the calibration model(s) most appropriate for a particular noninvasive measurement. In this step the patient is assigned to one of many predefined classes for which a calibration model has been developed and tested. Since the applied calibration model is developed for similar tissue absorbance spectra, the blood analyte predictions are more accurate than those obtained from a universal calibration model.
As depicted in FIG. 3, pattern classification generally involves two steps:
    • 1. a mapping step in which a classification model 53 measures the similarity of the extracted features to predefined classes; and
    • 2. an assignment step in which a decision engine 54 assigns class membership. Within this framework, two general methods of classification are proposed. The first uses mutually exclusive classes and therefore assigns each measurement to one class. The second scheme utilizes a fuzzy classification system that allows class membership in more than one class simultaneously. Both methods rely on previously defined classes, as described below.
      Class Definition
The development of the classification system requires a data set of exemplar spectral measurements from a representative sampling of the population. Class definition is the assignment of the measurements in the exploratory data set to classes. After class definition, the measurements and class assignments are used to determine the mapping from the features to class assignments.
Class definition is performed through either a supervised or an unsupervised approach. See Y. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing Co., Reading, Mass. (1989). In the supervised case, classes are defined through known differences in the data. The use of a priori information in this manner is the first step in supervised pattern recognition, which develops classification models when the class assignment is known. For example, the majority of observed spectral variation can be modeled by three abstract factors, which are related to several physical properties including body fat, tissue hydration and skin thickness. Categorizing patients on the basis of these three features produces eight different classes if each feature is assigned a “high” and “low” value. The drawback to this approach is that attention is not given to spectral similarity and the number of classes tends to increase exponentially with the number of features.
Unsupervised methods rely solely on the spectral measurements to explore and develop clusters or natural groupings of the data in feature space. Such an analysis optimizes the within cluster homogeneity and the between cluster separation. Clusters formed from features with physical meaning can be interpreted based on the known underlying phenomenon causing variation in the feature space. However, cluster analysis does not utilize a priori information and can yield inconsistent results.
A combination of the two approaches utilizes a priori knowledge and exploration of the feature space for naturally occurring spectral classes. In this approach, classes are first defined from the features in a supervised manner. Each set of features is divided into two or more regions and classes are defined by combinations of the feature divisions. A cluster analysis is performed on the data and the results of the two approaches are compared. Systematically, the clusters are used to determine groups of classes that can be combined. After conglomeration, the number of final class definitions is significantly reduced according to natural divisions in the data. Subsequent to class definition, a classifier is designed through supervised pattern recognition. A model is created, based on class definitions, that transforms a measured set of features to an estimated classification. Since the ultimate goal of the classifier is to produce robust and accurate calibration models, an iterative approach must be followed in which class definitions are optimized to satisfy the specifications of the measurement system.
Statistical Classification
The statistical classification methods are applied to mutually exclusive classes whose variation can be described statistically. See J. Bezdek, S. Pal, eds, Fuzzy Models for Pattern Recognition, IEEE Press, Piscataway, N.J. (1992). Once class definitions have been assigned to a set of exemplary samples, the classifier is designed by determining an optimal mapping or transformation from the feature space to a class estimate which minimizes the number of misclassifications. The form of the mapping varies by method as does the definition of “optimal”. Existing methods include linear Discriminant analysis, SIMCA, k nearest-neighbor and various forms of artificial neural networks. See Funkunaga, supra; and Hertz, et al., supra; and Martin, supra; and Duda, et al., supra; and Pao, supra; and S. Wold, M. Sjostrom, SIMCA: A method for analyzing chemical data in terms of similarity and analogy, Chemometrics: Theory and Application, ed. B. R. Kowalski, ACS Symposium Series, vol. 52 (1977); and S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Upper Saddle River. N.J. (1994). The result is a function or algorithm that maps the feature to a class, c, according to
c=f(z)  (2 1)
where c is an integer on the interval [1,P] and P is the number of classes. The class is used to select or adapt the calibration model as discussed in the Calibration Section.
Fuzzy Classification
While statistically based class definitions provide a set of classes applicable to blood analyte estimation, the optical properties of the tissue sample resulting in spectral variation change over a continuum of values. Therefore, the natural variation of tissue thickness, hydration levels and body fat content, among others, results in class overlap. Distinct class boundaries do not exist and many measurements are likely to fall between classes and have a statistically equal chance of membership in any of several classes. Therefore, “hard” class boundaries and mutually exclusive membership functions appear contrary to the nature of the target population.
A more versatile method of class assignment is based on fuzzy set theory. See Bezdek, et al., supra; and C. Chen, ed., Fuzzy Logic and Neural Network Handbook, IEEE Press, Piscataway, N.J. (1996); and L. Zadeh, Fuzzy Sets, Inform. Control, vol. 8, pp. 338-353 (1965). Generally, membership in fuzzy sets is defined by a continuum of grades and a set of membership functions that map the feature space into the interval [0,1] for each class. The assigned membership grade represents the degree of class membership with “1” corresponding to the highest degree. Therefore, a sample can simultaneously be a member of more than one class.
The mapping from feature space to a vector of class memberships is given by
ck=fk(z)  (2)
where k=1,2, . . . P, fk(•) is the membership function of the kth class, ckε[0,1] for all k and the vector cε
Figure USRE041333-20100511-P00900
P is the set of class memberships. The membership vector provides the degree of membership in each of the predefined classes and is passed to the calibration algorithm.
The design of membership functions utilizes fuzzy class definitions similar to the methods previously described. Fuzzy cluster analysis can be applied and several methods, differing according to structure and optimization approach can be used to develop the fuzzy classifier. All methods attempt to minimize the estimation error of the class membership over a population of samples.
MULTI-TIERED CALIBRATION
Blood analyte prediction occurs by the application of a calibration model to the preprocessed measurement as depicted in FIG. 2. The proposed prediction system involves a calibration or a set of calibration models that are adaptable or selected on the basis of the classification step.
DEVELOPMENT OF LOCALIZED CALIBRATION MODELS
Accurate blood analyte prediction requires calibration models that are capable of compensating for the co-varying interferents, sample heterogeneity, state and structural variations encountered. Complex mixtures of chemically absorbing species that exhibit substantial spectral overlap between the system components are solvable only with the use of multivariate statistical models. However, prediction error increases with increasing variation in interferents that also co-vary with analyte concentration in calibration data. Therefore, blood analyte prediction is best performed on measurements exhibiting smaller interference variations that correlate poorly with analyte concentration in the calibration set data. Since it may not be possible to make all interference variations random, it is desirable to limit the range of spectral interferent variation in general.
The principle behind the multi-tiered classification and calibration system is based on the properties of a generalized class of algorithm that are required to compensate for overlapped interfering signals in the presence of the desired analyte signal. See H. Martens, T. Naes, Multivariate Calibration, John Wiley and Sons, New York (1989). The models used in this application require the measurement of multiple independent variables, designated as x, to estimate a single dependent variable, designated as y. For example, y may be tissue glucose concentration, and x may represent a vector, [x1 x2 . . . xi], consisting of the noninvasive spectrum signal intensities at each of n wavelengths.
The generalized form of a model to be used in the calculation of a single glucose estimate uses a weighted summation of the noninvasive spectrum as in Equation 4. The weights, w, are referred to as the regression vector.
y=Σw i x i   (4)
The weights define the calibration model and must be calculated from a given calibration set of noninvasive spectra in the spectral matrix X, and associated reference values y for each spectrum:
w=(XTX)−1XTyW.  (5)
The modeling error that might be expected in a multivariate system using Equation 5 can be estimated using a linear additive mixture model. Linear additive mixtures are characterized by the definition that the sum of the pure spectra of the individual constituents in a mixture equals the spectra of the mixture. Linear mixture models are useful in assessing the general limitations of multivariate models that are based on linear additive systems and those, noninvasive blood analysis, for example, that can be expected to deviate somewhat from linear additive behavior.
FIG. 4 shows an exemplary noninvasive absorbance spectrum. A set of spectral measurements may be represented as a matrix X where each row corresponds to an individual sample spectrum and each column represents the signal magnitude at a single wavelength. The measurement matrix can be represented as a linear additive mixture model with a matrix of instrument baseline variations B0, a matrix of spectra of the pure components K, and the concentrations of the pure components, Y, and random measurement noise present in the measurement of each spectrum, E.
X=B0+YKT+E  (6)
The linear additive model can be broken up further into interferents and analytes as an extended mixture model.
X=B0+YKT+TPT+E  (7)
In equation 4 7, T is a matrix representing the concentration or magnitude of interferents in all samples, and P represents the pure spectra of the interfering substances or effects present. Any spectral distortion can be considered an interferent in this formulation. For example, the effects of variable sample scattering and deviations in optical sampling volume must be included as sources of interference in this formulation. The direct calibration for a generalized least squares model on analyte y is
yGLS=(KTΣ−1K)−1KTΣ−1(x−k0);  (8)
where Σ is defined as the covariance matrix of the interfering substances or spectral effects, ó is defined as the measurement noise, x is the spectral measurement, and k0 is the instrument baseline component present in the spectral measurement.
Σ=PT(ttT)−1P+diag(ó2)  (9)
The derived mean squared error (MSE) of such a generalized least squares predictor is found in Martens, et al., supra.
MSE(yGLS)=trace(KTΣ−1K)−1  (10)
Equation 10 describes the generalized limitations of least squares predictors in the presence of interferents. If K represents the concentrations of blood glucose, a basic interpretation of Equation 10 is: the mean squared error in glucose estimates increases with increased variation in interferences that also co-vary with glucose concentration in calibration data. Therefore, the accurate estimation of glucose is best performed on measurements exhibiting smaller interference variations that poorly correlate with glucose concentration in the calibration set data. Since it may not be possible to make all interference variations random with glucose, it is desirable to limit the range of spectral interference variation in general. The Multi-Tier Classification provides a method for limiting variation of spectral interferents by placing sample measurements into groups having a high degree of internal consistency. Groups are defined based on a priori knowledge of the sample, instrumental measurements at the tissue measurement site, and extracted features. With each successive tier, samples are further classified such that variation between spectra within a group is successively limited. Tissue parameters to be utilized in class definition may include: stratum corneum hydration, tissue temperature, and dermal thickness.
TISSUE HYDRATION
The stratum corneum (SC), or horny cell layer covers about 10-15 μm thickness of the underside of the arm. The SC is composed mainly of keratinous dead cells, water and some lipids. See D. Bommannan, R. Potts, R. Guy, Examination of the Stratum Corneum Barrier Function In Vivo by Infrared Spectroscopy, J. Invest. Dermatol., vol. 95, pp 403-408 (1990). Hydration of the SC is known to vary over time as a function of room temperature and relative humidity. See J. Middleton, B. Allen, Influence of temperature and humidity on stratum corneum and its relation to skin chapping, J. Soc. Cosmet. Chem., vol. 24, pp. 239-43 (1973). Because it is the first tissue penetrated by the spectrometer incident beam, more photons sample the SC than any other part of the tissue sample. Therefore, the variation of a strong near IR absorber like water in the first layer of the tissue sample can act to change the wavelength and depth intensity profile of the photons penetrating beneath the SC layer.
The impact of changes in SC hydration can be observed by a simple experiment. In the first part of the experiment, the SC hydration is allowed to range freely with ambient conditions. In the second part of the experiment, variations in SC hydration are limited by controlling relative humidity to a high level at the skin surface prior to measurement. Noninvasive measurements using uncontrolled and controlled hydration experiments on a single individual are plotted in FIGS. 5 and 6, respectively. Changes in the water band 61 at 1900 nm can be used to assess changing surface hydration. It is apparent that the range of variation in the water band 61 at 1900 nm is considerably narrower in FIG. 6 than in FIG. 5. Since surface hydration represents a large variable in the spectral measurement, it is a valuable component for use in categorizing similarity in tissue samples.
TISSUE TEMPERATURE
The temperature of the measured tissue volume varies from the core body temperature, at the deepest level of penetration, to the skin surface temperature, which is generally related to ambient temperature, location and the amount of clothing at the tissue measurement site. The spectrum of water, which comprises about 65% of living human tissue is the most dominant spectral component at all depths sampled in the 1100-2500 nm wavelength range. These two facts, along with the known temperature-induced shifting of the water band at 1450 nm, combine to substantially complicate the interpretation of information about many blood analytes, including glucose. It is apparent that a range of temperature states exist in the volume of sampled living tissue and that the range and distribution of states in the tissue depend on the skin surface temperature. Furthermore, the index of refraction of skin is known to change with temperature. Skin temperature may therefore be considered an important categorical variable for use in the Multi-Tier Classification to identify groups for the generation of calibration models and prediction.
OPTICAL THICKNESS OF DERMIS
Repeated optical sampling of the tissue is necessary to calibrate to blood constituents. Because blood represents but a part of human tissue, and blood analytes only reside in fractions of the tissue, changes in the optical sampling of tissue may change the magnitude of the analyte signal for unchanging levels of blood analytes. This kind of a sampling effect may confound efforts at calibration by changing the signal strength for specific levels of analyte.
Categorization of optical sampling depth is pursued by analyzing spectral marker bands of the different layers. For example, the first tissue layer under the skin is the subcutaneous adipose tissue, consisting mainly of fat. The strength of the fat absorbance band can be used to assess the relative photon flux that has penetrated to the subcutaneous tissue level. A more pronounced fat band means that a greater photon flux has reached the adipose tissue and returned to the detector. In FIG. 7, spectra with pronounced 71 and normal 72 fat bands are presented. The most important use of the optical thickness is to assess the degree of hydration in the interior tissue sampled by the optical probe. Optical thickness may also be a strong function of gender and body type, therefore this property measurement would be useful for assessing interior hydration states within a single individual.
The following sections describe the calibration system for the two types of classifiers, mutually exclusive and fuzzy.
MUTUALLY EXCLUSIVE CLASSES
In the general case, the designated classification is passed to a nonlinear model that provides a blood analyte prediction based on the patient classification and spectral measurement. This process, illustrated in FIG. 8, involves the modification of the estimation strategy for the current subject according to the structural tissue properties and physiological state manifested in the absorbance spectrum.
This general architecture necessitates a nonlinear calibration model 101 such as nonlinear partial least squares or artificial neural networks since the mapping is highly nonlinear. The blood analyte prediction for the preprocessed measurement x with classification specified by c is given by
ŷ=g(c,x)  (11)
where g(•) is a nonlinear calibration model which maps x and c to an estimate of the blood analyte concentration, ŷ.
In the preferred realization, a different calibration is realized for each class. The estimated class is used to select one of p calibration models most appropriate for blood analyte prediction using the current measurement. Given that k is the class estimate for the measurement, the blood analyte prediction is
ŷ=gk(x),  (12)
where gk(•) is the calibration model associated with the kth class.
The calibrations are developed from a set of exemplar absorbance spectra with reference blood analyte values and pre-assigned classification definitions. This set, denoted the “calibration set”, must have sufficient samples to completely represent the range of physiological states to be encountered in the patient population. The p different calibration models are developed individually from the measurements assigned to each of the p classes. The models are realized using known methods including principal component regression, partial least squares regression and artificial neural networks. See Hertz, et al., supra; and Pao, supra; and Haykin, supra; and Martens, et al., supra; and N. Draper, H. Smith, Applied Regression Analysis, 2nd ed., John Wiley and Sons, New York (1981). The various models associated with each class are evaluated on the basis of an independent test set or cross validation and the “best” set of models are incorporated into the Multi-tier Classification. Each class of patients then has a calibration model specific to that class.
FUZZY CLASS MEMBERSHIP
When fuzzy classification is employed the calibration is passed a vector of memberships rather than a single estimated class. The vector, c, is utilized to determine an adaptation of the calibration model suitable for blood analyte prediction or an optimal combination of several blood analyte predictions. In the general case, illustrated in FIG. 9, the membership vector and the preprocessed absorbance spectrum are both used by a single calibration 111 for blood analyte prediction. The calculation is given by
ŷ=g(c,x)  (13)
where g(•) is a nonlinear mapping determined through nonlinear regression, nonlinear partial least squares or artificial neural networks. The mapping is developed from the calibration set described previously and is generally complex.
The preferred realization, shown in FIG. 10, has separate calibrations 121 for each class. However, each calibration is generated using all measurements in the calibration set by exploiting the membership vector assigned to each measurement. In addition, the membership vector is used to determine an optimal combination of the p blood analyte predictions from all classes through defuzzification 122. Therefore, during calibration development, a given measurement of the calibration set has the opportunity to impact more than one calibration model. Similarly, during prediction more than one calibration model is used to generate the blood analyte estimate.
Each of the p calibration models is developed using the entire set of calibration data. However, when the kth calibration model is calculated, the calibration measurements are weighted by their respective membership in the kth class. As a result, the influence of a sample on the calibration model of a particular class is a function of its membership in the class.
In the linear case, weighted least squares is applied to calculate regression coefficients and, in the case of factor based methods, the covariance matrix. See Duda, et al., supra. Given a matrix absorbance spectra Xkε
Figure USRE041333-20100511-P00900
rxw and reference blood analyte concentrations Yε
Figure USRE041333-20100511-P00900
r where r is the number of measurement spectra and w is the number wavelengths, let the membership in class k of each absorbance spectrum be the elements of Ckε
Figure USRE041333-20100511-P00900
r. Then the principal components are given by
F=XkM,  (14)
where M is the matrix of the first n eigenvectors of P. The weighted covariance matrix P is determined through
P=XkVXk T,  (15)
where V is a square matrix with the elements of Ck on the diagonal. The regression matrix, B, is determined through
B=(FTVF)−1FTVY.  (16)
When an iterative method is applied, such as artificial neural networks, the membership is used to determine the frequency the samples are presented to the learning algorithm. Alternatively, an extended Kalman filter is applied with a covariance matrix scaled according to V.
The purpose of defuzzification is to find an optimal combination of the p different blood analyte predictions, based on a measurement's membership vector that produces accurate blood analyte predictions. Therefore, defuzzification is a mapping from the vector of blood analyte predictions and the vector of class memberships to a single analyte prediction. The defuzzifier can be denoted as transformation such that
ŷ=d(c,[y1y2y3 . . . yp]),  (17)
where d(•) is the defuzzification function, c is the class membership vector and yk is the blood analyte prediction of the kth calibration model. Existing methods of defuzzification, such as the centroid or weighted average, are applied for small calibration sets. However, if the number of samples is sufficient, d(•) is generated through a constrained nonlinear model.
INSTRUMENT DESCRIPTION
The Multi-tiered Classification and Calibration is implemented in a scanning spectrometer which determines the NIR absorbance spectrum of the subject forearm through a diffuse reflectance measurement. The instrument employs a quartz halogen lamp, a monochromator, and InGaAs detectors. The detected intensity from the sample is converted to a voltage through analog electronics and digitized through a 16-bit A/D converter. The spectrum is passed to the Intelligent Measuring System (IMS) for processing and results in either a glucose prediction or a message indicating an invalid scan.
Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the claims included below.

Claims (68)

1. A method of developing a multi-tiered calibration model for estimating concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
initially, classifying said exemplar measurements into previously defined classes based on a priori a priori information pertaining to a corresponding subject;
further classifying said exemplar measurements into previously defined classes based on at least one instrumental measurement at a tissue measurement site;
extracting at least one feature from said exemplar measurements for still further classification, wherein a decision rule makes class assignments; and
calculating at least one localized calibration model based on said classified measurements and an associated set of reference values.
2. The method of claim 1, wherein said initial classification step comprises the steps of:
in a first tier, classifying said measured spectrum exemplar measurements into previously defined classes based on subject's age; and
in a second tier, further classifying said measured spectrum exemplar measurements into previously defined classes based on subject's sex.
3. The method of claim 1, wherein said further classification step further comprises the steps of:
in a third tier further classsifying said exemplar measurements into previously defined classes based on an estimation of stratum corneum hydration at said tissue measurement site; and
in a fourth tier, further classifying said exemplar measurements into previously defined classes based on skin temperature at said tissue measurement site.
4. The method of claim 3, wherein said stratum corneum hydration estimate is based on a measurement of ambient humidity at said tissue measurement site.
5. The method of claim 1, wherein said feature extraction step comprises any mathematical transformation that enhances a quality or aspect of sample measurement for interpretation to represent concisely structural properties and physiological state of a tissue measurement site, wherein a resulting set of features is used to classify a subject and determine a calibration model that is most useful for blood analyte prediction.
6. The method of claim 5, wherein said features are represented in a vector, zΣ
Figure USRE041333-20100511-P00900
M that is determined from a preprocessed measurement through:

z=f(λ,x)
where f(•):
Figure USRE041333-20100511-P00900
N
Figure USRE041333-20100511-P00900
M is a mapping from a measurement space to a feature space, wherein decomposing f(•) yields specific transformations, fi(•):
Figure USRE041333-20100511-P00900
N
Figure USRE041333-20100511-P00900
M i for determining a specific feature, wherein the dimension Mi indicating whether an ith feature is a scalar or a vector and an aggregation of all features is the vector z, and wherein a feature exhibits a certain structure indicative of an underlying physical phenomenon when said feature is represented as a vector or a pattern.
7. The method of claim 6, wherein individual features are divided into categories, said categories comprising:
abstract features that do not necessarily have a specific interpretation related to a physical system; and
simple features that are derived from an a priori understanding of a sample and that can be related directly to a physical phenomenon.
8. The method of claim 7, wherein said simple features can be calculated from NIR spectral absorbance measurements, said simple features including any of:
thickness of adipose tissue;
hematocrit level;
tissue hydration;
magnitude of protein absorbance;
scattering properties of said tissue;
skin thickness;
temperature related effects;
age related effects;
spectral characteristics;
pathlength estimates;
volume fraction of blood in tissue; and
spectral characteristics related to environmental influences.
9. The method of claim 1, further comprising the step of: employing spectral decomposition to determine features related to a known spectral absorbance pattern.
10. The method of claim 1, further comprising the step of:
employing factor-based methods to build a model capable of representing variation in a measured absorbance spectrum related to a demographic variable;
wherein projection of a measured absorption onto said model constitutes a feature that represents spectral variation related to said demographic variable.
11. The method of claim 1, wherein said feature extraction step assigns a measurement to one of many predefined classes.
12. The method of claim 1, further comprising the steps of;
measuring the similarity of a feature to predefined classes; and
assigning class membership.
13. The method of claim 1, further comprising the step of;
using measurements and class assignments to determine a mapping from features to class assignments.
14. The method of claim 13, further comprising the steps of:
defining classes from said features in a supervised manner, wherein each set of features is divided into two or more regions, and wherein classes are defined by combination of feature divisions;
performing a cluster analysis on the spectral data to determine groups of said defined classes that can be combined, wherein the final number of class definitions is significantly reduced;
designing a classifier subsequent to class definition through supervised pattern recognition by determining an optimal mapping or transformation from the feature space to a class estimate that minimizes the number of misclassifications; and
creating a model based on class definitions that transforms a measured set of features to an estimated classification, wherein said class definitions are optimized to satisfy specifications of a measurement system used to take said measurements.
15. The method of claim 14, wherein said optimized classes comprise groups of measurements wherein similarity between measurements within a group is greater than similarity between groups.
16. The method of claim 15, said step of calculating at least one localized calibration model comprising:
calculating weights, w, for said exemplar measurements according to:

W=(XTX)−1XTy,
 where X represents a matrix of spectral measurements, and y represents a reference value of said target analyte concentration for each measurement.
17. The method of claim 16, wherein a vector of weights of spectral measurements within one of said groups comprises a regression vector for said group;
wherein said regression vector comprises a calibration model for said group.
18. A method of developing a multi-tiered calibration model for estimating concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
in at least one tier, classifying said exemplar measurements into previously defined classes; and
extracting at least one feature from said exemplar measurements for still further classification; and
calculating at least one localized calibration model based on said classified exemplar measurements and a set of associated reference values.
19. The method of claim 18, wherein said classifying step is based on any of:
abstract and simple features.
20. The method of claim 18, further comprising the step of mapping said exemplar measurements to estimates of said analyte based on either a linear or a nonlinear model.
21. The method of claim 18, wherein said classifying step is based on any of:
a prioria priori information; and
at least one instrumental measurement at a tissue measurement site at which optical samples were taken for said spectral measurements.
22. The method of claim 18, wherein said classifying step comprises multiple tiers.
23. The pattern classification method of claim 22, wherein said classifying step comprises any of the steps of:
classifying said exemplar measurements into previously defined classes based on subject's age;
classifying said exemplar measurements into previously defined classes based on subject's sex;
classifying said exemplar measurements into previously defined classes based on an estimation of stratum corneum hydration of said tissue measurement site; and
classifying said exemplar measurements into previously defined classes based on skin temperature at said tissue measurement site.
24. A method for developing a calibration model for estimating a target analyte property from measured tissue spectra, comprising the steps of:
providing a data set of exemplar spectral measurements from a sampling of a subject population;
classifying a majority of said exemplar measurements into classes using at least one feature of said exemplar measurements;
wherein said feature comprises a spectral feature,
wherein said classes comprise groups of measurements wherein similarity between measurements within a group is greater than similarity between groups, and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values.
25. The method of claim 24, wherein said classifying step comprises classifying based on any of:
a priori information;
a physical measurement; and
an optical measurement at a tissue measurement site.
26. The method of claim 25, wherein said a priori information comprises any of:
age;
gender;
hematocrit level; and
temperature.
27. The method of claim 25, wherein said physical measurement comprises any of:
thickness of adipose tissue;
tissue hydration;
scattering properties of said tissue; and
skin thickness.
28. The method of claim 25, wherein said optical measurement comprises any of:
magnitude of protein absorbance;
magnitude of fat absorbance;
a spectral characteristic;
a pathlength estimate;
volume fraction of blood in tissue; and
a spectral feature.
29. The method of claim 25, wherein said classes at least partially share exemplar measurements.
30. The method of claim 25, further comprising the step of:
assigning degree of membership to at least some of said exemplar measurements according to a fuzzy membership function.
31. The method of claim 30, wherein at least one of said localized calibration models comprises coefficients calculated with exemplar measurements and said degree of membership.
32. The method of claim 31, further comprising the steps of:
providing an estimation spectrum;
assigning degree of class membership to said estimation spectrum in at least one of said classes;
estimating at least one interim analyte property with said localized calibration models; and
combining said estimates to determine said analyte property.
33. The method of claim 32, wherein said step of assigning comprises use of a fuzzy membership function.
34. The method of claim 32, wherein said step of combining uses said degree of class membership.
35. The method of claim 24, wherein said classifying step comprises:
classifying said exemplar measurements into previously defined classes based on at least one instrument measurement at a tissue measurement site.
36. The method of claim 24, wherein said feature extraction comprises the steps of:
representing structural properties and physiological state of a tissue measurement site through application of at least one mathematical transformation that enhances a quality or aspect of sample measurement for interpretation, and
using a resulting set of features i to classify a subject and determine a calibration model that is most useful for blood analyte prediction.
37. The method of claim 36, wherein said step of representing structural properties and physiological state comprises the step of:
representing features in a vector, zε M that is determined from a preprocessed measurement through:

z=f(λ,x)
where f: N M is a mapping space to a feature space, wherein decomposing f(•) yields specific transformations, f i(•):
Figure USRE041333-20100511-P00900
N M i for determining a specific feature, wherein the dimension M i indicates whether an i th feature is a scalar or a vector and an aggregation of all features is the vector z.
38. The method of claim 24, wherein said feature exhibits a structure indicative of an underlying physical phenomenon when said feature is represented as a vector or a pattern.
39. The method of claim 24, wherein said feature comprises any of:
a simple feature; and
an abstract feature.
40. The method of claim 24, wherein a decision rule makes class assignments.
41. The method of claim 24, wherein said features comprise sets of features and wherein the step of defining classes in a supervised manner comprises the steps of:
dividing each set of features into two or more regions, wherein classes are defined by combinations of feature divisions, wherein classes are defined through known differences in data;
performing a cluster analysis on the exemplar measurements to determine groups of said defined classes that can be combined to reduce the final number of class definitions;
designing a classifier subsequent to class definition through supervised pattern recognition by determining an optimal mapping or transformation from the feature space to a class estimate that minimizes the number of misclassifications; and
creating a model based on class definitions that transforms a measured set of features to an estimated classification, wherein said class definitions are optimized to satisfy specifications of a measurement system used to take said measurements.
42. The method of claim 41, further comprising:
calculating weights, W, for said measurements, according to:

W=(X T X)−1 X T Y,
where X represents a matrix of measurements, and Y represents a reference value of a target analyte concentration for each measurement.
43. The method of claim 42, wherein a vector of weights of spectral measurements within one of said groups comprises a regression vector for said group; and
wherein said regression vector comprises a calibration model for said group.
44. The method of claim 24, wherein the steps of defining said classes in an unsupervised manner comprises:
developing clusters of data in feature space based on the measurements, wherein within-cluster homogeneity and between-cluster separation is maximized.
45. The method of claim 44, wherein clusters formed from features having physical meaning are interpreted based on the known underlying phenomenon causing variation in the feature space.
46. The method of claim 24, wherein said classes are defined on the basis of structural and state similarity, wherein variation in tissue characteristics within a class is smaller than the variation between classes.
47. The method of claim 24, wherein said classifying step is based on any of:
a simple feature; and
an abstract feature.
48. The method of claim 24, further comprising the step of:
preprocessing prior to said step of classifying.
49. A method for developing a calibration model for estimating a target analyte property from measured tissue spectra, comprising the steps of:
providing a data set of exemplar spectral measurements from a sampling of a subject population;
classifying a majority of said exemplar measurements into classes using at least one feature of said exemplar measurements; and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values,
wherein the step of classifying comprises classifying through at least two tiers.
50. A method for developing a calibration model for estimating a target blood analyte property from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
extracting at least one feature from at least one of said exemplar measurements;
classifying at least a portion of said exemplar measurements into classes using said feature; and
calculating at least one localized calibration model for at least one of said classes based on said classified measurements and an associated set of reference values,
wherein said step of extracting at least one feature comprises:
representing structural properties and physiological state of a tissue measurement site through application of at least one mathematical transformation that enhances a quality or aspect of sample measurement for interpretation, wherein a resulting set of features is used to classify a subject and determine a calibration model.
51. The method of claim 50, wherein said feature comprises a spectral feature.
52. The method of claim 50, wherein the step of classifying comprises classifying based on any of:
a priori information;
a physical measurement; and
an optical measurement of a tissue measurement site.
53. The method of claim 50, wherein the step of classifying measurements comprises:
classifying said exemplar measurements into previously defined classes based on at least one instrument measurement at a tissue measurement site.
54. The method of claim 50, wherein said feature comprises any of:
a simple feature; and
an abstract feature.
55. The method of claim 50, wherein the step of classifying comprises classifying said exemplar measurements, wherein said classes are defined in any of supervised and unsupervised manners.
56. The method of claim 50, wherein the step of extracting comprises a mathematical transformation resulting in any of:
a simple feature; and
an abstract feature.
57. The method of claim 50, wherein said classes at least partially share exemplar measurements.
58. The method of claim 50, wherein the step of classifying comprises classifying through at least two tiers.
59. The method of claim 50, wherein said classes are previously defined.
60. The method of claim 50, further comprising the step of:
preprocessing prior to said step of extracting.
61. The method of claim 50, wherein the step of classifying uses any of:
a crisp function; and
a fuzzy function.
62. A method for developing a calibration algorithm for calculating concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a data set of exemplar spectral measurements from a representative sampling of a subject population;
classifying at least one of said exemplar measurements into previously defined classes; and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values,
wherein said classes comprise groups of measurements, wherein similarity between measurements within a group is greater than similarity between groups.
63. The method of claim 62, wherein said classes are defined by any of:
a priori information;
a physical measurement; and
an optical measurement at a tissue measurement site.
64. The method of claim 63, wherein said a priori information comprises any of:
age;
gender;
hematocrit level; and
temperature.
65. The method of claim 63, wherein said physical measurement comprises any of:
thickness of adipose tissue;
tissue hydration;
scattering properties of said tissue; and
skin thickness.
66. The method of claim 63, wherein said optical measurement comprises any of:
magnitude of protein absorbance;
magnitude of fat absorbance;
a spectral characteristic;
a pathlength estimate;
volume fraction of blood in tissue; and
a spectral feature.
67. The method of claim 62, wherein a decision rule makes class assignments.
68. A method for developing a multi-tier calibration model for determining concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
through at least two tiers, classifying said exemplar measurements into classes; and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values.
US11/046,673 1999-07-22 2005-01-27 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction Expired - Lifetime USRE41333E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/046,673 USRE41333E1 (en) 1999-07-22 2005-01-27 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US11/065,223 US20060167350A1 (en) 2005-01-27 2005-02-23 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/359,191 US6280381B1 (en) 1999-07-22 1999-07-22 Intelligent system for noninvasive blood analyte prediction
US09/825,687 US6512937B2 (en) 1999-07-22 2001-04-03 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US11/046,673 USRE41333E1 (en) 1999-07-22 2005-01-27 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/825,687 Reissue US6512937B2 (en) 1999-07-22 2001-04-03 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/065,223 Division US20060167350A1 (en) 2005-01-27 2005-02-23 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction

Publications (1)

Publication Number Publication Date
USRE41333E1 true USRE41333E1 (en) 2010-05-11

Family

ID=46205459

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/046,673 Expired - Lifetime USRE41333E1 (en) 1999-07-22 2005-01-27 Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction

Country Status (1)

Country Link
US (1) USRE41333E1 (en)

Cited By (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016082A1 (en) * 2003-09-23 2007-01-18 Richard Levenson Spectral imaging
US20080294032A1 (en) * 2003-09-23 2008-11-27 Cambridge Research And Instrumentation, Inc. Spectral Imaging of Biological Samples
US8280140B2 (en) 2005-01-27 2012-10-02 Cambridge Research & Instrumentation, Inc. Classifying image features
US9351671B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
US9351672B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
US9442065B2 (en) 2014-09-29 2016-09-13 Zyomed Corp. Systems and methods for synthesis of zyotons for use in collision computing for noninvasive blood glucose and other measurements
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US9585604B2 (en) 2012-07-16 2017-03-07 Zyomed Corp. Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US9766126B2 (en) 2013-07-12 2017-09-19 Zyomed Corp. Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
US10475529B2 (en) 2011-07-19 2019-11-12 Optiscan Biomedical Corporation Method and apparatus for analyte measurements using calibration sets
US10736518B2 (en) 2015-08-31 2020-08-11 Masimo Corporation Systems and methods to monitor repositioning of a patient
US10765367B2 (en) 2014-10-07 2020-09-08 Masimo Corporation Modular physiological sensors
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US10784634B2 (en) 2015-02-06 2020-09-22 Masimo Corporation Pogo pin connector
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
US10799163B2 (en) 2006-10-12 2020-10-13 Masimo Corporation Perfusion index smoother
US10799160B2 (en) 2013-10-07 2020-10-13 Masimo Corporation Regional oximetry pod
US10825568B2 (en) 2013-10-11 2020-11-03 Masimo Corporation Alarm notification system
US10849554B2 (en) 2017-04-18 2020-12-01 Masimo Corporation Nose sensor
US10856788B2 (en) 2005-03-01 2020-12-08 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US10856750B2 (en) 2017-04-28 2020-12-08 Masimo Corporation Spot check measurement system
US10863938B2 (en) 2006-10-12 2020-12-15 Masimo Corporation System and method for monitoring the life of a physiological sensor
US10869602B2 (en) 2002-03-25 2020-12-22 Masimo Corporation Physiological measurement communications adapter
US10912502B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10912524B2 (en) 2006-09-22 2021-02-09 Masimo Corporation Modular patient monitor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
US10925550B2 (en) 2011-10-13 2021-02-23 Masimo Corporation Medical monitoring hub
US10932705B2 (en) 2017-05-08 2021-03-02 Masimo Corporation System for displaying and controlling medical monitoring data
US10932729B2 (en) 2018-06-06 2021-03-02 Masimo Corporation Opioid overdose monitoring
US10939877B2 (en) 2005-10-14 2021-03-09 Masimo Corporation Robust alarm system
US10943450B2 (en) 2009-12-21 2021-03-09 Masimo Corporation Modular patient monitor
US10956950B2 (en) 2017-02-24 2021-03-23 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
US10952641B2 (en) 2008-09-15 2021-03-23 Masimo Corporation Gas sampling line
US10959652B2 (en) 2001-07-02 2021-03-30 Masimo Corporation Low power pulse oximeter
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
US10973447B2 (en) 2003-01-24 2021-04-13 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US10980432B2 (en) 2013-08-05 2021-04-20 Masimo Corporation Systems and methods for measuring blood pressure
US10980457B2 (en) 2007-04-21 2021-04-20 Masimo Corporation Tissue profile wellness monitor
US10987066B2 (en) 2017-10-31 2021-04-27 Masimo Corporation System for displaying oxygen state indications
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
US10991135B2 (en) 2015-08-11 2021-04-27 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
US10993643B2 (en) 2006-10-12 2021-05-04 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US11000232B2 (en) 2014-06-19 2021-05-11 Masimo Corporation Proximity sensor in pulse oximeter
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
US11020084B2 (en) 2012-09-20 2021-06-01 Masimo Corporation Acoustic patient sensor coupler
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
US11022466B2 (en) 2013-07-17 2021-06-01 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US11020029B2 (en) 2003-07-25 2021-06-01 Masimo Corporation Multipurpose sensor port
US11026604B2 (en) 2017-07-13 2021-06-08 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
US11033210B2 (en) 2008-03-04 2021-06-15 Masimo Corporation Multispot monitoring for use in optical coherence tomography
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
US11069461B2 (en) 2012-08-01 2021-07-20 Masimo Corporation Automated assembly sensor cable
US11071480B2 (en) 2012-04-17 2021-07-27 Masimo Corporation Hypersaturation index
US11076777B2 (en) 2016-10-13 2021-08-03 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
US11087875B2 (en) 2009-03-04 2021-08-10 Masimo Corporation Medical monitoring system
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
US11083397B2 (en) 2012-02-09 2021-08-10 Masimo Corporation Wireless patient monitoring device
US11089982B2 (en) 2011-10-13 2021-08-17 Masimo Corporation Robust fractional saturation determination
US11095068B2 (en) 2017-08-15 2021-08-17 Masimo Corporation Water resistant connector for noninvasive patient monitor
US11096631B2 (en) 2017-02-24 2021-08-24 Masimo Corporation Modular multi-parameter patient monitoring device
US11103134B2 (en) 2014-09-18 2021-08-31 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
US11109818B2 (en) 2018-04-19 2021-09-07 Masimo Corporation Mobile patient alarm display
US11114188B2 (en) 2009-10-06 2021-09-07 Cercacor Laboratories, Inc. System for monitoring a physiological parameter of a user
US11109770B2 (en) 2011-06-21 2021-09-07 Masimo Corporation Patient monitoring system
US11133105B2 (en) 2009-03-04 2021-09-28 Masimo Corporation Medical monitoring system
US11132117B2 (en) 2012-03-25 2021-09-28 Masimo Corporation Physiological monitor touchscreen interface
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
US11145408B2 (en) 2009-03-04 2021-10-12 Masimo Corporation Medical communication protocol translator
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
US11153089B2 (en) 2016-07-06 2021-10-19 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US11176801B2 (en) 2011-08-19 2021-11-16 Masimo Corporation Health care sanitation monitoring system
US11178776B2 (en) 2015-02-06 2021-11-16 Masimo Corporation Fold flex circuit for LNOP
US11179111B2 (en) 2012-01-04 2021-11-23 Masimo Corporation Automated CCHD screening and detection
US11185262B2 (en) 2017-03-10 2021-11-30 Masimo Corporation Pneumonia screener
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
US11191485B2 (en) 2006-06-05 2021-12-07 Masimo Corporation Parameter upgrade system
US11202571B2 (en) 2016-07-07 2021-12-21 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11224363B2 (en) 2013-01-16 2022-01-18 Masimo Corporation Active-pulse blood analysis system
US11229374B2 (en) 2006-12-09 2022-01-25 Masimo Corporation Plethysmograph variability processor
US11234655B2 (en) 2007-01-20 2022-02-01 Masimo Corporation Perfusion trend indicator
US11241199B2 (en) 2011-10-13 2022-02-08 Masimo Corporation System for displaying medical monitoring data
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US11272839B2 (en) 2018-10-12 2022-03-15 Ma Simo Corporation System for transmission of sensor data using dual communication protocol
US11272852B2 (en) 2011-06-21 2022-03-15 Masimo Corporation Patient monitoring system
US11272883B2 (en) 2016-03-04 2022-03-15 Masimo Corporation Physiological sensor
US11291061B2 (en) 2017-01-18 2022-03-29 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US11289199B2 (en) 2010-01-19 2022-03-29 Masimo Corporation Wellness analysis system
USRE49007E1 (en) 2010-03-01 2022-04-05 Masimo Corporation Adaptive alarm system
US11291415B2 (en) 2015-05-04 2022-04-05 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
USRE49034E1 (en) 2002-01-24 2022-04-19 Masimo Corporation Physiological trend monitor
US11330996B2 (en) 2010-05-06 2022-05-17 Masimo Corporation Patient monitor for determining microcirculation state
US11331013B2 (en) 2014-09-04 2022-05-17 Masimo Corporation Total hemoglobin screening sensor
US11367529B2 (en) 2012-11-05 2022-06-21 Cercacor Laboratories, Inc. Physiological test credit method
US11363960B2 (en) 2011-02-25 2022-06-21 Masimo Corporation Patient monitor for monitoring microcirculation
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
US11399722B2 (en) 2010-03-30 2022-08-02 Masimo Corporation Plethysmographic respiration rate detection
US11399774B2 (en) 2010-10-13 2022-08-02 Masimo Corporation Physiological measurement logic engine
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
US11410507B2 (en) 2017-02-24 2022-08-09 Masimo Corporation Localized projection of audible noises in medical settings
US11412964B2 (en) 2008-05-05 2022-08-16 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US11417426B2 (en) 2017-02-24 2022-08-16 Masimo Corporation System for displaying medical monitoring data
US11426125B2 (en) 2009-02-16 2022-08-30 Masimo Corporation Physiological measurement device
US11426104B2 (en) 2004-08-11 2022-08-30 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US11445948B2 (en) 2018-10-11 2022-09-20 Masimo Corporation Patient connector assembly with vertical detents
US11452449B2 (en) 2012-10-30 2022-09-27 Masimo Corporation Universal medical system
US11457872B2 (en) 2017-12-01 2022-10-04 Samsung Electronics Co., Ltd. Bio-signal quality assessment apparatus and bio-signal quality assessment method
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
US11484231B2 (en) 2010-03-08 2022-11-01 Masimo Corporation Reprocessing of a physiological sensor
US11488715B2 (en) 2011-02-13 2022-11-01 Masimo Corporation Medical characterization system
US11504002B2 (en) 2012-09-20 2022-11-22 Masimo Corporation Physiological monitoring system
US11504062B2 (en) 2013-03-14 2022-11-22 Masimo Corporation Patient monitor placement indicator
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
US11515664B2 (en) 2009-03-11 2022-11-29 Masimo Corporation Magnetic connector
USD973072S1 (en) 2020-09-30 2022-12-20 Masimo Corporation Display screen or portion thereof with graphical user interface
US11534087B2 (en) 2009-11-24 2022-12-27 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
USD973686S1 (en) 2020-09-30 2022-12-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD973685S1 (en) 2020-09-30 2022-12-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
US11559275B2 (en) 2008-12-30 2023-01-24 Masimo Corporation Acoustic sensor assembly
US11571152B2 (en) 2009-12-04 2023-02-07 Masimo Corporation Calibration for multi-stage physiological monitors
US11581091B2 (en) 2014-08-26 2023-02-14 Vccb Holdings, Inc. Real-time monitoring systems and methods in a healthcare environment
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
US11596363B2 (en) 2013-09-12 2023-03-07 Cercacor Laboratories, Inc. Medical device management system
US11602289B2 (en) 2015-02-06 2023-03-14 Masimo Corporation Soft boot pulse oximetry sensor
US11607139B2 (en) 2006-09-20 2023-03-21 Masimo Corporation Congenital heart disease monitor
US11622733B2 (en) 2008-05-02 2023-04-11 Masimo Corporation Monitor configuration system
US11637437B2 (en) 2019-04-17 2023-04-25 Masimo Corporation Charging station for physiological monitoring device
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11645905B2 (en) 2013-03-13 2023-05-09 Masimo Corporation Systems and methods for monitoring a patient health network
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
US11653862B2 (en) 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US11672447B2 (en) 2006-10-12 2023-06-13 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US11673041B2 (en) 2013-12-13 2023-06-13 Masimo Corporation Avatar-incentive healthcare therapy
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
US11690574B2 (en) 2003-11-05 2023-07-04 Masimo Corporation Pulse oximeter access apparatus and method
US11696712B2 (en) 2014-06-13 2023-07-11 Vccb Holdings, Inc. Alarm fatigue management systems and methods
US11721105B2 (en) 2020-02-13 2023-08-08 Masimo Corporation System and method for monitoring clinical activities
US11717210B2 (en) 2010-09-28 2023-08-08 Masimo Corporation Depth of consciousness monitor including oximeter
US11724031B2 (en) 2006-01-17 2023-08-15 Masimo Corporation Drug administration controller
US11730379B2 (en) 2020-03-20 2023-08-22 Masimo Corporation Remote patient management and monitoring systems and methods
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
US11744471B2 (en) 2009-09-17 2023-09-05 Masimo Corporation Optical-based physiological monitoring system
US11747178B2 (en) 2011-10-27 2023-09-05 Masimo Corporation Physiological monitor gauge panel
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11752262B2 (en) 2009-05-20 2023-09-12 Masimo Corporation Hemoglobin display and patient treatment
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
US11779247B2 (en) 2009-07-29 2023-10-10 Masimo Corporation Non-invasive physiological sensor cover
US11803623B2 (en) 2019-10-18 2023-10-31 Masimo Corporation Display layout and interactive objects for patient monitoring
US11816771B2 (en) 2017-02-24 2023-11-14 Masimo Corporation Augmented reality system for displaying patient data
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
US11864890B2 (en) 2016-12-22 2024-01-09 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
US11877824B2 (en) 2011-08-17 2024-01-23 Masimo Corporation Modulated physiological sensor
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
US11887728B2 (en) 2012-09-20 2024-01-30 Masimo Corporation Intelligent medical escalation process
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US11911184B2 (en) 2017-12-01 2024-02-27 Samsung Electronics Co., Ltd. Bio-signal quality assessment apparatus and bio-signal quality assessment method
US11937949B2 (en) 2004-03-08 2024-03-26 Masimo Corporation Physiological parameter system
US11944431B2 (en) 2006-03-17 2024-04-02 Masimo Corportation Apparatus and method for creating a stable optical interface
US11951186B2 (en) 2020-10-23 2024-04-09 Willow Laboratories, Inc. Indicator compounds, devices comprising indicator compounds, and methods of making and using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204532A (en) 1989-01-19 1993-04-20 Futrex, Inc. Method for providing general calibration for near infrared instruments for measurement of blood glucose
US5553616A (en) * 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
US5725480A (en) * 1996-03-06 1998-03-10 Abbott Laboratories Non-invasive calibration and categorization of individuals for subsequent non-invasive detection of biological compounds
US5798526A (en) * 1997-01-24 1998-08-25 Infrasoft International Llc Calibration system for spectrographic analyzing instruments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204532A (en) 1989-01-19 1993-04-20 Futrex, Inc. Method for providing general calibration for near infrared instruments for measurement of blood glucose
US5576544A (en) 1989-01-19 1996-11-19 Futrex, Inc. Method for providing general calibration for near infrared instruments for measurement of blood glucose
US5553616A (en) * 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
US5725480A (en) * 1996-03-06 1998-03-10 Abbott Laboratories Non-invasive calibration and categorization of individuals for subsequent non-invasive detection of biological compounds
US5798526A (en) * 1997-01-24 1998-08-25 Infrasoft International Llc Calibration system for spectrographic analyzing instruments

Cited By (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11219391B2 (en) 2001-07-02 2022-01-11 Masimo Corporation Low power pulse oximeter
US10959652B2 (en) 2001-07-02 2021-03-30 Masimo Corporation Low power pulse oximeter
US10980455B2 (en) 2001-07-02 2021-04-20 Masimo Corporation Low power pulse oximeter
USRE49034E1 (en) 2002-01-24 2022-04-19 Masimo Corporation Physiological trend monitor
US10869602B2 (en) 2002-03-25 2020-12-22 Masimo Corporation Physiological measurement communications adapter
US11484205B2 (en) 2002-03-25 2022-11-01 Masimo Corporation Physiological measurement device
US10973447B2 (en) 2003-01-24 2021-04-13 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
US11020029B2 (en) 2003-07-25 2021-06-01 Masimo Corporation Multipurpose sensor port
US8879812B2 (en) 2003-09-23 2014-11-04 Cambridge Research & Instrumentation, Inc. Spectral imaging of biological samples
US20070016082A1 (en) * 2003-09-23 2007-01-18 Richard Levenson Spectral imaging
US8634607B2 (en) 2003-09-23 2014-01-21 Cambridge Research & Instrumentation, Inc. Spectral imaging of biological samples
US20080294032A1 (en) * 2003-09-23 2008-11-27 Cambridge Research And Instrumentation, Inc. Spectral Imaging of Biological Samples
US8391961B2 (en) 2003-09-23 2013-03-05 Cambridge Research & Instrumentation, Inc. Spectral imaging
US8385615B2 (en) 2003-09-23 2013-02-26 Cambridge Research & Instrumentation, Inc. Spectral imaging of biological samples
US20090245605A1 (en) * 2003-09-23 2009-10-01 Richard Levenson Spectral imaging of biological samples
US9588099B2 (en) 2003-09-23 2017-03-07 Cambridge Research & Intrumentation, Inc. Spectral imaging
US11690574B2 (en) 2003-11-05 2023-07-04 Masimo Corporation Pulse oximeter access apparatus and method
US11937949B2 (en) 2004-03-08 2024-03-26 Masimo Corporation Physiological parameter system
US11426104B2 (en) 2004-08-11 2022-08-30 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
US8280140B2 (en) 2005-01-27 2012-10-02 Cambridge Research & Instrumentation, Inc. Classifying image features
US8639043B2 (en) 2005-01-27 2014-01-28 Cambridge Research & Instrumentation, Inc. Classifying image features
US11430572B2 (en) 2005-03-01 2022-08-30 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US11545263B2 (en) 2005-03-01 2023-01-03 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10984911B2 (en) 2005-03-01 2021-04-20 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10856788B2 (en) 2005-03-01 2020-12-08 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US10939877B2 (en) 2005-10-14 2021-03-09 Masimo Corporation Robust alarm system
US11839498B2 (en) 2005-10-14 2023-12-12 Masimo Corporation Robust alarm system
US11724031B2 (en) 2006-01-17 2023-08-15 Masimo Corporation Drug administration controller
US11944431B2 (en) 2006-03-17 2024-04-02 Masimo Corportation Apparatus and method for creating a stable optical interface
US11191485B2 (en) 2006-06-05 2021-12-07 Masimo Corporation Parameter upgrade system
US11607139B2 (en) 2006-09-20 2023-03-21 Masimo Corporation Congenital heart disease monitor
US10912524B2 (en) 2006-09-22 2021-02-09 Masimo Corporation Modular patient monitor
US11857315B2 (en) 2006-10-12 2024-01-02 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
US10799163B2 (en) 2006-10-12 2020-10-13 Masimo Corporation Perfusion index smoother
US11006867B2 (en) 2006-10-12 2021-05-18 Masimo Corporation Perfusion index smoother
US10863938B2 (en) 2006-10-12 2020-12-15 Masimo Corporation System and method for monitoring the life of a physiological sensor
US11857319B2 (en) 2006-10-12 2024-01-02 Masimo Corporation System and method for monitoring the life of a physiological sensor
US11317837B2 (en) 2006-10-12 2022-05-03 Masimo Corporation System and method for monitoring the life of a physiological sensor
US10993643B2 (en) 2006-10-12 2021-05-04 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
US11759130B2 (en) 2006-10-12 2023-09-19 Masimo Corporation Perfusion index smoother
US11672447B2 (en) 2006-10-12 2023-06-13 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US11229374B2 (en) 2006-12-09 2022-01-25 Masimo Corporation Plethysmograph variability processor
US11234655B2 (en) 2007-01-20 2022-02-01 Masimo Corporation Perfusion trend indicator
US11647923B2 (en) 2007-04-21 2023-05-16 Masimo Corporation Tissue profile wellness monitor
US10980457B2 (en) 2007-04-21 2021-04-20 Masimo Corporation Tissue profile wellness monitor
US11660028B2 (en) 2008-03-04 2023-05-30 Masimo Corporation Multispot monitoring for use in optical coherence tomography
US11033210B2 (en) 2008-03-04 2021-06-15 Masimo Corporation Multispot monitoring for use in optical coherence tomography
US11622733B2 (en) 2008-05-02 2023-04-11 Masimo Corporation Monitor configuration system
US11412964B2 (en) 2008-05-05 2022-08-16 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US10945648B2 (en) 2008-07-03 2021-03-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10912501B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11484229B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11484230B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11647914B2 (en) 2008-07-03 2023-05-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10912502B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642037B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642036B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10912500B2 (en) 2008-07-03 2021-02-09 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11751773B2 (en) 2008-07-03 2023-09-12 Masimo Corporation Emitter arrangement for physiological measurements
US11426103B2 (en) 2008-07-03 2022-08-30 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11564593B2 (en) 2008-09-15 2023-01-31 Masimo Corporation Gas sampling line
US10952641B2 (en) 2008-09-15 2021-03-23 Masimo Corporation Gas sampling line
US11559275B2 (en) 2008-12-30 2023-01-24 Masimo Corporation Acoustic sensor assembly
US11426125B2 (en) 2009-02-16 2022-08-30 Masimo Corporation Physiological measurement device
US11877867B2 (en) 2009-02-16 2024-01-23 Masimo Corporation Physiological measurement device
US11432771B2 (en) 2009-02-16 2022-09-06 Masimo Corporation Physiological measurement device
US11145408B2 (en) 2009-03-04 2021-10-12 Masimo Corporation Medical communication protocol translator
US11158421B2 (en) 2009-03-04 2021-10-26 Masimo Corporation Physiological parameter alarm delay
US11087875B2 (en) 2009-03-04 2021-08-10 Masimo Corporation Medical monitoring system
US11133105B2 (en) 2009-03-04 2021-09-28 Masimo Corporation Medical monitoring system
US11923080B2 (en) 2009-03-04 2024-03-05 Masimo Corporation Medical monitoring system
US11515664B2 (en) 2009-03-11 2022-11-29 Masimo Corporation Magnetic connector
US11848515B1 (en) 2009-03-11 2023-12-19 Masimo Corporation Magnetic connector
US11752262B2 (en) 2009-05-20 2023-09-12 Masimo Corporation Hemoglobin display and patient treatment
US11779247B2 (en) 2009-07-29 2023-10-10 Masimo Corporation Non-invasive physiological sensor cover
US11744471B2 (en) 2009-09-17 2023-09-05 Masimo Corporation Optical-based physiological monitoring system
US11342072B2 (en) 2009-10-06 2022-05-24 Cercacor Laboratories, Inc. Optical sensing systems and methods for detecting a physiological condition of a patient
US11114188B2 (en) 2009-10-06 2021-09-07 Cercacor Laboratories, Inc. System for monitoring a physiological parameter of a user
US11534087B2 (en) 2009-11-24 2022-12-27 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US11571152B2 (en) 2009-12-04 2023-02-07 Masimo Corporation Calibration for multi-stage physiological monitors
US11900775B2 (en) 2009-12-21 2024-02-13 Masimo Corporation Modular patient monitor
US10943450B2 (en) 2009-12-21 2021-03-09 Masimo Corporation Modular patient monitor
US11289199B2 (en) 2010-01-19 2022-03-29 Masimo Corporation Wellness analysis system
USRE49007E1 (en) 2010-03-01 2022-04-05 Masimo Corporation Adaptive alarm system
US11484231B2 (en) 2010-03-08 2022-11-01 Masimo Corporation Reprocessing of a physiological sensor
US11399722B2 (en) 2010-03-30 2022-08-02 Masimo Corporation Plethysmographic respiration rate detection
US11330996B2 (en) 2010-05-06 2022-05-17 Masimo Corporation Patient monitor for determining microcirculation state
US11717210B2 (en) 2010-09-28 2023-08-08 Masimo Corporation Depth of consciousness monitor including oximeter
US11399774B2 (en) 2010-10-13 2022-08-02 Masimo Corporation Physiological measurement logic engine
US11488715B2 (en) 2011-02-13 2022-11-01 Masimo Corporation Medical characterization system
US11363960B2 (en) 2011-02-25 2022-06-21 Masimo Corporation Patient monitor for monitoring microcirculation
US11109770B2 (en) 2011-06-21 2021-09-07 Masimo Corporation Patient monitoring system
US11925445B2 (en) 2011-06-21 2024-03-12 Masimo Corporation Patient monitoring system
US11272852B2 (en) 2011-06-21 2022-03-15 Masimo Corporation Patient monitoring system
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US10475529B2 (en) 2011-07-19 2019-11-12 Optiscan Biomedical Corporation Method and apparatus for analyte measurements using calibration sets
US11877824B2 (en) 2011-08-17 2024-01-23 Masimo Corporation Modulated physiological sensor
US11816973B2 (en) 2011-08-19 2023-11-14 Masimo Corporation Health care sanitation monitoring system
US11176801B2 (en) 2011-08-19 2021-11-16 Masimo Corporation Health care sanitation monitoring system
US11089982B2 (en) 2011-10-13 2021-08-17 Masimo Corporation Robust fractional saturation determination
US11241199B2 (en) 2011-10-13 2022-02-08 Masimo Corporation System for displaying medical monitoring data
US11786183B2 (en) 2011-10-13 2023-10-17 Masimo Corporation Medical monitoring hub
US10925550B2 (en) 2011-10-13 2021-02-23 Masimo Corporation Medical monitoring hub
US11179114B2 (en) 2011-10-13 2021-11-23 Masimo Corporation Medical monitoring hub
US11747178B2 (en) 2011-10-27 2023-09-05 Masimo Corporation Physiological monitor gauge panel
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US11179111B2 (en) 2012-01-04 2021-11-23 Masimo Corporation Automated CCHD screening and detection
US11918353B2 (en) 2012-02-09 2024-03-05 Masimo Corporation Wireless patient monitoring device
US11083397B2 (en) 2012-02-09 2021-08-10 Masimo Corporation Wireless patient monitoring device
US11132117B2 (en) 2012-03-25 2021-09-28 Masimo Corporation Physiological monitor touchscreen interface
US11071480B2 (en) 2012-04-17 2021-07-27 Masimo Corporation Hypersaturation index
US9375170B2 (en) 2012-07-16 2016-06-28 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
US9351671B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
US9351672B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
US9585604B2 (en) 2012-07-16 2017-03-07 Zyomed Corp. Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US11069461B2 (en) 2012-08-01 2021-07-20 Masimo Corporation Automated assembly sensor cable
US11557407B2 (en) 2012-08-01 2023-01-17 Masimo Corporation Automated assembly sensor cable
US11504002B2 (en) 2012-09-20 2022-11-22 Masimo Corporation Physiological monitoring system
US11887728B2 (en) 2012-09-20 2024-01-30 Masimo Corporation Intelligent medical escalation process
US11020084B2 (en) 2012-09-20 2021-06-01 Masimo Corporation Acoustic patient sensor coupler
USD989112S1 (en) 2012-09-20 2023-06-13 Masimo Corporation Display screen or portion thereof with a graphical user interface for physiological monitoring
US11452449B2 (en) 2012-10-30 2022-09-27 Masimo Corporation Universal medical system
US11367529B2 (en) 2012-11-05 2022-06-21 Cercacor Laboratories, Inc. Physiological test credit method
US11839470B2 (en) 2013-01-16 2023-12-12 Masimo Corporation Active-pulse blood analysis system
US11224363B2 (en) 2013-01-16 2022-01-18 Masimo Corporation Active-pulse blood analysis system
US11645905B2 (en) 2013-03-13 2023-05-09 Masimo Corporation Systems and methods for monitoring a patient health network
US11504062B2 (en) 2013-03-14 2022-11-22 Masimo Corporation Patient monitor placement indicator
US9766126B2 (en) 2013-07-12 2017-09-19 Zyomed Corp. Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
US11022466B2 (en) 2013-07-17 2021-06-01 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10980432B2 (en) 2013-08-05 2021-04-20 Masimo Corporation Systems and methods for measuring blood pressure
US11944415B2 (en) 2013-08-05 2024-04-02 Masimo Corporation Systems and methods for measuring blood pressure
US11596363B2 (en) 2013-09-12 2023-03-07 Cercacor Laboratories, Inc. Medical device management system
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
US11076782B2 (en) 2013-10-07 2021-08-03 Masimo Corporation Regional oximetry user interface
US11751780B2 (en) 2013-10-07 2023-09-12 Masimo Corporation Regional oximetry sensor
US10799160B2 (en) 2013-10-07 2020-10-13 Masimo Corporation Regional oximetry pod
US11717194B2 (en) 2013-10-07 2023-08-08 Masimo Corporation Regional oximetry pod
US11699526B2 (en) 2013-10-11 2023-07-11 Masimo Corporation Alarm notification system
US11488711B2 (en) 2013-10-11 2022-11-01 Masimo Corporation Alarm notification system
US10825568B2 (en) 2013-10-11 2020-11-03 Masimo Corporation Alarm notification system
US11673041B2 (en) 2013-12-13 2023-06-13 Masimo Corporation Avatar-incentive healthcare therapy
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US11883190B2 (en) 2014-01-28 2024-01-30 Masimo Corporation Autonomous drug delivery system
US11696712B2 (en) 2014-06-13 2023-07-11 Vccb Holdings, Inc. Alarm fatigue management systems and methods
US11000232B2 (en) 2014-06-19 2021-05-11 Masimo Corporation Proximity sensor in pulse oximeter
US11581091B2 (en) 2014-08-26 2023-02-14 Vccb Holdings, Inc. Real-time monitoring systems and methods in a healthcare environment
US11331013B2 (en) 2014-09-04 2022-05-17 Masimo Corporation Total hemoglobin screening sensor
US11850024B2 (en) 2014-09-18 2023-12-26 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
US11103134B2 (en) 2014-09-18 2021-08-31 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
US9459203B2 (en) 2014-09-29 2016-10-04 Zyomed, Corp. Systems and methods for generating and using projector curve sets for universal calibration for noninvasive blood glucose and other measurements
US9459202B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for collision computing for detection and noninvasive measurement of blood glucose and other substances and events
US9610018B2 (en) 2014-09-29 2017-04-04 Zyomed Corp. Systems and methods for measurement of heart rate and other heart-related characteristics from photoplethysmographic (PPG) signals using collision computing
US9448164B2 (en) 2014-09-29 2016-09-20 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
US9448165B2 (en) 2014-09-29 2016-09-20 Zyomed Corp. Systems and methods for control of illumination or radiation collection for blood glucose and other analyte detection and measurement using collision computing
US9442065B2 (en) 2014-09-29 2016-09-13 Zyomed Corp. Systems and methods for synthesis of zyotons for use in collision computing for noninvasive blood glucose and other measurements
US9453794B2 (en) 2014-09-29 2016-09-27 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US9459201B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
US10765367B2 (en) 2014-10-07 2020-09-08 Masimo Corporation Modular physiological sensors
US11717218B2 (en) 2014-10-07 2023-08-08 Masimo Corporation Modular physiological sensor
US11178776B2 (en) 2015-02-06 2021-11-16 Masimo Corporation Fold flex circuit for LNOP
US11602289B2 (en) 2015-02-06 2023-03-14 Masimo Corporation Soft boot pulse oximetry sensor
US11437768B2 (en) 2015-02-06 2022-09-06 Masimo Corporation Pogo pin connector
US10784634B2 (en) 2015-02-06 2020-09-22 Masimo Corporation Pogo pin connector
US11894640B2 (en) 2015-02-06 2024-02-06 Masimo Corporation Pogo pin connector
US11903140B2 (en) 2015-02-06 2024-02-13 Masimo Corporation Fold flex circuit for LNOP
US11291415B2 (en) 2015-05-04 2022-04-05 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
US11653862B2 (en) 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US11605188B2 (en) 2015-08-11 2023-03-14 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
US10991135B2 (en) 2015-08-11 2021-04-27 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
US11576582B2 (en) 2015-08-31 2023-02-14 Masimo Corporation Patient-worn wireless physiological sensor
US11089963B2 (en) 2015-08-31 2021-08-17 Masimo Corporation Systems and methods for patient fall detection
US10736518B2 (en) 2015-08-31 2020-08-11 Masimo Corporation Systems and methods to monitor repositioning of a patient
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
US11864922B2 (en) 2015-09-04 2024-01-09 Cercacor Laboratories, Inc. Low-noise sensor system
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US11931176B2 (en) 2016-03-04 2024-03-19 Masimo Corporation Nose sensor
US11272883B2 (en) 2016-03-04 2022-03-15 Masimo Corporation Physiological sensor
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
US11706029B2 (en) 2016-07-06 2023-07-18 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
US11153089B2 (en) 2016-07-06 2021-10-19 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
US11202571B2 (en) 2016-07-07 2021-12-21 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11076777B2 (en) 2016-10-13 2021-08-03 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
US11864890B2 (en) 2016-12-22 2024-01-09 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US11825536B2 (en) 2017-01-18 2023-11-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US11291061B2 (en) 2017-01-18 2022-03-29 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US11886858B2 (en) 2017-02-24 2024-01-30 Masimo Corporation Medical monitoring hub
US11410507B2 (en) 2017-02-24 2022-08-09 Masimo Corporation Localized projection of audible noises in medical settings
US10956950B2 (en) 2017-02-24 2021-03-23 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
US11596365B2 (en) 2017-02-24 2023-03-07 Masimo Corporation Modular multi-parameter patient monitoring device
US11096631B2 (en) 2017-02-24 2021-08-24 Masimo Corporation Modular multi-parameter patient monitoring device
US11417426B2 (en) 2017-02-24 2022-08-16 Masimo Corporation System for displaying medical monitoring data
US11816771B2 (en) 2017-02-24 2023-11-14 Masimo Corporation Augmented reality system for displaying patient data
US11901070B2 (en) 2017-02-24 2024-02-13 Masimo Corporation System for displaying medical monitoring data
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
US11830349B2 (en) 2017-02-24 2023-11-28 Masimo Corporation Localized projection of audible noises in medical settings
US11185262B2 (en) 2017-03-10 2021-11-30 Masimo Corporation Pneumonia screener
US11534110B2 (en) 2017-04-18 2022-12-27 Masimo Corporation Nose sensor
US10849554B2 (en) 2017-04-18 2020-12-01 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
US11813036B2 (en) 2017-04-26 2023-11-14 Masimo Corporation Medical monitoring device having multiple configurations
US10856750B2 (en) 2017-04-28 2020-12-08 Masimo Corporation Spot check measurement system
US10932705B2 (en) 2017-05-08 2021-03-02 Masimo Corporation System for displaying and controlling medical monitoring data
US11026604B2 (en) 2017-07-13 2021-06-08 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
US11705666B2 (en) 2017-08-15 2023-07-18 Masimo Corporation Water resistant connector for noninvasive patient monitor
US11095068B2 (en) 2017-08-15 2021-08-17 Masimo Corporation Water resistant connector for noninvasive patient monitor
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
US10987066B2 (en) 2017-10-31 2021-04-27 Masimo Corporation System for displaying oxygen state indications
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
US11911184B2 (en) 2017-12-01 2024-02-27 Samsung Electronics Co., Ltd. Bio-signal quality assessment apparatus and bio-signal quality assessment method
US11457872B2 (en) 2017-12-01 2022-10-04 Samsung Electronics Co., Ltd. Bio-signal quality assessment apparatus and bio-signal quality assessment method
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
US11844634B2 (en) 2018-04-19 2023-12-19 Masimo Corporation Mobile patient alarm display
US11109818B2 (en) 2018-04-19 2021-09-07 Masimo Corporation Mobile patient alarm display
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US10939878B2 (en) 2018-06-06 2021-03-09 Masimo Corporation Opioid overdose monitoring
US11564642B2 (en) 2018-06-06 2023-01-31 Masimo Corporation Opioid overdose monitoring
US10932729B2 (en) 2018-06-06 2021-03-02 Masimo Corporation Opioid overdose monitoring
US11627919B2 (en) 2018-06-06 2023-04-18 Masimo Corporation Opioid overdose monitoring
US11812229B2 (en) 2018-07-10 2023-11-07 Masimo Corporation Patient monitor alarm speaker analyzer
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11082786B2 (en) 2018-07-10 2021-08-03 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD999245S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with graphical user interface
USD999244S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD998625S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11445948B2 (en) 2018-10-11 2022-09-20 Masimo Corporation Patient connector assembly with vertical detents
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
US11272839B2 (en) 2018-10-12 2022-03-15 Ma Simo Corporation System for transmission of sensor data using dual communication protocol
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
USD989327S1 (en) 2018-10-12 2023-06-13 Masimo Corporation Holder
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
US11701043B2 (en) 2019-04-17 2023-07-18 Masimo Corporation Blood pressure monitor attachment assembly
US11637437B2 (en) 2019-04-17 2023-04-25 Masimo Corporation Charging station for physiological monitoring device
US11678829B2 (en) 2019-04-17 2023-06-20 Masimo Corporation Physiological monitoring device attachment assembly
USD933234S1 (en) 2019-08-16 2021-10-12 Masimo Corporation Patient monitor
USD933233S1 (en) 2019-08-16 2021-10-12 Masimo Corporation Blood pressure device
USD967433S1 (en) 2019-08-16 2022-10-18 Masimo Corporation Patient monitor
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
US11803623B2 (en) 2019-10-18 2023-10-31 Masimo Corporation Display layout and interactive objects for patient monitoring
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
USD950738S1 (en) 2019-10-18 2022-05-03 Masimo Corporation Electrode pad
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
US11721105B2 (en) 2020-02-13 2023-08-08 Masimo Corporation System and method for monitoring clinical activities
US11730379B2 (en) 2020-03-20 2023-08-22 Masimo Corporation Remote patient management and monitoring systems and methods
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
USD965789S1 (en) 2020-05-11 2022-10-04 Masimo Corporation Blood pressure monitor
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
USD973072S1 (en) 2020-09-30 2022-12-20 Masimo Corporation Display screen or portion thereof with graphical user interface
USD973686S1 (en) 2020-09-30 2022-12-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD973685S1 (en) 2020-09-30 2022-12-27 Masimo Corporation Display screen or portion thereof with graphical user interface
US11951186B2 (en) 2020-10-23 2024-04-09 Willow Laboratories, Inc. Indicator compounds, devices comprising indicator compounds, and methods of making and using the same
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device

Similar Documents

Publication Publication Date Title
USRE41333E1 (en) Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US6512937B2 (en) Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US6512936B1 (en) Multi-tier method of classifying sample spectra for non-invasive blood analyte prediction
US20060167350A1 (en) Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US6280381B1 (en) Intelligent system for noninvasive blood analyte prediction
US6587702B1 (en) Classification and characterization of tissue through features related to adipose tissue
AU754677B2 (en) System and method for noninvasive blood analyte measurements
EP1250083B1 (en) Sex determination
US6501982B1 (en) System for the noninvasive estimation of relative age
US6405065B1 (en) Non-invasive in vivo tissue classification using near-infrared measurements
US20030023148A1 (en) Targeted interference subtraction applied to near-infrared measurement of analytes
WO2001063251A1 (en) A non-invasive method of determining skin thickness and characterizing layers of skin tissue in vivo
Khadem et al. Classification before regression for improving the accuracy of glucose quantification using absorption spectroscopy
US20030040664A1 (en) Method and apparatus for path normalization of light transport in tissue
Ham et al. Multivariate determination of glucose using NIR spectra of human blood serum

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLENN PATENT GROUP, CALIFORNIA

Free format text: LIEN;ASSIGNOR:SENSYS MEDICAL, INC.;REEL/FRAME:022117/0887

Effective date: 20090120

Owner name: GLENN PATENT GROUP,CALIFORNIA

Free format text: LIEN;ASSIGNOR:SENSYS MEDICAL, INC.;REEL/FRAME:022117/0887

Effective date: 20090120

AS Assignment

Owner name: SENSYS MEDICAL, INC., ARIZONA

Free format text: LIEN RELEASE;ASSIGNOR:GLENN PATENT GROUP;REEL/FRAME:022542/0360

Effective date: 20090414

Owner name: SENSYS MEDICAL, INC.,ARIZONA

Free format text: LIEN RELEASE;ASSIGNOR:GLENN PATENT GROUP;REEL/FRAME:022542/0360

Effective date: 20090414

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
REIN Reinstatement after maintenance fee payment confirmed
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20100511

AS Assignment

Owner name: SENSYS MEDICAL, LTD, MALTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SENSYS MEDICAL, INC.;REEL/FRAME:028714/0623

Effective date: 20120428

AS Assignment

Owner name: GLT ACQUISITION CORP., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SENSYS MEDICAL, LIMITED;REEL/FRAME:028912/0036

Effective date: 20120829

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12