USRE40868E1 - Refrigeration source for a cryoblation catheter - Google Patents

Refrigeration source for a cryoblation catheter Download PDF

Info

Publication number
USRE40868E1
USRE40868E1 US11/865,686 US86568607A USRE40868E US RE40868 E1 USRE40868 E1 US RE40868E1 US 86568607 A US86568607 A US 86568607A US RE40868 E USRE40868 E US RE40868E
Authority
US
United States
Prior art keywords
pressure
tip section
tube
fluid
proximal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/865,686
Inventor
Eric Ryba
David J. Lentz
Ravikumar Kudaravalli
Hong Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryocor Inc
Original Assignee
Cryocor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31887815&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE40868(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/344,423 external-priority patent/US6237355B1/en
Priority claimed from US09/635,108 external-priority patent/US6471694B1/en
Application filed by Cryocor Inc filed Critical Cryocor Inc
Priority to US11/865,686 priority Critical patent/USRE40868E1/en
Application granted granted Critical
Publication of USRE40868E1 publication Critical patent/USRE40868E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • A61B2018/0268Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays

Definitions

  • the present invention pertains generally to systems and methods for implementing cryoablation procedures. More particularly, the present invention pertains to systems and methods that precool a primary fluid to a sub-cooled, fully saturated liquid state, for use in a cryoablation procedure.
  • the present invention is particularly, but not exclusively, useful as a system and method for cooling the distal tip of a cryoablation catheter during cardiac cryoablation therapy to cure heart arrhythmias.
  • cryoablation involves the freezing of material.
  • cryoablation has been successfully used in various medical procedures.
  • cryoablation procedures can be particularly effective for curing heart arrhythmias, such as atrial fibrillation.
  • Radiofrequency energy is not amenable to safely producing circumferential lesions without the potential for serious complications.
  • heating energy also alters the extracellular matrix proteins, causing the matrix to collapse. This may be the center of pulmonary vein stenosis.
  • radiofrequency energy is known to damage the lining of the heart, which may account for thromboembolic complications, including stroke. Cryoablation procedures, however, may avoid many of these problems.
  • cryoablation begins at temperatures below approximately minus twenty degrees Centigrade ( ⁇ 20° C.). For the effective cryoablation of tissue, however, much colder temperatures are preferable.
  • various fluid refrigerants e.g. nitrous oxide N 2 O
  • N 2 O normal boiling point temperature
  • the normal boiling point temperature of a fluid is taken to be the temperature at which the fluid boils under one atmosphere of pressure. Temperature alone, however, is not the goal.
  • several physical factors need to be considered. Specifically, these factors involve the thermodynamics of heat transfer.
  • wattage is the refrigeration potential of a system. Stated differently, wattage is the capacity of a system to extract energy at a fixed temperature.
  • heat transfer is proportional to the difference in temperatures ( ⁇ T) between the refrigerant and the body that is being cooled.
  • heat transfer is also proportional to the amount of surface area of the body being cooled (A) that is in contact with the refrigerant.
  • ⁇ T and A the refrigerant is a fluid
  • the refrigeration potential of the refrigerant fluid is also a function of its mass flow rate. Specifically, the faster a heat-exchanging fluid refrigerant can be replaced (i.e. the higher its mass flow rate), the higher will be the refrigeration potential. This notion, however, has it limits.
  • the mass flow rate of a fluid results from a pressure differential on the fluid. More specifically, it can be shown that as a pressure differential starts to increase on a refrigerant fluid in a system, the resultant increase in the mass flow rate of the fluid will also increase the refrigeration potential of the system. This increased flow rate, however, creates additional increases in the return pressure that will result in a detrimental increase in temperature. As is also well understood by the skilled artisan, this effect is caused by a phenomenon commonly referred to as “back pressure.” Obviously, an optimal operation occurs with the highest mass flow rate at the lowest possible temperature.
  • an object of the present invention to provide an open-cycle, or closed-cycle, refrigeration system for cooling the top of a cryoablation catheter that provides a pre-cooling stage in the system to maximize the refrigeration potential of the refrigerant fluid at the tip of the catheter.
  • Another object of the present invention is to provide a refrigeration system for cooling the tip of a cryoablation catheter that substantially maintains a predetermined pressure at the tip of the catheter to maximize the refrigeration potential of the refrigerant fluid at the tip.
  • Still another object of the present invention is to provide a refrigeration system for cooling the tip of a cryoablation catheter that provides the maximum practical surface area for the tip that will maximize the ablation potential of the refrigerant fluid.
  • it is an object of the present invention to provide a refrigeration system for cooling the tip of a cryoablation catheter that is relatively easy to manufacture, is simple to use, and is comparatively cost effective.
  • a refrigeration system for cooling the tip of a cryoablation catheter includes a source for a primary fluid refrigerant, such as nitrous oxide (N 2 O). Initially, the primary fluid is held under pressure (e.g. 750 psia) at ambient temperature (e.g. room temperature). A pressure regulator is connected in fluid communication with the primary fluid source for reducing the pressure on the primary fluid down to a working pressure (e.g. approximately 400 psia). During this pressure reduction to the working pressure, the primary fluid remains at substantially the ambient temperature.
  • a primary fluid refrigerant such as nitrous oxide (N 2 O).
  • a precooler is used to pre-cool the primary fluid from the ambient temperature. This is done while substantially maintaining the primary fluid at the working pressure.
  • the primary fluid is converted into a fully saturated liquid which has been pre-cooled to a sub-cool temperature.
  • a sub-cool temperature is one that is below the temperature at which, for a given pressure, the fluid becomes fully saturated.
  • T sc ⁇ 40° C.
  • the precooler is preferably a closed-cycle refrigeration unit that includes an enclosed secondary fluid (e.g. a freon gas). Additionally, the precooler includes a compressor for increasing the pressure on the secondary fluid to a point where the secondary fluid becomes a liquid. Importantly, for whatever secondary fluid is used, it should have a normal boiling point that is near to the preferred sub-cool temperature of the primary fluid (T sc ). The secondary fluid is then allowed to boil, and to thereby pre-cool the primary fluid in the system to its sub-cool temperature (T sc ). As a closed-cycle unit, the secondary fluid is recycled after it has pre-cooled the primary fluid.
  • an enclosed secondary fluid e.g. a freon gas
  • the cryoablation catheter for the system of the present invention essentially includes a capillary tube that is connected with, and extends coaxially from a supply tube. Together, the connected supply and capillary tubes are positioned in the lumen of a catheter tube and are oriented coaxially with the catheter tube. More specifically, the supply tube and the capillary tube each have a distal end and a proximal end and, in combination, the proximal end of the capillary tube is connected to the distal end of the supply tube to establish a supply line for the catheter.
  • the supply tube and the capillary tube are concentrically (coaxially) positioned inside the lumen of the catheter tube.
  • the distal end of the capillary tube i.e. the distal end of the supply line
  • this configuration also defines a return line in the lumen of the catheter tube that is located between the inside surface of that catheter tube and the supply line.
  • the return line extends from the tip section at the distal end of the catheter tube, back to the proximal end of the catheter tube.
  • the impedance to fluid flow of the primary refrigerant in the supply line be relatively low through the supply tube, as compared with the impedance presented by the capillary tube.
  • the pressure drop, and consequently the temperature reduction, on the primary refrigerant be minimized as it traverses the supply tube.
  • the pressure drop and temperature reduction on the primary refrigerant should be maximized as the refrigerant traverses the capillary tube.
  • the physical dimensions of the supply tube, of the capillary tube, and of the catheter tube can be engineered to satisfy these requirements.
  • the length of the capillary tube so that gases passing from the tip section, back through the return line do not impermissibly warm the capillary tube.
  • a control valve(s) is used to establish a working pressure (p w ) for the refrigerant.
  • a pressure sensor is provided to monitor the working pressure on the primary fluid refrigerant before the refrigerant enters the supply line at the proximal end of the catheter.
  • an exhaust unit is provided for removing the primary fluid from the tip section of the catheter.
  • this exhaust unit consists of a vacuum pump that is attached in fluid communication with the return line at the proximal end of the catheter tube.
  • a pressure sensor is also provided at this point to determine the pressure in the return line at the proximal end of the catheter tube (p r ).
  • thermodynamic principles when pressures at specific points in a system are known, fluid pressures at various other points in the system can be determined.
  • the supply line and return line are contiguous and have known dimensions
  • p w working pressure
  • p r return line pressure
  • an outflow pressure (p o ) for the fluid refrigerant as it exits from the distal end of the capillary tube into the tip section of the catheter.
  • the outflow pressure (p o ) for the fluid refrigerant can be determined in ways other than as just mentioned above.
  • a pressure sensor can be positioned in the tip section of the catheter near the distal end of the capillary tube to measure the outflow pressure (p o ) directly.
  • the system of the present invention can include a temperature sensor that is positioned in the tip section of the catheter to monitor the temperature of the primary fluid refrigerant in the tip section (T t ). Specifically, when this temperature (T t ) is measured as the primary fluid refrigerant is boiling (i.e. as it enters the tip section from the capillary tube), it is possible to directly calculate the outflow pressure (p o ) using well known thermodynamic relationships.
  • a computer is used with the system of the present invention to monitor and control the operational conditions of the system. Specifically, the computer is connected to the appropriate sensors that monitor actual values for “p r ” and “p w ”. The values for “p r ” and “p w ” can be used to determine the outflow pressure “p o ” in the tip section of the catheter (for one embodiment of the present invention, “p o ” is also measured directly). Further, the computer is connected to the control valve to manipulate the control valve and vary the working pressure (p w ) on the primary fluid. At the same time, the computer can monitor the temperature in the tip section of the catheter (T t ) to ensure that changes in the working pressure “p w ” result in appropriate changes in “T t ”.
  • the computer can monitor conditions to ensure that an unwanted increase in “back pressure,” that would be caused by an inappropriate increase in “p w ” does not result in an increase in “T i ”.
  • the purpose here is to maintain the outflow pressure (p o ) in the tip section of the catheter at a desired value (e.g. 15 psia).
  • the sub-cooled primary fluid is introduced into the proximal end of the capillary tube at substantially the working pressure (p w ).
  • the primary fluid then traverses the capillary tube for outflow from the distal end of the capillary tube at the outflow pressure (p o ).
  • the fluid refrigerant is subjected to a pressure differential ( ⁇ p).
  • ⁇ p is substantially the difference between the working pressure (p w ) on the primary fluid as it enters the proximal end of the capillary tube (e.g. 300 psi), and a substantially ambient pressure (i.e. p o ) as it outflows from the distal end of the capillary tube (e.g.
  • the pre-cooled primary fluid passes through the capillary tube, it transitions from a sub-cool temperature that is equal to approximately minus forty degrees Centigrade (T sc ⁇ 40° C.), to approximately its normal boiling point temperature.
  • T sc sub-cool temperature
  • the normal boiling point temperature of a fluid is taken to be the temperature at which the fluid boils under one atmosphere of pressures. In the case of nitrous oxide, this will be a cryoablation temperature that is equal to approximately minus eighty-eight degrees Centigrade (T ca ⁇ 88° C.). The heat that is absorbed by the primary fluid as it boils, cools the tip section of the catheter.
  • FIG. 1 is a perspective view of the system of the present invention
  • FIG. 2 is a cross-sectional view of the catheter of the present invention as seen along line 2 — 2 in FIG. 1 ;
  • FIG. 3 is a schematic view of the computer and its interaction with system components and sensors for use in the control of a cryoablation procedure
  • FIG. 4 is a schematic view of the interactive components in the console of the present invention.
  • FIG. 5 is a pressure-temperature diagram (not to scale) graphing an open-cycle operation for a refrigerant fluid in accordance with the present invention.
  • FIG. 6 is a diagram (not to scale) showing the tendency for changes in temperature response to changes of fluid mass flow rate in a catheter environment as provided by the present invention.
  • a system for a performing cryoablation procedures is shown and generally designated 10 .
  • the system 10 includes a cryoablation catheter 12 and a primary fluid source 14 .
  • the primary fluid is nitrous oxide (N 2 O) and is held in source 14 at a pressure of around 750 psig.
  • FIG. 1 also shows that the system 10 includes a console 16 and that the console 16 is connected in fluid communication with the primary fluid source 14 via a fluid line 18 .
  • Console 16 is also connected in fluid communication with the catheter 12 via a fluid line 20 .
  • the console 16 is shown to include a precooler 22 , an exhaust unit 24 , and a computer 26 .
  • the catheter 12 includes a catheter tube 28 that has a closed distal end 30 and an open proximal end 32 . Also included as part of the catheter 12 , are a supply tube 34 that has a distal end 36 and a proximal end 38 , and a capillary tube 40 that has a distal end 42 and a proximal end 44 . As shown, the distal end 36 of supply tube 34 is connected with the proximal end 44 of the capillary tube 40 to establish a supply line 46 . Specifically, supply line 46 is defined by the lumen 48 of supply tube 34 and the lumen 50 of capillary tube 40 .
  • the diameter (i.e. cross section) of the supply tube 34 is greater than the diameter (i.e. cross section) of the capillary tube 40 .
  • the consequence of this difference is that the supply tube 34 presents much less importance to fluid flow than does the capillary tube 40 . In turn, this causes a much greater pressure drop for fluid flow through the capillary tube 40 . As will be seen, this pressure differential is used to advantage for the system 10 .
  • the supply line 46 established by the supply tube 34 and capillary tube 40 is positioned coaxially in the lumen 52 of the capillary tube 28 . Further, the distal end 42 of the capillary tube 40 (i.e. also the distal end of the supply line 46 ) is displaced from the distal end 30 of catheter tube 28 to create an expansion chamber 54 in the tip section 56 of the catheter 12 . Additionally, the placement of the supply line 46 in the lumen 52 establishes a return line 58 in the catheter 12 that is located between the supply line 46 and the wall of the catheter tube 28 .
  • a sensor 60 can be mounted in expansion chamber 54 (tip section 56 ).
  • This sensor 60 may be either a temperature sensor or a pressure sensor, or it may include both a temperature and pressure sensor. In any event, if used, the sensor 60 can be of a type well known in the art for detecting the desired measurement.
  • FIG. 2 shows both a pressure sensor 62 and a valve 64 positioned at the proximal end 38 of the supply tube 34 , this is only exemplary as the sensor 62 and valve 64 may actually be positioned elsewhere.
  • a pressure sensor 62 is provided to monitor a working fluid pressure, “p w ,” on a fluid refrigerant (e.g. N 2 O).
  • this pressure “p w ” is controlled by a valve 64 as it enters the inlet 66 of the supply line 46 .
  • FIG. 2 shows that a pressure sensor 68 is provided to monitor a return pressure “p r ” on the fluid refrigerant as it exits from the outlet 70 of the return line 58 .
  • FIG. 3 indicates that the various sensors mentioned above are somehow electronically connected to the computer 26 in console 16 . More specifically, the sensors 60 , 62 and 68 can be connected to computer 26 in any of several ways, all known in the pertinent art. Further, FIG. 3 indicates that the computer 26 is operationally connected with the valve 64 . The consequence of this is that the computer 26 can be used to control operation of the valve 64 , and thus the working pressure “p w ”, in accordance with preprogrammed instructions, using measurements obtained by the sensors 60 , 62 and 68 (individually or collectively).
  • FIG. 4 A schematic of various components for system 10 is presented in FIG. 4 which indicates that a compressor 72 is incorporated as an integral part of the precooler 22 . More specifically, the compressor 72 is used to compress a secondary fluid refrigerant (e.g. Freon) into its liquid phase for subsequent cooling of the primary refrigerant in the precooler 22 .
  • a secondary fluid refrigerant e.g. Freon
  • the secondary fluid refrigerant will have a normal boiling point that is at a temperature sufficiently low to take the primary fluid refrigerant to a sub-cool condition (i.e. below a temperature where the primary fluid refrigerant will be fully saturated).
  • Point A represents the primary fluid refrigerant as it is drawn from the fluid source 14 , or its back up source 14 ′.
  • point A corresponds to ambient temperature (i.e. room temperature) and a pressure greater than around 700 psig.
  • the pressure on the refrigerant is lowered to a working pressure “p w ” that is around 400 psig.
  • This change is controlled by the regulator valve 64 , is monitored by the sensor 62 , and is represented in FIG. 5 as the change from point A to point B.
  • the condition at point B corresponds to the condition of the primary refrigerant as it enters the precooler 22 .
  • the primary refrigerant is cooled to a sub-cool temperature “T sc ” (e.g. ⁇ 40° C.) that is determined by the boiling point of the secondary refrigerant in the precooler 22 .
  • T sc sub-cool temperature
  • this cooling is represented by the transition from point B to point C.
  • Point C in FIG. 5 represents the condition of the primary fluid refrigerant as it enters the supply line 46 of cryocather 12 at the proximal end 38 of supply tube 34 .
  • the pressure on the primary fluid refrigerant at this point C is the working pressure “p w ”
  • the temperature is the sub-cool temperature “T sc ”.
  • point D is identified by a temperature of around minus eighty eight degrees Centigrade ( ⁇ 88° C.) and an outlet pressure “p o ” that is close to 15 psia. Further, as indicated in FIG. 4 , point D identifies the conditions of the primary fluid refrigerant after it has boiled to the tip section 56 as it is leaving the supply line 46 and entering the return line 58 of the catheter 12 .
  • the exhaust unit 24 of the catheter 12 is used to evacuate the primary fluid refrigerant from the expansion chamber 54 of tip section 56 after the primary refrigerant has boiled.
  • the conditions of the primary refrigerant change from point D to point E.
  • the conditions at point E are such that the temperature of the refrigerant is an ambient temperature (i.e. room temperature) and it has a return pressure “p r ”, measured by the sensor 68 , that is slightly less than “p o ”.
  • the main purpose of the exhaust unit 24 is to help maintain the outlet pressure “p o ” in the tip section 56 as near to one atmosphere pressure as possible.
  • T t the temperature of the refrigerant in the tip section 56 .
  • variations of T t can be used to control the mass flow rate of the refrigerant, to thereby control the refrigeration potential of the catheter 12 .
  • System 10 manipulates the regulator valve 64 , in response to whatever variables are being used, to vary the working pressure “p w ” of the primary fluid refrigerant as it enters the supply line 46 . In this way, variations in “p w ” can be used to control “p o ” and, consequently, the refrigeration potential of the catheter 12 .

Abstract

A catheter-based system for performing a cryoablation procedure uses a precooler to lower the temperature of a fluid refrigerant to a sub-cool temperature (−40° C.) at a working pressure (400 psi). The sub-cooled fluid is then introduced into a supply line of the catheter. Upon outflow of the primary fluid from the supply line, and into a tip section of the catheter, the fluid refrigerant boils at an outflow pressure of approximately one atmosphere, at a temperature of about −88° C. In operation, the working pressure is computer controlled to obtain an appropriate outflow pressure for the coldest possible temperature in the tip section.

Description

This application is a continuation-in-part of application Ser. No. 09/635,108 filed Aug. 9, 2000, now U.S. Pat. No. 6,471,694, which is a continuation-in-part of application Ser. No. 09/344,423, filed Jun. 25, 1999, now U.S. Pat. No. 6,237,355 . The contents of application Ser. No. 09/635,108 are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention pertains generally to systems and methods for implementing cryoablation procedures. More particularly, the present invention pertains to systems and methods that precool a primary fluid to a sub-cooled, fully saturated liquid state, for use in a cryoablation procedure. The present invention is particularly, but not exclusively, useful as a system and method for cooling the distal tip of a cryoablation catheter during cardiac cryoablation therapy to cure heart arrhythmias.
BACKGROUND OF THE INVENTION
As the word itself indicates, “cryoablation” involves the freezing of material. Of importance here, at least insofar as the present invention is concerned, is the fact that cryoablation has been successfully used in various medical procedures. In this context, it has been determined that cryoablation procedures can be particularly effective for curing heart arrhythmias, such as atrial fibrillation.
It is believed that at least one-third of all atrial fibrillations originate near the ostia of the pulmonary veins, and that the optimal treatment technique is to treat these focal areas through the creation of circumferential lesions around the ostia of these veins. Heretofore, the standard ablation platform has been radiofrequency energy. Radiofrequency energy, however, is not amenable to safely producing circumferential lesions without the potential for serious complications. Specifically, while ablating the myocardial cells, heating energy also alters the extracellular matrix proteins, causing the matrix to collapse. This may be the center of pulmonary vein stenosis. Moreover, radiofrequency energy is known to damage the lining of the heart, which may account for thromboembolic complications, including stroke. Cryoablation procedures, however, may avoid many of these problems.
In a medical procedure, cryoablation begins at temperatures below approximately minus twenty degrees Centigrade (−20° C.). For the effective cryoablation of tissue, however, much colder temperatures are preferable. With this goal in mind, various fluid refrigerants (e.g. nitrous oxide N2O), which have normal boiling point temperatures as low as around minus eighty eight degrees Centigrade (−88° C.), are worthy of consideration. For purposes of the present invention, the normal boiling point temperature of a fluid is taken to be the temperature at which the fluid boils under one atmosphere of pressure. Temperature alone, however, is not the goal. Specifically, it is also necessary there be a sufficient refrigeration potential for freezing the tissue. In order for a system to attain and maintain a temperature, while providing the necessary refrigerant potential to effect cryoablation of tissue, several physical factors need to be considered. Specifically, these factors involve the thermodynamics of heat transfer.
It is well known that when a fluid boils (i.e. changes from a liquid state to a gaseous state) a significant amount of heat is transferred to the fluid. With this in mind, consider a liquid that is not boiling, but which is under a condition of pressure and temperature wherein effective evaporation of the liquid ceases. A liquid in such condition is commonly referred to as being “fully saturated”. It will then happen, as the pressure on the saturated liquid is reduced, the liquid tends to boil and extract heat from its surroundings. Initially, the heat that is transferred to the fluid is generally referred to as latent heat. More specifically, this latent heat is the heat that is required to change a fluid from a liquid to a gas, without any change in temperature. For most fluids, this latent heat transfer can be considerable and is subsumed in the notion of wattage. In context, wattage is the refrigeration potential of a system. Stated differently, wattage is the capacity of a system to extract energy at a fixed temperature.
An important consideration for the design of any refrigeration system is the fact that the heat transfer is proportional to the difference in temperatures (ΔT) between the refrigerant and the body that is being cooled. Importantly, heat transfer is also proportional to the amount of surface area of the body being cooled (A) that is in contact with the refrigerant. In addition to the above considerations (i.e. ΔT and A); when the refrigerant is a fluid, the refrigeration potential of the refrigerant fluid is also a function of its mass flow rate. Specifically, the faster a heat-exchanging fluid refrigerant can be replaced (i.e. the higher its mass flow rate), the higher will be the refrigeration potential. This notion, however, has it limits.
As is well known, the mass flow rate of a fluid results from a pressure differential on the fluid. More specifically, it can be shown that as a pressure differential starts to increase on a refrigerant fluid in a system, the resultant increase in the mass flow rate of the fluid will also increase the refrigeration potential of the system. This increased flow rate, however, creates additional increases in the return pressure that will result in a detrimental increase in temperature. As is also well understood by the skilled artisan, this effect is caused by a phenomenon commonly referred to as “back pressure.” Obviously, an optimal operation occurs with the highest mass flow rate at the lowest possible temperature.
In light of the above, it is an object of the present invention to provide an open-cycle, or closed-cycle, refrigeration system for cooling the top of a cryoablation catheter that provides a pre-cooling stage in the system to maximize the refrigeration potential of the refrigerant fluid at the tip of the catheter. Another object of the present invention is to provide a refrigeration system for cooling the tip of a cryoablation catheter that substantially maintains a predetermined pressure at the tip of the catheter to maximize the refrigeration potential of the refrigerant fluid at the tip. Still another object of the present invention is to provide a refrigeration system for cooling the tip of a cryoablation catheter that provides the maximum practical surface area for the tip that will maximize the ablation potential of the refrigerant fluid. Also, it is an object of the present invention to provide a refrigeration system for cooling the tip of a cryoablation catheter that is relatively easy to manufacture, is simple to use, and is comparatively cost effective.
SUMMARY OF THE PREFERRED EMBODIMENTS
A refrigeration system (open-cycle, or closed-cycle) for cooling the tip of a cryoablation catheter includes a source for a primary fluid refrigerant, such as nitrous oxide (N2O). Initially, the primary fluid is held under pressure (e.g. 750 psia) at ambient temperature (e.g. room temperature). A pressure regulator is connected in fluid communication with the primary fluid source for reducing the pressure on the primary fluid down to a working pressure (e.g. approximately 400 psia). During this pressure reduction to the working pressure, the primary fluid remains at substantially the ambient temperature.
After pressure on the primary fluid has been reduced to the working pressure, a precooler is used to pre-cool the primary fluid from the ambient temperature. This is done while substantially maintaining the primary fluid at the working pressure. Importantly, at the precooler, the primary fluid is converted into a fully saturated liquid which has been pre-cooled to a sub-cool temperature. As used here, a sub-cool temperature is one that is below the temperature at which, for a given pressure, the fluid becomes fully saturated. For example, when nitrous oxide is to be used, the preferred sub-cool temperature will be equal to approximately minus forty degrees Centigrade (Tsc=−40° C.).
Structurally, the precooler is preferably a closed-cycle refrigeration unit that includes an enclosed secondary fluid (e.g. a freon gas). Additionally, the precooler includes a compressor for increasing the pressure on the secondary fluid to a point where the secondary fluid becomes a liquid. Importantly, for whatever secondary fluid is used, it should have a normal boiling point that is near to the preferred sub-cool temperature of the primary fluid (Tsc). The secondary fluid is then allowed to boil, and to thereby pre-cool the primary fluid in the system to its sub-cool temperature (Tsc). As a closed-cycle unit, the secondary fluid is recycled after it has pre-cooled the primary fluid.
The cryoablation catheter for the system of the present invention essentially includes a capillary tube that is connected with, and extends coaxially from a supply tube. Together, the connected supply and capillary tubes are positioned in the lumen of a catheter tube and are oriented coaxially with the catheter tube. More specifically, the supply tube and the capillary tube each have a distal end and a proximal end and, in combination, the proximal end of the capillary tube is connected to the distal end of the supply tube to establish a supply line for the catheter.
For the construction of the cryoablation catheter, the supply tube and the capillary tube are concentrically (coaxially) positioned inside the lumen of the catheter tube. Further, the distal end of the capillary tube (i.e. the distal end of the supply line) is positioned at a closed-in tip section at the distal end of the catheter tube. Thus, in addition the supply line, this configuration also defines a return line in the lumen of the catheter tube that is located between the inside surface of that catheter tube and the supply line. In particular, the return line extends from the tip section at the distal end of the catheter tube, back to the proximal end of the catheter tube.
Insofar as the supply line is connected, it is an important aspect of the present invention that the impedance to fluid flow of the primary refrigerant in the supply line be relatively low through the supply tube, as compared with the impedance presented by the capillary tube. Stated differently, it is desirable for the pressure drop, and consequently the temperature reduction, on the primary refrigerant be minimized as it traverses the supply tube. On the other hand, the pressure drop and temperature reduction on the primary refrigerant should be maximized as the refrigerant traverses the capillary tube. Importantly, the physical dimensions of the supply tube, of the capillary tube, and of the catheter tube can be engineered to satisfy these requirements. It is also desirable to engineer the length of the capillary tube so that gases passing from the tip section, back through the return line do not impermissibly warm the capillary tube. By balancing these considerations, the dimensions of the supply line, the tip section and the return line, can all be predetermined.
As the fluid refrigerant is transferred from its source to the catheter supply line, it passes through the precooler. During this transfer, a control valve(s) is used to establish a working pressure (pw) for the refrigerant. Also, a pressure sensor is provided to monitor the working pressure on the primary fluid refrigerant before the refrigerant enters the supply line at the proximal end of the catheter.
On the return side of the system, an exhaust unit is provided for removing the primary fluid from the tip section of the catheter. For the present invention, this exhaust unit consists of a vacuum pump that is attached in fluid communication with the return line at the proximal end of the catheter tube. A pressure sensor is also provided at this point to determine the pressure in the return line at the proximal end of the catheter tube (pr).
In accordance with well known thermodynamic principles, when pressures at specific points in a system are known, fluid pressures at various other points in the system can be determined. For the present invention, because the supply line and return line are contiguous and have known dimensions, because “pw” (working pressure) and “pr” (return line pressure) can be determined and, further, because the fluid refrigerant experiences a phase change during the transition from pw to pr, it is possible to calculate pressures on the fluid refrigerant at points between the proximal end of the supply tube (inlet) and the proximal end of the catheter tube (outlet). In particular, it is possible to calculate an outflow pressure (po) for the fluid refrigerant as it exits from the distal end of the capillary tube into the tip section of the catheter.
The outflow pressure (po) for the fluid refrigerant can be determined in ways other than as just mentioned above. For one, a pressure sensor can be positioned in the tip section of the catheter near the distal end of the capillary tube to measure the outflow pressure (po) directly. Additionally, the system of the present invention can include a temperature sensor that is positioned in the tip section of the catheter to monitor the temperature of the primary fluid refrigerant in the tip section (Tt). Specifically, when this temperature (Tt) is measured as the primary fluid refrigerant is boiling (i.e. as it enters the tip section from the capillary tube), it is possible to directly calculate the outflow pressure (po) using well known thermodynamic relationships.
A computer is used with the system of the present invention to monitor and control the operational conditions of the system. Specifically, the computer is connected to the appropriate sensors that monitor actual values for “pr” and “pw”. The values for “pr” and “pw” can be used to determine the outflow pressure “po” in the tip section of the catheter (for one embodiment of the present invention, “po” is also measured directly). Further, the computer is connected to the control valve to manipulate the control valve and vary the working pressure (pw) on the primary fluid. At the same time, the computer can monitor the temperature in the tip section of the catheter (Tt) to ensure that changes in the working pressure “pw” result in appropriate changes in “Tt”. Stated differently, the computer can monitor conditions to ensure that an unwanted increase in “back pressure,” that would be caused by an inappropriate increase in “pw” does not result in an increase in “Ti”. The purpose here is to maintain the outflow pressure (po) in the tip section of the catheter at a desired value (e.g. 15 psia).
In operation, the sub-cooled primary fluid is introduced into the proximal end of the capillary tube at substantially the working pressure (pw). The primary fluid then traverses the capillary tube for outflow from the distal end of the capillary tube at the outflow pressure (po). Importantly, in the capillary tube the fluid refrigerant is subjected to a pressure differential (Δp). In this case, “Δp” is substantially the difference between the working pressure (pw) on the primary fluid as it enters the proximal end of the capillary tube (e.g. 300 psi), and a substantially ambient pressure (i.e. po) as it outflows from the distal end of the capillary tube (e.g. one atmosphere, 15 psi) (Δp=pw−po). In particular, as the pre-cooled primary fluid passes through the capillary tube, it transitions from a sub-cool temperature that is equal to approximately minus forty degrees Centigrade (Tsc≅−40° C.), to approximately its normal boiling point temperature. As defined above, the normal boiling point temperature of a fluid is taken to be the temperature at which the fluid boils under one atmosphere of pressures. In the case of nitrous oxide, this will be a cryoablation temperature that is equal to approximately minus eighty-eight degrees Centigrade (Tca≅−88° C.). The heat that is absorbed by the primary fluid as it boils, cools the tip section of the catheter.
BRIEF DESCRIPTION OF THE DRAWINGS
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
FIG. 1 is a perspective view of the system of the present invention;
FIG. 2 is a cross-sectional view of the catheter of the present invention as seen along line 22 in FIG. 1;
FIG. 3 is a schematic view of the computer and its interaction with system components and sensors for use in the control of a cryoablation procedure;
FIG. 4 is a schematic view of the interactive components in the console of the present invention;
FIG. 5 is a pressure-temperature diagram (not to scale) graphing an open-cycle operation for a refrigerant fluid in accordance with the present invention; and
FIG. 6 is a diagram (not to scale) showing the tendency for changes in temperature response to changes of fluid mass flow rate in a catheter environment as provided by the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring initially to FIG. 1, a system for a performing cryoablation procedures is shown and generally designated 10. As shown, the system 10 includes a cryoablation catheter 12 and a primary fluid source 14. Preferably, the primary fluid is nitrous oxide (N2O) and is held in source 14 at a pressure of around 750 psig. FIG. 1 also shows that the system 10 includes a console 16 and that the console 16 is connected in fluid communication with the primary fluid source 14 via a fluid line 18. Console 16 is also connected in fluid communication with the catheter 12 via a fluid line 20. Further, the console 16 is shown to include a precooler 22, an exhaust unit 24, and a computer 26.
In detail, the components of the catheter 12 will be best appreciated with reference to FIG. 2. There, it will be seen that the catheter 12 includes a catheter tube 28 that has a closed distal end 30 and an open proximal end 32. Also included as part of the catheter 12, are a supply tube 34 that has a distal end 36 and a proximal end 38, and a capillary tube 40 that has a distal end 42 and a proximal end 44. As shown, the distal end 36 of supply tube 34 is connected with the proximal end 44 of the capillary tube 40 to establish a supply line 46. Specifically, supply line 46 is defined by the lumen 48 of supply tube 34 and the lumen 50 of capillary tube 40. It is an important aspect of the system 10 that the diameter (i.e. cross section) of the supply tube 34 is greater than the diameter (i.e. cross section) of the capillary tube 40. The consequence of this difference is that the supply tube 34 presents much less importance to fluid flow than does the capillary tube 40. In turn, this causes a much greater pressure drop for fluid flow through the capillary tube 40. As will be seen, this pressure differential is used to advantage for the system 10.
Still referring to FIG. 2, it is seen that the supply line 46 established by the supply tube 34 and capillary tube 40, is positioned coaxially in the lumen 52 of the capillary tube 28. Further, the distal end 42 of the capillary tube 40 (i.e. also the distal end of the supply line 46) is displaced from the distal end 30 of catheter tube 28 to create an expansion chamber 54 in the tip section 56 of the catheter 12. Additionally, the placement of the supply line 46 in the lumen 52 establishes a return line 58 in the catheter 12 that is located between the supply line 46 and the wall of the catheter tube 28.
Optionally, a sensor 60 can be mounted in expansion chamber 54 (tip section 56). This sensor 60 may be either a temperature sensor or a pressure sensor, or it may include both a temperature and pressure sensor. In any event, if used, the sensor 60 can be of a type well known in the art for detecting the desired measurement. Although FIG. 2 shows both a pressure sensor 62 and a valve 64 positioned at the proximal end 38 of the supply tube 34, this is only exemplary as the sensor 62 and valve 64 may actually be positioned elsewhere. The import here is that a pressure sensor 62 is provided to monitor a working fluid pressure, “pw,” on a fluid refrigerant (e.g. N2O). In turn, this pressure “pw” is controlled by a valve 64 as it enters the inlet 66 of the supply line 46. Further, FIG. 2 shows that a pressure sensor 68 is provided to monitor a return pressure “pr” on the fluid refrigerant as it exits from the outlet 70 of the return line 58.
FIG. 3 indicates that the various sensors mentioned above are somehow electronically connected to the computer 26 in console 16. More specifically, the sensors 60, 62 and 68 can be connected to computer 26 in any of several ways, all known in the pertinent art. Further, FIG. 3 indicates that the computer 26 is operationally connected with the valve 64. The consequence of this is that the computer 26 can be used to control operation of the valve 64, and thus the working pressure “pw”, in accordance with preprogrammed instructions, using measurements obtained by the sensors 60, 62 and 68 (individually or collectively).
A schematic of various components for system 10 is presented in FIG. 4 which indicates that a compressor 72 is incorporated as an integral part of the precooler 22. More specifically, the compressor 72 is used to compress a secondary fluid refrigerant (e.g. Freon) into its liquid phase for subsequent cooling of the primary refrigerant in the precooler 22. For purposes of the present invention, the secondary fluid refrigerant will have a normal boiling point that is at a temperature sufficiently low to take the primary fluid refrigerant to a sub-cool condition (i.e. below a temperature where the primary fluid refrigerant will be fully saturated). For the present invention, wherein the primary fluid refrigerant is nitrous oxide, the temperature is preferably around minus forty degrees Centigrade (Tsc=−40° C.).
The operation of system 10 will be best appreciated by cross referencing FIG. 4 with FIG. 5. During this cross referencing, recognize that the alphabetical points (A, B, C, D and E), shown relative to the curve 74 in FIG. 5, are correspondingly shown on the schematic for system 10 in FIG. 4. Further, appreciate that curve 74, which is plotted for variations of pressure (P) and temperature (T), represents the fully saturated condition for the primary fluid refrigerant (e.g. nitrous oxide). Accordingly, the area 76 represents the liquid phase of the refrigerant, and area 78 represents the gaseous phase of the refrigerant.
Point A (FIG. 4 and FIG. 5) represents the primary fluid refrigerant as it is drawn from the fluid source 14, or its back up source 14′. Preferably, point A corresponds to ambient temperature (i.e. room temperature) and a pressure greater than around 700 psig. After leaving the fluid source 14, the pressure on the refrigerant is lowered to a working pressure “pw” that is around 400 psig. This change is controlled by the regulator valve 64, is monitored by the sensor 62, and is represented in FIG. 5 as the change from point A to point B. The condition at point B corresponds to the condition of the primary refrigerant as it enters the precooler 22.
In the precooler 22, the primary refrigerant is cooled to a sub-cool temperature “Tsc” (e.g. −40° C.) that is determined by the boiling point of the secondary refrigerant in the precooler 22. In FIG. 5 this cooling is represented by the transition from point B to point C. Note that in this transition, as the primary fluid refrigerant passes through the precooler 22, it changes from a gaseous state (area 78) into a liquid state (area 76). Point C in FIG. 5 represents the condition of the primary fluid refrigerant as it enters the supply line 46 of cryocather 12 at the proximal end 38 of supply tube 34. Specifically, the pressure on the primary fluid refrigerant at this point C is the working pressure “pw”, and the temperature is the sub-cool temperature “Tsc”.
As the primary fluid refrigerant passes through the supply line 46 of catheter 12, its condition changes from the indications of point C, to those of point D. Specifically, for the present invention, point D is identified by a temperature of around minus eighty eight degrees Centigrade (−88° C.) and an outlet pressure “po” that is close to 15 psia. Further, as indicated in FIG. 4, point D identifies the conditions of the primary fluid refrigerant after it has boiled to the tip section 56 as it is leaving the supply line 46 and entering the return line 58 of the catheter 12.
The exhaust unit 24 of the catheter 12 is used to evacuate the primary fluid refrigerant from the expansion chamber 54 of tip section 56 after the primary refrigerant has boiled. During this evacuation, the conditions of the primary refrigerant change from point D to point E. Specifically, the conditions at point E are such that the temperature of the refrigerant is an ambient temperature (i.e. room temperature) and it has a return pressure “pr”, measured by the sensor 68, that is slightly less than “po”. For the transition from point D to point E, the main purpose of the exhaust unit 24 is to help maintain the outlet pressure “po” in the tip section 56 as near to one atmosphere pressure as possible.
Earlier it was mentioned that the mass flow rate of the primary fluid refrigerant as it passes through the catheter 12 has an effect on the operation of the catheter 12. Essentially this effect is shown in FIG. 6. There it will be seen that for relatively low mass flow rates (e.g. below point F on curve 80 shown in FIG. 6), increases in the mass flow rate of the refrigerant will cause lower temperatures. Refrigerant flow in this range is said to be “refrigeration limited.” On the other hand, for relatively high mass flow rates (i.e. above point F), increases in the mass flow rate actually cause the temperature of the refrigerant to rise. Flow in this range is said to be “surface area limited.” Because the system 10 is most efficient at the lowest temperature for the refrigerant, operation at point F is preferred. Accordingly, by monitoring the temperature of the refrigerant in the tip section 56, “Tt”, variations of Tt can be used to control the mass flow rate of the refrigerant, to thereby control the refrigeration potential of the catheter 12.
In operation, the variables mentioned above (pw, po, pr, and Tt) can be determined as needed. System 10 then manipulates the regulator valve 64, in response to whatever variables are being used, to vary the working pressure “pw” of the primary fluid refrigerant as it enters the supply line 46. In this way, variations in “pw” can be used to control “po” and, consequently, the refrigeration potential of the catheter 12.
While the particular Refrigeration Source for a Cryoablation Catheter as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.

Claims (17)

1. A refrigeration system for cooling a tip section of a cryoablation catheter which comprises:
a source for a primary fluid refrigerant wherein the primary fluid refrigerant is nitrous oxide (N2O);
a closed-cycle refrigeration unit for pre-cooling the primary fluid to a sub-cool temperature (Tsc) at a working pressure (pw) wherein the sub-cool temperature is approximately minus forty degrees Centigrade (Tsc=−40° C.) and the working pressure is approximately four hundred psia;
a catheter tube formed with a lumen and having an open proximal end and a closed distal end, with the closed distal end of said catheter tube defining a tip section;
a supply line having a distal end and a proximal end, said supply line being positioned inside the lumen of the catheter tube with the distal end thereof positioned in the tip section of said catheter tube, wherein said supply line includes a supply tube and a coaxial capillary tube extending distally therefrom, and further wherein said capillary tube has a fluid flow impedance greater than a fluid flow impedance of said supply tube;
a means for introducing the sub-cooled primary fluid into the proximal end of said capillary tube at approximately −40° C. and at substantially the working pressure (pw) for transfer therethrough and outflow therefrom into the tip section of said catheter tube in a substantially liquid state at approximately −88° C. and at an outflow pressure (po); and
a vacuum means connected in fluid communication with the proximal end of said catheter tube for removing the primary fluid therefrom at a return pressure (pr), while maintaining the outflow pressure (po) in the tip section substantially at a predetermined value to allow the primary fluid to boil in the tip section substantially at its normal boiling point of approximately minus eighty eight degrees Centigrade.
2. A system as recited in claim 1 further comprising:
a first pressure sensor for measuring the working pressure (pw) at the proximal end of the catheter tube;
a second pressure sensor for measuring the return pressure (pr) at the proximal end of the catheter tube; and
a computer for using the working pressure (pw) and the return passage (pr) to calculate the outflow pressure (po) in the tip section.
3. A system as recited in claim 2 further comprising:
a regulator valve for varying the working pressure (pw) on the primary fluid; and
an electronic means connecting said computer to said regulator valve, wherein said computer compares the calculated outflow pressure (po) in the tip section to a base line pressure to create an error signal, and further wherein said computer adjusts said regulator valve to minimize the error signal for controlling the working pressure (pw) to substantially maintain the outflow pressure (po) at the predetermined value.
4. A system as recited in claim 3 further comprising a temperature sensor mounted in the tip section to determine a tip section temperature (Tt), wherein said computer monitors the tip section temperature (Tt) to ensure appropriate control over the working pressure (pw).
5. A system as recited in claim 1 wherein said closed-cycle refrigerant unit comprises:
a secondary fluid wherein the secondary fluid is a Freon;
a compressor for increasing pressure on the secondary fluid to convert the secondary fluid into a liquid having a boiling point equal to a sub-cool temperature of the primary fluid;
a means for boiling the secondary fluid to sub-cool the primary fluid to its sub-cool temperature; and
a means for recycling the secondary fluid after the secondary fluid has sub-cooled the primary fluid.
6. A system as recited in claim 1 wherein the outflow pressure (po) is approximately fifteen psia (po=15 psia).
7. A system as recited in claim 1 wherein the supply tube has a proximal end and a distal end and the capillary tube has a proximal end and a distal end, wherein the distal end of the supply tube is connected with the proximal end of the capillary tube, wherein said supply line is coaxially positioned in the lumen of said catheter tube, and wherein said supply tube has a lumen with a diameter and said capillary tube has a lumen with a diameter, with the diameter of said supply tube being greater than the diameter of said capillary tube.
8. A system as recited in claim 1 further comprising a pressure sensor positioned in said tip section for measuring the outlet pressure (po).
9. A method for cooling a tip section of a cryoablation catheter which comprises the steps of:
providing a catheter tube formed with a lumen and having an open proximal end and a closed distal end, with the closed distal end of the catheter tube defining a tip section;
mounting a supply line inside the lumen of the catheter tube, the supply line having a distal end and a proximal end, with the distal end thereof positioned in the tip section of said catheter tube, wherein said supply line includes a supply tube and a coaxial capillary tube extending distally therefrom, and further wherein said capillary tube has a fluid flow impedance greater than a fluid flow impedance of said supply tube;
pre-cooling a primary fluid with a closed cycle refrigeration unit to a sub-cooled liquid state at a working pressure (pw) wherein the primary fluid refrigerant is nitrous oxide (N2O) and wherein the sub-cool temperature is approximately minus forty degrees Centigrade (Tsc=−40° C.) and the working pressure is approximately four hundred psia;
introducing the sub-cooled primary fluid into the proximal end of the capillary tube at approximately −40° C. and at substantially the working pressure (pw) for transfer therethrough and outflow therefrom into the tip section of the catheter tube in a substantially liquid state at approximately −88° C. and at an outflow pressure (po);
removing the primary fluid from the proximal end of said catheter tube at a return pressure (pr); and
maintaining the outflow pressure (po) in the tip section substantially at a predetermined value to allow the primary fluid to boil in the tip section substantially at its normal boiling point of approximately minus eighty eight degrees Centigrade.
10. A method as recited in claim 9 further comprising the steps of:
measuring the working pressure (pw) at the proximal end of the supply line;
measuring the return pressure (pr) at the proximal end of the catheter tube; and
calculating the outflow pressure (po) in the tip section based on the measured working pressure (pw) and the measured return pressure (pr).
11. A method as recited in claim 10 further comprising the steps of:
providing a control valve to vary the working pressure (pw) on the primary fluid;
comparing the calculated outflow pressure (po) in the tip section to a base line pressure to create an error signal; and
adjusting the control valve to minimize the error signal for controlling the working pressure (pw) to substantially maintain the outflow pressure (po) at the predetermined value.
12. A method as recited in claim 11 wherein the pre-cooling step comprises:
increasing pressure on a secondary fluid to convert the secondary fluid into a liquid having a boiling point equal to a sub-cool temperature of the primary fluid; and
boiling the secondary fluid to sub-cool the primary fluid to its sub-cool temperature.
13. A method as recited in claim 12 further comprising the steps of:
placing a temperature sensor in the tip section to determine a tip section temperature (Tt); and
monitoring the tip section temperature (Tt) to ensure appropriate control over the working pressure (pw).
14. A method as recited in claim 9 wherein the supply tube has a proximal end and a distal end and the capillary tube has a proximal end and a distal end and said method further comprises the step of connecting the distal end of the supply tube to the proximal end of the capillary tube to create said supply line.
15. A method as recited in claim 14 further comprising the steps of:
forming said supply tube with a lumen having a diameter; and
forming said capillary tube with a lumen having a diameter, wherein the diameter of said supply tube being greater than the diameter of said capillary tube.
16. A method as recited in claim 15 further comprising the step of positioning a pressure sensor in said tip section for measuring the outlet pressure (po).
17. A method as recited in claim 15 further comprising the step of:
positioning a temperature sensor in said tip section for measuring the tip temperature (Tt); and
using the tip temperature (Tt) to calculate the outflow pressure (po).
US11/865,686 1999-06-25 2007-10-01 Refrigeration source for a cryoblation catheter Expired - Fee Related USRE40868E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/865,686 USRE40868E1 (en) 1999-06-25 2007-10-01 Refrigeration source for a cryoblation catheter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/344,423 US6237355B1 (en) 1999-06-25 1999-06-25 Precooled cryogenic ablation system
US09/635,108 US6471694B1 (en) 2000-08-09 2000-08-09 Control system for cryosurgery
US10/243,997 US7004936B2 (en) 2000-08-09 2002-09-12 Refrigeration source for a cryoablation catheter
US11/865,686 USRE40868E1 (en) 1999-06-25 2007-10-01 Refrigeration source for a cryoblation catheter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/243,997 Reissue US7004936B2 (en) 1999-06-25 2002-09-12 Refrigeration source for a cryoablation catheter

Publications (1)

Publication Number Publication Date
USRE40868E1 true USRE40868E1 (en) 2009-08-11

Family

ID=31887815

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/243,997 Ceased US7004936B2 (en) 1999-06-25 2002-09-12 Refrigeration source for a cryoablation catheter
US10/888,804 Abandoned US20050159735A1 (en) 2000-08-09 2004-07-09 Refrigeration source for a cryoablation catheter
US11/098,835 Abandoned US20070277550A1 (en) 2000-08-09 2005-04-05 Refrigeration source for a cryoablation catheter
US11/865,686 Expired - Fee Related USRE40868E1 (en) 1999-06-25 2007-10-01 Refrigeration source for a cryoblation catheter
US12/353,962 Abandoned US20090318913A1 (en) 2000-08-09 2009-01-14 Refrigeration source for a cryoablation catheter

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/243,997 Ceased US7004936B2 (en) 1999-06-25 2002-09-12 Refrigeration source for a cryoablation catheter
US10/888,804 Abandoned US20050159735A1 (en) 2000-08-09 2004-07-09 Refrigeration source for a cryoablation catheter
US11/098,835 Abandoned US20070277550A1 (en) 2000-08-09 2005-04-05 Refrigeration source for a cryoablation catheter

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/353,962 Abandoned US20090318913A1 (en) 2000-08-09 2009-01-14 Refrigeration source for a cryoablation catheter

Country Status (7)

Country Link
US (5) US7004936B2 (en)
EP (1) EP1398002B1 (en)
JP (1) JP4412965B2 (en)
AT (1) ATE330545T1 (en)
AU (1) AU2003246297B2 (en)
CA (1) CA2440777C (en)
DE (1) DE60306281T2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120109119A1 (en) * 2010-10-27 2012-05-03 Medtronic Cryocath Lp Compatible cryogenic cooling system
USD685916S1 (en) 2012-11-26 2013-07-09 Medivance Incorporated Medical cooling pad
US9622907B2 (en) 2010-09-10 2017-04-18 Medivance Incorporated Cooling medical pad
US9687386B2 (en) 2010-09-10 2017-06-27 Medivance Incorporated Cooling medical pad
US9861422B2 (en) 2015-06-17 2018-01-09 Medtronic, Inc. Catheter breach loop feedback fault detection with active and inactive driver system
US10054262B2 (en) 2014-04-16 2018-08-21 Cpsi Holdings Llc Pressurized sub-cooled cryogenic system
US10441458B2 (en) 2015-01-27 2019-10-15 Medicance Incorporated Medical pad and system for thermotherapy

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050228367A1 (en) * 1999-01-25 2005-10-13 Marwan Abboud Leak detection system for catheter based medical device
US7004936B2 (en) * 2000-08-09 2006-02-28 Cryocor, Inc. Refrigeration source for a cryoablation catheter
US7455666B2 (en) 2001-07-13 2008-11-25 Board Of Regents, The University Of Texas System Methods and apparatuses for navigating the subarachnoid space
US20040034344A1 (en) * 2002-08-16 2004-02-19 Eric Ryba Tip pressure monitoring for cryoablation catheters
US6981382B2 (en) 2003-07-24 2006-01-03 Cryocor, Inc. Distal end for cryoablation catheters
US7580507B2 (en) * 2004-01-13 2009-08-25 Koninklijke Philips Electronics N.V. Liquid flow sensor fox x-ray tubes
EP2180647B1 (en) * 2004-08-12 2011-10-05 InterDigital Technology Corporation Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
US20060178662A1 (en) * 2005-02-04 2006-08-10 Ripley Kenneth L Warming gradient control for a cryoablation applicator
EP1968508B1 (en) 2005-12-22 2019-05-15 Hybernia Medical LLC Systems for intravascular cooling
WO2008054487A2 (en) * 2006-04-24 2008-05-08 Thomas Jefferson University Cryoneedle and cryotherapy system
US20080125764A1 (en) * 2006-11-17 2008-05-29 Vancelette David W Cryoprobe thermal control for a closed-loop cryosurgical system
US8298221B2 (en) * 2006-11-17 2012-10-30 Coopersurgical, Inc. Disposable sheath with replaceable console probes for cryosurgery
US8298220B2 (en) * 2006-11-17 2012-10-30 Coopersurgical, Inc. Cryoprobe with coaxial chambers
CN101755175A (en) * 2007-06-04 2010-06-23 开利公司 Refrigerant system with cascaded circuits and performance enhancement features
EP2231048B1 (en) * 2007-12-27 2016-06-22 Boston Scientific Scimed, Inc. System for controllably delivering liquid coolant to a cryo-ablation device
PL2104116T3 (en) * 2008-03-12 2017-09-29 Alstom Transport Technologies Oil cooling system, particularly for transformers feeding traction electric motors, transformer with said system and method for determining the cooling fluid flow in a cooling system
US8814850B2 (en) * 2008-04-24 2014-08-26 Cryomedix, Llc Method and system for cryoablation treatment
US9050069B2 (en) * 2008-05-16 2015-06-09 Medtronic Cryocath Lp Thermocouple-controlled catheter cooling system
JP2010008487A (en) * 2008-06-24 2010-01-14 Fujitsu Ltd Optical module and dispersion compensator
DE102008045563B9 (en) * 2008-07-02 2012-01-26 Erbe Elektromedizin Gmbh Temperature control for a cryoprobe, cryosurgical device with temperature controller and method for controlling the temperature of a cryoprobe
JP5233031B2 (en) * 2008-07-15 2013-07-10 株式会社デージーエス・コンピュータ Cryotherapy planning device and cryotherapy device
US9089316B2 (en) 2009-11-02 2015-07-28 Endocare, Inc. Cryogenic medical system
US9408654B2 (en) * 2008-09-03 2016-08-09 Endocare, Inc. Modular pulsed pressure device for the transport of liquid cryogen to a cryoprobe
US8439905B2 (en) * 2008-09-19 2013-05-14 Endocare, Inc. Nucleation enhanced surface modification to support physical vapor deposition to create a vacuum
US10182859B2 (en) * 2008-09-03 2019-01-22 Endocare, Inc. Medical device for the transport of subcooled cryogenic fluid through a linear heat exchanger
EP2330995B1 (en) * 2008-09-03 2015-08-05 Endocare, Inc. A cryogenic system and method of use
JP5481494B2 (en) 2008-12-23 2014-04-23 クライオメディクス、エルエルシー Tissue ablation control system and method based on isotherm
WO2010083281A1 (en) * 2009-01-15 2010-07-22 Boston Scientific Scimed, Inc. Controlling depth of cryoablation
US20100241113A1 (en) * 2009-03-20 2010-09-23 Boston Scientific Scimed, Inc. Protecting the phrenic nerve while ablating cardiac tissue
JP5490218B2 (en) * 2009-04-06 2014-05-14 クライオメディクス、エルエルシー Single phase liquid refrigerant refrigeration ablation system having a multi-tube distal portion and associated method
US8888768B2 (en) * 2009-04-30 2014-11-18 Cryomedix, Llc Cryoablation system having docking station for charging cryogen containers and related method
US20110092955A1 (en) * 2009-10-07 2011-04-21 Purdy Phillip D Pressure-Sensing Medical Devices, Systems and Methods, and Methods of Forming Medical Devices
EP3281594B1 (en) 2010-06-01 2021-05-12 AFreeze GmbH Ablation device
AT510064B1 (en) * 2010-07-12 2012-04-15 Wild Johannes COOLER
CN103118613A (en) 2010-08-26 2013-05-22 克莱米迪克斯有限责任公司 Cryoablation balloon catheter and related method
JP2013544135A (en) 2010-10-27 2013-12-12 クライオメディクス、エルエルシー Refrigeration ablation apparatus with improved heat exchange area and related methods
RU2483691C2 (en) * 2011-03-11 2013-06-10 Валентин Николаевич Павлов Cryosyrgical apparatus
US20120265452A1 (en) * 2011-04-14 2012-10-18 Galil Medical Inc. Method of monitoring gas supply during a cryosurgical procedure
US20130018368A1 (en) * 2011-07-13 2013-01-17 Galil Medical Inc. User interface for operating and monitoring a cryosurgical system
CN102488550B (en) * 2011-11-29 2013-04-17 浙江大学 Low-temperature therapeutic apparatus for tumour
US9155584B2 (en) * 2012-01-13 2015-10-13 Myoscience, Inc. Cryogenic probe filtration system
US20140031804A1 (en) * 2012-07-26 2014-01-30 Medtronic Cryocath Lp Device and method for ablating tissue
US9101343B2 (en) 2012-08-03 2015-08-11 Thach Buu Duong Therapeutic cryoablation system
DE102013101104A1 (en) * 2013-02-05 2014-08-07 Bürkert Werke GmbH Cooling arrangement for cooling an object with a control device and method for monitoring such a cooling arrangement
US9956024B2 (en) * 2014-07-11 2018-05-01 Medtronic Cryocath Lp Cryoablation method and system
CN104873265A (en) * 2015-06-02 2015-09-02 北京迈迪顶峰医疗科技有限公司 Freezing ablation system
US10433894B2 (en) 2015-07-02 2019-10-08 Medtronic Cryocath Lp N2O liquefaction system with subcooling heat exchanger for medical device
US9993280B2 (en) 2015-07-02 2018-06-12 Medtronic Cryocath Lp N2O thermal pressurization system by cooling
US10788244B2 (en) * 2016-02-01 2020-09-29 Medtronic Cryocath Lp Recovery system for N20
CN105852960B (en) * 2016-04-11 2018-07-06 天津美电医疗科技有限公司 Gas throttling type cryosurgical device and control method thereof
US11771486B2 (en) 2017-01-17 2023-10-03 Corfigo, Inc. Device for ablation of tissue surfaces and related systems and methods
PL3437579T3 (en) 2017-08-04 2023-10-16 Erbe Elektromedizin Gmbh Cryosurgical instrument
RU2713947C2 (en) * 2018-08-07 2020-02-11 Общество с ограниченной ответственностью "КРИОИНЖИНИРИНГ" Apparatus for cryotherapy
CN115670632A (en) * 2019-12-04 2023-02-03 海杰亚(北京)医疗器械有限公司 High-low temperature composite ablation operation system
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump
CN112220608B (en) * 2020-10-15 2022-06-21 中国科学院理化技术研究所 Ultralow-temperature local cold therapy system
EP4039209A1 (en) 2021-02-04 2022-08-10 AFreeze GmbH Cryoablation catheter assembly, cryoablation system
US20230270483A1 (en) * 2022-02-28 2023-08-31 Icecure Medical Ltd. Cryogen Flow Control

Citations (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299646A (en) 1964-06-17 1967-01-24 Little Inc A Cryogenic joule-thomson helium liquefier with cascade helium and nitrogen refrigeration circuits
US3300991A (en) 1964-07-07 1967-01-31 Union Carbide Corp Thermal reset liquid level control system for the liquefaction of low boiling gases
US3392541A (en) 1967-02-06 1968-07-16 Larkin Coils Inc Plural compressor reverse cycle refrigeration or heat pump system
US3552384A (en) 1967-07-03 1971-01-05 American Hospital Supply Corp Controllable tip guide body and catheter
US3696813A (en) * 1971-10-06 1972-10-10 Cryomedics Cryosurgical instrument
US3733845A (en) 1972-01-19 1973-05-22 D Lieberman Cascaded multicircuit,multirefrigerant refrigeration system
US3823575A (en) 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
US3852974A (en) 1971-12-03 1974-12-10 T Brown Refrigeration system with subcooler
US3913581A (en) * 1972-06-02 1975-10-21 Spembly Ltd Cryogenic apparatus
US4000626A (en) 1975-02-27 1977-01-04 Webber Robert C Liquid convection fluid heat exchanger for refrigeration circuit
US4018227A (en) 1975-10-09 1977-04-19 Cryomedics, Inc. Cryosurgical instrument
US4072152A (en) 1976-02-23 1978-02-07 Linehan John H Orthopedic cryosurgical apparatus
US4118934A (en) 1975-03-21 1978-10-10 Enterprise Industrielle De Chaudronnerie Process and apparatus for transforming heat at a relatively low temperature into power or energy
US4228660A (en) 1977-03-16 1980-10-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchangers
US4339253A (en) 1979-12-12 1982-07-13 Compagnie Francaise D'etudes Et De Construction "Technip" Method of and system for liquefying a gas with low boiling temperature
US4539028A (en) 1983-05-06 1985-09-03 Compagnie Francaise D'etudes Et De Construction "Technip" Method and apparatus for cooling and liquefying at least one gas with a low boiling point, such as for example natural gas
US4597268A (en) 1984-02-14 1986-07-01 Andersson Bengt O K Method and apparatus for gas-cooling
US4777805A (en) 1984-09-19 1988-10-18 Kabushiki Kaisha Toshiba Heat pump system
US4829785A (en) 1987-12-04 1989-05-16 The Boeing Company Cryogenic cooling system with precooling stage
US4850199A (en) 1988-03-21 1989-07-25 Guild Associates, Inc. Cryo-refrigeration system
US4899741A (en) 1987-01-14 1990-02-13 Hgm Medical Laser Systems, Inc. Laser heated probe and control system
US4911148A (en) 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
US4917667A (en) 1988-02-11 1990-04-17 Retroperfusion Systems, Inc. Retroperfusion balloon catheter and method
US4951474A (en) 1988-03-21 1990-08-28 Guild Associates, Inc. Cryo-refrigeration system
WO1991011213A1 (en) * 1990-02-02 1991-08-08 Ep Technologies, Inc. Catheter steering mechanism
US5063747A (en) 1990-06-28 1991-11-12 United States Of America As Represented By The United States National Aeronautics And Space Administration Multicomponent gas sorption Joule-Thomson refrigeration
US5078713A (en) 1988-12-01 1992-01-07 Spembly Medical Limited Cryosurgical probe
US5114399A (en) 1990-10-01 1992-05-19 Intramed Laboratories Surgical device
US5139496A (en) * 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
US5147355A (en) * 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5170639A (en) 1991-12-10 1992-12-15 Chander Datta Cascade refrigeration system
US5254116A (en) 1991-09-06 1993-10-19 Cryomedical Sciences, Inc. Cryosurgical instrument with vent holes and method using same
US5275595A (en) 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
US5277199A (en) 1990-09-17 1994-01-11 C. R. Bard, Inc. Core wire steerable catheters
US5281213A (en) 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5281215A (en) 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5386709A (en) 1992-12-10 1995-02-07 Baltimore Aircoil Company, Inc. Subcooling and proportional control of subcooling of liquid refrigerant circuits with thermal storage or low temperature reservoirs
US5395327A (en) 1990-02-02 1995-03-07 Ep Technologies, Inc. Catheter steering mechanism
US5403309A (en) 1992-07-31 1995-04-04 Spembly Medical Limited Cryosurgical ablation
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5431168A (en) 1993-08-23 1995-07-11 Cordis-Webster, Inc. Steerable open-lumen catheter
US5472017A (en) 1992-11-17 1995-12-05 Life Medical Technologies, Inc. Deflectable catheter
US5513498A (en) 1995-04-06 1996-05-07 General Electric Company Cryogenic cooling system
US5540062A (en) 1993-11-01 1996-07-30 State Of Israel, Ministry Of Defence, Rafael Armaments Development Authority Controlled cryogenic contact system
US5549542A (en) 1992-11-17 1996-08-27 Life Medical Technologies, Inc. Deflectable endoscope
US5603221A (en) 1994-06-30 1997-02-18 State Of Israel, Ministry Of Defense, Rafael-Armaments Development Authority Multiprobe surgical cryogenic apparatus
US5617739A (en) 1995-03-29 1997-04-08 Mmr Technologies, Inc. Self-cleaning low-temperature refrigeration system
US5656029A (en) 1992-12-01 1997-08-12 Cardiac Pathways Corporation Steerable catheter with adjustable bend location and/or radius and method
US5662606A (en) 1993-03-12 1997-09-02 Heart Rhythm Technologies, Inc. Catheter for electrophysiological procedures
US5667505A (en) 1992-03-24 1997-09-16 Smt Spol. S.R.O. Method of carrying out cryosurgical interventions and device for this method
US5674218A (en) 1990-09-26 1997-10-07 Cryomedical Sciences, Inc. Cryosurgical instrument and system and method of cryosurgery
US5676653A (en) 1995-06-27 1997-10-14 Arrow International Investment Corp. Kink-resistant steerable catheter assembly
US5687579A (en) 1994-09-12 1997-11-18 Vaynberg; Mikhail M. Double circuited refrigeration system with chiller
US5724832A (en) 1995-03-29 1998-03-10 Mmr Technologies, Inc. Self-cleaning cryogenic refrigeration system
US5728144A (en) 1992-04-13 1998-03-17 Ep Technologies, Inc. Steerable coaxial cable systems for cardiac ablation
US5733280A (en) 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5733319A (en) 1996-04-25 1998-03-31 Urologix, Inc. Liquid coolant supply system
US5752385A (en) 1995-11-29 1998-05-19 Litton Systems, Inc. Electronic controller for linear cryogenic coolers
US5758505A (en) 1995-10-12 1998-06-02 Cryogen, Inc. Precooling system for joule-thomson probe
US5759182A (en) 1993-11-09 1998-06-02 Spembly Medical Limited Cryosurgical probe with pre-cooling feature
US5795332A (en) 1996-04-15 1998-08-18 Lucas; Daniel R. Silicone catheter
US5800493A (en) 1995-04-26 1998-09-01 Gynecare, Inc. Intrauterine ablation system
US5807391A (en) 1993-10-26 1998-09-15 Cordis Corporation Cryo-ablation catheter
US5860970A (en) 1994-05-10 1999-01-19 Spembly Medical Limited Cryosurgical instrument
US5865800A (en) 1993-08-19 1999-02-02 Boston Scientific Corporation Deflectable catheter
US5868735A (en) 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US5876373A (en) 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US5876399A (en) * 1997-05-28 1999-03-02 Irvine Biomedical, Inc. Catheter system and methods thereof
US5899899A (en) * 1997-02-27 1999-05-04 Cryocath Technologies Inc. Cryosurgical linear ablation structure
US5902299A (en) 1997-07-29 1999-05-11 Jayaraman; Swaminathan Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation
US5910104A (en) 1996-12-26 1999-06-08 Cryogen, Inc. Cryosurgical probe with disposable sheath
US5916212A (en) 1998-01-23 1999-06-29 Cryomedical Sciences, Inc. Hand held cyrosurgical probe system
GB2337000A (en) * 1998-04-30 1999-11-10 Spembly Medical Ltd Cryosurgical catheter
US5992158A (en) 1994-05-10 1999-11-30 Spembly Medical Limited Cryosurgical instrument
US6019783A (en) 1999-03-02 2000-02-01 Alsius Corporation Cooling system for therapeutic catheter
US6024740A (en) * 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6027499A (en) 1997-05-23 2000-02-22 Fiber-Tech Medical, Inc. (Assignee Of Jennifer B. Cartledge) Method and apparatus for cryogenic spray ablation of gastrointestinal mucosa
US6039730A (en) 1996-06-24 2000-03-21 Allegheny-Singer Research Institute Method and apparatus for cryosurgery
US6048919A (en) * 1999-01-29 2000-04-11 Chip Coolers, Inc. Thermally conductive composite material
US6106518A (en) 1998-04-09 2000-08-22 Cryocath Technologies, Inc. Variable geometry tip for a cryosurgical ablation device
US6117101A (en) * 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6120476A (en) 1997-12-01 2000-09-19 Cordis Webster, Inc. Irrigated tip catheter
US6139544A (en) * 1999-05-26 2000-10-31 Endocare, Inc. Computer guided cryosurgery
US6151901A (en) 1995-10-12 2000-11-28 Cryogen, Inc. Miniature mixed gas refrigeration system
US6197045B1 (en) * 1999-01-04 2001-03-06 Medivance Incorporated Cooling/heating pad and system
US6235019B1 (en) * 1997-02-27 2001-05-22 Cryocath Technologies, Inc. Cryosurgical catheter
US6237355B1 (en) * 1999-06-25 2001-05-29 Cryogen, Inc. Precooled cryogenic ablation system
US6241722B1 (en) * 1998-06-17 2001-06-05 Cryogen, Inc. Cryogenic device, system and method of using same
US6245064B1 (en) * 1997-07-08 2001-06-12 Atrionix, Inc. Circumferential ablation device assembly
US6251105B1 (en) * 1998-03-31 2001-06-26 Endocare, Inc. Cryoprobe system
US6270494B1 (en) * 1996-12-26 2001-08-07 Cryogen, Inc. Stretchable cryoprobe sheath
US6270476B1 (en) * 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US6270493B1 (en) * 1999-07-19 2001-08-07 Cryocath Technologies, Inc. Cryoablation structure
US6280439B1 (en) * 1999-07-12 2001-08-28 Cryocath Technologies, Inc. Adjustable position injection tubing
US6283959B1 (en) * 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter
US6306129B1 (en) 1997-09-22 2001-10-23 Femrx, Inc. Cryosurgical system and method
US6355029B1 (en) * 1997-12-02 2002-03-12 Cryovascular Systems, Inc. Apparatus and method for cryogenic inhibition of hyperplasia
US6383180B1 (en) * 1999-01-25 2002-05-07 Cryocath Technologies Inc. Closed loop catheter coolant system
US6407149B1 (en) * 1999-12-06 2002-06-18 Cool Options, Inc. Method of manufacturing an evenly colored thermally conductive composite
US6428534B1 (en) * 1999-02-24 2002-08-06 Cryovascular Systems, Inc. Cryogenic angioplasty catheter
US6432102B2 (en) * 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6440126B1 (en) * 1999-04-21 2002-08-27 Cryocath Technologies Cryoblation catheter handle
US6471694B1 (en) * 2000-08-09 2002-10-29 Cryogen, Inc. Control system for cryosurgery
US6471693B1 (en) 1999-09-10 2002-10-29 Cryocath Technologies Inc. Catheter and system for monitoring tissue contact
US6485440B1 (en) * 1999-04-23 2002-11-26 Medtronic, Inc. Apparatus for deflecting a catheter or lead
US6485455B1 (en) * 1990-02-02 2002-11-26 Ep Technologies, Inc. Catheter steering assembly providing asymmetric left and right curve configurations
US6527769B2 (en) 1998-03-02 2003-03-04 Atrionix, Inc. Tissue ablation system and method for forming long linear lesion
US6530914B1 (en) * 2000-10-24 2003-03-11 Scimed Life Systems, Inc. Deflectable tip guide in guide system
US6530234B1 (en) 1995-10-12 2003-03-11 Cryogen, Inc. Precooling system for Joule-Thomson probe
US6540740B2 (en) * 1997-02-27 2003-04-01 Cryocath Technologies Inc. Cryosurgical catheter
US6551302B1 (en) * 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
US6554794B1 (en) * 1997-09-24 2003-04-29 Richard L. Mueller Non-deforming deflectable multi-lumen catheter
US6562030B1 (en) 1999-04-06 2003-05-13 Cryocath Technologies Inc. Heater control of cryocatheter tip temperature
US6572610B2 (en) * 2001-08-21 2003-06-03 Cryogen, Inc. Cryogenic catheter with deflectable tip
US6575933B1 (en) 1998-11-30 2003-06-10 Cryocath Technologies Inc. Mechanical support for an expandable membrane
US6575966B2 (en) 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US6579287B2 (en) 2001-10-09 2003-06-17 Cryocath Technologies Inc. Cryosurgical ablation device having sequential injection and method therefor
US6585717B1 (en) 1999-06-15 2003-07-01 Cryocath Technologies Inc. Deflection structure
US6585728B2 (en) 2001-05-25 2003-07-01 Biosense Webster, Inc. Cryoablation catheter with an improved gas expansion chamber
US6589234B2 (en) 2001-09-27 2003-07-08 Cryocath Technologies Inc. Cryogenic medical device with high pressure resistance tip
US6592577B2 (en) 1999-01-25 2003-07-15 Cryocath Technologies Inc. Cooling system
US6595988B2 (en) 2000-06-23 2003-07-22 Cryocath Technologies Inc. Cryotreatment device and method
US6602247B2 (en) 1997-02-27 2003-08-05 Cryocath Technologies Inc. Apparatus and method for performing a treatment on a selected tissue region
US6605087B2 (en) 1997-07-21 2003-08-12 St. Jude Medical, Daig Division Ablation catheter
US6635053B1 (en) 1999-01-25 2003-10-21 Cryocath Technologies Inc. Cooling system
US6755823B2 (en) 2001-02-28 2004-06-29 Cryocath Technologies Inc. Medical device with enhanced cooling power

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US659158A (en) * 1900-05-16 1900-10-02 William Schlabach Fertilizer-distributing attachment.
US5820626A (en) * 1996-07-30 1998-10-13 Laser Aesthetics, Inc. Cooling laser handpiece with refillable coolant reservoir
US6669689B2 (en) * 1997-02-27 2003-12-30 Cryocath Technologies Inc. Cryosurgical catheter
US6051019A (en) * 1998-01-23 2000-04-18 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US7004936B2 (en) * 2000-08-09 2006-02-28 Cryocor, Inc. Refrigeration source for a cryoablation catheter
US6503964B2 (en) * 2000-01-11 2003-01-07 Cool Options, Inc. Polymer composition with metal coated carbon flakes
US6710109B2 (en) * 2000-07-13 2004-03-23 Cool Options, Inc. A New Hampshire Corp. Thermally conductive and high strength injection moldable composition
WO2002034304A1 (en) 2000-10-23 2002-05-02 Tissuemed Limited Self-adhesive hydratable matrix for topical therapeutic use
US20070043342A1 (en) * 2005-08-16 2007-02-22 Galil Medical Ltd. Cryoprobe with reduced adhesion to frozen tissue, and cryosurgical methods utilizing same

Patent Citations (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299646A (en) 1964-06-17 1967-01-24 Little Inc A Cryogenic joule-thomson helium liquefier with cascade helium and nitrogen refrigeration circuits
US3300991A (en) 1964-07-07 1967-01-31 Union Carbide Corp Thermal reset liquid level control system for the liquefaction of low boiling gases
US3392541A (en) 1967-02-06 1968-07-16 Larkin Coils Inc Plural compressor reverse cycle refrigeration or heat pump system
US3552384A (en) 1967-07-03 1971-01-05 American Hospital Supply Corp Controllable tip guide body and catheter
US3823575A (en) 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
US3696813A (en) * 1971-10-06 1972-10-10 Cryomedics Cryosurgical instrument
US3852974A (en) 1971-12-03 1974-12-10 T Brown Refrigeration system with subcooler
US3733845A (en) 1972-01-19 1973-05-22 D Lieberman Cascaded multicircuit,multirefrigerant refrigeration system
US3913581A (en) * 1972-06-02 1975-10-21 Spembly Ltd Cryogenic apparatus
US4000626A (en) 1975-02-27 1977-01-04 Webber Robert C Liquid convection fluid heat exchanger for refrigeration circuit
US4118934A (en) 1975-03-21 1978-10-10 Enterprise Industrielle De Chaudronnerie Process and apparatus for transforming heat at a relatively low temperature into power or energy
US4018227A (en) 1975-10-09 1977-04-19 Cryomedics, Inc. Cryosurgical instrument
US4072152A (en) 1976-02-23 1978-02-07 Linehan John H Orthopedic cryosurgical apparatus
US4228660A (en) 1977-03-16 1980-10-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchangers
US4339253A (en) 1979-12-12 1982-07-13 Compagnie Francaise D'etudes Et De Construction "Technip" Method of and system for liquefying a gas with low boiling temperature
US4539028A (en) 1983-05-06 1985-09-03 Compagnie Francaise D'etudes Et De Construction "Technip" Method and apparatus for cooling and liquefying at least one gas with a low boiling point, such as for example natural gas
US4597268A (en) 1984-02-14 1986-07-01 Andersson Bengt O K Method and apparatus for gas-cooling
US4777805A (en) 1984-09-19 1988-10-18 Kabushiki Kaisha Toshiba Heat pump system
US4899741A (en) 1987-01-14 1990-02-13 Hgm Medical Laser Systems, Inc. Laser heated probe and control system
US4829785A (en) 1987-12-04 1989-05-16 The Boeing Company Cryogenic cooling system with precooling stage
US4917667A (en) 1988-02-11 1990-04-17 Retroperfusion Systems, Inc. Retroperfusion balloon catheter and method
US4951474A (en) 1988-03-21 1990-08-28 Guild Associates, Inc. Cryo-refrigeration system
US4850199A (en) 1988-03-21 1989-07-25 Guild Associates, Inc. Cryo-refrigeration system
CA1337791C (en) * 1988-09-23 1995-12-26 Peter L. Friedman Cryoablation catheter and method of performing cryoablation
US5147355A (en) * 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5078713A (en) 1988-12-01 1992-01-07 Spembly Medical Limited Cryosurgical probe
US4911148A (en) 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
WO1991011213A1 (en) * 1990-02-02 1991-08-08 Ep Technologies, Inc. Catheter steering mechanism
US5395327A (en) 1990-02-02 1995-03-07 Ep Technologies, Inc. Catheter steering mechanism
US6485455B1 (en) * 1990-02-02 2002-11-26 Ep Technologies, Inc. Catheter steering assembly providing asymmetric left and right curve configurations
US5063747A (en) 1990-06-28 1991-11-12 United States Of America As Represented By The United States National Aeronautics And Space Administration Multicomponent gas sorption Joule-Thomson refrigeration
US5277199A (en) 1990-09-17 1994-01-11 C. R. Bard, Inc. Core wire steerable catheters
US5318041A (en) 1990-09-17 1994-06-07 C. R. Bard, Inc. Core wire steerable electrode catheter
US5674218A (en) 1990-09-26 1997-10-07 Cryomedical Sciences, Inc. Cryosurgical instrument and system and method of cryosurgery
US5114399A (en) 1990-10-01 1992-05-19 Intramed Laboratories Surgical device
US5139496A (en) * 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
US5254116A (en) 1991-09-06 1993-10-19 Cryomedical Sciences, Inc. Cryosurgical instrument with vent holes and method using same
US5170639A (en) 1991-12-10 1992-12-15 Chander Datta Cascade refrigeration system
US5667505A (en) 1992-03-24 1997-09-16 Smt Spol. S.R.O. Method of carrying out cryosurgical interventions and device for this method
US5728144A (en) 1992-04-13 1998-03-17 Ep Technologies, Inc. Steerable coaxial cable systems for cardiac ablation
US5281215A (en) 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5281213A (en) 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5275595A (en) 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
US5403309A (en) 1992-07-31 1995-04-04 Spembly Medical Limited Cryosurgical ablation
US5472017A (en) 1992-11-17 1995-12-05 Life Medical Technologies, Inc. Deflectable catheter
US5549542A (en) 1992-11-17 1996-08-27 Life Medical Technologies, Inc. Deflectable endoscope
US5656029A (en) 1992-12-01 1997-08-12 Cardiac Pathways Corporation Steerable catheter with adjustable bend location and/or radius and method
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5386709A (en) 1992-12-10 1995-02-07 Baltimore Aircoil Company, Inc. Subcooling and proportional control of subcooling of liquid refrigerant circuits with thermal storage or low temperature reservoirs
US5662606A (en) 1993-03-12 1997-09-02 Heart Rhythm Technologies, Inc. Catheter for electrophysiological procedures
US5865800A (en) 1993-08-19 1999-02-02 Boston Scientific Corporation Deflectable catheter
US5431168A (en) 1993-08-23 1995-07-11 Cordis-Webster, Inc. Steerable open-lumen catheter
US5807391A (en) 1993-10-26 1998-09-15 Cordis Corporation Cryo-ablation catheter
US5540062A (en) 1993-11-01 1996-07-30 State Of Israel, Ministry Of Defence, Rafael Armaments Development Authority Controlled cryogenic contact system
US5759182A (en) 1993-11-09 1998-06-02 Spembly Medical Limited Cryosurgical probe with pre-cooling feature
US5992158A (en) 1994-05-10 1999-11-30 Spembly Medical Limited Cryosurgical instrument
US5860970A (en) 1994-05-10 1999-01-19 Spembly Medical Limited Cryosurgical instrument
US5603221A (en) 1994-06-30 1997-02-18 State Of Israel, Ministry Of Defense, Rafael-Armaments Development Authority Multiprobe surgical cryogenic apparatus
US5687579A (en) 1994-09-12 1997-11-18 Vaynberg; Mikhail M. Double circuited refrigeration system with chiller
US5724832A (en) 1995-03-29 1998-03-10 Mmr Technologies, Inc. Self-cleaning cryogenic refrigeration system
US5617739A (en) 1995-03-29 1997-04-08 Mmr Technologies, Inc. Self-cleaning low-temperature refrigeration system
US5513498A (en) 1995-04-06 1996-05-07 General Electric Company Cryogenic cooling system
US5800493A (en) 1995-04-26 1998-09-01 Gynecare, Inc. Intrauterine ablation system
US5676653A (en) 1995-06-27 1997-10-14 Arrow International Investment Corp. Kink-resistant steerable catheter assembly
US6530234B1 (en) 1995-10-12 2003-03-11 Cryogen, Inc. Precooling system for Joule-Thomson probe
US5758505A (en) 1995-10-12 1998-06-02 Cryogen, Inc. Precooling system for joule-thomson probe
US5758505C1 (en) 1995-10-12 2001-10-30 Cryogen Inc Precooling system for joule-thomson probe
US6151901A (en) 1995-10-12 2000-11-28 Cryogen, Inc. Miniature mixed gas refrigeration system
US5733280A (en) 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5752385A (en) 1995-11-29 1998-05-19 Litton Systems, Inc. Electronic controller for linear cryogenic coolers
US5795332A (en) 1996-04-15 1998-08-18 Lucas; Daniel R. Silicone catheter
US5733319A (en) 1996-04-25 1998-03-31 Urologix, Inc. Liquid coolant supply system
US6007571A (en) 1996-04-25 1999-12-28 Urologix, Inc. Liquid coolant supply system
US6039730A (en) 1996-06-24 2000-03-21 Allegheny-Singer Research Institute Method and apparatus for cryosurgery
US5910104A (en) 1996-12-26 1999-06-08 Cryogen, Inc. Cryosurgical probe with disposable sheath
US6270494B1 (en) * 1996-12-26 2001-08-07 Cryogen, Inc. Stretchable cryoprobe sheath
US6182666B1 (en) 1996-12-26 2001-02-06 Cryogen, Inc. Cryosurgical probe and method for uterine ablation
US6602247B2 (en) 1997-02-27 2003-08-05 Cryocath Technologies Inc. Apparatus and method for performing a treatment on a selected tissue region
US6540740B2 (en) * 1997-02-27 2003-04-01 Cryocath Technologies Inc. Cryosurgical catheter
US5899898A (en) 1997-02-27 1999-05-04 Cryocath Technologies Inc. Cryosurgical linear ablation
US6629972B2 (en) 1997-02-27 2003-10-07 Cryocath Technologies Inc. Cryosurgical catheter
US5899899A (en) * 1997-02-27 1999-05-04 Cryocath Technologies Inc. Cryosurgical linear ablation structure
US6235019B1 (en) * 1997-02-27 2001-05-22 Cryocath Technologies, Inc. Cryosurgical catheter
US5868735A (en) 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US5876373A (en) 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US6530913B1 (en) * 1997-04-04 2003-03-11 Jeffrey Giba Steerable catheter
US6027499A (en) 1997-05-23 2000-02-22 Fiber-Tech Medical, Inc. (Assignee Of Jennifer B. Cartledge) Method and apparatus for cryogenic spray ablation of gastrointestinal mucosa
US5876399A (en) * 1997-05-28 1999-03-02 Irvine Biomedical, Inc. Catheter system and methods thereof
US6245064B1 (en) * 1997-07-08 2001-06-12 Atrionix, Inc. Circumferential ablation device assembly
US6024740A (en) * 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6117101A (en) * 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6605087B2 (en) 1997-07-21 2003-08-12 St. Jude Medical, Daig Division Ablation catheter
US5902299A (en) 1997-07-29 1999-05-11 Jayaraman; Swaminathan Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation
US6306129B1 (en) 1997-09-22 2001-10-23 Femrx, Inc. Cryosurgical system and method
US6551302B1 (en) * 1997-09-24 2003-04-22 Michael J. Rosinko Steerable catheter with tip alignment and surface contact detector
US6554794B1 (en) * 1997-09-24 2003-04-29 Richard L. Mueller Non-deforming deflectable multi-lumen catheter
US6120476A (en) 1997-12-01 2000-09-19 Cordis Webster, Inc. Irrigated tip catheter
US6355029B1 (en) * 1997-12-02 2002-03-12 Cryovascular Systems, Inc. Apparatus and method for cryogenic inhibition of hyperplasia
US5916212A (en) 1998-01-23 1999-06-29 Cryomedical Sciences, Inc. Hand held cyrosurgical probe system
US6527769B2 (en) 1998-03-02 2003-03-04 Atrionix, Inc. Tissue ablation system and method for forming long linear lesion
US6251105B1 (en) * 1998-03-31 2001-06-26 Endocare, Inc. Cryoprobe system
US6585729B1 (en) 1998-03-31 2003-07-01 Endocare, Inc. Vented cryosurgical system with backpressure source
US6106518A (en) 1998-04-09 2000-08-22 Cryocath Technologies, Inc. Variable geometry tip for a cryosurgical ablation device
GB2337000A (en) * 1998-04-30 1999-11-10 Spembly Medical Ltd Cryosurgical catheter
US6241722B1 (en) * 1998-06-17 2001-06-05 Cryogen, Inc. Cryogenic device, system and method of using same
US6575933B1 (en) 1998-11-30 2003-06-10 Cryocath Technologies Inc. Mechanical support for an expandable membrane
US6197045B1 (en) * 1999-01-04 2001-03-06 Medivance Incorporated Cooling/heating pad and system
US6592577B2 (en) 1999-01-25 2003-07-15 Cryocath Technologies Inc. Cooling system
US6468268B1 (en) * 1999-01-25 2002-10-22 Cryocath Technologies Inc. Cryogenic catheter system
US6635053B1 (en) 1999-01-25 2003-10-21 Cryocath Technologies Inc. Cooling system
US6383180B1 (en) * 1999-01-25 2002-05-07 Cryocath Technologies Inc. Closed loop catheter coolant system
US6569158B1 (en) 1999-01-25 2003-05-27 Cryocath Technologies, Inc. Leak detection system
US6733494B2 (en) 1999-01-25 2004-05-11 Cryocath Technologies Inc. Leak detection system
US6761714B2 (en) 1999-01-25 2004-07-13 Cryocath Technologies Inc. Leak detection system
US6048919A (en) * 1999-01-29 2000-04-11 Chip Coolers, Inc. Thermally conductive composite material
US6428534B1 (en) * 1999-02-24 2002-08-06 Cryovascular Systems, Inc. Cryogenic angioplasty catheter
US6019783A (en) 1999-03-02 2000-02-01 Alsius Corporation Cooling system for therapeutic catheter
US6432102B2 (en) * 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6562030B1 (en) 1999-04-06 2003-05-13 Cryocath Technologies Inc. Heater control of cryocatheter tip temperature
US6440126B1 (en) * 1999-04-21 2002-08-27 Cryocath Technologies Cryoblation catheter handle
US6270476B1 (en) * 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US6485440B1 (en) * 1999-04-23 2002-11-26 Medtronic, Inc. Apparatus for deflecting a catheter or lead
US6139544A (en) * 1999-05-26 2000-10-31 Endocare, Inc. Computer guided cryosurgery
US6585717B1 (en) 1999-06-15 2003-07-01 Cryocath Technologies Inc. Deflection structure
US6237355B1 (en) * 1999-06-25 2001-05-29 Cryogen, Inc. Precooled cryogenic ablation system
US6280439B1 (en) * 1999-07-12 2001-08-28 Cryocath Technologies, Inc. Adjustable position injection tubing
US6270493B1 (en) * 1999-07-19 2001-08-07 Cryocath Technologies, Inc. Cryoablation structure
US6575966B2 (en) 1999-08-23 2003-06-10 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US6283959B1 (en) * 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter
US6471693B1 (en) 1999-09-10 2002-10-29 Cryocath Technologies Inc. Catheter and system for monitoring tissue contact
US6407149B1 (en) * 1999-12-06 2002-06-18 Cool Options, Inc. Method of manufacturing an evenly colored thermally conductive composite
US6595988B2 (en) 2000-06-23 2003-07-22 Cryocath Technologies Inc. Cryotreatment device and method
US6471694B1 (en) * 2000-08-09 2002-10-29 Cryogen, Inc. Control system for cryosurgery
US6530914B1 (en) * 2000-10-24 2003-03-11 Scimed Life Systems, Inc. Deflectable tip guide in guide system
US6755823B2 (en) 2001-02-28 2004-06-29 Cryocath Technologies Inc. Medical device with enhanced cooling power
US6585728B2 (en) 2001-05-25 2003-07-01 Biosense Webster, Inc. Cryoablation catheter with an improved gas expansion chamber
US6572610B2 (en) * 2001-08-21 2003-06-03 Cryogen, Inc. Cryogenic catheter with deflectable tip
US6589234B2 (en) 2001-09-27 2003-07-08 Cryocath Technologies Inc. Cryogenic medical device with high pressure resistance tip
US6579287B2 (en) 2001-10-09 2003-06-17 Cryocath Technologies Inc. Cryosurgical ablation device having sequential injection and method therefor

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
CryoCor's amended complaint filed inCryoCor, Inc., et al. v. CryoCath Technologies, Inc., Delaware Civil Action, No. 08-031-GMS, 2008.
CryoCor's Answer filed in CryoCor, Inc., et al.v. CryoCath Technologies, Inc., Delaware Civil Action, No. 08-031-GMS, 2008.
CryoCor's Request that the ITC commence an investigation. INV. No. 337-TA-642, 2008.
Decision on Motions from Interference No. 105,607 dated Dec. 15, 2008.
Decision on Motions from Interference No. 105,623 dated Dec. 15, 2008.
Declaration of Interference No. 105,607, 2008.
Docket report for CryoCor, Inc., et al. v. CryoCath Technologies, Inc., Delaware Civil Action, No. 08-031-GMS, 2008.
Docket report for Interference No. 105,607, 2008.
Docket report from INV. No. 337-TA-642, 2008.
Redacted version of Deposition Transcript of Hong Li taken on Aug. 13 and Aug. 14, 2008, with Exhibits 2 and 4-6, from U.S. International Trade Commission Investigation No. 337-TA-642.
Respondent CryoCath Technologies Inc.'s Jun. 30, 2008, Updated Responses to Complainants' Interrogatory Nos. 1-41 dated Jul. 1, 2008, from U.S. International Trade Commission Investigation No. 337-TA-642.
Respondent CryoCath Technologies, Inc.'s, Answers to Complaintants' First Set of Interrogatories (Nos. 1-23), 2008.
Respondent CryoCath's Claim Charts for U.S. Patent No. 6,471,694, from U.S. International Trade Commission Investigation No. 337-TA-642 (12 pages), 2008.
Respondent CryoCath's Claim Charts for U.S. Patent No. 6,471,694, from U.S. International Trade Commission Investigation No. 337-TA-642 (16 pages), 2008.
Respondent CryoCath's Claim Charts for U.S. Patent No. Re. 40,049, from U.S. International Trade Commission Investigation No. 337-TA-642 (2 pages), 2008.
Respondent CryoCath's Claim Charts for U.S. Patent No. Re. 40,049, from U.S. International Trade Commission Investigation No. 337-TA-642 (3 pages), 2008.
Respondent CryoCath's Motion for Summary Determination That Asserted Claim 1 of U.S. Patent No. 6,471,694 is Invalid Under 35 U.S.C. §102(a) and (e) Over Abboud dated Sep. 3, 2008, from U.S. International Trade Commission Investigation No. 337-TA-642.
Respondent CryoCath's Motion for Summary Determination That Asserted Claims 2-3 of U.S. Patent No. Re. 40,049 are Invalid Under 35 U.S.C. §102(b) Over Dobak dated Aug. 27, 2008, from U.S. International Trade Commission Investigation No. 337-TA-642.
Respondent CryoCath's Response to Claimants' Request for Admissions (Nos. 1-212) dated May 12, 2008, from U.S. International Trade Commission Investigation No. 337-TA-642.
Respondent CryoCath's Response to Claimants' Requests for Admissions (Nos. 213-427) dated May 30, 2008, from U.S. International Trade Commission Investigation No. 337-TA-642.
Respondent's Disclosure and Identification of Prior Art dated Jul. 1, 2008, from U.S. International Trade Commission Investigation No. 337-TA-642, 2008.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622907B2 (en) 2010-09-10 2017-04-18 Medivance Incorporated Cooling medical pad
US9687386B2 (en) 2010-09-10 2017-06-27 Medivance Incorporated Cooling medical pad
US20120109119A1 (en) * 2010-10-27 2012-05-03 Medtronic Cryocath Lp Compatible cryogenic cooling system
US9011420B2 (en) * 2010-10-27 2015-04-21 Medtronic Cryocath Lp Compatible cryogenic cooling system
US9883900B2 (en) 2010-10-27 2018-02-06 Medtronic Cryocath Lp Method of operating a medical cooling system
USD685916S1 (en) 2012-11-26 2013-07-09 Medivance Incorporated Medical cooling pad
US10054262B2 (en) 2014-04-16 2018-08-21 Cpsi Holdings Llc Pressurized sub-cooled cryogenic system
US11306871B2 (en) 2014-04-16 2022-04-19 Cpsi Holdings Llc Pressurized sub-cooled cryogenic system and method of use
US10441458B2 (en) 2015-01-27 2019-10-15 Medicance Incorporated Medical pad and system for thermotherapy
US11234859B2 (en) 2015-01-27 2022-02-01 Medivance Incorporated Medical pad and system for thermotherapy
US11865034B2 (en) 2015-01-27 2024-01-09 Medivance Incorporated Medical pad and system for thermotherapy
US9861422B2 (en) 2015-06-17 2018-01-09 Medtronic, Inc. Catheter breach loop feedback fault detection with active and inactive driver system

Also Published As

Publication number Publication date
CA2440777C (en) 2009-09-29
US20030220634A1 (en) 2003-11-27
AU2003246297A1 (en) 2004-04-01
JP2004275732A (en) 2004-10-07
EP1398002B1 (en) 2006-06-21
DE60306281D1 (en) 2006-08-03
CA2440777A1 (en) 2004-03-12
US7004936B2 (en) 2006-02-28
AU2003246297B2 (en) 2007-06-07
US20070277550A1 (en) 2007-12-06
US20090318913A1 (en) 2009-12-24
JP4412965B2 (en) 2010-02-10
US20050159735A1 (en) 2005-07-21
EP1398002A1 (en) 2004-03-17
DE60306281T2 (en) 2007-04-26
ATE330545T1 (en) 2006-07-15

Similar Documents

Publication Publication Date Title
USRE40868E1 (en) Refrigeration source for a cryoblation catheter
EP1357847B1 (en) Pre-cooled cryogenic medical system
JP4195560B2 (en) Pre-cooled cryogenic ablation system
US7442190B2 (en) Contact assessment of balloon catheters
US8298219B2 (en) Cryotreatment device using a supercritical gas
CN107205766B (en) Pressure regulated cryoablation system and related methods
US6981382B2 (en) Distal end for cryoablation catheters
WO2005095843A1 (en) Pressure-temperature control for a cryoablation catheter system
GB2100987A (en) Cryosurgical probe

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)