USRE40681E1 - Combination rechargeable, detachable battery system and power tool - Google Patents

Combination rechargeable, detachable battery system and power tool Download PDF

Info

Publication number
USRE40681E1
USRE40681E1 US11/129,760 US12976005A USRE40681E US RE40681 E1 USRE40681 E1 US RE40681E1 US 12976005 A US12976005 A US 12976005A US RE40681 E USRE40681 E US RE40681E
Authority
US
United States
Prior art keywords
battery
housing
pair
rechargeable
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/129,760
Inventor
James F. Pitzen
Jeffrey D. Smith
Charles E. Alexson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linvatec Corp
Original Assignee
Linvatec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linvatec Corp filed Critical Linvatec Corp
Priority to US11/129,760 priority Critical patent/USRE40681E1/en
Application granted granted Critical
Publication of USRE40681E1 publication Critical patent/USRE40681E1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: LINVATEC CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • H02K7/145Hand-held machine tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1628Motors; Power supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1697Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans specially adapted for wire insertion

Definitions

  • the present invention is directed to cordless rechargeable battery powered drive assemblies for driving orthopedic surgical instruments.
  • Orthopedic drive assemblies are well known in the art. Such drive assemblies may be adapted for various orthopedic procedures such as drilling, screwing, reaming, wire driving, pinning and sawing (both reciprocating and sagittal). Typically a drive assembly is powered by either a rechargeable battery system (e.g. a cordless system) or by a pneumatic system which utilizes compressed fluid to power the device.
  • a rechargeable battery system e.g. a cordless system
  • pneumatic system which utilizes compressed fluid to power the device.
  • cordless rechargeable battery powered drive assemblies for driving orthopedic surgical instruments.
  • such instruments comprise generally pistol-shaped devices having elongate handle and drive portions.
  • drive assemblies comprise: (1) the Orthopower 90 cordless instruments available from Stryker of Kalamazoo, Mich.; (2) the Cordless 200 Reamer, Cordless 800 Wire Driver, Cordless Sagittal Saw or Cordless 450 Orthopedic Drill available from Dyonics of Andover Md., (3) the MaxionTM orthopedic drive device, previously sold by the Minnesota Mining and Manufacturing Co. (3M) of St. Paul, Minnesota; (4) the Hall Versipower orthopedic instruments available from Hall Surgical of Carpinerina California (associated with Zimmer); and (5) the product known as the 200 Reamer, previously sold by Black & Decker.
  • releasable attachment means are provided in some prior art devices for releasably attaching a battery pack to the rest of the device.
  • a battery pack is attached to and removed from the handle portion of the device in a direction that is substantially parallel to the axis of elongation of the handle portion.
  • Individual batteries are placed in a housing creating the battery pack which is then attached to the device by being slid in a direction generally parallel to the elongate axis of the handle portion of the device.
  • the battery pack typically includes electrical circuit connection means for connecting the battery pack to electronic circuitry in the device.
  • a device typically secures the battery pack to the rest of the device.
  • Fretting corrosion is found in components forming contacts which are allowed to move independently with respect to each other during current flow. This independent movement is believed to cause mechanical abrasion which will wear the surfaces. Gaping between the electrical contacts during electrical flow may result in electrical arcing with attendant generated heat potentially sufficient to melt the surface of the contacts. Pitting, welding and burning may also result. Also, a physical change in the material forming the contacts may occur. Plating for enhanced electrical contact may be lost and carbon deposits may accumulate resulting in reduced electrical continuity.
  • a drive assembly for driving orthopedic surgical instruments which (1) affords excellent balance and maneuverability for a user which offers enhanced handling characteristics and convenience during use, (2) affords attachment and removal of a battery pack in a direction other than the direction of elongation of the handle portion of the device, (3) includes a connection between the battery pack and the electronic circuitry of the device which resists fretting corrosion, (4) includes an ergonomically designed handgrip shape that fits a surgeon's hand comfortably, and (5) is sized for convenient maneuvering during an orthopedic surgical procedure.
  • a drive assembly for driving various orthopedic surgical instruments, such as, but not limited to, drills, screws, reamers, wires, pins and saws (both reciprocating and sagittal).
  • the drive assembly comprises a housing having elongate drive and handle portions with the handle portion projecting from the drive portion.
  • a drive is present comprising an motor preferably mounted within the drive portion.
  • the motor has a motor shaft, and the drive includes a transmission for transmitting power of the motor shaft to the surgical instrument.
  • the transmission includes a drive member.
  • the drive portion has surfaces defining a wire receiving chamber adapted to receive an orthopedic wire adapted to be driven during an orthopedic surgical procedure.
  • the drive assembly also includes a trigger assembly movable relative to the handle portion; and electrical circuit means operatively associated with the trigger assembly for controlling the motor.
  • the handle portion comprises a releasably attachable battery having at least one cell (preferably eight), a battery housing, and a pair of battery contacts.
  • the handle portion also has a battery receiving portion having battery terminals adapted to engage the battery contacts; and releasable attachment means for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion.
  • the direction is a direction substantially parallel to the axis of the drive portion.
  • the releasable attachment means comprises a) the handle portion having a pair of tracks defining flanges that are elongate in a direction substantially parallel to the longitudinal axis of the drive portion, b) the battery having a pair of grooves adapted to receive the flanges of the tracks, and a pair of flexible, resilient cantilever members, and c) the battery receiving portion having surfaces defining a cantilever member cavity for receiving the pair of flexible, resilient cantilever members in an interface fit so that the battery is frictionally held in place relative to the battery receiving portion.
  • a latch for releasably securing the battery to the battery receiving portion is also preferably present.
  • the drive assembly also includes a novel floating battery terminal assembly comprising biasing means for biasing the battery terminals toward a rest position, and mounting means for mounting the battery terminals for deflection from the rest position.
  • each of the battery terminals comprises a substantially flat plate member having opposite side surfaces
  • each of the battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
  • the handle portion comprises a handgrip portion having outer surfaces that are sized and shaped to be grasped by a user without touching the battery, and inner surfaces defining a handgrip cavity.
  • the handgrip cavity is free of the transmission, the motor and any cells of the battery when the battery is received in the battery receiving portion.
  • the cells of the battery are spaced on an opposite end of the handgrip portion than the motor and transmission.
  • the present invention may be described as a rechargeable battery adapted to be repeatedly and releasably attached to an orthopedic drive assembly.
  • the orthopedic drive assembly has elongate drive and handle portions, a battery receiving portion having a pair of tracks defining flanges, a pair of battery terminals, and surfaces defining a cantilever member receiving cavity.
  • the battery comprises an autoclave battery housing having opposite top and bottom portions, at least one cell within the battery housing and a pair of battery contacts mounted adjacent the top portion of the housing and adapted to engage the battery terminals of the orthopedic drive assembly.
  • Releasable attachment means are present for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion.
  • the releaseable attachment means and battery terminals comprise the preferred versions as discussed above.
  • the battery contacts each include a first end fixedly attached to the top portion of the battery housing and a second end adapted to abut a support shoulder of the top portion of the battery housing.
  • the battery housing comprises opposite, substantially flat front and rear walls constructed from a material suitable for protecting the cell(s) during an autoclave procedure.
  • the battery comprises eight substantially cylindrical cells having longitudinal axes. The eight cylindrical cells are arranged in: a) a front row of three cells substantially adjacent a front wall of the battery housing, b) a rear row substantially adjacent a rear wall of the battery housing, and c) a middle row of two cells between the front and rear rows.
  • FIG. 1 is a perspective view of a drive assembly for driving orthopedic surgical instruments according to the present invention
  • FIG. 2 is an enlarged sectional view of the drive assembly of FIG. 1 , illustrating a battery pack of the device removed from the device in solid lines, and illustrating the position of the battery pack when attached to the drive assembly in phantom lines;
  • FIG. 3 is an enlarged perspective view of the battery pack for use in the drive assembly of FIG. 1 ;
  • FIG. 4 is an enlarged rear view of the drive assembly of FIG. 1 ;
  • FIG. 5 is a top view of the battery pack of FIG. 3 ;
  • FIG. 6 is a sectional view of the battery pack of FIG. 3 ;
  • FIG. 6A is a bottom view of portions of the drive assembly of FIG. 2 with the battery pack removed which illustrates battery terminals that are adapted to be connected to the battery contacts of the battery pack of FIG. 3 ;
  • FIG. 7 is an enlarged side view of the drive assembly of FIG. 1 ;
  • FIG. 8 is a top view of the orthopedic drive assembly of FIG. 7 ;
  • FIG. 9 is a front view of the drive assembly of FIG. 7 ;
  • FIG. 10 is a side view of the battery pack of FIG. 3 ;
  • FIG. 11 is an enlarged bottom view of a handle portion of a drive assembly with the battery pack removed to illustrate details of a second embodiment of battery terminals according to the present invention and with portions of a battery pack receiving cavity illustrated with dashed lines;
  • FIG. 12 is a partial sectional view of a battery receiving portion of the drive assembly and cantilever arms of the battery pack showing the position of the cantilever arms when the battery pack is attached to the rest of the orthopedic drive assembly;
  • FIG. 13 is a top view of one of a pair of preferred battery contacts for a battery pack according to the present invention, which battery pack is adapted to be connected to a drive assembly having the battery terminals of FIG. 11 ;
  • FIG. 14 is a side view of the battery contact of FIG. 13 ;
  • FIG. 15 is an enlarged bottom view of portions of the handle portion of the drive assembly of FIG. 11 which illustrates details of a pair of floating battery terminal assemblies including a battery terminal of one of the assemblies shown offset relative to the axis of the drive portion of the housing of the device;
  • FIG. 16 is a sectional view of a floating battery terminal assembly of FIG. 15 which illustrates details of a battery terminal in a rest position;
  • FIG. 17 is a sectional view of portions of the drive assembly of FIG. 16 taken approximately along lines 17 — 17 of FIG. 16 except that one battery terminal and connector are removed to illustrate details of a hole for receiving the battery terminal;
  • FIG. 18 is a sectional view similar to FIG. 16 except that the floating battery terminal assembly is slightly offset from its rest position, as may occur during vibration of the orthopedic drive device;
  • FIG. 19 is a sectional view of the floating battery terminal of FIG. 17 with the battery terminal offset laterally with respect to its longitudinal axis in a rest position and with other portions omitted to illustrate details;
  • FIG. 20 is a sectional view of the floating battery terminal assembly of FIG. 17 with the battery terminal illustrated in a rest position and with other portions omitted to illustrate details;
  • FIG. 21 is a schematic illustration of a switch mechanism for use in the drive assembly according to the present invention.
  • FIG. 22 is a top view of another embodiment of battery contact for use with a drive assembly having the battery terminals of FIG. 11 ;
  • FIG. 23 is a side view of the battery contact of FIG. 22 ;
  • FIG. 24 is a perspective view of a battery with the battery contacts of FIGS. 13 and 14 .
  • the drive assembly 10 includes a housing comprising elongate drive 4 and handle 6 portions defining drive D and handle H portion longitudinal axes.
  • the drive portion 4 and a significant portion of the handle portion 6 are constructed by assembling two large housing pieces (see FIG. 7 ) to afford convenient disassembly of the device for repair.
  • the drive assembly 10 includes a motor assembly having a D.C. electric powered motor 12 including a rotor 14 and a motor shaft 16 .
  • a drive is also present comprising a transmission for transmitting the power of the motor shaft 16 to the surgical instrument.
  • the illustrated transmission includes a drive member or spindle 18 , a ring gear 19 , and a gear pin and planetary gear assembly 21 .
  • the motor 12 is mounted within the drive portion 4 .
  • the rotor 14 and motor shaft 16 are substantially completely located within the structure of the housing defining the drive portion 4 , as opposed, for example, to one of the rotor or motor shaft being located in the handle portion 6 or a substantial portion of the motor being located in the handle portion 6 , of course some wires and electronic circuitry associated with the motor may be present outside the drive portion 4 , and yet the motor will nevertheless be within the drive portion 4 as understood in the present invention.
  • the transmission e.g. 18 , 19 and 21
  • the transmission is mounted within the drive portion 4 .
  • a connector is provided for attaching a chuck or other such holder or instrument that may be driven by the drive assembly 10 .
  • the connector comprises a nose insert 26 having a socket into which a cylindrical portion of the surgical instrument can project with a splined central rotatable driven collar engaged with mating splines 17 on the inner surface of the drive member 18 , and with pins (not shown) projecting radially of the cylindrical portion engaged in longitudinally extending slots 15 opening through the end of the housing.
  • a helix pin/collar assembly 25 is rotatable about the axis D of the drive portion and is biased by torsion spring 27 so that circumferentially projecting hooks near slots 15 on the collar 25 can engage the pins on the surgical instrument to maintain the pins within the slots 15 and thereby the surgical instrument in driven engagement with the drive assembly 10 .
  • the surgical instrument may comprise any instrument suitable for use in an orthopedic surgical procedure, including but not limited to, drills, screws, reamers, pins and saws (both reciprocating and sagittal) or a suitably designed chuck or adapter for use with any of the previously mentioned instruments.
  • the surgical instrument may comprise the chuck described in U.S. Pat. No. 4,728,876, the entire contents of which are herein expressly incorporated by reference.
  • an appropriate wire driving attachment adapter may be attached to the drive assembly 10 so that it may be used as an orthopedic wire driver, optionally, but not preferably, engagement between the orthopedic wire and the spindle 18 may afford operation of the device 10 as a wire driver.
  • a stationary member 22 extends from a proximal end 1 of the housing toward its distal end 3 .
  • the stationary member 22 includes a through chamber so that a surgical wire may be passed through the stationary member 22 from the proximal end 1 of the device 10 toward the distal end 3 .
  • the through chamber in the stationary member 22 forms a portion of a wire receiving chamber in the drive portion 4 between the proximal end 1 and the distal end 3 . Threading a surgical wire through the wire receiving chamber affords use of the device 10 as a wire driver.
  • O-rings 64 and 65 restrict internal contamination of the drive assembly 10 from ambient contaminants.
  • O-ring 66 is compressed against member 22 to restrict the member 22 from rotating relative to the handle 6 and drive 4 portions of the housing.
  • the drive assembly 10 also includes a rechargeable battery or battery pack 30 that is adapted to provide a rechargeable source of power for the motor 12 .
  • Unique mounting means (described in greater detail below) attach the battery 30 to the rest of the assembly 10 .
  • a trigger assembly 40 is movable relative to the handle portion 6 .
  • the trigger assembly includes a button member 45 adapted to be engaged by a user's digits, a trigger shaft 46 , an O-ring seat 41 for fixedly connecting the button member 45 to the trigger shaft 46 , a coil spring 42 and magnet 44 that is rigidly attached to the trigger shaft 46 .
  • the trigger assembly 40 is movable between a released or extended position ( FIG. 2 ) and a depressed or inner position relative to the handle portion 6 .
  • the drive assembly 10 also includes electrical circuit means operatively associated with the trigger assembly 40 for controlling the motor 12 .
  • the illustrated electrical circuit means comprises an on/off hall sensor 52 and a speed control hall sensor 54 .
  • the on/off hall sensor 52 is a digital hall sensor having an output signal with two levels corresponding to an on state and an off state.
  • the on/off hall sensor 52 senses the presence of a magnetic field from the magnet 44 on the trigger assembly 40 .
  • the magnet 44 is positioned directly over the on/off hall sensor 52 (FIG. 2 ).
  • the magnetic field of the magnet 44 causes the on/off hall sensor 52 to produce an output signal corresponding to an off state.
  • the magnet 44 moves away from the on/off hall sensor 52 .
  • the on/off hall sensor 52 no longer sensing the presence of a magnetic field, produces an output signal corresponding to an on state.
  • the output signal from the on/off hall sensor 52 is conditioned by electrical circuitry which provides a standby signal when the on/off hall sensor 52 produces an off signal.
  • the standby signal disables motor drive circuitry and the speed control hall sensor 54 .
  • the standby signal therefore ensures that the motor 12 is off whenever the trigger assembly 40 is in a released position (FIG. 2 ).
  • An added benefit of disabling the motor drive circuitry and the speed control hall sensor 54 is that the electrical power required by the device 10 is significantly reduced during periods when the trigger assembly 40 is not depressed. This current reduction during a standby mode improves energy efficiency of the device 10 .
  • the device 10 may optionally include a battery saver feature.
  • the speed control hall sensor 54 is a linear ball sensor which provides a speed control signal having a range of levels based upon the strength of the magnetic field that the variable speed hall sensor 54 detects. As the strength of the magnetic field increases, the speed control hall sensor 54 produces a speed control signal with a higher level. As the trigger assembly 40 is depressed, the magnet 44 moves towards the speed control hall sensor 54 and increases the magnetic field across it. The speed control signal from the speed control hall sensor 54 is conditioned and drives the motor control circuit to provide motor speeds proportional to the speed control signal. Therefore, as the trigger assembly 40 is further depressed, the motor control circuitry increases the motor speed of the drive assembly 10 . In this manner, the drive assembly 10 may optionally comprise a variable speed device.
  • the circuit has a 25 amp current limit to protect the batteries, motor and electronics.
  • the electrical circuit means may optionally include directional drive circuitry which is discussed in greater detail below.
  • the device 10 also comprises battery terminals 39 .
  • Each of the battery terminals 39 have three generally flat surfaces including two end surfaces situated at an angle relative to a middle surface. The function of the battery terminals 39 will be described in greater detail below.
  • the battery terminals 39 may be constructed from any suitable material appropriate for use to construct orthopedic surgical tools.
  • the battery terminals may be constructed from copper, brass, bronze, beryllium copper, stainless steel, steel and aluminum.
  • One or more platings may be present to enhance the electrical conducting and corrosion resisting properties of the battery terminals 39 . Examples of such platings include, but are not limited to copper, nickel, gold, silver, tin, electroless nickel, rhodium, sulfamate, nickel, cadmium and zinc.
  • the handle portion 6 of the device 10 projects (downwardly in FIG. 2 ) from the drive portion 4 of the device 10 .
  • the handle portion 6 of the housing comprises the battery 30 and a handgrip portion 5 .
  • the handgrip portion 5 has manually engageable or graspable surfaces and top T and bottom B ends (see FIG. 2 ).
  • the handgrip portion 5 is sized and shaped so that, during use of the device 10 , the user does not need to grasp any portion of the battery 30 .
  • the handgrip portion 5 may have a height from its bottommost point to the bottom of the drive portion 4 of less than approximately 6 inches (preferably about 4.5 inches), a width of its neck portion of less than about 2.8 inches (preferably about 1.1 inches), and a length of its neck portion of less than about 2.5 inches (preferably about 1.3 inches).
  • the handgrip portion 5 includes specially shaped surfaces that result in a handle that is comfortably held in the head of a surgeon.
  • a middle part of the handgrip 5 includes an curved front surfaces to form a conveniently held handle.
  • a lip portion 51 is situated adjacent the button member 45 to restrict the chance that a surgeon's glove may be caught between the handle portion 6 and the button 45 when the button 45 is depressed.
  • the width and length of the handgrip portion 5 vary along its height to afford convenient grasping of the device 10 .
  • the bottom of the handgrip portion 5 includes a battery receiving portion 48 having the battery terminals 39 adapted to engage battery contacts 33 (described in greater detail below) when the battery 30 is attached to the battery receiving portion 48 .
  • a battery housing 31 ( FIGS. 2 and 3 ) preferably comprises opposite, substantially flat front 201 and rear 203 walls constructed from an autoclavable material.
  • An autoclavable material is a material suitable for protecting battery cell(s) during repeated autoclave procedures. Examples of suitable materials are described below.
  • the battery 30 comprises at least one rechargeable cell 32 and preferably eight substantially cylindrical cells 32 as shown in FIG. 2 . Because the cells 33 are located in a position below or remote from where a user is expected to grasp the drive assembly 10 , the handgrip portion is free to be used for mounting other electrical and/or mechanical components such as an electronic printed circuit board forming a portion of the electrical circuit means discussed above.
  • the battery 30 preferably comprises eight substantially cylindrical cells 32 having longitudinal axes.
  • the axes of the cells are preferably substantially parallel to the front and rear walls 201 and 203 .
  • the eight cylindrical cells 32 are arranged in a front row F of three cells substantially adjacent the front wall 201 , a rear row R of three cells substantially adjacent the rear wall 203 , and a middle row M of two cells between the front and rear rows 201 and 203 . All of the rows F, M and R are enclosed within the battery housing 31 so that the cells are protected during an autoclave or other sterilization procedure.
  • the weight distribution of the device 10 is substantially balanced about the handgrip portion 5 as the relatively heavier elements such as the battery cells and the motor/transmission assemblies of the device 10 are spaced on opposite ends (top T and bottom B) of the handgrip 5 .
  • a handgrip cavity 53 is formed within the inner portions the handgrip 5 .
  • the cavity 53 is free of batteries or motors or transmission or gear assemblies. Since battery cells 30 (described in greater detail below) are situated below the battery receiving portion of the handle portion 6 , some of the electronic control circuitry mentioned above may be placed in the handgrip cavity 53 of the handle portion 6 . This is believed to further contribute to the beneficial balance and handling characteristics of the device 10 .
  • the cells 32 are preferably stacked in the manner shown in FIG. 2 , with a distal row of three cells placed at the front of the battery 30 , a proximal row three cells at the rear of the battery 30 , and a middle row of two cells placed between the front and rear cells.
  • the axes of the cells are perpendicular to the axis D of the drive portion of the housing.
  • the cells 32 may comprise, for example, nickel-cadmium secondary (rechargeable) sub “C” size cells with a 22 mm diameter and a 34 mm length in a nickel-plated steel case. Such cells are expected to provide a capacity of about 1.4 amp hours at 9.6 volts, D.C.
  • Suitable cells may be obtained from Saft of Valdosta. Ga.; Panasonic of Japan; Sanyo Electric Co. Ltd. of Sumoto-City, Hyogo Japan or Gates available from DC Battery Products of St. Paul, Minn.
  • the cells 32 are enclosed in an autoclave proof (saturated stream @ 280 degrees Fahrenheit, @ 30 pounds per square inch, and vacuum @ 26 inches of mercury) housing or casing 31 .
  • the casing 31 preferably is designed to withstand other sterilization techniques and remain suitable to protect the battery cells 32 .
  • the casing 31 includes a poppet or umbrella valve 8 (e.g. the #VL2491-102 Vernay valve generally available from Vernay of Calif.) to relieve any pressure, such as pressure generated by the cells 32 .
  • the battery housing 31 may include a power terminal (not shown) for a power cord so that the drive assembly 10 may be powered without discharging the cells 32 .
  • the particular material used to construct the casing 31 may comprise any suitable material for use in an orthopedic device.
  • suitable material include, but are not limited to, poly-ether-imide (PET) including Ultem (e.g. GE grades 1000 Black #7101, 1000 Black #1000, 2100 muddled natural #1000 10% glass fill, 2200 muddled natural 20% glass fill, 3452 muddled natural #1000 45% short glass and mineral, or 6200 muddled natural #1000 20% glass fill high temperature); poly-phenyl-sul-fone (PPSU) (e.g. Amoco Radel R, grades R5100 Black #935 or #937, or R 5000, natural); polysulfone (PSU) (e.g.
  • PAEK polyaryletherketone
  • LCP liquid crystal polymer
  • PEK polyketone
  • the motor 12 of the drive assembly 10 is designed to: (1) operate between about 9.6 volts and a reduced voltage which is the output range the battery will produce under load, and (2) have very low internal resistance to restrict internal losses when handling the high current flow by which it is powered. Since the motor 12 and transmission are relatively heavy elements of the device 10 (e.g. the motor may weight about 0.82 pounds), the motor 12 and transmission are preferably located within the drive portion 4 of the housing. Locating the motor 12 and transmission in a position spaced from the handgrip cavity 53 frees the handgrip cavity 53 for use to store the electronic circuitry of the device 10 . The location of the motor 12 and transmission also contribute to the beneficial balance and weight distribution of the device 10 and improves its handling characteristics. These improvements are believed to reduce hand fatigue for some users.
  • the battery 30 shown in FIGS. 1-7 , 9 and 10 comprises the battery housing or casing 31 , and a pair of battery contacts 33 , one of which is an electrically positive terminal, the other of which is an electrically negative terminal.
  • the battery contacts 33 comprise thin, arcuate contact members.
  • the arcuate contact members 33 are connected at one end to the housing 31 and are in electrical communication with the cells 32 (which are connected in series by electrically conductive strips).
  • the other end of the contact members 33 is free to float along the top of the casing 31 .
  • the contacts 33 are constructed from a flexible, resilient electrically conductive material, such as a material selected from the group comprising copper, brass, bronze, beryllium copper, nickel, stainless steel, aluminum or steel.
  • one or more materials may be plated to the contacts to enhance their performance and corrosion resistance.
  • Plating materials include, but are not limited to gold, copper, nickel, silver, tin electroless nickel rhodium, sulfamate nickel, cadmium and/or zinc.
  • the shape of the arcuate contact/members 33 afford their resilient deflection in a direction substantially parallel to the axis H of the handle portion 6 of the housing upon abutment with the battery terminals 39 .
  • FIGS. 11 , 13 - 14 , 15 - 16 , 18 - 20 and 24 of the drawings there is shown a second embodiment of cooperable battery terminals and battery contacts according to the present invention with the battery contacts designated with reference character 33 A and the battery terminals designated by reference character 39 A.
  • handgrip 5 has a portion constructed from an electrically insulating material 106 .
  • the battery terminals 39 A are each attached to the insulating material 106 by screw 87 .
  • a crimp-on connector 107 is situated between the screw 87 and the battery terminal 39 A. The crimp-on connector 107 places the battery terminal 39 A in electrical communication with the rest of the electrical circuit means by virtue of insulated wire 108 .
  • the battery terminals 39 A are mounted on the manually graspable portion 5 of the housing to float relative to the rest of the housing (including the insulating portion 106 ). This feature is particularly useful when the device 10 generates vibration as the floating battery terminals 39 A tend to retain electrical communication between the battery 30 and the rest of the electronics of the device 10 .
  • the battery terminal 39 A is placed in an oblong hole 88 in the handgrip portion 5 of the housing.
  • the oblong hole 88 preferably affords side to side float (movement in a direction that is substantially perpendicular to both axes H and D) of the battery terminal 39 A (see FIG. 19 ), but restricts float of the battery terminal 39 A in a direction substantially parallel to the axis D so that the battery terminal 39 A is not unduly deflected upon insertion and removal of the battery 30 from the device 10 .
  • a coil spring 89 is provided to afford float of the battery terminal 39 A and to bias the battery terminal 39 A toward a rest position (see FIGS. 16 and 20 ).
  • the coil spring 89 has a pair of ends, one of which abuts the crimp-on connector 107 , and the other of which abuts the insulating portion 106 of the housing.
  • a rest position of battery terminals 39 A is shown in FIG. 16 .
  • the spring 89 deflects in compression from its rest position and biases the battery terminal 39 toward its rest position.
  • the spring 89 may be designed to deflect in tension from its rest position to bias the battery terminal 39 toward its rest position.
  • the screw 87 , crimp-on connector 107 , coil spring 89 and portions of the battery terminals 39 A are situated within cavity 109 in the handgrip 5 .
  • the cavity 109 has a diameter at least slightly larger than the diameter of the screws 87 to afford float of the battery terminals 39 A.
  • the battery terminals 39 A comprise a substantially flat, rectangular contact member having a pair of opposite sides 91 and 92 for contacting the battery contacts 33 A.
  • Battery contacts 33 A for use with the battery terminals 39 A is shown in FIGS. 13 , 14 and 24 .
  • Each of the battery contacts 33 A include a pair of flexible, resilient deflecting members 81 and 82 .
  • the flexible, resilient deflecting members 81 and 82 each have a first end rigidly affixed to the battery housing 31 , and a second end, opposite the first end.
  • the second end of the members 81 and 82 is free to slide along the top of the casing 31 when the members 81 and 82 are deflected.
  • a support shoulder surface 115 of the top portion of the battery housing 31 receives the second end of the members 81 and 82 and affords sliding movement of the second ends of the members 81 and 82 .
  • the battery terminal 39 A is designed to be sandwiched between the flexible, resilient deflecting members 81 and 82 and to deflect the members 81 and 82 in a direction that is substantially perpendicular to both of the axes H and D during vibration of the battery terminals 39 A.
  • side 91 of the battery contact 33 A is in electrical communication with deflecting member 81
  • side 92 of the battery contact is in electrical communication with deflecting member 82 .
  • the battery contacts 33 A are constructed from a flexible, resilient, electrically conductive material. Any of the materials and platings mentioned above for use in constructing the battery contacts 33 may be used to construct the battery contacts 33 A. Particular examples include beryllium copper, Brush Wellman alloy 25, 0.0159 (26 Ga) thick, 1 ⁇ 4 H temper, or equivalent UNS No. C17200, (ASTM temper TD01) heat treated 2 hours @ 600 degrees fahrenheit (ASTM TH01), R/C 38-43. As an example not intended to be limiting, the contacts 33 A may have an overall height in FIG. 14 of about 0.17 inches, a overall length ( FIG. 13 ) of about 1.44 inches and an overall width of approximately 0.32 inches.
  • FIGS. 22 and 23 illustrate another embodiment of battery contact 33 B for use with a drive assembly having the battery terminals of FIG. 11 .
  • the battery contact 33 B is similar to the battery contact 33 A except in that the contact 33 B has a slightly different shape when viewed in the top view.
  • the handle portion 6 of the housing has a releasable attachment means for releasably attaching the battery 30 to the battery receiving portion 48 in a direction other than the direction of elongation of the handle portion 6 .
  • that means comprises surfaces on the battery receiving portion 48 defining track portions 49 with flanges that are elongate in a direction substantially parallel to the longitudinal axis D of the drive portion.
  • the battery 30 has a pair of opposite mounting grooves 35 adapted to cooperably receive the flanges of the track portions 49 (see FIGS. 4 and 6 ).
  • the battery pack 30 also has a pair of flexible, resilient cantilever members 37 having opposite ends.
  • Each of the cantilever members 37 has a first end attached to the battery housing 31 and an enlarged distal end 38 .
  • the cantilever members 37 project from the structure defining the grooves 35 in a direction other than direction of elongation of the handle portion 6 (preferably in a direction substantially parallel with the top of the battery and the drive portion axis D).
  • the battery receiving portion 48 of the housing includes a cantilever member receiving cavity 77 formed in part by a relatively thin shelf.
  • the cantilever member receiving cavity 77 includes radiused side walls 75 (see FIG. 12 ).
  • the flexible, resilient cantilever members 37 are shown mounted in the cantilever member receiving cavity 77 in FIG. 12 .
  • the flexible, resilient cantilever members 37 interfere with the surfaces defining the cantilever member receiving cavity 77 to resist movement of the battery 30 relative to the rest of the device 10 , particularly movement in the D axis direction.
  • the flanges of the track 49 cooperably engage the grooves 35 and prevent the battery 30 from separating from the rest of the device 10 .
  • the distal ends 38 of the flexible, resilient cantilever members 37 have a bevel 78 to allow them to ramp onto the shelf forming the cavity 77 .
  • the engagement between the bevel 78 and the shelf forming the cavity 77 forces the flexible, resilient cantilever members 37 upwards in the H axis direction (in FIG. 2 ) when the battery 30 is mounted in the battery receiving portion 48 . Consequently, the battery 30 is forced into abutment with the manually grasping portion 5 .
  • (1) portion 71 see FIG.
  • the flexible, resilient cantilever members 37 are in engagement with the side surfaces forming the cavity 77 which results in a pinching interference fit that tends to resist transmission of vibration to the contacts 33 or 33 A.
  • the pinching interference holds the flanges of the track portions 49 in engagement with the grooves 35 of the battery housing 31 to retain the battery 30 attached to the handgrip 5 .
  • the enlarged distal ends 38 of the flexible, resilient cantilever members 37 have an outward biased radius 28 .
  • the outward biased radius 28 contacts the radiused side wall 75 (FIG. 12 ).
  • the width between the outermost portions of the two distal end outward biased radiuses 28 is greater than the width of the radiused side walls 75 .
  • the flexible, resilient cantilever members 37 are forced inward when the battery 30 is received in the battery receiving portion 48 thereby generating a resistance to movement.
  • the interference is preferably less than about 0.1 inches and is more preferably less than about 0.02 inches.
  • the cantilever members 37 stabilize the front end of the battery 30 . This is especially effective in resisting movement when using the instrument is used for oscillating sawing where side to side forces (perpendicular to the axis H) are generated.
  • the flexible, resilient cantilever members 37 comprise a single, unitary, integral monolithic piece with the battery housing 31 .
  • the material for the battery housing 31 should be sufficiently durable for forming a battery housing (e.g. it should be able to withstand autoclaving procedures), and yet resilient flexible to accomplish the repeated interference fit of the flexible, resilient cantilever members 37 and cavity 77 . Any suitable materials may be used including the materials discussed above as suitable for use to construct the casing 31 .
  • the flexible, resilient cantilever members 37 may be constructed from a material different than the material used to construct the casing 31 .
  • a latch 56 is provided for releasably securing the battery 30 to the battery receiving portion 48 , and for retaining the electrical contact between contacts 33 of the battery 30 and the battery terminals 39 (or the terminals 39 A with the contacts 33 A) of the battery receiving portion 48 .
  • the latch 56 comprises a blocking member 57 mounted on the lower portion of the housing 6 for movement between a latched ( FIG. 4 ) and a release position.
  • a coil spring 58 biases the blocking member 57 toward the latched position.
  • the latch 56 also includes the battery housing 31 having surfaces defining slot 34 for receiving a chamfered end 55 of the blocking member 57 .
  • the mounting grooves 35 of the battery 30 are received in the track portions 49 (see FIG. 4 ) in the battery receiving portion 48 , and (2) the chamfered end 55 of the blocking member 57 is biased into engagement with the slot 34 of the battery 30 to lock the battery 30 to the battery receiving portion 48 of the housing.
  • Indicia 59 may be present to provide user information such as how to unlatch the battery 30 .
  • the latch 56 also includes means for automatically moving the blocking member 57 from the latched toward the release position as the battery 30 is mounted to the battery receiving portion 48 . That means comprises the battery housing 31 having a ramp surface 36 adapted to engage the chamfered end 55 on the blocking member 57 .
  • the ramp surface 36 engages the chamfered end 55 of the blocking member 57 and cams the blocking member 57 toward the release position, thereby enabling the flanges of the track portions 49 to be slid into the corresponding, cooperable grooves 35 of the battery housing 31 .
  • the drive assembly 10 also includes a convenient rotary switch means, operated by ribbed member 72 on the proximal end 1 of the drive housing 4 opposite drive member 18 , for causing the motor 12 to rotate the drive member 18 either in forward or reverse (clockwise or counterclockwise) directions, or to prevent any rotation by the motor 12 even when the trigger 40 is moved to its inner position.
  • Indicia 73 indicate when the device is in the forward, reverse or stop modes.
  • FIG. 21 is a schematic illustration of the switch means.
  • the motor control switch with forward, off and reverse positions is preferably mounted behind the motor.
  • the motor control switch includes a rotatable knob 72 with an attached magnet 62 and a detent mechanism 63 with three positions that correspond to the forward, off and reverse positions.
  • the magnet 62 When the knob is rotated fully clockwise, the magnet 62 by its magnetic field, activates one of two hall sensors 61 to run the motor counter-clockwise when facing the output shaft.
  • the knob When the knob is rotated fully counter-clockwise, it will reverse the motor.
  • a center, neutral (off) position is also included.

Abstract

A cordless drive assembly for driving various orthopedic surgical instruments is described. The drive assembly is battery powered and includes tracks in the handle portion of its housing for receiving the battery. A latch locks the battery to the housing.
A combination of a rechargeable, detachable battery system and a power tool. The battery slides onto the power tool through a complementary groove and flange structure.

Description

This application isThis reissue patent application is a continuation of U.S. reissue patent application Ser. No. 09/954,526, filed Mar. 5, 2001, which is a continuation of U.S. reissue patent application Ser. No. 09/637,339, filed Aug. 11, 2000, now abandoned, which is an application for reissue of U.S. patent application Ser. No. 08/692,886, filed Jul. 24, 1996, now U.S. Pat. No. 5,792,573, issued Aug. 11, 1998, which application is a divisional of U.S. patent application Ser. No. 08/258,338, filed Jun. 10, 1994, now U.S. Pat. No. 5,553,675, issued Sep. 10, 1996.
Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 5,792,573. The reissue applications are: U.S. Reissue application Ser. No. 11/129,760 filed May 16, 2005 (the present application), which is a continuation of U.S. Reissue application Ser. No. 09/954,526 filed Mar. 5, 2001 (pending), which is a continuation of U.S. Reissue application Ser. No. 09/637,339 filed Aug. 11, 2000 (now abandoned).
TECHNICAL FIELD
The present invention is directed to cordless rechargeable battery powered drive assemblies for driving orthopedic surgical instruments.
BACKGROUND
Orthopedic drive assemblies are well known in the art. Such drive assemblies may be adapted for various orthopedic procedures such as drilling, screwing, reaming, wire driving, pinning and sawing (both reciprocating and sagittal). Typically a drive assembly is powered by either a rechargeable battery system (e.g. a cordless system) or by a pneumatic system which utilizes compressed fluid to power the device.
The art is replete with cordless rechargeable battery powered drive assemblies for driving orthopedic surgical instruments. Typically, such instruments comprise generally pistol-shaped devices having elongate handle and drive portions. Examples of such drive assemblies comprise: (1) the Orthopower 90 cordless instruments available from Stryker of Kalamazoo, Mich.; (2) the Cordless 200 Reamer, Cordless 800 Wire Driver, Cordless Sagittal Saw or Cordless 450 Orthopedic Drill available from Dyonics of Andover Md., (3) the Maxion™ orthopedic drive device, previously sold by the Minnesota Mining and Manufacturing Co. (3M) of St. Paul, Minnesota; (4) the Hall Versipower orthopedic instruments available from Hall Surgical of Carpinerina California (associated with Zimmer); and (5) the product known as the 200 Reamer, previously sold by Black & Decker. Cordless battery powered drive assemblies for driving orthopedic surgical instruments are described in U.S. Pat. Nos. 3,734,207; 4,050,528; 4,091,880; 4,441,563; 4,641,076; 4,728,876 and 5,080,983.
Because the batteries in an orthopedic drive device are preferably rechargeable, releasable attachment means are provided in some prior art devices for releasably attaching a battery pack to the rest of the device. Typically, a battery pack is attached to and removed from the handle portion of the device in a direction that is substantially parallel to the axis of elongation of the handle portion. Individual batteries are placed in a housing creating the battery pack which is then attached to the device by being slid in a direction generally parallel to the elongate axis of the handle portion of the device. The battery pack typically includes electrical circuit connection means for connecting the battery pack to electronic circuitry in the device. A device typically secures the battery pack to the rest of the device.
While such releasable attachment means are generally acceptable, they leave room for improvement. One drawback of such a releasable attachment means is that gravity tends to continuously operate on the battery pack to urge it out of the device. Another drawback for some prior devices is that, because of the significant vibration forces encountered during use of the orthopedic drive assembly (particularly during sagittal sawing), the electrical circuit connection means tend to corrode. This type of corrosion is known as fretting corrosion. As used herein, the phrase “fretting corrosion” means surface degradation occurring at the interface of mating electrical contacts which results in the reduction or even loss of electrical continuity.
Fretting corrosion is found in components forming contacts which are allowed to move independently with respect to each other during current flow. This independent movement is believed to cause mechanical abrasion which will wear the surfaces. Gaping between the electrical contacts during electrical flow may result in electrical arcing with attendant generated heat potentially sufficient to melt the surface of the contacts. Pitting, welding and burning may also result. Also, a physical change in the material forming the contacts may occur. Plating for enhanced electrical contact may be lost and carbon deposits may accumulate resulting in reduced electrical continuity.
Because orthopedic drive assemblies are used in surgical procedures which require delicate yet physically demanding tasks, the balance and maneuverability of an orthopedic drive device is also important to surgeons. Hand fatigue is a problem associated with many existing drive assemblies as well as a general difficulty in maneuvering the device during some surgical procedures. Weight distribution and size considerations are believed to contribute to these problems, as the typical cordless rechargeable battery powered drive assembly may be cumbersome to hold and use, particularly during a delicate orthopedic procedure where only the height quality is tolerated. Size and weight considerations involved in the placement of elements such as the batteries, transmission, electronic control circuitry and motor typically render an existing device to maneuver.
Other prior art drive assemblies are excessively large. Oversized drive assemblies may be difficult to maneuver, particularly during a surgical procedure at a cramped or remote location.
BRIEF DESCRIPTION OF THE INVENTION
According to the present invention there is provided a drive assembly for driving orthopedic surgical instruments which (1) affords excellent balance and maneuverability for a user which offers enhanced handling characteristics and convenience during use, (2) affords attachment and removal of a battery pack in a direction other than the direction of elongation of the handle portion of the device, (3) includes a connection between the battery pack and the electronic circuitry of the device which resists fretting corrosion, (4) includes an ergonomically designed handgrip shape that fits a surgeon's hand comfortably, and (5) is sized for convenient maneuvering during an orthopedic surgical procedure.
According to the present invention, there is provided a drive assembly for driving various orthopedic surgical instruments, such as, but not limited to, drills, screws, reamers, wires, pins and saws (both reciprocating and sagittal). The drive assembly comprises a housing having elongate drive and handle portions with the handle portion projecting from the drive portion. A drive is present comprising an motor preferably mounted within the drive portion. The motor has a motor shaft, and the drive includes a transmission for transmitting power of the motor shaft to the surgical instrument. The transmission includes a drive member. Preferably the drive portion has surfaces defining a wire receiving chamber adapted to receive an orthopedic wire adapted to be driven during an orthopedic surgical procedure.
The drive assembly also includes a trigger assembly movable relative to the handle portion; and electrical circuit means operatively associated with the trigger assembly for controlling the motor.
The handle portion comprises a releasably attachable battery having at least one cell (preferably eight), a battery housing, and a pair of battery contacts. The handle portion also has a battery receiving portion having battery terminals adapted to engage the battery contacts; and releasable attachment means for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion. Preferably, the direction is a direction substantially parallel to the axis of the drive portion.
In the preferred embodiment, the releasable attachment means comprises a) the handle portion having a pair of tracks defining flanges that are elongate in a direction substantially parallel to the longitudinal axis of the drive portion, b) the battery having a pair of grooves adapted to receive the flanges of the tracks, and a pair of flexible, resilient cantilever members, and c) the battery receiving portion having surfaces defining a cantilever member cavity for receiving the pair of flexible, resilient cantilever members in an interface fit so that the battery is frictionally held in place relative to the battery receiving portion. A latch for releasably securing the battery to the battery receiving portion is also preferably present.
The drive assembly also includes a novel floating battery terminal assembly comprising biasing means for biasing the battery terminals toward a rest position, and mounting means for mounting the battery terminals for deflection from the rest position. In one embodiment, each of the battery terminals comprises a substantially flat plate member having opposite side surfaces, and each of the battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
Also preferably, the handle portion comprises a handgrip portion having outer surfaces that are sized and shaped to be grasped by a user without touching the battery, and inner surfaces defining a handgrip cavity. The handgrip cavity is free of the transmission, the motor and any cells of the battery when the battery is received in the battery receiving portion. Preferably, the cells of the battery are spaced on an opposite end of the handgrip portion than the motor and transmission.
Alternatively, the present invention may be described as a rechargeable battery adapted to be repeatedly and releasably attached to an orthopedic drive assembly. In this aspect of the invention, the orthopedic drive assembly has elongate drive and handle portions, a battery receiving portion having a pair of tracks defining flanges, a pair of battery terminals, and surfaces defining a cantilever member receiving cavity.
The battery comprises an autoclave battery housing having opposite top and bottom portions, at least one cell within the battery housing and a pair of battery contacts mounted adjacent the top portion of the housing and adapted to engage the battery terminals of the orthopedic drive assembly. Releasable attachment means are present for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion. The releaseable attachment means and battery terminals comprise the preferred versions as discussed above.
In this aspect of the invention, the battery contacts each include a first end fixedly attached to the top portion of the battery housing and a second end adapted to abut a support shoulder of the top portion of the battery housing. The battery housing comprises opposite, substantially flat front and rear walls constructed from a material suitable for protecting the cell(s) during an autoclave procedure. The battery comprises eight substantially cylindrical cells having longitudinal axes. The eight cylindrical cells are arranged in: a) a front row of three cells substantially adjacent a front wall of the battery housing, b) a rear row substantially adjacent a rear wall of the battery housing, and c) a middle row of two cells between the front and rear rows.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be further described with reference to the accompanying drawings wherein like reference numerals refer to like parts in the several views, and wherein:
FIG. 1 is a perspective view of a drive assembly for driving orthopedic surgical instruments according to the present invention;
FIG. 2 is an enlarged sectional view of the drive assembly of FIG. 1, illustrating a battery pack of the device removed from the device in solid lines, and illustrating the position of the battery pack when attached to the drive assembly in phantom lines;
FIG. 3 is an enlarged perspective view of the battery pack for use in the drive assembly of FIG. 1;
FIG. 4 is an enlarged rear view of the drive assembly of FIG. 1;
FIG. 5 is a top view of the battery pack of FIG. 3;
FIG. 6 is a sectional view of the battery pack of FIG. 3;
FIG. 6A is a bottom view of portions of the drive assembly of FIG. 2 with the battery pack removed which illustrates battery terminals that are adapted to be connected to the battery contacts of the battery pack of FIG. 3;
FIG. 7 is an enlarged side view of the drive assembly of FIG. 1;
FIG. 8 is a top view of the orthopedic drive assembly of FIG. 7;
FIG. 9 is a front view of the drive assembly of FIG. 7;
FIG. 10 is a side view of the battery pack of FIG. 3;
FIG. 11 is an enlarged bottom view of a handle portion of a drive assembly with the battery pack removed to illustrate details of a second embodiment of battery terminals according to the present invention and with portions of a battery pack receiving cavity illustrated with dashed lines;
FIG. 12 is a partial sectional view of a battery receiving portion of the drive assembly and cantilever arms of the battery pack showing the position of the cantilever arms when the battery pack is attached to the rest of the orthopedic drive assembly;
FIG. 13 is a top view of one of a pair of preferred battery contacts for a battery pack according to the present invention, which battery pack is adapted to be connected to a drive assembly having the battery terminals of FIG. 11;
FIG. 14 is a side view of the battery contact of FIG. 13;
FIG. 15 is an enlarged bottom view of portions of the handle portion of the drive assembly of FIG. 11 which illustrates details of a pair of floating battery terminal assemblies including a battery terminal of one of the assemblies shown offset relative to the axis of the drive portion of the housing of the device;
FIG. 16 is a sectional view of a floating battery terminal assembly of FIG. 15 which illustrates details of a battery terminal in a rest position;
FIG. 17 is a sectional view of portions of the drive assembly of FIG. 16 taken approximately along lines 1717 of FIG. 16 except that one battery terminal and connector are removed to illustrate details of a hole for receiving the battery terminal;
FIG. 18 is a sectional view similar to FIG. 16 except that the floating battery terminal assembly is slightly offset from its rest position, as may occur during vibration of the orthopedic drive device;
FIG. 19 is a sectional view of the floating battery terminal of FIG. 17 with the battery terminal offset laterally with respect to its longitudinal axis in a rest position and with other portions omitted to illustrate details;
FIG. 20 is a sectional view of the floating battery terminal assembly of FIG. 17 with the battery terminal illustrated in a rest position and with other portions omitted to illustrate details;
FIG. 21 is a schematic illustration of a switch mechanism for use in the drive assembly according to the present invention;
FIG. 22 is a top view of another embodiment of battery contact for use with a drive assembly having the battery terminals of FIG. 11;
FIG. 23 is a side view of the battery contact of FIG. 22; and
FIG. 24 is a perspective view of a battery with the battery contacts of FIGS. 13 and 14.
DETAILED DESCRIPTION
Referring now to FIGS. 1 through 10 of the drawing there is shown an embodiment of a cordless rechargeable battery powered drive assembly for driving orthopedic surgical instruments according to the present invention, generally designated by reference character 10. The drive assembly 10 includes a housing comprising elongate drive 4 and handle 6 portions defining drive D and handle H portion longitudinal axes. The drive portion 4 and a significant portion of the handle portion 6 are constructed by assembling two large housing pieces (see FIG. 7) to afford convenient disassembly of the device for repair.
Referring now to FIG. 2, the drive assembly 10 includes a motor assembly having a D.C. electric powered motor 12 including a rotor 14 and a motor shaft 16. A drive is also present comprising a transmission for transmitting the power of the motor shaft 16 to the surgical instrument. The illustrated transmission includes a drive member or spindle 18, a ring gear 19, and a gear pin and planetary gear assembly 21.
Preferably, the motor 12 is mounted within the drive portion 4. As used in this application, when it is said that the motor is within the drive portion 4, it is meant that the rotor 14 and motor shaft 16 are substantially completely located within the structure of the housing defining the drive portion 4, as opposed, for example, to one of the rotor or motor shaft being located in the handle portion 6 or a substantial portion of the motor being located in the handle portion 6, of course some wires and electronic circuitry associated with the motor may be present outside the drive portion 4, and yet the motor will nevertheless be within the drive portion 4 as understood in the present invention. Also preferably, the transmission (e.g. 18, 19 and 21) is mounted within the drive portion 4.
A connector is provided for attaching a chuck or other such holder or instrument that may be driven by the drive assembly 10. The connector comprises a nose insert 26 having a socket into which a cylindrical portion of the surgical instrument can project with a splined central rotatable driven collar engaged with mating splines 17 on the inner surface of the drive member 18, and with pins (not shown) projecting radially of the cylindrical portion engaged in longitudinally extending slots 15 opening through the end of the housing. A helix pin/collar assembly 25 is rotatable about the axis D of the drive portion and is biased by torsion spring 27 so that circumferentially projecting hooks near slots 15 on the collar 25 can engage the pins on the surgical instrument to maintain the pins within the slots 15 and thereby the surgical instrument in driven engagement with the drive assembly 10.
The surgical instrument may comprise any instrument suitable for use in an orthopedic surgical procedure, including but not limited to, drills, screws, reamers, pins and saws (both reciprocating and sagittal) or a suitably designed chuck or adapter for use with any of the previously mentioned instruments.
As a particular example, the surgical instrument may comprise the chuck described in U.S. Pat. No. 4,728,876, the entire contents of which are herein expressly incorporated by reference. Alternatively, for example, an appropriate wire driving attachment adapter may be attached to the drive assembly 10 so that it may be used as an orthopedic wire driver, optionally, but not preferably, engagement between the orthopedic wire and the spindle 18 may afford operation of the device 10 as a wire driver.
A stationary member 22 extends from a proximal end 1 of the housing toward its distal end 3. Preferably, the stationary member 22 includes a through chamber so that a surgical wire may be passed through the stationary member 22 from the proximal end 1 of the device 10 toward the distal end 3. The through chamber in the stationary member 22 forms a portion of a wire receiving chamber in the drive portion 4 between the proximal end 1 and the distal end 3. Threading a surgical wire through the wire receiving chamber affords use of the device 10 as a wire driver.
O-rings 64 and 65 restrict internal contamination of the drive assembly 10 from ambient contaminants. O-ring 66 is compressed against member 22 to restrict the member 22 from rotating relative to the handle 6 and drive 4 portions of the housing.
The drive assembly 10 also includes a rechargeable battery or battery pack 30 that is adapted to provide a rechargeable source of power for the motor 12. Unique mounting means (described in greater detail below) attach the battery 30 to the rest of the assembly 10.
A trigger assembly 40 is movable relative to the handle portion 6. The trigger assembly includes a button member 45 adapted to be engaged by a user's digits, a trigger shaft 46, an O-ring seat 41 for fixedly connecting the button member 45 to the trigger shaft 46, a coil spring 42 and magnet 44 that is rigidly attached to the trigger shaft 46. The trigger assembly 40 is movable between a released or extended position (FIG. 2) and a depressed or inner position relative to the handle portion 6.
The drive assembly 10 also includes electrical circuit means operatively associated with the trigger assembly 40 for controlling the motor 12. The illustrated electrical circuit means comprises an on/off hall sensor 52 and a speed control hall sensor 54.
The on/off hall sensor 52 is a digital hall sensor having an output signal with two levels corresponding to an on state and an off state. The on/off hall sensor 52 senses the presence of a magnetic field from the magnet 44 on the trigger assembly 40. When the trigger assembly 40 is released, the magnet 44 is positioned directly over the on/off hall sensor 52 (FIG. 2). The magnetic field of the magnet 44 causes the on/off hall sensor 52 to produce an output signal corresponding to an off state. As the trigger assembly 40 is depressed, the magnet 44 moves away from the on/off hall sensor 52. The on/off hall sensor 52, no longer sensing the presence of a magnetic field, produces an output signal corresponding to an on state.
The output signal from the on/off hall sensor 52 is conditioned by electrical circuitry which provides a standby signal when the on/off hall sensor 52 produces an off signal. The standby signal disables motor drive circuitry and the speed control hall sensor 54. The standby signal therefore ensures that the motor 12 is off whenever the trigger assembly 40 is in a released position (FIG. 2). An added benefit of disabling the motor drive circuitry and the speed control hall sensor 54 is that the electrical power required by the device 10 is significantly reduced during periods when the trigger assembly 40 is not depressed. This current reduction during a standby mode improves energy efficiency of the device 10. In this manner, the device 10 may optionally include a battery saver feature.
The speed control hall sensor 54 is a linear ball sensor which provides a speed control signal having a range of levels based upon the strength of the magnetic field that the variable speed hall sensor 54 detects. As the strength of the magnetic field increases, the speed control hall sensor 54 produces a speed control signal with a higher level. As the trigger assembly 40 is depressed, the magnet 44 moves towards the speed control hall sensor 54 and increases the magnetic field across it. The speed control signal from the speed control hall sensor 54 is conditioned and drives the motor control circuit to provide motor speeds proportional to the speed control signal. Therefore, as the trigger assembly 40 is further depressed, the motor control circuitry increases the motor speed of the drive assembly 10. In this manner, the drive assembly 10 may optionally comprise a variable speed device.
The circuit has a 25 amp current limit to protect the batteries, motor and electronics. The electrical circuit means may optionally include directional drive circuitry which is discussed in greater detail below.
As best seen in FIGS. 2 and 6A, the device 10 also comprises battery terminals 39. Each of the battery terminals 39 have three generally flat surfaces including two end surfaces situated at an angle relative to a middle surface. The function of the battery terminals 39 will be described in greater detail below.
The battery terminals 39 may be constructed from any suitable material appropriate for use to construct orthopedic surgical tools. For example, the battery terminals may be constructed from copper, brass, bronze, beryllium copper, stainless steel, steel and aluminum. One or more platings may be present to enhance the electrical conducting and corrosion resisting properties of the battery terminals 39. Examples of such platings include, but are not limited to copper, nickel, gold, silver, tin, electroless nickel, rhodium, sulfamate, nickel, cadmium and zinc.
The handle portion 6 of the device 10 projects (downwardly in FIG. 2) from the drive portion 4 of the device 10. The handle portion 6 of the housing comprises the battery 30 and a handgrip portion 5. The handgrip portion 5 has manually engageable or graspable surfaces and top T and bottom B ends (see FIG. 2). Preferably, the handgrip portion 5 is sized and shaped so that, during use of the device 10, the user does not need to grasp any portion of the battery 30. For example, the handgrip portion 5 may have a height from its bottommost point to the bottom of the drive portion 4 of less than approximately 6 inches (preferably about 4.5 inches), a width of its neck portion of less than about 2.8 inches (preferably about 1.1 inches), and a length of its neck portion of less than about 2.5 inches (preferably about 1.3 inches).
The handgrip portion 5 includes specially shaped surfaces that result in a handle that is comfortably held in the head of a surgeon. A middle part of the handgrip 5 includes an curved front surfaces to form a conveniently held handle. A lip portion 51 is situated adjacent the button member 45 to restrict the chance that a surgeon's glove may be caught between the handle portion 6 and the button 45 when the button 45 is depressed.
As shown in the figures, the width and length of the handgrip portion 5 vary along its height to afford convenient grasping of the device 10. The bottom of the handgrip portion 5 includes a battery receiving portion 48 having the battery terminals 39 adapted to engage battery contacts 33 (described in greater detail below) when the battery 30 is attached to the battery receiving portion 48.
A battery housing 31 (FIGS. 2 and 3) preferably comprises opposite, substantially flat front 201 and rear 203 walls constructed from an autoclavable material. An autoclavable material is a material suitable for protecting battery cell(s) during repeated autoclave procedures. Examples of suitable materials are described below.
The battery 30 comprises at least one rechargeable cell 32 and preferably eight substantially cylindrical cells 32 as shown in FIG. 2. Because the cells 33 are located in a position below or remote from where a user is expected to grasp the drive assembly 10, the handgrip portion is free to be used for mounting other electrical and/or mechanical components such as an electronic printed circuit board forming a portion of the electrical circuit means discussed above.
The battery 30 preferably comprises eight substantially cylindrical cells 32 having longitudinal axes. The axes of the cells are preferably substantially parallel to the front and rear walls 201 and 203. The eight cylindrical cells 32 are arranged in a front row F of three cells substantially adjacent the front wall 201, a rear row R of three cells substantially adjacent the rear wall 203, and a middle row M of two cells between the front and rear rows 201 and 203. All of the rows F, M and R are enclosed within the battery housing 31 so that the cells are protected during an autoclave or other sterilization procedure.
The weight distribution of the device 10 is substantially balanced about the handgrip portion 5 as the relatively heavier elements such as the battery cells and the motor/transmission assemblies of the device 10 are spaced on opposite ends (top T and bottom B) of the handgrip 5. A handgrip cavity 53 is formed within the inner portions the handgrip 5. As opposed to prior art devices which include a battery or motor within the portion of its housing that is designed to be manually grasped, the cavity 53 is free of batteries or motors or transmission or gear assemblies. Since battery cells 30 (described in greater detail below) are situated below the battery receiving portion of the handle portion 6, some of the electronic control circuitry mentioned above may be placed in the handgrip cavity 53 of the handle portion 6. This is believed to further contribute to the beneficial balance and handling characteristics of the device 10.
The cells 32 are preferably stacked in the manner shown in FIG. 2, with a distal row of three cells placed at the front of the battery 30, a proximal row three cells at the rear of the battery 30, and a middle row of two cells placed between the front and rear cells. The axes of the cells are perpendicular to the axis D of the drive portion of the housing. The cells 32 may comprise, for example, nickel-cadmium secondary (rechargeable) sub “C” size cells with a 22 mm diameter and a 34 mm length in a nickel-plated steel case. Such cells are expected to provide a capacity of about 1.4 amp hours at 9.6 volts, D.C. Suitable cells may be obtained from Saft of Valdosta. Ga.; Panasonic of Japan; Sanyo Electric Co. Ltd. of Sumoto-City, Hyogo Japan or Gates available from DC Battery Products of St. Paul, Minn.
The cells 32 are enclosed in an autoclave proof (saturated stream @ 280 degrees Fahrenheit, @ 30 pounds per square inch, and vacuum @ 26 inches of mercury) housing or casing 31. The casing 31 preferably is designed to withstand other sterilization techniques and remain suitable to protect the battery cells 32. The casing 31 includes a poppet or umbrella valve 8 (e.g. the #VL2491-102 Vernay valve generally available from Vernay of Calif.) to relieve any pressure, such as pressure generated by the cells 32. Optionally, the battery housing 31 may include a power terminal (not shown) for a power cord so that the drive assembly 10 may be powered without discharging the cells 32.
The particular material used to construct the casing 31 may comprise any suitable material for use in an orthopedic device. Specific examples include, but are not limited to, poly-ether-imide (PET) including Ultem (e.g. GE grades 1000 Black #7101, 1000 Black #1000, 2100 muddled natural #1000 10% glass fill, 2200 muddled natural 20% glass fill, 3452 muddled natural #1000 45% short glass and mineral, or 6200 muddled natural #1000 20% glass fill high temperature); poly-phenyl-sul-fone (PPSU) (e.g. Amoco Radel R, grades R5100 Black #935 or #937, or R 5000, natural); polysulfone (PSU) (e.g. Amoco Udel P, grade P 1700, natural #11); polyaryletherketone (PAEK) (e.g. BASF Ultrapek, grade KR4176, natural); liquid crystal polymer (LCP) (e.g. Vectra grades A950 natural, A530 muddled natural moderately mineral filled, or A130 muddled natural 30% glass fill); and polyketone (PEK) (e.g. Amoco Kadel E grade 1000 natural).
The motor 12 of the drive assembly 10 is designed to: (1) operate between about 9.6 volts and a reduced voltage which is the output range the battery will produce under load, and (2) have very low internal resistance to restrict internal losses when handling the high current flow by which it is powered. Since the motor 12 and transmission are relatively heavy elements of the device 10 (e.g. the motor may weight about 0.82 pounds), the motor 12 and transmission are preferably located within the drive portion 4 of the housing. Locating the motor 12 and transmission in a position spaced from the handgrip cavity 53 frees the handgrip cavity 53 for use to store the electronic circuitry of the device 10. The location of the motor 12 and transmission also contribute to the beneficial balance and weight distribution of the device 10 and improves its handling characteristics. These improvements are believed to reduce hand fatigue for some users.
The battery 30 shown in FIGS. 1-7, 9 and 10 comprises the battery housing or casing 31, and a pair of battery contacts 33, one of which is an electrically positive terminal, the other of which is an electrically negative terminal. The battery contacts 33 comprise thin, arcuate contact members. The arcuate contact members 33 are connected at one end to the housing 31 and are in electrical communication with the cells 32 (which are connected in series by electrically conductive strips). The other end of the contact members 33 is free to float along the top of the casing 31. Preferably, the contacts 33 are constructed from a flexible, resilient electrically conductive material, such as a material selected from the group comprising copper, brass, bronze, beryllium copper, nickel, stainless steel, aluminum or steel. Optionally, one or more materials may be plated to the contacts to enhance their performance and corrosion resistance. Plating materials include, but are not limited to gold, copper, nickel, silver, tin electroless nickel rhodium, sulfamate nickel, cadmium and/or zinc. The shape of the arcuate contact/members 33 afford their resilient deflection in a direction substantially parallel to the axis H of the handle portion 6 of the housing upon abutment with the battery terminals 39.
Referring now to FIGS. 11, 13-14, 15-16, 18-20 and 24 of the drawings, there is shown a second embodiment of cooperable battery terminals and battery contacts according to the present invention with the battery contacts designated with reference character 33A and the battery terminals designated by reference character 39A.
As best seen in FIG. 16, handgrip 5 has a portion constructed from an electrically insulating material 106. The battery terminals 39A are each attached to the insulating material 106 by screw 87. A crimp-on connector 107 is situated between the screw 87 and the battery terminal 39A. The crimp-on connector 107 places the battery terminal 39A in electrical communication with the rest of the electrical circuit means by virtue of insulated wire 108.
The battery terminals 39A are mounted on the manually graspable portion 5 of the housing to float relative to the rest of the housing (including the insulating portion 106). This feature is particularly useful when the device 10 generates vibration as the floating battery terminals 39A tend to retain electrical communication between the battery 30 and the rest of the electronics of the device 10.
The battery terminal 39A is placed in an oblong hole 88 in the handgrip portion 5 of the housing. The oblong hole 88 preferably affords side to side float (movement in a direction that is substantially perpendicular to both axes H and D) of the battery terminal 39A (see FIG. 19), but restricts float of the battery terminal 39A in a direction substantially parallel to the axis D so that the battery terminal 39A is not unduly deflected upon insertion and removal of the battery 30 from the device 10.
A coil spring 89 is provided to afford float of the battery terminal 39A and to bias the battery terminal 39A toward a rest position (see FIGS. 16 and 20). The coil spring 89 has a pair of ends, one of which abuts the crimp-on connector 107, and the other of which abuts the insulating portion 106 of the housing. A rest position of battery terminals 39A is shown in FIG. 16. When the battery terminal 39A is deflected from its rest position (such as when the device 10 vibrates during an orthopedic surgical procedure), the spring 89 deflects in compression from its rest position and biases the battery terminal 39 toward its rest position. Alternatively, the spring 89 may be designed to deflect in tension from its rest position to bias the battery terminal 39 toward its rest position.
The screw 87, crimp-on connector 107, coil spring 89 and portions of the battery terminals 39A are situated within cavity 109 in the handgrip 5. The cavity 109 has a diameter at least slightly larger than the diameter of the screws 87 to afford float of the battery terminals 39A. Unlike the battery terminals 39A, the battery terminals 39A comprise a substantially flat, rectangular contact member having a pair of opposite sides 91 and 92 for contacting the battery contacts 33A.
Battery contacts 33A for use with the battery terminals 39A is shown in FIGS. 13, 14 and 24. Each of the battery contacts 33A include a pair of flexible, resilient deflecting members 81 and 82. The flexible, resilient deflecting members 81 and 82 each have a first end rigidly affixed to the battery housing 31, and a second end, opposite the first end. The second end of the members 81 and 82 is free to slide along the top of the casing 31 when the members 81 and 82 are deflected. A support shoulder surface 115 of the top portion of the battery housing 31 receives the second end of the members 81 and 82 and affords sliding movement of the second ends of the members 81 and 82.
The battery terminal 39A is designed to be sandwiched between the flexible, resilient deflecting members 81 and 82 and to deflect the members 81 and 82 in a direction that is substantially perpendicular to both of the axes H and D during vibration of the battery terminals 39A. Preferably, side 91 of the battery contact 33A is in electrical communication with deflecting member 81, and side 92 of the battery contact is in electrical communication with deflecting member 82.
The battery contacts 33A are constructed from a flexible, resilient, electrically conductive material. Any of the materials and platings mentioned above for use in constructing the battery contacts 33 may be used to construct the battery contacts 33A. Particular examples include beryllium copper, Brush Wellman alloy 25, 0.0159 (26 Ga) thick, ¼ H temper, or equivalent UNS No. C17200, (ASTM temper TD01) heat treated 2 hours @ 600 degrees fahrenheit (ASTM TH01), R/C 38-43. As an example not intended to be limiting, the contacts 33A may have an overall height in FIG. 14 of about 0.17 inches, a overall length (FIG. 13) of about 1.44 inches and an overall width of approximately 0.32 inches.
FIGS. 22 and 23 illustrate another embodiment of battery contact 33B for use with a drive assembly having the battery terminals of FIG. 11. The battery contact 33B is similar to the battery contact 33A except in that the contact 33B has a slightly different shape when viewed in the top view.
The handle portion 6 of the housing has a releasable attachment means for releasably attaching the battery 30 to the battery receiving portion 48 in a direction other than the direction of elongation of the handle portion 6. In the illustrated embodiment, that means comprises surfaces on the battery receiving portion 48 defining track portions 49 with flanges that are elongate in a direction substantially parallel to the longitudinal axis D of the drive portion. The battery 30 has a pair of opposite mounting grooves 35 adapted to cooperably receive the flanges of the track portions 49 (see FIGS. 4 and 6).
The battery pack 30 also has a pair of flexible, resilient cantilever members 37 having opposite ends. Each of the cantilever members 37 has a first end attached to the battery housing 31 and an enlarged distal end 38. The cantilever members 37 project from the structure defining the grooves 35 in a direction other than direction of elongation of the handle portion 6 (preferably in a direction substantially parallel with the top of the battery and the drive portion axis D). Referring now to FIG. 11, the battery receiving portion 48 of the housing includes a cantilever member receiving cavity 77 formed in part by a relatively thin shelf. The cantilever member receiving cavity 77 includes radiused side walls 75 (see FIG. 12).
The flexible, resilient cantilever members 37 are shown mounted in the cantilever member receiving cavity 77 in FIG. 12. When the battery 30 is mounted on the battery receiving portion 48, the flexible, resilient cantilever members 37 interfere with the surfaces defining the cantilever member receiving cavity 77 to resist movement of the battery 30 relative to the rest of the device 10, particularly movement in the D axis direction. The flanges of the track 49 cooperably engage the grooves 35 and prevent the battery 30 from separating from the rest of the device 10.
The distal ends 38 of the flexible, resilient cantilever members 37 have a bevel 78 to allow them to ramp onto the shelf forming the cavity 77. The engagement between the bevel 78 and the shelf forming the cavity 77 forces the flexible, resilient cantilever members 37 upwards in the H axis direction (in FIG. 2) when the battery 30 is mounted in the battery receiving portion 48. Consequently, the battery 30 is forced into abutment with the manually grasping portion 5. When the battery 30 is fully mounted in the battery receiving portion 48: (1) portion 71 (see FIG. 3) of the battery housing 31 is preferably in contact with the bottom side of the shelf forming the cavity 77, and (2) the flexible, resilient cantilever members 37 are in engagement with the side surfaces forming the cavity 77 which results in a pinching interference fit that tends to resist transmission of vibration to the contacts 33 or 33A. The pinching interference holds the flanges of the track portions 49 in engagement with the grooves 35 of the battery housing 31 to retain the battery 30 attached to the handgrip 5.
The enlarged distal ends 38 of the flexible, resilient cantilever members 37 have an outward biased radius 28. When the battery 30 is inserted into the receiving portion 48 of the handle portion 6, the outward biased radius 28 contacts the radiused side wall 75 (FIG. 12). The width between the outermost portions of the two distal end outward biased radiuses 28 is greater than the width of the radiused side walls 75. With this difference in widths, the flexible, resilient cantilever members 37 are forced inward when the battery 30 is received in the battery receiving portion 48 thereby generating a resistance to movement. For example, the interference is preferably less than about 0.1 inches and is more preferably less than about 0.02 inches. This slight interference causes the resilient members 37 to deflect and to provide excellent frictional contact with the cavity 77 in the battery receiving portion 48. In the manner described above, the cantilever members 37 stabilize the front end of the battery 30. This is especially effective in resisting movement when using the instrument is used for oscillating sawing where side to side forces (perpendicular to the axis H) are generated.
Preferably, the flexible, resilient cantilever members 37 comprise a single, unitary, integral monolithic piece with the battery housing 31. Thus, the material for the battery housing 31 should be sufficiently durable for forming a battery housing (e.g. it should be able to withstand autoclaving procedures), and yet resilient flexible to accomplish the repeated interference fit of the flexible, resilient cantilever members 37 and cavity 77. Any suitable materials may be used including the materials discussed above as suitable for use to construct the casing 31. Alternatively, the flexible, resilient cantilever members 37 may be constructed from a material different than the material used to construct the casing 31.
When the drive assembly 10 is held in the position referenced in FIG. 2, the mounting grooves 35 and flanges of the track portions 49 are cooperable to resist the effect of gravity on the device 10 which, in prior art devices, tends to urge the battery away from contact with the rest of the device. A latch 56 is provided for releasably securing the battery 30 to the battery receiving portion 48, and for retaining the electrical contact between contacts 33 of the battery 30 and the battery terminals 39 (or the terminals 39A with the contacts 33A) of the battery receiving portion 48. The latch 56 comprises a blocking member 57 mounted on the lower portion of the housing 6 for movement between a latched (FIG. 4) and a release position. A coil spring 58 biases the blocking member 57 toward the latched position. The latch 56 also includes the battery housing 31 having surfaces defining slot 34 for receiving a chamfered end 55 of the blocking member 57.
In the latched position, (1) the mounting grooves 35 of the battery 30 are received in the track portions 49 (see FIG. 4) in the battery receiving portion 48, and (2) the chamfered end 55 of the blocking member 57 is biased into engagement with the slot 34 of the battery 30 to lock the battery 30 to the battery receiving portion 48 of the housing. Indicia 59 may be present to provide user information such as how to unlatch the battery 30.
The latch 56 also includes means for automatically moving the blocking member 57 from the latched toward the release position as the battery 30 is mounted to the battery receiving portion 48. That means comprises the battery housing 31 having a ramp surface 36 adapted to engage the chamfered end 55 on the blocking member 57.
Referring to FIG. 2, as the battery 30 is slid into the track portions 49 of the battery receiving portion 48, the ramp surface 36 engages the chamfered end 55 of the blocking member 57 and cams the blocking member 57 toward the release position, thereby enabling the flanges of the track portions 49 to be slid into the corresponding, cooperable grooves 35 of the battery housing 31. Once the battery 30 is fully mounted on the battery receiving portion 48, the chamfered end 55 of the blocking member 57 is biased into engagement with the slot 34 of the battery housing 31 as described above. The side of the blocking member 57 opposite chamfered end 55 is not chamfered to resist inadvertent release of the battery 30.
As a portion of the electrical circuit means mentioned above, the drive assembly 10 also includes a convenient rotary switch means, operated by ribbed member 72 on the proximal end 1 of the drive housing 4 opposite drive member 18, for causing the motor 12 to rotate the drive member 18 either in forward or reverse (clockwise or counterclockwise) directions, or to prevent any rotation by the motor 12 even when the trigger 40 is moved to its inner position. Indicia 73 indicate when the device is in the forward, reverse or stop modes.
FIG. 21 is a schematic illustration of the switch means. The motor control switch with forward, off and reverse positions is preferably mounted behind the motor. The motor control switch includes a rotatable knob 72 with an attached magnet 62 and a detent mechanism 63 with three positions that correspond to the forward, off and reverse positions. When the knob is rotated fully clockwise, the magnet 62 by its magnetic field, activates one of two hall sensors 61 to run the motor counter-clockwise when facing the output shaft. When the knob is rotated fully counter-clockwise, it will reverse the motor. A center, neutral (off) position is also included.
The present invention has now been described with reference to several embodiments thereof. It will be apparent to those skilled in the art that many changes or additions can be made in the embodiments described without departing from the scope of the present invention. Thus, the scope of the present invention should not be limited to the structures described in this application, but only by structures described by the language of the claims and the equivalents of those structures.

Claims (36)

1. A rechargeable battery adapted to be repeatably and releasably attached to an orthopedic drive assembly, the orthopedic drive assembly having elongate drive and handle portions, a battery receiving portion having a pair of tracks defining flanges, a pair of battery terminals, and a blocking member movable between latched and release positions;
said battery comprising:
an autoclavable battery housing having top and bottom portions, at least one cell within the battery housing and a pair of battery contacts adjacent the top portion of the housing and situated to engage the battery terminals of the orthopedic drive assembly,
releasable attachment means for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion,
said releasable attachment means comprising:
a) the battery having a pair of grooves adapted to receive the flanges of the tracks, and
b) a slot for receiving the blocking member when the blocking member is in the latched position.
2. A rechargeable battery according to claim 1 wherein each of the battery terminals comprise a substantially flat plate member having opposite side surfaces, and
each of said battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
3. A rechargeable battery according to claim 1 wherein said battery contacts each include a first end fixedly attached to said top portion of said battery housing and a second end adapted to abut a support shoulder of the top portion of the battery housing.
4. A rechargeable battery according to claim 1 wherein said battery housing comprises opposite, substantially flat front and rear walls constructed from a material suitable for protecting the cell(s) during an autoclave procedure,
said battery comprises eight substantially cylindrical cells having longitudinal axes, said eight cylindrical cells being arranged in:
a) a front row of three cells substantially adjacent said front wall within the battery housing,
b) a rear row of three cells substantially adjacent said rear wall within the battery housing, and
c) a middle row of two cells between said front and rear rows wherein all eight cells are within the battery housing.
5. A rechargeable battery according to claim 1 wherein the slot is sized and shaped to engage the blocking member to lock the battery to the battery receiving portion when the blocking member is in the latched position.
6. A rechargeable battery according to claim 1 wherein the battery further includes means for automatically moving the blocking member from the latched toward the release position as the battery is mounted to the battery receiving portion.
7. A rechargeable battery according to claim 6 wherein the means for automatically moving the blocking member comprises a ramped surface on the top portion of the battery housing.
8. A rechargeable battery adapted to be repeatably and releasably attached to an orthopedic drive assembly, the orthopedic drive assembly having elongate drive and handle portions, a battery receiving portion having a pair of tracks defining flanges, a pair of battery terminals, and a blocking member movable between latched and release positions;
said battery comprising a battery housing having top and bottom portions, at least one cell within the battery housing, and a pair of battery contacts adjacent the top portion of the housing and situated to engage the battery terminals of the orthopedic drive assembly when the battery is fully received by the orthopedic drive assembly,
releasable attachment means for releasably attaching the battery to the battery receiving portion, said releasable attachment means comprising:
a) the battery having a pair of grooves adapted to receive the flanges of the tracks, and
b) a slot for receiving the blocking member when the blocking member is in the latched position, wherein the slot is sized and shaped to engage the blocking member to lock the battery to the battery receiving portion when the blocking member is in the latched position.
9. A rechargeable battery according to claim 8 wherein the battery further includes means for automatically moving the blocking member from the latched toward the release position as the battery is mounted to the battery receiving portion.
10. A rechargeable battery according to claim 9 wherein the means for automatically moving the blocking member comprises a ramped surface on the top portion of the battery housing.
11. A rechargeable battery according to claim 8 wherein each of the battery terminals comprise a substantially flat plate member having opposite side surfaces, and
each of said battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
12. A rechargeable battery according to claim 8 wherein said battery contacts each include a first end fixedly attached to said top portion of said battery housing and a second end adapted to abut a support shoulder of the top portion of the battery housing.
13. A powered device with a detachable, rechargeable battery comprising:
a housing having an electric motor associated therewith, an elongate handgrip portion, and a battery receiving portion attached to a bottom end of the handgrip portion, the battery receiving portion including battery terminals, the battery terminals being electrically connected to the electric motor via a power switch for delivering electric power to the electric motor;
a battery comprising a battery casing, at least one rechargeable battery cell housed inside of the battery casing, and battery contacts adapted to contact the battery terminals formed on the housing when the battery is attached to the housing, the at least one rechargeable battery cell being electrically connected to the battery contacts; and
wherein one of the housing or the battery casings has a pair of flange formed thereon, and the other of the housing or the battery casing has a pair of mounting grooves formed thereon which engage the pair of flanges in a direction of engagement other than the general direction of elongation of the handgrip portion when the rechargeable battery is mounted to the housing; and
wherein the handgrip portion does not house any part of the electric motor.
14. The tool of claim 13 wherein a drill chuck is operatively connected to the electric motor to drive a drill.
15. The tool of claim 13 further comprising means for releasably securing the battery to the battery receiving portion.
16. The tool of claim 13 wherein the rechargeable battery cell comprises at least two electrically connected, individual, rechargeable, cylindrical battery cells arranged in a plurality of rows and housed inside of the battery casing.
17. The tool of claim 13 wherein the pair of flanges or the pair of mounting grooves that is formed on the battery casing is at least one-third the length of a top portion of the battery casing.
18. The tool of claim 13 wherein the rechargeable battery cell comprises at least five series electrically connected, individual, rechargeable, cylindrical battery cells arranged in a plurality of rows and housed inside of the battery casing; and
the pair of flanges or the pair of mounting grooves that is formed on the battery casing is at least one-third the length of a top portion of the battery casing.
19. The tool of claim 16 wherein the battery casing comprises two halves joined together, and each of the halves formed approximately a half of a top portion of the battery casing and a half of a bottom portion of the battery casing.
20. The tool of claim 16 wherein the pair of flanges is a pair of parallel flanges, and the pair of mounting grooves is a pair of parallel mounting grooves.
21. The tool of claim 13 wherein the housing further comprises a motor portion attached to a top end of the handgrip portion opposite the handgrip portion's bottom end, and wherein a longitudinal axis of the handgrip portion intersects the motor portion and the battery receiving portion and the battery casing when the battery is attached to the housing.
22. The tool of claim 21 wherein the rechargeable battery cell comprises at least five electrically connected, individual, rechargeable, cylindrical battery cells arranged in a plurality of rows and housed inside of the battery casing.
23. The tool of claim 22 wherein the pair of flanges or the pair of mounting grooves that is formed on the battery casing is formed on a top portion of the battery casing opposite a bottom portion with a generally flat bottom surface.
24. The tool of claim 22 wherein the battery contacts are positioned on the top portion of the battery casing between the pair of flanges or the pair of mounting grooves that is formed on the battery casing.
25. The tool of claim 13 wherein the battery casing further comprises a top portion and an opposite bottom portion, the bottom portion having a substantially flat bottom surface that is parallel to the direction of engagement, and wherein the pair of flanges or the pair of mounting grooves that is formed on the battery casing is formed on the top portion of the battery casing.
26. The tool of claim 25 wherein the battery contacts are positioned between the pair of flanges or the pair of mounting grooves that is formed on the battery casing.
27. The tool of claim 26 wherein the battery contacts and the battery terminals comprise a substantially flat plate member having opposite side surfaces, and resilient deflecting members which engage the opposite side surfaces of the plate member.
28. A powered device with a detachable, rechargeable battery comprising:
a housing having an electric motor associated therewith, an elongate handgrip portion, and a battery receiving portion attached to a bottom end of the handgrip portion, the battery receiving portion including battery terminals, the battery terminals being electrically connected to the electric motor via a power switch for delivering electric power to the electric motor;
a battery comprising a battery casing, at least one rechargeable battery cell housed inside of the battery casing, and battery contacts adapted to contact the battery terminals formed on the housing when the battery is attached to the housing, the at least one rechargeable battery cell being electrically connected to the battery contacts; and
a drill chuck operatively connected to the electric motor to drive a drill;
wherein one of the housing or the battery casing has a pair of flanges formed thereon, and the other of the housing or the battery casing has a pair of mounting grooves formed thereon which engage the pair of flanges in a direction of engagement other than the general direction of elongation of the handgrip portion when the rechargeable battery is mounted to the housing.
29. The tool of claim 28 wherein the electric motor drives a planetary gear transmission, and the planetary gear transmission drives a drive spindle adapted to mount the drill chuck.
30. The tool of claim 28 wherein the rotary axis of the electric motor is parallel to the direction of engagement.
31. The tool of claim 28 wherein the rechargeable battery cell comprises at least five electrically connected, individual, rechargeable, cylindrical battery cells arranged in a plurality of rows in a single plane and housed inside of the battery casing.
32. The tool of claim 31 wherein the longitudinal axes of all of the battery cells are parallel to each other and perpendicular to the single plane.
33. A powered device with a detachable, rechargeable battery comprising:
a housing having an electric motor associated therewith, an elongate handgrip portion, and a battery receiving portion attached to a bottom end of the handgrip portion, the battery receiving portion including battery terminals, the battery terminals being electrically connected to the electric motor via a power switch for delivering electric power to the electric motor; and
a battery comprising a battery casing, at least five electrically connected, individual, rechargeable, cylindrical battery cells arranged in a plurality of rows in a single plane and housed inside of the battery casing, and battery contacts adapted to contact the battery terminals formed on the housing when the battery is attached to the housing, the battery cells being electrically connected to the battery contacts;
wherein one of the housing or the battery casing has a pair of flanges formed thereon, and the other of the housing or the battery casing has a pair of mounting grooves formed thereon which engage the pair of flanges when the rechargeable battery is mounted to the housing.
34. The tool of claim 33 wherein a drill chuck is operatively connected to the electric motor to drive a drill.
35. The tool of claim 33 further comprising a saw blade mounted for reciprocating motion and driven by the electric motor.
36. The tool of claim 33 wherein the pair of flanges is a pair of parallel flanges, and the pair of mounting grooves is a pair of parallel mounting grooves.
US11/129,760 1994-06-10 2005-05-16 Combination rechargeable, detachable battery system and power tool Expired - Lifetime USRE40681E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/129,760 USRE40681E1 (en) 1994-06-10 2005-05-16 Combination rechargeable, detachable battery system and power tool

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/258,338 US5553675A (en) 1994-06-10 1994-06-10 Orthopedic surgical device
US08/692,886 US5792573A (en) 1994-06-10 1996-07-24 Rechargeable battery adapted to be attached to orthopedic device
US63733900A 2000-08-11 2000-08-11
US09/954,526 USRE40848E1 (en) 1994-06-10 2001-03-05 Combination rechargeable, detachable battery system and power tool
US11/129,760 USRE40681E1 (en) 1994-06-10 2005-05-16 Combination rechargeable, detachable battery system and power tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/692,886 Reissue US5792573A (en) 1994-06-10 1996-07-24 Rechargeable battery adapted to be attached to orthopedic device

Publications (1)

Publication Number Publication Date
USRE40681E1 true USRE40681E1 (en) 2009-03-24

Family

ID=22980132

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/258,338 Expired - Lifetime US5553675A (en) 1994-06-10 1994-06-10 Orthopedic surgical device
US08/692,886 Ceased US5792573A (en) 1994-06-10 1996-07-24 Rechargeable battery adapted to be attached to orthopedic device
US09/954,526 Expired - Lifetime USRE40848E1 (en) 1994-06-10 2001-03-05 Combination rechargeable, detachable battery system and power tool
US11/129,760 Expired - Lifetime USRE40681E1 (en) 1994-06-10 2005-05-16 Combination rechargeable, detachable battery system and power tool

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/258,338 Expired - Lifetime US5553675A (en) 1994-06-10 1994-06-10 Orthopedic surgical device
US08/692,886 Ceased US5792573A (en) 1994-06-10 1996-07-24 Rechargeable battery adapted to be attached to orthopedic device
US09/954,526 Expired - Lifetime USRE40848E1 (en) 1994-06-10 2001-03-05 Combination rechargeable, detachable battery system and power tool

Country Status (3)

Country Link
US (4) US5553675A (en)
JP (1) JP3018959U (en)
DE (1) DE29509191U1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133496A1 (en) * 2009-12-07 2011-06-09 Black & Decker Inc. Anti-theft system
EP2400755A1 (en) 2010-06-24 2011-12-28 Black & Decker Inc. Remote inspection device
US8312937B2 (en) 2001-08-24 2012-11-20 Black & Decker Inc. Battery for a power tool with a battery pack ejector
US8786233B2 (en) 2011-04-27 2014-07-22 Medtronic Xomed, Inc. Electric ratchet for a powered screwdriver
US8974932B2 (en) 2009-09-14 2015-03-10 Warsaw Orthopedic, Inc. Battery powered surgical tool with guide wire
US9461281B2 (en) 2010-10-08 2016-10-04 Milwaukee Electric Tool Corporation Battery retention system for a power tool
USD772806S1 (en) 2014-11-26 2016-11-29 Techtronic Industries Co. Ltd. Battery
US9687257B2 (en) 2014-06-04 2017-06-27 Zimmer Surgical, Inc. Pin wire driver device
USD790453S1 (en) 2015-08-06 2017-06-27 Andreas Stihl Ag & Co., Kg Battery pack
USD841572S1 (en) * 2016-03-08 2019-02-26 Briggs & Stratton Corporation Battery
US10231761B2 (en) 2009-09-14 2019-03-19 Warsaw Orthopedic, Inc. Surgical tool
US10245042B2 (en) * 2012-03-13 2019-04-02 Medtronic Xomed, Inc. Check valve vented sterilizable powered surgical handpiece
US11440176B2 (en) 2017-01-24 2022-09-13 Techtronic Cordless Gp Battery terminal holder for electric tools
US11678893B2 (en) 2017-02-10 2023-06-20 Zimmer, Inc. Systems for advancing a pin wire with a driver device

Families Citing this family (909)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
JPH08229852A (en) * 1995-02-23 1996-09-10 Makita Corp Battery pack connecting structure in power tool
DE19521423B4 (en) * 1995-06-14 2006-08-31 Robert Bosch Gmbh Hand tool with battery-powered drive motor and battery assembly for such a hand tool
DE19521426B4 (en) * 1995-06-14 2006-04-27 Robert Bosch Gmbh Hand tool with battery powered drive motor
JP3152131B2 (en) * 1995-11-02 2001-04-03 日立工機株式会社 Battery tool
US5697158A (en) * 1995-12-21 1997-12-16 Minnesota Mining And Manufacturing Company Orthopedic surgical device having a rotatable portion and lock
JPH1015851A (en) * 1996-07-05 1998-01-20 Nippon Electric Ind Co Ltd Locking mechanism of battery pack for power tool
US5902080A (en) * 1997-07-11 1999-05-11 Roto Zip Tool Corporation Spiral cutting tool with detachable battery pack
US5998965A (en) * 1998-04-13 1999-12-07 Conair Corporation Direct plug in power tool using single pair of contacts for both AC and DC currents
US6357534B1 (en) 1998-04-20 2002-03-19 Illinois Tool Works Inc Battery pack latching assembly for fastener driving tool
US6012622A (en) * 1998-04-20 2000-01-11 Illinois Tool Works Inc. Fastener driving tool for trim applications
US6057608A (en) * 1998-08-13 2000-05-02 Black & Decker Inc. Cordless power tool system
US6996909B1 (en) * 1998-08-13 2006-02-14 Black & Decker Inc. Battery powered circular saw
US6304058B2 (en) 1998-08-13 2001-10-16 Black & Decker Inc. Cordless power tool system
US6168881B1 (en) 1998-08-14 2001-01-02 S-B Power Tool Company Latch mechanism for a battery operated power tool
US6887244B1 (en) * 1998-12-16 2005-05-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
US6126670A (en) * 1998-12-16 2000-10-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
US6296065B1 (en) * 1998-12-30 2001-10-02 Black & Decker Inc. Dual-mode non-isolated corded system for transportable cordless power tools
DE19905086A1 (en) * 1999-01-29 2000-08-03 Black & Decker Inc N D Ges D S Battery operated, hand-held power tool
DE19905085A1 (en) * 1999-01-29 2000-08-03 Black & Decker Inc N D Ges D S Battery operated, hand-held power tool
US6139359A (en) * 1999-04-08 2000-10-31 Snap-On Tools Company Cordless screwdriver and multi-position battery pack therefor
WO2000065674A1 (en) * 1999-04-23 2000-11-02 Koninklijke Philips Electronics N.V. Electrical appliance with battery holder
US6656626B1 (en) * 1999-06-01 2003-12-02 Porter-Cable Corporation Cordless power tool battery release mechanism
JP3698296B2 (en) 1999-08-19 2005-09-21 株式会社マキタ Terminal structure
DE10066273B4 (en) * 1999-08-19 2006-12-14 Makita Corp., Anjo Terminal structure for battery pack, includes alterable number of elastic board formed on receptacle in entry direction of male terminal, for fitting male terminal
DE10040893B4 (en) * 1999-08-19 2005-09-08 Makita Corp., Anjo Structure of electrical connections for establishing an electrical contact between a battery part and an electrical device
JP3792967B2 (en) * 1999-11-15 2006-07-05 株式会社マキタ Battery pack and power tool
DE19955026B4 (en) * 1999-11-16 2004-07-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hand drill that can be operated by electric motor for introducing an elongated fixing aid under sterile conditions into a bone or into bone parts
US6286609B1 (en) * 1999-12-10 2001-09-11 Black & Decker Inc. AC/DC chopper for power tool
SE520916C2 (en) * 1999-12-28 2003-09-09 Atlas Copco Tools Ab Nut wrench with torque clutch with trigger sensor for power shut-off
JP4097376B2 (en) * 1999-12-28 2008-06-11 日立工機株式会社 Battery powered portable power tool
US6443675B1 (en) * 2000-02-17 2002-09-03 Roto Zip Tool Corporation Hand-held power tool
US7443137B2 (en) * 2000-08-11 2008-10-28 Milwaukee Electric Tool Corporation Adapter for a power tool battery
US6525511B2 (en) * 2000-08-11 2003-02-25 Milwaukee Electric Tool Corporation Adapter for a power tool battery
EP1324710A1 (en) * 2000-09-29 2003-07-09 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US6552904B2 (en) * 2001-08-13 2003-04-22 Black & Decker Inc. Power tool with heat sink assembly
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US7609027B2 (en) 2001-11-09 2009-10-27 Milwaukee Electric Tool Corporation Electrical component, audio component, or electrical combination having a selectively connectable battery charger
US20080177268A1 (en) * 2002-02-14 2008-07-24 Wolfgang Daum Minimally-Invasive Approach to Bone-Obstructed Soft Tissue
DE10212750B4 (en) * 2002-03-22 2006-04-20 Robert Bosch Gmbh Battery pack system for hand tool machines
CN100511299C (en) * 2002-04-11 2009-07-08 传感电子公司 System and method for managing assets using a portable combined electronic article surveillance system and barcode scanner
US6786381B2 (en) * 2002-05-24 2004-09-07 Illinois Tool Works Inc. Anti-oxidant battery contacts for fastener-driving tool
AUPS319102A0 (en) * 2002-06-25 2002-07-18 Thorlock International Limited Low ESR switch for nuclear resonance measurements (#13)
US6729414B2 (en) * 2002-07-16 2004-05-04 Black & Decker Inc. Cordless drill with metal housing
US6756766B2 (en) * 2002-07-19 2004-06-29 Eagle-Pitcher Industries, Inc. Autoclavable battery pack
US6929619B2 (en) * 2002-08-02 2005-08-16 Liebel-Flarshiem Company Injector
US8471532B2 (en) 2002-11-22 2013-06-25 Milwaukee Electric Tool Corporation Battery pack
US7589500B2 (en) 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7131180B2 (en) * 2003-01-08 2006-11-07 Credo Technology Corporation Attachment for power tool
US7854054B2 (en) * 2003-01-08 2010-12-21 Robert Bosch Tool Corporation Attachment for power tool
US6729415B1 (en) * 2003-04-18 2004-05-04 Techway Industrial Co., Ltd. Portable electric tool with bi-directionally mountable battery holder
DE10318947A1 (en) * 2003-04-26 2004-11-18 Robert Bosch Gmbh Electric hand tool with battery pack
US7325846B2 (en) 2003-05-07 2008-02-05 Hewlett-Packard Development Company, L.P. Low profile mechanical assist hood latch
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US6955549B2 (en) * 2003-05-28 2005-10-18 One World Technologies Limited Slide type battery ejection mechanism
US7125270B2 (en) * 2003-05-28 2006-10-24 Eastway Fair Trade Company Limited Slide type battery ejection mechanism
US7121854B2 (en) * 2003-05-28 2006-10-17 Eastway Fair Company Limited Slide type battery ejection mechanism
US7189473B2 (en) * 2003-06-03 2007-03-13 Eastway Fair Company Limited Battery venting system
US7504176B2 (en) * 2003-07-11 2009-03-17 Arris International, Inc. Capturing mechanism with a flexible tongue having guidetabs comprising hooks
US20050058890A1 (en) * 2003-09-15 2005-03-17 Kenneth Brazell Removable battery pack for a portable electric power tool
US7835534B2 (en) 2003-10-14 2010-11-16 Robert Bosch Gmbh Battery charging jobsite lunchbox
US8604752B2 (en) 2003-10-14 2013-12-10 Robert Bosch Gmbh Portable battery charging and audio unit
US10588629B2 (en) 2009-11-20 2020-03-17 Covidien Lp Surgical console and hand-held surgical device
US11311291B2 (en) 2003-10-17 2022-04-26 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10022123B2 (en) 2012-07-09 2018-07-17 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10105140B2 (en) * 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US20050096661A1 (en) * 2003-10-31 2005-05-05 Medtronic, Inc. Insulated battery pack and method of manufacturing same
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
DE102004012071A1 (en) * 2004-03-12 2005-09-29 Robert Bosch Gmbh Electric hand tool and power supply module for a power hand tool
US7967605B2 (en) 2004-03-16 2011-06-28 Guidance Endodontics, Llc Endodontic files and obturator devices and methods of manufacturing same
DE102004021537A1 (en) * 2004-05-03 2005-12-08 Robert Bosch Gmbh Electric motor and gear drive unit for actuators in the motor vehicle
US20060011367A1 (en) * 2004-07-19 2006-01-19 Mobiletron Electronics Co., Ltd. Electric hand tool
US7354447B2 (en) 2005-11-10 2008-04-08 Ethicon Endo-Surgery, Inc. Disposable loading unit and surgical instruments including same
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
WO2006015319A2 (en) 2004-07-30 2006-02-09 Power Medical Interventions, Inc. Flexible shaft extender and method of using same
DE102004043828B4 (en) 2004-09-10 2018-09-13 Robert Bosch Gmbh battery Pack
AU2005295010B2 (en) 2004-10-08 2012-05-31 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument
CN2762964Y (en) * 2005-01-10 2006-03-08 南京德朔实业有限公司 Electric tool power supplied by battery
US11291443B2 (en) 2005-06-03 2022-04-05 Covidien Lp Surgical stapler with timer and feedback display
CN102988087B (en) 2005-07-27 2015-09-09 柯惠Lp公司 Such as the axle of electro-mechanical surgical device
DE102005036448A1 (en) * 2005-08-03 2007-02-08 Robert Bosch Gmbh Electrical appliance, in particular electric hand tool
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7407078B2 (en) 2005-09-21 2008-08-05 Ehthicon Endo-Surgery, Inc. Surgical stapling instrument having force controlled spacing end effector
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
DE102005050781B4 (en) 2005-10-24 2018-04-19 Robert Bosch Gmbh Device for locking a power tool and a battery pack displaceable in a guide of the power tool
US7618741B2 (en) * 2005-10-31 2009-11-17 Black & Decker Inc. Battery pack, charger and terminal block arrangements for cordless power tool system
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7749651B2 (en) * 2005-11-28 2010-07-06 Greatbatch Ltd. Terminal connector for connecting an electrochemical cell to a medical device
US7741809B2 (en) 2006-01-06 2010-06-22 Milwaukee Electric Tool Corporation Electrical component including a battery receptacle for including a battery
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
JP5040114B2 (en) * 2006-01-12 2012-10-03 マックス株式会社 Battery pack locking mechanism and power tool
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7464846B2 (en) * 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
GB0602469D0 (en) * 2006-02-07 2006-03-22 Orthomedex Ltd Method of manufacturing electrically powered surgicalinstruments, and electrically powered surgical instruments manufactured thereby
US8860377B2 (en) 2006-02-09 2014-10-14 Karl F. Scheucher Scalable intelligent power supply system and method
US7990102B2 (en) 2006-02-09 2011-08-02 Karl Frederick Scheucher Cordless power supply
US8026698B2 (en) * 2006-02-09 2011-09-27 Scheucher Karl F Scalable intelligent power supply system and method
US7838142B2 (en) * 2006-02-09 2010-11-23 Scheucher Karl F Scalable intelligent power supply system and method
US8131145B2 (en) 2006-02-09 2012-03-06 Karl Frederick Scheucher Lightweight cordless security camera
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
EP2004362A4 (en) * 2006-03-23 2010-09-29 Demain Technology Pty Ltd A power tool guard
US8721630B2 (en) 2006-03-23 2014-05-13 Ethicon Endo-Surgery, Inc. Methods and devices for controlling articulation
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US7619387B2 (en) * 2006-05-08 2009-11-17 Ingersoll-Rand Company Battery pack attachment arrangement
US20070278326A1 (en) * 2006-05-30 2007-12-06 Scott Wu Sprayer with detachable rechargeable battery
EP1863106B1 (en) * 2006-06-01 2009-12-23 Scott Wu Sprayer with detachable rechargeable battery
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
USD632649S1 (en) 2006-09-29 2011-02-15 Karl F. Scheucher Cordless power supply
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US7659694B2 (en) * 2006-10-02 2010-02-09 Snap-On Incorporated Self-aligning terminal block for battery pack
DE102006058867A1 (en) * 2006-12-07 2008-06-12 Aesculap Ag & Co. Kg Surgical switching power supply and surgical DC power tool
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8084154B2 (en) 2007-02-08 2011-12-27 Karl Frederick Scheucher Battery pack safety and thermal management apparatus and method
US8228029B2 (en) * 2007-02-23 2012-07-24 Milwaukee Electric Tool Corporation Power tool, battery pack, and method of operating the same
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8546739B2 (en) * 2007-03-30 2013-10-01 Min-Chih Hsuan Manufacturing method of wafer level chip scale package of image-sensing module
US8618772B2 (en) * 2007-04-03 2013-12-31 Lockheed Martin Corporation Transportable electrical energy storage system including enclosure with charging and output circuitry containing interconnectable cells
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
JP4977533B2 (en) * 2007-06-07 2012-07-18 株式会社マキタ Portable electric tool
US20080305387A1 (en) * 2007-06-11 2008-12-11 Black & Decker Inc. Cordless power tool system
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) * 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US20090047572A1 (en) * 2007-08-16 2009-02-19 Micropower Electronics, Inc. Controlled pressure release for packaged batteries and associated systems and methods
US8398642B2 (en) * 2007-09-20 2013-03-19 Symmetry Medical, Inc. Dual reamer driver
WO2009039510A1 (en) 2007-09-21 2009-03-26 Power Medical Interventions, Inc. Surgical device
DE202007014418U1 (en) * 2007-09-21 2007-12-06 Robert Bosch Gmbh locking device
US8323284B2 (en) * 2007-09-24 2012-12-04 Symmetry Medical Manufacturing, Inc. Adapter driver for orthopaedic reamer
US8439920B2 (en) 2007-09-25 2013-05-14 Symmetry Medical Manufacturing, Inc. Adapter for a surgical reamer driver
US10498269B2 (en) 2007-10-05 2019-12-03 Covidien Lp Powered surgical stapling device
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
US10779818B2 (en) 2007-10-05 2020-09-22 Covidien Lp Powered surgical stapling device
US9168188B2 (en) 2007-11-13 2015-10-27 Orthopediatrics Corporation Cast removal system
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8419758B2 (en) 2007-12-03 2013-04-16 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US9017355B2 (en) * 2007-12-03 2015-04-28 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
JP2010030024A (en) * 2008-07-31 2010-02-12 Makita Corp Electric devices
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
JP5138501B2 (en) * 2008-08-11 2013-02-06 株式会社マキタ Brush cutter with removable battery pack
JP5130147B2 (en) * 2008-08-11 2013-01-30 株式会社マキタ Brush cutter with versatile operation rod
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
CN101714647B (en) * 2008-10-08 2012-11-28 株式会社牧田 Battery pack for power tool, and power tool
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US9711868B2 (en) * 2009-01-30 2017-07-18 Karl Frederick Scheucher In-building-communication apparatus and method
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
DE102009012184A1 (en) * 2009-02-27 2010-09-02 Andreas Stihl Ag & Co. Kg Portable, hand-held electrical appliance with a battery pack
DE102009012175A1 (en) * 2009-02-27 2010-09-02 Andreas Stihl Ag & Co. Kg Electrical appliance with a battery pack
US8472881B2 (en) 2009-03-31 2013-06-25 Karl Frederick Scheucher Communication system apparatus and method
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20110066156A1 (en) * 2009-09-14 2011-03-17 Warsaw Orthopedic, Inc. Surgical Tool
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
JP5461221B2 (en) * 2010-02-12 2014-04-02 株式会社マキタ Electric tool powered by multiple battery packs
JP5432761B2 (en) * 2010-02-12 2014-03-05 株式会社マキタ Electric tool powered by multiple battery packs
WO2012128680A1 (en) * 2011-03-22 2012-09-27 Husqvarna Ab Battery pack for a battery powered tool
US8689901B2 (en) * 2010-05-12 2014-04-08 X'pole Precision Tools Inc. Electric power tool
EP3756834B1 (en) 2010-07-02 2021-12-08 Husqvarna Ab Battery powered tool
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8859133B2 (en) * 2010-08-17 2014-10-14 GM Global Technology Operations LLC Repeating frame battery with compression joining of cell tabs to welded connection terminals
JP2013126430A (en) * 2010-08-25 2013-06-27 Kevin W Smith Battery-powered hand-held ultrasonic surgical cautery cutting device
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
CA2812553C (en) 2010-09-30 2019-02-12 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US8695726B2 (en) 2010-12-29 2014-04-15 Medical Enterprises LLC Electric motor driven tool for orthopedic impacting
US8602124B2 (en) 2010-12-29 2013-12-10 Medical Enterprises, Llc Electric motor driven tool for orthopedic impacting
FR2971180B1 (en) * 2011-02-09 2013-02-15 Georges Renault PORTABLE TURNING MOTORIZED TOOL WITH ACTUATING MEANS INCLUDING A SWIVELING LEVER THROUGH ONE OF ITS ENDS
US9549758B2 (en) 2011-03-23 2017-01-24 Covidien Lp Surgical access assembly with adapter
US9654050B2 (en) 2011-03-31 2017-05-16 Ingersoll-Rand Company Forward/reverse switching device for power tools
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
FR2976408B1 (en) * 2011-06-10 2013-07-05 Peugeot Citroen Automobiles Sa DEVICE FOR COOLING CYLINDRICAL ELECTROCHEMICAL CELLS
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
WO2013026920A1 (en) 2011-08-25 2013-02-28 Endocontrol Surgical instrument with disengageable handle
DE102011113127B4 (en) * 2011-09-14 2015-05-13 Olaf Storz Medical handset and power unit
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
JP6017257B2 (en) * 2011-10-20 2016-10-26 株式会社マキタ Cutting machine
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US11207089B2 (en) 2011-10-25 2021-12-28 Covidien Lp Apparatus for endoscopic procedures
US9364231B2 (en) 2011-10-27 2016-06-14 Covidien Lp System and method of using simulation reload to optimize staple formation
JP5603504B2 (en) * 2011-10-28 2014-10-08 川崎重工業株式会社 Straddle-type electric vehicle
WO2013074485A2 (en) * 2011-11-17 2013-05-23 Stryker Corporation Battery capable of withstanding the effects of liquid submersion
JP2013121628A (en) * 2011-12-09 2013-06-20 Makita Corp Power tool
DE102011088748A1 (en) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Portable machine tool e.g. oscillation hand-held power tool has insulating unit that is provided to insulate the sheath housing element that is electrically connected to projecting portion of the driven element
EP2790747B1 (en) 2011-12-16 2020-06-17 Stryker Corporation Specimen collection cassette and medical/surgical collection system
US9326812B2 (en) 2012-01-25 2016-05-03 Covidien Lp Portable surgical instrument
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
DE102012104538A1 (en) 2012-05-25 2013-11-28 Gustav Klauke Gmbh Tool
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US10080563B2 (en) 2012-06-01 2018-09-25 Covidien Lp Loading unit detection assembly and surgical device for use therewith
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10492814B2 (en) 2012-07-09 2019-12-03 Covidien Lp Apparatus for endoscopic procedures
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9669534B2 (en) * 2012-08-17 2017-06-06 Makita Corporation Electric tool having housing, tool holder, shoe and battery mounting portion which slidably receives battery
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US10918364B2 (en) 2013-01-24 2021-02-16 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
GB2515448B (en) 2013-03-06 2017-02-01 De Soutter Medical Ltd Surgical saw mount and blade
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10232479B2 (en) 2013-05-06 2019-03-19 Milwaukee Electric Tool Corporation Power tool including a battery pack isolation system
JP5490943B2 (en) * 2013-05-28 2014-05-14 リョービ株式会社 Battery pack
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9801646B2 (en) 2013-05-30 2017-10-31 Covidien Lp Adapter load button decoupled from loading unit sensor
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
JP5730949B2 (en) * 2013-07-03 2015-06-10 株式会社マキタ Electrical equipment
US9629633B2 (en) 2013-07-09 2017-04-25 Covidien Lp Surgical device, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9539006B2 (en) 2013-08-27 2017-01-10 Covidien Lp Hand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9955966B2 (en) 2013-09-17 2018-05-01 Covidien Lp Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US9962157B2 (en) 2013-09-18 2018-05-08 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9974540B2 (en) 2013-10-18 2018-05-22 Covidien Lp Adapter direct drive twist-lock retention mechanism
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US10236616B2 (en) 2013-12-04 2019-03-19 Covidien Lp Adapter assembly for interconnecting surgical devices and surgical attachments, and surgical systems thereof
ES2755485T3 (en) 2013-12-09 2020-04-22 Covidien Lp Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof
US10561417B2 (en) 2013-12-09 2020-02-18 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
EP3578119B1 (en) 2013-12-11 2021-03-17 Covidien LP Wrist and jaw assemblies for robotic surgical systems
US10220522B2 (en) 2013-12-12 2019-03-05 Covidien Lp Gear train assemblies for robotic surgical systems
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US10226305B2 (en) 2014-02-12 2019-03-12 Covidien Lp Surgical end effectors and pulley assemblies thereof
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
CN106456189B (en) * 2014-03-20 2019-02-15 史赛克公司 Surgical tool with ambidextrous safety switch
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10660713B2 (en) 2014-03-31 2020-05-26 Covidien Lp Wrist and jaw assemblies for robotic surgical systems
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10164466B2 (en) 2014-04-17 2018-12-25 Covidien Lp Non-contact surgical adapter electrical interface
US10080552B2 (en) 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9913643B2 (en) 2014-05-09 2018-03-13 Covidien Lp Interlock assemblies for replaceable loading unit
US9713466B2 (en) 2014-05-16 2017-07-25 Covidien Lp Adaptor for surgical instrument for converting rotary input to linear output
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
US10163589B2 (en) 2014-06-26 2018-12-25 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9763661B2 (en) 2014-06-26 2017-09-19 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10561418B2 (en) 2014-06-26 2020-02-18 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9839425B2 (en) 2014-06-26 2017-12-12 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
WO2016002543A1 (en) * 2014-06-30 2016-01-07 日立工機株式会社 Electric tool
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
FR3032558B3 (en) * 2015-02-10 2017-04-28 Techtronic Ind Co Ltd BATTERY ASSEMBLY AND BATTERY TROLLEY FOR USE IN AN ELECTRIC TOOL AND BATTERY CHARGER
WO2016057225A1 (en) 2014-10-07 2016-04-14 Covidien Lp Handheld electromechanical surgical system
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10729443B2 (en) 2014-10-21 2020-08-04 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10226254B2 (en) 2014-10-21 2019-03-12 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10085750B2 (en) 2014-10-22 2018-10-02 Covidien Lp Adapter with fire rod J-hook lockout
US9949737B2 (en) 2014-10-22 2018-04-24 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
EP3653139A3 (en) 2014-10-30 2020-07-01 Stryker Far East, Inc. Surgical tool with an aseptic power module that enters a specific operating state based on the type of handpiece to which the module is attached
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10111665B2 (en) 2015-02-19 2018-10-30 Covidien Lp Electromechanical surgical systems
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
JP6772165B2 (en) * 2015-02-27 2020-10-21 エシコン エルエルシーEthicon LLC Surgical charging system for charging and / or adjusting one or more batteries
CN104720867B (en) * 2015-02-28 2017-06-13 芜湖锐进医疗设备有限公司 Multifunctional double-headed medical hand drill
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9895148B2 (en) * 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10190888B2 (en) 2015-03-11 2019-01-29 Covidien Lp Surgical stapling instruments with linear position assembly
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
JP6686041B2 (en) 2015-04-03 2020-04-22 コンメッド コーポレイション Automatic split resistant battery electric surgical handpiece tool and electric control method
US11432902B2 (en) 2015-04-10 2022-09-06 Covidien Lp Surgical devices with moisture control
US10226239B2 (en) 2015-04-10 2019-03-12 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10327779B2 (en) 2015-04-10 2019-06-25 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
WO2016171947A1 (en) 2015-04-22 2016-10-27 Covidien Lp Handheld electromechanical surgical system
US11278286B2 (en) 2015-04-22 2022-03-22 Covidien Lp Handheld electromechanical surgical system
US10299789B2 (en) 2015-05-05 2019-05-28 Covidie LP Adapter assembly for surgical stapling devices
US10117650B2 (en) 2015-05-05 2018-11-06 Covidien Lp Adapter assembly and loading units for surgical stapling devices
US10615670B2 (en) * 2015-06-05 2020-04-07 Ingersoll-Rand Industrial U.S., Inc. Power tool user interfaces
US11260517B2 (en) 2015-06-05 2022-03-01 Ingersoll-Rand Industrial U.S., Inc. Power tool housings
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10388921B2 (en) 2015-07-22 2019-08-20 Tti (Macao Commercial Offshore) Limited Latching mechanism for a battery pack
US10751058B2 (en) 2015-07-28 2020-08-25 Covidien Lp Adapter assemblies for surgical devices
US11285300B2 (en) * 2015-08-12 2022-03-29 Vesatek, Llc System and method for manipulating an elongate medical device
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10806454B2 (en) 2015-09-25 2020-10-20 Covidien Lp Robotic surgical assemblies and instrument drive connectors thereof
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10371238B2 (en) 2015-10-09 2019-08-06 Covidien Lp Adapter assembly for surgical device
US10413298B2 (en) 2015-10-14 2019-09-17 Covidien Lp Adapter assembly for surgical devices
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10292705B2 (en) 2015-11-06 2019-05-21 Covidien Lp Surgical apparatus
US10729435B2 (en) 2015-11-06 2020-08-04 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10939952B2 (en) 2015-11-06 2021-03-09 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10617411B2 (en) 2015-12-01 2020-04-14 Covidien Lp Adapter assembly for surgical device
US10433841B2 (en) 2015-12-10 2019-10-08 Covidien Lp Adapter assembly for surgical device
US10420554B2 (en) 2015-12-22 2019-09-24 Covidien Lp Personalization of powered surgical devices
US10253847B2 (en) 2015-12-22 2019-04-09 Covidien Lp Electromechanical surgical devices with single motor drives and adapter assemblies therfor
DE102016201802A1 (en) * 2015-12-22 2017-06-22 Robert Bosch Gmbh Hand tool
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10314579B2 (en) 2016-01-07 2019-06-11 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10524797B2 (en) 2016-01-13 2020-01-07 Covidien Lp Adapter assembly including a removable trocar assembly
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10660623B2 (en) 2016-01-15 2020-05-26 Covidien Lp Centering mechanism for articulation joint
US10508720B2 (en) 2016-01-21 2019-12-17 Covidien Lp Adapter assembly with planetary gear drive for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10398439B2 (en) 2016-02-10 2019-09-03 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10258331B2 (en) * 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10799239B2 (en) 2016-05-09 2020-10-13 Covidien Lp Adapter assembly with pulley system and worm gear drive for interconnecting electromechanical surgical devices and surgical end effectors
US10588610B2 (en) 2016-05-10 2020-03-17 Covidien Lp Adapter assemblies for surgical devices
US10736637B2 (en) 2016-05-10 2020-08-11 Covidien Lp Brake for adapter assemblies for surgical devices
US10463374B2 (en) 2016-05-17 2019-11-05 Covidien Lp Adapter assembly for a flexible circular stapler
US10702302B2 (en) 2016-05-17 2020-07-07 Covidien Lp Adapter assembly including a removable trocar assembly
AU2017272075B2 (en) 2016-05-26 2021-04-29 Covidien Lp Robotic surgical assemblies
JP6786881B2 (en) * 2016-05-30 2020-11-18 マックス株式会社 Electric tool
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
JP6683569B2 (en) * 2016-08-02 2020-04-22 ファナック株式会社 Encoder capable of erasing memory information and motor system including the same
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10653398B2 (en) 2016-08-05 2020-05-19 Covidien Lp Adapter assemblies for surgical devices
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
JP6789758B2 (en) * 2016-10-27 2020-11-25 株式会社マキタ Electric work machine
US10513005B2 (en) * 2016-11-02 2019-12-24 Makita Corporation Power tool
US11116594B2 (en) 2016-11-08 2021-09-14 Covidien Lp Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
EP4123784A1 (en) 2016-12-16 2023-01-25 Milwaukee Electric Tool Corporation Battery pack interface
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10631945B2 (en) 2017-02-28 2020-04-28 Covidien Lp Autoclavable load sensing device
US11272929B2 (en) 2017-03-03 2022-03-15 Covidien Lp Dynamically matching input and output shaft speeds of articulating adapter assemblies for surgical instruments
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
US10660641B2 (en) 2017-03-16 2020-05-26 Covidien Lp Adapter with centering mechanism for articulation joint
WO2018175983A1 (en) 2017-03-24 2018-09-27 Milwaukee Electric Tool Corporation Terminal configuration for a battery pack
US10390858B2 (en) 2017-05-02 2019-08-27 Covidien Lp Powered surgical device with speed and current derivative motor shut off
US10603035B2 (en) 2017-05-02 2020-03-31 Covidien Lp Surgical loading unit including an articulating end effector
US11324502B2 (en) 2017-05-02 2022-05-10 Covidien Lp Surgical loading unit including an articulating end effector
US11311295B2 (en) 2017-05-15 2022-04-26 Covidien Lp Adaptive powered stapling algorithm with calibration factor
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
TWM578899U (en) 2017-06-30 2019-06-01 美商米沃奇電子工具公司 Electrical combination, power tool system, electric motor assembly, electric motor, battery pack and motor assembly
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
EP3442080A1 (en) * 2017-08-09 2019-02-13 HILTI Aktiengesellschaft Plug connector for a battery unit
US10772700B2 (en) 2017-08-23 2020-09-15 Covidien Lp Contactless loading unit detection
US11331099B2 (en) 2017-09-01 2022-05-17 Rev Medica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US10695060B2 (en) 2017-09-01 2020-06-30 RevMedica, Inc. Loadable power pack for surgical instruments
US10966720B2 (en) 2017-09-01 2021-04-06 RevMedica, Inc. Surgical stapler with removable power pack
JP2020533061A (en) 2017-09-06 2020-11-19 コヴィディエン リミテッド パートナーシップ Boundary scaling of surgical robots
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11511407B2 (en) * 2017-11-02 2022-11-29 ECA Medical Instruments, Inc. Single use integrated speed reduction and gearless device
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
WO2019124985A1 (en) * 2017-12-20 2019-06-27 Samsung Electronics Co., Ltd. Motor and washing machine having the same
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11160556B2 (en) 2018-04-23 2021-11-02 Covidien Lp Threaded trocar for adapter assemblies
US11534172B2 (en) 2018-05-07 2022-12-27 Covidien Lp Electromechanical surgical stapler including trocar assembly release mechanism
US11896230B2 (en) 2018-05-07 2024-02-13 Covidien Lp Handheld electromechanical surgical device including load sensor having spherical ball pivots
US11399839B2 (en) 2018-05-07 2022-08-02 Covidien Lp Surgical devices including trocar lock and trocar connection indicator
SE542279C2 (en) 2018-06-15 2020-03-31 Atlas Copco Ind Technique Ab Actuator arrangement for a power tool
US20190388091A1 (en) 2018-06-21 2019-12-26 Covidien Lp Powered surgical devices including strain gauges incorporated into flex circuits
US11241233B2 (en) 2018-07-10 2022-02-08 Covidien Lp Apparatus for ensuring strain gauge accuracy in medical reusable device
DE102018118642A1 (en) * 2018-08-01 2020-02-06 Metabowerke Gmbh Interface for battery pack
US11596496B2 (en) 2018-08-13 2023-03-07 Covidien Lp Surgical devices with moisture control
US11076858B2 (en) 2018-08-14 2021-08-03 Covidien Lp Single use electronics for surgical devices
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11510669B2 (en) 2020-09-29 2022-11-29 Covidien Lp Hand-held surgical instruments
CN210610343U (en) 2018-09-27 2020-05-26 南京德朔实业有限公司 Lawn mower and blade assembly suitable for lawn mower
CA3114468C (en) 2018-09-27 2022-04-12 Nanjing Chervon Industry Co., Ltd. Lawn mower
US11717276B2 (en) 2018-10-30 2023-08-08 Covidien Lp Surgical devices including adapters and seals
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11241228B2 (en) 2019-04-05 2022-02-08 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11369378B2 (en) 2019-04-18 2022-06-28 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
USD995569S1 (en) 2019-04-18 2023-08-15 Nanjing Chervon Industry Co., Ltd. Mower blade assembly
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
USD912487S1 (en) 2019-06-12 2021-03-09 Techtronic Cordless Gp Interface of a power tool
US11123101B2 (en) 2019-07-05 2021-09-21 Covidien Lp Retaining mechanisms for trocar assemblies
US11426168B2 (en) 2019-07-05 2022-08-30 Covidien Lp Trocar coupling assemblies for a surgical stapler
US11464541B2 (en) 2019-06-24 2022-10-11 Covidien Lp Retaining mechanisms for trocar assembly
US11446035B2 (en) 2019-06-24 2022-09-20 Covidien Lp Retaining mechanisms for trocar assemblies
US11058429B2 (en) 2019-06-24 2021-07-13 Covidien Lp Load sensing assemblies and methods of manufacturing load sensing assemblies
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11564685B2 (en) 2019-07-19 2023-01-31 RevMedica, Inc. Surgical stapler with removable power pack
US11145929B2 (en) 2019-08-09 2021-10-12 Techtronic Cordless Gp Battery pack
KR20210026947A (en) * 2019-09-02 2021-03-10 주식회사 엘지화학 Connector
US11076850B2 (en) 2019-11-26 2021-08-03 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11737747B2 (en) 2019-12-17 2023-08-29 Covidien Lp Hand-held surgical instruments
US11291446B2 (en) 2019-12-18 2022-04-05 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11583275B2 (en) 2019-12-27 2023-02-21 Covidien Lp Surgical instruments including sensor assembly
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US20210196344A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Surgical system communication pathways
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11504117B2 (en) 2020-04-02 2022-11-22 Covidien Lp Hand-held surgical instruments
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
KR102402233B1 (en) 2020-07-16 2022-05-30 계양전기 주식회사 Battery connection terminal module for power tools
JP7047868B2 (en) * 2020-07-28 2022-04-05 マックス株式会社 Electric tool
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11660091B2 (en) 2020-09-08 2023-05-30 Covidien Lp Surgical device with seal assembly
US11571192B2 (en) 2020-09-25 2023-02-07 Covidien Lp Adapter assembly for surgical devices
US11771475B2 (en) 2020-10-07 2023-10-03 Globus Medical, Inc. Systems and methods for surgical procedures using band clamp implants and tensioning instruments
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
WO2022165215A1 (en) 2021-01-29 2022-08-04 Zimmer, Inc. Rotary electric surgical hammer impact tool
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11786248B2 (en) 2021-07-09 2023-10-17 Covidien Lp Surgical stapling device including a buttress retention assembly
US11819209B2 (en) 2021-08-03 2023-11-21 Covidien Lp Hand-held surgical instruments
US11862884B2 (en) 2021-08-16 2024-01-02 Covidien Lp Surgical instrument with electrical connection
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1036063A (en) 1911-08-07 1912-08-20 Charles H Bedell Ventilating and cooling system for batteries.
US1152247A (en) 1915-05-08 1915-08-31 William L Walker Battery-jar.
US2104772A (en) 1936-08-21 1938-01-11 American Forging & Socket Co Storage battery installation
US2261230A (en) * 1938-12-16 1941-11-04 Wilbur J Cox Surgical apparatus
US2460149A (en) * 1946-07-26 1949-01-25 Lothar W Schoensiegel Flexible rod driver
US3079510A (en) 1957-11-01 1963-02-26 Licentia Gmbh Dry shaving apparatus combining varying sources of power
US3120845A (en) * 1961-02-20 1964-02-11 David B Horner Self-powered surgical drill
US3186878A (en) 1962-03-05 1965-06-01 Black & Decker Mfg Co Quick release latching means for separable case adapted to be telescoped within a housing
US3494799A (en) * 1968-10-01 1970-02-10 Black & Decker Mfg Co Battery access handle for cordless electric device
US3734207A (en) * 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3757194A (en) 1972-07-03 1973-09-04 Black & Decker Mfg Co Cordless power tool having removable battery pack
US3767468A (en) 1971-09-20 1973-10-23 Gulton Battery Corp Air-cooled battery
US3883789A (en) 1973-06-08 1975-05-13 Wolf Geraete Gmbh Power pack
US3943934A (en) 1974-09-30 1976-03-16 Minnesota Mining And Manufacturing Company Quick release mechanism for surgical devices
US3952239A (en) 1974-08-23 1976-04-20 The Black And Decker Manufacturing Company Modular cordless tools
US3973179A (en) 1974-08-23 1976-08-03 The Black And Decker Manufacturing Company Modular cordless tools
US3999110A (en) * 1975-02-06 1976-12-21 The Black And Decker Manufacturing Company Battery pack and latch
US4050528A (en) * 1975-09-05 1977-09-27 Concept, Inc. Wire inserter
US4091880A (en) * 1975-10-17 1978-05-30 Concept Inc. Surgical wire inserter apparatus
US4386609A (en) * 1979-12-17 1983-06-07 Minnesota Mining And Manufacturing Company Attaching assembly for an osteotomy saw blade
US4388582A (en) 1978-05-31 1983-06-14 Black & Decker Inc. Apparatus and method for charging batteries
US4392101A (en) 1978-05-31 1983-07-05 Black & Decker Inc. Method of charging batteries and apparatus therefor
US4441563A (en) * 1981-11-02 1984-04-10 Black & Decker Inc. Tool collet and control means
US4447749A (en) * 1981-07-29 1984-05-08 Black & Decker Inc. Cordless electric device having contact increasing means
DE3317398A1 (en) * 1983-05-13 1984-11-15 Leonhardy GmbH, 8561 Reichenschwand Surgical hand-held drill
US4517263A (en) 1982-11-20 1985-05-14 Brown, Boveri & Cie Ag High-temperature storage battery
US4522898A (en) 1982-12-24 1985-06-11 Brown, Boveri & Cie Ag High-temperature storage battery
US4555849A (en) 1982-06-21 1985-12-03 Matsushita Electric Works, Ltd. Battery powered portable saw
US4563629A (en) 1983-09-13 1986-01-07 Black & Decker Inc. Battery recharging circuit with indicator means
US4576880A (en) 1984-04-06 1986-03-18 Black & Decker Inc. Battery pack
US4616171A (en) 1984-04-06 1986-10-07 Black & Decker Inc. Battery charger including thermistor
US4616169A (en) 1985-04-08 1986-10-07 Scovill Inc. Battery-powered appliance
US4672292A (en) 1985-05-14 1987-06-09 Black & Decker Inc. System for charging sets of rechargeable batteries
US4716352A (en) 1984-12-26 1987-12-29 Black & Decker, Inc. Charging base for a battery-powered appliance
US4728876A (en) * 1986-02-19 1988-03-01 Minnesota Mining And Manufacturing Company Orthopedic drive assembly
US4736742A (en) * 1986-04-03 1988-04-12 Minnesota Mining And Manufacturing Company Device for driving tools used in orthopedic surgery
US4749049A (en) 1983-04-02 1988-06-07 Wacker-Werke Gmbh & Co. Kg Hand-guided impact hammer and hammer drill
US4751452A (en) * 1986-02-24 1988-06-14 Cooper Industries Battery operated power wrap tool
EP0272434A2 (en) * 1986-11-20 1988-06-29 List, Heinz-Jürgen Bone drilling machine
USD300132S (en) 1986-04-11 1989-03-07 General Electric Company Battery for a portable radio
US4834092A (en) * 1986-04-03 1989-05-30 Minnesota Mining And Manufacturing Company Device for driving tools used in orthopedic surgery
US4835410A (en) * 1988-02-26 1989-05-30 Black & Decker Inc. Dual-mode corded/cordless system for power-operated devices
US4847513A (en) 1988-02-26 1989-07-11 Black & Decker Inc. Power-operated device with a cooling facility
US4853607A (en) 1986-09-29 1989-08-01 Black & Decker Inc. Non-isolated thermally responsive battery charger
US4871629A (en) * 1988-02-04 1989-10-03 Black & Decker Inc. Latching arrangement for battery packs
US4873461A (en) * 1988-05-13 1989-10-10 Stryker Corporation Electric motor sterilizable surgical power tool
USD304026S (en) 1988-09-30 1989-10-17 Hand Held Products, Inc. Battery pack for electronic bar code reader
US4904549A (en) 1988-11-04 1990-02-27 Motorola, Inc. Battery housing with integral latch and positive displacement apparatus
US4930583A (en) 1988-02-17 1990-06-05 Makita Electric Works, Ltd. Portable battery-powered tool
US4957831A (en) 1988-03-04 1990-09-18 Black & Decker, Inc. Control apparatus for switching a battery pack
USD310813S (en) 1988-05-24 1990-09-25 Ericsson Ge Mobile Communications Inc. Battery for a portable radio
US4981108A (en) 1989-10-16 1991-01-01 Faeroe Daryan S Animal feeding dish
US5013993A (en) 1987-09-04 1991-05-07 Black & Decker Inc. Thermally responsive battery charger
US5026384A (en) * 1989-11-07 1991-06-25 Interventional Technologies, Inc. Atherectomy systems and methods
US5043650A (en) 1988-02-26 1991-08-27 Black & Decker Inc. Battery charger
US5054563A (en) 1988-11-25 1991-10-08 Proxxon Werkzeug Gmbh Electrical hand tool
USD320974S (en) 1989-08-03 1991-10-22 General Electric Company Battery for a portable radio
USD320917S (en) 1988-09-28 1991-10-22 Makita Electric Works, Ltd. Cordless screwdriver
US5059885A (en) 1989-08-23 1991-10-22 Motorola, Inc. Battery charger with battery positioning and support apparatus
US5080983A (en) 1990-08-16 1992-01-14 Minnesota Mining And Manufacturing Company Battery
USD323276S (en) 1988-07-11 1992-01-21 Makita Electric Works, Ltd. Cordless screwdriver
US5089738A (en) * 1990-01-10 1992-02-18 Ab Bahco Verktyg Battery-driven handtool
US5095259A (en) 1988-06-29 1992-03-10 Black & Decker, Inc. Low voltage, high current capacity connector assembly and mobile power tool and appliance operating system
US5122427A (en) * 1991-08-09 1992-06-16 Skil Corporation Battery pack
US5136469A (en) * 1991-07-17 1992-08-04 Stryker Corporation Powered surgical handpiece incorporating sealed multi semiconductor motor control package
US5140249A (en) 1988-05-07 1992-08-18 Scintilla Ag Motor-operated grass cutter
US5144217A (en) 1989-03-03 1992-09-01 Black & Decker Inc. Cordless tool battery housing and charging system
US5148094A (en) 1990-08-10 1992-09-15 Black & Decker Inc. Charger with universal battery pack receptacle
US5149230A (en) 1991-03-04 1992-09-22 Nett Daniel R Rotating dual attachment receptacle apparatus tool
US5169225A (en) 1991-11-25 1992-12-08 Milwaukee Electric Tool Corporation Power tool with light
US5200280A (en) 1991-09-05 1993-04-06 Black & Decker Inc. Terminal cover for a battery pack
US5207697A (en) * 1991-06-27 1993-05-04 Stryker Corporation Battery powered surgical handpiece
US5208525A (en) 1988-12-10 1993-05-04 Gardena Kress + Kastner Gmbh Electric power supply assembly for a cordless electric appliance
US5213913A (en) * 1992-02-21 1993-05-25 Snap-On Tools Corporation Latching arrangement for battery pack
US5221210A (en) 1991-04-02 1993-06-22 Amp Incorporated Circuite board connector
US5229702A (en) 1991-06-26 1993-07-20 Boehling Daniel E Power system battery temperature control
US5235261A (en) * 1991-06-27 1993-08-10 Stryker Corporation DC powered surgical handpiece having a motor control circuit
US5244755A (en) * 1992-10-23 1993-09-14 Motorola, Inc. Battery compartment door and latch having longitudinal snaps
US5248928A (en) 1990-09-18 1993-09-28 Black & Decker Inc. Timed battery charger
US5263972A (en) * 1991-01-11 1993-11-23 Stryker Corporation Surgical handpiece chuck and blade
US5265343A (en) * 1992-01-27 1993-11-30 Hall Surgical, Division Of Zimmer, Inc. Blade collet
US5268630A (en) 1992-05-04 1993-12-07 Black & Decker Inc. Method and apparatus for varying the sample rate of a fast battery charger
DE9319361U1 (en) 1993-12-16 1994-02-10 Atlas Copco Elektrowerkzeuge Battery operated hand tool
US5306285A (en) * 1993-04-30 1994-04-26 Komet Medical Surgical saw blade
US5336953A (en) 1991-12-21 1994-08-09 Scintilla Ag Battery-powered electrical hand-tool
US5348815A (en) 1993-06-10 1994-09-20 Black & Decker Inc. Protective battery cap
US5352969A (en) 1991-05-30 1994-10-04 Black & Decker Inc. Battery charging system having logarithmic analog-to-digital converter with automatic scaling of analog signal
US5354215A (en) 1993-06-24 1994-10-11 Viracola Joseph R Circuit interconnect for a power tool
US5360073A (en) * 1992-03-12 1994-11-01 Ryobi Limited Battery type screw driver
US5366477A (en) 1991-10-17 1994-11-22 American Cyanamid Company Actuating forces transmission link and assembly for use in surgical instruments
US5388749A (en) * 1993-05-13 1995-02-14 Avery Dennison Corp. Electric powered apparatus for dispensing individual plastic fasteners from fastener stock
US5401592A (en) 1993-11-10 1995-03-28 Intermec Corporation Primary and secondary latching system for securing and protecting a replaceable portable battery pack
US5406187A (en) 1992-03-30 1995-04-11 Black & Decker Inc. Battery charger with capacitor support
US5447807A (en) 1990-06-13 1995-09-05 Peled; Emanuel Power source
US5456994A (en) 1992-06-08 1995-10-10 Honda Giken Kogyo Kabushiki Kaisha Battery module and temperature-controlling apparatus for battery
US5460906A (en) 1993-04-19 1995-10-24 Motorola, Inc. Portable radio battery latch
USD364463S (en) * 1994-06-10 1995-11-21 Minnesota Mining And Manufacturing Company Orthopedic surgical instrument
US5480734A (en) 1992-10-10 1996-01-02 Adolf Wurth Gmbh & Co. Kg Rechargeable accumulator
US5489484A (en) 1993-04-05 1996-02-06 Black & Decker Inc. Battery pack for cordless device
US5504412A (en) 1992-08-06 1996-04-02 Gsl Rechargeable Products, Limited Replaceable battery pack of rechargeable batteries
US5551883A (en) 1993-11-17 1996-09-03 The Whitaker Corporation Electrical connector
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
US5557190A (en) 1994-02-28 1996-09-17 Black & Decker Inc. Battery recharging system with signal-to-noise responsive falling voltage slope charge termination
US5626979A (en) 1994-04-08 1997-05-06 Sony Corporation Battery device and electronic equipment employing the battery device as power source
US5629602A (en) 1993-10-06 1997-05-13 Ricoh Company, Ltd. Portable electronic equipment with attachment for supplying power and charging battery
USD379795S (en) 1995-11-13 1997-06-10 Minnesota Mining And Manufacturing Company Battery housing for an orthopedic surgical device
US5642031A (en) 1994-02-28 1997-06-24 Black & Decker Inc. Battery recharging system with state of charge detection that initially detects whether a battery to be charged is already at or near full charge to prevent overcharging
US5789101A (en) 1993-04-05 1998-08-04 Black & Decker Inc. Battery pack for cordless device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836263A1 (en) 1977-09-19 1979-03-01 Olympic Fishing Tackles Co Battery or mains operated hand drill - has socket for connection to external power source using separate control switch
JPS6031858Y2 (en) 1980-04-22 1985-09-24 三菱電機株式会社 rechargeable portable power tools
JPS57156635A (en) 1981-03-23 1982-09-28 Matsushita Electric Works Ltd Charger
DE3636968C2 (en) 1986-10-30 1997-02-13 Mellert Fa Hermann Rechargeable flashlight
DE3742240A1 (en) 1987-12-12 1989-06-22 Festo Kg Electrical hand tool having an accumulator section (rechargeable battery section)
US5122721A (en) 1989-12-22 1992-06-16 Sanyo Electric Co., Ltd. Combination battery charger and ac adapter
DE4029018A1 (en) 1990-09-13 1992-03-19 Deta Akkumulatoren Air-colled electric sec. battery for vehicle - has modular trough in which modules are supported on vertical bars with seals preventing leakage of air around bases
JPH05326024A (en) 1992-05-18 1993-12-10 Matsushita Electric Ind Co Ltd Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof
JPH06150978A (en) 1992-11-02 1994-05-31 Shibaura Eng Works Co Ltd Battery charger
ES2194044T3 (en) 1994-07-26 2003-11-16 Black & Decker Inc MOTORIZED TOOL WITH MODULAR DRIVE SYSTEM AND MODULAR DRIVE SYSTEM ASSEMBLY METHOD.
US5681667A (en) 1994-08-11 1997-10-28 Black & Decker Inc. Battery pack retaining latch for cordless device
US5663011A (en) 1994-08-11 1997-09-02 Black & Decker Inc. Battery pack retaining latch for cordless device
US5508123A (en) 1995-03-06 1996-04-16 Wey Henn Co., Ltd. Power supplying device
US5597275A (en) 1995-03-28 1997-01-28 Hogan; Scott H. Tool with changeable working tip
CA2174831C (en) 1995-05-16 1999-09-07 Ricky Latella Battery continuation apparatus and method thereof
US5604050A (en) 1995-06-13 1997-02-18 Motorola Inc. Latching mechanism and method of latching thereby
DE19521426B4 (en) 1995-06-14 2006-04-27 Robert Bosch Gmbh Hand tool with battery powered drive motor
US5589288A (en) 1995-07-31 1996-12-31 Black & Decker, Inc. Cordless power tool having a push button battery release arrangement
DE19527201A1 (en) 1995-07-26 1997-01-30 Metabowerke Kg Removable battery
JPH0945302A (en) 1995-07-28 1997-02-14 Mitsumi Electric Co Ltd Installing structure of battery holder
GB9516583D0 (en) 1995-08-12 1995-10-11 Black & Decker Inc Retention latch
JP3524237B2 (en) 1995-09-27 2004-05-10 ソニー株式会社 Electric vehicle battery structure
US5762512A (en) 1995-10-12 1998-06-09 Symbol Technologies, Inc. Latchable battery pack for battery-operated electronic device having controlled power shutdown and turn on
JP3152131B2 (en) 1995-11-02 2001-04-03 日立工機株式会社 Battery tool
US5787361A (en) 1996-04-19 1998-07-28 Chen; Sung-Chin Coupling plate for mounting a battery pack onto a cellular phone
JP3514034B2 (en) 1996-05-10 2004-03-31 日立工機株式会社 Shear wrench
JP3432079B2 (en) 1996-06-12 2003-07-28 松下電器産業株式会社 Power supply device and heat dissipation method thereof
US5715156A (en) 1996-06-24 1998-02-03 Yilmaz; G. George Method and apparatus for providing AC or DC power for battery powered tools
DE19626731A1 (en) 1996-07-03 1998-01-08 Wagner Gmbh J Handwork tool, especially electric screwdriver
JP4314641B2 (en) 1997-11-25 2009-08-19 パナソニック電工株式会社 Charger
US6656626B1 (en) * 1999-06-01 2003-12-02 Porter-Cable Corporation Cordless power tool battery release mechanism
US6568089B1 (en) * 1999-06-04 2003-05-27 Porter-Cable/Delta Reciprocating saw having compact configuration and independent stability

Patent Citations (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1036063A (en) 1911-08-07 1912-08-20 Charles H Bedell Ventilating and cooling system for batteries.
US1152247A (en) 1915-05-08 1915-08-31 William L Walker Battery-jar.
US2104772A (en) 1936-08-21 1938-01-11 American Forging & Socket Co Storage battery installation
US2261230A (en) * 1938-12-16 1941-11-04 Wilbur J Cox Surgical apparatus
US2460149A (en) * 1946-07-26 1949-01-25 Lothar W Schoensiegel Flexible rod driver
US3079510A (en) 1957-11-01 1963-02-26 Licentia Gmbh Dry shaving apparatus combining varying sources of power
US3120845A (en) * 1961-02-20 1964-02-11 David B Horner Self-powered surgical drill
US3186878A (en) 1962-03-05 1965-06-01 Black & Decker Mfg Co Quick release latching means for separable case adapted to be telescoped within a housing
US3494799A (en) * 1968-10-01 1970-02-10 Black & Decker Mfg Co Battery access handle for cordless electric device
US3767468A (en) 1971-09-20 1973-10-23 Gulton Battery Corp Air-cooled battery
US3734207A (en) * 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3757194A (en) 1972-07-03 1973-09-04 Black & Decker Mfg Co Cordless power tool having removable battery pack
US3883789A (en) 1973-06-08 1975-05-13 Wolf Geraete Gmbh Power pack
US3952239A (en) 1974-08-23 1976-04-20 The Black And Decker Manufacturing Company Modular cordless tools
US3973179A (en) 1974-08-23 1976-08-03 The Black And Decker Manufacturing Company Modular cordless tools
US3943934A (en) 1974-09-30 1976-03-16 Minnesota Mining And Manufacturing Company Quick release mechanism for surgical devices
US3999110A (en) * 1975-02-06 1976-12-21 The Black And Decker Manufacturing Company Battery pack and latch
US4050528A (en) * 1975-09-05 1977-09-27 Concept, Inc. Wire inserter
US4091880A (en) * 1975-10-17 1978-05-30 Concept Inc. Surgical wire inserter apparatus
US4388582A (en) 1978-05-31 1983-06-14 Black & Decker Inc. Apparatus and method for charging batteries
US4392101A (en) 1978-05-31 1983-07-05 Black & Decker Inc. Method of charging batteries and apparatus therefor
US4386609A (en) * 1979-12-17 1983-06-07 Minnesota Mining And Manufacturing Company Attaching assembly for an osteotomy saw blade
US4447749A (en) * 1981-07-29 1984-05-08 Black & Decker Inc. Cordless electric device having contact increasing means
US4441563A (en) * 1981-11-02 1984-04-10 Black & Decker Inc. Tool collet and control means
US4555849A (en) 1982-06-21 1985-12-03 Matsushita Electric Works, Ltd. Battery powered portable saw
US4517263A (en) 1982-11-20 1985-05-14 Brown, Boveri & Cie Ag High-temperature storage battery
US4522898A (en) 1982-12-24 1985-06-11 Brown, Boveri & Cie Ag High-temperature storage battery
US4749049A (en) 1983-04-02 1988-06-07 Wacker-Werke Gmbh & Co. Kg Hand-guided impact hammer and hammer drill
DE3317398A1 (en) * 1983-05-13 1984-11-15 Leonhardy GmbH, 8561 Reichenschwand Surgical hand-held drill
US4563629A (en) 1983-09-13 1986-01-07 Black & Decker Inc. Battery recharging circuit with indicator means
US4576880A (en) 1984-04-06 1986-03-18 Black & Decker Inc. Battery pack
US4616171A (en) 1984-04-06 1986-10-07 Black & Decker Inc. Battery charger including thermistor
US4716352A (en) 1984-12-26 1987-12-29 Black & Decker, Inc. Charging base for a battery-powered appliance
US4616169A (en) 1985-04-08 1986-10-07 Scovill Inc. Battery-powered appliance
US4672292A (en) 1985-05-14 1987-06-09 Black & Decker Inc. System for charging sets of rechargeable batteries
US4728876A (en) * 1986-02-19 1988-03-01 Minnesota Mining And Manufacturing Company Orthopedic drive assembly
US4751452A (en) * 1986-02-24 1988-06-14 Cooper Industries Battery operated power wrap tool
US4736742A (en) * 1986-04-03 1988-04-12 Minnesota Mining And Manufacturing Company Device for driving tools used in orthopedic surgery
US4834092A (en) * 1986-04-03 1989-05-30 Minnesota Mining And Manufacturing Company Device for driving tools used in orthopedic surgery
USD300132S (en) 1986-04-11 1989-03-07 General Electric Company Battery for a portable radio
US4853607A (en) 1986-09-29 1989-08-01 Black & Decker Inc. Non-isolated thermally responsive battery charger
EP0272434A2 (en) * 1986-11-20 1988-06-29 List, Heinz-Jürgen Bone drilling machine
US5013993A (en) 1987-09-04 1991-05-07 Black & Decker Inc. Thermally responsive battery charger
US4871629A (en) * 1988-02-04 1989-10-03 Black & Decker Inc. Latching arrangement for battery packs
US4930583A (en) 1988-02-17 1990-06-05 Makita Electric Works, Ltd. Portable battery-powered tool
US4847513A (en) 1988-02-26 1989-07-11 Black & Decker Inc. Power-operated device with a cooling facility
US4835410A (en) * 1988-02-26 1989-05-30 Black & Decker Inc. Dual-mode corded/cordless system for power-operated devices
US5043650A (en) 1988-02-26 1991-08-27 Black & Decker Inc. Battery charger
US4957831A (en) 1988-03-04 1990-09-18 Black & Decker, Inc. Control apparatus for switching a battery pack
US5140249A (en) 1988-05-07 1992-08-18 Scintilla Ag Motor-operated grass cutter
US4873461A (en) * 1988-05-13 1989-10-10 Stryker Corporation Electric motor sterilizable surgical power tool
USD310813S (en) 1988-05-24 1990-09-25 Ericsson Ge Mobile Communications Inc. Battery for a portable radio
US5095259A (en) 1988-06-29 1992-03-10 Black & Decker, Inc. Low voltage, high current capacity connector assembly and mobile power tool and appliance operating system
USD323276S (en) 1988-07-11 1992-01-21 Makita Electric Works, Ltd. Cordless screwdriver
USD320917S (en) 1988-09-28 1991-10-22 Makita Electric Works, Ltd. Cordless screwdriver
USD304026S (en) 1988-09-30 1989-10-17 Hand Held Products, Inc. Battery pack for electronic bar code reader
US4904549A (en) 1988-11-04 1990-02-27 Motorola, Inc. Battery housing with integral latch and positive displacement apparatus
US5054563A (en) 1988-11-25 1991-10-08 Proxxon Werkzeug Gmbh Electrical hand tool
US5208525A (en) 1988-12-10 1993-05-04 Gardena Kress + Kastner Gmbh Electric power supply assembly for a cordless electric appliance
US5144217A (en) 1989-03-03 1992-09-01 Black & Decker Inc. Cordless tool battery housing and charging system
USD320974S (en) 1989-08-03 1991-10-22 General Electric Company Battery for a portable radio
US5059885A (en) 1989-08-23 1991-10-22 Motorola, Inc. Battery charger with battery positioning and support apparatus
US4981108A (en) 1989-10-16 1991-01-01 Faeroe Daryan S Animal feeding dish
US5026384A (en) * 1989-11-07 1991-06-25 Interventional Technologies, Inc. Atherectomy systems and methods
US5089738A (en) * 1990-01-10 1992-02-18 Ab Bahco Verktyg Battery-driven handtool
US5447807A (en) 1990-06-13 1995-09-05 Peled; Emanuel Power source
US5148094A (en) 1990-08-10 1992-09-15 Black & Decker Inc. Charger with universal battery pack receptacle
US5080983A (en) 1990-08-16 1992-01-14 Minnesota Mining And Manufacturing Company Battery
US5248928A (en) 1990-09-18 1993-09-28 Black & Decker Inc. Timed battery charger
US5263972A (en) * 1991-01-11 1993-11-23 Stryker Corporation Surgical handpiece chuck and blade
US5149230A (en) 1991-03-04 1992-09-22 Nett Daniel R Rotating dual attachment receptacle apparatus tool
US5221210A (en) 1991-04-02 1993-06-22 Amp Incorporated Circuite board connector
US5449997A (en) 1991-05-30 1995-09-12 Black & Decker Inc. Battery charging system having logarithmic analog-to-digital converter with automatic scaling of analog signal
US5352969A (en) 1991-05-30 1994-10-04 Black & Decker Inc. Battery charging system having logarithmic analog-to-digital converter with automatic scaling of analog signal
US5229702A (en) 1991-06-26 1993-07-20 Boehling Daniel E Power system battery temperature control
US5235261A (en) * 1991-06-27 1993-08-10 Stryker Corporation DC powered surgical handpiece having a motor control circuit
US5207697A (en) * 1991-06-27 1993-05-04 Stryker Corporation Battery powered surgical handpiece
US5136469A (en) * 1991-07-17 1992-08-04 Stryker Corporation Powered surgical handpiece incorporating sealed multi semiconductor motor control package
US5122427A (en) * 1991-08-09 1992-06-16 Skil Corporation Battery pack
US5200280A (en) 1991-09-05 1993-04-06 Black & Decker Inc. Terminal cover for a battery pack
US5366477A (en) 1991-10-17 1994-11-22 American Cyanamid Company Actuating forces transmission link and assembly for use in surgical instruments
US5169225A (en) 1991-11-25 1992-12-08 Milwaukee Electric Tool Corporation Power tool with light
US5336953A (en) 1991-12-21 1994-08-09 Scintilla Ag Battery-powered electrical hand-tool
US5265343A (en) * 1992-01-27 1993-11-30 Hall Surgical, Division Of Zimmer, Inc. Blade collet
US5213913A (en) * 1992-02-21 1993-05-25 Snap-On Tools Corporation Latching arrangement for battery pack
US5360073A (en) * 1992-03-12 1994-11-01 Ryobi Limited Battery type screw driver
US5406187A (en) 1992-03-30 1995-04-11 Black & Decker Inc. Battery charger with capacitor support
US5268630A (en) 1992-05-04 1993-12-07 Black & Decker Inc. Method and apparatus for varying the sample rate of a fast battery charger
US5456994A (en) 1992-06-08 1995-10-10 Honda Giken Kogyo Kabushiki Kaisha Battery module and temperature-controlling apparatus for battery
US5504412A (en) 1992-08-06 1996-04-02 Gsl Rechargeable Products, Limited Replaceable battery pack of rechargeable batteries
US5480734A (en) 1992-10-10 1996-01-02 Adolf Wurth Gmbh & Co. Kg Rechargeable accumulator
US5244755A (en) * 1992-10-23 1993-09-14 Motorola, Inc. Battery compartment door and latch having longitudinal snaps
US5620808A (en) 1993-04-05 1997-04-15 Black & Decker Inc. Battery pack for cordless device
US5789101A (en) 1993-04-05 1998-08-04 Black & Decker Inc. Battery pack for cordless device
US5489484A (en) 1993-04-05 1996-02-06 Black & Decker Inc. Battery pack for cordless device
US5919585A (en) 1993-04-05 1999-07-06 Black & Decker, Inc. Battery pack for cordless device
USRE37226E1 (en) 1993-04-05 2001-06-12 Black & Decker Corporation Battery pack for cordless device
US5460906A (en) 1993-04-19 1995-10-24 Motorola, Inc. Portable radio battery latch
US5306285A (en) * 1993-04-30 1994-04-26 Komet Medical Surgical saw blade
US5388749A (en) * 1993-05-13 1995-02-14 Avery Dennison Corp. Electric powered apparatus for dispensing individual plastic fasteners from fastener stock
US5348815A (en) 1993-06-10 1994-09-20 Black & Decker Inc. Protective battery cap
US5354215A (en) 1993-06-24 1994-10-11 Viracola Joseph R Circuit interconnect for a power tool
US5629602A (en) 1993-10-06 1997-05-13 Ricoh Company, Ltd. Portable electronic equipment with attachment for supplying power and charging battery
US5401592A (en) 1993-11-10 1995-03-28 Intermec Corporation Primary and secondary latching system for securing and protecting a replaceable portable battery pack
US5551883A (en) 1993-11-17 1996-09-03 The Whitaker Corporation Electrical connector
DE9319361U1 (en) 1993-12-16 1994-02-10 Atlas Copco Elektrowerkzeuge Battery operated hand tool
US5557190A (en) 1994-02-28 1996-09-17 Black & Decker Inc. Battery recharging system with signal-to-noise responsive falling voltage slope charge termination
US5642031A (en) 1994-02-28 1997-06-24 Black & Decker Inc. Battery recharging system with state of charge detection that initially detects whether a battery to be charged is already at or near full charge to prevent overcharging
US5626979A (en) 1994-04-08 1997-05-06 Sony Corporation Battery device and electronic equipment employing the battery device as power source
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
US5792573A (en) 1994-06-10 1998-08-11 Pitzen; James F. Rechargeable battery adapted to be attached to orthopedic device
USD364463S (en) * 1994-06-10 1995-11-21 Minnesota Mining And Manufacturing Company Orthopedic surgical instrument
USD379795S (en) 1995-11-13 1997-06-10 Minnesota Mining And Manufacturing Company Battery housing for an orthopedic surgical device

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
Hall Versipower Dual Power Orthopedic Instruments. by Zimmer. 1989 (6 pages) (No month). *
Instruction manual entitled "The Hall(R) Orthair(TM) System," by Zimmer USA, 12 pages, no date.
Instruction Manual entitled: "The Hall Orthair System", by Zimmer USA. (12 pages) (No date). *
Japanese Abstract, 1484694, Portable Drills, Aug. 27, 1974, 1 page.
Japanese Abstract, 1484694, Portable Drills, Aug. 27, 1974. (1 Page). *
Maintenance manual and operating instructions entitled "System 2000 Battery Powered Instruments," by Styker(R), 1993, 17 pages, no month.
Operating instructions entitled "Mark III Electric Tool," by Avery Dennison, 12 pages, no date.
Operating Instructions entitled, "Mark III Electric Tool", by Avery Dennison, (12 pages) (No Date). *
Product Brochure entitled "Acculan," by Aesculap(R), 4 pages, no date.
Product Brochure entitled "Cordless 450 Orthapaedic Drill," by Dyonics, 1984, 2 pages, no month.
Product brochure entitled "Cordless 450 Orthopedic Drill", by Dyonics. 1984. (2 pages) (No month). *
Product Brochure entitled "Cordless 800 Wire Driver," by Dyonics, 1984, 2 pages, no month.
Product Brochure entitled "Cordless Sagittal Saw," by Dyonics, 1984, 2 pages, no month.
Product Brochure entitled "Hall(R) Versipower(TM) Dual Power Orthopaedic Instruments," by Zimmer, 1989, 6 pages, no month.
Product Brochure entitled "Maxion(TM) Cordless Powered Instrument System Assembly, Operation and Maintence," by 3M HealthCare, 31 pages, no date.
Product brochure entitled "Maxion(TM) Cordless Powered Instrument System", by 3M HealthCare, (31 pages). (No date). *
Product Brochure entitled "Maxion(TM) Cordless Powered Instrument System, Assembly, Operation and Maintenance," by 3M HealthCare, 6 pages, no date.
Product Brochure entitled "Mini-Driver(TM) Air Instrument System," by 3M, 1975, 4 pages, no month.
Product Brochure entitled "Powered Instrumentation for Large Bone Surgery," by Stryker(R), 16 pages, no date.
Product Brochure entitled "Sagittal Saw Attachment," by 3M, 2 pages, no date.
Product Brochure entitled "System 2000 Heavy Duty Battery Powered Instruments," by Stryker(R), 12 pages, no date.
Product Brochure entitled "System II OrthoPower 90 Battery Powered Surgical Instruments," by Stryker(R), 1986, 16 pages, no month.
Product Brochure entitled "The Air Driver II from 3M," by 3M, 2 pages, no date.
Product Brochure entitled "The K-100 Mini-Driver System, Cleaning and Lubrication," by 3M Surgical Products Division, 5 pages, no date.
Product Brochure entitled "The Only Cordless Instrument Powerful Enough to be Stryker," by Stryker(R), 1993, 4 pages, no month.
Product brochure entitled: "Acculan" by Aesculap. (4 pages) (No Date). *
Product brochure entitled: "Cordless 200 Reamer" by Dyonics, 1984. (2 pages). (No month). *
Product brochure entitled: "Cordless 800 Wire Driver", by Dyonics, 1984, (2 pages) (No month). *
Product brochure entitled: "Cordless Sagittal Saw" by Dyonics. 1984. (2 pages) (No month). *
Product brochure entitled: "Maxion Cordless Powered Instrument System, Assembly, Operation and Maintenance", by 3M HealthCare (6 pages) (No date). *
Product brochure entitled: "Mini-Driver Air Instrument System" by 3M, 1975. (4 pages) (No month). *
Product brochure entitled: "System 2000 Battery Powered Instruments" by Stryker (11 pages) (No date). *
Product brochure entitled: "System 2000 Battery Powered Instruments" by Stryker. 1993 (18 pages) (No month). *
Product brochure entitled: "The K-100 Mini-Driver System. Cleaning and Lubrication", by 3M Surgical Products Division (5 pages). (No Date). *
Product brochure entitled: "The Only Cordless Instrument Powerful Enough to be Stryker", by Stryker ( 4pages) (No date). *
Product Brochure entltled "Cordless 200 Reamer," by Dyonics, 1984, 2 pages, no month.
Product Insert entitled "Mark III Electric Tool" by Avery Dennison. (1 page) (No date). *
Product insert entitled "Mark III Electric Tool," by Avery Dennison, 1 page, no date.
Sony Overseas S.A. DM/029 376 of Apr. 20, 1994, International Design Bulletin, Apr. 1994.
Sony Overseas S.A., DM/011 603 of Aug. 29, 1988, International Design Bulletin, Aug. 1988.

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8312937B2 (en) 2001-08-24 2012-11-20 Black & Decker Inc. Battery for a power tool with a battery pack ejector
US9364270B2 (en) 2009-09-14 2016-06-14 Warsaw Orthopedic, Inc. Surgical tool
US10231761B2 (en) 2009-09-14 2019-03-19 Warsaw Orthopedic, Inc. Surgical tool
US10070871B2 (en) 2009-09-14 2018-09-11 Warsaw Orthopedic, Inc. Surgical tool
US8974932B2 (en) 2009-09-14 2015-03-10 Warsaw Orthopedic, Inc. Battery powered surgical tool with guide wire
US9010815B2 (en) * 2009-12-07 2015-04-21 Black & Decker Inc. Anti-theft system
US20110133496A1 (en) * 2009-12-07 2011-06-09 Black & Decker Inc. Anti-theft system
EP2400755A1 (en) 2010-06-24 2011-12-28 Black & Decker Inc. Remote inspection device
US9461281B2 (en) 2010-10-08 2016-10-04 Milwaukee Electric Tool Corporation Battery retention system for a power tool
US10276844B2 (en) 2010-10-08 2019-04-30 Milwaukee Electric Tool Corporation Battery retention system for a power tool
US9408653B2 (en) 2011-04-27 2016-08-09 Medtronic Xomed, Inc. Electric ratchet for a powered screwdriver
US8786233B2 (en) 2011-04-27 2014-07-22 Medtronic Xomed, Inc. Electric ratchet for a powered screwdriver
US10245042B2 (en) * 2012-03-13 2019-04-02 Medtronic Xomed, Inc. Check valve vented sterilizable powered surgical handpiece
US9687257B2 (en) 2014-06-04 2017-06-27 Zimmer Surgical, Inc. Pin wire driver device
USD772806S1 (en) 2014-11-26 2016-11-29 Techtronic Industries Co. Ltd. Battery
USD793953S1 (en) 2014-11-26 2017-08-08 Techtronic Industries Co. Ltd. Battery
USD790453S1 (en) 2015-08-06 2017-06-27 Andreas Stihl Ag & Co., Kg Battery pack
USD841572S1 (en) * 2016-03-08 2019-02-26 Briggs & Stratton Corporation Battery
USD891364S1 (en) 2016-03-08 2020-07-28 Briggs & Stratton Corporation Battery
US11440176B2 (en) 2017-01-24 2022-09-13 Techtronic Cordless Gp Battery terminal holder for electric tools
US11678893B2 (en) 2017-02-10 2023-06-20 Zimmer, Inc. Systems for advancing a pin wire with a driver device

Also Published As

Publication number Publication date
US5553675A (en) 1996-09-10
DE29509191U1 (en) 1995-08-24
JP3018959U (en) 1995-12-05
US5792573A (en) 1998-08-11
USRE40848E1 (en) 2009-07-14

Similar Documents

Publication Publication Date Title
USRE40681E1 (en) Combination rechargeable, detachable battery system and power tool
US6887244B1 (en) Cordless surgical handpiece with disposable battery; and method
EP3420931B1 (en) Surgical shaft assemblies with slip ring assemblies with increased contact pressure
CA1281374C (en) Battery for orthopedic drive assembly
US6126670A (en) Cordless surgical handpiece with disposable battery; and method
US9326812B2 (en) Portable surgical instrument
EP0528478B1 (en) Cordless power tool
AU2013266240B9 (en) Battery and control module for a powered surgical tool unit that includes a user-actuated switch for controlling the tool unit
US7814816B2 (en) Power tool, battery, charger and method of operating the same
EP2303139B1 (en) Robotic surgical system comprising a surgical attachment
US7414211B2 (en) Modular power hand tool
US20060267556A1 (en) Power tool, battery, charger and method of operating the same
JP2007105485A (en) Surgical apparatus and instrument
JPH04217473A (en) Battery driven hand tool
EP1063929A4 (en) Rotational atherectomy device with improved exchangeable drive shaft cartridge
CA1192835A (en) Low-voltage surgical cast cutter with vacuum exhaust of debris
US20070220755A1 (en) Shaving Apparatus
CN110602999A (en) Ultrasonic surgical instrument with transducer slip joint
US6487779B1 (en) Rechargeable fillet knife
US20220362920A1 (en) Electric tool and battery pack
CN113910171A (en) Ergonomic housing for a power tool
EP0210708B1 (en) Reversing switch for rechargeable hand tool
WO2002028290A1 (en) Cordless surgical handpiece with disposable battery; and method
EP4154841A1 (en) Dental handpiece attachment
EP3715057A2 (en) Electric power tool

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY AGREEMENT;ASSIGNOR:LINVATEC CORPORATION;REEL/FRAME:030704/0446

Effective date: 20130611