Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE40145 E1
Publication typeGrant
Application numberUS 10/773,810
Publication date11 Mar 2008
Filing date6 Feb 2004
Priority date17 Oct 1995
Fee statusPaid
Also published asUS5817207, US6214155, WO2000005071A1
Publication number10773810, 773810, US RE40145 E1, US RE40145E1, US-E1-RE40145, USRE40145 E1, USRE40145E1
InventorsKeith R. Leighton
Original AssigneeLeighton Technologies Llc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ultra-thin flexible durable radio frequency identification devices and hot or cold lamination process for the manufacture of ultra-thin flexible durable radio frequency identification devices
US RE40145 E1
Abstract
A ultra-thin flexible durable radio frequency plastic of other substrate identification device, such as cards, tags, badges, bracelets and labels including at least one electronic element embedded therein and a hot or cold lamination process for the manufacture of radio frequency identification devices including a micro IC chip embedded therein. The process results in a device having an overall thickness in the range of 0.005 inches to 0.033 inches with a surface suitable for receiving dye sublimation printing—the variation in the device thickness across the surface is less than 0.0005 inches. The hot lamination process of the present invention results in an aesthetically pleasing device which can be used as a sticker when adhesive is applied to the device. The invention also relates to a plastic device in all shapes and sizes formed in accordance with the hot lamination process of the present invention and can withstand harsh chemicals and various pressures.
Images(5)
Previous page
Next page
Claims(44)
1. A process for incorporating at least one electronic element in the manufacture of a plastic device comprising the steps of:
(a) providing first and second plastic core sheets;
(b) positioning said at least one electronic element in the absence of a non-electronic carrier directly between said first and second plastic core sheets to form a core, said plastic core sheets defining a pair of inner and outer surfaces of said core;
(c) positioning said core in a laminator apparatus, and subjecting said core to a heat and pressure cycle, said heat and pressure cycle comprising the steps of:
(I) heating said core to a first period of time;
(II) applying a first pressure to said core for a second priorperiod of time such that said at least one electronic element is encapsulated by said core;
(III) cooling said core while applying a second pressure to said core;
(d) coating at least one of said outer surfaces of said core with a layer of ink; and
(e) applying a layer of overlaminate film to at least one outer surface of said core.
2. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said laminator apparatus has first and second laminating plates, at least one of said first and second laminating plates having a matte finish for creating a textured surface on at least one side of said core.
3. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 2, wherein each of said first and second laminating plates has a matte finish for creating said textured surface on both outer surfaces of said core.
4. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said first and second plastic core sheets are made from a material selected from the group consisting of polyvinyl chloride, polyester, and acrylonitrile-butadiene-styrene, each of said sheets having a thickness in the range of 0.005 inches-0.0125 inches.
5. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said first and second plastic core sheets have a thickness of approximate 0.005 inches-0.0125 inches.
6. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said second pressure is greater than said first pressure.
7. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 6, wherein said second pressure is at least approximately 25% greater than said first pressure.
8. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said core is heated in step (c) (I) to a temperature in the range of 275° F. to 400° F.; and said first period of time is at least five (5) minutes.
9. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said first ram pressure is approximately 1000 p.s.i. and said second period of time is at least 10 minutes.
10. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said step (d) is carried out utilizing a printing process.
11. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said step (d) is carried out utilizing a coating technique selected from the group consisting of silk screen printing, offset printing, letterpress printing, screen printing, roller coating, spray printing and litho-printing.
12. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1 wherein said step (e) of applying a layer of overlaminate film comprises the further steps of:
(a) positioning an overlaminate film on at least one ink coated surface of said core;
(b) subjecting said core to a second heat and pressure cycle comprising the steps of;
(I) heating said core to a temperature between approximately 175° F. to 300° F. for approximately 10 to 25 minutes;
(II) applying approximately 1000 p.s.i. ram pressure to said core; and
(III) cooling said core to a temperature in the range of approximately 40° F. to 65° F. for approximately 10 to 25 minutes.
13. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said at least one electronic element is a micro-chip and an associated antenna of wire, copper etched, screen printed or litho-printed conductive inks or carbon inks.
14. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said at least one electronic element is a micro-chip and an associated circuit board antenna.
15. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said at least one electronic element is a read/write integrated chip and an associated antenna.
16. The process for incorporating at least one electronic element in the manufacture of a plastic device as recited in claim 1, wherein said at least one electronic element is a micro-chip and an associated printed antenna.
17. A hot lamination process for the manufacture of plastic devices, said process comprising the steps of:
(a) providing first and second plastic core sheets;
(b) positioning at least one electronic element in the absence of a non-electric carrier directly between said first and second plastic sheets to form a layered core;
(c) positioning said core in a laminator apparatus, and subjecting said core to a heat and pressure cycle, said heat and pressure cycle comprising the steps of:
(I) heating said core in said laminator apparatus, in the presence of a minimal first ram pressure, to a temperature which causes controlled flow of said plastic which makes up said first and second plastic core sheets;
(II) applying a second pressure uniformly across said core for encapsulating said at least one electronic element within said controlled flow plastic;
(III) subsequently cooling said core in conjunction with the concurrent applicantion of a third pressure uniformly across said core, said core including upper and lower surfaces.
18. The process as recited in claim 15 wherein said first and second core layers are devoid of any appreciable cut outs.
19. A process for incorporating an electronic element in a plastic device, comprising the steps of:
(a) providing first and second plastic core sheets;
(b) positioning the electronic element between the first and second plastic core sheets to form a core;
(c) positioning the core in a laminator apparatus, and subjecting the core to a heat and pressure cycle, the heat and pressure cycle comprising the steps of:
(I) heating the core;
(II) applying a first pressure to the core such that the electronic element is encapsulated by the core; and
(III) cooling the core while applying a second pressure to the core.
20. The process of claim 19, wherein step (c)(III) comprises cooling the core while applying a second pressure to the core, wherein the second pressure is greater than the first pressure.
21. The process of claim 20, wherein step (b) comprises positioning the electronic element in the absence of a non-electronic carrier between the first and second plastic core sheets to form the core.
22. The process of claim 20, wherein step (b) comprises positioning the electronic element in the absence of a non-electronic carrier directly between the first and second plastic core sheets to form the core.
23. The process of claim 19, wherein step (c)(III) comprises cooling the core while applying a second pressure to the core, wherein the second pressure is approximately at least 10 % greater than the first pressure.
24. The process of claim 19, wherein step (c)(I) comprises heating the core under a third pressure, wherein the third pressure is less that the first pressure.
25. The process of claim 20, wherein step (c)(II) comprises applying the first pressure uniformly to the core such that the electronic element is encapsulated by the core.
26. The process of claim 20, wherein step (c)(III) comprises cooling the core while applying the second pressure uniformly to the core.
27. The process of claim 20, wherein the electronic element comprises a micro-chip.
28. The process of claim 27, wherein the electronic element further comprises a circuit board antenna.
29. The process of claim 27, wherein the electronic element includes a protective coating thereon.
30. A process for manufacturing a plastic device that includes an electronic element therein, comprising the steps of:
(a) providing first and second plastic core sheets;
(b) positioning the electronic element between the first and second plastic core sheets to form a core;
(c) positioning the core in a laminator apparatus;
(d) heating the core;
(e) causing the laminator apparatus to apply a first pressure to the core such that the electronic element is encapsulated by the core; and
(f) cooling the core while the laminator apparatus applies a second pressure to the core, wherein the second pressure is greater than the first pressure.
31. The process of claim 30, wherein step (f) comprises cooling the core while the laminator apparatus applies the second pressure to the core, wherein the second pressure is approximately at least 10 % greater than the first pressure.
32. The process of claim 31, wherein step (b) comprises positioning the electronic element in the absence of a non-electronic carrier between the first and second plastic core sheets to form the core.
33. The process of claim 31, wherein step (b) comprises positioning the electronic element in the absence of a non-electronic carrier directly between the first and second plastic core sheets to form the core.
34. The process of claim 30, wherein the electronic element comprises a micro-chip.
35. The process of claim 34, wherein the electronic element further comprises a circuit board antenna.
36. The process of claim 34, wherein the electronic element includes a protective coating thereon.
37. A process for incorporating an electronic element in a plastic device, wherein the electronic element has a top surface and a bottom surface, comprising the steps of:
(a) providing top and bottom plastic core sheets;
(b) positioning the electronic element between the top and bottom plastic core sheets to form a core, wherein the top surface of the electronic element is in contact with the top plastic core sheet;
(c) positioning the core in a laminator apparatus, and subjecting the core to a heat and pressure cycle, the heat and pressure cycle comprising the steps of:
(I) heating the core;
(II) applying a first pressure to the core so that the electronic element is encapsulated by the core; and
(iii) cooling the core while applying a second pressure to the core, wherein the second pressure is greater than the first pressure.
38. The process of claim 37, wherein step (c)(III) comprises cooling the core while applying a second pressure to the core, wherein the second pressure is approximately at least 10 % greater than the first pressure.
39. The process of claim 37, wherein step (b) comprises positioning the electronic element between the top and bottom plastic core sheets to form the core, wherein the top and bottom surfaces of the electronic element are in contact with the top and bottom plastic core sheets, respectively.
40. The process of claim 37, wherein step (b) comprises positioning the electronic element in the absence of a non-electronic carrier between the top and bottom plastic core sheets to form the core.
41. The process of claim 37, wherein step (b) comprises positioning the electronic element in the absence of a non-electronic carrier directly between the top and bottom plastic core sheets to form the core.
42. The process of claim 37, wherein the electronic element comprises a micro-chip.
43. The process of claim 42, wherein the electronic element further comprises a circuit board antenna.
44. The process of claim 42, wherein the electronic element includes a protective coating thereon.
Description

This application claims the benefit of U.S. Provisional application Ser. No. 60/142,019, filed Jul. 7, 1999.

This application claims the benefit of (a) provisional application Ser. No. 60/142,019, filed Jul. 7, 1999 and (b) Ser. No. 09/158,290, filed Sep. 22, 1998 (now U.S. Pat. No. 6,214,155 ), which is a continuation of Ser. No. 08/727,789 (now U.S. Pat. No. 5,817,207 ), which claims the benefit of provisional application Ser. No. 60/005,685. filed on Oct. 17, 1995.

FIELD OF INVENTION

The present invention relates generally to an ultra-thin flexible durable identification device and the manufacture thereof, and more particularly to radio frequency identification (RFID) devices and the manufacture of RFID devices that can be made in many shapes and sizes and that have superior outer surface matte or glossy such that device may receive dye sublimation printing or the like.

BACKGROUND OF THE INVENTION

Identification devices such as cards, badges, tags labels and bracelets have been used for years for all kinds of identification, such as passports, luggage, all kinds of tickets, hospital/pharmacy medical records and access passes, all of which have not been totally free from theft and counterfeit resulting in the loss of thousands of dollars. With the rapid progress in new technology the problems associated with the use of such identification devices are being replaced with a more secure identification device having a RFID smart chip that gives more information such as biometrics and read write technology. Thus this more secure plastic device is very difficult or impossible to fraudulently manipulate.

SUMMARY OF THE INVENTION

The present invention is therefore directed to a ultra-thin flexible durable plastic device made in all shapes and sizes having at least one electronic element embedded therein and to a hot or cold lamination method for the manufacture of plastic devices including at least one electronic element therein. The device can be used as cards, tags, badges, bracelets and labels. The device is durable and flexible and it can be used as a sticker when adhesive is applied because it is ultra-thin. The device has an overall thickness in the range of 0.005 inches to 0.033 inches and comprises a plastic or other substrate core having at least one electronic element embedded therein with at least one of the upper and lower surfaces of the core comprising a coating printed or otherwise applied thereon. An overlaminate film is preferably provided over the coated surface of the core and the resulting device has a variation in thickness across the surfaces thereof of no greater than approximately 0.0005 inches. The hot or cold lamination method of the present invention comprises the steps of providing first and second plastic or other substrate core sheets, positioning at least one electronic element between the first and second core sheets to thus form a core and placing the core in a laminator and closing the lamination without applying laminator ram pressure to the core. A heat cycle is applied to the core sheets in the laminator thus liquefying or partially liquefying the sheets. The laminator ram pressure is then increased in combination with the heat. A cooling cycle is then applied to the core in the laminator preferably with an associated increase in ram pressure, and the core is removed from the laminator. The sheets are then cut separating the individual device from the core sheet and this results in a plastic device having a thickness in the range of approximately 0.005 inches-0.033 inches with a surface glossy or matte dependent on customer's request. The invention is also directed to a device manufactured in accordance with the above process which results in a plastic device having a thickness in the range of approximately 0.005 inches-0.033 inches with a surface smoothness of at least approximately 0.0005 inches. The present invention provides numerous advantages over known plastic devices and known plastic device with electronic elements such as a computer chip embedded therein with a pleasing aesthetic appearance and able to withstand various harsh chemicals and pressures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top plan view of a radio frequency device in accordance with the present invention.

FIG. 2 is a side elevational view of the device shown in FIG. 1.

FIGS. 3A-3D are top plan views of various electronic elements that may be embedded in a device in accordance with the present invention.

FIG. 4 is an exploded schematic view of an electronic element positioned between two plastic core sheets to form a core.

FIG. 5 is a top plan view of a plurality of electronic elements positioned on a sheet of plastic or other substrate core stock such that they may be covered by a similar sheet or core stock.

FIG. 6 is a side plan view illustrating top and bottom sheets that may be pre-printed or blank sheets and also a schematic cross sectional view of one or more electronic elements positioned between sheets of plastic or other substrate core stock.

FIG. 7 schematically illustrates a book comprising the core as it is positioned in a laminator apparatus.

FIG. 8 schematically illustrates the core as it is being printed on after removal from the laminator using a printing press or similar printing apparatus.

FIG. 9 is a cross-sectional view schematically illustrating the application of a overlaminate film to at least one side of the core beginning a second lamination step as illustrated in FIG. 10 when necessary to protect the printing.

FIG. 10 schematically illustrates the core with overlaminate film as it is placed in a laminator for final processing to form a sheet core stock containing electronic devices.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a ultra-thin flexible durable plastic device including at least one electronic element embedded therein. The present invention also relates to a hot lamination process for the manufacture of plastic devices and more particularly to a hot or cold lamination process for the manufacture of plastic devices that include an electronic element such as a computer chip or other electronic element embedded therein. The electronic element may preform a wide variety of functions and take a wide variety of forms. Such devices without regard to the particular electronic element embedded therein, will hereinafter be referred to as radio frequency identification (RFID) devices. The present invention also relates to a ultra-thin durable plastic or other composition device in all shapes and sizes that can withstand harsh chemicals and various pressures that could be used in the are-o-space industry.

Referring now to FIG. 1 there can be seen a plastic RFID device 10 manufactured in accordance with the present invention and including an electronic element 20 embedded therein. Device 10 includes an upper surface 12 and a lower surface 14. Electronic element 20 may take a wide variety of forms and perform a wide variety of functions. As shown in FIGS. 3A-3D respectively, electronic element 20,20′,20″, 20′″ may be provided by a micro-chip 22 including a wire antenna 24, connected thereto, a micro-chip 22′ and a circuit board antenna 24′, a read/write micro-chip 22″ and a wire coil antenna 24″, a printed screen or litho conductive metallic or carbon ink antenna 24′″ or any other suitable electronic element. These electronic elements 20, 20′, 20″ and 20′″ and their insertion into plastic or other substrate devices is not new, however, the present invention provides a new hot or cold lamination process for manufacturing plastic devices 10 with these electronic elements 20, 20′, 20″ and 20′″ embedded therein such that the devices 10 are aestically pleasing meeting customers specifications and demands in such that at least one of the upper and lower surfaces 12, 14 of device 10 is sufficiently smooth and is otherwise capable of of receiving dye sublimation printing or thermo printing. Specifically a device in accordance with the present invention has a thickness of approximately in the range of 0.005 inches to 0.033 inches with a surface smoothness of 0.0005 inches. This surface may also have a matte finish on one or more sides.

As shown in FIGS. 4-10 one or more devices 10 in accordance with the present invention may be manufactured by positioning an electronic element 20 between first and second sheets of core 30, 32 to form a core 33. Preferably is shown in FIGS. 5-10 a plurality of devices are manufactured simultaneously, in thus, a plurality of electronic elements 20 are positioned between the first and second sheets of plastic core stock 30, 32 (only the second sheet 32 being shown in FIG. 5 for clarity). When a plurality of electronic elements 20 are positioned between first and second sheets plastic or other substrates core stock 30, 32 electronic elements 20 are properly positioned relative to one another such that a plurality devices may be out from the resulting core stock. Plastic core sheets 30-32 may be provided by a wide variety of plastics or other substrates, the preferred being polyvinyl chloride (PVC) having a thickness in the range of 0.005 inches to 0.0225 inches. Those skilled in the art will recognize that the thickness of the plastic core sheets will depend upon the thickness of the one or more electronic elements that are to be embedded therebetween. Other suitable plastic that may be utilized include polyester, acrylonitrile-butadiene-styrene (ABS), PET or composition of many.

Subsequent to placing one or more electronic elements 20 between the first and second sheets 30, 32 of plastic or other substrate core stock to form core 33, this core 33 is placed in a laminator apparatus 40 of the type well known in the art of plastic device manufacturing. As is shown in FIG. 7, laminator 40 includes upper and lower platens 42, 44 for applying ram pressure to an article positioned therebetween. In addition to the ability to apply ram pressure, laminator 40 is preferably of the type having controlled platens 42, 44 that provide both heat and chill cycles and preferably includes cycle timer to regulate cycle time. (Other laminators of different designs may be used also that have a single ram for the hot platens and a single ram for the cold platens, known as a dual stack laminator, or roll laminators with hot rollers and chill rollers.) Core 33 is positioned between first and second laminating plates 50, 52, one of which is preferably matte finished to provide laminated core 33 with at least one textured outer surface. First and second laminating pads 60, 62 are positioned outside of the laminating plates 50, 52 and first and second steel plates 70, 72 are likewise positioned outside of pads of 60, 62 and the entire assembly forms a book 37 for being positioned in laminator 40 between plates 42, 44.

Once book 37 is positioned in laminator 40 as shown in FIG. 7, the first lamination cycle is initiated by closing laminator platens 42, 44, preferably applying little or no ram pressure to book 37. A laminator heat cycle is initiated bringing the temperature of platens 42, 44 up to range of 275° F. to 400° F. and most preferably up to a range of 300° F. to 370° F. for a period of greater than 5 minutes and preferably in the range of 7 to 10 minutes. Once the heat cycle has been applied to the book 37 as is set forth above, the ram pressure of laminator 40 is increased to facilitate the flow of the plastic core sheets 30, 32 so that the one or more electronic elements 20 are encapsulated thereby, and so that sheets 30, 32 form a uniform core 33 (seen most clearly in FIGS. 8-10 with upper and lower surfaces 34, 35. As mentioned, the use of matte finished laminator plates 50, 52 provides surfaces 34, 35 with a slightly roughened or textured quality which will facilitate the application of a coating thereto as is discussed below. The ram pressure applied during the heat cycle and the length of the heat cycle may vary, depending especially upon the size of sheets 30, 32. For example, the cycle time may be in the range of 10-15 minutes. In one example, a ram pressure of 940.135 pounds per square inch (p.s.i.) was applied for 10-15 minutes to form a uniform core 33, using sheets 30, 32, of a size in the range of 12 inches by 24 inches to 24 inches by 36 inches.

Subsequent to the above heat cycle, laminator 40 applies a chill cycle to book 37 during which time and ram pressure of the laminator 40 is increased, preferably by approximately 25%, until the platens 42, 44 have been cooled in approximately 40° F. to 65° F. for approximately 10-15 minutes. Core 33 may then be removed from laminator 40 for additional processing. If a single lamination step is used, a glossy plate might be used at this point of lamination to provide a mirror finish on the device. At this point the sheets will be ready for cutting out the devices separating the plurality of devices from the sheets.

Subsequent to the removal of core 30 from laminator 40 and as illustrated in FIG. 8 core 33 is coated on at least one of its upper and lower surfaces 34, 35 with a layer of printing ink 36. This may be accomplished using a wide variety of printing techniques such as offset printing, letter-press printing, screen printing, roller coating, spray printing, litho-printing and other suitable printing techniques. As shown in FIG. 8 core 33, is fed in the direction indicated with arrow A through a printing press, a lithographic printer or a similar apparatus 80. This printing step is performed to coat at least one surface 34, 35 of core 33 with a layer of aesthetically pleasing ink 36. This layer of ink 36 cosmetically hides the one or more electronic elements 20 that are embedded within core 33 and prevents these one or more electronic elements 20 from showing through the relatively thin core 33. In this manner, the one or more electronic elements 20 encapsulated in core 33 are completely hidden from view without requiring the plastic used in the manufacture core 33 to be excessively thick.

Referring now to FIGS. 9-10, the final processing of core 33 which now comprises a layer of ink 36 or the like on at least one surface 34, 35 thereof, is schematically illustrated. A layer of overlaminate film such as clear overlaminate film 38,39 is positioned on at least one ink coated surface 34,35 of core 33, and preferably core 33 is positioned between two similar sheets of overlaminate film 38,39 as shown. Overlaminate film is very thin, for example in the range of 0.0015 inches thick. A book 135 is then constructed for insertion into laminator 40 as is schematically illustrated FIG. 10. Book 135 comprising core 33, including at least one layer of ink 36 and at least one layer of overlamination film 38,39 is positioned between laminating plates which are preferably highly polished plates such as mirror finished stainless steel plates 90, 92. Book 135 also comprises first and second laminating pads 60, 62 and first and second steel plates 70, 72 as is discussed above in relation to FIG. 7.

When book 135 is positioned between upper and lower platens 42, 44 of laminator 40 as shown in FIG. 10, the laminator is closed and a heat cycle in the range of 175° F. to 300° F. and most preferably in the range of 180° F. to 275° F. is applied to book 135 for a period of 10 to 25 minutes with a ram pressure that varies depending upon sheet size or the ram size of the laminator 40, but which is typically approximately 1000 p.s.i. with an 18 inch diameter ram. The laminator 40 is then caused to execute a chill cycle, preferably with a corresponding increase in ram pressure. For example, the chill temperature may be in the range of 40° F. to 65° F. and last for a period of 10 to 25 minutes. A ram pressure increase of approximately 25% over the pressure used for the heat cycle has been found to be most preferable.

Subsequent to the above described second lamination cycle as illustrated in FIG. 10, a sheet of plastic or other substrate core stock is provided which comprises at least core 33 with at least one surface 34,35 thereof covered by a layer of ink 36 and with at least one surface 34, 35 thereof covered by a layer of overlaminate film 36, 39.

Preferably plastic device stock manufactured in accordance with the present invention comprises core 33 covered on both surfaces 34, 35 with a layer of ink 36 which is positioned between layers of overlaminate film 38, 39 all of which has been laminated together as described. One or more devices 10 then may be cut from the resulting plastic core stock and device 10 will have a thickness of in the range of 0.005 inches to 0.033 inches with variation in overall thickness across the surfaces 12,14 thereof being no greater than approximately 0.0005 inches. The one or more devices 10 can thus be said to have a surface smoothness of approximately 0.0005 inches or better. Thus, a device 10 manufactured in accordance with the present invention includes at least one surface 12, 14 at preferably both surfaces 12, 14 that are sufficiently smooth and regular to receive dye sublimation printing.

Those skilled in the art will recognize that the forgoing descriptions has set forth the preferred embodiment of the invention in particular detail and it must be understood that numerous modifications, substitutions and changes may be undertaken without departing from the true spirit and scope of the present invention as defined by the ensuring claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US253250123 Nov 19445 Dec 1950Combined Optical Ind LtdMolding of plastics
US287475113 Mar 195624 Feb 1959Thermel IncTemperature controlled press
US368116713 Jul 19701 Aug 1972Moore Richard EMethod of making acrylic-polycarbonate laminate
US37691326 Nov 196930 Oct 1973High Voltage Engineering CorpMethod of intimately bonding thermoplastics
US382009025 Apr 197225 Jun 1974Vlinsky MBistable magnetic device
US38792514 Dec 197222 Apr 1975R E Ingham & Co LimitedApparatus for producing laminates requiring the application of heat
US399422526 Nov 197530 Nov 1976Adcraft Mfg. Co.Method of producing personalized badges and the like
US410871314 Feb 197722 Aug 1978General Binding CorporationLow mass electric heater
US4180608 *7 Jul 197825 Dec 1979Del Joseph AProcess for making multi-layer printed circuit boards, and the article resulting therefrom
US420482213 Oct 197827 May 1980British Industrial Plastics Ltd.Moulding machine
US42165777 Aug 197812 Aug 1980Compagnie Internationale Pour L'informatique Cii-Honeywell Bull (Societe Anonyme)Portable standardized card adapted to provide access to a system for processing electrical signals and a method of manufacturing such a card
US424278916 Mar 19796 Jan 1981The United States Of America As Represented By The United States Department Of EnergyMethod for making an improved magnetic encoding device
US426352317 Sep 197921 Apr 1981The Echlin Manufacturing CompanyPulse generator using read head with Wiegand wire
US429083817 Aug 197922 Sep 1981General Dynamics, Pomona DivisionMethod for vacuum lamination of flex circuits
US4392909 *2 Sep 198112 Jul 1983Robert Burkle Gmbh & Co.Method and device for producing multilayer printed circuit boards
US441741329 Nov 198229 Nov 1983Gao Gesellschaft Fur Automation Und Organisation MbhIdentification card with IC chip and a method for manufacturing the same
US445002430 Jul 198122 May 1984Gao Gesellschaft Fur Automation Und Organisation MbhIdentification card with an IC-module and method for producing it
US445779819 May 19823 Jul 1984Gao Gesellschaft Fur Automation And Organisation MbhMethod of incorporating IC modules into identification cards
US44608257 Dec 198117 Jul 1984Gao Gesellschaft Fur Automation Und Organisation MbhCarrier element for an IC module
US44742927 May 19812 Oct 1984Gao Gesellschaft Fur Automation Und Organisation MbhCarrier element for an IC-chip
US449937130 Sep 198212 Feb 1985Flonic S.A.Electrical connection system
US455005730 Mar 198329 Oct 1985Asahi Kasei Kogyo Kabushiki KaishaAcrylic sheets
US45635758 Apr 19827 Jan 1986Gao Gesellschaft Fur Automation Und Organisation MbhIdentification card having an embedded IC module
US45874136 Sep 19856 May 1986Gao Gesellschaft Fur Automation Und Organisation MbhIC-module identification card
US461721619 Aug 198514 Oct 1986Gao Gesellschaft Fur Automation Und Organisation MbhIntegrated circuit on carrier; hot limination; pvc, pet, polyethylene
US466831416 Apr 198426 May 1987Casio Computer Co., Ltd.Liquid crystal display, solar cell, printed circuit board of calculator
US469707324 Feb 198629 Sep 1987Casio Computer Co., Ltd.IC card
US47012363 Apr 198620 Oct 1987U.S. Philips CorporationMethod of manufacturing an electronic identification card
US471498019 Sep 198622 Dec 1987Casio Computer Co., Ltd.Memory card
US474639222 Sep 198624 May 1988Gao Gesellschaft Fur Automation Und Organisation MbhMethod for producing an identification card with an integrated circuit
US475220412 Jun 198621 Jun 1988Asahi Kasei Kogyo Kabushiki KaishaApparatus for compression forming thermoplastic resin sheets
US478810221 May 198729 Nov 1988Papier-Plastic-Coating Groningen B.V.Data-carrying card, method for producing such a card, and device for carrying out said method
US479284313 Oct 198720 Dec 1988Haghiri Tehrani YahyaData carrier having an integrated circuit and method for producing same
US479589828 Apr 19863 Jan 1989American Telephone And Telegraph CompanyPersonal memory card having a contactless interface using differential data transfer
US480354218 May 19877 Feb 1989Gao Gessellschaft Fur Automation Und Organisation MbhCarrier element for an IC-module
US4824511 *19 Oct 198725 Apr 1989E. I. Du Pont De Nemours And CompanyMultilayer circuit board with fluoropolymer interlayers
US48371844 Jan 19886 Jun 1989Motorola Inc.Process of making an electronic device package with peripheral carrier structure of low-cost plastic
US484113425 Jul 198620 Jun 1989Dai Nippon Insatsu Kabushika KaishaIC card
US48635466 May 19875 Sep 1989Roland MelzerApparatus and method for manufacturing plastic cards
US489753331 Jul 198730 Jan 1990National Business Systems, Inc.Credit card and method of making the same
US48975346 Nov 198730 Jan 1990Gao Gesellschaft Fur Automation Und Organisation MbhData carrier having an integrated circuit and a method for producing the same
US489760214 Oct 198830 Jan 1990Motorola, Inc.Electronic device package with peripheral carrier structure of low-cost plastic
US49318536 Sep 19895 Jun 1990Kabushiki Kaisha ToshibaIC card and method of manufacturing the same
US496568915 Jun 198923 Oct 1990Doduco Kg. Dr. Eugen DurrwachterThin, Planar shaped carrier with wiegand wires
US49808022 May 198925 Dec 1990Bull Cp8Flexible printed circuit
US501390023 Jan 19897 May 1991Gao Gesellschaft Fur Automation Und Organisation MbhIdentification card with integrated circuit
US50670087 Aug 199019 Nov 1991Hitachi Maxell, Ltd.Ic package and ic card incorporating the same thereinto
US50971171 Jul 198817 Mar 1992Bull Cp8Electronic microcircuit card and method for its manufacture
US517384025 Apr 199122 Dec 1992Mitsubishi Denki Kabushiki KaishaMolded ic card
US520060118 Jan 19906 Apr 1993W. & T. Avery LimitedFlexible identification card or token
US520845016 Oct 19914 May 1993Matsushita Electric Industrial Co., Ltd.IC card and a method for the manufacture of the same
US524484020 Oct 199214 Sep 1993Mitsubishi Denki Kabushiki KaishaMethod for manufacturing an encapsulated IC card having a molded frame and a circuit board
US525034130 Jan 19915 Oct 1993Mitsubishi Denki Kabushiki KaishaIC card
US52680432 Aug 19917 Dec 1993Olin CorporationMagnetic sensor wire
US526869924 Sep 19927 Dec 1993Motorola, Inc.Data communication receiver utilizing a loop antenna having a hinged connection
US527259624 Jun 199121 Dec 1993At&T Bell LaboratoriesPersonal data card fabricated from a polymer thick-film circuit
US528342324 Feb 19921 Feb 1994U.S. Philips CorporationContactless microcircuit card
US53414215 Nov 199123 Aug 1994Bull Cp8Security device, including a memory and/or a microcomputer for data processing machines
US535709130 Apr 199218 Oct 1994Fujitsu LimitedCard type input/output interface device and electronic device system using the same
US538730628 Aug 19917 Feb 1995Gec Avery LimitedManufacturing integrated circuit cards
US539665016 Jul 19927 Mar 1995Mitsubishi Denki Kabushiki KaishaWireless communication device with multi-function integrated circuit processing card
US539922318 Dec 199221 Mar 1995Interlock AgMethod and device for laminating layers of identification cards, or the like
US539984712 May 199321 Mar 1995Droz; FrancoisCard comprising at least one electronic element
US539990727 May 199321 Mar 1995Johnson Matthey Inc.Semiconductor with flexible polymer substrate
US541219220 Jul 19932 May 1995American Express CompanyRadio frequency activated charge card
US543821930 Nov 19931 Aug 1995Motorola, Inc.Double-sided oscillator package and method of coupling components thereto
US543875020 Dec 19948 Aug 1995U.S. Philips CorporationMethod of manufacturing a chip card
US544811014 Sep 19935 Sep 1995Micron Communications, Inc.Enclosed transceiver
US547941630 Sep 199326 Dec 1995Micron Technology, Inc.Apparatus and method for error detection and correction in radio frequency identification device
US551920129 Apr 199421 May 1996Us3, Inc.Smart card
US556736210 Aug 199422 Oct 1996Gao Gesellschaft Fur Automation Und Organisation MbhIdentity card and a method and apparatus for producing it
US558561814 Mar 199417 Dec 1996Droz; Fran+525 OisMethod of manufacture of a card comprising at least one electronic element and card obtained by such method
US559803213 Feb 199528 Jan 1997Gemplus Card InternationalHybrid chip card capable of both contact and contact-free operation and having antenna contacts situated in a cavity for an electronic module
US56125329 Nov 199518 Mar 1997Kabushiki Kaisha ToshibaThin IC card and method for producing the same
US568873818 Jun 199618 Nov 1997Minnesota Mining And Manufacturing CompanySecurity card and method for making same
US571974617 Jan 199617 Feb 1998Mitsubishi Denki Kabushiki KaishaIC card
US5762741 *21 Sep 19959 Jun 1998E.I. Du Pont De Nemours And CompanyMethod for bonding polymeric articles
US57743392 Dec 199630 Jun 1998Mitsubishi Denki Kabushiki KaishaIC card and method of making the same
US58096335 Mar 199722 Sep 1998Siemens AktiengesellschaftMethod for producing a smart card module for contactless smart cards
US58172077 Oct 19966 Oct 1998Leighton; Keith R.Radio frequency identification card and hot lamination process for the manufacture of radio frequency identification cards
US585228921 Sep 199522 Dec 1998Rohm Co., Ltd.Non-contact type IC card and method of producing the same
US59519279 Apr 199814 Sep 1999Marley Mouldings Inc.Encapsulating wood flour particles with a resin in an extrudable material of high intensity mixing consists of resin, wood flour, stabilizer, lubricants and process aid, extruding, cutting to form pellets, blowing and compressing
US596941515 Jul 199619 Oct 1999Austria Card PlastikkartenData carrier with a component-containing module and with a coil, method of producing such a data carrier and module therefor
US599689715 Jul 19967 Dec 1999Austria Card Plastikkarten Und Ausweissysteme Gesellschaft M.B.HData carrier having a module including a component and having a coil, and method of manufacturing such a data carrier
US602062714 Sep 19981 Feb 2000Siemens AktiengesellschaftChip card and method of manufacturing a chip card
US603609919 Aug 199714 Mar 2000Leighton; KeithHot lamination process for the manufacture of a combination contact/contactless smart card and product resulting therefrom
US603679726 Aug 199314 Mar 2000Citizen Watch Co., Ltd.Process of producing IC cards
US608102516 Feb 199927 Jun 2000Austria Card PlastikkartenData carrier with a component-containing module and with a coil, method of producing such a data carrier and module therefor
US609542415 Jul 19961 Aug 2000Austria Card Plasikkarten Und Ausweissysteme Gesellschaft M.B.H.Card-shaped data carrier for contactless uses, having a component and having a transmission device for the contactless uses, and method of manufacturing such card-shaped data carriers, as well as a module therefor
US611086412 Nov 199729 Aug 20003M Innovative Properties CompanyComprising an amorphous copolyester layer laminated to a polyvinyl chloride layer without an intermediate adhesive, atleast one of the layers having partial transparent security image visiable through one of the layers; identification card
US621415522 Sep 199810 Apr 2001Keith R. LeightonRadio frequency identification card and hot lamination process for the manufacture of radio frequency identification cards
US624819926 Apr 199919 Jun 2001Soundcraft, Inc.Method for the continuous fabrication of access control and identification cards with embedded electronics or other elements
US630560927 Jul 199823 Oct 2001Infineon Technologies AgData card, process for manufacturing a data card and apparatus for manufacturing a data card
US644173629 Jun 200027 Aug 2002Keith R. LeightonUltra-thin flexible durable radio frequency identification devices and hot or cold lamination process for the manufacture of ultra-thin flexible durable radio frequency identification devices
US65143675 Aug 19994 Feb 2003Keith R. LeightonHot lamination process for the manufacture of a combination contact/contactless smart card
US652198511 May 200018 Feb 2003GemplusMethod for the production of a portable integrated circuit electronic device comprising a low-cost dielectric
US65577662 Oct 20006 May 2003Keith R. LeightonHot lamination method for a hybrid radio frequency optical memory card converting sheets into a web process
DE1810986A126 Nov 196811 Jun 1970Doboy Verpackungsmasch GmbhVerfahren und Vorrichtung zum Kuehlen von Schweissnaehten bei Kunststoff-Folien
DE3340600C110 Nov 198310 Jan 1985Duerrwaechter E Dr DoducoLesekopf zum magnetischen Abtasten von Wiegand-Draehten
DE3721822C12 Jul 198710 Nov 1988Philips PatentverwaltungChip card
DE3910021A128 Mar 19894 Oct 1990Basf AgProcess for the production of sandwich panels using semi-finished products made of high-performance composites with polymeric matrices
DE4141972C219 Dec 19912 Feb 1995Interlock AgVerfahren und Vorrichtung zum Kaschieren von Schichten von Identifikationskarten u. dgl.
DE9111708U119 Sep 199116 Apr 1992Anger Electronic Ges.M.B.H. Emco Innovationscenter, Hallein, AtTitle not available
Non-Patent Citations
Reference
1"Smart Card Technology International", cover page, author and date unknown.
2Amended Answer to Counterclaims, Affirmative Defenses for Case No. 04-cv-02496 (CM)(LMS) dated Aug. 11, 2006.
3Answer to Third Amended Complaint, Affirmative Defenses and Counterclaims for Case No. 04-cv-02496 (CM)(LMS) dated Aug. 9, 2006.
4Burkle, "Laminating Presses for Plastic Cards", date unknown.
5Burkle; Plastic Card Lamination Presses; Printed in Germany, date unknown.
6Burkle; Plastic Card Lamination Presses; Printed in Germany.
7Burkle; PVC Laminating Press Technology CHK; Printed in W. Germany, date unknown.
8Burkle; PVC Laminating Press Technology CHK; Printed in W. Germany.
9Complaint and Jury Demand for Case No. CV-SACV05-513 AHS (RNBx) dated May 27, 2005.
10Corporate Disclosure Pursuant to Fed.R.Civ.P.7.1(a) dated May 27, 2005.
11Innovations from Oakwood Design; Lamination Presses for Bank Card & Printed Circuit Board Production; Hertfordshire, England; 1992.
12Lamination Logbook; Mar. 8, 1993 through Jan. 8, 1997.
13Markman Ruling-Leighton v. Oberthur, 2005 U.S. Dist. LEXIS 4227 dated Mar. 9, 2005.
14Mazzucchelli Vinyls; Typical Lamination Cycle; TS Jan. 1994.
15Memorandum in Support of Motion for Summary Judgment of Patent Invalidity dated Oct. 18, 2005.
16Notice of Interested Parties for Case No. CV-SACV05-513 AHS (RNBx) dated May 27, 2005.
17Oakwood Design Innovations; Customer Service-A Commitment of the First Order; Autumn 1990; M.J. Marketing.
18Oakwood Design; Innovations Winter 91/92; VidCard Systems.
19Oakwood Design; Instruction Manual For Operation of Oakwood Series 6 F/2/3 and 6E/2/3 Hydraulically Operated PVC Laminator; Letchworth; Oct. 1991.
20Oakwood Design; Lamination Presses for Bank Card & Printed Circuit Board Production; Hertfordshire, England, 1987.
21Oakwood Design; Oakwood Series 6 Laminators; Hertfordshire, England, 1987.
22 *PCT International Preliminary Examination Report for International Application No. PCT/US98/14941 May 22, 2000.
23 *PCT International Search Report for International Application No. PCT/US98/14941 Oct. 30, 1998.
24Plaintiffs' Memorandum in Opposition to Defendants' Motion to Dismiss dated Aug. 1, 2005.
25SUMMONS for Case No. CV-SACV05-513 AHS (RNBx) dated May 27, 2005.
26The Smartcard Handbook; pp. 19, 38-39, 301, date unknown.
27Third Amended Complaint for Case No. 04-cv-02496 (CM)(LMS) dated Jul. 27, 2006.
28Vereinigte Kunstoffwerke GmbH; Technical Manual for Staufen VKW ID-Card Films; Apr. 1986.
29Vereinigte Kunststoffwerke GmbH; PVC Films ID Cards, Apr. 1986.
30Vereinigtekunststoffwerke GmbH; Preface; Staufen Rigid PVC Films for ID Cards; Sep. 1992.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8098161 *1 Dec 200817 Jan 2012Raytheon CompanyRadio frequency identification inlay with improved readability
US8136735 *20 Jan 200520 Mar 2012Semiconductor Energy Laboratory Co., Ltd.ID label, ID card, and ID tag
Classifications
U.S. Classification340/572.1, 156/298, 156/312
International ClassificationB32B38/06, B32B37/18, B32B37/08, G06K19/077, H05K3/00, H05K3/28, G08B13/14
Cooperative ClassificationH05K3/284, B32B2429/00, H05K3/281, H05K2203/0228, G06K19/07745, B32B2309/12, G06K19/07718, G06K19/07749, H05K2203/068, B32B2309/02, B32B2327/06, H05K2203/1105, B32B37/185, B32B2425/00, B32B37/08, B32B2309/04, H05K3/0044, B32B38/145, B32B38/06, G06K19/07769, B32B2519/02, B32B2305/342
European ClassificationG06K19/077D, H05K3/28B, G06K19/077T, G06K19/077M, G06K19/077T4C, B32B37/18A4
Legal Events
DateCodeEventDescription
28 Jan 2014FPAYFee payment
Year of fee payment: 12