USRE39934E1 - Adjustable optical attenuator - Google Patents

Adjustable optical attenuator Download PDF

Info

Publication number
USRE39934E1
USRE39934E1 US10/324,028 US32402802A USRE39934E US RE39934 E1 USRE39934 E1 US RE39934E1 US 32402802 A US32402802 A US 32402802A US RE39934 E USRE39934 E US RE39934E
Authority
US
United States
Prior art keywords
light
attenuating
attenuator
optical attenuator
circular cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/324,028
Inventor
John O. Smiley
Robert LaFlamme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumentum Operations LLC
Original Assignee
Lumentum Ottawa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumentum Ottawa Inc filed Critical Lumentum Ottawa Inc
Priority to US10/324,028 priority Critical patent/USRE39934E1/en
Application granted granted Critical
Publication of USRE39934E1 publication Critical patent/USRE39934E1/en
Assigned to JDS UNIPHASE CORPORATION reassignment JDS UNIPHASE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JDS UNIPHASE INC.
Assigned to LUMENTUM OPERATIONS LLC reassignment LUMENTUM OPERATIONS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JDS UNIPHASE CORPORATION
Assigned to LUMENTUM OPERATIONS LLC reassignment LUMENTUM OPERATIONS LLC CORRECTIVE ASSIGNMENT TO CORRECT INCORRECT PATENTS 7,868,247 AND 6,476,312 ON PAGE A-A33 PREVIOUSLY RECORDED ON REEL 036420 FRAME 0340. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: JDS UNIPHASE CORPORATION
Assigned to LUMENTUM OPERATIONS LLC reassignment LUMENTUM OPERATIONS LLC CORRECTIVE ASSIGNMENT TO CORRECT PATENTS 7,868,247 AND 6,476,312 LISTED ON PAGE A-A33 PREVIOUSLY RECORDED ON REEL 036420 FRAME 0340. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: JDS UNIPHASE CORPORATION
Anticipated expiration legal-status Critical
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: LUMENTUM OPERATIONS LLC, OCLARO FIBER OPTICS, INC., OCLARO, INC.
Assigned to OCLARO FIBER OPTICS, INC., LUMENTUM OPERATIONS LLC, OCLARO, INC. reassignment OCLARO FIBER OPTICS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE AG NEW YORK BRANCH
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/353Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being a shutter, baffle, beam dump or opaque element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • G02B6/266Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams

Definitions

  • This invention relates to an optical attenuator for attenuating the intensity of a beam of light, and in particular to an optical attenuator that preserves the composition of polarization of a beam of light over a wide range of attenuation.
  • the system is designed for a normal amount of signal loss between transmitter and detector. At the detector, the signal strength must be maintained within an appropriate range. The minimum strength is determined by the need for an adequate signal-to-noise ratio. The maximum strength is determined by the need to avoid an overload of the detector.
  • an optical attenuator comprising a disk formed from two separate portions, a wedge shaped disk made of a light absorbing material affixed to a wedge shaped transparent disk.
  • the disk is rotated around an axis by a motor.
  • the attenuator needs a complex setup to compensate for refraction and resulting beam deviations. The compensations ensure that the beam of light is coupled into the optical fiber at any angular orientation of the attenuator disk. As such, the device is expensive and prone to reliability problems.
  • a method of attenuating a beam of light having a circular cross-section comprises the step of disposing a member within the beam of light, the intersection of the member and the beam of light defining a region having two substantially equal sides defining an angle other than 0 degrees and 180 degrees therebetween the two sides having a central line of symmetry coincident with a line of symmetry through the centre of the circle, the angle moving along the line of symmetry.
  • optical attenuator for attenuating a beam of light having a circular cross-section.
  • the optical attenuator comprises:
  • FIG. 1 is a schematic diagram of an attenuator according to the invention comprising a cone disposed within the optical path;
  • FIG. 2 is a schematic diagram of a projection of a cone covering a cross sectional portion of a collimated beam of light
  • FIG. 3 is a diagram showing polarization dependent loss as function of attenuation for an attenuator according to the invention compared with a prior art device;
  • FIG. 4 is a schematic diagram of another embodiment of an attenuator according to the invention comprising an edge with a wedge shaped opening disposed within the optical path;
  • FIG. 5 is a schematic diagram of another embodiment of an attenuator according to the invention comprising a cone disposed within the optical path;
  • FIG. 6 is a schematic diagram of a projection of a cone covering a cross sectional portion of a reflected beam of light.
  • FIG. 7 is a schematic diagram of another embodiment of an attenuator according to the invention comprising a cone disposed within the optical path, the cone being affixed to an axle for rotation;
  • FIG. 8 is a schematic diagram of another embodiment according to the invention wherein the beam attenuator is formed of two sheets of opaque material; and,
  • FIG. 8a is a schematic diagram of a projection of the two sheets shown in FIG. 8 covering a cross sectional portion of a collimated beam of light.
  • an attenuator 10 according to the invention is shown.
  • Light transmitted in an optical fiber 11 is collimated using an input lens 12 .
  • the collimated beam of light 16 passes through a gap between the input lens 12 and an output lens 14 where the collimated beam of light is focused and received by the output lens 14 and coupled into an optical fiber 15 .
  • the gap contains a substance such as air which does not substantially attenuate the beam of light.
  • the output lens 14 is a graded index (GRIN) lens. Fiber or rod lenses of this type are produced under the trade name “SELFOC”; the mark is registered in Japan and owned by the Nippon Sheet and Glass Co. Ltd.
  • a beam attenuator in the form of a member 18 for attenuating a portion of the collimated beam of light 16 such as an opaque cone 18 is disposed within the optical path perpendicular to the longitudinal axis of the collimated beam of light 16 .
  • FIG. 2 shows a projection of the cone 18 covering a cross sectional portion of the collimated beam of light 16 . Interrupting a portion of the collimated beam of light 16 , the portion the size of the wedge, results in an attenuation of light intensity of the beam of light 16 received at the output lens 14 .
  • the attenuation is varied by varying the size of the portion of the cone 18 within the optical path. This is accomplished by moving the cone 18 in a direction substantially perpendicular to the principle axis of the beam of light using a controller 20 .
  • the attenuator comprises an opaque cone within a transparent body.
  • an attenuator is realised by immersing a cone made of laminated glass in a transparent fluid, the glass and the fluid having matching refractive indices. During a cooling process the fluid solidifies and retains the cone at a predetermined location within the solidified fluid.
  • the attenuator comprises a transparent body having a conic indention, wherein the surface of the body defining the indention is covered with a layer of opaque or light absorbing material.
  • the cone 18 comprises an angle of 90 degrees.
  • the cone is moved into the beam of light such that the point of the cone moves along a diameter of a cross section of the beam of light and the side of the cone that is illuminated by the beam of light is substantially symmetrical about the diameter. In this way, approximately an equal amount of light of each orthogonal polarization is blocked or attenuated.
  • FIG. 3 is a diagram showing the Polarization Dependent Loss (PDL) as a function of the attenuation for the attenuator according to the invention 32 in comparison with a prior art device 30 comprising a straight edge.
  • PDL Polarization Dependent Loss
  • the PDL for an attenuator according to the invention is substantially constant and low level over a wide range of attenuation.
  • the PDL for the straight edge is increasing with increasing attenuation for attenuations greater than 10 dB.
  • a high value of PDL indicates a strong dependence of the attenuation on the polarization of the collimated light, for example a component with vertical polarization may be substantially attenuated while a horizontal component is not affected. This results in a change of the polarization composition of the collimated beam of light during the attenuation. A change of polarization due to attenuation is an undesirable effect.
  • the beam of light 16 is attenuated using a wedge shaped edge.
  • the edge comprises at least an outer layer of light absorbing material in order to prevent light reflected from the edge from interfering with the incoming beam of light 16 .
  • the wedge is substantially flat, thereby allowing it to be moved into and out of a narrow gap.
  • the attenuator comprises a wedge shaped body of light absorbing material.
  • FIG. 4 shows a further embodiment of an attenuator according to the invention.
  • a cross sectional portion of the collimated beam of light 16 is covered by an edge 18 having a wedge shaped opening moved along an axis of symmetry 19 through the center of the beam of light.
  • the two edges act to block light from the light beam so as to maintain the polarization composition thereof.
  • the wedge shaped opening when moved into the beam of light 16 defines two substantially equal sides within the beam of light 16 .
  • the angle of the wedge is moved along a central line of the beam of light 16 . Since the beam of light is substantially circular, the central line is a diameter of the circle.
  • the two substantially equal sides within the beam of light 16 are substantially symmetrical about the same diameter.
  • the attenuator comprises a body of light absorbing material having a wedge shaped opening.
  • FIG. 5 another embodiment of an attenuator 10 according to the invention is shown.
  • An optical fiber 11 is connected to an input/output lens 17 .
  • Light transmitted in the optical fiber 11 is collimated using an input/output lens 17 .
  • the collimated beam of light 16 passes through an air gap between the input/output lens 17 and a reflective surface 25 , such as a mirror, where the collimated beam of light is reflected to the input/output lens 17 and coupled into an optical fiber 15 .
  • An opaque cone 18 is disposed within the optical path perpendicular to the longitudinal axis of the collimated beam of light 16 between the input/output lens 17 and the mirror 25 . Moving the cone is achieved, for example, using a screw mechanism.
  • FIG. 6 shows a projection of the cone 18 covering a cross sectional portion of the collimated beam of light 16 reflected from the reflective surface 25 .
  • the beam of light 16 is reflected by the reflective surface 25 onto an output lens 14 , different from the input lens 12 .
  • the cone 18 is moved in another fashion such that the tip of the cone is within the optical path of the collimated beam of light 16 and the portion of the beam of light 16 blocked by the cone is altered.
  • a cone 18 is shown affixed to an axle 40 .
  • the cone 18 is moved into and out of the path of a beam of light by rotating the axle 40 .
  • This allows for a simpler mechanism than that necessary for transverse motion.
  • it requires more space as the lenses 12 and 14 are spaced sufficiently to allow the cone 18 to rotate into and out of the optical path.
  • FIGS. 8 and 8a another embodiment of an attenuator according to the invention is shown.
  • An optical fiber 11 is connected to an input/output lens 17 .
  • Light transmitted in the optical fiber 11 is collimated using an input/output lens 17 .
  • the collimated beam of light 16 passes through an air gap between the input/output lens 17 and a reflective surface 25 , such as a mirror, where the collimated beam of light is reflected to the input/output lens 17 and coupled into an optical fiber 15 .
  • a beam attenuator in the form of two slanted sheets 18 a and 18 b of opaque material is disposed within the optical path.
  • An angle is defined between the two sheets. Preferably, the angle is 90 degrees.
  • the two sheets are moved toward each other such that each sheet is equidistant from a centre of the circular cross section of the beam of light 16 .
  • the resulting amount of the beam of light 16 that is blocked is a same amount as that blocked by the member having a wedge shaped opening and described above.
  • a beam attenuator according to the invention is defined herein and in the claims that follow to comprise an object or a portion of an object, the object or the portion of an object for attenuating light.
  • the beam attenuator refers to the opaque arrowhead.

Abstract

An optical attenuator for attenuating a collimated beam of light propagating along an optical path while preserving the composition of polarization of the collimated beam of light is disclosed. The optical attenuator comprises a beam attenuator for attenuating a portion of the collimated beam of light when a portion of the beam attenuator is disposed within the optical path. The beam attenuator has a cross section along a plane perpendicular to the direction of propagation of the collimated beam of light of the portion of the attenuator in the shape of a wedge. The attenuation is varied using a controller for moving the beam attenuator in order to vary a size of the portion of the wedge within the optical path.

Description

FIELD OF THE INVENTION
This invention relates to an optical attenuator for attenuating the intensity of a beam of light, and in particular to an optical attenuator that preserves the composition of polarization of a beam of light over a wide range of attenuation.
BACKGROUND OF THE INVENTION
Between a transmitter and a detector of a fiber optic system, attenuation of the signal strength occurs. The system is designed for a normal amount of signal loss between transmitter and detector. At the detector, the signal strength must be maintained within an appropriate range. The minimum strength is determined by the need for an adequate signal-to-noise ratio. The maximum strength is determined by the need to avoid an overload of the detector.
In U.S. Pat. No. 5,325,459 issued to S. Schmidt in June, 1994 an optical attenuator is disclosed comprising a disk formed from two separate portions, a wedge shaped disk made of a light absorbing material affixed to a wedge shaped transparent disk. For adjusting different attenuations, the disk is rotated around an axis by a motor. The attenuator needs a complex setup to compensate for refraction and resulting beam deviations. The compensations ensure that the beam of light is coupled into the optical fiber at any angular orientation of the attenuator disk. As such, the device is expensive and prone to reliability problems.
A well known alternative to the complex solution disclosed in U.S. Pat. No. 5,325,459 is the use of an opaque straight edge disposed within the optical path of a collimated beam of light. Unfortunately, using this device for attenuating a beam of light results in a change of the polarization composition of the beam of light. This is an undesirable effect when used in an optical fibre network. Since polarization components of light within the system are often not known it is a disadvantage to have polarization dependent attenuation.
It would be advantageous to provide an attenuator that maintains the polarization composition of a beam of light.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an optical attenuator for attenuating the intensity of a beam of light that preserves the polarization composition of a beam of light over a wide range of attenuation.
It is further an object of the invention to provide an optical attenuator that is easily implemented in a fiber optic network.
According to the invention a method of attenuating a beam of light having a circular cross-section is provided. The method comprises the step of disposing a member within the beam of light, the intersection of the member and the beam of light defining a region having two substantially equal sides defining an angle other than 0 degrees and 180 degrees therebetween the two sides having a central line of symmetry coincident with a line of symmetry through the centre of the circle, the angle moving along the line of symmetry.
According to the invention an optical attenuator for attenuating a beam of light having a circular cross-section is provided. The optical attenuator comprises:
    • a member for attenuating a portion of the beam of light when a portion of the member is disposed within the beam of light, the member being disposed within the beam of light such that the intersection of the member and the beam of light defines a region having two substantially equal sides defining an angle other than 0 degrees and 180 degrees therebetween, the two sides having a central line of symmetry coincident with a line of symmetry through the centre of the circle, the angle moving along the line of symmetry; and,
    • a controller for moving the member in order to vary a size of the portion of the member within the beam of light.
BRIEF DESCRIPTION OF THE DRAWINGS
Exemplary embodiments of the invention will now be described in conjunction with the drawings, in which:
FIG. 1 is a schematic diagram of an attenuator according to the invention comprising a cone disposed within the optical path;
FIG. 2 is a schematic diagram of a projection of a cone covering a cross sectional portion of a collimated beam of light;
FIG. 3 is a diagram showing polarization dependent loss as function of attenuation for an attenuator according to the invention compared with a prior art device;
FIG. 4 is a schematic diagram of another embodiment of an attenuator according to the invention comprising an edge with a wedge shaped opening disposed within the optical path;
FIG. 5 is a schematic diagram of another embodiment of an attenuator according to the invention comprising a cone disposed within the optical path;
FIG. 6 is a schematic diagram of a projection of a cone covering a cross sectional portion of a reflected beam of light; and,
FIG. 7 is a schematic diagram of another embodiment of an attenuator according to the invention comprising a cone disposed within the optical path, the cone being affixed to an axle for rotation;
FIG. 8 is a schematic diagram of another embodiment according to the invention wherein the beam attenuator is formed of two sheets of opaque material; and,
FIG. 8a is a schematic diagram of a projection of the two sheets shown in FIG. 8 covering a cross sectional portion of a collimated beam of light.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1 an attenuator 10 according to the invention is shown. Light transmitted in an optical fiber 11 is collimated using an input lens 12. The collimated beam of light 16 passes through a gap between the input lens 12 and an output lens 14 where the collimated beam of light is focused and received by the output lens 14 and coupled into an optical fiber 15. Preferably the gap contains a substance such as air which does not substantially attenuate the beam of light. Preferably, the output lens 14 is a graded index (GRIN) lens. Fiber or rod lenses of this type are produced under the trade name “SELFOC”; the mark is registered in Japan and owned by the Nippon Sheet and Glass Co. Ltd. A beam attenuator in the form of a member 18 for attenuating a portion of the collimated beam of light 16 such as an opaque cone 18 is disposed within the optical path perpendicular to the longitudinal axis of the collimated beam of light 16. FIG. 2 shows a projection of the cone 18 covering a cross sectional portion of the collimated beam of light 16. Interrupting a portion of the collimated beam of light 16, the portion the size of the wedge, results in an attenuation of light intensity of the beam of light 16 received at the output lens 14. The attenuation is varied by varying the size of the portion of the cone 18 within the optical path. This is accomplished by moving the cone 18 in a direction substantially perpendicular to the principle axis of the beam of light using a controller 20.
Alternatively, the attenuator comprises an opaque cone within a transparent body. For example, such an attenuator is realised by immersing a cone made of laminated glass in a transparent fluid, the glass and the fluid having matching refractive indices. During a cooling process the fluid solidifies and retains the cone at a predetermined location within the solidified fluid.
Further alternatively, the attenuator comprises a transparent body having a conic indention, wherein the surface of the body defining the indention is covered with a layer of opaque or light absorbing material.
Preferably, the cone 18 comprises an angle of 90 degrees. In order to attenuate the light within the beam of light while maintaining the polarization composition the cone is moved into the beam of light such that the point of the cone moves along a diameter of a cross section of the beam of light and the side of the cone that is illuminated by the beam of light is substantially symmetrical about the diameter. In this way, approximately an equal amount of light of each orthogonal polarization is blocked or attenuated.
The attenuator according to the invention is advantageous compared with prior art devices such as a straight edge because the attenuated beam of light has substantially a same polarization composition as the collimated beam of light. FIG. 3 is a diagram showing the Polarization Dependent Loss (PDL) as a function of the attenuation for the attenuator according to the invention 32 in comparison with a prior art device 30 comprising a straight edge. As shown in FIG. 3 the PDL for an attenuator according to the invention is substantially constant and low level over a wide range of attenuation. In comparison the PDL for the straight edge is increasing with increasing attenuation for attenuations greater than 10 dB. A high value of PDL indicates a strong dependence of the attenuation on the polarization of the collimated light, for example a component with vertical polarization may be substantially attenuated while a horizontal component is not affected. This results in a change of the polarization composition of the collimated beam of light during the attenuation. A change of polarization due to attenuation is an undesirable effect.
In another embodiment according to the invention the beam of light 16 is attenuated using a wedge shaped edge. Preferably, the edge comprises at least an outer layer of light absorbing material in order to prevent light reflected from the edge from interfering with the incoming beam of light 16. Preferably the wedge is substantially flat, thereby allowing it to be moved into and out of a narrow gap.
Optionally, the attenuator comprises a wedge shaped body of light absorbing material.
FIG. 4 shows a further embodiment of an attenuator according to the invention. A cross sectional portion of the collimated beam of light 16 is covered by an edge 18 having a wedge shaped opening moved along an axis of symmetry 19 through the center of the beam of light. As is evident, the two edges act to block light from the light beam so as to maintain the polarization composition thereof. The wedge shaped opening when moved into the beam of light 16 defines two substantially equal sides within the beam of light 16. The angle of the wedge is moved along a central line of the beam of light 16. Since the beam of light is substantially circular, the central line is a diameter of the circle. The two substantially equal sides within the beam of light 16 are substantially symmetrical about the same diameter.
Alternatively, the attenuator comprises a body of light absorbing material having a wedge shaped opening.
Referring to FIG. 5, another embodiment of an attenuator 10 according to the invention is shown. An optical fiber 11 is connected to an input/output lens 17. Light transmitted in the optical fiber 11 is collimated using an input/output lens 17. The collimated beam of light 16 passes through an air gap between the input/output lens 17 and a reflective surface 25, such as a mirror, where the collimated beam of light is reflected to the input/output lens 17 and coupled into an optical fiber 15. An opaque cone 18 is disposed within the optical path perpendicular to the longitudinal axis of the collimated beam of light 16 between the input/output lens 17 and the mirror 25. Moving the cone is achieved, for example, using a screw mechanism. By disposing a cone at one end of a shaft and threading an opposing end of the shaft, turning of a mating thread allows the cone to be moved into and out of the beam of light 16 with precision. FIG. 6 shows a projection of the cone 18 covering a cross sectional portion of the collimated beam of light 16 reflected from the reflective surface 25.
In another embodiment according to the invention the beam of light 16 is reflected by the reflective surface 25 onto an output lens 14, different from the input lens 12.
Optionally, the cone 18 is moved in another fashion such that the tip of the cone is within the optical path of the collimated beam of light 16 and the portion of the beam of light 16 blocked by the cone is altered. Referring to FIG. 7, a cone 18 is shown affixed to an axle 40. The cone 18 is moved into and out of the path of a beam of light by rotating the axle 40. This allows for a simpler mechanism than that necessary for transverse motion. Conversely, it requires more space as the lenses 12 and 14 are spaced sufficiently to allow the cone 18 to rotate into and out of the optical path.
Referring to FIGS. 8 and 8a, another embodiment of an attenuator according to the invention is shown. An optical fiber 11 is connected to an input/output lens 17. Light transmitted in the optical fiber 11 is collimated using an input/output lens 17. The collimated beam of light 16 passes through an air gap between the input/output lens 17 and a reflective surface 25, such as a mirror, where the collimated beam of light is reflected to the input/output lens 17 and coupled into an optical fiber 15. A beam attenuator in the form of two slanted sheets 18a and 18b of opaque material is disposed within the optical path. An angle is defined between the two sheets. Preferably, the angle is 90 degrees. The two sheets are moved toward each other such that each sheet is equidistant from a centre of the circular cross section of the beam of light 16. The resulting amount of the beam of light 16 that is blocked is a same amount as that blocked by the member having a wedge shaped opening and described above.
A beam attenuator according to the invention is defined herein and in the claims that follow to comprise an object or a portion of an object, the object or the portion of an object for attenuating light. For example, when a rectangular glass plate is provided with an opaque arrow head thereon, the beam attenuator refers to the opaque arrowhead.
Of course, numerous other embodiments may be envisaged without departing from the spirit and scope of the claimed invention.

Claims (33)

1. A method of attenuating a beam of light having a circular cross-section comprising the step of disposing a member having a substantially opaque beam attenuating portion within the beam of light, the intersection of the beam attenuating portion of the member and the beam of light defining a beam region that is smaller than the beam of the light and having two substantially equal sides defining an angle therebetween of other than 0 degrees and 180 degrees, the two sides having a central line of symmetry coincident with a line of symmetry through the centre of the circle, the angle moving along the line of symmetry.
2. A method of attenuating a beam of light having a circular cross-section as defined in claim 1, wherein a portion of the outer circumference of the beam intersects the member, the portion being less than 360 degrees.
3. An optical attenuator for attenuating a beam of light having a circular cross-section, the optical attenuator comprising:
a beam attenuator which is at least partially light blocking for attenuating a portion of the beam of light when a portion of the beam attenuator is disposed within the beam of light, the beam attenuator being disposed within the beam of light such that the intersection of the beam attenuator and the beam of light defining a beam region that is smaller than the beam of the light and having two substantially equal sides having an angle other than 0 degrees and 180 degrees therebetween, the two sides having a central line of symmetry coincident with a line of symmetry through the centre of the circle, the angle moving along the line of symmetry; and,
a controller for moving the beam attenuator in order to vary a size of the portion of the beam attenuator within the beam of light.
4. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator comprises a cylindrical shaft having a cone at a first end thereof.
5. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 4, wherein the beam attenuator includes a thread at a second end thereof and the controller mates with the threading for causing the beam attenuator to advance or retract in a substantially linear direction.
6. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator comprises a portion of a member, the portion for substantially attenuating light.
7. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 6, wherein the beam attenuator comprises an opaque cone disposed within a transparent substrate.
8. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the two substantially equal sides define an angle of 90 degrees.
9. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator for attenuating a portion of the beam of light comprises a wedge shaped edge.
10. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator for attenuating a portion of the beam of light comprises a wedge shaped body of light absorbing material.
11. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator for attenuating a portion of the beam of light comprises an edge having a wedge shaped opening.
12. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator for attenuating a portion of the beam of light comprises a body of light absorbing material having a wedge shaped opening.
13. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator for attenuating a portion of the beam of light comprises two sheets of opaque material defining an angle therebetween, the two sheets being moved in opposing directions such that the angle moves along the line of symmetry.
14. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, wherein the beam attenuator for attenuating a portion of the beam of light further comprises a layer of light absorbing material.
15. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, further comprising an input lens.
16. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, further comprising an output lens.
17. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 16, wherein the output lens comprises a GRIN lens.
18. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, comprising a reflective surface for reflecting the beam of light incident thereon back along the optical path in an opposite direction.
19. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 18, wherein the reflective surface comprises a mirror.
20. An optical attenuator for attenuating a beam of light having a circular cross-section as defined in claim 3, comprising a detector.
21. An optical attenuator for attenuating a beam of light comprising:
a body of light blocking material including at least one wedge-shaped projection at a leading edge thereof for attenuating the beam of light; and
a controller for varying the position of the body within the beam of light to control the attenuation thereof;
wherein the body comprises a cylindrical shaft having a cone at a first end thereof.
22. The optical attenuator according to claim 21, wherein the body includes a thread at a second end thereof; and wherein the controller mates with the thread causing the body to advance or retract in a substantially linear direction.
23. An optical attenuator for attenuating a beam of light comprising:
a body of light blocking material including at least one wedge-shaped projection at a leading edge thereof for attenuating the beam of light; and
a controller for varying the position of the body within the beam of light to control the attenuation thereof;
wherein each projection includes two substantially equal sides, which define an angle of 90° therebetween.
24. The optical attenuator according to claim 23, wherein the body is made of a material having a characteristic selected from the group consisting of opaque, light absorbing, and reflective.
25. An optical attenuator for attenuating a beam of light comprising:
a body of light blocking material including at least one wedge-shaped projection at a leading edge thereof for attenuating the beam of light; and
a controller for varying the position of the body within the beam of light to control the attenuation thereof;
wherein the body includes two wedge shaped projections with a wedge-shaped opening therebetween.
26. The optical attenuator according to claim 25, wherein the body is flat for movement into and out of a narrow gap.
27. The optical attenuator according to claim 25, wherein a central line of symmetry of the body is coincident with a line of symmetry of the beam of light.
28. The optical attenuator according to claim 25, wherein a central line of symmetry of the opening is coincident with a line of symmetry of the beam of light.
29. The optical attenuator according to claim 25, wherein the body comprises two sheets of opaque material defining the wedge-shaped opening therebetween, the two sheets being moveable in opposing directions.
30. The optical attenuator according to claim 25, further comprising an input port optically coupled to an input lens, and an output port optically coupled to an output lens.
31. The optical attenuator according to claim 30, further comprising: an input port optically coupled to a first lens; an output port optically coupled to the first lens; and a reflective surface for reflecting the light incident thereon in an opposite direction back through the first lens to the output port.
32. An optical attenuator for attenuating a beam of light comprising:
a body of light blocking material including at least one wedge-shaped opening at a leading edge thereof for attenuating the beam of light; and
a controller for varying the position of the body within the beam of light to control the attenuation thereof.
33. The optical attenuator according to claim 32, wherein a central line of symmetry of the opening is coincident with a line of symmetry of the beam of light.
US10/324,028 1998-11-24 2002-12-20 Adjustable optical attenuator Expired - Lifetime USRE39934E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/324,028 USRE39934E1 (en) 1998-11-24 2002-12-20 Adjustable optical attenuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/198,607 US6167185A (en) 1998-11-24 1998-11-24 Adjustable optical attenuator
US10/324,028 USRE39934E1 (en) 1998-11-24 2002-12-20 Adjustable optical attenuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/198,607 Reissue US6167185A (en) 1998-11-24 1998-11-24 Adjustable optical attenuator

Publications (1)

Publication Number Publication Date
USRE39934E1 true USRE39934E1 (en) 2007-12-04

Family

ID=22734065

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/198,607 Ceased US6167185A (en) 1998-11-24 1998-11-24 Adjustable optical attenuator
US10/324,028 Expired - Lifetime USRE39934E1 (en) 1998-11-24 2002-12-20 Adjustable optical attenuator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/198,607 Ceased US6167185A (en) 1998-11-24 1998-11-24 Adjustable optical attenuator

Country Status (2)

Country Link
US (2) US6167185A (en)
CA (1) CA2288290C (en)

Families Citing this family (410)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167185A (en) * 1998-11-24 2000-12-26 Jds Fitel Inc. Adjustable optical attenuator
US6374032B1 (en) * 1999-04-22 2002-04-16 Jds Uniphase Corporation Variable optical attenuator
US6154585A (en) * 1999-06-17 2000-11-28 Jds Fitel Inc. 11/2×2 optical switch
US20020009256A1 (en) * 1999-07-20 2002-01-24 Memlink Ltd. Variable optical attenuator and beam splitter
WO2001075503A2 (en) * 2000-04-05 2001-10-11 Nortel Networks Limited Variable optical attenuator
US6580868B2 (en) 2001-03-19 2003-06-17 Optiwork, Inc. High-resolution variable optical attenuator with mechanical adjustment
KR100422037B1 (en) * 2001-08-09 2004-03-12 삼성전기주식회사 Variable optical attenuator of optical path conversion
US20030156817A1 (en) * 2002-02-15 2003-08-21 Global Opticom, Inc. High performance variable optical attenuation collimator with an embedded micro lens
KR100451927B1 (en) * 2002-02-27 2004-10-08 삼성전기주식회사 Variable optical attenuator
FR2839060A3 (en) * 2002-04-30 2003-10-31 Memscap Variable optical attenuator (VOA), comprises a shutter with inclined faces which can be translated in a space between input and output channels by an actuator
US7049602B2 (en) * 2002-07-31 2006-05-23 Eugene Tokhtuev Radiation sensor
KR100490754B1 (en) * 2002-11-15 2005-05-24 한국전자통신연구원 Variable optical attenuator with tunable wavelength dependence
FR2849217A1 (en) * 2002-12-23 2004-06-25 Memscap Micromechanical based variable optical attenuator having moving walls with sloped V shaped wall stops outside central optical fibre section
KR100576846B1 (en) * 2003-04-07 2006-05-10 삼성전기주식회사 Mems variable optical attenuator
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US7345813B2 (en) * 2005-07-21 2008-03-18 Avago Technologies General Ip Pte Ltd UV adjustable optical attenuator
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
CN101448632B (en) * 2006-05-18 2012-12-12 3M创新有限公司 Process for making light guides with extraction structures and light guides produced thereby
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7477827B2 (en) * 2007-02-02 2009-01-13 Jds Uniphase Corporation Variable Optical Attenuator
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8666218B2 (en) * 2010-03-02 2014-03-04 Agiltron, Inc. Compact thermal actuated variable optical attenuator
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10752492B2 (en) 2014-04-01 2020-08-25 Agiltron, Inc. Microelectromechanical displacement structure and method for controlling displacement
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) * 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843267A (en) 1972-01-27 1974-10-22 Ponder & Best Variable optical attenuator for a light sensor
JPS5573002A (en) * 1978-11-25 1980-06-02 Ritsuo Hasumi Variable light attenuator
US4591231A (en) * 1982-06-26 1986-05-27 International Standard Electric Corporation Variable optical attenuator
US5087122A (en) * 1990-08-13 1992-02-11 Laser Precision Corporation Adjustable attenuator for optical transmission system
US5136681A (en) * 1991-07-09 1992-08-04 Seikoh Giken Co., Ltd. Optical powder attenuator of variable attenuation type
JPH04317009A (en) * 1991-04-17 1992-11-09 Matsushita Electric Ind Co Ltd Optical attenuator
US5325459A (en) * 1992-02-25 1994-06-28 Hewlett-Packard Company Optical attenuator used with optical fibers and compensation means
US5481631A (en) * 1994-02-25 1996-01-02 The Perkin-Elmer Corp. Optical switching apparatus with retroreflector
US5652818A (en) 1995-06-20 1997-07-29 Northern Telecom Limited Bragg gratings in waveguides and method of making same
CA2202308A1 (en) 1996-04-19 1997-10-19 Michihiro Nakai Optical waveguide grating and production method therefor
US5900983A (en) * 1997-08-22 1999-05-04 Lucent Technologies Inc. Level-setting optical attenuator
US6088151A (en) * 1998-11-16 2000-07-11 Lucent Technologies Inc. Optical modulator with variable prism
US6167185A (en) * 1998-11-24 2000-12-26 Jds Fitel Inc. Adjustable optical attenuator
US6222656B1 (en) * 1998-03-18 2001-04-24 Axon Photonics, Inc. Fiber optics signal attenuator

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843267A (en) 1972-01-27 1974-10-22 Ponder & Best Variable optical attenuator for a light sensor
JPS5573002A (en) * 1978-11-25 1980-06-02 Ritsuo Hasumi Variable light attenuator
US4591231A (en) * 1982-06-26 1986-05-27 International Standard Electric Corporation Variable optical attenuator
US5087122A (en) * 1990-08-13 1992-02-11 Laser Precision Corporation Adjustable attenuator for optical transmission system
JPH04317009A (en) * 1991-04-17 1992-11-09 Matsushita Electric Ind Co Ltd Optical attenuator
US5136681A (en) * 1991-07-09 1992-08-04 Seikoh Giken Co., Ltd. Optical powder attenuator of variable attenuation type
US5325459A (en) * 1992-02-25 1994-06-28 Hewlett-Packard Company Optical attenuator used with optical fibers and compensation means
US5481631A (en) * 1994-02-25 1996-01-02 The Perkin-Elmer Corp. Optical switching apparatus with retroreflector
US5652818A (en) 1995-06-20 1997-07-29 Northern Telecom Limited Bragg gratings in waveguides and method of making same
CA2202308A1 (en) 1996-04-19 1997-10-19 Michihiro Nakai Optical waveguide grating and production method therefor
US5900983A (en) * 1997-08-22 1999-05-04 Lucent Technologies Inc. Level-setting optical attenuator
US6222656B1 (en) * 1998-03-18 2001-04-24 Axon Photonics, Inc. Fiber optics signal attenuator
US6088151A (en) * 1998-11-16 2000-07-11 Lucent Technologies Inc. Optical modulator with variable prism
US6167185A (en) * 1998-11-24 2000-12-26 Jds Fitel Inc. Adjustable optical attenuator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Canadian PTO Office Action, Sep. 8, 2003.

Also Published As

Publication number Publication date
CA2288290A1 (en) 2000-05-24
US6167185A (en) 2000-12-26
CA2288290C (en) 2004-07-20

Similar Documents

Publication Publication Date Title
USRE39934E1 (en) Adjustable optical attenuator
US5325459A (en) Optical attenuator used with optical fibers and compensation means
JPS5986002A (en) Variable light attenuator
CN105319648A (en) Combined splitter, optical isolator and spot-size converter
JPH06258598A (en) Optical isolator
US6714716B2 (en) Variable optical attenuator
CN1201151A (en) Spatial light filter for high-power laser beam
TW444131B (en) Dual fiber collimator optical variable attenuator
US6915061B2 (en) Variable optical attenuator with MEMS devices
CN109581650A (en) A kind of continuously adjustable multimode fibre attenuator
KR20050044486A (en) Focusing fiber optic
EP1325383A1 (en) Optical isolator with low insertion loss and minimized polarization mode dispersion
US6614958B1 (en) Optical imaging system
JPS58173702A (en) Attenuator for optical fiber
WO2015081761A1 (en) Reflective optical attenuator and method for attenuating power of optical wave
CA2047710C (en) Optical filter tuning apparatus and an optical filtering method
JPH11218638A (en) Optical constituent element
US7023618B2 (en) Dual-stage optical isolator minimized polarization mode dispersion and simplified fabrication process
JPH0410041B2 (en)
KR970002731B1 (en) An optic attenuator
CN111045156B (en) Multimode optical fiber attenuator
KR100188710B1 (en) Optical attenuator
JPS5912161B2 (en) optical attenuation device
KR100188708B1 (en) Optical attenuator
JPH0580231A (en) Optical coupler and coupling method thereof

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: JDS UNIPHASE CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JDS UNIPHASE INC.;REEL/FRAME:036087/0320

Effective date: 20150626

AS Assignment

Owner name: LUMENTUM OPERATIONS LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JDS UNIPHASE CORPORATION;REEL/FRAME:036420/0340

Effective date: 20150731

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: LUMENTUM OPERATIONS LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PATENTS LISTED ON PAGE A-A33 PREVIOUSLY RECORDED ON REEL 036420 FRAME 0340. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT NUMBERS 7,868,247 AND 6,476,312 WERE LISTED IN ERROR AND SHOULD BE REMOVED;ASSIGNOR:JDS UNIPHASE CORPORATION;REEL/FRAME:037562/0513

Effective date: 20150731

Owner name: LUMENTUM OPERATIONS LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT INCORRECT PATENTS 7,868,247 AND 6,476,312 ON PAGE A-A33 PREVIOUSLY RECORDED ON REEL 036420 FRAME 0340. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:JDS UNIPHASE CORPORATION;REEL/FRAME:037562/0513

Effective date: 20150731

AS Assignment

Owner name: LUMENTUM OPERATIONS LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PATENTS LISTED ON PAGE A-A33 PATENT NUMBERS 7,868,247 AND 6,476,312 WERE LISTED IN ERROR AND SHOULD BE REMOVED. PREVIOUSLY RECORDED ON REEL 036420 FRAME 0340. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:JDS UNIPHASE CORPORATION;REEL/FRAME:037627/0641

Effective date: 20150731

Owner name: LUMENTUM OPERATIONS LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT PATENTS 7,868,247 AND 6,476,312 LISTED ON PAGE A-A33 PREVIOUSLY RECORDED ON REEL 036420 FRAME 0340. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:JDS UNIPHASE CORPORATION;REEL/FRAME:037627/0641

Effective date: 20150731

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:LUMENTUM OPERATIONS LLC;OCLARO FIBER OPTICS, INC.;OCLARO, INC.;REEL/FRAME:047788/0511

Effective date: 20181210

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:LUMENTUM OPERATIONS LLC;OCLARO FIBER OPTICS, INC.;OCLARO, INC.;REEL/FRAME:047788/0511

Effective date: 20181210

AS Assignment

Owner name: LUMENTUM OPERATIONS LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE AG NEW YORK BRANCH;REEL/FRAME:051287/0556

Effective date: 20191212

Owner name: OCLARO, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE AG NEW YORK BRANCH;REEL/FRAME:051287/0556

Effective date: 20191212

Owner name: OCLARO FIBER OPTICS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE AG NEW YORK BRANCH;REEL/FRAME:051287/0556

Effective date: 20191212