USRE39885E1 - Detection of nucleic acid amplification - Google Patents

Detection of nucleic acid amplification Download PDF

Info

Publication number
USRE39885E1
USRE39885E1 US09/082,247 US8224798A USRE39885E US RE39885 E1 USRE39885 E1 US RE39885E1 US 8224798 A US8224798 A US 8224798A US RE39885 E USRE39885 E US RE39885E
Authority
US
United States
Prior art keywords
primer
amplification
product
signal primer
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/082,247
Inventor
James G. Nadeau
George T. Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becton Dickinson and Co
Original Assignee
Becton Dickinson and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becton Dickinson and Co filed Critical Becton Dickinson and Co
Priority to US09/082,247 priority Critical patent/USRE39885E1/en
Application granted granted Critical
Publication of USRE39885E1 publication Critical patent/USRE39885E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Definitions

  • the present invention relates to methods for detecting and measuring amplification of a nucleic acid target sequence.
  • Nucleic acid amplification techniques can be grouped according to the temperature requirements of the procedure.
  • the polymerase chain reaction (PCR; R. K. Saiki, et al. 1985, Science 230, 1350-1354), ligase chain reaction (LCR; D. Y. Wu, et al. 1989, Genomics 4, 560-569; K. Barfinger, et al. 1990. Gene 89, 117-122; F. Barany. 1991. Proc. Natl.
  • the amplicons containing the primers are separated from unextended primers on the basis of size, and multiplex amplification was detected using different fluorescent dyes on two amplification primer sets.
  • Kemp, et al. (1989. Proc. Natl. Acad. Sci. USA 86, 2423-2427; 1990. PCT Patent Application No. WO 90/06374) describe a method for capturing amplified DNA by incorporation of one modified amplification primer and use of a second modified amplification primer as a means for detection.
  • the Kemp “capture primer[ contains a 5′ tail which is the single stranded form of the recognition sequence for the double-stranded DNA binding protein GCN4.
  • the Kemp “detector primer” includes a biotin moiety on its 5′ end.
  • the amplified product is immobilized by binding to the double-stranded GCN4 recognition sequence generated by amplification using the capture primer.
  • the biotin moiety introduced by the detector primer is bound to an avidin-peroxidase complex to provide colorimetric detection of the immobilized PCR amplification product.
  • Wahlberg, et al. (1990. Proc. Natl. Acad. Sci. USA 87, 6569-6573) report a similar method in which one PCR amplification primer is biotinylated and the other contains a 5′ tail encoding the E. coli lac operator sequence.
  • Double stranded amplification products are immobilized by binding to streptavidin and detected colorimetrically by binding of a lac repressor- ⁇ -galactosidase fusion protein to the double-stranded lac operator generated by amplification.
  • the Wahlberg, et al. method differs from the Kemp, et al. method in that the biotin-streptavidin interaction rather than the double-stranded binding protein provides immobilization of the amplification products and the double-stranded binding protein provides colorimetric detection. This suggests that the two methods could be combined by using two amplification primers, each with a 5′ tail encoding the recognition sequence of a different double-stranded binding protein.
  • Amplified products could then be immobilized by binding to one double stranded binding protein and detected by binding to the other.
  • C. A. Vary (1992. Clinical Chemistry 38, 687-694; 1992. PCT Patent Application No. WO 92/11390) describes the use of amplification primers containing 5′ tails which form hybridization sites for a third oligonucleotide when incorporated into otherwise double-stranded amplicons. Hybridization of one tail was used to capture the amplified product and the other was used to detect it by hybridization to a probe conjugated to a fluorescent dye.
  • All of these primer-based methods of detecting PCR amplification products require two amplification reactions to achieve high sensitivity, i.e., detection of fewer than 100 copies of the target sequence. That is, a first amplification of the target sequence is followed by a second amplification using nested primers incorporating the desired modifications for capture and/or detection. Two consecutive amplifications in this manner are needed to avoid unacceptably high levels of background signal produced by amplification of non-target DNA spuriously primed with the modified, signal-generating primers. This feature of the prior art methods makes them time-consuming and cumbersome, and the advantages of primer-based detection methods are therefore often offset by the requirement for a second consecutive amplification reaction.
  • Non-specific amplification of DNA would be expected to present particular problems for primer-based detection of amplification products in SDA reactions because these amplifications are carried out at a relatively low temperature (about 37°-40° C.) which would allow increased mispriming as compared to PCR, resulting in even higher levels of background signal.
  • the instant methods for primer-based detection of SDA resulting in low levels of background signal in spite of the use of only a single amplification reaction which generates products for detection concurrently with amplification of the target sequence.
  • Simultaneous or concurrent generation of a secondary amplification product and the amplified target sequence is referred to herein as real-time primer extension, real-time detection of amplification, etc.
  • the instant invention provides methods for detecting, immobilizing (capturing) or localizing primer extension products of an SDA reaction which are coupled to, and an indication of, amplification of the target sequence.
  • the primer extension products are secondary, target-specific DNA products generated during SDA of the target sequence and can therefore be used to detect and/or measure target sequence amplification.
  • the secondary products are not amplifiable and remain inert in the SDA reaction after they are formed without interfering with the exponential amplification of the target sequence.
  • the secondary product can be designed or modified to contain special features to facilitate its detection, immobilization (capture) or localization.
  • the inventive methods are useful for real-time monitoring of SDA reactions, especially in situations where detection of target sequence amplicons would interfere with further amplification or manipulation.
  • the instant methods will also be useful for detection of amplification products in fixed cells after in situ SDA, especially when the secondary products contain 5′ tail sequences to facilitate detection or localization of amplification products.
  • FIG. 1 A and FIG. 1B illustrate the steps of the methods of the invention.
  • FIG. 1A illustrates the production of the secondary amplification product from a single stranded target sequence using two signal primers.
  • FIG. 1B shows the analogous process originating from the complementary strand when the original target sequence is double stranded.
  • FIG. 2 illustrates the production of the secondary product using a single signal primer.
  • the present invention is a method for detecting, monitoring or localizing amplification products of SDA reactions by real-time primer extension.
  • Amplification of a target sequence by SDA is detected, monitored or localized by simultaneously generating a secondary amplification product, the production of which is tightly coupled to amplification of the target sequence.
  • This secondary amplification product is produced during the SDA reaction without requiring any additional additional amplification steps or manipulations.
  • the secondary amplification product is inert in the reaction mixture and does not interfere with or inhibit normal SDA of the desired target sequence.
  • the methods are therefore useful for real-time monitoring of SDA and detecting amplification of the target sequence, especially in situations where detection of the amplified target sequence itself would inhibit or prevent further reaction or manipulation of the amplicons.
  • the present invention provides a primer-based amplification detection method in which the need for a second amplification reaction is eliminated.
  • the method employs signal primers which are similar to capture and detector probes and do not function as amplification primers in the SDA reaction. Consequently, any extension products formed through errant extension of these signal primers on non-target templates cannot undergo subsequent amplification. Because misprimings itself is comparatively rare, it is detectable only after subsequent amplification of the misprimed sequence. In the absence of such subsequent amplification, as in the methods of the present invention, the signal primers may be added to the amplification reaction prior to initiation of amplification with no apparent increase in background signal levels. This greatly simplifies the detection procedure and makes possible homogeneous real-time analysis of SDA reactions.
  • An amplification primer is a primer for amplification of a target sequence by primer extension.
  • the 3′ end of the amplification primer hybridizes at the 3′ end of the target sequence.
  • the amplification primer comprises a recognition site for a restriction endonuclease near its 5′ end.
  • the recognition site is for a restriction endonuclease which will cleave one strand of a DNA duplex when the recognition site is hemimodified (“nicking”), as described by Walker, et al. (1992. PNAS, supra).
  • a hemimodified recognition site is a double stranded recognition site for a restriction endonuclease in which one strand contains at least one derivatized nucleotide which causes the restriction endonuclease to nick the primer strand rather than cleave both strands of the recognition site.
  • the primer strand of the hemimodified recognition site does not contain derivatized nucleotides and is nicked by the restriction endonuclease.
  • the primer may contain derivatized nucleotides which cause the unmodified target strand to be protected from cleavage while the modified primer strand is nicked.
  • the preferred hemimodified recognition sites are hemiphosphorothioated recognition sites for the restriction endonucleases HincII, HindII, AvaI, NciI and Fnu4HI.
  • the amplification primer also comprises a 3′-OH group which is extendable by DNA polymerase when the target binding sequence of the amplification primer is hybridized to the target sequence. For the majority of the SDA reaction, the amplification primer is responsible for exponential amplification of the target sequence.
  • Extension products are nucleic acids which comprise a primer and a newly synthesized strand which is the complement of the target sequence downstream of the primer binding site. Extension products result from hybridization of a primer to a target sequence and extension of the primer by polymerase using the target sequence as a template.
  • a bumper primer is a primer which anneals to a target sequence upstream of the amplification primer, such that extension of the bumper primer displaces the downstream amplification primer and its extension product.
  • Extension of bumper primers is one method for displacing the extension products of amplification primers, but heating is also suitable.
  • Identical sequences will hybridize to the same complementary nucleotide sequence. Substantially identical sequences are sufficiently similar in their nucleotide sequence that they also hybridize to the same partially complementary nucleotide sequence.
  • target or target sequence refer to nucleic acid sequences to be amplified. These include the original nucleic acid sequence to be amplified, its complementary second strand and either strand of a copy of the original sequence which is produced in the amplification reaction.
  • the target sequence may also be referred to as a template for extension of hybridized amplification primers.
  • a signal primer is a primer which hybridizes to a target sequence downstream of an amplification primer such that extension of the amplification primer displaces the signal primer and its extension product.
  • the signal primer comprises a 3′-OH group which can be extended by DNA polymerase when the signal primer is hybridized to the target sequence.
  • the signal primer may be unmodified, e.g., for detection of secondary amplification products based on their size.
  • the signal primer may include a reporter group or label, or a structural feature to facilitate detection of its extension product.
  • Amplification products, amplified products or amplicons are copies of the target sequence generated by hybridization and extension of an amplification primer. This term refers to both single stranded and double stranded amplification primer extension products which contain a copy of the original target sequence, including intermediates of the amplification reaction.
  • Secondary amplification products or secondary products are copies of the target sequence generated by hybridization and extension of a signal primer.
  • the secondary amplification product comprises an internal segment of the amplified target sequence.
  • These terms also refer to both single stranded and double stranded extension products of signal primers, including intermediates in the process which generates the final double stranded form.
  • the double stranded secondary amplification product is generally not available for further amplification, although some secondary amplification products may be amplifiable in a linear fashion.
  • amplification primers for SDA are hybridized to a target sequence and the target sequence is amplified generally as described by Walker, et al., 1993 PNAS or Walker, et al. 1993 Nuc. Acids Res., supra.
  • the target sequence may be prepared for SDA either by restricting total DNA with an appropriate restriction endonuclease (e.g., HincII) or by generating target fragments having the appropriate restriction endonuclease recognition sites at the ends using bumper primers and amplification primers. Prepared fragments containing the target sequence are then amplified by SDA as described.
  • the SDA reaction of the invention further comprises at least one signal primer which results in simultaneous or concurrent generation of a secondary amplification product for use in detecting, monitoring or localizing amplification products produced by the SDA reaction.
  • the secondary amplification products may also contain features which facilitate their capture or immobilization, so that they may be isolated for detection, quantitation or further manipulation.
  • the secondary amplification products are produced in the SDA reaction by inclusion of at least one signal primer in the reaction mixture.
  • the signal primer or signal primers hybridize to the target sequence downstream of the hybridization site of the amplification primers. They are extended by polymerase in a manner similar to extension of the amplification primers.
  • the signal primer hybridizes at a site in the target sequence such that extension of the amplification primer displaces the extension product of the signal primer.
  • At least the 3′ end of the signal primer comprises a sequence which hybridizes to the target sequence.
  • the entire signal primer may hybridize to the target sequence, for example when it is unmodified or chemically modified for detection by addition of a reporter group, label or affinity ligand.
  • the 5′ end of the signal primer may comprise a sequence which does not hybridize to the target sequence but which contains special nucleotide sequences (often involving structural features) which facilitate detection or capture of the secondary amplification product. These chemical modifications and special sequences are incorporated into the secondary amplification products when the signal primers are hybridized and extended on a template.
  • Examples of chemical modifications include affinity ligands (e.g., avidin, streptavidin, biotin, haptens, antigens and antibodies) and reporter groups (labels, e.g., radioisotopes, fluorescent dyes, enzymes which react to produce detectable reaction products, and visible dyes).
  • affinity ligands e.g., avidin, streptavidin, biotin, haptens, antigens and antibodies
  • reporter groups e.g., radioisotopes, fluorescent dyes, enzymes which react to produce detectable reaction products, and visible dyes.
  • nucleotide sequences include (i) sequences which will form a triple helix by hybridization of a labeled oligonucleotide probe to the double stranded secondary amplification product, and (ii) recognition sites for double-stranded DNA binding proteins which become capable of binding the double-stranded DNA binding protein when rendered double stranded during amplification (e.g., repressors, regulatory proteins, restriction endonucleases, RNA polymerase).
  • Nucleotide sequences which result in double stranded restriction endonuclease recognition sites are a preferred structural feature for use in signal primers, as subsequent restriction may be used to generate a secondary amplification product which is recognizable by a characteristic size.
  • one of the signal primers may contain a special nucleotide sequence or chemical modification to facilitate capture or immobilization of the secondary amplification product and the other may contain a detectable reporter group or label for detection of the captured or immobilized secondary amplification product.
  • labels and reporter groups for detecting nucleic acids as well as the use of ligands, chemical modifications and nucleic acid structural features for capture or immobilization of nucleic acids is well known in the art.
  • the signal primer may be unmodified, i.e., without reporter groups, capture groups or structural features to facilitate detection or capture of the secondary amplification products.
  • the secondary amplification products may then be detected based on their size, e.g., by gel electrophoresis and ethidium bromide staining. All of these methods are useful in the present invention and one skilled in the art can routinely select appropriate methods for use in any particular amplification assay system.
  • the signal primers do not function as amplification primers in the SDA reaction in which they are employed. Without wishing to be bound by any specific mechanism by which the inventive methods work. Applicants believe it is this feature which allows the signal primers to be added to the amplification reaction mixture without promoting the high levels of background signal generated by other primer-based methods. High levels of background signal are believed to be due to non-specific priming and subsequent amplification of spuriously primed non-target DNA when the primers are capable of functioning as amplification primers.
  • the present invention therefore greatly simplifies the procedures for primer-based detection methods, which previously relied on two consecutive amplification reactions to attain high sensitivity and specificity, the second reaction being performed with internally nested signal-generating amplification primers.
  • nucleic acid fragments having appropriate restriction endonuclease recognition sequences at the ends and containing the target sequence may be prepared for amplification either as described by Walker, et al. 1992. PNAS, supra or as described by Walker, et al. 1992 Nuc. Acids Res., supra.
  • the illustrations of the inventive methods in FIG. 1A , FIG. 1 B and FIG. 2 begin with a nucleic acid fragment containing the target sequence. If prepared according to Walker, et al. 1992. PNAS, supra, it represents restricted double stranded DNA which has been denatured. If prepared according to Walker, et al. 1992. Nuc.
  • bumper, amplification and signal primers may simultaneously hybridize to a target sequence in the target generation scheme of Walker, et al. (1992. Nuc. Acids Res., supra), extension of each upstream primer displacing the extension product of the downstream primer and simultaneously generating amplifiable target fragments and secondary amplification products.
  • FIG. 1 A and FIG. 1B illustrate one embodiment of the invention in which a pair of signal primers are used for detecting amplification of a double-stranded target sequence (5′-A-B-C-D/5′-D′-C′-B′-A′).
  • FIG. 1A illustrates the method of the invention for the first of the two complementary strands of the target sequence (5′-D′-C′-B′-A′).
  • the raised portion of the amplification primers illustrated in FIGS. 1A , 1 B and 2 indicates a nickable restriction endonuclease recognition site as described above and by Walker, et al. (1992. PNAS and Nuc. Acids Res.).
  • FIGS. 1A , 1 B and 2 begin with the target sequence contained on a nucleic acid fragment previously restricted with a restriction endonuclease which does not cut the target sequence.
  • signal primer R-B is included in the SDA reaction mixture and hybridizes to the target sequence downstream of a first amplification primer by hybridization of the B portion of the signal primer to B′.
  • the R portion of the R-B signal primer sequence includes a reporter group or label, or is a structural feature to facilitate detection or capture. R may or may not hybridize, as discussed above, but is shown here as not hybridizing to clarify the different functional features of the signal primer. For the purposes of this illustration, R will contain a reporter group, but may contain other chemical modifications or structural features as discussed above.
  • Both amplification primer A and signal primer R-B are extended by DNA polymerase using the target sequence as a template.
  • the signal primer extension product R-B-C-D (structure # 1 ) is displaced from the template by extension of amplification primer A and in turn serves as a template for hybridization and extension of a second signal primer Q′-C′ and a second amplification primer D′.
  • the C′ portion of the Q′-C′ sequence hybridizes to C.
  • the Q′ portion of the second signal primer is analogous to R, and for purposes of this illustration Q′ will contain a modification or sequence to facilitate capture of the secondary amplification product.
  • the Q′-C′ extension product is displaced by extension of the second amplification primer.
  • the displaced Q′-C′ extension product (structure # 2 ) then serves as a template for hybridization and extension of R-B, resulting in a double stranded, target-specific secondary amplification product (structure # 3 ) which comprises the terminal segment (R and Q′) of the signal primers and the internal segment B′-C′ of the target sequence.
  • the secondary amplification product does not contain nickable restriction endonuclease recognition sites, it is not amplifiable in the SDA reaction and remains effectively inert throughout the remainder of the amplification reaction, but additional copies of the secondary amplification product are generated from the target sequence.
  • This restriction endonuclease recognition site is nickable by the restriction endonuclease present in the SDA reaction.
  • the DNA polymerase present in the SDA reaction can then initiate polymerization and displacement at the nick, resulting in the illustrated R′-B′-C′-D′ product comprising a portion of the restriction endonuclease recognition site.
  • This product can be made double-stranded by hybridization and extension of R-B (structure # 5 ). Although cyclically repeating the nicking, polymerizing and displacing cycle amplifies this fragment at a linear rate, generally neither the single-stranded or double-stranded product will be detectable by virtue of the absence of the Q/Q′ portion containing the modification or sequence to facilitate capture. If the functions of Q/Q′ and R/R′ are reversed, (i.e., Q/Q′ contains the reporter group or label and R/R′ contains the modification or sequence to facilitate capture), these products, though captured, would not be detectable by virtue of the absence of the reporter group or label.
  • structure # 5 may be detectable when the reporter group is detectable independent of capture, e.g., when the reporter group is a fluorescent label detectable by anisotropy or fluorescence polarization (WO 92/18650; R. Devlin, et al. 1993. Clin. Chem. 39, 1939-1943) or a radioisotope which can be detected by gel electrophoresis and autoradiography.
  • FIG. 1A also shows how extension of the first amplification primer on the target sequence, in addition to displacing the extension product of R-B, generates the double-stranded target sequence with the hemimodified, nickable restriction endonuclease recognition site which is required for amplification of the target sequence by SDA (structure # 6 ).
  • SDA structure # 6
  • These reaction products enter the conventional SDA reaction and are amplified. Formation of the secondary amplification product is therefore tightly coupled to amplification of the target sequence and is useful to monitor whether or not amplification has taken place as well as to provide a measure of target amplification.
  • amplified target sequences may also bind signal primers, resulting in generation of additional copies of the secondary amplification products.
  • FIG. 1B illustrates generation of secondary amplification products from the complementary second strand of the double-stranded target sequence (5′-A-B-C-D).
  • the reaction steps for the complementary second strand are similar to those for the first strand.
  • the second amplification primer (D′) and signal primer C′-Q′ hybridize first to the complementary strand and are extended.
  • the first amplification primer (A) and signal primer R-B then hybridize to the displaced extension product of C′-Q′ (A′-B′-C′-Q′, structure # 7 ) and are extended to produce R-B-C-Q (structure # 8 ).
  • Hybridization of Q′-C′ to R-B-C-Q and extension results in the double stranded secondary amplification products R′-B′-C′-Q′/R-B-C-Q (structure # 9 ).
  • This secondary amplification product is detectable in systems requiring both capture and reporter groups due to the presence of both features in structure # 9 .
  • the reaction for the complementary strand also produces a reaction product which can be linearly amplified by nicking, polymerizing and displacing (structure # 10 ). The displaced single strand of this linear amplification becomes double stranded by hybridization and extension of Q′-C′ (structure # 11 ).
  • the signal primer may contain either a capture group or a reporter group, and the target sequence itself or an amplification primer may optionally provide a second capture or reporter group.
  • the signal primer may contain both a capture and a reporter, group which act in conjunction only when the signal oligonucleotide becomes double-stranded. This structure is formed only when the presence of target sequences induces priming, extension, displacement and re-priming as shown in FIG. 2 .
  • Such bi-functional signal primers may also form the basis for a variety of homogeneous detection methods such as fluorescence anisotropy or fluorescence energy transfer.
  • a first amplification primer (A) and the signal primer R-B are hybridized to a single stranded target sequence A′-B′-C′-D′. Both primers are extended, and extension of the first amplification primer displaces the extension product of signal primer R-B (R-B-C-D), producing structure # 1 .
  • the second amplification primer (D′) hybridizes to P-B-C-D and is extended, generating structure # 2 with a nickable, hemimodified restriction endonuclease recognition site.
  • the 32 P-labeled signal primer 32 P-CGTTATCCACCATAC (SEQ ID NO:1) was added to the reactions prior to amplification at a final concentration of 60 nM. Predicted secondary amplification products produced in these reactions were 35 and 56 nucleotides in length.
  • Predicted secondary amplification products produced in these reactions were 35 and 56 nucleotides in length.
  • For post-amplification detection of amplified target sequences one-tenth of the reaction mixture was used to detect amplification products by primer extension of SEQ ID NO:1 as described by Walker, et a. (1992, Nucl. Acids. Res., supra), producing extension products either 35 or 56 nucleotides in length.
  • Amplification was allowed to proceed for 2 hr. at 37° C. in the presence of 1 to 500,000 genome copies of M.tb. After stopping the amplification, one-tenth of each reaction was subjected to electrophoresis on denaturing polyacrylamide gels. As little as one copy of M.tb genomic DNA was detected using the signal primer according to the invention. Also, the signal intensity decreased with decreasing target levels, indicating that the levels of secondary amplification product reflect the degree of target sequence amplification. The real-time extension of the signal primer appeared on the gel to be several fold less sensitive than the conventional post-amplification primer extension method, possibly because the 32 P-labeled signal primer was present during SDA at concentrations about 10-fold less than the SDA primers.
  • SDA primers are extended on the target sequence before a signal primer binds and is extended, no signal will result.
  • higher concentrations of signal primer should increase the method's sensitivity by improving hybridization kinetics for the signal primer.
  • Higher signal primer concentrations are therefore preferred when reaction products are separated for detection, but the concentration of amplification primers may be kept similar to the concentrations used in conventional SDA.
  • lower signal primer concentrations are preferred to keep background low for homogeneous detection methods such as fluorescence anisotropy.
  • the lower concentrations of signal primer are preferably used with lower concentrations of polymerase and the amplification primer which hybridizes upstream of the signal primer than is customary in conventional SDA. This experiment also demonstrated that the presence of the signal primer in the amplification reaction mixture does not lead to significant levels of background signal. In fact, background signal levels appeared to be lower in samples detected by real-time signal-primer extension as compared to post-amplification primer extension.
  • SDA reactions were performed generally as previously described (Walker, 1993, PCR—Methods and Applications 3. 1) in 50 mM KiPO 4 (pH 7.5), 0.1 mg/mL bovine serum albumin, 0.5 mM dUTP, 0.2 mM each dGTP, dCTP and dATP ⁇ S, 7 mM MgCl 2 , 11% (v/v) glycerol, the indicated concentrations of amplification primers, 25 nM bumper primers, 50 ng human placental DNA, the indicated amount of exonuclease deficient Klenow (United States Biochemicals), 150 units HincII (New England Biolabs). Reactions were run for the indicated time at 41° C.
  • SDA reactions contained varying amounts of M.tb DNA, which contains the IS6110 target sequence for amplification.
  • the S 1 amplification primer sequence, the B 1 bumper primer sequence and the B 2 bumper primer sequence used were as described by Walker, et al. (1992, Nuc. Acids Res., supra).
  • the S 2 amplification primer (SEQ ID NO:2) had the target binding sequence and HincII site disclosed by these authors, but comprised a different sequence at the 5′ end.
  • the amplification primers hybridize to nucleotide positions 972-984 and 1011-1023 of the IS6110 sequence.
  • the bumper primers hybridize to nucleotide positions 954-966 and 1032-1044. Secondary amplification products were visualized by autoradiography after electrophoresis on denaturing polyacrylamide gels.
  • SDA reactions were performed for 3 hrs. in the presence of 0.1 nM of a 5′- 32 P-labeled signal primer (SEQ ID NO:3).
  • This signal primer is 28 nucleotides in length and hybridizes to nucleotide positions 985-1012 of the IS6110 target sequence, between the amplification primers.
  • S 1 and S 2 were present at 180 and 30 nM, respectively.
  • Exonuclease deficient Klenow was used at 0.25 units.
  • Samples 1-4 contained 100, 10, 1 and 0 M.tb genome molecules, respectively.
  • SEQ ID NO:3 is extended by polymerase to a length of 44 nucleotides using the target sequence as a template.
  • this template is most likely primarily the displaced, amplified target strand generated during SDA, but concurrent extension of the bumper, amplification and signal primers on the original target sequence has not been ruled out and would be expected to occur as well.
  • the 44-mer is displaced from the target sequence by extension of the upstream amplification primer (S 2 ).
  • the 3′-end of the 44-mer hybridizes to the 3′-end of the second amplification primer (S 1 ) and a double-stranded 65-mer is formed after extension by polymerase.
  • the 44-mer and 65-mer secondary amplification products were observed only in the presence of the M.tb target sequence (samples 1-3), indicating signal primer extension and transformation to double stranded form.
  • SDA reactions were repeated in the presence of 0.1 nM (samples 1-3) or 1 nM (samples 4-6) of a 5′- 32 -P-signal primer which was 15 nucleotides in length (SEQ ID NO:4).
  • This signal primer hybridizes at nucleotide positions 999-1013 of the IS6110 target sequence, between the amplification primers.
  • S 1 and S 2 were used at 500 nM. Two units of exonuclease deficient Klenow were used and SDA was performed for 2 hrs.
  • samples 1 and 4 contained 10000 M.tb genome molecules while samples 2 and 5 contained 100 genome molecules. Samples 3 and 6 did not contain M.tb DNA.
  • SDA was repeated in the presence of 0.1 nM of a 5′- 32 P-labeled signal primer which was 42 nucleotides in length (SEQ ID NO:5).
  • the 26 nucleotides at the 3′-end of the signal primer hybridize to the IS6110 target sequence at nucleotide positions 985-1010, between the amplification primers.
  • 5′ to the target binding sequence is a recognition site for the restriction endonuclease HincII.
  • S 1 and S 2 were present at 180 and 30 nM.
  • Exonuclease deficient Klenow was used at 0.25 units and SDA was performed for 3 hrs.
  • Samples 1-4 contained 100, 10, 1 and 0 M.tb genome molecules.
  • the signal primer is extended by the polymerase to a length of 58 nucleotides.
  • This 58-mer is displaced by extension of the upstream amplification primer (SEQ ID NO:2).
  • SEQ ID NO:2 The 3′-end of the 58-mer hybridizes to the 3′-end of the other amplification primer (S 1 ), forming a double-stranded 79-mer after extension by polymerase.
  • the HincII recognition site at the 5′-end of the signal primer becomes cleavable by HincII upon formation of the double-stranded 79-mer.
  • both the strand comprising the original signal primer and the strand formed through polymerase extension using dGTP, dCTP, TTP and dATP ⁇ S are cleavable.
  • HincII does not cleave the signal primer in its original single-stranded form.
  • Cleavage of the double stranded 79-mer during the SDA reaction produces a 5′- 32 P-labeled 13-mer which is detectable as a secondary amplification product.
  • SDA was repeated in the presence of 0.1 nM of a 5′- 32 P-labeled signal primer which was 33 nucleotides in length (SEQ ID NO:6).
  • the 26 nucleotides at the 3′-end of the signal primer (the target binding sequence) hybridize to the IS6110 target sequence at nucleotide positions 985-1010, between the amplification primers.
  • 5′ to the target binding sequence is a recognition site for the restriction endonuclease EcoRI.
  • S 1 and S 2 were present at 180 and 30 nM, respectively.
  • Exonuclease deficient Klenow was used at 0.25 units.
  • SDA was performed for 3 hrs. Samples 1-4 contained 100, 10, 1 and 0 M.tb genome molecules. After SDA, 20 units of EcoRI were added to each SDA reaction and the samples were incubated for 30 min. at 37° C.
  • the signal primer is extended by the polymerase to a length of 49 nucleotides.
  • This 49-mer is displaced by extension of the upstream amplification primer (SEQ ID NO:2).
  • the 3′-end of the 49-mer hybridizes to the 3′-end of the other amplification primer (S 1 ), forming a double-stranded 70-mer after extension by polymerase.
  • the EcoRI recognition site at the 5′-end of the signal primer becomes cleavable by EcoRI upon formation of the 70-mer and addition of EcoRI.
  • EcoRI cleavage of the double-stranded 70-mer produces a cleavage product which is a 5′- 32 P-labeled dinucleotide. This dinucleotide is detectable by autoradiography as a secondary amplification product.
  • the 32 P-dinucleotide cleavage product was alternatively detected by liquid scintillation counting.
  • SDA was repeated in the presence of 0.5 nM 5′- 32 P-labeled SEQ ID NO:6 signal primer.
  • the 32 P-labeled signal primer was purified away from the gamma- 32 P-ATP used in the kinase labeling reaction by denaturing gel electrophoresis.
  • S 1 and S 2 were present at 180 and 30 nM.
  • Exonuclease deficient Klenow was used at 0.25 units.
  • SDA was performed for 3 hrs. Samples 1-7 contained 10 5 , 10 4 , 10 3 , 10 2 , 10, 1 and 0 M.tb genome molecules. After SDA, 40 units of EcoRI were added to each SDA reaction and the samples were incubated at 37° C. for 30 min.
  • the 32 P-dinucleotide released by EcoRI cleavage of the double-stranded 70-mer extension product is small enough that it passes through the MICROCON-10 filter, while the larger initial 32 P-labeled 33-mer signal primer and 32 P-labeled 49-mer extension product are retained on the filter.
  • the IS6110 target sequence could be detected in a sample which contained as few as 10 M.tb genomes prior to SDA.
  • Two signal primers were used to generate secondary amplification products in an SDA reaction.
  • one signal primer had an affinity ligand (Q′, three biotin moieties) attached to its 5′ end and the second signal primer was 5′-end labeled with a reporter group (R, a 32 P-containing phosphate group).
  • Q′ affinity ligand
  • R a 32 P-containing phosphate group
  • double-stranded secondary amplification products which comprised both the reporter group and the affinity ligand (such as structure # 3 and structure # 9 of FIG. 1 A and FIG. 1B ) could be captured and detected.
  • streptavidin coated magnetic beads were used to capture and separate the secondary amplification products, which were then detected by scintillation counting.
  • Biotinylated signal primers were prepared as follows. Oligonucleotide SEQ ID NO:7 was synthesized on an Applied Biosystems DNA Synthesizer Model 380B, using standard phosphoramidite chemistry. The instrument was then used to attach three biotin groups to the oligonucleotide by three successive couplings with BIOTIN ON phosphoramidite (Clonetech). Following synthesis, the oligonucleotide was deprotected by treatment with concentrated ammonia and purified by denaturing gel electrophoresis.
  • biotinylated signal primers with attached affinity ligands for capture of the secondary amplification products are referred to as capture signal primers and, for the purposes of this example, are analogous to the Q′-C′ signal primer of FIG. 1 A and FIG. 1B wherein Q′ comprises biotin.
  • oligonucleotides SEQ ID NO:1 and SEQ ID NO:8 were labeled with radioactive phosphate as described by Walker, et al. (1992, Nucl. Acids Res., supra).
  • the radiolabeled signal primers are referred to as detection signal primers and, for the purposes of this example, are analogous to the R-B signal primer of FIG. 1 A and FIG. 1B wherein R comprises a radiolabel.
  • one of these two detection signal primers was used in conjunction with the capture signal primer to generate secondary amplification products.
  • Amplification primers were SEQ ID NO:9 and SEQ ID NO:10 (analogous to A and D′ in FIG. 1 A and FIG. 1 B). These primers amplify a 103 nucleotide fragment (nucleotide positions 944-1046) of the IS6110 insertion element of M.tb.
  • Each 50 ⁇ l reaction contained the following components: 45 mM K i PO 4 , pH 7.5; 6 mM MgCl 2 ; 0.1 mg/ml acetylated BSA; 12% dimethylsulfoxide; 0.5 mM dUTP; 0.2 mM each dCTP, dGTP, dATP ⁇ S; 500 nM amplification primers: 50 nM bumper primers (SEQ ID NO:11 and SEQ ID NO:12); 75 nM detection signal primer and capture signal primer (SEQ ID NO:1 and SEQ ID NO:7 or SEQ ID NO:8 and SEQ ID NO:7); 100 ng human placental DNA; 150 units HincII (New England Biolabs); 2.5 units exo — Klenow DNA polymerase (US Biochemicals); 3% (v/v) glycerol added with enzymes; and either 0 or 10 5 copies of the M.tb genome.
  • 50 nM bumper primers SEQ ID NO:11 and
  • detectable single strand of structure # 3 is identical to structure # 2 and to the detectable single strand of structure # 9 . These secondary amplification products are therefore indistinguishable on the gel. Structure # 4 and structure # 5 (also in single-stranded form on denaturing gels) are also detectable by virtue of the presence of R.
  • EXPECTED SECONDARY PRODUCT SIZES (nucleotides, nt) 32 P-Labeled Signal Primer Structure (FIGS. 1A and 1B) SEQ ID NO 1 SEQ ID NO 8 #3, #9 and #8 52 nt 92 nt #4 58 nt 98 nt #5 79 nt 119 nt
  • Streptavidin-coated magnetic beads (Streptavidin Paramagnetic Particles, Nucleic Acid Qualified, 1 mg/ml, Promega Corporation, Madison, Wis.) were washed three times with 1X PBS as recommended by the manufacturer. For each analysis, 50 ⁇ g of the beads were suspended in 180 ⁇ l of 1X PBS in a 1.5 ml eppendorf tube and combined with 20 ⁇ l of the SDA reaction mixture. These samples were incubated with occasional mixing for 10 min. at room temperature. A magnet was then used to gather the beads on one side of the tube and the supernatant was removed.
  • structure # 1 produced by extension of the detector signal primer, may be captured when hybridized to a Q′-C′ capture signal primer (prior to capture signal primer extension and generation of structure # 2 ; see the reaction step following structure # 1 in FIG. 1 A). Although small amounts of structure # 1 were apparently captured and detected in addition to the predicted structures # 3 and # 9 , all captured and detected secondary amplification products were target specific and did not appear in samples lacking genomic M.tb DNA.

Abstract

Methods for detecting, immobilizing or localizing primer extension products of a Strand Displacement Amplification reaction which are coupled to, and an indication of, amplification of the target sequence. The primer extension products are secondary, target-specific DNA products generated concurrently with SDA of the target sequence and can therefore be used to detect and/or measure target sequence amplification in real-time. In general, the secondary amplification products are not amplifiable and remain inert in the SDA reaction after they are formed without interfering with amplification of the target sequence. The secondary amplification products may be designed or modified to contain special features to facilitate their detection, immobilization or localization.

Description

FIELD OF THE INVENTION
The present invention relates to methods for detecting and measuring amplification of a nucleic acid target sequence.
BACKGROUND OF THE INVENTION
In vitro nucleic acid amplification techniques have provided powerful tools for detection and analysis of small amounts of nucleic acids. The extreme sensitivity of such methods has lead to attempts to develop them for diagnosis of infectious and genetic diseases, isolation of genes for analysis, and detection of specific nucleic adds as in forensic medicine. Nucleic acid amplification techniques can be grouped according to the temperature requirements of the procedure. The polymerase chain reaction (PCR; R. K. Saiki, et al. 1985, Science 230, 1350-1354), ligase chain reaction (LCR; D. Y. Wu, et al. 1989, Genomics 4, 560-569; K. Barfinger, et al. 1990. Gene 89, 117-122; F. Barany. 1991. Proc. Natl. Acad. Sci. USA 88, 189-193) and transcription-based amplification (D. Y. Kwoh, et al. 1989. Proc. Natl. Acad. Sci. USA 86, 1173-1177) require temperature cycling. In contrast, methods such as strand displacement amplification (SDA; G. T. Walker, et al. 1992. Proc. Natl. Acad Sci. USA 89, 392-396 and G. T. Walker, et al. 1992. Nuc. Acids. Res. 20, 1691-1696, both disclosures being incorporated herein by reference), self-sustained sequence replication (3SR; J. C. Guatelli, et al. 1990. Proc. Natl. Acad. Sci. USA 87, 1874-1878) and the Qβ replicase system (P. M. Lizardi, et al. 1988. BioTechnology 6, 1197-1202) are isothermal reactions. In addition, WO 90/10064 and WO 91/03573 describe use of the bacteriophage phi29 replication origin for isothermal replication of nucleic acids.
A variety of methods have also been developed to detect and/or measure nucleic acid amplification. For the most part, these methods are primer-based, meaning that they depend on hybridization of a primer to the target sequence, in some cases followed by extension of the primer. Primer-based detection of amplified nucleic acids in PCR often relies on incorporation of an amplification primer into the amplified product (amplicon) during the amplification reaction. Features engineered into the PCR amplification primer therefore appear in the amplification product and can be used either to detect the amplified target sequence or to immobilize the amplicon for detection by other means. For example, Syvanen, et al. (1988. Nucleic Acids Res. 16, 11327-11338) report the use of biotinylated PCR amplification primers to produce biotin-containing amplification products. These amplicons can then be hybridized to a second probe containing a fluorescent dye or other reporter group. The hybridized complex is then selectively isolated from other components of the reaction mixture by affinity-based immobilization of the biotin-containing complex and is detected by means of the reporter group. Laongiaru, et al. (1991. European Patent Application No. 0 420 260) describe a similar use of biotin-containing PCR amplification primers conjugated to fluorescent dyes for detection of PCR amplification products. The amplicons containing the primers are separated from unextended primers on the basis of size, and multiplex amplification was detected using different fluorescent dyes on two amplification primer sets. Kemp, et al. (1989. Proc. Natl. Acad. Sci. USA 86, 2423-2427; 1990. PCT Patent Application No. WO 90/06374) describe a method for capturing amplified DNA by incorporation of one modified amplification primer and use of a second modified amplification primer as a means for detection. The Kemp “capture primer[ contains a 5′ tail which is the single stranded form of the recognition sequence for the double-stranded DNA binding protein GCN4. The Kemp “detector primer” includes a biotin moiety on its 5′ end. The amplified product is immobilized by binding to the double-stranded GCN4 recognition sequence generated by amplification using the capture primer. The biotin moiety introduced by the detector primer is bound to an avidin-peroxidase complex to provide colorimetric detection of the immobilized PCR amplification product. Wahlberg, et al. (1990. Proc. Natl. Acad. Sci. USA 87, 6569-6573) report a similar method in which one PCR amplification primer is biotinylated and the other contains a 5′ tail encoding the E. coli lac operator sequence. Double stranded amplification products are immobilized by binding to streptavidin and detected colorimetrically by binding of a lac repressor-β-galactosidase fusion protein to the double-stranded lac operator generated by amplification. The Wahlberg, et al. method differs from the Kemp, et al. method in that the biotin-streptavidin interaction rather than the double-stranded binding protein provides immobilization of the amplification products and the double-stranded binding protein provides colorimetric detection. This suggests that the two methods could be combined by using two amplification primers, each with a 5′ tail encoding the recognition sequence of a different double-stranded binding protein. Amplified products could then be immobilized by binding to one double stranded binding protein and detected by binding to the other. C. A. Vary (1992. Clinical Chemistry 38, 687-694; 1992. PCT Patent Application No. WO 92/11390) describes the use of amplification primers containing 5′ tails which form hybridization sites for a third oligonucleotide when incorporated into otherwise double-stranded amplicons. Hybridization of one tail was used to capture the amplified product and the other was used to detect it by hybridization to a probe conjugated to a fluorescent dye.
All of these primer-based methods of detecting PCR amplification products require two amplification reactions to achieve high sensitivity, i.e., detection of fewer than 100 copies of the target sequence. That is, a first amplification of the target sequence is followed by a second amplification using nested primers incorporating the desired modifications for capture and/or detection. Two consecutive amplifications in this manner are needed to avoid unacceptably high levels of background signal produced by amplification of non-target DNA spuriously primed with the modified, signal-generating primers. This feature of the prior art methods makes them time-consuming and cumbersome, and the advantages of primer-based detection methods are therefore often offset by the requirement for a second consecutive amplification reaction.
Non-specific amplification of DNA would be expected to present particular problems for primer-based detection of amplification products in SDA reactions because these amplifications are carried out at a relatively low temperature (about 37°-40° C.) which would allow increased mispriming as compared to PCR, resulting in even higher levels of background signal. Unexpectedly, the instant methods for primer-based detection of SDA resulting in low levels of background signal in spite of the use of only a single amplification reaction which generates products for detection concurrently with amplification of the target sequence. Simultaneous or concurrent generation of a secondary amplification product and the amplified target sequence is referred to herein as real-time primer extension, real-time detection of amplification, etc.
SUMMARY OF THE INVENTION
The instant invention provides methods for detecting, immobilizing (capturing) or localizing primer extension products of an SDA reaction which are coupled to, and an indication of, amplification of the target sequence. The primer extension products are secondary, target-specific DNA products generated during SDA of the target sequence and can therefore be used to detect and/or measure target sequence amplification. The secondary products, however, are not amplifiable and remain inert in the SDA reaction after they are formed without interfering with the exponential amplification of the target sequence. The secondary product can be designed or modified to contain special features to facilitate its detection, immobilization (capture) or localization. The inventive methods are useful for real-time monitoring of SDA reactions, especially in situations where detection of target sequence amplicons would interfere with further amplification or manipulation. The instant methods will also be useful for detection of amplification products in fixed cells after in situ SDA, especially when the secondary products contain 5′ tail sequences to facilitate detection or localization of amplification products.
DESCRIPTION OF THE DRAWINGS
FIG. 1A and FIG. 1B illustrate the steps of the methods of the invention. FIG. 1A illustrates the production of the secondary amplification product from a single stranded target sequence using two signal primers. FIG. 1B shows the analogous process originating from the complementary strand when the original target sequence is double stranded.
FIG. 2 illustrates the production of the secondary product using a single signal primer.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a method for detecting, monitoring or localizing amplification products of SDA reactions by real-time primer extension. Amplification of a target sequence by SDA is detected, monitored or localized by simultaneously generating a secondary amplification product, the production of which is tightly coupled to amplification of the target sequence. This secondary amplification product is produced during the SDA reaction without requiring any additional additional amplification steps or manipulations. Once generated, the secondary amplification product is inert in the reaction mixture and does not interfere with or inhibit normal SDA of the desired target sequence. The methods are therefore useful for real-time monitoring of SDA and detecting amplification of the target sequence, especially in situations where detection of the amplified target sequence itself would inhibit or prevent further reaction or manipulation of the amplicons.
The present invention provides a primer-based amplification detection method in which the need for a second amplification reaction is eliminated. The method employs signal primers which are similar to capture and detector probes and do not function as amplification primers in the SDA reaction. Consequently, any extension products formed through errant extension of these signal primers on non-target templates cannot undergo subsequent amplification. Because misprimings itself is comparatively rare, it is detectable only after subsequent amplification of the misprimed sequence. In the absence of such subsequent amplification, as in the methods of the present invention, the signal primers may be added to the amplification reaction prior to initiation of amplification with no apparent increase in background signal levels. This greatly simplifies the detection procedure and makes possible homogeneous real-time analysis of SDA reactions.
As used herein, the following terms and phrases are defined as follows:
An amplification primer is a primer for amplification of a target sequence by primer extension. For SDA, the 3′ end of the amplification primer (the target binding sequence) hybridizes at the 3′ end of the target sequence. The amplification primer comprises a recognition site for a restriction endonuclease near its 5′ end. The recognition site is for a restriction endonuclease which will cleave one strand of a DNA duplex when the recognition site is hemimodified (“nicking”), as described by Walker, et al. (1992. PNAS, supra). A hemimodified recognition site is a double stranded recognition site for a restriction endonuclease in which one strand contains at least one derivatized nucleotide which causes the restriction endonuclease to nick the primer strand rather than cleave both strands of the recognition site. Usually, the primer strand of the hemimodified recognition site does not contain derivatized nucleotides and is nicked by the restriction endonuclease. Alternatively, the primer may contain derivatized nucleotides which cause the unmodified target strand to be protected from cleavage while the modified primer strand is nicked. The preferred hemimodified recognition sites are hemiphosphorothioated recognition sites for the restriction endonucleases HincII, HindII, AvaI, NciI and Fnu4HI. The amplification primer also comprises a 3′-OH group which is extendable by DNA polymerase when the target binding sequence of the amplification primer is hybridized to the target sequence. For the majority of the SDA reaction, the amplification primer is responsible for exponential amplification of the target sequence.
Extension products are nucleic acids which comprise a primer and a newly synthesized strand which is the complement of the target sequence downstream of the primer binding site. Extension products result from hybridization of a primer to a target sequence and extension of the primer by polymerase using the target sequence as a template.
A bumper primer is a primer which anneals to a target sequence upstream of the amplification primer, such that extension of the bumper primer displaces the downstream amplification primer and its extension product. Extension of bumper primers is one method for displacing the extension products of amplification primers, but heating is also suitable.
Identical sequences will hybridize to the same complementary nucleotide sequence. Substantially identical sequences are sufficiently similar in their nucleotide sequence that they also hybridize to the same partially complementary nucleotide sequence.
The terms target or target sequence refer to nucleic acid sequences to be amplified. These include the original nucleic acid sequence to be amplified, its complementary second strand and either strand of a copy of the original sequence which is produced in the amplification reaction. The target sequence may also be referred to as a template for extension of hybridized amplification primers.
A signal primer is a primer which hybridizes to a target sequence downstream of an amplification primer such that extension of the amplification primer displaces the signal primer and its extension product. The signal primer comprises a 3′-OH group which can be extended by DNA polymerase when the signal primer is hybridized to the target sequence. The signal primer may be unmodified, e.g., for detection of secondary amplification products based on their size. Alternatively, the signal primer may include a reporter group or label, or a structural feature to facilitate detection of its extension product.
Amplification products, amplified products or amplicons are copies of the target sequence generated by hybridization and extension of an amplification primer. This term refers to both single stranded and double stranded amplification primer extension products which contain a copy of the original target sequence, including intermediates of the amplification reaction.
Secondary amplification products or secondary products are copies of the target sequence generated by hybridization and extension of a signal primer. The secondary amplification product comprises an internal segment of the amplified target sequence. These terms also refer to both single stranded and double stranded extension products of signal primers, including intermediates in the process which generates the final double stranded form. In contrast to amplification products, the double stranded secondary amplification product is generally not available for further amplification, although some secondary amplification products may be amplifiable in a linear fashion.
In the methods of the invention, amplification primers for SDA are hybridized to a target sequence and the target sequence is amplified generally as described by Walker, et al., 1993 PNAS or Walker, et al. 1993 Nuc. Acids Res., supra. As described in these two publications, the target sequence may be prepared for SDA either by restricting total DNA with an appropriate restriction endonuclease (e.g., HincII) or by generating target fragments having the appropriate restriction endonuclease recognition sites at the ends using bumper primers and amplification primers. Prepared fragments containing the target sequence are then amplified by SDA as described. However, the SDA reaction of the invention further comprises at least one signal primer which results in simultaneous or concurrent generation of a secondary amplification product for use in detecting, monitoring or localizing amplification products produced by the SDA reaction. The secondary amplification products may also contain features which facilitate their capture or immobilization, so that they may be isolated for detection, quantitation or further manipulation. The secondary amplification products are produced in the SDA reaction by inclusion of at least one signal primer in the reaction mixture. For certain applications, it may be preferable to include a pair of signal primers. The signal primer or signal primers hybridize to the target sequence downstream of the hybridization site of the amplification primers. They are extended by polymerase in a manner similar to extension of the amplification primers. The signal primer hybridizes at a site in the target sequence such that extension of the amplification primer displaces the extension product of the signal primer. At least the 3′ end of the signal primer comprises a sequence which hybridizes to the target sequence. The entire signal primer may hybridize to the target sequence, for example when it is unmodified or chemically modified for detection by addition of a reporter group, label or affinity ligand. Alternatively, the 5′ end of the signal primer may comprise a sequence which does not hybridize to the target sequence but which contains special nucleotide sequences (often involving structural features) which facilitate detection or capture of the secondary amplification product. These chemical modifications and special sequences are incorporated into the secondary amplification products when the signal primers are hybridized and extended on a template. Examples of chemical modifications include affinity ligands (e.g., avidin, streptavidin, biotin, haptens, antigens and antibodies) and reporter groups (labels, e.g., radioisotopes, fluorescent dyes, enzymes which react to produce detectable reaction products, and visible dyes). Examples of special nucleotide sequences include (i) sequences which will form a triple helix by hybridization of a labeled oligonucleotide probe to the double stranded secondary amplification product, and (ii) recognition sites for double-stranded DNA binding proteins which become capable of binding the double-stranded DNA binding protein when rendered double stranded during amplification (e.g., repressors, regulatory proteins, restriction endonucleases, RNA polymerase). Nucleotide sequences which result in double stranded restriction endonuclease recognition sites are a preferred structural feature for use in signal primers, as subsequent restriction may be used to generate a secondary amplification product which is recognizable by a characteristic size.
When the inventive methods employ two signal primers which hybridize to opposite strands of a double stranded target sequence, as illustrated in FIGS. 1A and 1B, one of the signal primers may contain a special nucleotide sequence or chemical modification to facilitate capture or immobilization of the secondary amplification product and the other may contain a detectable reporter group or label for detection of the captured or immobilized secondary amplification product. The use of labels and reporter groups for detecting nucleic acids as well as the use of ligands, chemical modifications and nucleic acid structural features for capture or immobilization of nucleic acids is well known in the art. Alternatively, the signal primer may be unmodified, i.e., without reporter groups, capture groups or structural features to facilitate detection or capture of the secondary amplification products. The secondary amplification products may then be detected based on their size, e.g., by gel electrophoresis and ethidium bromide staining. All of these methods are useful in the present invention and one skilled in the art can routinely select appropriate methods for use in any particular amplification assay system.
It is an important feature of the invention that the signal primers do not function as amplification primers in the SDA reaction in which they are employed. Without wishing to be bound by any specific mechanism by which the inventive methods work. Applicants believe it is this feature which allows the signal primers to be added to the amplification reaction mixture without promoting the high levels of background signal generated by other primer-based methods. High levels of background signal are believed to be due to non-specific priming and subsequent amplification of spuriously primed non-target DNA when the primers are capable of functioning as amplification primers. The present invention therefore greatly simplifies the procedures for primer-based detection methods, which previously relied on two consecutive amplification reactions to attain high sensitivity and specificity, the second reaction being performed with internally nested signal-generating amplification primers.
As stated above, nucleic acid fragments having appropriate restriction endonuclease recognition sequences at the ends and containing the target sequence may be prepared for amplification either as described by Walker, et al. 1992. PNAS, supra or as described by Walker, et al. 1992 Nuc. Acids Res., supra. For simplicity, the illustrations of the inventive methods in FIG. 1A, FIG. 1B and FIG. 2 begin with a nucleic acid fragment containing the target sequence. If prepared according to Walker, et al. 1992. PNAS, supra, it represents restricted double stranded DNA which has been denatured. If prepared according to Walker, et al. 1992. Nuc. Acids Res., supra, appropriate restriction endonuclease recognition sites are added to the fragment according to the disclosed target generation scheme. It is believed that bumper, amplification and signal primers may simultaneously hybridize to a target sequence in the target generation scheme of Walker, et al. (1992. Nuc. Acids Res., supra), extension of each upstream primer displacing the extension product of the downstream primer and simultaneously generating amplifiable target fragments and secondary amplification products.
FIG. 1A and FIG. 1B illustrate one embodiment of the invention in which a pair of signal primers are used for detecting amplification of a double-stranded target sequence (5′-A-B-C-D/5′-D′-C′-B′-A′). FIG. 1A illustrates the method of the invention for the first of the two complementary strands of the target sequence (5′-D′-C′-B′-A′). The raised portion of the amplification primers illustrated in FIGS. 1A, 1B and 2 indicates a nickable restriction endonuclease recognition site as described above and by Walker, et al. (1992. PNAS and Nuc. Acids Res.). Long raised portions illustrate full-length restriction endonuclease recognition sites and short raised portions illustrate partial restriction endonuclease recognition sites, generally produced alter nicking and displacing a strand. The nucleic acid fragments comprising the target sequence may be generated either by endonuclease restriction of larger nucleic acids (Walker, et al. 1992. PNAS, supra) or by target generation as described by Walker, et al. (1992. Nuc. Acids Res., supra). However, for purposes of illustration and to simplify the diagrams, FIGS. 1A, 1B and 2 begin with the target sequence contained on a nucleic acid fragment previously restricted with a restriction endonuclease which does not cut the target sequence.
In FIG. 1A, signal primer R-B is included in the SDA reaction mixture and hybridizes to the target sequence downstream of a first amplification primer by hybridization of the B portion of the signal primer to B′. The R portion of the R-B signal primer sequence includes a reporter group or label, or is a structural feature to facilitate detection or capture. R may or may not hybridize, as discussed above, but is shown here as not hybridizing to clarify the different functional features of the signal primer. For the purposes of this illustration, R will contain a reporter group, but may contain other chemical modifications or structural features as discussed above. Both amplification primer A and signal primer R-B are extended by DNA polymerase using the target sequence as a template. The signal primer extension product R-B-C-D (structure #1) is displaced from the template by extension of amplification primer A and in turn serves as a template for hybridization and extension of a second signal primer Q′-C′ and a second amplification primer D′. The C′ portion of the Q′-C′ sequence hybridizes to C. The Q′ portion of the second signal primer is analogous to R, and for purposes of this illustration Q′ will contain a modification or sequence to facilitate capture of the secondary amplification product. The Q′-C′ extension product is displaced by extension of the second amplification primer. The displaced Q′-C′ extension product (structure #2) then serves as a template for hybridization and extension of R-B, resulting in a double stranded, target-specific secondary amplification product (structure #3) which comprises the terminal segment (R and Q′) of the signal primers and the internal segment B′-C′ of the target sequence. As the secondary amplification product does not contain nickable restriction endonuclease recognition sites, it is not amplifiable in the SDA reaction and remains effectively inert throughout the remainder of the amplification reaction, but additional copies of the secondary amplification product are generated from the target sequence.
Hybridization and extension of the second amplification primer (D′), in addition to displacing the R′-B′-C′-Q′ extension product, generates a double stranded fragment with the R/R′ sequence at one end and a hemimodified restriction endonuclease recognition site at the other end (structure #4). This restriction endonuclease recognition site is nickable by the restriction endonuclease present in the SDA reaction. The DNA polymerase present in the SDA reaction can then initiate polymerization and displacement at the nick, resulting in the illustrated R′-B′-C′-D′ product comprising a portion of the restriction endonuclease recognition site. This product can be made double-stranded by hybridization and extension of R-B (structure #5). Although cyclically repeating the nicking, polymerizing and displacing cycle amplifies this fragment at a linear rate, generally neither the single-stranded or double-stranded product will be detectable by virtue of the absence of the Q/Q′ portion containing the modification or sequence to facilitate capture. If the functions of Q/Q′ and R/R′ are reversed, (i.e., Q/Q′ contains the reporter group or label and R/R′ contains the modification or sequence to facilitate capture), these products, though captured, would not be detectable by virtue of the absence of the reporter group or label. It should be understood, however, that structure # 5 may be detectable when the reporter group is detectable independent of capture, e.g., when the reporter group is a fluorescent label detectable by anisotropy or fluorescence polarization (WO 92/18650; R. Devlin, et al. 1993. Clin. Chem. 39, 1939-1943) or a radioisotope which can be detected by gel electrophoresis and autoradiography.
FIG. 1A also shows how extension of the first amplification primer on the target sequence, in addition to displacing the extension product of R-B, generates the double-stranded target sequence with the hemimodified, nickable restriction endonuclease recognition site which is required for amplification of the target sequence by SDA (structure #6). These reaction products enter the conventional SDA reaction and are amplified. Formation of the secondary amplification product is therefore tightly coupled to amplification of the target sequence and is useful to monitor whether or not amplification has taken place as well as to provide a measure of target amplification. In spite of the tight linkage of generation of the secondary amplification product and generation of amplification products, however, amplification of the target sequence is not inhibited provided essential reaction components are present in excess. In addition, amplified target sequences may also bind signal primers, resulting in generation of additional copies of the secondary amplification products.
FIG. 1B illustrates generation of secondary amplification products from the complementary second strand of the double-stranded target sequence (5′-A-B-C-D). In general, the reaction steps for the complementary second strand are similar to those for the first strand. However, the second amplification primer (D′) and signal primer C′-Q′ hybridize first to the complementary strand and are extended. The first amplification primer (A) and signal primer R-B then hybridize to the displaced extension product of C′-Q′ (A′-B′-C′-Q′, structure #7) and are extended to produce R-B-C-Q (structure #8). Hybridization of Q′-C′ to R-B-C-Q and extension results in the double stranded secondary amplification products R′-B′-C′-Q′/R-B-C-Q (structure #9). This secondary amplification product is detectable in systems requiring both capture and reporter groups due to the presence of both features in structure # 9. The reaction for the complementary strand also produces a reaction product which can be linearly amplified by nicking, polymerizing and displacing (structure #10). The displaced single strand of this linear amplification becomes double stranded by hybridization and extension of Q′-C′ (structure # 11). Generally, neither the single or double stranded reaction products of this linear amplification are detectable due to the absence of either the reporter group or the capture group. They are not further amplifiable because they lack an intact restriction endonuclease recognition site. However, if Q comprises a reporter group which is detectable independent of capture (e.g., a fluorescent label or a radioisotope as described above), structures # 10 and # 11 will also be detectable.
Detection specificity will generally be improved when two signal primers are employed as in FIG. 1A and FIG. 1B, but a single signal primer may also be used. This method is illustrated in FIG. 2. In this case, the signal primer may contain either a capture group or a reporter group, and the target sequence itself or an amplification primer may optionally provide a second capture or reporter group. Alternatively, when both a capture and reporter group are required, the signal primer may contain both a capture and a reporter, group which act in conjunction only when the signal oligonucleotide becomes double-stranded. This structure is formed only when the presence of target sequences induces priming, extension, displacement and re-priming as shown in FIG. 2. Such bi-functional signal primers may also form the basis for a variety of homogeneous detection methods such as fluorescence anisotropy or fluorescence energy transfer.
To generate secondary amplification products using a single signal primer according to FIG. 2, a first amplification primer (A) and the signal primer R-B are hybridized to a single stranded target sequence A′-B′-C′-D′. Both primers are extended, and extension of the first amplification primer displaces the extension product of signal primer R-B (R-B-C-D), producing structure # 1. As there is no second signal primer, only the second amplification primer (D′) hybridizes to P-B-C-D and is extended, generating structure # 2 with a nickable, hemimodified restriction endonuclease recognition site. Linear amplification of this product by nicking, polymerizing and displacing, as shown, generates fragments to which the signal primer can hybridize and be extended. This generates the double stranded secondary amplification product, structure # 3. It is not amplifiable due to the lack of an intact restriction endonuclease recognition site, but is detectable by virtue of R/R′ when the reporter or capture group is detectable only in double stranded form or by virtue of R when the reporter group is detectable alone. When detection of the reporter group does not require double-strandedness (e.g., a fluorescent label), structures # 1, #2 and #3 are detectable as secondary amplification products.
EXAMPLE 1
The real-time detection of amplification of the instant invention was compared to conventional post-amplification detection of amplified target sequences. Fragments of the IS6110 sequence of Mycobacterium tuberculosis (M.tb) were amplified in SDA reactions performed essentially as described by Walker, et al. (1992, Nuc. Acids Res.), except that each 60 μL reaction mixture contained 0.2 μg of human placental DNA and varying amounts of genomic M.tb DNA. Amplification primer sequences (S1 and S2) and bumper primer sequences (B1 and B2) were also as in Walker, et al. (1992, Nuc. Acids Res.) For the amplification reactions incorporating signal primers, the 32P-labeled signal primer 32P-CGTTATCCACCATAC (SEQ ID NO:1) was added to the reactions prior to amplification at a final concentration of 60 nM. Predicted secondary amplification products produced in these reactions were 35 and 56 nucleotides in length. For post-amplification detection of amplified target sequences, one-tenth of the reaction mixture was used to detect amplification products by primer extension of SEQ ID NO:1 as described by Walker, et a. (1992, Nucl. Acids. Res., supra), producing extension products either 35 or 56 nucleotides in length.
Amplification was allowed to proceed for 2 hr. at 37° C. in the presence of 1 to 500,000 genome copies of M.tb. After stopping the amplification, one-tenth of each reaction was subjected to electrophoresis on denaturing polyacrylamide gels. As little as one copy of M.tb genomic DNA was detected using the signal primer according to the invention. Also, the signal intensity decreased with decreasing target levels, indicating that the levels of secondary amplification product reflect the degree of target sequence amplification. The real-time extension of the signal primer appeared on the gel to be several fold less sensitive than the conventional post-amplification primer extension method, possibly because the 32P-labeled signal primer was present during SDA at concentrations about 10-fold less than the SDA primers. If SDA primers are extended on the target sequence before a signal primer binds and is extended, no signal will result. Thus, higher concentrations of signal primer should increase the method's sensitivity by improving hybridization kinetics for the signal primer. Higher signal primer concentrations are therefore preferred when reaction products are separated for detection, but the concentration of amplification primers may be kept similar to the concentrations used in conventional SDA. However, lower signal primer concentrations are preferred to keep background low for homogeneous detection methods such as fluorescence anisotropy. The lower concentrations of signal primer are preferably used with lower concentrations of polymerase and the amplification primer which hybridizes upstream of the signal primer than is customary in conventional SDA. This experiment also demonstrated that the presence of the signal primer in the amplification reaction mixture does not lead to significant levels of background signal. In fact, background signal levels appeared to be lower in samples detected by real-time signal-primer extension as compared to post-amplification primer extension.
EXAMPLE 2
SDA reactions were performed generally as previously described (Walker, 1993, PCR—Methods and Applications 3. 1) in 50 mM KiPO4 (pH 7.5), 0.1 mg/mL bovine serum albumin, 0.5 mM dUTP, 0.2 mM each dGTP, dCTP and dATPαS, 7 mM MgCl2, 11% (v/v) glycerol, the indicated concentrations of amplification primers, 25 nM bumper primers, 50 ng human placental DNA, the indicated amount of exonuclease deficient Klenow (United States Biochemicals), 150 units HincII (New England Biolabs). Reactions were run for the indicated time at 41° C. SDA reactions contained varying amounts of M.tb DNA, which contains the IS6110 target sequence for amplification. The S1 amplification primer sequence, the B1 bumper primer sequence and the B2 bumper primer sequence used were as described by Walker, et al. (1992, Nuc. Acids Res., supra). The S2 amplification primer (SEQ ID NO:2) had the target binding sequence and HincII site disclosed by these authors, but comprised a different sequence at the 5′ end. The amplification primers hybridize to nucleotide positions 972-984 and 1011-1023 of the IS6110 sequence. The bumper primers hybridize to nucleotide positions 954-966 and 1032-1044. Secondary amplification products were visualized by autoradiography after electrophoresis on denaturing polyacrylamide gels.
SDA reactions were performed for 3 hrs. in the presence of 0.1 nM of a 5′-32P-labeled signal primer (SEQ ID NO:3). This signal primer is 28 nucleotides in length and hybridizes to nucleotide positions 985-1012 of the IS6110 target sequence, between the amplification primers. S1 and S2 were present at 180 and 30 nM, respectively. Exonuclease deficient Klenow was used at 0.25 units. Samples 1-4 contained 100, 10, 1 and 0 M.tb genome molecules, respectively. During the SDA reaction, SEQ ID NO:3 is extended by polymerase to a length of 44 nucleotides using the target sequence as a template. As discussed above, this template is most likely primarily the displaced, amplified target strand generated during SDA, but concurrent extension of the bumper, amplification and signal primers on the original target sequence has not been ruled out and would be expected to occur as well. The 44-mer is displaced from the target sequence by extension of the upstream amplification primer (S2). The 3′-end of the 44-mer hybridizes to the 3′-end of the second amplification primer (S1) and a double-stranded 65-mer is formed after extension by polymerase. The 44-mer and 65-mer secondary amplification products were observed only in the presence of the M.tb target sequence (samples 1-3), indicating signal primer extension and transformation to double stranded form.
The preceding SDA reactions were repeated in the presence of 0.1 nM (samples 1-3) or 1 nM (samples 4-6) of a 5′-32-P-signal primer which was 15 nucleotides in length (SEQ ID NO:4). This signal primer hybridizes at nucleotide positions 999-1013 of the IS6110 target sequence, between the amplification primers. S1 and S2 were used at 500 nM. Two units of exonuclease deficient Klenow were used and SDA was performed for 2 hrs. The three nucleotides at the 5′-end of SEQ ID NO:4 and the three nucleotides at the 3′-end of SEQ ID NO:2 (the S2 amplification primer) are identical and therefore compete for the same IS6110 binding site. Samples 1 and 4 contained 10000 M.tb genome molecules while samples 2 and 5 contained 100 genome molecules. Samples 3 and 6 did not contain M.tb DNA.
During the SDA reaction, 45-mer and 66-mer secondary products are produced when the target sequence is amplified. They were observed only in the presence of M.tb DNA, indicating extension of the signal primer and transformation into double stranded form ( samples 1, 2, 4 and 5). In the absence of M.tb DNA (samples 3 and 6), no radiolabeled products were seen. More sensitive detection was obtained when using a concentration of 1 nM of signal primer (samples 4-6) as compared to 0.1 nM, most likely due to more favorable hybridization kinetics for the signal primer and improved thermodynamic stability of the signal primer/target sequence hybrid during SDA.
SDA was repeated in the presence of 0.1 nM of a 5′-32P-labeled signal primer which was 42 nucleotides in length (SEQ ID NO:5). The 26 nucleotides at the 3′-end of the signal primer (the target binding sequence) hybridize to the IS6110 target sequence at nucleotide positions 985-1010, between the amplification primers. 5′ to the target binding sequence is a recognition site for the restriction endonuclease HincII. S1 and S2 were present at 180 and 30 nM. Exonuclease deficient Klenow was used at 0.25 units and SDA was performed for 3 hrs. Samples 1-4 contained 100, 10, 1 and 0 M.tb genome molecules.
During the SDA reaction, the signal primer is extended by the polymerase to a length of 58 nucleotides. This 58-mer is displaced by extension of the upstream amplification primer (SEQ ID NO:2). The 3′-end of the 58-mer hybridizes to the 3′-end of the other amplification primer (S1), forming a double-stranded 79-mer after extension by polymerase. The HincII recognition site at the 5′-end of the signal primer becomes cleavable by HincII upon formation of the double-stranded 79-mer. That is, in the double-stranded 79-mer, both the strand comprising the original signal primer and the strand formed through polymerase extension using dGTP, dCTP, TTP and dATPαS are cleavable. HincII does not cleave the signal primer in its original single-stranded form. Cleavage of the double stranded 79-mer during the SDA reaction produces a 5′-32P-labeled 13-mer which is detectable as a secondary amplification product.
58-mer and 79-mer primer extension secondary amplification products and the 13-mer cleavage secondary amplification product were observed only in the presence of M.tb target DNA (samples 1-3), indicating extension of the signal primer and transformation to double-stranded form. In the absence of M.tb DNA no secondary amplification products (extension products or cleavage products) were observed.
SDA was repeated in the presence of 0.1 nM of a 5′-32P-labeled signal primer which was 33 nucleotides in length (SEQ ID NO:6). The 26 nucleotides at the 3′-end of the signal primer (the target binding sequence) hybridize to the IS6110 target sequence at nucleotide positions 985-1010, between the amplification primers. 5′ to the target binding sequence is a recognition site for the restriction endonuclease EcoRI. S1 and S2 were present at 180 and 30 nM, respectively. Exonuclease deficient Klenow was used at 0.25 units. SDA was performed for 3 hrs. Samples 1-4 contained 100, 10, 1 and 0 M.tb genome molecules. After SDA, 20 units of EcoRI were added to each SDA reaction and the samples were incubated for 30 min. at 37° C.
During the SDA reaction, the signal primer is extended by the polymerase to a length of 49 nucleotides. This 49-mer is displaced by extension of the upstream amplification primer (SEQ ID NO:2). The 3′-end of the 49-mer hybridizes to the 3′-end of the other amplification primer (S1), forming a double-stranded 70-mer after extension by polymerase. The EcoRI recognition site at the 5′-end of the signal primer becomes cleavable by EcoRI upon formation of the 70-mer and addition of EcoRI. EcoRI cleavage of the double-stranded 70-mer produces a cleavage product which is a 5′-32P-labeled dinucleotide. This dinucleotide is detectable by autoradiography as a secondary amplification product.
49-mer and 70-mer extension products and the dinucleotide cleavage secondary amplification product were observed only in the presence of M.tb target DNA (samples 1-3, indicating extension of the signal primer and transformation to double-stranded form. In the absence of M.tb DNA no secondary amplification products (extension products or cleavage products) were observed.
The 32P-dinucleotide cleavage product was alternatively detected by liquid scintillation counting. SDA was repeated in the presence of 0.5 nM 5′-32P-labeled SEQ ID NO:6 signal primer. Prior to its use in SDA, the 32P-labeled signal primer was purified away from the gamma-32P-ATP used in the kinase labeling reaction by denaturing gel electrophoresis. S1 and S2 were present at 180 and 30 nM. Exonuclease deficient Klenow was used at 0.25 units. SDA was performed for 3 hrs. Samples 1-7 contained 105, 104, 103, 102, 10, 1 and 0 M.tb genome molecules. After SDA, 40 units of EcoRI were added to each SDA reaction and the samples were incubated at 37° C. for 30 min.
A 12.5 μl aliquot from each 50 μl SDA reaction was diluted to 75 μl in 20 mM TRIS-HCL (pH 7.4), 50 mM KCl, 5 mM MgCl2. Each of these samples was then filtered using a MICROCON-10 microconcentrator (icon, Beverly, Mass.) and 32P activity was detected in the filtrate and on the filter by liquid scintillation counting. The results are shown below:
Initial # of
M tb Genome Filtrate
Sample Molecules (cpm) Filter (cpm)
1 105 13,449 44,802
2 104 12,299 49,366
3 103 9,006 50,739
4 102 6,689 52,712
5 10 3,153 57,732
6 1 2,072 55,835
7 0 2,120 57,995
The 32P-dinucleotide released by EcoRI cleavage of the double-stranded 70-mer extension product is small enough that it passes through the MICROCON-10 filter, while the larger initial 32P-labeled 33-mer signal primer and 32P-labeled 49-mer extension product are retained on the filter. Using this filtration detection method, the IS6110 target sequence could be detected in a sample which contained as few as 10 M.tb genomes prior to SDA.
EXAMPLE 3
Two signal primers, one modified to facilitate capture and one modified to facilitate detection, were used to generate secondary amplification products in an SDA reaction. In this experiment, one signal primer had an affinity ligand (Q′, three biotin moieties) attached to its 5′ end and the second signal primer was 5′-end labeled with a reporter group (R, a 32P-containing phosphate group). Thus, double-stranded secondary amplification products which comprised both the reporter group and the affinity ligand (such as structure # 3 and structure # 9 of FIG. 1A and FIG. 1B) could be captured and detected. In this example, streptavidin coated magnetic beads were used to capture and separate the secondary amplification products, which were then detected by scintillation counting.
Biotinylated signal primers were prepared as follows. Oligonucleotide SEQ ID NO:7 was synthesized on an Applied Biosystems DNA Synthesizer Model 380B, using standard phosphoramidite chemistry. The instrument was then used to attach three biotin groups to the oligonucleotide by three successive couplings with BIOTIN ON phosphoramidite (Clonetech). Following synthesis, the oligonucleotide was deprotected by treatment with concentrated ammonia and purified by denaturing gel electrophoresis. The biotinylated signal primers with attached affinity ligands for capture of the secondary amplification products are referred to as capture signal primers and, for the purposes of this example, are analogous to the Q′-C′ signal primer of FIG. 1A and FIG. 1B wherein Q′ comprises biotin.
To prepare 32P-labeled signal primers, oligonucleotides SEQ ID NO:1 and SEQ ID NO:8 were labeled with radioactive phosphate as described by Walker, et al. (1992, Nucl. Acids Res., supra). The radiolabeled signal primers are referred to as detection signal primers and, for the purposes of this example, are analogous to the R-B signal primer of FIG. 1A and FIG. 1B wherein R comprises a radiolabel. In the experiment, one of these two detection signal primers was used in conjunction with the capture signal primer to generate secondary amplification products.
SDA was carded out essentially as described by Walker, et al. (1992, Nucl. Acids Res., supra) with the following modifications. Amplification primers were SEQ ID NO:9 and SEQ ID NO:10 (analogous to A and D′ in FIG. 1A and FIG. 1B). These primers amplify a 103 nucleotide fragment (nucleotide positions 944-1046) of the IS6110 insertion element of M.tb. Each 50 μl reaction contained the following components: 45 mM KiPO4, pH 7.5; 6 mM MgCl2; 0.1 mg/ml acetylated BSA; 12% dimethylsulfoxide; 0.5 mM dUTP; 0.2 mM each dCTP, dGTP, dATPαS; 500 nM amplification primers: 50 nM bumper primers (SEQ ID NO:11 and SEQ ID NO:12); 75 nM detection signal primer and capture signal primer (SEQ ID NO:1 and SEQ ID NO:7 or SEQ ID NO:8 and SEQ ID NO:7); 100 ng human placental DNA; 150 units HincII (New England Biolabs); 2.5 units exo Klenow DNA polymerase (US Biochemicals); 3% (v/v) glycerol added with enzymes; and either 0 or 105 copies of the M.tb genome.
All reaction components, except MgCl2, HincII and polymerase, were assembled and the mixtures were heated to 95° C. for two minutes. The samples were then placed in a water bath at 40° C. for two minutes, 3 μl of 0.1M MgCl2 were added to each sample and the samples were mixed. Three μl of an enzyme mixture containing 50 units/μl HincII, 0.833 units/μl polymerase and 50% (v/v) glycerol were added and the samples were incubated at 40° C. for 2 hrs.
After incubation, a 5 μl aliquot of each reaction mixture was analyzed by denaturing gel electrophoresis. Because detection on gels requires only the presence of R, various products appeared in the range of 50-120 nucleotides for samples containing genomic M.tb DNA. These bands were absent in reactions lacking M.tb DNA, indicating that the reaction products in this size range were target-specific. The secondary amplification products predicted for this example, determined by calculation of the known sizes and binding positions of the signal primers according to the reaction scheme outlined in FIG. 1A and FIG. 1B, are shown in the following Table. As can be seen from FIG. 1A and FIG. 1B, structure #3 (in single-stranded form on denaturing gels) contains R and is detectable. In addition, the detectable single strand of structure # 3 is identical to structure #2 and to the detectable single strand of structure # 9. These secondary amplification products are therefore indistinguishable on the gel. Structure # 4 and structure #5 (also in single-stranded form on denaturing gels) are also detectable by virtue of the presence of R.
EXPECTED SECONDARY PRODUCT SIZES
(nucleotides, nt)
32P-Labeled Signal Primer
Structure (FIGS. 1A and 1B) SEQ ID NO 1 SEQ ID NO 8
#3, #9 and #8 52 nt  92 nt
#4 58 nt  98 nt
#5 79 nt 119 nt
Streptavidin-coated magnetic beads (Streptavidin Paramagnetic Particles, Nucleic Acid Qualified, 1 mg/ml, Promega Corporation, Madison, Wis.) were washed three times with 1X PBS as recommended by the manufacturer. For each analysis, 50 μg of the beads were suspended in 180 μl of 1X PBS in a 1.5 ml eppendorf tube and combined with 20 μl of the SDA reaction mixture. These samples were incubated with occasional mixing for 10 min. at room temperature. A magnet was then used to gather the beads on one side of the tube and the supernatant was removed. The beads were then washed by resuspending them in 1X PBS (200 μl), gathering them magnetically on the side of the tube and removing the supernatant. This washing process was repeated three more times, and the 32P activity remaining on the beads was detected by liquid scintillation counting. The results are shown in the following Table:
105 Initial Genome 0 Initial Genome
Detector Signal Primer Molecules Molecules
SEQ ID NO 1 80,547 cpm 1,080 cpm
SEQ ID NO 8 54,385 cpm   961 cpm
Small aliquots of the beads (10%), removed prior to scintillation counting, were heated to 95° C. in the presence of 50% urea and subjected to electrophoresis on a denaturing polyacrylamide gel. Only structure # 3 and structure # 9 contain both the biotin modification and the 32P label, and it was predicted that only these structures would bind to the beads and be detectable. Autoradiography of the gel did show that the structure # 3 and structure # 9 secondary amplification products represent the predominant radioactive species retained by the beads during the magnetic separation process. However, smaller amounts of a species corresponding to structure #1 also appeared on the autoradiogram. It is possible that structure # 1, produced by extension of the detector signal primer, may be captured when hybridized to a Q′-C′ capture signal primer (prior to capture signal primer extension and generation of structure # 2; see the reaction step following structure # 1 in FIG. 1A). Although small amounts of structure # 1 were apparently captured and detected in addition to the predicted structures # 3 and #9, all captured and detected secondary amplification products were target specific and did not appear in samples lacking genomic M.tb DNA.
The background radioactivity detected on the beads in the absence of M.tb DNA (0 initial genome molecules) appears to be due to nonspecific binding of unreacted detector signal primers. Electrophoretic analysis of beads from these samples showed that the only radioactive material present was a very faint band corresponding to the detector signal primers, even after overnight exposure of the autoradiogram. However, the secondary amplification products were clearly detected above these background levels of signal.

Claims (42)

1. A method for concurrently generating a secondary amplification product and an amplification product in a Strand Displacement Amplification (SDA) reaction, wherein the SDA reaction comprises (i) a DNA polymerase having strand displacing activity and lacking 5′-3′ exonuclease activity and (ii) a restriction endonuclease which nicks a hemimodified double stranded restriction endonuclease recognition site, the method comprising:
a) hybridizing a signal primer to a target sequence and hybridizing a first SDA amplification primer to the target sequence upstream of the signal primer;
b) extending the hybridized signal primer on the target sequence to produce a signal primer extension product and extending the hybridized first SDA amplification primer on the target sequence such that extension of the first SDA amplification primer displaces the signal primer extension product from the target sequence;
c) hybridizing a second SDA amplification primer to the signal primer extension product and extending the hybridized second SDA amplification primer on the signal primer extension product to produce a second SDA amplification primer extension product comprising a newly synthesized strand and double stranded hemimodified recognition site for the restriction endonuclease;
d) nicking the hemimodified recognition site and displacing the newly synthesized strand from the signal primer extension product using the DNA polymerase;
e) hybridizing the signal primer to the displaced newly synthesized strand and extending the signal primer such that a double stranded secondary amplification product is generated.
2. The method of claim 1 further comprising detecting the secondary amplification product by means of a chemical modification or special nucleotide sequence incorporated into the signal primer.
3. The method of claim 2 wherein the secondary amplification product is detected by means of an affinity ligand or reporter group incorporated into the signal primer.
4. The method of claim 2 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a recognition site for a double-stranded DNA binding protein.
5. The method of claim 2 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a restriction endonuclease recognition site.
6. The method of claim 5 wherein the secondary amplification product is detected by cleaving the restriction endonuclease recognition site with a restriction endonuclease to generate a cleavage product, separating the cleavage product on the basis of size and detecting the cleavage product.
7. The method of claim 6 wherein the cleavage product is separated by filtration.
8. A method for concurrently generating a secondary amplification product and an amplification product in a Strand Displacement Amplification (SDA) reaction, wherein the SDA reaction comprises (i) a DNA polymerase having strand displacing activity and lacking 5′-3′ exonuclease activity and (ii) a restriction enzyme which nicks a hemimodified double stranded restriction endonuclease recognition site, the method comprising:
a) hybridizing a first signal primer to a first strand of a double-stranded target sequence and hybridizing a first SDA amplification primer to the first strand of the target sequence upstream of the first signal primer;
b) extending the hybridized first signal primer on the first strand to produce a first extension product and extending the hybridized first SDA amplification primer on the first strand such that extension of the first SDA amplification primer displaces the first extension product from the target sequence;
c) hybridizing a second signal primer to the first extension product and hybridizing a second SDA amplification primer to the first extension product upstream of the second signal primer;
d) extending the hybridized second signal primer on the first extension product to produce a second SDA extension product and extending the hybridized second amplification primer on the first extension product such that extension of the second SDA amplification primer displaces the second extension product from the first extension product;
e) hybridizing the first signal primer to the displaced second extension product and extending the hybridized first signal primer on the second extension product such that a double stranded secondary amplification product is generated.
9. The method of claim 8 further comprising detecting the secondary amplification product by means of a reporter group incorporated into the first signal primer and a modification to facilitate capture of the secondary amplification product incorporated into the second signal primer.
10. The method of claim 8 further comprising the steps of:
a) hybridizing the second SDA signal primer to a second strand of the double stranded target sequence and hybridizing the second amplification primer to the second strand of the target sequence upstream of the second signal primer;
b) extending the hybridized second signal primer on the second strand to produce a third extension product and extending the hybridized second SDA amplification primer on the second SDA strand such that extension of the second amplification primer displaces the third extension product from the second strand of the target sequence;
c) hybridizing the first signal primer to the displaced third extension product and hybridizing the first SDA amplification primer to the displaced third extension product upstream of the first signal primer;
d) extending the hybridized first signal primer on the third extension product to produce a fourth extension product and extending the hybridized first SDA amplification primer on the third extension product such that extension of the first SDA amplification primer displaces the fourth extension product from the third extension product;
e) hybridizing the second signal primer to the displaced fourth extension product and extending the second signal primer on the fourth extension product such that a double stranded secondary amplification product is generated.
11. The method of claim 10 further comprising detecting the secondary amplification product by means of a chemical modification or special nucleotide sequence incorporated into the signal primer.
12. The method of claim 11 wherein the secondary amplification product is detected by means of an affinity ligand or reporter group incorporated into the signal primer.
13. The method of claim 11 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a recognition site for a double-stranded DNA binding protein.
14. The method of claim 11 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a restriction endonuclease recognition site.
15. The method of claim 14 wherein the secondary amplification product is detected by cleaving the restriction endonuclease recognition site with a restriction endonuclease to generate a cleavage product, separating the cleavage product on the basis of size and detecting the cleavage product.
16. The method of claim 15 wherein the cleavage product is separated by filtration.
17. The method of claim 2 wherein the secondary amplification products are detected in concurrently with amplification of the target sequence in real-time.
18. The method of claim 2 wherein the secondary amplification products are detected post-amplification.
19. The method of claim 9 wherein the secondary amplification products are detected in concurrently with amplification of the target sequence in real-time.
20. The method of claim 9 wherein the secondary amplification products are detected post-amplification.
21. A method for concurrently generating a secondary amplification product and an amplification product in a primer based nucleic acid amplification reaction, the method comprising:
a) hybridizing a signal primer to a target sequence and hybridizing a first amplification primer to the target sequence upstream of the signal primer, wherein a characteristic of said signal primer is that it may function as an amplifiable primer in a linear fashion;
b) extending the hybridized signal primer on the target sequence to produce a signal primer extension product and extending the hybridized first amplification primer on the target sequence such that extension of the first amplification primer displaces the signal primer extension product from the target sequence;
c) hybridizing a second amplification primer to the signal primer extension product and extending the hybridized second amplification primer on the signal primer extension product to produce a second amplification primer extension product comprising a newly synthesized strand;
d) displacing the newly synthesized strand from the signal primer extension product; and
e) hybridizing the signal primer to the displaced newly synthesized strand and extending the signal primer such that a double stranded secondary amplification product is generated.
22. The method of claim 21 further comprising detecting the secondary amplification product by means of a chemical modification or special nucleotide sequence incorporated into the signal primer.
23. The method of claim 22 wherein the secondary amplification product is detected by means of an affinity ligand or reporter group incorporated into the signal primer.
24. The method of claim 22 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a recognition site for a double-stranded DNA binding protein.
25. The method of claim 22 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a restriction endonuclease recognition site.
26. The method of claim 25 wherein the secondary amplification product is detected by cleaving the restriction endonuclease recognition site with a restriction endonuclease to generate a cleavage product.
27. The method of claim 26 wherein the secondary amplification product is detected by separating the cleavage product on the basis of size and detecting the cleavage product.
28. The method of claim 27 wherein the cleavage product is separated by filtration.
29. A method for concurrently generating a secondary amplification product and an amplification product in a primer based nucleic acid amplification reaction, the method comprising:
a) hybridizing a first signal primer to a first strand of a double-stranded target sequence and hybridizing a first amplification primer to the first strand of the target sequence upstream of the first signal primer, wherein a characteristic of said signal primer is that it may function as an amplifiable primer in a linear fashion;
b) extending the hybridized first signal primer on the first strand to produce a first extension product and extending the hybridized first amplification primer on the first strand such that extension of the first amplification primer displaces the first extension product from the target sequence;
c) hybridizing a second signal primer to the first extension product and hybridizing a second amplification primer to the first extension product upstream of the second signal primer;
d) extending the hybridized second signal primer on the first extension product to produce a second extension product and extending the hybridized second amplification primer on the first extension product such that extension of the second amplification primer displaces the second extension product from the first extension product; and
e) hybridizing the first signal primer to the displaced second extension product and extending the hybridized first signal primer on the second extension product such that a double stranded secondary amplification product is generated.
30. The method of claim 29 further comprising detecting the secondary amplification product by means of a reporter group incorporated into the first signal primer and a modification to facilitate capture of the secondary amplification product incorporated into the second signal primer.
31. The method of claim 29 further comprising:
a) hybridizing the second signal primer to a second strand of the double stranded target sequence and hybridizing the second amplification primer to the second strand of the target sequence upstream of the second signal primer;
b) extending the hybridized second signal primer on the second strand to produce a third extension product and extending the hybridized second amplification primer on the second strand such that extension of the second amplification primer displaces the third extension product from the second strand of the target sequence;
c) hybridizing the first signal primer to the displaced third extension product and hybridizing the first amplification primer to the displaced third extension product upstream of the first signal primer;
d) extending the hybridized first signal primer on the third extension product to produce a fourth extension product and extending the hybridized first amplification primer on the third extension product such that extension of the first amplification primer displaces the fourth extension product from the third extension product; and
e) hybridizing the second signal primer to the displaced fourth extension product and extending the second signal primer on the fourth extension product such that a double stranded secondary amplification product is generated.
32. The method of claim 31 further comprising detecting the secondary amplification product by means of a chemical modification or special nucleotide sequence incorporated into the signal primer.
33. The method of claim 32 wherein the secondary amplification product is detected by means of an affinity ligand or reporter group incorporated into the signal primer.
34. The method of claim 32 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a recognition site for a double-stranded DNA binding protein.
35. The method of claim 32 wherein the secondary amplification product is detected by means of a nucleotide sequence incorporated into the signal primer, the nucleotide sequence comprising a restriction endonuclease recognition site.
36. The method of claim 35 wherein the secondary amplification product is detected by cleaving the restriction endonuclease recognition site with a restriction endonuclease to generate a cleavage product.
37. The method of claim 36 wherein the secondary amplification product is detected by separating the cleavage product on the basis of size and detecting the cleavage product.
38. The method of claim 37 wherein the cleavage product is separated by filtration.
39. The method of claim 22 wherein the secondary amplification products are detected in real-time.
40. The method of claim 22 wherein the secondary amplification products are detected post-amplification.
41. The method of claim 29 wherein the secondary amplification products are detected in real-time.
42. The method of claim 29 wherein the secondary amplification products are detected post-amplification.
US09/082,247 1994-04-18 1998-05-20 Detection of nucleic acid amplification Expired - Lifetime USRE39885E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/082,247 USRE39885E1 (en) 1994-04-18 1998-05-20 Detection of nucleic acid amplification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/229,281 US5547861A (en) 1994-04-18 1994-04-18 Detection of nucleic acid amplification
US09/082,247 USRE39885E1 (en) 1994-04-18 1998-05-20 Detection of nucleic acid amplification

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/229,281 Reissue US5547861A (en) 1994-04-18 1994-04-18 Detection of nucleic acid amplification

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US29/108,180 Continuation-In-Part USD426883S (en) 1999-07-22 1999-07-22 Cauterization smoke evacuator

Publications (1)

Publication Number Publication Date
USRE39885E1 true USRE39885E1 (en) 2007-10-16

Family

ID=22860539

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/229,281 Ceased US5547861A (en) 1994-04-18 1994-04-18 Detection of nucleic acid amplification
US08/311,474 Expired - Fee Related US5593867A (en) 1994-04-18 1994-09-23 Fluorerscence polarization detection of nucleic acid amplication
US09/082,247 Expired - Lifetime USRE39885E1 (en) 1994-04-18 1998-05-20 Detection of nucleic acid amplification

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/229,281 Ceased US5547861A (en) 1994-04-18 1994-04-18 Detection of nucleic acid amplification
US08/311,474 Expired - Fee Related US5593867A (en) 1994-04-18 1994-09-23 Fluorerscence polarization detection of nucleic acid amplication

Country Status (12)

Country Link
US (3) US5547861A (en)
EP (1) EP0678582B1 (en)
JP (1) JP2674737B2 (en)
KR (1) KR0145908B1 (en)
AT (1) ATE220724T1 (en)
AU (1) AU685903B2 (en)
BR (1) BR9501582A (en)
CA (1) CA2145576C (en)
DE (1) DE69527392T2 (en)
ES (1) ES2177590T3 (en)
SG (1) SG34216A1 (en)
TW (1) TW306977B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090017453A1 (en) * 2007-07-14 2009-01-15 Maples Brian K Nicking and extension amplification reaction for the exponential amplification of nucleic acids
WO2014164479A1 (en) 2013-03-11 2014-10-09 Elitech Holding B.V. Methods for true isothermal strand displacement amplification
US9352312B2 (en) 2011-09-23 2016-05-31 Alere Switzerland Gmbh System and apparatus for reactions
US10590474B2 (en) 2013-03-11 2020-03-17 Elitechgroup B.V. Methods for true isothermal strand displacement amplification
US10975423B2 (en) 2013-03-11 2021-04-13 Elitechgroup, Inc. Methods for true isothermal strand displacement amplification
WO2021080629A1 (en) 2019-10-23 2021-04-29 Elitechgroup, Inc. Methods for true isothermal strand displacement amplification

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293820B2 (en) 1985-12-13 2002-06-17 エンゾ− バイオケム インコ−ポレイテツド Novel one-step method and polynucleotide compound for hybridizing to target polynucleotide
US5919922A (en) * 1990-05-15 1999-07-06 Hyperion, Inc. Fluorescent dyes free of aggregation and serum binding
US6060598A (en) * 1990-05-15 2000-05-09 Hyperion, Inc. Fluorescence immunoassays using fluorescent dyes free of aggregation and serum binding
US5547861A (en) 1994-04-18 1996-08-20 Becton, Dickinson And Company Detection of nucleic acid amplification
DE69519783T2 (en) * 1994-04-29 2001-06-07 Perkin Elmer Corp METHOD AND DEVICE FOR REAL-TIME DETECTION OF PRODUCTS OF NUCLEIC ACID AMPLIFICATION
US6787304B1 (en) 1994-12-28 2004-09-07 Georgetown University Fluorometric assay for detecting nucleic acid cleavage
US20030165908A1 (en) * 1994-12-30 2003-09-04 Georgetown University Fluorometric assay for detecting nucleic acid cleavage
AUPN245295A0 (en) * 1995-04-13 1995-05-11 Johnson & Johnson Research Pty. Limited Assay for genetic abnormalities
US6153186A (en) * 1995-09-15 2000-11-28 Duke University Medical Center Red blood cells loaded with S-nitrosothiol and uses therefor
US5800989A (en) * 1995-11-15 1998-09-01 Becton, Dickinson And Company Method for detection of nucleic acid targets by amplification and fluorescence polarization
US5641633A (en) * 1995-11-15 1997-06-24 Becton, Dickinson And Company Fluorescence polarization detection of nucleic acids
CA2249717A1 (en) * 1996-03-18 1997-09-25 Richard K. Wilkosz Target nucleic acid sequence amplification
US6117635A (en) * 1996-07-16 2000-09-12 Intergen Company Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon
US5866336A (en) * 1996-07-16 1999-02-02 Oncor, Inc. Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon
US5795748A (en) * 1996-09-26 1998-08-18 Becton Dickinson And Company DNA microwell device and method
US5846726A (en) * 1997-05-13 1998-12-08 Becton, Dickinson And Company Detection of nucleic acids by fluorescence quenching
US5863736A (en) * 1997-05-23 1999-01-26 Becton, Dickinson And Company Method, apparatus and computer program products for determining quantities of nucleic acid sequences in samples
US5928869A (en) * 1997-05-30 1999-07-27 Becton, Dickinson And Company Detection of nucleic acids by fluorescence quenching
US6071748A (en) 1997-07-16 2000-06-06 Ljl Biosystems, Inc. Light detection device
US6469311B1 (en) 1997-07-16 2002-10-22 Molecular Devices Corporation Detection device for light transmitted from a sensed volume
US7632651B2 (en) * 1997-09-15 2009-12-15 Mds Analytical Technologies (Us) Inc. Molecular modification assays
US7745142B2 (en) 1997-09-15 2010-06-29 Molecular Devices Corporation Molecular modification assays
US20050227294A1 (en) * 1997-09-15 2005-10-13 Molecular Devices Corporation Molecular modification assays involving lipids
WO2000050877A1 (en) 1999-02-23 2000-08-31 Ljl Biosystems, Inc. Frequency-domain light detection device
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US6576476B1 (en) 1998-09-02 2003-06-10 Ljl Biosystems, Inc. Chemiluminescence detection method and device
US6326605B1 (en) 1998-02-20 2001-12-04 Ljl Biosystems, Inc. Broad range light detection system
US6992761B2 (en) * 1997-09-20 2006-01-31 Molecular Devices Corporation Broad range light detection system
US6982431B2 (en) * 1998-08-31 2006-01-03 Molecular Devices Corporation Sample analysis systems
US6825921B1 (en) 1999-11-10 2004-11-30 Molecular Devices Corporation Multi-mode light detection system
US5935791A (en) 1997-09-23 1999-08-10 Becton, Dickinson And Company Detection of nucleic acids by fluorescence quenching
US6077669A (en) * 1997-11-04 2000-06-20 Becton Dickinson And Company Kit and method for fluorescence based detection assay
US6289229B1 (en) 1998-01-20 2001-09-11 Scimed Life Systems, Inc. Readable probe array for in vivo use
US6365346B1 (en) * 1998-02-18 2002-04-02 Dade Behring Inc. Quantitative determination of nucleic acid amplification products
WO1999044045A1 (en) * 1998-02-27 1999-09-02 Massachusetts Institute Of Technology Single molecule detection with surface-enhanced raman scattering and applications in dna or rna sequencing
US6066458A (en) * 1998-05-18 2000-05-23 Becton, Dickinson And Company Methods, apparatus and computer program products for determining quantities of nucleic acid sequences in samples using standard curves and amplification ratio estimates
US6316229B1 (en) 1998-07-20 2001-11-13 Yale University Single molecule analysis target-mediated ligation of bipartite primers
AU5667599A (en) 1998-07-27 2000-02-21 Ljl Biosystems, Inc. Apparatus and methods for time-resolved spectroscopic measurements
AU5223899A (en) 1998-07-27 2000-02-21 Ljl Biosystems, Inc. Apparatus and methods for spectroscopic measurements
US6180408B1 (en) 1998-08-21 2001-01-30 Washington University Fluorescence polarization in nucleic acid analysis
US6287824B1 (en) 1998-09-15 2001-09-11 Yale University Molecular cloning using rolling circle amplification
AU763890B2 (en) 1998-09-15 2003-07-31 Yale University Artificial long terminal repeat vectors
ES2369818T3 (en) 1998-11-09 2011-12-07 Eiken Kagaku Kabushiki Kaisha NUCLEIC ACID SYNTHESIS PROCEDURE.
AU2849800A (en) 1999-01-15 2000-08-01 Ljl Biosystems, Inc. Methods and apparatus for detecting polynucleotide hybridization
US6531302B1 (en) * 1999-04-12 2003-03-11 Nanogen/Becton Dickinson Partnership Anchored strand displacement amplification on an electronically addressable microchip
US6309833B1 (en) 1999-04-12 2001-10-30 Nanogen/Becton Dickinson Partnership Multiplex amplification and separation of nucleic acid sequences on a bioelectronic microchip using asymmetric structures
US6238868B1 (en) * 1999-04-12 2001-05-29 Nanogen/Becton Dickinson Partnership Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification and bioelectronic chip technology
US6326173B1 (en) * 1999-04-12 2001-12-04 Nanogen/Becton Dickinson Partnership Electronically mediated nucleic acid amplification in NASBA
EP1177423A4 (en) * 1999-04-12 2004-10-27 Nanogen Becton Dickinson Partn Amplification and separation of nucleic acid sequences using strand displacement amplification and bioelectronic microchip technology
US20030165913A1 (en) 1999-06-17 2003-09-04 Sha-Sha Wang Methods for detecting nucleic acid sequence variations
US6316200B1 (en) 2000-06-08 2001-11-13 Becton, Dickinson And Company Probes and methods for detection of nucleic acids
EP1061134A3 (en) * 1999-06-17 2003-01-08 Becton Dickinson and Company Oligonucleotides for amplification and detection of hemochromatosis genes
US20020025519A1 (en) * 1999-06-17 2002-02-28 David J. Wright Methods and oligonucleotides for detecting nucleic acid sequence variations
US6379888B1 (en) 1999-09-27 2002-04-30 Becton, Dickinson And Company Universal probes and methods for detection of nucleic acids
US6348317B1 (en) * 1999-11-18 2002-02-19 The Arizona Board Of Regents Fluorescent and DNA cleavage properties of peptide/dye conjugates
US6613671B1 (en) 2000-03-03 2003-09-02 Micron Technology, Inc. Conductive connection forming methods, oxidation reducing methods, and integrated circuits formed thereby
US6346384B1 (en) 2000-03-27 2002-02-12 Dade Behring Inc. Real-time monitoring of PCR using LOCI
US8017357B2 (en) 2000-04-07 2011-09-13 Eiken Kagaku Kabushiki Kaisha Method of amplifying nucleic acid by using double-stranded nucleic acid as template
EP1297179B1 (en) * 2000-05-12 2008-09-24 Caliper Life Sciences, Inc. Detection of nucleic acid hybridization by fluorescence polarization
US6258546B1 (en) 2000-06-23 2001-07-10 Becton, Dickinson And Company Detection of nucleic acid amplification
US6261785B1 (en) * 2000-07-27 2001-07-17 Becton, Dickinson And Company Amplification and detection of Bordetella pertussis
US6251609B1 (en) * 2000-07-27 2001-06-26 Becton, Dickinson And Company Amplification and detection of Legionella pneumophila targeting the mip gene
US6706479B2 (en) * 2000-10-05 2004-03-16 Virginia Tech Intellectual Properties, Inc. Bio-chip, photoluminescent methods for identifying biological material, and apparatuses for use with such methods and bio-chips
WO2002040874A1 (en) 2000-11-16 2002-05-23 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US20050202470A1 (en) * 2000-11-16 2005-09-15 Caliper Life Sciences, Inc. Binding assays using molecular melt curves
WO2002046453A2 (en) * 2000-12-05 2002-06-13 Syngenta Participations Ag Method and kit for identification of nucleic acid modification enzymes and inhibitors thereof
EP1377686A4 (en) * 2001-04-12 2007-07-25 Caliper Life Sciences Inc Systems and methods for high throughput genetic analysis
US7452705B2 (en) 2001-05-22 2008-11-18 The University Of Chicago N4 virion single-stranded DNA dependent RNA polymerase
US9261460B2 (en) * 2002-03-12 2016-02-16 Enzo Life Sciences, Inc. Real-time nucleic acid detection processes and compositions
JP2005516610A (en) * 2001-07-15 2005-06-09 ケック グラデュエイト インスティテュート Gene expression analysis using nicking agents
AU2002367466A1 (en) * 2001-07-15 2003-10-08 Keck Graduate Institute Amplification of nucleic acid fragments using nicking agents
WO2003008624A2 (en) * 2001-07-15 2003-01-30 Keck Graduate Institute Nucleic acid amplification using nicking agents
US6589744B2 (en) 2001-11-26 2003-07-08 Syngenta Participations Ag Method and kit for identification for nucleic acid modification enzymes and inhibitors thereof
AU2003208959A1 (en) * 2002-01-30 2003-09-02 Id Biomedical Corporation Methods for detecting vancomycin-resistant microorganisms and compositions therefor
GB0205455D0 (en) * 2002-03-07 2002-04-24 Molecular Sensing Plc Nucleic acid probes, their synthesis and use
US9353405B2 (en) 2002-03-12 2016-05-31 Enzo Life Sciences, Inc. Optimized real time nucleic acid detection processes
CN1653338A (en) 2002-05-17 2005-08-10 贝克顿·迪金森公司 Automated system for isolating, amplifying and detecting a target nucleic acid sequence
US20030219754A1 (en) * 2002-05-23 2003-11-27 Oleksy Jerome E. Fluorescence polarization detection of nucleic acids
US6951767B1 (en) * 2002-07-02 2005-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Development hastened stability of titanium nitride for APM etching rate monitor
US9487823B2 (en) 2002-12-20 2016-11-08 Qiagen Gmbh Nucleic acid amplification
US20040175737A1 (en) * 2002-12-23 2004-09-09 Wyeth Assay for RNase H activity
US20060192960A1 (en) * 2003-03-24 2006-08-31 Rencs Erik V Polarization detection
CA2520538C (en) 2003-03-31 2014-04-29 F. Hoffmann-La Roche Ag Compositions and methods for detecting certain flaviviruses, including members of the japanese encephalitis virus serogroup
US8043834B2 (en) 2003-03-31 2011-10-25 Qiagen Gmbh Universal reagents for rolling circle amplification and methods of use
CN101824409B (en) 2003-04-25 2015-11-25 贝克顿·迪金森公司 1 type and herpes simplex types 2 virus is detected by nucleic acid amplification
JP2006526990A (en) * 2003-06-06 2006-11-30 アーバージェン リミテッド ライアビリティ カンパニー Compositions and methods for modulating plant cell polysaccharides
CN101415843B (en) * 2003-09-12 2013-08-21 贝克顿·迪金森公司 Assay for SARS coronavirus by amplification and detection of the replicase sequence
US20100136513A1 (en) * 2003-09-12 2010-06-03 Jianrong Lou Assay for sars coronavirus by amplification and detection of nucleocapsid rna sequence
KR101041106B1 (en) * 2003-11-25 2011-06-13 한면기 Novel realtime detection of nucleic acids and proteins
AR047574A1 (en) * 2003-12-30 2006-01-25 Arborgen Llc 2 Genesis Res 1 CELL CYCLE GENES AND RELATED USE METHODS
US20050233332A1 (en) * 2004-04-14 2005-10-20 Collis Matthew P Multiple fluorophore detector system
US7229800B2 (en) 2004-04-16 2007-06-12 Becton, Dickinson And Company Neisseria gonorrhoeae assay
US7939251B2 (en) 2004-05-06 2011-05-10 Roche Molecular Systems, Inc. SENP1 as a marker for cancer
WO2006017724A1 (en) * 2004-08-06 2006-02-16 Becton, Dickinson And Company Sequences and methods for detection of cytomegalovirus
US7799906B1 (en) 2004-09-22 2010-09-21 Arborgen, Llc Compositions and methods for modulating lignin of a plant
BRPI0516955A (en) * 2004-09-24 2008-09-30 Ingeneus Inc genetic assay
US20060073511A1 (en) 2004-10-05 2006-04-06 Affymetrix, Inc. Methods for amplifying and analyzing nucleic acids
EP1863908B1 (en) 2005-04-01 2010-11-17 Qiagen GmbH Reverse transcription and amplification of rna with simultaneous degradation of dna
CA2611507A1 (en) * 2005-06-09 2006-12-21 Epoch Biosciences, Inc. Improved primer-based amplification methods
EP1762627A1 (en) 2005-09-09 2007-03-14 Qiagen GmbH Method for the activation of a nucleic acid for performing a polymerase reaction
EP1937847A2 (en) 2005-10-17 2008-07-02 Gen-Probe Incorporated Compositions and methods to detect legionella pneumophila nucleic acid
AU2007249286B2 (en) * 2006-05-12 2013-06-13 Gen-Probe Incorporated Compositions and methods to detect enterococci nucleic acid
US8198027B2 (en) 2006-12-21 2012-06-12 Gen-Probe Incorporated Methods and compositions for nucleic acid amplification
AU2008269201B2 (en) * 2007-06-21 2011-08-18 Gen-Probe Incorporated Instrument and receptacles for use in performing processes
US9063130B2 (en) * 2007-09-11 2015-06-23 Kaneka Corporation Nucleic acid detection method and nucleic acid detection kit
EP2235214B1 (en) * 2007-12-26 2014-07-09 Gen Probe Inc Compositions and methods to detect candida albicans nucleic acid
US20090246754A1 (en) * 2008-02-19 2009-10-01 Intelligent Mdx Optimized probes and primers and methods of using same for the detection and quantitation of bk virus
US20090258342A1 (en) * 2008-04-09 2009-10-15 Intelligent Medical Devices, Inc. Optimized probes and primers and methods of using same for the detection, quantification and grouping of hiv-1
US8945842B2 (en) 2009-01-14 2015-02-03 Becton, Dickinson And Company Assay for Trichomonas vaginalis by amplification and detection of Trichomonas vaginalis AP65-1 gene
EP3450573B1 (en) 2009-06-23 2022-01-26 Gen-Probe Incorporated Compositions and methods for detecting nucleic acid from mollicutes
AU2010276236B2 (en) 2009-07-21 2014-03-20 Gen-Probe Incorporated Methods and compositions for quantitative detection of nucleic acid sequences over an extended dynamic range
EP2473630B1 (en) 2009-09-04 2017-11-08 QIAGEN GmbH Optimized probes and primers and methods of using same for the detection, screening, isolation and sequencing of vancomycin resistance genes and vancomycin resistant enterococci
WO2011056933A1 (en) * 2009-11-05 2011-05-12 Becton, Dickinson And Company Sequence-specific methods for homogenous, real-time detection of lamp products
CN102725424B (en) 2010-01-25 2014-07-09 Rd生物科技公司 Self-folding amplification of target nucleic acid
US9181593B2 (en) 2010-02-17 2015-11-10 Gen-Probe Incorporated Compositions and methods to detect Atopobium vaginae nucleic acid
WO2011133811A2 (en) 2010-04-21 2011-10-27 Gen-Probe Incorporated Compositions, methods and kits to detect herpes simplex virus nucleic acid
WO2012030856A2 (en) 2010-08-30 2012-03-08 Gen-Probe Incorporated Compositions, methods and reaction mixtures for the detection of xenotropic murine leukemia virus-related virus
EP2625297B1 (en) 2010-10-04 2018-10-10 Gen-Probe Prodesse, Inc. Compositions, methods and kits to detect adenovirus nucleic acids
CN103282511A (en) 2010-11-01 2013-09-04 贝克顿·迪金森公司 Gardnerella vaginalis assay
WO2012122571A1 (en) 2011-03-10 2012-09-13 Gen-Probe Incorporated Methods and compositions for the selection and optimization of oligonucleotide tag sequences
WO2012138470A2 (en) 2011-04-04 2012-10-11 Intelligent Medical Devices, Inc. Optimized oligonucleotides and methods of using same for the detection, isolation, amplification, quantitation, monitoring, screening, and sequencing of group b streptococcus
EP3272886B1 (en) 2011-04-25 2019-09-25 Gen-Probe Incorporated Compositions and methods for detecting bv-associated bacterial nucleic acid
CN102286025A (en) * 2011-08-23 2011-12-21 四川汇宇制药有限公司 Preparation method of FITC-IP3 (Fluoresceine Isothiocyanate-Inositol Trisphosphate) and application in fluorescence polarization analysis
AU2012304327B2 (en) 2011-09-08 2015-07-09 Gen-Probe Incorporated Compositions and methods for detecting BV-associated bacterial nucleic acid
EP2773757B1 (en) 2011-11-04 2019-01-09 Gen-Probe Incorporated Molecular assay reagents and methods
DE102011120550B4 (en) 2011-12-05 2013-11-07 Gen-Probe Prodesse, Inc. Compositions, methods and kits for the detection of adenovirus nucleic acids
CA2865281C (en) 2012-02-24 2021-11-23 Gen-Probe Prodesse, Inc. Detection of shiga toxin genes in bacteria
AU2013205110B2 (en) 2012-04-24 2016-10-13 Gen-Probe Incorporated Compositions, Methods and Kits to Detect Herpes Simplex Virus Nucleic Acids
AU2013205064B2 (en) 2012-06-04 2015-07-30 Gen-Probe Incorporated Compositions and Methods for Amplifying and Characterizing HCV Nucleic Acid
AU2013205087B2 (en) 2012-07-13 2016-03-03 Gen-Probe Incorporated Method for detecting a minority genotype
ES2761920T3 (en) 2012-08-30 2020-05-21 Gen Probe Inc Multiphasic nucleic acid amplification
AU2013205122B2 (en) 2012-10-11 2016-11-10 Gen-Probe Incorporated Compositions and Methods for Detecting Human Papillomavirus Nucleic Acid
US20140127674A1 (en) 2012-10-25 2014-05-08 Intelligent Medical Devices, Inc. Optimized probes and primers and methods of using same for the binding, detection, differentiation, isolation and sequencing of influenza a; influenza b and respiratory syncytial virus
AU2013205090B2 (en) 2012-12-07 2016-07-28 Gen-Probe Incorporated Compositions and Methods for Detecting Gastrointestinal Pathogen Nucleic Acid
JP2016509480A (en) 2013-01-24 2016-03-31 カリフォルニア インスティチュート オブ テクノロジー Chromophore-based characterization and detection methods
US10077475B2 (en) 2013-01-24 2018-09-18 California Institute Of Technology FRET-based analytes detection and related methods and systems
WO2014137906A1 (en) 2013-03-05 2014-09-12 Intelligent Medical Devices, Inc. Optimized probes and primers and methods of using same for the detection, screening, isolation and sequencing of mrsa, mssa, staphylococcus markers, and the antibiotic resistance gene mec a
AU2014306512C1 (en) 2013-08-14 2021-07-08 Gen-Probe Incorporated Compositions and methods for detecting HEV nucleic acid
EP3736346B1 (en) 2015-01-09 2023-12-20 Gen-Probe Incorporated Methods and compositions for diagnosing bacterial vaginosis
CN107429297A (en) 2015-03-16 2017-12-01 简·探针公司 Method and composition for detection bacterium nucleic acid and diagnosing bacterial vagina disease
MX2018000729A (en) 2015-07-17 2018-09-06 Harvard College Methods of amplifying nucleic acid sequences.
AU2016357723A1 (en) 2015-11-16 2018-06-14 Revere Biosensors, Llc Systems and methods for identifying and distinguishing genetic samples
CA3010232A1 (en) 2016-01-04 2017-07-13 Gen-Probe Incorporated Methods and compositions for detecting candida species
JP6803930B2 (en) 2016-06-10 2021-01-06 ジェン−プローブ・インコーポレーテッド Compositions and Methods for Detecting ZIKA Viral Nucleic Acids
EP3529381B1 (en) 2016-10-19 2022-07-06 Gen-Probe Incorporated Compositions and methods for detecting or quantifying hepatitis c virus
JP7125395B2 (en) 2016-11-21 2022-08-24 ジェン-プローブ・インコーポレーテッド Compositions and methods for detecting or quantifying hepatitis B virus
EP4219769A3 (en) 2017-03-25 2023-10-11 Gen-Probe Incorporated Compositions, methods and kits to detect rhinovirus nucleic acid
CN110869512A (en) 2017-05-09 2020-03-06 雷瑞生物传感器有限责任公司 System and method for identifying and differentiating genetic samples
AU2018265274B2 (en) 2017-05-11 2021-10-07 Gen-Probe Incorporated Compositions and methods for isolating target nucleic acids
AU2018281196B2 (en) 2017-06-07 2022-04-28 Gen-Probe Incorporated Detecting Babesia species nucleic acid in a sample
US20210155978A1 (en) 2017-07-10 2021-05-27 Gen-Probe Incorporated Analytical systems and methods for nucleic acid amplification using sample assigning parameters
CA3082909C (en) 2017-11-17 2023-07-25 Gen-Probe Incorporated Compositions and methods for detecting c1orf43 nucleic acid
US11662281B2 (en) 2017-12-13 2023-05-30 Gen-Probe Incorporated Compositions and methods for biological sample processing
JP2021506274A (en) 2017-12-15 2021-02-22 ジェン−プローブ・インコーポレーテッド Compositions and methods for detecting toxin-producing Clostridium difficile
WO2019148169A1 (en) 2018-01-29 2019-08-01 Gen-Probe Incorporated Analytical systems and methods
US20210317515A1 (en) 2018-07-10 2021-10-14 Gen-Probe Incorporated Methods and systems for detecting and quantifying nucleic acids
CA3108906A1 (en) 2018-08-24 2020-02-27 Gen-Probe Incorporated Compositions and methods for detecting bacterial nucleic acid and diagnosing bacterial vaginosis
US20220017980A1 (en) 2018-10-01 2022-01-20 Gen-Probe Incorporated Compositions and methods for amplifying or detecting varicella-zoster virus
TW202030333A (en) 2018-12-20 2020-08-16 美商簡 探針公司 Compositions and methods for detecting plasmodium species nucleic acid
US20220080425A1 (en) 2018-12-31 2022-03-17 Gen-Probe Incorporated Tray for transfering solid reagents to a multi-well cartridge
JP2022530832A (en) 2019-05-03 2022-07-01 ジェン-プローブ・インコーポレーテッド Receptacle transport system for analytical systems
AU2020384888A1 (en) 2019-11-14 2022-06-23 Gen-Probe Incorporated Compositions and methods for capturing target nucleic acids
US20230220499A1 (en) 2020-05-07 2023-07-13 Grifols Diagnostic Solutions Inc. Methods and compositions for detecting sars-cov-2 nucleic acid
US20230393163A1 (en) 2020-10-21 2023-12-07 Gen-Probe Incorporated Fluid container management system
AU2022237386A1 (en) 2021-03-15 2023-10-05 Gen-Probe Incorporated Compositions and methods for biological sample processing

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
WO1990006374A1 (en) 1988-12-09 1990-06-14 Amrad Corporation Limited Amplified dna assay
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
EP0420260A2 (en) 1989-09-29 1991-04-03 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Biotin-labelled DNA by polymerase chain reaction and detection thereof
WO1992001812A1 (en) 1990-07-24 1992-02-06 Cemu Bioteknik Ab Competitive pcr for quantitation of dna
WO1992002638A1 (en) 1990-08-06 1992-02-20 F. Hoffmann-La Roche Ag Homogeneous assay system
US5126239A (en) 1990-03-14 1992-06-30 E. I. Du Pont De Nemours And Company Process for detecting polymorphisms on the basis of nucleotide differences
WO1992011390A1 (en) 1990-12-17 1992-07-09 Idexx Laboratories, Inc. Nucleic acid sequence detection by triple helix formation
WO1992018650A1 (en) 1991-04-11 1992-10-29 Baxter Diagnostics Inc. Detection of dna/rna by fluorescence polarization
US5200314A (en) * 1990-03-23 1993-04-06 Chiron Corporation Polynucleotide capture assay employing in vitro amplification
US5348853A (en) 1991-12-16 1994-09-20 Biotronics Corporation Method for reducing non-specific priming in DNA amplification
WO1995032306A1 (en) 1994-05-23 1995-11-30 Biotronics Corporation Method for detecting a target nucleic acid
US5550025A (en) 1995-07-19 1996-08-27 Becton, Dickinson And Company Detection of hydrophobic amplification products by extraction into an organic phase
US5567583A (en) 1991-12-16 1996-10-22 Biotronics Corporation Methods for reducing non-specific priming in DNA detection
US5593867A (en) 1994-04-18 1997-01-14 Becton, Dickinson And Company Fluorerscence polarization detection of nucleic acid amplication
US5723591A (en) 1994-11-16 1998-03-03 Perkin-Elmer Corporation Self-quenching fluorescence probe
US5763181A (en) 1994-12-30 1998-06-09 Georgetown University Continous fluorometric assay for detecting nucleic acid cleavage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8902689D0 (en) * 1989-02-07 1989-03-30 Ici Plc Assay method
DE69003104T2 (en) * 1989-06-12 1994-03-17 Cis Bio International Saclay METHOD FOR DETECTING SPECIFIC SEQUENCES OF NUCLEIC ACIDS AND THEIR USE.
AU8997991A (en) * 1991-01-31 1992-08-06 Becton Dickinson & Company Exonuclease mediated strand displacement amplification
US5455166A (en) * 1991-01-31 1995-10-03 Becton, Dickinson And Company Strand displacement amplification
US5994056A (en) * 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
CA2122450C (en) * 1991-11-01 2004-07-13 Charles Phillip Morris Solid phase amplification process
EP0567635B1 (en) * 1991-11-15 2000-05-31 Igen International, Inc. Rapid assays for amplification products
US5270184A (en) * 1991-11-19 1993-12-14 Becton, Dickinson And Company Nucleic acid target generation
DE4234086A1 (en) * 1992-02-05 1993-08-12 Diagen Inst Molekularbio METHOD FOR DETERMINING NUCLEIC ACID SEQUENCES AMPLIFIED IN VITRO
US5445935A (en) * 1992-11-23 1995-08-29 Royer; Catherine A. Quantitative detection of macromolecules with fluorescent oligonucleotides

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195B1 (en) * 1986-01-30 1990-11-27 Cetus Corp
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
WO1990006374A1 (en) 1988-12-09 1990-06-14 Amrad Corporation Limited Amplified dna assay
EP0420260A2 (en) 1989-09-29 1991-04-03 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Biotin-labelled DNA by polymerase chain reaction and detection thereof
US5126239A (en) 1990-03-14 1992-06-30 E. I. Du Pont De Nemours And Company Process for detecting polymorphisms on the basis of nucleotide differences
US5200314A (en) * 1990-03-23 1993-04-06 Chiron Corporation Polynucleotide capture assay employing in vitro amplification
WO1992001812A1 (en) 1990-07-24 1992-02-06 Cemu Bioteknik Ab Competitive pcr for quantitation of dna
WO1992002638A1 (en) 1990-08-06 1992-02-20 F. Hoffmann-La Roche Ag Homogeneous assay system
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
WO1992011390A1 (en) 1990-12-17 1992-07-09 Idexx Laboratories, Inc. Nucleic acid sequence detection by triple helix formation
WO1992018650A1 (en) 1991-04-11 1992-10-29 Baxter Diagnostics Inc. Detection of dna/rna by fluorescence polarization
US5348853A (en) 1991-12-16 1994-09-20 Biotronics Corporation Method for reducing non-specific priming in DNA amplification
US5567583A (en) 1991-12-16 1996-10-22 Biotronics Corporation Methods for reducing non-specific priming in DNA detection
US5712386A (en) 1991-12-16 1998-01-27 Biotronics Corporation Kits for detecting a target nucleic acid with blocking oligonucleotides
US5593867A (en) 1994-04-18 1997-01-14 Becton, Dickinson And Company Fluorerscence polarization detection of nucleic acid amplication
WO1995032306A1 (en) 1994-05-23 1995-11-30 Biotronics Corporation Method for detecting a target nucleic acid
US5723591A (en) 1994-11-16 1998-03-03 Perkin-Elmer Corporation Self-quenching fluorescence probe
US5763181A (en) 1994-12-30 1998-06-09 Georgetown University Continous fluorometric assay for detecting nucleic acid cleavage
US5550025A (en) 1995-07-19 1996-08-27 Becton, Dickinson And Company Detection of hydrophobic amplification products by extraction into an organic phase

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Becton Dickenson Announces Licensing Agreement with Otsuka Pharmaceutical", http://www.newtech/sda/otsuka.html, 1998.
A. Chan, et al. "Quantification of Polymerase Chain Reaction Products in Agarose Gels with a Fluorescent Europium Chelate as Label and Time-Resolved Fluorescence Spectroscopy" Anal. Chem. 65, 158-163 (1993).
A.C. Syvanen, et al. "Quantification of Polymerase Chain Reaction Products by Affinity-Based Hybrid Collection" Nucl. Acids Res. 16, 11327-11338 (1988).
C.P.H. Vary "Triple-Helical Capture Assay for Quantification of Polymerase Chain Reaction Products" Clin. Chem. 38, 687-694 (1992).
C.R. Newton, et al. "The Production of PCR Products with 5' Single Stranded Tails Using Primers that Incorporate Novel Phosphoramidite Intermediates" Nucl. Acids. Res. 21, 1155-1162 (1993).
D.J. Kemp, et al. "Colorimetric Detection of Specific DNA Segments Amplified by Polymerase Chain Reactions" Proc. Natl. Acad. Sci. USA 86, 2423-2427 (1989).
F.F. Chehab, et al. "Detection of Specific DNA Sequences by Fluorescence Amplification: A Color Complementation Assay" Proc. Natl. Acad. Sci. USA 86, 9178-9182 (1989).
G. T. Walker, et al. "Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system" Proc. Natl. Acad. Sci USA 89, 392-396 (1992).
G.T. Walker, et al. "Strand Displacement Amplification-An Isothermal, in vitro DNA Amplification Technique" Nucl. Acids Res. 20, 1691-1696 (1992).
J. Wahlberg, et al. "General Colorimetric Method for DNA Diagnostics Allowing Direct Solid-Phase Genomic Reactions" Proc. Natl. Acad. Sci USA 87, 6569-6573 (1990).
Letter from David W. Highet, Esq. of Becton Dickinson and Company dated Aug. 17, 1998.
P.M. Holland, et al. "Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5'-3' Exonnuclease Activity of Thermus Aquaticus DNA Polymerase" Proc. Natl. Acad. Sci. USA 88, 7276-7280 (1991).
P.M. Holland, et al. "Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5'-3' Exonuclease Activity of Thermus Aquaticus DNA Polymerase" Clin. Chem. 38, 462-463 (1992).
Walker et al, "A DNA Probe Assay Using Strand Displacement Amplification (SDA) and Filtration to Separate Reacted and Unreacted Detector Probes", Molecular and Cellular Probes, 9:399-402, 1995.
WO9201812-Uhlen et al. Competitive PCR for quantitations of DNA, pp. 1-19, pub. Feb. 6, 1992. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689031B2 (en) 2007-07-14 2017-06-27 Ionian Technologies, Inc. Nicking and extension amplification reaction for the exponential amplification of nucleic acids
US20090081670A1 (en) * 2007-07-14 2009-03-26 Ionian Technologies, Inc. Nicking and extension amplification reaction for the exponential amplification of nucleic acids
US10851406B2 (en) 2007-07-14 2020-12-01 Ionian Technologies, Llc Nicking and extension amplification reaction for the exponential amplification of nucleic acids
US20090017453A1 (en) * 2007-07-14 2009-01-15 Maples Brian K Nicking and extension amplification reaction for the exponential amplification of nucleic acids
US9562263B2 (en) 2007-07-14 2017-02-07 Ionian Technologies, Inc. Nicking and extension amplification reaction for the exponential amplification of nucleic acids
US9562264B2 (en) 2007-07-14 2017-02-07 Ionian Technologies, Inc. Nicking and extension amplification reaction for the exponential amplification of nucleic acids
US9617586B2 (en) 2007-07-14 2017-04-11 Ionian Technologies, Inc. Nicking and extension amplification reaction for the exponential amplification of nucleic acids
US9352312B2 (en) 2011-09-23 2016-05-31 Alere Switzerland Gmbh System and apparatus for reactions
US10040061B2 (en) 2011-09-23 2018-08-07 Alere Switzerland Gmbh System and apparatus for reactions
US11033894B2 (en) 2011-09-23 2021-06-15 Abbott Diagnostics Scarborough, Inc. System and apparatus for reactions
US10590474B2 (en) 2013-03-11 2020-03-17 Elitechgroup B.V. Methods for true isothermal strand displacement amplification
WO2014164479A1 (en) 2013-03-11 2014-10-09 Elitech Holding B.V. Methods for true isothermal strand displacement amplification
US10975423B2 (en) 2013-03-11 2021-04-13 Elitechgroup, Inc. Methods for true isothermal strand displacement amplification
WO2021080629A1 (en) 2019-10-23 2021-04-29 Elitechgroup, Inc. Methods for true isothermal strand displacement amplification

Also Published As

Publication number Publication date
US5547861A (en) 1996-08-20
DE69527392T2 (en) 2003-03-06
ES2177590T3 (en) 2002-12-16
JP2674737B2 (en) 1997-11-12
KR0145908B1 (en) 1998-08-01
TW306977B (en) 1997-06-01
BR9501582A (en) 1997-09-16
AU685903B2 (en) 1998-01-29
SG34216A1 (en) 1996-12-06
DE69527392D1 (en) 2002-08-22
CA2145576A1 (en) 1995-10-19
EP0678582A1 (en) 1995-10-25
CA2145576C (en) 1998-06-30
EP0678582B1 (en) 2002-07-17
ATE220724T1 (en) 2002-08-15
AU1502395A (en) 1995-10-26
US5593867A (en) 1997-01-14
JPH07289299A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
USRE39885E1 (en) Detection of nucleic acid amplification
CA2082842C (en) Nucleic acid target generation
JP2788034B2 (en) Amplification method for polynucleotide assay
JP2846018B2 (en) Amplification and detection of nucleic acid sequences
Walker et al. Strand displacement amplification—an isothermal, in vitro DNA amplification technique
US5112734A (en) Target-dependent synthesis of an artificial gene for the synthesis of a replicatable rna
EP0379369B1 (en) Nucleic acid amplification using single primer
US5427929A (en) Method for reducing carryover contamination in an amplification procedure
JP3778925B2 (en) High sensitivity nucleic acid sandwich hybridization assay and kit
US6180338B1 (en) Method, reagent and kit for the detection and amplification of nucleic acid sequences
US5550025A (en) Detection of hydrophobic amplification products by extraction into an organic phase
EP0427074A2 (en) Nucleic acid amplification employing transcribable hairpin probe
EP0682715B1 (en) Diagnostic assays and kits for detecting rna using rna binary probes and an rna-directed rna ligase
JPH0636760B2 (en) Nucleic acid amplification method
EP0504278B1 (en) A new method for detecting a specific nucleic acid sequence in a sample of cells
JP3090100B2 (en) Strand displacement amplification using borated nucleotides
JPH10234389A (en) Replication of nucleic acid using single-stranded dna-binding protein
EP3252168B1 (en) Pcr primer linked to complementary nucleotide sequence or complementary nucleotide sequence including mis-matched nucleotides and method for amplifying nucleic acid using same
Luedeck et al. Fluorotyping of HLA‐C: differential detection of amplicons by sequence‐specific priming and fluorogenic probing
US20220154268A1 (en) System and Methods for Detection of Low-Copy Number Nucleic Acids and Protein
EP0418960A2 (en) Nucleic acid detection method using unequal primer concentrations in polymerase chain reaction
AU636499C (en) Method for reducing carryover contamination in an amplification procedure

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 12