USRE38653E1 - Luminal stent, holding structure therefor and device for attaching luminal stent - Google Patents

Luminal stent, holding structure therefor and device for attaching luminal stent Download PDF

Info

Publication number
USRE38653E1
USRE38653E1 US10/287,745 US28774502A USRE38653E US RE38653 E1 USRE38653 E1 US RE38653E1 US 28774502 A US28774502 A US 28774502A US RE38653 E USRE38653 E US RE38653E
Authority
US
United States
Prior art keywords
luminal stent
vessel
luminal
catheter
stent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/287,745
Inventor
Keiji Igaki
Hideo Tamai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Igaki Iryo Sekkei KK
Original Assignee
Igaki Iryo Sekkei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP1991/001601 external-priority patent/WO1992015342A1/en
Application filed by Igaki Iryo Sekkei KK filed Critical Igaki Iryo Sekkei KK
Priority to US10/287,745 priority Critical patent/USRE38653E1/en
Application granted granted Critical
Publication of USRE38653E1 publication Critical patent/USRE38653E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body

Definitions

  • This invention relates to a stent introduced into a vessel, such as a blood vessel, lymph vessel, bile duct or ureter for maintaining the shape of the vessel. More particularly, it relates to a luminal stent attached to a site of angioplasty after the operation of percutaneous angioplasty of a stenotic part of the blood vessel, such as artery (the operation of introducing a balloon forming portion annexed to the end of a catheter into a constricted portion of the blood vessel for forming a ballooning for dilating the constricted portion for improving blood flow) and a device for attaching the luminal stent.
  • a site of angioplasty after the operation of percutaneous angioplasty of a stenotic part of the blood vessel, such as artery (the operation of introducing a balloon forming portion annexed to the end of a catheter into a constricted portion of the blood vessel for forming a ballooning for dilating the constricted portion for improving blood flow
  • a tubular stent constituted by wrapping a meshed structure formed by intertwining longitudinal and transverse wires of e.g. stainless steel.
  • Such tubular stent is introduced into the site of angioplasty and dilated there so as to be attached thereto.
  • This known type of the stent however suffers from the problems that it is hard and tends to stress the vessel to produce inflammation or hypertrophy in the vessel which may cause reconstriction in the vessel, and that the stent is semipermanently left as a foreign matter within the living body, which is inherently not desirable to the living body.
  • the metal stent which is left in the vessel semi-permanently or for a time longer than is necessary, is attached within the vessel, it may occur that the stent turns out to be a kind of a nucleus and the risk is high that stenosis be again caused in the site of attachment of the stent. Besides, an injury done to the vessel around the stent tends to cause abnormal multiplication of living cells on the inner wall of the vessel to contract the vessel.
  • a luminal stent consisting of a tubular member produced by knitting a bioresorbable polymer yarn, and a luminal stent attachment device comprising the luminal stent which is fitted over a balloon forming portion in the vicinity of a distal end of a catheter.
  • the bioresorbable polymers may be enumerated by polylactic acid(PLA), polyglycolic acid(PGA), polyglactin (PGA-PLA copolymer), polydioxanone, polyglyconate (copolymer of trimethylene carbonate and glycolide) and a copolymer of polyglycolic acid or polylactic acid with ⁇ -caprolactone.
  • the bioresorbable polymer may be admixed with a variety of materials, including pharmaceuticals.
  • the materials may also be deposited on the fiber surface.
  • the luminal stent of the present invention is introduced into and attached to the site of angioplasty by a catheter fitted with a balloon and attached in place by dilating the balloon.
  • the luminal stent may retain its shape for several weeks to several months after attachment and disappears in several months after attachment by being absorbed in the living tissue after lapse of several months after attachment.
  • the state of the luminal stent may be observed after attachment by irradiation of X-rays from outside.
  • FIG. 1 shows the process of producing a luminal stent according to the present invention, in the diametrically contracted state.
  • FIG. 2 is a conceptual view showing the luminal stent of the present invention as it is introduced into and attached to the vessel.
  • FIG. 3 shows an alternative method for contracting the luminal stent, woven from a yarn of PGA fibers of the present invention, in the direction along its diameter.
  • FIG. 4 is schematic views showing essential parts of a device for attachment of the luminal stent according to the present invention, where FIG. 4 shows the attachment device in its entirety and FIG. 4 shows a part thereof in cross-section.
  • FIG. 5 is an explanatory view showing the process of attachment of the luminal stent by the attachment device of the present invention.
  • FIG. 6 shows another embodiment of the attachment device of the luminal stent according to the present invention.
  • FIGS. 7A, 7 B and 7 C show the state of attachment between the vessel and the luminal stent, where FIG. 7A shows an illustrative vessel, FIG. 7B shows the state of attachment of the luminal stent of the present invention, and FIG. 7C shows an undesirable state of attachment of a conventional luminal stent, for comparison sake.
  • FIG. 8 shows the possibility of attachment of the luminal stent of the present invention in various vessel sites.
  • the luminal stent of the present invention is fabricated by knitting a sole yarn, so that a tubular product as a luminal stent which is more homogeneous than a fabric formed by weaving a so-called warp yarn and a weft yarn may be produced.
  • the knitted luminal stent of the present invention is by far easier for the knitted luminal stent of the present invention to pass through various meandering vessels before reaching the target site. That is, the luminal stent formed from a knitted cloth exhibits trackability with respect to a variety of meandering passages, while it can be introduced into and attached to a site of bend, because the tubular knitted product tends to be dilated and is not likely to mar the shape of the lumen.
  • the tubular wove stent having a diameter of about 5 mm is heat-treated and set so as to be contracted in diameter to about 2 mm or less for being introduced into and attached to the inside of the vessel of a lesser diameter in the living body than the stent. This process is explained by referring to FIG. 1 .
  • FIG. 3 An alternative method of contracting the luminal stent 1 knitted from PGA (polyglycolic acid) polymer fiber is shown in FIG. 3 .
  • the method shown in FIG. 3 has an advantage that, since a tube formed of metal or a heat-resistant resin is not used, the stent can be directly attached to a ballooning portion at the distal end of the catheter.
  • the present invention provides a tubular luminal stent formed by knitting a sole yarn of a biologically resorbable polymer fiber.
  • the luminal stent is superior in pliability and shape retention properties to other cloth forms, such as a non-woven fabric, e.g. a felt, or a woven fabric formed by weaving weft and warp yarns.
  • the knitted luminal stent is additionally heat set for exhibiting more prominent effects in pliability and shape retention characteristics.
  • the tubular luminal stent 1 knitted from a yarn of a bioresorbable polymer fiber has a diameter of an order of 4 to 5 mm and is heat set after it is introduced or as it is introduced into a tube 7 of heat-resistant resin or metal having an inside diameter of about 1 to 3 mm, preferably 2 mm, to produce a luminal stent 11 having a set shape with a diameter of about 2 mm, as shown in FIG. 1 .
  • the heat setting has such a meaning that, by heat-treating (heat-setting) the knitted tubular luminal stent while it has a larger diameter, or after it is contracted in diameter, the knitted fabric has terminal fibers, yarns or meshes which are excellent in shape retention characteristics, such that the heat setting affords superior shape retention characteristics while minimizing the stress otherwise applied to the inner wall of the vessel of the living body.
  • the half value period in strength of the luminal stent of the present invention may be freely controlled within a time period of from three weeks to three months.
  • the state of the introduced luminal stent may be observed with X-rays.
  • Thrombus lysing agents or anti-thrombotic agents such as heparin, urokinase or t-PA may also be added, if so desired.
  • the luminal stent of the present invention produced by knitting a yarn of the bioresorbable polymer fibers, is vanished after a predetermined time lapse from the site into which it has been introduced, carcinostatics or anti-thrombotic agents may be mixed into or attached to the fibers for concentrated administration of these agents to the site of lesion.
  • the fibers used in knitting the luminal stent of the present invention may be rendered variable in the cross-sectional shape thereof more easily than if the luminal stent is formed from metal. That is, affinity with the living body or shape retention characteristic may be controlled by affording the hollow or profiled cross-sectional shape to the filaments during spinning or by using a monofilament yarn or a multifilament yarn.
  • the yarn of synthetic polymers may be processed in many ways on its fiber surface. That is, using a yarn having a substantially circular cross-section as usual and which is not processed in any particular manner on its surface, a yarn having the above-mentioned so-called profiled cross-section, or the above-mentioned processed yarn, anti-thrombotic materials, thrombus-lysing agents or cells of the living bodies may be attached to is yarn for promoting multiplication of the endothelial cells. Alternatively, X-ray non-transmitting materials may also be attached to the yarn.
  • the site is not dilated at a time. That is, for avoiding an abrupt stress to the vessel or to the living body per se, the vessel is first dilated to a diameter of 3 mm by an extender having a balloon-forming portion of a diameter of 0.8 to 1.2 mm. After the catheter 2 fitted with a ballooning portion 3 is extracted, a catheter not fitted with a luminal stent and fitted only with the balloon-forming portion 3 is introduced into the vessel for dilating the vessel to a diameter of 4 mm or more.
  • the knitted luminal stent 11 is attached in place by a luminal stent attachment device in which a luminal stent 11 according to the present invention is attached to the balloon forming portion 3 of the device.
  • a luminal stent 11 according to the present invention is attached to the balloon forming portion 3 of the device.
  • the luminal stent 11 may be introduced into and attached to the target site after the stenotic portion of the vessel is dilated at a time to the desired diameter.
  • a luminal stent attachment device per se which is the catheter fitted with the ballooning device and with the luminal stent of the present invention, may be used for introducing and attaching the luminal stent into the vessel of the living body simultaneously with vessel dilation.
  • the device for introducing and attaching the luminal stent of the present invention in the stenotic portion of the vessel of the living body is explained in detail.
  • a region capable of forming a balloon 6 of a desired diameter by a gas or a liquid, such as an X-ray contrast medium which is injected via a hollow part within the catheter 2 under a liquid pressure of 8 to 10 atmospheres.
  • the above-mentioned heat-set luminal stent having the diameter of about 2 mm, is applied over the balloon forming portion 3 , which is about 20 mm long, with both ends of the luminal stent 4 being clamped by holding member 4 of silicone resin or the like between the catheter ( 2 at fixing part 26 ) and the outer periphery of the balloon-forming thin film 16 at holder 24 , as shown in FIG. 4 .
  • the length of the balloon forming portion 3 or the diameter of the luminal stent 11 may be optionally set depending on the types of the luminal stent or the specific nature of the vessel.
  • the distal end of the catheter is occasionally provided with a guide wire which plays the role of a guide wire when the catheter is introduced into the vessel.
  • a communication orifice 14 is formed at a mid part along the length of the balloon forming portion 3 of the catheter 2 for permitting the fluid injected for forming the balloon to exit from the hollow part of the catheter to be charged between the hollow part of to the catheter and the balloon-forming thin film 16 .
  • a balloon is formed by being dilated under a fluid pressure of 8 to 10 atmospheres via the orifice and maintained for 30 to 60 seconds or for a longer time.
  • the stent 11 undergoes a kind of plastic deformation at this time under the force of dilation of the balloon so as to be maintained in the dilated state 20 .
  • the polymer itself is changed in the molecular level, or the knitted structure, that is the mesh shape, is changed, that is, the stent 11 is contracted along its length and dilated along its radius so as to be changed in shape to maintain the thus changed shape.
  • FIG. 5 shows the process of introducing and attaching the luminal stent of the present invention within the vessel of a living body.
  • the luminal stent is contracted in length with balloon dilation so that both ends of the stent are detached from the holding members 4 .
  • the catheter 2 may be removed in its entirety.
  • FIG. 6 shows another example of a luminal stent attachment device according to the present invention.
  • the catheter 2 fitted with a balloon 6 is covered with a sheath 5 of a teleguide catheter and introduced in this state into the vessel of the living body.
  • the sheath 5 extracted slightly, the balloon 6 is dilated and maintained in the dilated state.
  • the balloon 6 is then contracted and the sheath 5 is extracted simultaneously with the catheter 2 , while the luminal stent 11 is left in the vessel.
  • the thin film for balloon forming may be formed of a variety of synthetic polymeric materials, such as polyethylene terephthalate or polyethylene.
  • the luminal stent of the present invention may be introduced into a bend in the vessel so as to adapt itself to the bent shape of the vessel, as best shown in FIG. 7 B.
  • FIG. 7C shows the state in which a metal stent consisting in a tubular mesh or screen formed by weaving a weft material and a warp material or a stent of a woven fabric is introduced into a bend in the vessel.
  • the metal stent or the stent of the woven fabric is bent at a bend of the vessel so that the shape of the vessel cannot be correctly maintained in the site of the bend.
  • FIG. 7A shows an example of the vessel of the living body in which it is assumed that a site 22 shown by an arrow therein be the target site for attachment of the luminal stent.
  • the luminal stent knitted from a yarn of the bioresorbable polymer fiber and heat-set according to the present invention may cope with any thickness of the vessel with the use of the luminal stent attachment device of the present invention. If, for example, the luminal stent is loaded in an attachment device which is dilated to a diameter of about 4 mm on dilating the balloon, the luminal stent may be attached to the vessel site having a diameter of 2.5 mm by controlling the degree of dilation of the balloon. The luminal stent may similarly be attached to the vessel site having a diameter of 3 or 4 mm. That is, the luminal stent 11 may be introduced and attached in any site of a lumen 18 shown in FIG. 8 by using the same catheter 2 fitted with the balloon. It is because the inside diameter of the luminal stent may be maintained at the thickness of the dilated balloon.
  • the luminal stent of the present invention may again be introduced and attached in the same site. This is rendered possible by using the bioresorbable polymer.
  • a thin sheet of a non-woven fabric of a bioresorbable polymer such as a felt, bent into a shape of a tube, exhibits shape retention characteristics and flexibility comparable to those of the luminal stent of the present invention, such sheet may be used in place of the knitted material.
  • luminal stent of the present invention With the above-described luminal stent of the present invention, such meritorious effects may be achieved that inflammation or excess hypertrophy of the vessel may be prevented and consequently reconstriction of the vessel may be inhibited.
  • the luminal stent of the present invention is absorbed in several months into a living tissue, which is favorable for the living body.
  • the state of attachment of the stent within the vessel may be easily observed by X-ray irradiation from outside.
  • the luminal stent may be applied over the balloon forming portion of the catheter according to the present invention so that the stent may be easily attached in the desired site within the vessel.
  • Plural luminal stents formed by knitting a yarn of polylactic acid fibers admixed with barium sulfate were introduced and attached in the coronary of a test animal in a tubular state of 4 mm in diameter and 20 mm in length by using a catheter fitted with a balloon, and the state of attachment was observed by irradiation of X-rays. It was seen that the stents substantially maintained their shape until after about three to six months. It was seen that the stents disappeared by being absorbed into living tissue in about 6 to 12 months. During this time, no abnormalities such as inflammation or hypertrophy of the intima of the blood vessel were observed.
  • Plural luminal stents formed by knitting a yarn of polyglycolic acid fibers admixed with barium sulfate were introduced and attached in the femoral artery of a test animal in a tubular state of 4 mm in diameter and 20 mm in length and the state of attachment was observed by irradiation of X-rays. It was seen that the stents substantially maintained their shape until after about two to three weeks and were absorbed into the living tissue in about two to three months. The shape retention period and the period of existence in the living body attained in Experiment 2 are thought to be more safe than the corresponding periods attained in Experiment 1. Meanwhile, no inflammation or hypertrophy of the intima of the blood vessel was observed during these periods.

Abstract

A luminal stent is a tubular body formed by knitting a sole yarn of a bioresorbable polymer fiber, such as fiber of polylactic acid, polyglycol acid or a polylactic acid—polyglycol acid copolymer. When introduced into and attached to the inside of the vessel by a catheter fitted with a balloon, the tubular member may retain its shape for several weeks to several months after attachment and subsequently disappears by being absorbed into the living tissue. In this manner, the luminal stent is not left as a foreign matter semi-permanently in the living body without producing inflammation or hypertrophy in the vessel. There is also provided a method for attaching the luminal stent in the vessel.

Description

This is a continuation of co-pending application Ser. No. 08/398,047 filed on Mar. 2, 1995 which was a Continuation of application Ser. No. 07/946,297 filed on Nov. 2, 1992.
TECHNICAL FIELD
This invention relates to a stent introduced into a vessel, such as a blood vessel, lymph vessel, bile duct or ureter for maintaining the shape of the vessel. More particularly, it relates to a luminal stent attached to a site of angioplasty after the operation of percutaneous angioplasty of a stenotic part of the blood vessel, such as artery (the operation of introducing a balloon forming portion annexed to the end of a catheter into a constricted portion of the blood vessel for forming a ballooning for dilating the constricted portion for improving blood flow) and a device for attaching the luminal stent.
BACKGROUND TECHNOLOGY
As this type of the luminal stent, there is known a tubular stent constituted by wrapping a meshed structure formed by intertwining longitudinal and transverse wires of e.g. stainless steel. Such tubular stent is introduced into the site of angioplasty and dilated there so as to be attached thereto.
This known type of the stent however suffers from the problems that it is hard and tends to stress the vessel to produce inflammation or hypertrophy in the vessel which may cause reconstriction in the vessel, and that the stent is semipermanently left as a foreign matter within the living body, which is inherently not desirable to the living body.
If the metal stent, which is left in the vessel semi-permanently or for a time longer than is necessary, is attached within the vessel, it may occur that the stent turns out to be a kind of a nucleus and the risk is high that stenosis be again caused in the site of attachment of the stent. Besides, an injury done to the vessel around the stent tends to cause abnormal multiplication of living cells on the inner wall of the vessel to contract the vessel.
It is therefore an object of the present invention to provide a luminal stent free from these problems and a device for attachment of the stent.
DISCLOSURE OF THE INVENTION
According to the present invention, the above object is accomplished by a luminal stent consisting of a tubular member produced by knitting a bioresorbable polymer yarn, and a luminal stent attachment device comprising the luminal stent which is fitted over a balloon forming portion in the vicinity of a distal end of a catheter.
The bioresorbable polymers may be enumerated by polylactic acid(PLA), polyglycolic acid(PGA), polyglactin (PGA-PLA copolymer), polydioxanone, polyglyconate (copolymer of trimethylene carbonate and glycolide) and a copolymer of polyglycolic acid or polylactic acid with ∈-caprolactone.
The bioresorbable polymer may be admixed with a variety of materials, including pharmaceuticals. The materials may also be deposited on the fiber surface.
The luminal stent of the present invention is introduced into and attached to the site of angioplasty by a catheter fitted with a balloon and attached in place by dilating the balloon. The luminal stent may retain its shape for several weeks to several months after attachment and disappears in several months after attachment by being absorbed in the living tissue after lapse of several months after attachment.
If an X-ray impermeable agent is admixed in the bioresorbable polymer, the state of the luminal stent may be observed after attachment by irradiation of X-rays from outside.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be explained in detail by referring to the accompanying drawings in which:
FIG. 1 shows the process of producing a luminal stent according to the present invention, in the diametrically contracted state.
FIG. 2 is a conceptual view showing the luminal stent of the present invention as it is introduced into and attached to the vessel.
FIG. 3 shows an alternative method for contracting the luminal stent, woven from a yarn of PGA fibers of the present invention, in the direction along its diameter.
FIG. 4 is schematic views showing essential parts of a device for attachment of the luminal stent according to the present invention, where FIG. 4 shows the attachment device in its entirety and FIG. 4 shows a part thereof in cross-section.
FIG. 5 is an explanatory view showing the process of attachment of the luminal stent by the attachment device of the present invention.
FIG. 6 shows another embodiment of the attachment device of the luminal stent according to the present invention.
FIGS. 7A, 7B and 7C show the state of attachment between the vessel and the luminal stent, where FIG. 7A shows an illustrative vessel, FIG. 7B shows the state of attachment of the luminal stent of the present invention, and FIG. 7C shows an undesirable state of attachment of a conventional luminal stent, for comparison sake.
FIG. 8 shows the possibility of attachment of the luminal stent of the present invention in various vessel sites.
BEST MODE FOR CARRYING OUT THE INVENTION
Basically, the luminal stent of the present invention is fabricated by knitting a sole yarn, so that a tubular product as a luminal stent which is more homogeneous than a fabric formed by weaving a so-called warp yarn and a weft yarn may be produced.
Besides, it is by far easier for the knitted luminal stent of the present invention to pass through various meandering vessels before reaching the target site. That is, the luminal stent formed from a knitted cloth exhibits trackability with respect to a variety of meandering passages, while it can be introduced into and attached to a site of bend, because the tubular knitted product tends to be dilated and is not likely to mar the shape of the lumen. According to the present invention, the tubular wove stent having a diameter of about 5 mm is heat-treated and set so as to be contracted in diameter to about 2 mm or less for being introduced into and attached to the inside of the vessel of a lesser diameter in the living body than the stent. This process is explained by referring to FIG. 1.
The process of attachment of the heat-set luminal stent to the inside of the vessel is shown in a conceptual view of FIG. 2.
An alternative method of contracting the luminal stent 1 knitted from PGA (polyglycolic acid) polymer fiber is shown in FIG. 3. The method shown in FIG. 3 has an advantage that, since a tube formed of metal or a heat-resistant resin is not used, the stent can be directly attached to a ballooning portion at the distal end of the catheter.
The present invention provides a tubular luminal stent formed by knitting a sole yarn of a biologically resorbable polymer fiber. The luminal stent is superior in pliability and shape retention properties to other cloth forms, such as a non-woven fabric, e.g. a felt, or a woven fabric formed by weaving weft and warp yarns. The knitted luminal stent is additionally heat set for exhibiting more prominent effects in pliability and shape retention characteristics.
The tubular luminal stent 1 knitted from a yarn of a bioresorbable polymer fiber has a diameter of an order of 4 to 5 mm and is heat set after it is introduced or as it is introduced into a tube 7 of heat-resistant resin or metal having an inside diameter of about 1 to 3 mm, preferably 2 mm, to produce a luminal stent 11 having a set shape with a diameter of about 2 mm, as shown in FIG. 1.
Besides, the heat setting has such a meaning that, by heat-treating (heat-setting) the knitted tubular luminal stent while it has a larger diameter, or after it is contracted in diameter, the knitted fabric has terminal fibers, yarns or meshes which are excellent in shape retention characteristics, such that the heat setting affords superior shape retention characteristics while minimizing the stress otherwise applied to the inner wall of the vessel of the living body.
By using PLA+PGA as bioresorbable polymer fibers, and by changing the mixing ratio, the half value period in strength of the luminal stent of the present invention, that is the period in which the bioresorbability disappears, may be freely controlled within a time period of from three weeks to three months.
Besides, by adding an X-ray impermeable agent at the time of spinning the fibers, the state of the introduced luminal stent may be observed with X-rays. Thrombus lysing agents or anti-thrombotic agents, such as heparin, urokinase or t-PA may also be added, if so desired.
Besides, by taking advantage of the fact that the luminal stent of the present invention, produced by knitting a yarn of the bioresorbable polymer fibers, is vanished after a predetermined time lapse from the site into which it has been introduced, carcinostatics or anti-thrombotic agents may be mixed into or attached to the fibers for concentrated administration of these agents to the site of lesion.
In addition, the fibers used in knitting the luminal stent of the present invention may be rendered variable in the cross-sectional shape thereof more easily than if the luminal stent is formed from metal. That is, affinity with the living body or shape retention characteristic may be controlled by affording the hollow or profiled cross-sectional shape to the filaments during spinning or by using a monofilament yarn or a multifilament yarn.
Besides, the yarn of synthetic polymers may be processed in many ways on its fiber surface. That is, using a yarn having a substantially circular cross-section as usual and which is not processed in any particular manner on its surface, a yarn having the above-mentioned so-called profiled cross-section, or the above-mentioned processed yarn, anti-thrombotic materials, thrombus-lysing agents or cells of the living bodies may be attached to is yarn for promoting multiplication of the endothelial cells. Alternatively, X-ray non-transmitting materials may also be attached to the yarn.
Meanwhile, if it is desired to dilate the stenotic site of the vessel to the diameter of, for example, 4 mm, and to maintain the diameter, the site is not dilated at a time. That is, for avoiding an abrupt stress to the vessel or to the living body per se, the vessel is first dilated to a diameter of 3 mm by an extender having a balloon-forming portion of a diameter of 0.8 to 1.2 mm. After the catheter 2 fitted with a ballooning portion 3 is extracted, a catheter not fitted with a luminal stent and fitted only with the balloon-forming portion 3 is introduced into the vessel for dilating the vessel to a diameter of 4 mm or more. Finally, the knitted luminal stent 11 is attached in place by a luminal stent attachment device in which a luminal stent 11 according to the present invention is attached to the balloon forming portion 3 of the device. However, it is not absolutely necessary to dilate the vessel by steps in this manner, and the luminal stent 11 may be introduced into and attached to the target site after the stenotic portion of the vessel is dilated at a time to the desired diameter.
Alternatively, a luminal stent attachment device per se, which is the catheter fitted with the ballooning device and with the luminal stent of the present invention, may be used for introducing and attaching the luminal stent into the vessel of the living body simultaneously with vessel dilation.
The device for introducing and attaching the luminal stent of the present invention in the stenotic portion of the vessel of the living body is explained in detail. In the vicinity of the distal end of the catheter 2, there exists a region capable of forming a balloon 6 of a desired diameter by a gas or a liquid, such as an X-ray contrast medium, which is injected via a hollow part within the catheter 2 under a liquid pressure of 8 to 10 atmospheres. The above-mentioned heat-set luminal stent, having the diameter of about 2 mm, is applied over the balloon forming portion 3, which is about 20 mm long, with both ends of the luminal stent 4 being clamped by holding member 4 of silicone resin or the like between the catheter (2 at fixing part 26) and the outer periphery of the balloon-forming thin film 16 at holder 24, as shown in FIG. 4.
However, the length of the balloon forming portion 3 or the diameter of the luminal stent 11 may be optionally set depending on the types of the luminal stent or the specific nature of the vessel.
Meanwhile, the distal end of the catheter is occasionally provided with a guide wire which plays the role of a guide wire when the catheter is introduced into the vessel.
For attachment of the luminal stent, a communication orifice 14 (see FIG. 4) is formed at a mid part along the length of the balloon forming portion 3 of the catheter 2 for permitting the fluid injected for forming the balloon to exit from the hollow part of the catheter to be charged between the hollow part of to the catheter and the balloon-forming thin film 16. A balloon is formed by being dilated under a fluid pressure of 8 to 10 atmospheres via the orifice and maintained for 30 to 60 seconds or for a longer time. The stent 11 undergoes a kind of plastic deformation at this time under the force of dilation of the balloon so as to be maintained in the dilated state 20. At this time, the polymer itself is changed in the molecular level, or the knitted structure, that is the mesh shape, is changed, that is, the stent 11 is contracted along its length and dilated along its radius so as to be changed in shape to maintain the thus changed shape.
FIG. 5 shows the process of introducing and attaching the luminal stent of the present invention within the vessel of a living body. As shown therein, the luminal stent is contracted in length with balloon dilation so that both ends of the stent are detached from the holding members 4. By the subsequent operation of contracting the balloon, the catheter 2 may be removed in its entirety.
FIG. 6 shows another example of a luminal stent attachment device according to the present invention. In this case, the catheter 2 fitted with a balloon 6 is covered with a sheath 5 of a teleguide catheter and introduced in this state into the vessel of the living body. Then, with the sheath 5 extracted slightly, the balloon 6 is dilated and maintained in the dilated state. The balloon 6 is then contracted and the sheath 5 is extracted simultaneously with the catheter 2, while the luminal stent 11 is left in the vessel.
Meanwhile, the thin film for balloon forming may be formed of a variety of synthetic polymeric materials, such as polyethylene terephthalate or polyethylene.
It is noted that the luminal stent of the present invention may be introduced into a bend in the vessel so as to adapt itself to the bent shape of the vessel, as best shown in FIG. 7B. On the other hand, FIG. 7C shows the state in which a metal stent consisting in a tubular mesh or screen formed by weaving a weft material and a warp material or a stent of a woven fabric is introduced into a bend in the vessel. The metal stent or the stent of the woven fabric is bent at a bend of the vessel so that the shape of the vessel cannot be correctly maintained in the site of the bend. Meanwhile, the luminal stent of the present invention is superior in follow-up characteristics so that it can reach the target site even if there exist branched parts in the vessel, as discussed previously. FIG. 7A shows an example of the vessel of the living body in which it is assumed that a site 22 shown by an arrow therein be the target site for attachment of the luminal stent.
The luminal stent knitted from a yarn of the bioresorbable polymer fiber and heat-set according to the present invention may cope with any thickness of the vessel with the use of the luminal stent attachment device of the present invention. If, for example, the luminal stent is loaded in an attachment device which is dilated to a diameter of about 4 mm on dilating the balloon, the luminal stent may be attached to the vessel site having a diameter of 2.5 mm by controlling the degree of dilation of the balloon. The luminal stent may similarly be attached to the vessel site having a diameter of 3 or 4 mm. That is, the luminal stent 11 may be introduced and attached in any site of a lumen 18 shown in FIG. 8 by using the same catheter 2 fitted with the balloon. It is because the inside diameter of the luminal stent may be maintained at the thickness of the dilated balloon.
If re-constriction of the vessel should occur in several months after the luminal stent of the present invention is decomposed and absorbed into a living body, the luminal stent may again be introduced and attached in the same site. This is rendered possible by using the bioresorbable polymer.
Meanwhile, if a thin sheet of a non-woven fabric of a bioresorbable polymer, such as a felt, bent into a shape of a tube, exhibits shape retention characteristics and flexibility comparable to those of the luminal stent of the present invention, such sheet may be used in place of the knitted material.
With the above-described luminal stent of the present invention, such meritorious effects may be achieved that inflammation or excess hypertrophy of the vessel may be prevented and consequently reconstriction of the vessel may be inhibited. The luminal stent of the present invention is absorbed in several months into a living tissue, which is favorable for the living body.
If an X-ray impermeable agent is applied to the bioresorbable polymer fibers or yarns of the luminal stent of the present invention, the state of attachment of the stent within the vessel may be easily observed by X-ray irradiation from outside.
Besides, the luminal stent may be applied over the balloon forming portion of the catheter according to the present invention so that the stent may be easily attached in the desired site within the vessel.
EXPERIMENT 1
Plural luminal stents formed by knitting a yarn of polylactic acid fibers admixed with barium sulfate were introduced and attached in the coronary of a test animal in a tubular state of 4 mm in diameter and 20 mm in length by using a catheter fitted with a balloon, and the state of attachment was observed by irradiation of X-rays. It was seen that the stents substantially maintained their shape until after about three to six months. It was seen that the stents disappeared by being absorbed into living tissue in about 6 to 12 months. During this time, no abnormalities such as inflammation or hypertrophy of the intima of the blood vessel were observed.
EXPERIMENT 2
Plural luminal stents formed by knitting a yarn of polyglycolic acid fibers admixed with barium sulfate were introduced and attached in the femoral artery of a test animal in a tubular state of 4 mm in diameter and 20 mm in length and the state of attachment was observed by irradiation of X-rays. It was seen that the stents substantially maintained their shape until after about two to three weeks and were absorbed into the living tissue in about two to three months. The shape retention period and the period of existence in the living body attained in Experiment 2 are thought to be more safe than the corresponding periods attained in Experiment 1. Meanwhile, no inflammation or hypertrophy of the intima of the blood vessel was observed during these periods.

Claims (9)

We claim:
1. A luminal stent attachment device comprising:
a luminal stent, which is to be inserted into a vessel of a living body, comprising a homogeneous tubular member produced by knitting a sole bioresorbable polymer yarn; and
a catheter having a balloon forming portion in the vicinity of a distal end of said catheter.
2. The luminal stent attachment device as defined in claim 1 wherein the luminal stent produced by knitting is contracted in diameter from the as-knitted state.
3. The luminal stent attachment device according to claim 1, wherein the bioresorbable polymer is polylactic acid (PLA).
4. The luminal stent attachment device according to claim 1, wherein the bioresorbable polymer is polyglycolic acid (PGA).
5. The luminal stent attachment device according to claim 1, wherein the bioresorbable polymer is a mixture of polylactic acid (PLA) and polyglycolic acid (PGA).
6. The luminal stent attachment device according to claim 1, wherein the luminal stent has two ends, the luminal stent attachment device further comprising:
two holders, secured to the catheter, for respectively holding the two ends of the luminal stents.
7. The luminal stent attachment device according to claim 1, wherein the catheter includes a hollow part by which a balloon is formed in the balloon forming portion under a fluid pressure supplied into said hollow part and wherein the luminal stent is dilated by the balloon.
8. A luminal stent attachment device comprising:
a luminal stent, which is to be inserted into a vessel of a living body, comprising a homogeneous heat-set tubular member produced by knitting a sole bioresorbable polymer yarn; and
a catheter having a balloon forming portion in the vicinity of a distal end of said catheter.
9. A luminal stent attachment device comprising:
a luminal stent, which is to be inserted into a vessel of a living body, comprising a homogeneous double heat-set tubular member produced by knitting a sole bioresorbable polymer yarn; and
a catheter having a balloon forming portion in the vicinity of a distal end of said catheter.
US10/287,745 1991-03-08 2002-11-05 Luminal stent, holding structure therefor and device for attaching luminal stent Expired - Lifetime USRE38653E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/287,745 USRE38653E1 (en) 1991-03-08 2002-11-05 Luminal stent, holding structure therefor and device for attaching luminal stent

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP6893391 1991-03-08
JPP3-068933 1991-03-08
JPP3-324960 1991-10-07
JP32496091 1991-10-07
PCT/JP1991/001601 WO1992015342A1 (en) 1991-03-08 1991-11-20 Stent for vessel, structure of holding said stent, and device for mounting said stent
WOPCT/JP91/01601 1991-11-20
US94629792A 1992-11-02 1992-11-02
US39804795A 1995-03-02 1995-03-02
US08/794,396 US6045568A (en) 1991-03-08 1997-02-05 Luminal stent, holding structure therefor and device for attaching luminal stent
US10/287,745 USRE38653E1 (en) 1991-03-08 2002-11-05 Luminal stent, holding structure therefor and device for attaching luminal stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/794,396 Reissue US6045568A (en) 1991-03-08 1997-02-05 Luminal stent, holding structure therefor and device for attaching luminal stent

Publications (1)

Publication Number Publication Date
USRE38653E1 true USRE38653E1 (en) 2004-11-16

Family

ID=33425642

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/287,745 Expired - Lifetime USRE38653E1 (en) 1991-03-08 2002-11-05 Luminal stent, holding structure therefor and device for attaching luminal stent

Country Status (1)

Country Link
US (1) USRE38653E1 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050060021A1 (en) * 2003-09-16 2005-03-17 O'brien Barry Medical devices
US20050075625A1 (en) * 2003-07-18 2005-04-07 Kinh-Luan Dao Medical devices
US20050192662A1 (en) * 2004-02-26 2005-09-01 Liam Ward Stent with differently coated inside and outside surfaces
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8137397B2 (en) 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8460367B2 (en) 2000-03-15 2013-06-11 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8747597B2 (en) 2008-04-21 2014-06-10 Covidien Lp Methods for making braid-ball occlusion devices
US8784465B2 (en) 2002-10-11 2014-07-22 Boston Scientific Scimed, Inc. Implantable medical devices
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US8926681B2 (en) 2010-01-28 2015-01-06 Covidien Lp Vascular remodeling device
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9060886B2 (en) 2011-09-29 2015-06-23 Covidien Lp Vascular remodeling device
US9089332B2 (en) 2011-03-25 2015-07-28 Covidien Lp Vascular remodeling device
US9095342B2 (en) 2009-11-09 2015-08-04 Covidien Lp Braid ball embolic device features
US9179918B2 (en) 2008-07-22 2015-11-10 Covidien Lp Vascular remodeling device
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
US9393022B2 (en) 2011-02-11 2016-07-19 Covidien Lp Two-stage deployment aneurysm embolization devices
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
US9468442B2 (en) 2010-01-28 2016-10-18 Covidien Lp Vascular remodeling device
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US10736758B2 (en) 2013-03-15 2020-08-11 Covidien Occlusive device
US11207448B2 (en) 2015-11-26 2021-12-28 Japan Medical Device Technology Co., Ltd. Bioabsorbable stent
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045418A (en) * 1975-01-28 1977-08-30 Gulf Oil Corporation Copolymers of D,L-lactide and epsilon caprolactone
EP0183372A1 (en) 1984-10-19 1986-06-04 RAYCHEM CORPORATION (a Delaware corporation) Prosthetic stent
EP0326426A2 (en) 1988-01-28 1989-08-02 JMS Co., Ltd. Plastic molded articles with shape memory property
US4922905A (en) 1985-11-30 1990-05-08 Strecker Ernst P Dilatation catheter
WO1990004982A1 (en) 1988-11-10 1990-05-17 Biocon Oy Biodegradable surgical implants and devices
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
DE9014845U1 (en) 1989-11-01 1991-01-10 Schneider (Europe) Ag, Zuerich, Ch
JPH0321262A (en) * 1989-06-20 1991-01-30 Olympus Optical Co Ltd Living body pipe line expanding tool
CA2025626A1 (en) * 1989-09-27 1991-03-28 Jay R. Goldberg Biodegradable stent
WO1991012779A1 (en) 1990-02-28 1991-09-05 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5147399A (en) * 1988-02-01 1992-09-15 Dellon Arnold L Method of treating nerve defects through use of a bioabsorbable surgical device
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5274074A (en) * 1987-12-17 1993-12-28 United States Surgical Corporation Medical devices fabricated from homopolymers and copolymers having recurring carbonate units

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045418A (en) * 1975-01-28 1977-08-30 Gulf Oil Corporation Copolymers of D,L-lactide and epsilon caprolactone
EP0183372A1 (en) 1984-10-19 1986-06-04 RAYCHEM CORPORATION (a Delaware corporation) Prosthetic stent
US4922905A (en) 1985-11-30 1990-05-08 Strecker Ernst P Dilatation catheter
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5274074A (en) * 1987-12-17 1993-12-28 United States Surgical Corporation Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
EP0326426A2 (en) 1988-01-28 1989-08-02 JMS Co., Ltd. Plastic molded articles with shape memory property
US5147399A (en) * 1988-02-01 1992-09-15 Dellon Arnold L Method of treating nerve defects through use of a bioabsorbable surgical device
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5085629A (en) * 1988-10-06 1992-02-04 Medical Engineering Corporation Biodegradable stent
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
WO1990004982A1 (en) 1988-11-10 1990-05-17 Biocon Oy Biodegradable surgical implants and devices
JPH0321262A (en) * 1989-06-20 1991-01-30 Olympus Optical Co Ltd Living body pipe line expanding tool
CA2025626A1 (en) * 1989-09-27 1991-03-28 Jay R. Goldberg Biodegradable stent
DE9014845U1 (en) 1989-11-01 1991-01-10 Schneider (Europe) Ag, Zuerich, Ch
WO1991012779A1 (en) 1990-02-28 1991-09-05 Medtronic, Inc. Intralumenal drug eluting prosthesis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Abstracts of 63<rd >Scientific Session, III-72, Supplemental III Circulation, vol. 82, No. 4, Oct. 1990. *
Abstracts of 63rd Scientific Session, III-72, Supplemental III Circulation, vol. 82, No. 4, Oct. 1990.

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US8460367B2 (en) 2000-03-15 2013-06-11 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US9115245B2 (en) 2002-10-11 2015-08-25 Boston Scientific Scimed, Inc. Implantable medical devices
US8784465B2 (en) 2002-10-11 2014-07-22 Boston Scientific Scimed, Inc. Implantable medical devices
US20050075625A1 (en) * 2003-07-18 2005-04-07 Kinh-Luan Dao Medical devices
US8377111B2 (en) 2003-09-16 2013-02-19 Boston Scientific Scimed, Inc. Medical devices
US20090117351A1 (en) * 2003-09-16 2009-05-07 Boston Scientific Scimed, Inc. Medical Devices
US7488343B2 (en) 2003-09-16 2009-02-10 Boston Scientific Scimed, Inc. Medical devices
US20050060021A1 (en) * 2003-09-16 2005-03-17 O'brien Barry Medical devices
US7294145B2 (en) * 2004-02-26 2007-11-13 Boston Scientific Scimed, Inc. Stent with differently coated inside and outside surfaces
US20050192662A1 (en) * 2004-02-26 2005-09-01 Liam Ward Stent with differently coated inside and outside surfaces
US8137397B2 (en) 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US8739382B2 (en) 2006-10-22 2014-06-03 Idev Technologies, Inc. Secured strand end devices
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US10470902B2 (en) 2006-10-22 2019-11-12 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US9039726B2 (en) 2008-04-21 2015-05-26 Covidien Lp Filamentary devices for treatment of vascular defects
US9585669B2 (en) 2008-04-21 2017-03-07 Covidien Lp Multiple layer filamentary devices for treatment of vascular defects
US11844528B2 (en) 2008-04-21 2023-12-19 Covidien Lp Multiple layer filamentary devices for treatment of vascular defects
US8747597B2 (en) 2008-04-21 2014-06-10 Covidien Lp Methods for making braid-ball occlusion devices
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US9179918B2 (en) 2008-07-22 2015-11-10 Covidien Lp Vascular remodeling device
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US9095342B2 (en) 2009-11-09 2015-08-04 Covidien Lp Braid ball embolic device features
US9468442B2 (en) 2010-01-28 2016-10-18 Covidien Lp Vascular remodeling device
US8926681B2 (en) 2010-01-28 2015-01-06 Covidien Lp Vascular remodeling device
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9393022B2 (en) 2011-02-11 2016-07-19 Covidien Lp Two-stage deployment aneurysm embolization devices
US10004511B2 (en) 2011-03-25 2018-06-26 Covidien Lp Vascular remodeling device
US9089332B2 (en) 2011-03-25 2015-07-28 Covidien Lp Vascular remodeling device
US11147563B2 (en) 2011-03-25 2021-10-19 Covidien Lp Vascular remodeling device
US10828182B2 (en) 2011-09-29 2020-11-10 Covidien Lp Vascular remodeling device
US11654037B2 (en) 2011-09-29 2023-05-23 Covidien Lp Vascular remodeling device
US9060886B2 (en) 2011-09-29 2015-06-23 Covidien Lp Vascular remodeling device
US11406405B2 (en) 2012-11-06 2022-08-09 Covidien Lp Multi-pivot thrombectomy device
US9924959B2 (en) 2012-11-06 2018-03-27 Covidien Lp Multi-pivot thrombectomy device
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9901472B2 (en) 2013-01-17 2018-02-27 Covidien Lp Methods and apparatus for luminal stenting
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
US10736758B2 (en) 2013-03-15 2020-08-11 Covidien Occlusive device
US11389309B2 (en) 2013-03-15 2022-07-19 Covidien Lp Occlusive device
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US11357510B2 (en) 2015-09-23 2022-06-14 Covidien Lp Occlusive devices
US11207448B2 (en) 2015-11-26 2021-12-28 Japan Medical Device Technology Co., Ltd. Bioabsorbable stent

Similar Documents

Publication Publication Date Title
USRE38653E1 (en) Luminal stent, holding structure therefor and device for attaching luminal stent
US6045568A (en) Luminal stent, holding structure therefor and device for attaching luminal stent
USRE38711E1 (en) Luminal stent, holding structure therefor and device for attaching luminal stent
EP0615769B1 (en) Vessel stent and vessel stent insertion device
EP0916362B1 (en) Stent for vessels
KR100617375B1 (en) Stent for vessels
JP2961287B2 (en) Biological duct dilator, method for producing the same, and stent
US5997468A (en) Intraluminal drug eluting prosthesis method
US6004346A (en) Intralumenal drug eluting prosthesis
PT2298366E (en) Linear material for blood vessel stent and blood vessel stent utilizing same
JPH05509008A (en) bioabsorbable stent
EP3765106B1 (en) Bioabsorbable flow diverting scaffold
KR0177492B1 (en) Stent for vessel, structure of holding said stent, and device for mounting said stent
KR100501649B1 (en) Vascular stents
JP2004166807A (en) Stent
JP2007325952A (en) Stent for vascular channel

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

FPAY Fee payment

Year of fee payment: 12