USRE38165E1 - Laser scanning system with reflecting optics - Google Patents

Laser scanning system with reflecting optics Download PDF

Info

Publication number
USRE38165E1
USRE38165E1 US09/136,710 US13671098A USRE38165E US RE38165 E1 USRE38165 E1 US RE38165E1 US 13671098 A US13671098 A US 13671098A US RE38165 E USRE38165 E US RE38165E
Authority
US
United States
Prior art keywords
mirror
laser beam
focal point
optical path
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/136,710
Inventor
John A. Macken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utica Enterprises Inc
Original Assignee
Optical Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Engineering Inc filed Critical Optical Engineering Inc
Priority to US09/136,710 priority Critical patent/USRE38165E1/en
Application granted granted Critical
Publication of USRE38165E1 publication Critical patent/USRE38165E1/en
Assigned to UTICA ENTERPRISES, INC. reassignment UTICA ENTERPRISES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OPTICAL ENGINEERING, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror

Definitions

  • This invention relates to laser equipment which can both scan a laser beam and adjust the optical path to achieve a variable focal length of the laser beam.
  • Laser scanning systems typically utilize galvanometer motors to change the angle of scanning mirrors. Usually the X and Y direction is scanned by separate motors. In many applications a laser beam is scanned on a work piece. To achieve a high power density, the laser beam is usually focused on this work piece. Specialized lens have been developed to achieve a good focus on a flat surface work piece even at a high transmission angle. However, some applications require that the laser beam can be independently focused to accommodate a contoured surface. Normally this focusing is accomplished by translating one or more lenses in an optical system to achieve a variable focal length. Unfortunately, high powered CO 2 lasers can cause a thermal distortion in lenses which degrades the quality of the laser beam. Furthermore, lenses are not as durable as metal mirrors for high power laser beam applications.
  • the present invention is a laser scanning system with reflective optics. To achieve an adjustable focal length on the scanned laser beam it is necessary to produce an optical path length change between two mirrors which exhibit optical power (curved mirror surfaces). To achieve this, two additional flat mirrors oriented perpendicular to each other, are placed in the optical path between the curved mirrors. A displacement of the two perpendicular mirrors in a predetermined direction will change the optical path length between the curved mirrors and in turn produce an adjustable force in the scanned beam without producing additional deviation to the scanned beam.
  • FIG. 1 is a perspective view of an all reflective laser scanning system.
  • FIG. 2 is a top view of an all reflective laser scanning system illustrating the optical components prior to the scanning mirrors.
  • FIG. 1 shows a perspective view of an all reflective scanning system 10 .
  • a laser beam 20 propagating in the direction of arrow 28 strikes a curved reflector 11 .
  • reflector 11 is preferably an off axis parabola which focuses laser beam 20 to a focal point 21 .
  • This laser beam then strikes flat mirrors 12 and 13 .
  • the laser beam then strikes curved mirror 14 .
  • This curved mirror 14 is preferably an off axis ellipse.
  • the laser beam then proceeds to strike scanning mirrors 15 and 16 .
  • These scanning mirrors can be rotated to steer the beam.
  • mirror 15 can be rotated around the axis 25 and mirror 16 can be rotated around axis 26 .
  • a single scanning mirror could also be used.
  • FIG. 1 illustrates the laser beam coming to a focus at three alternative focal spots designated 22 A, 22 B, or 22 C. These are just used for illustration. The laser beam would only strike one point at a time. The actual focal point ( 22 ) will be referred to as the “external focus” because is it lies outside the optical components.
  • work piece 30 is illustrated as being a generally flat plate.
  • mirrors 12 and 13 are approximately perpendicular to each other and mounted on base 17 . These mirrors can be translated in a direction 27 while retaining their approximately relative orientation.
  • Direction 27 is generally parallel to the beam propagation direction between focal point 21 and the center of the beam striking mirror 12 .
  • the four mirrors 11 , 12 , 13 , and 14 can be referred to as the 1st, 2nd, 3rd, and 4th mirrors respectively.
  • FIG. 2 is the top view of a portion of the scanning system depicted in FIG. 1 .
  • laser 19 can be seen.
  • laser beam 20 is shown to have a ray 20 A which will be referred to as the “center line optical path”.
  • mirrors 12 and 13 as well as base 17 are shown in two different possible positions. These two positions are differentiated by adding the letters N or M to the numbers 12 , 13 , and 17 .
  • the translation required to produce this new position is distance E depicted in FIG. 2 .
  • FIG. 2 also shows point 23 which is defined as being the point at which the center line optical path 20 A strikes mirror 14 .
  • the distance from the focal point 21 to mirror 12 along the center line optical path is shown as being distance B.
  • the center line optical path distance between mirror 13 and mirror 14 is defined as being distance D.
  • the center line optical path between mirrors 12 N and 13 N or 12 M and 13 M is shown as being distance C.
  • the center line optical path between the fourth mirror (point 23 ) and the external focal point 22 M is shown being distance S(M). This focal point occurs when the mirror positions 12 M and 13 M are used.
  • focal point 22 N is obtained at a distance of S(N) from point 23 .
  • the distance between focal points 22 N and 22 M [S(N)-S(M)] is not shown to scale when compared to displacement distance E depicted in FIG. 2 .
  • one of the advantages of placing the folding mirrors 12 and 13 in the optical path between mirror 11 and mirror 14 is that this location produces the largest possible change in focal length [S(N)-S(M)] for the smallest change in distance E. Also scanning mirrors 15 and 16 are shown in FIG. 1 but not shown in FIG. 2 .
  • Concave mirror 14 has an effective focal length “F” which is defined as being the focal length of a mirror when focusing parallel light. When the incident light is not parallel then the formula is:
  • Distance S is defined as the optical path length to the external focal point 22 from the point 23 . That is the predetermined portion of the laser beam which is scanned by scanning mirrors 15 and 16 .
  • the object of this invention is to prevent the focus adjustment from introducing a substantial scanning of this predetermined portion of the laser beam.
  • the angle steering introduced by a change in the external focus should be kept less than 3 milliradians for each 10% change in distance S.
  • Properly translating mirrors 12 and 13 in direction 27 (FIG. 1) while maintaining the perpendicular orientation will achieve this goal.
  • mirror 11 is a concave off axis parabola.
  • mirror 11 is a convex off axis parabola. If this was the case, then the rays reflecting off mirror 11 would appear to be diverging from mirror 11 . These diverging rays would appear to come to a virtual focus point behind mirror 11 and distance B would be measured from that virtual focus point. Focal point 21 would then be defined as this virtual focal point. Therefore, in either case it can be said that mirror 11 is a curved surface.
  • Mirror 14 must always be a concave curved surface in order to function properly. It should be understood that the preferred curvature for mirror 14 is an off axis ellipse.
  • mirror 14 can be referred to as a concave curved surface.
  • mirror 11 has been referred to as an off axis parabola. This is the preferred surface if laser beam 20 is generally parallel as illustrated. An off axis ellipse would be the preferred surface if laser beam 20 was either convergent or divergent.
  • other curved surfaces such as a spherical surface could also produce acceptable results.

Abstract

A laser beam scanning system which utilizes all reflective optics. The scanning system has a variable scan angle and focal length. The variable focal length in the reflecting optical system is achieved by simultaneously moving two perpendicular mirrors.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to laser equipment which can both scan a laser beam and adjust the optical path to achieve a variable focal length of the laser beam.
2. Description of Prior Art
Laser scanning systems typically utilize galvanometer motors to change the angle of scanning mirrors. Usually the X and Y direction is scanned by separate motors. In many applications a laser beam is scanned on a work piece. To achieve a high power density, the laser beam is usually focused on this work piece. Specialized lens have been developed to achieve a good focus on a flat surface work piece even at a high transmission angle. However, some applications require that the laser beam can be independently focused to accommodate a contoured surface. Normally this focusing is accomplished by translating one or more lenses in an optical system to achieve a variable focal length. Unfortunately, high powered CO2 lasers can cause a thermal distortion in lenses which degrades the quality of the laser beam. Furthermore, lenses are not as durable as metal mirrors for high power laser beam applications. Therefore, it is desirable to utilize all reflective optic components for high power CO2 laser applications. Here a problem arises when making a scanning system with a variable focal length. A change in the focal length requires a change in the optical path length. With reflective optics, a path length change usually also produces an undesirable steering of the beam. The invention presented here is an all reflective laser scanning system where a focus adjustment can be made with a minimum of translationable motion and also without introducing any steering or translation of the laser beam.
SUMMARY OF THE INVENTION
The present invention is a laser scanning system with reflective optics. To achieve an adjustable focal length on the scanned laser beam it is necessary to produce an optical path length change between two mirrors which exhibit optical power (curved mirror surfaces). To achieve this, two additional flat mirrors oriented perpendicular to each other, are placed in the optical path between the curved mirrors. A displacement of the two perpendicular mirrors in a predetermined direction will change the optical path length between the curved mirrors and in turn produce an adjustable force in the scanned beam without producing additional deviation to the scanned beam.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a perspective view of an all reflective laser scanning system.
FIG. 2 is a top view of an all reflective laser scanning system illustrating the optical components prior to the scanning mirrors.
DESCRIPTION OF PREFERRED EMBODIMENTS
FIG. 1 shows a perspective view of an all reflective scanning system 10. A laser beam 20 propagating in the direction of arrow 28 strikes a curved reflector 11. In this illustration, reflector 11 is preferably an off axis parabola which focuses laser beam 20 to a focal point 21. This laser beam then strikes flat mirrors 12 and 13. The laser beam then strikes curved mirror 14. This curved mirror 14 is preferably an off axis ellipse. The laser beam then proceeds to strike scanning mirrors 15 and 16. These scanning mirrors can be rotated to steer the beam. For example, mirror 15 can be rotated around the axis 25 and mirror 16 can be rotated around axis 26. A single scanning mirror could also be used. FIG. 1 illustrates the laser beam coming to a focus at three alternative focal spots designated 22A, 22B, or 22C. These are just used for illustration. The laser beam would only strike one point at a time. The actual focal point (22) will be referred to as the “external focus” because is it lies outside the optical components.
In FIG. 1, work piece 30 is illustrated as being a generally flat plate. To bring a laser beam to a focus, on even a flat surface, requires a focal length adjustment to compensate for the path length change introduced by a change in the deflection angle. If the work piece 30 had a contoured surface, the range of the focal length adjustments would be even greater. In FIG. 1, mirrors 12 and 13 are approximately perpendicular to each other and mounted on base 17. These mirrors can be translated in a direction 27 while retaining their approximately relative orientation. Direction 27 is generally parallel to the beam propagation direction between focal point 21 and the center of the beam striking mirror 12. The four mirrors 11, 12, 13, and 14 can be referred to as the 1st, 2nd, 3rd, and 4th mirrors respectively.
FIG. 2, is the top view of a portion of the scanning system depicted in FIG. 1. In FIG. 2, laser 19 can be seen. Also, laser beam 20 is shown to have a ray 20A which will be referred to as the “center line optical path”. In FIG. 2, mirrors 12 and 13 as well as base 17 are shown in two different possible positions. These two positions are differentiated by adding the letters N or M to the numbers 12, 13, and 17. The translation required to produce this new position is distance E depicted in FIG. 2. FIG. 2 also shows point 23 which is defined as being the point at which the center line optical path 20A strikes mirror 14. Also, the distance from the focal point 21 to mirror 12 along the center line optical path is shown as being distance B. Furthermore, the center line optical path distance between mirror 13 and mirror 14 is defined as being distance D. The center line optical path between mirrors 12N and 13N or 12M and 13M is shown as being distance C. Finally, the center line optical path between the fourth mirror (point 23) and the external focal point 22M is shown being distance S(M). This focal point occurs when the mirror positions 12M and 13M are used. When mirror positions 12N and 13N are used, then focal point 22N is obtained at a distance of S(N) from point 23. The distance between focal points 22N and 22M [S(N)-S(M)] is not shown to scale when compared to displacement distance E depicted in FIG. 2. In fact, one of the advantages of placing the folding mirrors 12 and 13 in the optical path between mirror 11 and mirror 14, is that this location produces the largest possible change in focal length [S(N)-S(M)] for the smallest change in distance E. Also scanning mirrors 15 and 16 are shown in FIG. 1 but not shown in FIG. 2.
The center line optical path length between focus 21 and point 23 will be referred to as “s”. Therefore, s=B+C+D when mirrors 12 and 13 are in locations depicted in FIG. 2 as 12N and 13N. When these mirrors are moved to locations 12M and 13M, then s=B+E+C+E+D. Concave mirror 14 has an effective focal length “F” which is defined as being the focal length of a mirror when focusing parallel light. When the incident light is not parallel then the formula is:
1/s+1/S=1/F
Distance S is defined as the optical path length to the external focal point 22 from the point 23. That is the predetermined portion of the laser beam which is scanned by scanning mirrors 15 and 16. The object of this invention is to prevent the focus adjustment from introducing a substantial scanning of this predetermined portion of the laser beam. For CO2 laser applications, the angle steering introduced by a change in the external focus should be kept less than 3 milliradians for each 10% change in distance S. Properly translating mirrors 12 and 13 in direction 27 (FIG. 1) while maintaining the perpendicular orientation will achieve this goal.
In FIG. 2, the optical rays are drawn presuming mirror 11 is a concave off axis parabola. Another possibility would be for mirror 11 to be a convex off axis parabola. If this was the case, then the rays reflecting off mirror 11 would appear to be diverging from mirror 11. These diverging rays would appear to come to a virtual focus point behind mirror 11 and distance B would be measured from that virtual focus point. Focal point 21 would then be defined as this virtual focal point. Therefore, in either case it can be said that mirror 11 is a curved surface. Mirror 14, however, must always be a concave curved surface in order to function properly. It should be understood that the preferred curvature for mirror 14 is an off axis ellipse. However, it should be understood that less ideal curvatures may also do an adequate job. For example, a spherical surface on mirror 14 would produce a larger focus spot. However, a larger diameter focus spot may still be adequate to perform the desired function. Therefore, in general, mirror 14 can be referred to as a concave curved surface. Similarly, mirror 11 has been referred to as an off axis parabola. This is the preferred surface if laser beam 20 is generally parallel as illustrated. An off axis ellipse would be the preferred surface if laser beam 20 was either convergent or divergent. However, once again, other curved surfaces such as a spherical surface could also produce acceptable results.
While there has been shown and described a preferred embodiment it is to be understood that other modifications may be made without departing from the spirit and scope of the invention.

Claims (8)

I claim:
1. A laser beam scanning system which includes at least one scanning mirror which angularly steers a predetermined portion of a laser beam, the improved features comprising:
said laser beam has a center line optical path which sequentially propagates to a first mirror, a second mirror, a third mirror, a fourth mirror, said at least one scanning mirror and then propagates to an external focal point;
said first mirror is a curved mirror;
said second and said third mirror are generally flat mirrors oriented approximately perpendicular to each other;
said fourth mirror is a concave curved mirror;
said second and said third mirror are mounted such that they can be simultaneously translated in a predetermined direction while retaining said orientation;
said center line optical path has a beam segment of length S which extends from said fourth mirror to said external focal point;
said simultaneous translation of said second and said third mirrors in said predetermined direction produces a change in said distance S while producing an angular steering of said laser beam of less than 3 milliraidans for a 10% change in said direction S for said beam segment.
2. An all-reflective high power laser beam scanning system with an adjustable focal length which includes at least one scanning mirror to angularly steer a predetermined portion of a laser beam along an optical path to a workpiece, comprising:
a first reflective surface in the optical path of the laser beam and curved sufficiently to focus the laser beam at a first focal point;
a pair of second reflective surfaces in the optical path spaced from said first focal point and translatable sufficiently in a predetermined direction to adjust the focus of the laser beam at a second focal point; and
a third reflective surface optically between said pair of second reflective surfaces and said second focal point and before the at least one scanning mirror to reflect the focused laser beam to be steered and to focus the second focal point;
said optical path having a beam segment of predetermined distance which extends from said third reflective surface to said second focal point;
said translation of said pair of second reflective surfaces in said predetermined direction changing the length of said optical path from said third reflective surface to said second focal point to change said predetermined distance whereby to adjust the focus of the beam being steered without producing significant angular deviation to the steered beam at the workpiece.
3. The all-reflective high power laser beam scanning system of claim 2 wherein said pair of second reflective surfaces is simultaneously translatable in said predetermined direction.
4. The all-reflective high power laser beam scanning system of claim 2 wherein said third reflective surface is curved sufficiently to focus the laser beam at said second focal point.
5. The all-reflective high power laser beam scanning system of claim 2 wherein the curvature of said first and third reflective surface is off-axis.
6. The all-reflective high power laser beam scanning system of claim 2 wherein said first, second and third reflective surfaces are mirrors.
7. The all-reflective high power laser beam scanning system of claim 2 wherein said first focal point is internal and said second focal point is external.
8. An all-reflective high power laser beam scanning system with an adjustable focal length which includes at least one scanning mirror to angularly steer a predetermined portion of a laser beam along an optical path to a workpiece at an external focal point, the features comprising:
a first mirror in the optical path of the laser beam and curved sufficiently as an off-axis parabola to focus the laser beam at an internal focal point;
a pair of flat mirrors oriented approximately perpendicular to each other in the optical path spaced from said internal focal point and translatable sufficiently simultaneously in a predetermined direction to adjust the external focal point; and
a fourth mirror optically between one of said pair of mirrors and said external focal point to reflect the focused laser beam being steered, and curved sufficiently as an off-axis ellipse to focus the external focal point;
said optical path having a beam segment of predetermined distance which extends from said fourth mirror to said external focal point;
the translation of said pair of mirrors in said predetermined direction changing the length of said optical path from said fourth mirror to said external focal point to change said predetermined distance whereby to adjust the focus of the beam being steered without producing significant angular deviation to the steered beam at the workpiece.
US09/136,710 1995-03-06 1998-08-19 Laser scanning system with reflecting optics Expired - Lifetime USRE38165E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/136,710 USRE38165E1 (en) 1995-03-06 1998-08-19 Laser scanning system with reflecting optics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/398,738 US5561544A (en) 1995-03-06 1995-03-06 Laser scanning system with reflecting optics
US09/136,710 USRE38165E1 (en) 1995-03-06 1998-08-19 Laser scanning system with reflecting optics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/398,738 Reissue US5561544A (en) 1995-03-06 1995-03-06 Laser scanning system with reflecting optics

Publications (1)

Publication Number Publication Date
USRE38165E1 true USRE38165E1 (en) 2003-07-01

Family

ID=23576607

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/398,738 Ceased US5561544A (en) 1995-03-06 1995-03-06 Laser scanning system with reflecting optics
US09/136,710 Expired - Lifetime USRE38165E1 (en) 1995-03-06 1998-08-19 Laser scanning system with reflecting optics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/398,738 Ceased US5561544A (en) 1995-03-06 1995-03-06 Laser scanning system with reflecting optics

Country Status (8)

Country Link
US (2) US5561544A (en)
EP (1) EP0813696B8 (en)
JP (1) JPH11501738A (en)
AT (1) ATE344469T1 (en)
DE (1) DE69636668T2 (en)
ES (1) ES2276399T3 (en)
PT (1) PT813696E (en)
WO (1) WO1996027814A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080198434A1 (en) * 2007-02-19 2008-08-21 Fujitsu Limited Scanning mechanism, method of machining workpiece, and machine tool
US9182595B2 (en) 2011-06-02 2015-11-10 Nec Corporation Image display devices

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654210C2 (en) * 1996-12-24 1999-12-09 Leica Microsystems Optical arrangement for scanning a beam in two essentially perpendicular axes
US6078420A (en) * 1998-06-24 2000-06-20 Optical Engineering, Inc. Hole-coupled laser scanning system
DE10033549A1 (en) * 2000-07-11 2002-01-24 Leica Microsystems Optical structure for deflecting a beam of light in two directions lying perpendicular to each other has two mirrors each rotated by a rotating drive around x/y axes perpendicular to each other.
KR100619365B1 (en) * 2003-11-03 2006-09-12 삼성전기주식회사 Scanning apparatus using diffraction multi-beam
JP4299185B2 (en) * 2004-04-27 2009-07-22 株式会社ディスコ Laser processing equipment
EP1695787A1 (en) * 2005-02-25 2006-08-30 Trumpf Laser- und Systemtechnik GmbH Laser working method using a plurality of working stations
US8294062B2 (en) * 2007-08-20 2012-10-23 Universal Laser Systems, Inc. Laser beam positioning systems for material processing and methods for using such systems
GB0809003D0 (en) * 2008-05-17 2008-06-25 Rumsby Philip T Method and apparatus for laser process improvement
DE102013226614A1 (en) * 2013-12-19 2015-06-25 Osram Gmbh lighting device
JP6358941B2 (en) 2014-12-04 2018-07-18 株式会社ディスコ Wafer generation method
JP6399913B2 (en) 2014-12-04 2018-10-03 株式会社ディスコ Wafer generation method
JP6391471B2 (en) 2015-01-06 2018-09-19 株式会社ディスコ Wafer generation method
JP6395632B2 (en) 2015-02-09 2018-09-26 株式会社ディスコ Wafer generation method
JP6395633B2 (en) 2015-02-09 2018-09-26 株式会社ディスコ Wafer generation method
JP6425606B2 (en) 2015-04-06 2018-11-21 株式会社ディスコ Wafer production method
JP6429715B2 (en) 2015-04-06 2018-11-28 株式会社ディスコ Wafer generation method
JP6494382B2 (en) 2015-04-06 2019-04-03 株式会社ディスコ Wafer generation method
MX2017014307A (en) * 2015-05-08 2018-06-28 Ikergune A I E Method and apparatus for heat treatment of a ferrous material using an energy beam.
JP6472333B2 (en) 2015-06-02 2019-02-20 株式会社ディスコ Wafer generation method
JP6482423B2 (en) * 2015-07-16 2019-03-13 株式会社ディスコ Wafer generation method
JP6472347B2 (en) 2015-07-21 2019-02-20 株式会社ディスコ Thinning method of wafer
JP6482425B2 (en) 2015-07-21 2019-03-13 株式会社ディスコ Thinning method of wafer
JP6690983B2 (en) 2016-04-11 2020-04-28 株式会社ディスコ Wafer generation method and actual second orientation flat detection method
KR102603393B1 (en) * 2016-12-06 2023-11-17 삼성디스플레이 주식회사 Laser processing apparatus
JP6858587B2 (en) 2017-02-16 2021-04-14 株式会社ディスコ Wafer generation method
WO2019101886A2 (en) * 2017-11-22 2019-05-31 Alltec Angewandte Laserlicht Technologie Gmbh Laser marking system

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160939A (en) * 1977-09-13 1979-07-10 Xerox Corporation Motor speed control system
US4232960A (en) * 1979-02-21 1980-11-11 Xerox Corporation Scanning system
US4388651A (en) * 1981-05-28 1983-06-14 Lincoln Laser Co. Method and apparatus for generating a scanned optical output signal
US4461947A (en) 1982-08-24 1984-07-24 Allied Corporation Rotating laser beam with coincident gas jet
US4469931A (en) 1982-09-13 1984-09-04 Macken John A Laser assisted saw device
US4755999A (en) 1985-03-25 1988-07-05 Macken John A Laser apparatus utilizing a magnetically enhanced electrical discharge
US4921338A (en) 1989-05-09 1990-05-01 Macken John A Corrective optics for rectangular laser beams
US4941731A (en) 1987-07-01 1990-07-17 John Macken Corner cube utilizing generally spherical surfaces
EP0476965A2 (en) 1990-09-18 1992-03-25 Praxair S.T. Technology, Inc. Constant length laser device
US5142119A (en) 1991-03-14 1992-08-25 Saturn Corporation Laser welding of galvanized steel
US5155323A (en) 1991-05-16 1992-10-13 John Macken Dual focus laser welding
US5206763A (en) 1989-05-09 1993-04-27 Macken John A Corrective optics for rectangular laser beams
US5237149A (en) 1992-03-26 1993-08-17 John Macken Laser machining utilizing a spacial filter
US5274492A (en) * 1992-07-02 1993-12-28 Mahmoud Razzaghi Light spot size and shape control for laser projector
US5276546A (en) * 1991-05-20 1994-01-04 Butch Beaty Three dimensional scanning system
DE9407288U1 (en) 1994-05-02 1994-08-04 Trumpf Gmbh & Co Laser cutting machine with focus position adjustment
US5528613A (en) 1993-04-12 1996-06-18 Macken; John A. Laser apparatus utilizing a magnetically enhanced electrical discharge with transverse AC stabilization
US5539180A (en) 1991-02-28 1996-07-23 Fanuc, Ltd. Method of laser beam welding galvanized steel sheets with an auxiliary gas containing oxygen
US5618452A (en) 1992-07-14 1997-04-08 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for laser welding with an assist gas including dried air and the assist gas composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580870B1 (en) * 1985-04-23 1987-09-25 Arnaud Jean APPARATUS FOR REGULATING CHARACTERISTICS OF A LIGHT BEAM, IN PARTICULAR OF A POWER LASER
DE3709351A1 (en) * 1987-03-21 1988-09-29 Heraeus Gmbh W C RADIATION GUIDE OPTICS FOR LASER RADIATION
US5184012A (en) * 1991-12-26 1993-02-02 Olympus Optical Co., Ltd. Optical scanning apparatus with axis deviation correction

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160939A (en) * 1977-09-13 1979-07-10 Xerox Corporation Motor speed control system
US4232960A (en) * 1979-02-21 1980-11-11 Xerox Corporation Scanning system
US4388651A (en) * 1981-05-28 1983-06-14 Lincoln Laser Co. Method and apparatus for generating a scanned optical output signal
US4461947A (en) 1982-08-24 1984-07-24 Allied Corporation Rotating laser beam with coincident gas jet
US4469931A (en) 1982-09-13 1984-09-04 Macken John A Laser assisted saw device
US4755999A (en) 1985-03-25 1988-07-05 Macken John A Laser apparatus utilizing a magnetically enhanced electrical discharge
US4941731A (en) 1987-07-01 1990-07-17 John Macken Corner cube utilizing generally spherical surfaces
US5206763A (en) 1989-05-09 1993-04-27 Macken John A Corrective optics for rectangular laser beams
US4921338A (en) 1989-05-09 1990-05-01 Macken John A Corrective optics for rectangular laser beams
EP0476965A2 (en) 1990-09-18 1992-03-25 Praxair S.T. Technology, Inc. Constant length laser device
US5539180A (en) 1991-02-28 1996-07-23 Fanuc, Ltd. Method of laser beam welding galvanized steel sheets with an auxiliary gas containing oxygen
US5142119A (en) 1991-03-14 1992-08-25 Saturn Corporation Laser welding of galvanized steel
US5155323A (en) 1991-05-16 1992-10-13 John Macken Dual focus laser welding
US5276546A (en) * 1991-05-20 1994-01-04 Butch Beaty Three dimensional scanning system
US5237149A (en) 1992-03-26 1993-08-17 John Macken Laser machining utilizing a spacial filter
US5274492A (en) * 1992-07-02 1993-12-28 Mahmoud Razzaghi Light spot size and shape control for laser projector
US5618452A (en) 1992-07-14 1997-04-08 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for laser welding with an assist gas including dried air and the assist gas composition
US5528613A (en) 1993-04-12 1996-06-18 Macken; John A. Laser apparatus utilizing a magnetically enhanced electrical discharge with transverse AC stabilization
DE9407288U1 (en) 1994-05-02 1994-08-04 Trumpf Gmbh & Co Laser cutting machine with focus position adjustment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080198434A1 (en) * 2007-02-19 2008-08-21 Fujitsu Limited Scanning mechanism, method of machining workpiece, and machine tool
US7570407B2 (en) * 2007-02-19 2009-08-04 Fujitsu Limited Scanning mechanism, method of machining workpiece, and machine tool
US9182595B2 (en) 2011-06-02 2015-11-10 Nec Corporation Image display devices

Also Published As

Publication number Publication date
EP0813696A1 (en) 1997-12-29
JPH11501738A (en) 1999-02-09
DE69636668T2 (en) 2007-09-06
EP0813696B8 (en) 2007-01-17
PT813696E (en) 2007-02-28
EP0813696A4 (en) 1998-10-14
ES2276399T3 (en) 2007-06-16
EP0813696B1 (en) 2006-11-02
ATE344469T1 (en) 2006-11-15
US5561544A (en) 1996-10-01
WO1996027814A1 (en) 1996-09-12
DE69636668D1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
USRE38165E1 (en) Laser scanning system with reflecting optics
US8139294B2 (en) Techniques for steering an optical beam
US4123135A (en) Optical system for rotating mirror line scanning apparatus
US5870133A (en) Laser scanning device and light source thereof having temperature correction capability
US5080474A (en) Laser beam shaping device
JPH0727125B2 (en) Optical scanning device
KR100206095B1 (en) Method and device for focusing laser beam
US6078420A (en) Hole-coupled laser scanning system
JPH077151B2 (en) Scanning device
EP0454503B1 (en) Optical scanners
US5004311A (en) Beam scanning method and apparatus
US5828481A (en) Mid-objective laser scanner
US4796965A (en) Optical scanning device
US3873180A (en) Light beam scanning system with scan angle demagnification
US7297898B2 (en) Laser processing machine
EP0629891B1 (en) Beam scanning apparatus
US4953926A (en) Scanning optical system for use in a laser beam printer
JP2002062499A (en) Scanning optical device
JP3381333B2 (en) Optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JPH02100014A (en) Astigmatism compensation optical system
JPH01108519A (en) Luminous flux adjusting method for scan type optical device
JPH0580269A (en) Light beam scanning device
JPH04212121A (en) Optical scanner
JPH09145991A (en) Anisotropic refracting power lens

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: UTICA ENTERPRISES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPTICAL ENGINEERING, INC.;REEL/FRAME:030059/0753

Effective date: 20130221