USRE38013E1 - Liquid spray systems - Google Patents

Liquid spray systems Download PDF

Info

Publication number
USRE38013E1
USRE38013E1 US09/566,400 US56640000A USRE38013E US RE38013 E1 USRE38013 E1 US RE38013E1 US 56640000 A US56640000 A US 56640000A US RE38013 E USRE38013 E US RE38013E
Authority
US
United States
Prior art keywords
jet
oscillation chamber
fluidic
washer
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/566,400
Inventor
Ronald D. Stouffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DlhBowles Inc
Original Assignee
Bowles Fluidics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bowles Fluidics Corp filed Critical Bowles Fluidics Corp
Priority to US09/566,400 priority Critical patent/USRE38013E1/en
Application granted granted Critical
Publication of USRE38013E1 publication Critical patent/USRE38013E1/en
Assigned to MADISON CAPITAL FUNDING LLC, AS AGENT reassignment MADISON CAPITAL FUNDING LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOWLES FLUIDICS CORPORATION
Assigned to DLHBOWLES, INC. reassignment DLHBOWLES, INC. MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BOWLES FLUIDICS CORPORATION, DLH INDUSTRIES, INC.
Anticipated expiration legal-status Critical
Assigned to DLHBOWLES, INC. reassignment DLHBOWLES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MADISON CAPITAL FUNDING LLC
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/46Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
    • B60S1/48Liquid supply therefor
    • B60S1/52Arrangement of nozzles; Liquid spreading means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/08Boundary-layer devices, e.g. wall-attachment amplifiers coanda effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/22Oscillators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2229Device including passages having V over T configuration
    • Y10T137/2234And feedback passage[s] or path[s]

Definitions

  • the present invention relates to fluidic oscillators for use in vehicle washer systems and more particularly to a fluidic oscillator for vehicle windshield washer systems in which a housing, which can be commonly used on different vehicles, incorporates a fluidic oscillator element, hereinafter termed a “fluidic insert”, which carries a physical silhouette or pattern of a fluidic oscillator and is adapted to create different deflection angles.
  • a fluidic oscillator element hereinafter termed a “fluidic insert”
  • deflection angle means the angle that the jet of wash liquid makes as it exits the outlet in a plane orthogonal to the plane of the silhouette
  • fan angle is the angle made by the jet sweeping back and forth between the boundaries of the outlet in the plane of the silhouette.
  • This type of fluidic oscillator has a power nozzle PN issuing a jet of windshield washer liquid JW into an oscillation chamber OC towards an outlet OL which issues the jet of wash liquid into ambient where it is oscillated in a fashion so as to cause it to rhythmically be swept back and forth so as to cause the liquid jet to break up in droplets of predetermined size configuration or range so as to impinge on the windshield at a predetermined position under various driving conditions as disclosed in U.S. Pat. No. 4,157,161. In the Bray, Jr.
  • the Coanda effect wall attachment or lock-on cause a dwell at the ends of the sweep which tends to make the spray heavier at the ends of the sweep than in the middle.
  • the configuration of the silhouette is such as to cause the liquid oscillator issue a swept set fan spray in which the liquid droplets were relatively uniform throughout the fan spray and the uniform droplets provide a better cleaning action.
  • a fluidic oscillator of the type disclosed in the aforementioned Stouffer U.S. Pat. No. 4,508,267 incorporated a step or bump B at the outlet OL of the fluidic circuit to create up to about a 6° deflection angle oscillator.
  • the step appears to deteriorate fluidic functions and create adverse side effects such as:
  • the deflection angles of the fluidic washer nozzles can be adjusted by using the taper at the floor of the fluidic insert as disclosed in the aforementioned Bray, Jr. U.S. Pat. No. 4,463,904. This eliminates the impact between the fluid and the step. Therefore, the spray is usually not as messy, and the wave is usually not degraded until the taper reaches about 10° to 12° when the flow begins to separate from the floor of the insert.
  • the deflection angles are not as sensitive to the taper as it is to the step. However, with the use of a large taper, the spray becomes much thicker, and it makes the reading of the deflection angle very difficult and inconsistent because it is hard to find the center of a thick spray.
  • the problem discussed above is solved by the use of a reverse taper at the outlet of the fluidic insert to adjust the deflection angles of the fluidic wash nozzle.
  • This reverse type allows one housing to be used for several different types of vehicles which have different requirements for deflection angles. It allows the creating of different deflection angles in the fluidic insert per se rather than designing a housing and tools for the different deflection angles desired.
  • the windshield washer element has a housing with a rectangular chamber having formed therein a silhouette or physical pattern of a fluidic oscillator which may be of the type disclosed in the above-referenced patents.
  • the fluidic oscillator silhouette has an oscillation chamber having an upstream end coupled to the power nozzle for issuing a jet of wash liquid into the oscillation chamber and a downstream end having an outlet aperture perforation for issuing wash liquid to ambient.
  • the oscillation chamber includes means for causing the jet of wash fluid to rhythmically sweep back and forth between the side walls and the oscillation chamber and issue in a sweeping rhythmic fashion and through the outlet.
  • the top and bottom walls of the oscillation chamber diverge for a predetermined distance in a downstream direction and then converge towards each other through the outlet aperture.
  • the degree of the taper can be changed to accommodate the deflection angles required by different vehicles, to thereby reduce the cost of housing design and the tools.
  • the invention retains the droplet size without causing a detrimental increase in smaller droplets which are more adversely affected by wind and air flow effects over the vehicle.
  • One of the basic objectives of the fluidic windshield washer nozzle is to have a fan spray which has a designed or predetermined droplet distribution through the fan and the present invention retains desired droplet distribution while providing the uniform droplet distribution of Stouffer U.S. Pat. No. 4,508,267.
  • FIG. 1A is a diagrammatic sketch of an automobile windshield washer system to which the invention has been applied;
  • FIG. 1B is a diagrammatic sketch of an automobile windshield washer system wherein there is a dual fan, one for the driver side and one for the passenger side;
  • FIG. 1C is a diagrammatic illustration of a “wet arm” windshield washer system wherein the nozzles are mounted on the arms of the wiper blades;
  • FIG. 2A is a top plan view of a silhouette of a power fluidic oscillator as disclosed in Bray, Jr. U.S. Pat. Nos. 4,463,904 and 4,645,126; and FIG. 2B is a sectional view of the fluidic oscillator shown in FIG. 2A as inserted in a rectangular housing;
  • FIG. 3A is a top silhouette of a fluidic oscillator as disclosed in Stouffer U.S. Pat. No. 4,508,267;
  • FIG. 3B is a section view through a centerline thereof
  • FIG. 4A is a silhouette of a fluidic oscillator element having the bump in the nozzle, outlet aperture
  • FIG. 4B is a sectional view thereof through a power nozzle and outlet aperture
  • FIG. 5A is a top plan view of a silhouette of a fluidic oscillator incorporating the present invention.
  • FIG. 5B is a sectional view through lines BB of FIG. 5 A.
  • FIGS. 1A, 1 B and 1 C depict vehicle windshields with different techniques utilized in the art for mounting the windshield washer nozzles for applying a fan spray of washer fluid droplets to the windshield glass surface to be cleaned. It will be appreciated that while the invention has been illustrated as applied to the windshield of the vehicle, it can be applied to the tailgate window glass or to glass headlamp washers, the principal use being for windshield glass.
  • vehicle windshield 10 is provided with a single fan spray device 11 which issues a fan spray 12 of proper droplet size and sweep frequency. Wash liquid for spray 12 is provided by pump 13 from reservoir 14 which would conventionally be under the hood of the vehicle.
  • Windshield wash liquid 16 is contain ed in reservoir 14 .
  • FIG. 1 depict vehicle windshields with different techniques utilized in the art for mounting the windshield washer nozzles for applying a fan spray of washer fluid droplets to the windshield glass surface to be cleaned.
  • FIGS. 1A, 1 B and 1 C depict vehicle windshields with different techniques utilized in the art for mounting the windshield washer nozzles for applying a fan spray
  • a pair of fluidic oscillator nozzles 11 R and 11 L, one for the passenger's side and one for the driver's side of the vehicle are provided for issuing fan sprays 12 R and 12 L from the windshield for the respective driver and passenger sides of the vehicle.
  • a fluid oscillator of the type shown in FIG. 2 which is heavy ended, and this is due principally to Coanda wall attachment effects, so the sides of the spray are heavier or more concentrated in wash fluid droplets than the center of the spray so as to provide equal amounts of wash fluid for distribution on the driver and the passenger sides.
  • FIG. 1C illustrates a “wet arm” embodiment wherein the nozzles are mounted on the wiper arm while FIG. 1C illustrates the spray as being to the left of the wiper arm having its position shown, it will be appreciated that various combinations can be utilized when spraying either from the left or the right of the wiper arm depending on design considerations. Either type of fluidic oscillator may be used in this embodiment.
  • a system of vortices is established in the oscillation chamber of the respective oscillators.
  • Each of the oscillators causes a jet of wash fluid to be issued through the outlet to ambient, which jet is oscillated or swept back and forth in a fan angle ⁇ and which varies from about 30° to about 160° as set forth in Stouffer U.S. Pat. No. 4,508,267.
  • the upper (roof) or lower walls or both of the fluidic oscillator have a taper incorporated therein so that the walls diverge from each other in the direction of the outlet OL so as to expand the power jet in cold weather, a typical taper or angle being about 5°.
  • the taper is within a range of 2° and about 10° with 5° being found to be most acceptable since the taper angle is a function of the distance between a power nozzle and the fluid outlet.
  • a step or bump 30 is provided at the outlet OL of the fluidic circuit to create up to about 6° deflection angle.
  • a step deteriorates fluidic function and creates the following undesirable side affects:
  • the deflection angles of the fluidic oscillator can be adjusted by using the taper as shown in the Bray, Jr. and Stouffer patents. This eliminates the impact between the fluid and the step, and therefore the spray is not as messy and the wave is usually not degraded until the taper reaches about 10°14 12° when the flow begins to separate from the floor of the insert.
  • the deflection angle is not as sensitive to the taper as the step. However, with the use of a larger taper the spray comes much thicker making it difficult and inconsistent to find the center of a thick spray.
  • the fluidic oscillator of the present invention solves this problem by use of a reverse taper at the outlet of the fluidic insert to adjust the deflection angles of the fluidic washer nozzles. These are shown in FIGS. 5A and 5B.
  • the most critical parameter of the reverse taper insert is its deflection angle, although other performance factors (such as fan angle, flow rate, spray thickness, wave pattern, fluid droplet size and spray cleanliness) are important as well.
  • the reverse taper RT at angle ⁇ the thickness of the spray can be reduced which makes the deflection angles more consistent and reliable and as a result, of the thinner spray, fluid is more concentrated in the middle which aids in the dynamic performance of the fluidic windshield washer nozzle.
  • the reverse taper does not create as much destruction of the spray as the step at the outlet of the insert. This makes the spray cleaner and not as degraded as in the case of the step at the outlet (FIGS. 4 A and 4 B).
  • the droplet sizes are also larger which is good for high speed testing since the high speed wind affects on small droplets is significant.
  • the throat depth and throat area are unchanged by adjusting the taper after the reverse taper is added to the insert. Therefore, the fan angle does not have to be reduced by the addition of reverse taper.
  • the diverging taper from the power nozzle PW to the point where the converging or reverse taper begin is about 5° and the reverse taper angles ⁇ is about 3°.
  • the deflection angle DA can be adjusted without making any changes in the housing.
  • the length Lr of the reverse taper can also be adjusted.

Abstract

A vehicle washer nozzle liquid spray system having a source of washer liquid under pressure, a fluidic oscillator comprising a housing and a fluidic insert having a power nozzle, an oscillation chamber having an upstream end coupled to the power nozzle for issuing a jet of washer liquid into the oscillation chamber and a downstream end having an outlet aperture for issuing a jet of wash liquid to ambient, and side and top and bottom walls, an oscillation inducing silhouette in the oscillation chamber for causing said jet of wash liquid to rhythmically sweep back and forth between the sidewalls in the oscillation chamber. Top and bottom walls of the oscillation chamber first diverge for a predetermined distance in a downstream direction and then converge towards each other through said outlet aperture. This enables the deflection angle to be adjusted for different vehicles uses and applications by changes to the fluidic insert without changes to the housing.

Description

BACKGROUND AND BRIEF DESCRIPTION OF THE INVENTION
The present invention relates to fluidic oscillators for use in vehicle washer systems and more particularly to a fluidic oscillator for vehicle windshield washer systems in which a housing, which can be commonly used on different vehicles, incorporates a fluidic oscillator element, hereinafter termed a “fluidic insert”, which carries a physical silhouette or pattern of a fluidic oscillator and is adapted to create different deflection angles. As used herein, the term “deflection angle” means the angle that the jet of wash liquid makes as it exits the outlet in a plane orthogonal to the plane of the silhouette, and the term “fan angle” is the angle made by the jet sweeping back and forth between the boundaries of the outlet in the plane of the silhouette.
Stouffer U.S. Pat. No. 4,508,267 entitled LIQUID OSCILLATOR DEVICE and Bray, Jr. U.S. Pat. No. 4,463,904 entitled COLD WEATHER FLUIDIC FAN SPRAY DEVICES AND METHOD disclose fluidic oscillators which have proved to be highly successful. They typically comprise a housing in which a fluidic insert element having a silhouette of a fluidic oscillator is inserted into the housing. The silhouette of the fluidic oscillator typically is of the type disclosed in FIGS. 2A and 2B, FIG. 2A being from the aforementioned Stouffer U.S. Pat. No. 4,508,267 and FIG. 2B being Bray, Jr. U.S. Pat. No. 4,463,904, it being appreciated that other forms of fluidic oscillators may be used. This type of fluidic oscillator has a power nozzle PN issuing a jet of windshield washer liquid JW into an oscillation chamber OC towards an outlet OL which issues the jet of wash liquid into ambient where it is oscillated in a fashion so as to cause it to rhythmically be swept back and forth so as to cause the liquid jet to break up in droplets of predetermined size configuration or range so as to impinge on the windshield at a predetermined position under various driving conditions as disclosed in U.S. Pat. No. 4,157,161. In the Bray, Jr. patent, the Coanda effect wall attachment or lock-on cause a dwell at the ends of the sweep which tends to make the spray heavier at the ends of the sweep than in the middle. In the Stouffer U.S. Pat. No. 4,508,267, the configuration of the silhouette is such as to cause the liquid oscillator issue a swept set fan spray in which the liquid droplets were relatively uniform throughout the fan spray and the uniform droplets provide a better cleaning action.
In the manufacture of windshield washer nozzles, it has been found desirable to provide one housing on different vehicles which thereby reduces the cost of housing design and the tools. However, this requires creating different deflection angles in the fluidic inserts which contains fluidic oscillating element per se.
It has been found desirable to provide variable deflection angles. In one approach disclosed in FIGS. 2A and 2B, a fluidic oscillator of the type disclosed in the aforementioned Stouffer U.S. Pat. No. 4,508,267 incorporated a step or bump B at the outlet OL of the fluidic circuit to create up to about a 6° deflection angle oscillator. The step appears to deteriorate fluidic functions and create adverse side effects such as:
1. Inconsistent and unreliable deflection angles due to the high sensitivity of the flow to the step height,
2. Reduced fan angles and flow rates because the step or bump could reduce the throat area,
3. Smaller than normal droplets caused by the fluid impact on the step or bump,
4. Messy spray caused by fluid impact on the step or bump,
5. Degraded waves as a direct result of the destruction of fluid functions made by the step.
Moreover, the deflection angles of the fluidic washer nozzles can be adjusted by using the taper at the floor of the fluidic insert as disclosed in the aforementioned Bray, Jr. U.S. Pat. No. 4,463,904. This eliminates the impact between the fluid and the step. Therefore, the spray is usually not as messy, and the wave is usually not degraded until the taper reaches about 10° to 12° when the flow begins to separate from the floor of the insert. The deflection angles are not as sensitive to the taper as it is to the step. However, with the use of a large taper, the spray becomes much thicker, and it makes the reading of the deflection angle very difficult and inconsistent because it is hard to find the center of a thick spray.
According to the present invention, the problem discussed above is solved by the use of a reverse taper at the outlet of the fluidic insert to adjust the deflection angles of the fluidic wash nozzle. This reverse type allows one housing to be used for several different types of vehicles which have different requirements for deflection angles. It allows the creating of different deflection angles in the fluidic insert per se rather than designing a housing and tools for the different deflection angles desired. Thus, according to the present invention, the windshield washer element has a housing with a rectangular chamber having formed therein a silhouette or physical pattern of a fluidic oscillator which may be of the type disclosed in the above-referenced patents. The fluidic oscillator silhouette has an oscillation chamber having an upstream end coupled to the power nozzle for issuing a jet of wash liquid into the oscillation chamber and a downstream end having an outlet aperture perforation for issuing wash liquid to ambient. The oscillation chamber includes means for causing the jet of wash fluid to rhythmically sweep back and forth between the side walls and the oscillation chamber and issue in a sweeping rhythmic fashion and through the outlet. According to the invention, the top and bottom walls of the oscillation chamber diverge for a predetermined distance in a downstream direction and then converge towards each other through the outlet aperture. For different housings, and different physical applications, the degree of the taper can be changed to accommodate the deflection angles required by different vehicles, to thereby reduce the cost of housing design and the tools.
The invention retains the droplet size without causing a detrimental increase in smaller droplets which are more adversely affected by wind and air flow effects over the vehicle. One of the basic objectives of the fluidic windshield washer nozzle is to have a fan spray which has a designed or predetermined droplet distribution through the fan and the present invention retains desired droplet distribution while providing the uniform droplet distribution of Stouffer U.S. Pat. No. 4,508,267.
DESCRIPTION OF THE DRAWINGS
The above and other objects, advantages and features of the invention become more apparent when considered with the following specification and accompanying drawings wherein:
FIG. 1A is a diagrammatic sketch of an automobile windshield washer system to which the invention has been applied;
FIG. 1B is a diagrammatic sketch of an automobile windshield washer system wherein there is a dual fan, one for the driver side and one for the passenger side;
FIG. 1C is a diagrammatic illustration of a “wet arm” windshield washer system wherein the nozzles are mounted on the arms of the wiper blades;
FIG. 2A is a top plan view of a silhouette of a power fluidic oscillator as disclosed in Bray, Jr. U.S. Pat. Nos. 4,463,904 and 4,645,126; and FIG. 2B is a sectional view of the fluidic oscillator shown in FIG. 2A as inserted in a rectangular housing;
FIG. 3A is a top silhouette of a fluidic oscillator as disclosed in Stouffer U.S. Pat. No. 4,508,267; and
FIG. 3B is a section view through a centerline thereof;
FIG. 4A is a silhouette of a fluidic oscillator element having the bump in the nozzle, outlet aperture;
FIG. 4B is a sectional view thereof through a power nozzle and outlet aperture;
FIG. 5A is a top plan view of a silhouette of a fluidic oscillator incorporating the present invention; and
FIG. 5B is a sectional view through lines BB of FIG. 5A.
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1A, 1B and 1C depict vehicle windshields with different techniques utilized in the art for mounting the windshield washer nozzles for applying a fan spray of washer fluid droplets to the windshield glass surface to be cleaned. It will be appreciated that while the invention has been illustrated as applied to the windshield of the vehicle, it can be applied to the tailgate window glass or to glass headlamp washers, the principal use being for windshield glass. As shown in FIG. 1, vehicle windshield 10 is provided with a single fan spray device 11 which issues a fan spray 12 of proper droplet size and sweep frequency. Wash liquid for spray 12 is provided by pump 13 from reservoir 14 which would conventionally be under the hood of the vehicle. Windshield wash liquid 16 is contain ed in reservoir 14. In FIG. 1B, a pair of fluidic oscillator nozzles 11R and 11L, one for the passenger's side and one for the driver's side of the vehicle are provided for issuing fan sprays 12R and 12L from the windshield for the respective driver and passenger sides of the vehicle. In FIG. 1A, a fluid oscillator of the type shown in FIG. 2 which is heavy ended, and this is due principally to Coanda wall attachment effects, so the sides of the spray are heavier or more concentrated in wash fluid droplets than the center of the spray so as to provide equal amounts of wash fluid for distribution on the driver and the passenger sides.
In the embodiment shown in FIG. 1B, fluidic oscillators of the type shown in FIG. 3 are preferred since these provide relatively uniform droplet distributions throughout the fan spray. FIG. 1C illustrates a “wet arm” embodiment wherein the nozzles are mounted on the wiper arm while FIG. 1C illustrates the spray as being to the left of the wiper arm having its position shown, it will be appreciated that various combinations can be utilized when spraying either from the left or the right of the wiper arm depending on design considerations. Either type of fluidic oscillator may be used in this embodiment.
As described in the above referenced Bray, Jr. U.S. Pat. Nos. 4,463,904 and 4,645,126 and Stouffer U.S. Pat. No. 4,508,267, a system of vortices is established in the oscillation chamber of the respective oscillators. Each of the oscillators causes a jet of wash fluid to be issued through the outlet to ambient, which jet is oscillated or swept back and forth in a fan angle β and which varies from about 30° to about 160° as set forth in Stouffer U.S. Pat. No. 4,508,267.
In the aforementioned Bray, Jr. patents and also in the Stouffer patent, the upper (roof) or lower walls or both of the fluidic oscillator have a taper incorporated therein so that the walls diverge from each other in the direction of the outlet OL so as to expand the power jet in cold weather, a typical taper or angle being about 5°. In the aforementioned Bray, Jr. patents, the taper is within a range of 2° and about 10° with 5° being found to be most acceptable since the taper angle is a function of the distance between a power nozzle and the fluid outlet.
In the nozzle construction shown in FIGS. 4A and 4B, a step or bump 30 is provided at the outlet OL of the fluidic circuit to create up to about 6° deflection angle. However, such a step deteriorates fluidic function and creates the following undesirable side affects:
1. Inconsistent and unreliable deflection angles due to the high sensitivity of the flow to the step height.
2. Reduced fan angles and slow rates because the step reduces the throat area.
3. Smaller than normal droplets caused by the fluid impact on the step.
4. Messier spray caused by the fluid impact on the step; and
5. Degraded waves as a direct result of the fluidic functions made by the step.
The deflection angles of the fluidic oscillator can be adjusted by using the taper as shown in the Bray, Jr. and Stouffer patents. This eliminates the impact between the fluid and the step, and therefore the spray is not as messy and the wave is usually not degraded until the taper reaches about 10°14 12° when the flow begins to separate from the floor of the insert. The deflection angle is not as sensitive to the taper as the step. However, with the use of a larger taper the spray comes much thicker making it difficult and inconsistent to find the center of a thick spray.
THE PRESENT INVENTION
In order to create the required deflection angle without the above problems, the fluidic oscillator of the present invention solves this problem by use of a reverse taper at the outlet of the fluidic insert to adjust the deflection angles of the fluidic washer nozzles. These are shown in FIGS. 5A and 5B.
The most critical parameter of the reverse taper insert is its deflection angle, although other performance factors (such as fan angle, flow rate, spray thickness, wave pattern, fluid droplet size and spray cleanliness) are important as well. By adding the reverse taper RT, at angle φ the thickness of the spray can be reduced which makes the deflection angles more consistent and reliable and as a result, of the thinner spray, fluid is more concentrated in the middle which aids in the dynamic performance of the fluidic windshield washer nozzle. Moreover, the reverse taper does not create as much destruction of the spray as the step at the outlet of the insert. This makes the spray cleaner and not as degraded as in the case of the step at the outlet (FIGS. 4A and 4B). In fact, the droplet sizes are also larger which is good for high speed testing since the high speed wind affects on small droplets is significant. In most cases, the throat depth and throat area are unchanged by adjusting the taper after the reverse taper is added to the insert. Therefore, the fan angle does not have to be reduced by the addition of reverse taper.
In a preferred embodiment, the diverging taper from the power nozzle PW to the point where the converging or reverse taper begin is about 5° and the reverse taper angles φ is about 3°. By making various combinations of changes in this angle in the fluidic insert, the deflection angle DA can be adjusted without making any changes in the housing. The length Lr of the reverse taper can also be adjusted.
While the invention has been described and illustrated with respect to specific embodiments, it will be clear that various modifications and adaptations and changes to the invention will be obvious to those skilled in the art without departing from the true spirit and scope of the invention as set forth in the appended claims.

Claims (4)

What is claimed is:
1. In a vehicle washer nozzle system having a source of washer fluid under pressure, a fluidic oscillator having a power nozzle, an oscillation chamber having an upstream end coupled to said power nozzle for issuing a jet of washer liquid into said oscillation chamber and a downstream end having an outlet aperture for issuing a jet of wash fluid to ambient, and side and top and bottom walls, an oscillation inducing means in said oscillation chamber for causing said jet of wash fluid to rhythmically sweep back and forth between said sidewalls and said oscillation chamber, the improvement wherein said top and bottom walls first gradually diverge for predetermined distance in a downstream direction and then gradually converge towards each other through said outlet aperture.
2. A vehicle windshield washer system defined in claim 1 wherein said walls diverge at about a 5° angle and said walls begin to converge towards each other at a position in advance of said outlet aperture.
3. In a washer nozzle system having a source of washer fluidic under pressure, a fluidic oscillator having a power nozzle, an oscillation chamber having an upstream end coupled to said power nozzle for issuing a jet of wash liquid into said oscillation chamber and a downstream end having an outlet aperture for issuing a jet of wash fluid to ambient, and side and top and bottom walls, an oscillation inducing means in said oscillation chamber for causing said jet of wash fluid to rhythmically sweep back and forth between said sidewalls and said oscillation chamber, the improvement wherein said top and bottom walls first gradually diverge for predetermined distance in a downstream direction and then gradually converge towards each other through said outlet aperture.
4. A washer nozzle system defined in claim 3 wherein said walls diverge at about a 5° angle and said walls begin to converge towards each other at a position in advance of said outlet aperture.
US09/566,400 1996-04-19 2000-05-04 Liquid spray systems Expired - Lifetime USRE38013E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/566,400 USRE38013E1 (en) 1996-04-19 2000-05-04 Liquid spray systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/636,765 US5749525A (en) 1996-04-19 1996-04-19 Fluidic washer systems for vehicles
US09/566,400 USRE38013E1 (en) 1996-04-19 2000-05-04 Liquid spray systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/636,765 Reissue US5749525A (en) 1996-04-19 1996-04-19 Fluidic washer systems for vehicles

Publications (1)

Publication Number Publication Date
USRE38013E1 true USRE38013E1 (en) 2003-03-04

Family

ID=24553238

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/636,765 Ceased US5749525A (en) 1996-04-19 1996-04-19 Fluidic washer systems for vehicles
US09/566,400 Expired - Lifetime USRE38013E1 (en) 1996-04-19 2000-05-04 Liquid spray systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/636,765 Ceased US5749525A (en) 1996-04-19 1996-04-19 Fluidic washer systems for vehicles

Country Status (9)

Country Link
US (2) US5749525A (en)
EP (1) EP0894026B1 (en)
JP (1) JP3930910B2 (en)
AT (1) ATE228890T1 (en)
AU (1) AU713623B2 (en)
BR (1) BR9708749A (en)
CA (1) CA2250171A1 (en)
DE (1) DE69717615T2 (en)
WO (1) WO1997039830A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050214147A1 (en) * 2004-03-25 2005-09-29 Schultz Roger L Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US6976507B1 (en) 2005-02-08 2005-12-20 Halliburton Energy Services, Inc. Apparatus for creating pulsating fluid flow
US20060108442A1 (en) * 2003-09-29 2006-05-25 Bowles Fluidics Corporation Enclosures for fluidic oscillators
US20060255167A1 (en) * 2005-05-13 2006-11-16 Vogel John D Power sprayer
US20070194148A1 (en) * 2006-02-06 2007-08-23 Rosko Michael S Power sprayer
US20070257133A1 (en) * 2004-09-27 2007-11-08 Jens Bettenhausen Nozzle Device For Cleaning A Window
US20070295840A1 (en) * 2003-09-29 2007-12-27 Bowles Fluidics Corporation Fluidic oscillators and enclosures with split throats
EP1884426A3 (en) * 2006-08-02 2008-11-19 Hella KG Hueck & Co. Cleaning facility for windscreens
US20090236449A1 (en) * 2005-10-06 2009-09-24 Bowles Fluidics Corporation High efficiency, multiple throat fluidic oscillator
US8205812B2 (en) 2005-10-06 2012-06-26 Bowles Fluidics Corporation Enclosures for multiple fluidic oscillators
US9943863B2 (en) 2015-04-29 2018-04-17 Delta Faucet Company Showerhead with scanner nozzles
US9992388B2 (en) 2011-03-10 2018-06-05 Dlhbowles, Inc. Integrated automotive system, pop up nozzle assembly and remote control method for cleaning a wide angle image sensors exterior surface
US10328906B2 (en) 2014-04-11 2019-06-25 Dlhbowles, Inc. Integrated automotive system, compact, low-profile nozzle assembly and compact fluidic circuit for cleaning a wide-angle image sensor's exterior surface
US10350647B2 (en) 2011-03-10 2019-07-16 Dlhbowles, Inc. Integrated automotive system, nozzle assembly and remote control method for cleaning an image sensor's exterior or objective lens surface
US10525937B2 (en) 2014-04-16 2020-01-07 Dlhbowles, Inc. Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning a plurality of image sensors
US10549290B2 (en) 2016-09-13 2020-02-04 Spectrum Brands, Inc. Swirl pot shower head engine
US11267003B2 (en) 2005-05-13 2022-03-08 Delta Faucet Company Power sprayer
US11305297B2 (en) 2017-06-05 2022-04-19 Dlhbowles, Inc. Compact low flow rate fluidic nozzle for spraying and cleaning applications having a reverse mushroom insert geometry

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467701B2 (en) * 1997-09-26 2002-10-22 Mannesmann Vdo Ag Shield cleaning system
US5906317A (en) * 1997-11-25 1999-05-25 Bowles Fluidics Corporation Method and apparatus for improving improved fluidic oscillator and method for windshield washers
DE19820897C2 (en) * 1998-05-09 2002-02-28 Mannesmann Vdo Ag cleaning device
US6978951B1 (en) * 1998-10-28 2005-12-27 Bowles Fluidics Corporation Reversing chamber oscillator
US6186409B1 (en) * 1998-12-10 2001-02-13 Bowles Fluidics Corporation Nozzles with integrated or built-in filters and method
US6575386B1 (en) * 2000-07-11 2003-06-10 Bowles Fluidics Corporation Spa nozzles with air entrainment
JP2002067888A (en) * 2000-08-30 2002-03-08 Nippon Vinylon Kk Variable jet direction nozzle and liquid jet device
US7036749B1 (en) 2001-07-25 2006-05-02 Bowles Fluidics Corporation Washer nozzle with integrated adjustable aim fluidic insert (chip) and method
US7014131B2 (en) 2002-06-20 2006-03-21 Bowles Fluidics Corporation Multiple spray devices for automotive and other applications
CZ12485U1 (en) * 2002-06-25 2002-07-24 Hydrosystem Group, A.S. Fluidic nozzle
DE10234871A1 (en) * 2002-07-31 2004-02-12 Valeo Auto-Electric Wischer Und Motoren Gmbh Nozzle for a washing system for vehicle windows and washing system
US7302731B2 (en) * 2002-12-11 2007-12-04 Asmo Co., Ltd. Washer equipment
US7651036B2 (en) * 2003-10-28 2010-01-26 Bowles Fluidics Corporation Three jet island fluidic oscillator
US6860157B1 (en) * 2004-01-30 2005-03-01 National Tsing Hua University Fluidic oscillator
US20050252539A1 (en) * 2004-05-17 2005-11-17 Asmo Co., Ltd. Vehicular washer nozzle
US7354008B2 (en) * 2004-09-24 2008-04-08 Bowles Fluidics Corporation Fluidic nozzle for trigger spray applications
US7267290B2 (en) * 2004-11-01 2007-09-11 Bowles Fluidics Corporation Cold-performance fluidic oscillator
US8662421B2 (en) 2005-04-07 2014-03-04 Bowles Fluidics Corporation Adjustable fluidic sprayer
DE102005039670B4 (en) * 2005-08-22 2019-11-21 Continental Automotive Gmbh Nozzle device for cleaning a window of a motor vehicle
US7478764B2 (en) * 2005-09-20 2009-01-20 Bowles Fluidics Corporation Fluidic oscillator for thick/three-dimensional spray applications
US7775456B2 (en) * 2006-06-16 2010-08-17 Bowles Fluidics Corporation Fluidic device yielding three-dimensional spray patterns
DE102006054507B3 (en) * 2006-11-20 2008-02-14 Piller Entgrattechnik Gmbh Multi-component nozzle producing jet of sand, air or water has nozzle entrance passing into nozzle chamber extending to inside of adjacent cover plate
CN101631622B (en) 2006-12-14 2013-04-24 特罗诺克斯有限公司 An improved jet for in a jet mill micronizer
FR2957575B1 (en) * 2010-03-16 2013-04-12 Peugeot Citroen Automobiles Sa METHOD FOR MANUFACTURING A WASH FLUID SPRAY FOR A GLASS OF A MOTOR VEHICLE
US20120021374A1 (en) * 2010-07-23 2012-01-26 Water Pik, Inc. Oscillating spray tip for oral irrigator
EP3628551A1 (en) 2012-02-23 2020-04-01 dlhBOWLES, Inc. Adaptive, multi-mode washer system
RU2515866C2 (en) * 2012-06-26 2014-05-20 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Gas-liquid injector
CN107073489B (en) 2014-10-15 2020-06-30 伊利诺斯工具制品有限公司 Fluid sheet of nozzle
KR20170099891A (en) 2014-12-25 2017-09-01 니폰 비닐론 가부시키가이샤 Washer nozzle
JP6681016B2 (en) * 2015-09-30 2020-04-15 Toto株式会社 Water discharge device
DE102015222771B3 (en) 2015-11-18 2017-05-18 Technische Universität Berlin Fluidic component
DE102017212961A1 (en) * 2017-07-27 2019-01-31 Fdx Fluid Dynamix Gmbh Fluidic component
US20200254464A1 (en) 2019-02-07 2020-08-13 Dlhbowles, Inc. Nozzle assemblies and a method of making the same utilizing additive manufacturing
CN111623505B (en) * 2020-05-25 2022-03-15 太原理工大学 Self-oscillation jet flow type mixing-increasing heat exchange air outlet device
CN113019789B (en) * 2021-03-19 2022-02-15 大连理工大学 Wall-separating type feedback jet oscillator
KR102595305B1 (en) * 2021-11-04 2023-10-30 인하대학교 산학협력단 Performance analysis of a fluidic oscillator with a tapered outlet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507275A (en) * 1966-08-17 1970-04-21 Robert J Walker Mouth flushing apparatus
US4000757A (en) * 1975-12-04 1977-01-04 The United States Of America As Represented By The Secretary Of The Navy High gain fluid amplifier
US4052002A (en) * 1974-09-30 1977-10-04 Bowles Fluidics Corporation Controlled fluid dispersal techniques
US4157161A (en) * 1975-09-30 1979-06-05 Bowles Fluidics Corporation Windshield washer
WO1981001966A1 (en) * 1980-01-14 1981-07-23 Bowles Fluidics Corp Liquid oscillator device
US4463904A (en) * 1978-11-08 1984-08-07 Bowles Fluidics Corporation Cold weather fluidic fan spray devices and method
US4508267A (en) * 1980-01-14 1985-04-02 Bowles Fluidics Corporation Liquid oscillator device
US4645126A (en) * 1978-11-08 1987-02-24 Bowles Fluidics Corporation Cold weather fluidic windshield washer method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721251A (en) * 1984-07-27 1988-01-26 Nippon Soken, Inc. Fluid dispersal device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507275A (en) * 1966-08-17 1970-04-21 Robert J Walker Mouth flushing apparatus
US4052002A (en) * 1974-09-30 1977-10-04 Bowles Fluidics Corporation Controlled fluid dispersal techniques
US4157161A (en) * 1975-09-30 1979-06-05 Bowles Fluidics Corporation Windshield washer
US4157161B1 (en) * 1975-09-30 1986-04-08
US4000757A (en) * 1975-12-04 1977-01-04 The United States Of America As Represented By The Secretary Of The Navy High gain fluid amplifier
US4463904A (en) * 1978-11-08 1984-08-07 Bowles Fluidics Corporation Cold weather fluidic fan spray devices and method
US4645126A (en) * 1978-11-08 1987-02-24 Bowles Fluidics Corporation Cold weather fluidic windshield washer method
WO1981001966A1 (en) * 1980-01-14 1981-07-23 Bowles Fluidics Corp Liquid oscillator device
US4508267A (en) * 1980-01-14 1985-04-02 Bowles Fluidics Corporation Liquid oscillator device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108442A1 (en) * 2003-09-29 2006-05-25 Bowles Fluidics Corporation Enclosures for fluidic oscillators
US7677480B2 (en) 2003-09-29 2010-03-16 Bowles Fluidics Corporation Enclosures for fluidic oscillators
US20070295840A1 (en) * 2003-09-29 2007-12-27 Bowles Fluidics Corporation Fluidic oscillators and enclosures with split throats
US7404416B2 (en) 2004-03-25 2008-07-29 Halliburton Energy Services, Inc. Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US20050214147A1 (en) * 2004-03-25 2005-09-29 Schultz Roger L Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US20070257133A1 (en) * 2004-09-27 2007-11-08 Jens Bettenhausen Nozzle Device For Cleaning A Window
US6976507B1 (en) 2005-02-08 2005-12-20 Halliburton Energy Services, Inc. Apparatus for creating pulsating fluid flow
US20060255167A1 (en) * 2005-05-13 2006-11-16 Vogel John D Power sprayer
US10618066B2 (en) 2005-05-13 2020-04-14 Delta Faucet Company Power sprayer
US11267003B2 (en) 2005-05-13 2022-03-08 Delta Faucet Company Power sprayer
US7850098B2 (en) 2005-05-13 2010-12-14 Masco Corporation Of Indiana Power sprayer
US9962718B2 (en) 2005-05-13 2018-05-08 Delta Faucet Company Power sprayer
US20090236449A1 (en) * 2005-10-06 2009-09-24 Bowles Fluidics Corporation High efficiency, multiple throat fluidic oscillator
US8172162B2 (en) 2005-10-06 2012-05-08 Bowles Fluidics Corp. High efficiency, multiple throat fluidic oscillator
US8205812B2 (en) 2005-10-06 2012-06-26 Bowles Fluidics Corporation Enclosures for multiple fluidic oscillators
US8424781B2 (en) 2006-02-06 2013-04-23 Masco Corporation Of Indiana Power sprayer
US20070194148A1 (en) * 2006-02-06 2007-08-23 Rosko Michael S Power sprayer
EP1884426A3 (en) * 2006-08-02 2008-11-19 Hella KG Hueck & Co. Cleaning facility for windscreens
US9992388B2 (en) 2011-03-10 2018-06-05 Dlhbowles, Inc. Integrated automotive system, pop up nozzle assembly and remote control method for cleaning a wide angle image sensors exterior surface
US10350647B2 (en) 2011-03-10 2019-07-16 Dlhbowles, Inc. Integrated automotive system, nozzle assembly and remote control method for cleaning an image sensor's exterior or objective lens surface
US10432827B2 (en) 2011-03-10 2019-10-01 Dlhbowles, Inc. Integrated automotive system, nozzle assembly and remote control method for cleaning an image sensors exterior or objective lens surface
US10328906B2 (en) 2014-04-11 2019-06-25 Dlhbowles, Inc. Integrated automotive system, compact, low-profile nozzle assembly and compact fluidic circuit for cleaning a wide-angle image sensor's exterior surface
US10525937B2 (en) 2014-04-16 2020-01-07 Dlhbowles, Inc. Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning a plurality of image sensors
US11472375B2 (en) 2014-04-16 2022-10-18 Dlhbowles, Inc. Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning a plurality of image sensors
US9943863B2 (en) 2015-04-29 2018-04-17 Delta Faucet Company Showerhead with scanner nozzles
US11241702B2 (en) 2015-04-29 2022-02-08 Delta Faucet Company Showerhead with scanner nozzles
US10399094B2 (en) 2015-04-29 2019-09-03 Delta Faucet Company Showerhead with scanner nozzles
US10549290B2 (en) 2016-09-13 2020-02-04 Spectrum Brands, Inc. Swirl pot shower head engine
US11504724B2 (en) 2016-09-13 2022-11-22 Spectrum Brands, Inc. Swirl pot shower head engine
US11813623B2 (en) 2016-09-13 2023-11-14 Assa Abloy Americas Residential Inc. Swirl pot shower head engine
US11305297B2 (en) 2017-06-05 2022-04-19 Dlhbowles, Inc. Compact low flow rate fluidic nozzle for spraying and cleaning applications having a reverse mushroom insert geometry

Also Published As

Publication number Publication date
US5749525A (en) 1998-05-12
JP3930910B2 (en) 2007-06-13
AU713623B2 (en) 1999-12-09
ATE228890T1 (en) 2002-12-15
JP2000508988A (en) 2000-07-18
WO1997039830A1 (en) 1997-10-30
CA2250171A1 (en) 1997-10-30
AU2659497A (en) 1997-11-12
EP0894026B1 (en) 2002-12-04
BR9708749A (en) 1999-08-03
EP0894026A1 (en) 1999-02-03
EP0894026A4 (en) 1999-03-24
DE69717615D1 (en) 2003-01-16
DE69717615T2 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
USRE38013E1 (en) Liquid spray systems
US6240945B1 (en) Method and apparatus for yawing the sprays issued from fluidic oscillators
US4508267A (en) Liquid oscillator device
US4157161A (en) Windshield washer
EP1513711B1 (en) Multiple spray devices for automotive and other applications
US7472848B2 (en) Cold-performance fluidic oscillator
US5820026A (en) High-speed windshield washer nozzle system
KR20120113652A (en) High efficiency, multiple throat fluidic oscillator
US4618096A (en) Window washer for vehicle
JP3647735B2 (en) Nozzle structure in washer liquid injection device
JP3076549B2 (en) Washer nozzle
JP3752732B2 (en) Washer nozzle
EP0020446B1 (en) Dual pattern windshield washer nozzle
JPS599378B2 (en) Spray type washer device
US6978951B1 (en) Reversing chamber oscillator
EP0044331B1 (en) Liquid oscillator device
JP3940075B2 (en) Vehicle washer nozzle and vehicle washer device
JPH11180264A (en) Cowl panel
CA1095666A (en) Windshield washer having swept jet dispensing means
JP3157747B2 (en) Automotive washer nozzle
JPH0427911B2 (en)

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11

AS Assignment

Owner name: MADISON CAPITAL FUNDING LLC, AS AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:BOWLES FLUIDICS CORPORATION;REEL/FRAME:034679/0163

Effective date: 20141219

AS Assignment

Owner name: DLHBOWLES, INC., OHIO

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:BOWLES FLUIDICS CORPORATION;DLH INDUSTRIES, INC.;REEL/FRAME:037690/0026

Effective date: 20160108

AS Assignment

Owner name: DLHBOWLES, INC., OHIO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MADISON CAPITAL FUNDING LLC;REEL/FRAME:059697/0435

Effective date: 20220301