USRE37307E1 - Ultra-thin integral composite membrane - Google Patents

Ultra-thin integral composite membrane Download PDF

Info

Publication number
USRE37307E1
USRE37307E1 US09/137,515 US13751598A USRE37307E US RE37307 E1 USRE37307 E1 US RE37307E1 US 13751598 A US13751598 A US 13751598A US RE37307 E USRE37307 E US RE37307E
Authority
US
United States
Prior art keywords
membrane
ion exchange
composite membrane
mils
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/137,515
Inventor
Bamdad A. Bahar
Robert S. Mallouk
Alex R. Hobson
Jeffrey A. Kolde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gore Enterprise Holdings Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/404,853 external-priority patent/US5547551A/en
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Priority to US09/137,515 priority Critical patent/USRE37307E1/en
Assigned to W L GORE & ASSOCIATES, INC. reassignment W L GORE & ASSOCIATES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MALLOUK, ROBERT S.
Assigned to W. L. GORE & ASSOCIATTES INC. reassignment W. L. GORE & ASSOCIATTES INC. SEE RECORDING AT REEL 010624, FRAME 0038. (RE-RECORDED TO CORRECT THE RECORDATION) Assignors: MALLOUK, ROBERT S.
Application granted granted Critical
Publication of USRE37307E1 publication Critical patent/USRE37307E1/en
Assigned to GORE ENTERPRISE HOLDINGS, INC. reassignment GORE ENTERPRISE HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: W. L. GORE & ASSOCIATES, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • An integral composite membrane having a thickness of less than about 1 mil (0.025 mm) is provided which is useful in electrolytic processes and other chemical separations.
  • Ion exchange membranes are used in fuel cells as solid electrolytes. A membrane is located between the cathode and anode and transports protons formed near the catalyst at the hydrogen electrode to the oxygen electrode thereby allowing a current to be drawn from the cell.
  • These polymer electrolyte fuel cells are particularly advantageous because they operate at lower temperatures than other fuel cells. Also, these polymer electrolyte fuel cells do not contain any corrosive acids which are found in phosphoric acid fuel cells.
  • Ion exchange membranes are also used in chloralkali applications to separate brine mixtures to form chlorine gas and sodium hydroxide.
  • the membrane selectively transports the sodium ions across the membrane while rejecting the chloride ions.
  • IEMs are useful in the areas of diffusion dialysis, electrodialysis and for pervaporation and vapor permeation separations.
  • electrolytes can be divided into a concentrated and a diluted stream. This is accomplished by arraying anionic and cationic exchange membranes in a filter press arrangement. Alternating compartments between the membranes are filled with either the feed stream or the product stream. An electric field is applied across this series array by inserting electrodes in the end compartments. At the positive electrode, oxygen is produced, as well as hydrogen ions. At the negative electrode, hydrogen is evolved as well as hydroxide ions.
  • a diffusion dialysis system consists of a filter press type arrangement with anion or cation exchange membranes between compartments of that system. Alternate compartments are filled with either the waste material or water. The desired ions diffuse through the membrane. The undesired ions are rejected and removed as waste.
  • IEMs must have sufficient strength to be useful in their various applications. Often this need for increased strength requires the membranes to be made thicker which decreases their ionic conductivity.
  • IEMs that are not reinforced are inherently weak, and must be reinforced at small thicknesses (e.g., less than 0.050 mm) with additional materials causing the final product to have increased thickness.
  • U.S. Pat. No. 3,692,569 to Grot relates to the use of a coating of a copolymer of fluorinated ethylene and a sulfonyl-containing fluorinated vinyl monomer on a fluorocarbon polymer that was previously non-wettable.
  • the fluorocarbon polymer may include tetrafluoroethylene polymers.
  • This coating provides a topical treatment to the surface so as to decrease the surface tension of the fluorocarbon polymer.
  • 4,453,991 to Grot relates to a process for making a liquid composition of a perfluorinated polymer having sulfonic acid or sulfonate groups in a liquid medium that is contacted with a mixture of water and a second liquid, such as a low molecular weight alcohol.
  • the liquid made by the process may be used as a coating, a cast film, or as a repair for perfluorinated ion exchange films and membranes.
  • U.S. Pat. No. 4,453,991 to Grot relates to a process for making articles coated with a liquid composition of a perfuorinated polymer having sulfonic acid or sulfonate groups in a liquid medium by contacting the polymer with a mixture of 25 to 100% by weight of water and 0 to 75% by weight of a second liquid component, such as a low molecular weight alcohol, in a closed system.
  • a second liquid component such as a low molecular weight alcohol
  • U.S. Pat. No. 4,469,744 to Grot et al. relates to a protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer.
  • Example 1 refers to a microporous polytetrafluoroethylene (PTFE) film having a thickness of 127 micrometers as described by U.S. Pat. No. 3,962,153. Solution is applied with the use of a vacuum. The film was then placed in an oven (under vacuum) at 120Ā° C. for 5 hours. The final product had a thickness of about 127 micrometers (5 mils) and required the use of a vacuum to provide for any impregnation.
  • PTFE polytetrafluoroethylene
  • U.S. Pat. No. 4,902,308 to Mallouk, et al. relates to a film of porous expanded PTFE having its surfaces, both exterior and internal, coated with a metal salt of perfluoro-cation exchange polymer.
  • the base film of porous, expanded PTFE (ePTFE) had a thickness of between 1 mil and 6 mils (0.025-0.150 mm).
  • the final composite product had a thickness of at least 1 mil (0.025 mm) and preferably had a thickness of between 1.7 and 3 mils (0.043-0.075 mm).
  • the composite product was permeable to air and the air flow, as measured by the Gurley densometer ASTM D726-58, was found to be between 12 and 22 seconds.
  • U.S. Pat. No. 4,954,388 to Mallouk, et al. relates to an abrasion-resistant, tear resistant, multi-layer composite membrane having a film of continuous ion exchange polymer attached to a reinforcing fabric by means of an interlayer of porous expanded PTFE.
  • a coating of a ion exchange resin was present on at least a portion of the internal and external surfaces of the fabric and porous ePTFE.
  • the composite membrane made in accordance with the teachings of this patent resulted in thicknesses of greater than 1 mil (0.025 mm) even when the interlayer of porous ePTFE had a thickness of less than 1 mil (0.025 mm).
  • U.S. Pat. No. 5,082,472 to Mallouk, et al. relates to a composite membrane of microporous film in laminar contact with a continuous ion exchange resin layer wherein both layers have similar area dimensions. Surfaces of internal nodes and fibrils of ePTFE may be coated at least in part with ion exchange resin coating.
  • the membrane of ePTFE had a thickness of about 2 mils (0.050 mm) or less and the ion exchange layer in its original state had a thickness of about 1 mil (0.025 mm).
  • the ePTFE layer of this composite membrane imparted mechanical strength to the composite structure and the interior of the ePTFE was preferably essentially untilled so as to not block the flow of fluids.
  • U.S. Pat. Nos. 5,094,895 and 5,183,545 to Branca, et al. relate to a composite porous liquid-permeable article having multiple layers of porous ePTFE bonded together and having interior and exterior surfaces coated with an ion exchange polymer.
  • This composite porous article is particularly useful as a diaphragm in electrolytic cells.
  • the composite articles are described to be relatively thick, preferably between from 0.76 and 5 mm.
  • U.S. Pat. No. 4,341,615 to Bachot, et al. relates to a fluorinated resin base material treated with a copolymer of an unsaturated carboxylic acid and a non-ionic unsaturated monomer for use as a porous diaphragm in the electrolysis of alkaline metal chlorides.
  • the fluorinated resin base material may be reinforced with fibers, such as asbestos, glass, quartz, zirconia, carbon, polypropylene, polyethylene, and fluorinated polyhalovinylidene (col. 2, lines 13-17). Only 0.1 to 6 percent of the total pore volume of the support sheet is occupied by the carboxylic copolymer.
  • U.S. Pat. No. 4,604,170 to Miyake et al. relates to a multi-layered diaphragm for electrolysis comprising a porous layer of a fluorine-containing polymer, having a thickness of from 0.03 to 0.4 mm with its interior and anode-side surface being hydrophilic and an ion exchange layer on its cathode surface.
  • the ion exchange layer is thinner than the porous layer, with a thickness of at least 0.005 mm, and the total thickness of the diaphragm is from 0.035 to 0.50 mm.
  • U.S. Pat. No. 4,865,925 to Ludwig, et al. relates to a gas permeable electrode for electrochemical systems.
  • the electrode includes a membrane located between, and in contact with, an anode and a cathode.
  • the membrane which may be made of expanded polytetrafluoroethylene, may be treated with an ion exchange membrane material with the resulting membrane maintaining its permeability to gas.
  • Membrane thicknesses are described to be between 1 and 10 mils, (0.025-0.25 mm), with thicknesses of less than 5 mils (0.125) to be desirable. Examples show that membrane thicknesses range from 15 to 21 mils.
  • Japanese Patent Application No. 62-240627 relates to a coated or an impregnated membrane formed with a perfluoro type ion exchange resin and porous PTFE film to form an integral unit.
  • the resulting composite is not fully occlusive.
  • the teachings of this patent do not provide for permanent adhesion of the ion exchange resin to the inside surface of the PTFE film.
  • the weight ratio of the ion exchange resin to PTFE is described to be in the range of 3 to 90% with a preferable weight ratio of 10 to 30%.
  • Japanese Application Nos. 62-280230 and 62-280231 relate to a composite structure in which a scrim or open fabric is heat laminated and encapsulated between a continuous ion exchange membrane and an ePTFE sheet thus imparting tear strength to the structure.
  • the present invention is a distinct advancement over presently known inn exchange membranes, and the techniques for making such membranes.
  • this is accomplished by providing an ultra-thin integral composite membrane comprised of an expanded polytetrafluoroethylene having a porous microstructure defined by nodes interconnected by fibrils. The total thickness of the membrane is less than 0.025 mm.
  • An ion exchange material is impregnated throughout such that the membrane is essentially air impermeable.
  • the ion exchange material may be selected from a group consisting of perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers, and metal salts with or without a polymer.
  • the membrane may be bonded to a reinforcement backing of a woven or nonwoven material.
  • an ion exchange membrane comprises an expanded polytetrafluoroethylene having a porous microstructure defined substantially of fibrils with no nodes present.
  • the porous microstructure of such a membrane defines pores having an average size of from about 0.05 to about 0.4 ā‡ m.
  • the total thickness of this membrane is less than 13 ā‡ m.
  • An ion exchange material is impregnated throughout the membrane such that the membrane is essentially air impermeable.
  • the ion exchange material may be of the type described hereinabove.
  • a method for making an ion exchange membrane of the present invention comprises the following steps:
  • FIG. 1 is a schematic cross-section of a composite membrane of the present invention that is fully impregnated with an ion exchange material.
  • FIG. 2 is a schematic cross-section of the composite membrane of the present invention that is fully impregnated with an ion exchange material and including a backing material attached thereto.
  • FIG. 3 is a photomicrograph, at a magnification of 2.5k ā‡ , of a cross-section of an expanded PTFE membrane that has not been treated with an ion exchange material.
  • FIG. 4 is a photomicrograph, at a magnification of 5.1k ā‡ , of a cross-section of an expanded PTFE membrane impregnated with an ion exchange material such that the interior volume of the membrane is substantially occluded.
  • FIG. 5 is a photomicrograph, at a magnification of 20.0k ā‡ , of a cross-section of an expanded PTFE membrane, comprised substantially of fibrils with no nodes present, which has not been treated with an ion exchange material.
  • an ultra-thin composite membrane which includes a base material 4 and an ion exchange material or ion exchange resin 2 .
  • the base material 4 is a membrane which is defined by a thickness of less than 1 mil (0.025 mm) and a porous microstructure characterized by nodes interconnected by fibrils (FIG. 3) or a porous microstructure characterized substantially by fibrils (FIG. 5 ).
  • the ion exchange resin substantially impregnates the membrane so as to render the interior volume substantially occlusive. For instance, by filling greater than 90% of the interior volume of the membrane with ion exchange resin sufficient occlusion will occur.
  • the ion exchange resin is securely adhered to both the external and internal membrane surfaces, i.e. the fibrils and/or nodes of the base material.
  • the ultra-thin composite membrane of the present invention may be employed in various applications, including but not limited to polarity-based chemical separations, electrolysis, fuel cells and batteries, pervaporation, gas separation, dialysis separation, industrial electrochemistry such as chloralkali production and other electrochemical applications, use as a super acid catalyst, or use as a medium in enzyme immobilization, for example.
  • the ultra-thin composite membrane of the present invention is uniform and mechanically strong.
  • ā€œultra-thinā€ is defined as less than 1 mil (0.025 mm); and ā€œuniformā€ is defined as continuous impregnation with the ion exchange material such that no pin holes or other discontinuities exist within the composite structure.
  • the membrane should be ā€œocclusiveā€, meaning that the interior volume of the porous membrane is impregnated such that the interior volume is filled with the ion exchange material and the final membrane is essentially air impermeable having a Gurley number of greater than 10,000 seconds. A fill of 90% or more of the interior volume of the membrane should provide adequate occlusion for purposes of the present invention.
  • a preferred base material 4 is an expanded polytetrafluoroethylene (ePTFE) made in accordance with the teachings of U.S. Pat. No. 3,593,566, incorporated herein by reference.
  • ePTFE expanded polytetrafluoroethylene
  • Such a base material has a porosity of greater than 35%.
  • the porosity is between 70-95%.
  • the thickness of the membrane is less than 1 mil (0.025 mm).
  • the thickness is between 0.06 mils (0.19 ā‡ m) and 0.8 mils (0.02 ā‡ m), and most preferably, the thickness is between 0.50 mils (0.013 mm) and 0.75 mils (0.019 mm).
  • This material is commercially available in a variety of forms from W. L.
  • FIG. 3 shows a photomicrograph of the internal porous microstructure of this expanded PTFE.
  • the porous microstructure comprises nodes interconnected by fibrils which define an interior volume of the base material 4 .
  • the base material 4 may comprise an ePTFE material having a porous microstructure defined substantially of fibrils with no nodes present.
  • Such a base material 4 may be referred to as a nonwoven web.
  • a PTFE that has a low amorphous content and a degree of crystallization of at least 98% is used as the raw material. More particularly, a coagulated dispersion or fine powder PTFE may be employed, such as but not limited to FluonĀ® CD-123 and FluonĀ® CD-1 available from ICI Americas, Inc., or TEFLONĀ® fine powders available from E. I. DuPont de Nemours and Co., Inc. (TEFLON is a registered trademark of E. I.
  • the dried tape is then expanded longitudinally between banks of rolls in a space heated to a temperature that is below the polymer melting point (approximately 327Ā° C.).
  • the longitudinal expansion is such that the ratio of speed of the second bank of rolls to the first bank is from about 10-100 to 1.
  • the longitudinal expansion is repeated at about 1-1.5 to 1 ratio.
  • the tape is expanded traversely, at a temperature that is less than about 327Ā° C., to at least 1.5 times, and preferably to 6 to 15 times, the width of the original extrudate, while restraining the membrane from longitudinal contraction. While still under constraint, the membrane is preferably heated to above the polymer melting point (approximately 342Ā° C.) and then cooled.
  • This nonwoven web is characterized by the following:
  • Suitable ion exchange materials 2 include, but are not limited to, perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers and metal salts with or without a polymer. A mixture of these ion exchange materials may also be employed in treating the membrane 4 . Solvents that are suitable for use with the ion exchange material, include for example, alcohols, carbonates, THF (tetrahydrofuran), water, and combinations thereof.
  • a surfactant having a molecular weight of greater than 100 is preferably employed with the ion exchange material 2 to ensure impregnation of the interior volume of the base material 4 .
  • Surfactants or surface active agents having a hydrophobic portion and a hydrophilic portion may be utilized.
  • Preferable surfactants are those having a molecular weight of greater than 100 and may be classified as anionic, nonionic, or amphoteric which may be hydrocarbon or fluorocarbon-based and include for example, MerpolĀ®, a hydrocarbon based surfactant or ZonylĀ®, a fluorocarbon based surfactant, both commercially available from E. I. DuPont de Nemours, Inc. of Wilmington, Del.
  • a most preferred surfactant is a nonionic material, octylphenoxy polyethoxyethanol having a chemical structure:
  • Triton X-100 commercially available from Rohm & Haas of Philadelphia, Pa.
  • the final composite membrane of the present invention has a uniform thickness free of any discontinuities or pinholes on the surface.
  • the interior volume of the membrane is occluded such that the composite membrane is impermeable to non-polar gases and to bulk flow of liquids.
  • the composite membrane may be reinforced with a woven or non-woven material 6 bonded to one side of the base material 4 .
  • Suitable woven materials may include, for example, scrims made of woven fibers of expanded porous polytetrafluoroethylene; webs made of extruded or oriented polypropylene or polypropylene netting, commercially available from Conwed, Inc. of Minneapolis, Minn.; and woven materials of polypropylene and polyester, from Tetko Inc., of Briarcliff Manor, N.Y.
  • Suitable non-woven materials may include, for example, a spun-bonded polypropylene from Reemay Inc. of Old Hickory, Tenn.
  • the treated membrane may be further processed to remove any surfactant which may have been employed in processing the base material as described in detail herein. This is accomplished by soaking or submerging the membrane in a solution of, for example, water, isopropyl alcohol, hydrogen peroxide, methanol, and/or glycerin. During this step, the surfactant, which was originally mixed in solution with the ion exchange material, is removed. This soaking or submerging causes a slight swelling of the membrane, however the ion exchange material remains within the interior volume of the base material 4 .
  • the membrane is further treated by boiling in a suitable swelling agent, preferably water, causing the membrane to slightly swell in the x and y direction. Additional swelling occurs in the z-direction.
  • a suitable swelling agent preferably water
  • Additional swelling occurs in the z-direction.
  • a composite membrane results having a higher ion transport rate that is also strong.
  • the swollen membrane retains its mechanical integrity and dimensional stability unlike the membranes consisting only of the ion exchange material and simultaneously maintains desired ionic transport characteristics.
  • the membrane has excellent long term chemical stability, it can be susceptible to poisoning by organics. Accordingly, it is often desirable to remove such organics from the membrane. For example, organics can be removed by regeneration in which the membrane is boiled in a strong acid such as nitric or chromic acid.
  • a support structure such as a polypropylene woven fabric
  • a support structure may first be laminated to the untreated base material 4 by any conventional technique, such as, hot roll lamination, ultrasonic lamination, adhesive lamination, or forced hot air lamination so long as the technique does not damage the integrity of the base material.
  • a solution is prepared containing an ion exchange material in solvent mixed with one or more surfactants.
  • the solution may be applied to the base material 4 by any conventional coating technique including forwarding roll coating, reverse roll coating, gravure coating, doctor coating, kiss coating, as well as dipping, brushing, painting, and spraying so long as the liquid solution is able to penetrate the interstices and interior volume of the base material.
  • Excess solution from the surface of the membrane may be removed.
  • the treated membrane is then immediately placed into an oven to dry.
  • Oven temperatures may range from 60Ā°-200Ā° C., but preferably 120Ā°-160Ā° C. Drying the treated membrane in the oven causes the ion exchange resin to become securely adhered to both the external and internal membrane surfaces, i.e., the fibrils and/or nodes of the base material. Additional solution application steps, and subsequent drying, may be repeated until the membrane becomes completely transparent. Typically, between 2 to 8 treatments are required, but the actual number of treatments is dependent on the surfactant concentration and thickness of the membrane. If the membrane is prepared without a support structure, both sides of the membrane may be treated simultaneously thereby reducing the number of treatments required.
  • the oven treated membrane is then soaked in a solvent, such as the type described hereinabove, to remove the surfactant. Thereafter, the membrane is boiled in a swelling agent and under a pressure ranging from about 1 to about 20 atmospheres absolute thereby increasing the amount of swelling agent the treated membrane is capable of holding.
  • the ion exchange material may be applied to the membrane without the use of a surfactant.
  • This procedure requires additional treatment with the ion exchange resin. However, this procedure does not require that the oven treated membrane be soaked in a solvent, thereby reducing the total number of process steps.
  • a vacuum may also be used to draw the ion exchange material into the membrane. Treatment without surfactant is made easier if the water content of the solution is lowered.
  • Partial solution dewatering is accomplished by slow partial evaporation of the ion exchange material solution at room temperature followed by the addition of a non-aqueous solvent. Ideally, a fully dewatered solution can be used. This is accomplished in several steps. First, the ion exchange material is completely dried at room temperature. The resulting resin is ground to a fine powder. Finally, this powder is redissolved in a solvent, preferably a combination of methanol and isopropanol.
  • a solvent preferably a combination of methanol and isopropanol.
  • the composite membrane of the present invention is ultra-thin, it is possible to selectively transport ions at a faster rate than previously has been achieved, with only a slight lowering of the selectivity characteristics of the membrane.
  • Specimens were stamped out to conform with Type (II) of ASTM D638.
  • the specimens had a width of 0.635 cm, and a gauge length of 2.54 cm.
  • Thickness of the base material was determined with the use of a snap gauge (Johannes Kafer Co. Model No. F1000/302). Measurements were taken in at least four areas of each specimen. Thickness of the dried composite membrane was also obtained with the use of the snap gauge. Thicknesses of swollen samples were not measurable with the snap gauge due to the compression or residual water on the surface of the swollen membrane. Thickness measurements of the swollen membranes were also not able to be obtained with the use of scanning electron microscopy due to interferences with the swelling agents.
  • a potassium acetate solution having a paste like consistency, was prepared from potassium acetate and distilled water. (Such a paste may be obtained by combining 230 g potassium acetate with 100 g of water, for example.) This solution was placed into a 133 ml. polypropylene cup, having an inside diameter of 6.5 cm. at its mouth.
  • An expanded polytetrafluoroethylene (ePTFE) membrane was provided having a minimum MVTR of approximately 85,000 g/m 2- 24 hr as tested by the method described in U.S. Pat. No. 4,862,730 to Crosby.
  • the ePTFE was heat sealed to the lip of the cup to create a taut, leakproof, microporous barrier containing the solution.
  • a similar ePTFE membrane was mounted to the surface of a water bath.
  • the water bath assembly was controlled at 23Ā° C. ā‡ plus or minus 0.2Ā° C., utilizing a temperature controlled room and a water circulating bath.
  • a sample to be tested Prior to performing the MVTR test procedure, a sample to be tested was allowed to condition at a temperature of 23Ā° C. and a relative humidity of 50%. The sample to be tested was placed directly on the ePTFE membrane mounted to the surface of the water bath and allowed to equilibrate for 15 minutes prior to the introduction of the cup assembly.
  • the cup assembly was weighed to the nearest 1/1000 g. and was placed in an inverted manner onto the center of the test sample.
  • Water transport was provided by a driving force defined by the difference in relative humidity existing between the water in the water bath and the saturated salt solution of the inverted cup assembly. The sample was tested for 10 minutes and the cup assembly was then removed and weighed again within 1/1000 g.
  • the MVTR of the sample was calculated from the weight gain of the cup assembly and was expressed in grams of water per square meter of sample surface area per 24 hours.
  • Peel strength or membrane adhesion strength tests were conducted on membrane samples prepared with reinforced backings. Test samples were prepared having dimensions of 3 inches by 3.5 inches (7.62 cm ā‡ 8.89 cm). Double coated vinyl tape (typeā€”#419 available from the 3M Company of Saint Paul, Minn.) having a width of 1 inch (2.54 cm) was placed over the edges of a 4 inch by 4 inch (10.2 cm. ā‡ 10.2 cm.) chrome steel plate so that tape covered all edges of the plate. The membrane sample was then mounted on top of the adhesive exposed side of the tape and pressure was applied so that sample was adhesively secured to the chrome plate.
  • Double coated vinyl tape typeā€”#419 available from the 3M Company of Saint Paul, Minn.
  • the ionic conductance of the membrane was tested using a Palico 9100-2 type test system.
  • This test system consisted of a bath of 1 molar sulfuric acid maintained at a constant temperature of 25Ā° C. Submerged in the bath were four probes used for imposing current and measuring voltage by a standard ā€œKelvinā€ four-terminal measurement technique. A device capable of holding a separator, such as the sample membrane to be tested, was located between the probes. First, a square wave current signal was introduced into the bath, without a separator in place, and the resulting square wave voltage was measured. This provided an indication of the resistance of the acid bath. The sample membrane was then placed in the membrane-holding device, and a second square wave current signal was introduced into the bath. The resulting square wave voltage was measured between the probes. This was a measurement of the resistance due to the membrane and the bath. By subtracting this number from the first, the resistance due to the membrane alone was found.
  • Reverse expansion in the x and y direction upon dehydration was measured using a type Thermomechanical Analyzer 2940, made by TA Instruments, Inc., of New Castle, Del. This instrument was used to apply a predetermined force to a sample that had been boiled in water for 30 minutes. A quartz probe placed in contact with the sample measured any linear changes in the sample as it dried. A sample was placed in a holder and then dried at 75Ā° C. for greater than 10 min. The change in dimension (i.e., the shrinkage) was recorded as a percentage of the original weight.
  • Liquids with surface free energies less than that of stretched porous PTFE can be forced out of the structure with the application of a differential pressure. This clearing will occur from the largest passageways first. A passageway is then created through which bulk air flow can take place. The air flow appears as a steady stream of small bubbles through the liquid layer on top of the sample. The pressure at which the first bulk air flow takes place is called the bubble point and is dependent on the surface tension of the test fluid and the size of the largest opening.
  • the bubble point can be used as a relative measure of the structure of a membrane and is often correlated with some other type of performance criteria, such as filtration efficiency.
  • the Bubble Point was measured according to the procedures of ASTM F316-86. Isopropyl alcohol was used as the wetting fluid to fill the pores of the test specimen.
  • the Bubble Point is the pressure of air required to displace the isopropyl alcohol from the largest pores of the test specimen and create the first continuous stream of bubbles detectable by their rise through a layer of isopropyl alcohol covering the porous media. This measurement provides an estimation of maximum pore size.
  • Pore size measurements are made by the Coulter PorometerTM, manufactured by Coulter Electronics, Inc., Hialeah, Fla.
  • the Coulter Porometer is an instrument that provides automated measurement of pore size distributions in porous media using the liquid displacement method (described in ASTM Standard E1298-89).
  • the Porometer determines the pore size distribution of a sample by increasing air pressure on the sample and measuring the resulting flow. This distribution is a measure of the degree of uniformity of the membrane (i.e., a narrow distribution means there is little difference between the smallest and largest pore size).
  • the Porometer also calculates the mean flow pore size. By definition, half of the fluid flow through the filter occurs through pores that are above or below this size. It is the mean flow pore size which is most often linked to other filter properties, such as retention of particulates in a liquid stream. The maximum pore size is often linked to the Bubble Point because bulk air flow is first seen through the largest pore.
  • This text measures the relative strength of a sample by determining the maximum load at break.
  • the sample is challenged with a 1 inch diameter ball while being clamped between two plates.
  • the material is placed taut in the measuring device and pressure applied with the ball burst probe. Pressure at break is recorded.
  • the Gurley air flow test measures the time in seconds for 100 cc of air to flow through a one square inch sample at 4.88 inches of water pressure. The sample is measured in a Gurley Densometer (ASTM 0726-58). The sample is placed between the clamp plates. The cylinder is then dropped gently. The automatic timer (or stopwatch) is used to record the time (seconds) required for a specific volume recited above to be displaced by the cylinder. This time is the Gurley number.
  • the Frazier air flow test is similar but is mostly used for much thinner or open membranes.
  • the test reports flow in cubic feet per minute per square foot of material at 0.5 inches water pressure. Air flow can also be measured with the Coulter Porometer. In this test, the operator can select any pressure over a wide range.
  • the Porometer can also perform a pressure hold test that measures air flow during a decreasing pressure curve.
  • the present invention provides for an ultra-thin, integral composite membrane having thicknesses which are significantly less than the thicknesses of conventional multilayer membranes.
  • the membranes of the present invention provide lower electrical resistance. Also, because no porous surfaces are exposed in the present invention, there is no propensity for gasses to become trapped within the interior volume of the membrane thereby causing increased electrical resistance.
  • the ultra-thin integral composite membrane of the present invention can be advantageously employed in electrolytic processes and chemical separations.
  • the membrane of the present invention would take the place of existing cation exchange membranes.
  • This membrane could be of the type which is laminated to a spacer screen in accordance with a specific application. Due to the higher conductance of this membrane, an electrodialysis unit could employ less membrane to achieve a given flux rate, thereby saving space and cost. If equipment is retro-fitted with this membrane, the voltage requirements would be reduced at a given current, or higher current could be run at a given voltage. Also, in a diffusion dialysis system, a given unit employing the membrane of the present invention would provide a higher flux.
  • a fuel cell utilizing the membrane of the present invention, operates at a higher voltage for a given current density due to the improved ionic conductance of this membrane.
  • the membrane of the present invention has a resistance of 0.044 ohm-sq cm. At a current density of 1 A/cm 2 this causes a voltage drop of about 44 mV, or about a 99 mV improvement in cell voltage compared to NAFION 117 membranes which have a resistance of 0.143 ā‡ -cm 3 .
  • NAFION is a registered trademark of E. I. DuPont de Nemours and Co., Inc.
  • NAFION 117 means a membrane having a thickness of 7 mils made from perfluorosulfonic acid/tetrafluoroethylene(TFE)/copolymer. This may reduce losses by about 99 mW/sq cm at this operating condition for resistance. If the cell operating voltage increased from 500 mV to 599 mV, the cell voltage efficiency would increase from 41% to 49% of the theoretical 1.23 V. The decrease in the internal resistance of the cell allows the design of smaller or more efficient cells.
  • ePTFE membranes having a thickness of less than 0.025 mm may be produced with a wide range of physical property values.
  • the physical property value ranges far exceed the two examples given above.
  • An ion exchange material/surfactant solution was prepared comprising 95% by volume of a perfluorosulfonic acid/tetrafluoroethylene copolymer resin solution (in H+ form which itself is comprised of 5% perfluorosulfonic acid/tetrafluoroethylene copolymer resin, 45% water, and 50% a mixture of low molecular weight alcohols, commercially available from E. I. DuPont de Nemours, Inc.
  • NR-50 NAFIONĀ® type NR-50 (1100 EW) hereinafter ā€œNR-50ā€) and 5% of a nonionic surfactant of octyl phenoxy poly ethoxyethanol (Triton X-100, commercially available from Rohm & Haas of Philadelphia, Pa.).
  • NR-50 octyl phenoxy poly ethoxyethanol
  • Triton X-100 commercially available from Rohm & Haas of Philadelphia, Pa.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene obtained from Conwed Plastics Corp. of Minneapolis, Minn. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C. No adhesives were used. The reinforced membrane sample was then placed on a 6 inch wooden embroidery hoop. A solution was prepared of 96% by volume of a perfluorosulfonic acid/TFE copolymer resin in alcohol, and 4% of the nonionic surfactant Triton X-100.
  • a solution of 100% by volume of NR-50 was brushed onto both sides of the membrane, without the addition of any surfactants, to substantially occlude the interior volume of the membrane.
  • the sample was then placed in an oven at 140Ā° C. to dry. This procedure was repeated four more times until the membrane was completely transparent and the interior volume of the membrane was fully occluded.
  • the sample was then boiled in distilled water for 30 minutes at atmospheric pressure causing the membrane to swell. Gurley numbers for this material are summarized in Table 3.
  • a solution was prepared of 95% by volume NR-50 and 5% of the nonionic surfactant, Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the solution was applied.
  • the wet membrane was dried in the oven at 140Ā° C. for 30 seconds, and then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes. Moisture vapor transmission rates for the treated membrane were measured and are summarized in Table 1. The Gurley number of the treated membrane is summarized in Table 3.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm), was mounted onto a 6 inch wooden embroidery hoop.
  • the Gurley Densometer air flow for this membrane was 2-4 seconds.
  • a solution was prepared of 95% by volume NR-50 and 5% Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied in the same manner. The membrane was then soaked in isopropanol for 2 minutes. After rinsing with distilled water and allowing to dry at room temperature, a final coat of the solution was applied.
  • the wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. This material was not boiled. No swelling other than the minor swelling during the surfactant removal occurred.
  • the ionic conduction rate for this material is presented in Table 4.
  • the Gurley Densometer air flow for this membrane was 2-4 seconds.
  • a solution was prepared of 95% NR-50 and 5% Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds. Two additional coats of solution were applied in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes. After rinsing with distilled water and allowing to dry at room temperature, a final coat of the solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, and then soaked in isopropanol for 2 minutes to remove the surfactant. The sample was rinsed and dried at room temperature.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene which was obtained from Applied Extrusion Technologies, Inc. of Middleton, Del. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C. The reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop.
  • a solution was prepared consisting of the following: 1) 95% by volume NR-50, containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol; and 5% of Triton X-100 non-ionic surfactant.
  • the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
  • the membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the ion exchange material/surfactant solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
  • a solution was prepared consisting of the following: 1) 95% NR-50, containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture being isopropanol and normal propanol; and 5% of Triton X-100 non-ionic surfactant.
  • the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
  • the membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol.
  • a solution of NR-50 was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of surfactant solution followed by a coat of NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
  • the membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
  • the membrane was rinsed with distilled water and allowed to dry at room temperature.
  • a final treatment of the ion exchange material/surfactant was applied to the membrane.
  • the wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
  • the membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol.
  • a 95% by weight NR-50 solution containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol, was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of surfactant solution followed by the NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the NR-50 solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene.
  • the two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C.
  • the reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop.
  • the membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol. Next, a solution of NR-50 was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of the surfactant solution followed by the NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the NR-50 solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0 . 75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
  • the resulting resin was ground to a powder with a mortar and pestle. This resin was then dissolved in methanol under low heat (less than 70Ā° C.).
  • the final solution contained the original resin content in a base solvent of methanol such that the resin content of the solution was 5% by weight.
  • the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
  • the membrane was boiled in distilled water for 5 minutes.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
  • the resulting resin was ground to a powder with a mortar and pestle. This resin was then dissolved in methanol under low heat (less than 70Ā° C.).
  • the final solution contained the original resin content in a base solvent of methanol such that the resin content of the solution was 5% by weight.
  • This solution was used to prepare a new solution comprised of a 95% dewatered resin solution, and 5% Triton X-100 non-ionic surfactant.
  • the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Two additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
  • the membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
  • the membrane was rinsed with distilled water and allowed to dry at room temperature.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
  • the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
  • the membrane was boiled in distilled water for 5 minutes.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C. The reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop. A solution consisting of 5% by weight of perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water and the remainder a mixture of isopropanol and normal propanol, was allowed to partially evaporate slowly at room temperature.
  • the viscous liquid was mixed with methanol.
  • the water content of the resulting solution was estimated at 5%.
  • the resin content of the solution was 5%.
  • the solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was boiled in distilled water for 5 minutes.
  • a TYPE 1 ePTFE membrane having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop.
  • This solution was used to prepare a new solution comprised of 95% of the low-water resin solution, and 5% of the nonionic surfactant, Triton X-100.
  • the new solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off.
  • the wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Two additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane.
  • the membrane was then soaked in isopropanol for 2 minutes to remove the surfactant.
  • the membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the new solution was applied.
  • the wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
  • thermoplastic frame was cut and a membrane of ePTFE was placed at a center location of the frame.
  • the ePTFE membrane was heat sealed to the frame.
  • the membrane was then treated in accordance with Example 1.
  • a fluoroionomer membrane made in accordance with Example 1 was secured mechanically within a frame.
  • This ā€œframedā€ fluoroionomer composite has utility, by providing a unitary construction which can be placed in a device, which beyond serving as an ion exchange medium, can also serve as a sealant between various components of a cell assembly.
  • TEFLONĀ® fine powder was blended with ISOPAR K mineral spirit at a rate of 115 cc per pound of fine powder.
  • the lubricated powder was compressed into a cylinder and was ram extruded at 70Ā° C. to provide a tape.
  • the tape was split into two rolls, layered together and compressed between rolls to a thickness of 0.030 inch. Next, the tape was stretched transversely to 2.6 times its original width.
  • the ISOPAR K was driven off by heating to 210Ā° C.
  • the dry tape was expanded longitudinally between banks of rolls in a heat zone heated to 300Ā° C.
  • the ratio of speed of the second bank of rolls to the first bank of rolls was 35:1 and the third bank of rolls to the second bank of rolls was 1.5:1, for a total of 52:1 longitudinal expansion producing a tape having a width of 3.5 inches.
  • This tape was heated to 295Ā° C. and transversely expanded 13.7 times in width, while being constrained from shrinkage and then heated to 365Ā° C. while still constrained.
  • This process produced a web-like membrane having a porous microstructure composed substantially of fibrils in which no nodes were present.
  • NAFION 117 a perfluorosulfonic acid/tetrafluoroethylene(TFE)/copolymer cation exchange membrane, unreinforced film of 1100 equivalent weight commercially available from E. I. DuPont de Nemours Co., Inc., having a quoted nominal thickness of 7 mils (0.18 mm) was obtained.

Abstract

An ultra-thin composite membrane is provided which includes a base material and an ion exchange resin. The base material is a membrane which is defined by a thickness of less than 1 mil (0.025 mm) 0.8 mils and a microstructure characterized by node interconnected by fibrils, or a microstructure characterized by fibrils with no nodes present. The ion exchange resin substantially impregnates the membrane such that the membrane is essentially air impermeable.

Description

This is a continuation-in-part of Ser. No. 08/339,425 filed Nov. 14, 1994 now abandoned.
FIELD OF THE INVENTION
An integral composite membrane having a thickness of less than about 1 mil (0.025 mm) is provided which is useful in electrolytic processes and other chemical separations.
BACKGROUND OF THE INVENTION
Ion exchange membranes (IEM) are used in fuel cells as solid electrolytes. A membrane is located between the cathode and anode and transports protons formed near the catalyst at the hydrogen electrode to the oxygen electrode thereby allowing a current to be drawn from the cell. These polymer electrolyte fuel cells are particularly advantageous because they operate at lower temperatures than other fuel cells. Also, these polymer electrolyte fuel cells do not contain any corrosive acids which are found in phosphoric acid fuel cells.
Ion exchange membranes are also used in chloralkali applications to separate brine mixtures to form chlorine gas and sodium hydroxide. The membrane selectively transports the sodium ions across the membrane while rejecting the chloride ions. Additionally, IEMs are useful in the areas of diffusion dialysis, electrodialysis and for pervaporation and vapor permeation separations.
In electrodialysis, electrolytes can be divided into a concentrated and a diluted stream. This is accomplished by arraying anionic and cationic exchange membranes in a filter press arrangement. Alternating compartments between the membranes are filled with either the feed stream or the product stream. An electric field is applied across this series array by inserting electrodes in the end compartments. At the positive electrode, oxygen is produced, as well as hydrogen ions. At the negative electrode, hydrogen is evolved as well as hydroxide ions.
In diffusion dialysis, a stream of contaminated acid or base can be separated from dissolved metal ions, colloidal or non-ionic species. The acid or base can than be returned to the original process. A diffusion dialysis system consists of a filter press type arrangement with anion or cation exchange membranes between compartments of that system. Alternate compartments are filled with either the waste material or water. The desired ions diffuse through the membrane. The undesired ions are rejected and removed as waste.
The IEMs must have sufficient strength to be useful in their various applications. Often this need for increased strength requires the membranes to be made thicker which decreases their ionic conductivity. For example, IEMs that are not reinforced (such as those commercially available from E. I. DuPont de Nemours, Inc., and sold under the registered trademark NationĀ®) are inherently weak, and must be reinforced at small thicknesses (e.g., less than 0.050 mm) with additional materials causing the final product to have increased thickness.
U.S. Pat. No. 3,692,569 to Grot relates to the use of a coating of a copolymer of fluorinated ethylene and a sulfonyl-containing fluorinated vinyl monomer on a fluorocarbon polymer that was previously non-wettable. The fluorocarbon polymer may include tetrafluoroethylene polymers. This coating provides a topical treatment to the surface so as to decrease the surface tension of the fluorocarbon polymer. U.S. Pat. No. 4,453,991 to Grot relates to a process for making a liquid composition of a perfluorinated polymer having sulfonic acid or sulfonate groups in a liquid medium that is contacted with a mixture of water and a second liquid, such as a low molecular weight alcohol. The liquid made by the process may be used as a coating, a cast film, or as a repair for perfluorinated ion exchange films and membranes.
U.S. Pat. No. 4,453,991 to Grot relates to a process for making articles coated with a liquid composition of a perfuorinated polymer having sulfonic acid or sulfonate groups in a liquid medium by contacting the polymer with a mixture of 25 to 100% by weight of water and 0 to 75% by weight of a second liquid component, such as a low molecular weight alcohol, in a closed system.
U.S. Pat. No. 4,469,744 to Grot et al. relates to a protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer. Example 1 refers to a microporous polytetrafluoroethylene (PTFE) film having a thickness of 127 micrometers as described by U.S. Pat. No. 3,962,153. Solution is applied with the use of a vacuum. The film was then placed in an oven (under vacuum) at 120Ā° C. for 5 hours. The final product had a thickness of about 127 micrometers (5 mils) and required the use of a vacuum to provide for any impregnation.
U.S. Pat. No. 4,902,308 to Mallouk, et al. relates to a film of porous expanded PTFE having its surfaces, both exterior and internal, coated with a metal salt of perfluoro-cation exchange polymer. The base film of porous, expanded PTFE (ePTFE) had a thickness of between 1 mil and 6 mils (0.025-0.150 mm). The final composite product had a thickness of at least 1 mil (0.025 mm) and preferably had a thickness of between 1.7 and 3 mils (0.043-0.075 mm). The composite product was permeable to air and the air flow, as measured by the Gurley densometer ASTM D726-58, was found to be between 12 and 22 seconds.
U.S. Pat. No. 4,954,388 to Mallouk, et al. relates to an abrasion-resistant, tear resistant, multi-layer composite membrane having a film of continuous ion exchange polymer attached to a reinforcing fabric by means of an interlayer of porous expanded PTFE. A coating of a ion exchange resin was present on at least a portion of the internal and external surfaces of the fabric and porous ePTFE. The composite membrane made in accordance with the teachings of this patent resulted in thicknesses of greater than 1 mil (0.025 mm) even when the interlayer of porous ePTFE had a thickness of less than 1 mil (0.025 mm).
U.S. Pat. No. 5,082,472 to Mallouk, et al. relates to a composite membrane of microporous film in laminar contact with a continuous ion exchange resin layer wherein both layers have similar area dimensions. Surfaces of internal nodes and fibrils of ePTFE may be coated at least in part with ion exchange resin coating. The membrane of ePTFE had a thickness of about 2 mils (0.050 mm) or less and the ion exchange layer in its original state had a thickness of about 1 mil (0.025 mm). The ePTFE layer of this composite membrane imparted mechanical strength to the composite structure and the interior of the ePTFE was preferably essentially untilled so as to not block the flow of fluids.
U.S. Pat. Nos. 5,094,895 and 5,183,545 to Branca, et al. relate to a composite porous liquid-permeable article having multiple layers of porous ePTFE bonded together and having interior and exterior surfaces coated with an ion exchange polymer. This composite porous article is particularly useful as a diaphragm in electrolytic cells. The composite articles are described to be relatively thick, preferably between from 0.76 and 5 mm.
U.S. Pat. No. 4,341,615 to Bachot, et al. relates to a fluorinated resin base material treated with a copolymer of an unsaturated carboxylic acid and a non-ionic unsaturated monomer for use as a porous diaphragm in the electrolysis of alkaline metal chlorides. The fluorinated resin base material may be reinforced with fibers, such as asbestos, glass, quartz, zirconia, carbon, polypropylene, polyethylene, and fluorinated polyhalovinylidene (col. 2, lines 13-17). Only 0.1 to 6 percent of the total pore volume of the support sheet is occupied by the carboxylic copolymer.
U.S. Pat. No. 4,604,170 to Miyake et al. relates to a multi-layered diaphragm for electrolysis comprising a porous layer of a fluorine-containing polymer, having a thickness of from 0.03 to 0.4 mm with its interior and anode-side surface being hydrophilic and an ion exchange layer on its cathode surface. The ion exchange layer is thinner than the porous layer, with a thickness of at least 0.005 mm, and the total thickness of the diaphragm is from 0.035 to 0.50 mm.
U.S. Pat. No. 4,865,925 to Ludwig, et al. relates to a gas permeable electrode for electrochemical systems. The electrode includes a membrane located between, and in contact with, an anode and a cathode. The membrane, which may be made of expanded polytetrafluoroethylene, may be treated with an ion exchange membrane material with the resulting membrane maintaining its permeability to gas. Membrane thicknesses are described to be between 1 and 10 mils, (0.025-0.25 mm), with thicknesses of less than 5 mils (0.125) to be desirable. Examples show that membrane thicknesses range from 15 to 21 mils.
Japanese Patent Application No. 62-240627 relates to a coated or an impregnated membrane formed with a perfluoro type ion exchange resin and porous PTFE film to form an integral unit. The resulting composite is not fully occlusive. Furthermore, the teachings of this patent do not provide for permanent adhesion of the ion exchange resin to the inside surface of the PTFE film. The weight ratio of the ion exchange resin to PTFE is described to be in the range of 3 to 90% with a preferable weight ratio of 10 to 30%.
Japanese Application Nos. 62-280230 and 62-280231 relate to a composite structure in which a scrim or open fabric is heat laminated and encapsulated between a continuous ion exchange membrane and an ePTFE sheet thus imparting tear strength to the structure.
Additional research has also been conducted on the use of perfluorosulfonic acid polymers with membranes of expanded porous polytetrafluoroethylene such as that described in Journal Electrochem. Soc., Vol. 132, No. 2, February 1985, p. 514-515. The ion exchange material was in an ethanol based solvent without the presence of water or surfactant. Moreover, ultrasonic energy was used in the treatment of this membrane.
A paper titled ā€œIon Transporting Composite Membraneā€, by Lui & Martin, (Journal Electrochemical Society, Vol., 137, No. 2, February 1990) describes doping a microporous host material with an ion exchange polymer for the purposes of electrocatalysis.
None of the above described materials adequately addresses the current and anticipated demands for an ion exchange membrane. There remains a distinct need for a strong, ultra-thin, integral composite ion exchange membrane, having long term chemical and mechanical stability, very high ionic conductance, and having a thickness, before swelling, of less than 1 mil (0.025 mm). Because the present invention is thinner than the membranes of prior art, the ionic conductance is substantially higher than with any other ion exchange membranes.
SUMMARY OF THE INVENTION
The present invention is a distinct advancement over presently known inn exchange membranes, and the techniques for making such membranes. In one embodiment of the present invention, this is accomplished by providing an ultra-thin integral composite membrane comprised of an expanded polytetrafluoroethylene having a porous microstructure defined by nodes interconnected by fibrils. The total thickness of the membrane is less than 0.025 mm. An ion exchange material is impregnated throughout such that the membrane is essentially air impermeable. The ion exchange material may be selected from a group consisting of perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers, and metal salts with or without a polymer. The membrane may be bonded to a reinforcement backing of a woven or nonwoven material.
In another embodiment of the present invention, an ion exchange membrane comprises an expanded polytetrafluoroethylene having a porous microstructure defined substantially of fibrils with no nodes present. The porous microstructure of such a membrane defines pores having an average size of from about 0.05 to about 0.4 Ī¼m. The total thickness of this membrane is less than 13 Ī¼m. An ion exchange material is impregnated throughout the membrane such that the membrane is essentially air impermeable. The ion exchange material may be of the type described hereinabove.
Preferably, a method for making an ion exchange membrane of the present invention is provided which comprises the following steps:
(a) providing a membrane having a porous microstructure and a total thickness of less than 0.025 mm;
(b) providing an ion exchange material;
(c) impregnating the membrane with the exchange material so as to render the membrane essentially air impermeable; and
(d) heating said impregnated membrane to an elevated temperature above 60Ā° C. for a predetermined period of time.
The foregoing and other aspects will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic cross-section of a composite membrane of the present invention that is fully impregnated with an ion exchange material.
FIG. 2 is a schematic cross-section of the composite membrane of the present invention that is fully impregnated with an ion exchange material and including a backing material attached thereto.
FIG. 3 is a photomicrograph, at a magnification of 2.5kƗ, of a cross-section of an expanded PTFE membrane that has not been treated with an ion exchange material.
FIG. 4 is a photomicrograph, at a magnification of 5.1kƗ, of a cross-section of an expanded PTFE membrane impregnated with an ion exchange material such that the interior volume of the membrane is substantially occluded.
FIG. 5 is a photomicrograph, at a magnification of 20.0kƗ, of a cross-section of an expanded PTFE membrane, comprised substantially of fibrils with no nodes present, which has not been treated with an ion exchange material.
DETAILED DESCRIPTION OF THE INVENTION
As best illustrated by FIG. 1, an ultra-thin composite membrane is provided which includes a base material 4 and an ion exchange material or ion exchange resin 2. The base material 4 is a membrane which is defined by a thickness of less than 1 mil (0.025 mm) and a porous microstructure characterized by nodes interconnected by fibrils (FIG. 3) or a porous microstructure characterized substantially by fibrils (FIG. 5). The ion exchange resin substantially impregnates the membrane so as to render the interior volume substantially occlusive. For instance, by filling greater than 90% of the interior volume of the membrane with ion exchange resin sufficient occlusion will occur. The ion exchange resin is securely adhered to both the external and internal membrane surfaces, i.e. the fibrils and/or nodes of the base material.
The ultra-thin composite membrane of the present invention may be employed in various applications, including but not limited to polarity-based chemical separations, electrolysis, fuel cells and batteries, pervaporation, gas separation, dialysis separation, industrial electrochemistry such as chloralkali production and other electrochemical applications, use as a super acid catalyst, or use as a medium in enzyme immobilization, for example.
The ultra-thin composite membrane of the present invention is uniform and mechanically strong. As used herein, ā€œultra-thinā€ is defined as less than 1 mil (0.025 mm); and ā€œuniformā€ is defined as continuous impregnation with the ion exchange material such that no pin holes or other discontinuities exist within the composite structure. The membrane should be ā€œocclusiveā€, meaning that the interior volume of the porous membrane is impregnated such that the interior volume is filled with the ion exchange material and the final membrane is essentially air impermeable having a Gurley number of greater than 10,000 seconds. A fill of 90% or more of the interior volume of the membrane should provide adequate occlusion for purposes of the present invention.
A preferred base material 4 is an expanded polytetrafluoroethylene (ePTFE) made in accordance with the teachings of U.S. Pat. No. 3,593,566, incorporated herein by reference. Such a base material has a porosity of greater than 35%. Preferably, the porosity is between 70-95%. The thickness of the membrane is less than 1 mil (0.025 mm). Preferably, the thickness is between 0.06 mils (0.19 Ī¼m) and 0.8 mils (0.02 Ī¼m), and most preferably, the thickness is between 0.50 mils (0.013 mm) and 0.75 mils (0.019 mm). This material is commercially available in a variety of forms from W. L. Gore & Associates, Inc., of Elkton, Md., under the trademark GORE-TEXĀ®. FIG. 3 shows a photomicrograph of the internal porous microstructure of this expanded PTFE. As seen therein, the porous microstructure comprises nodes interconnected by fibrils which define an interior volume of the base material 4. Alternatively, the base material 4 may comprise an ePTFE material having a porous microstructure defined substantially of fibrils with no nodes present. Such a base material 4 may be referred to as a nonwoven web.
To manufacture the ePTFE nonwoven web, a PTFE that has a low amorphous content and a degree of crystallization of at least 98% is used as the raw material. More particularly, a coagulated dispersion or fine powder PTFE may be employed, such as but not limited to FluonĀ® CD-123 and FluonĀ® CD-1 available from ICI Americas, Inc., or TEFLONĀ® fine powders available from E. I. DuPont de Nemours and Co., Inc. (TEFLON is a registered trademark of E. I. DuPont de Nemours and Co., Inc.) These coagulated dispersion powders are lubricated with a hydrocarbon extrusion aid, preferably an odorless mineral spirit, such as ISOPAR K (made by Exxon Corp.) (ISOPAR is a registered trademark of the Exxon Corporation). The lubricated powder is compressed into cylinders and extruded in a ram extruder to form a tape. The tape is compressed between rolls to an appropriate thickness, usually 5 to 10 mils. The wet tape is stretched traversely to 1.5 to 5 times its original width. The extrusion aid is driven off with heat. The dried tape is then expanded longitudinally between banks of rolls in a space heated to a temperature that is below the polymer melting point (approximately 327Ā° C.). The longitudinal expansion is such that the ratio of speed of the second bank of rolls to the first bank is from about 10-100 to 1. The longitudinal expansion is repeated at about 1-1.5 to 1 ratio.
After the longitudinal expansion, the tape is expanded traversely, at a temperature that is less than about 327Ā° C., to at least 1.5 times, and preferably to 6 to 15 times, the width of the original extrudate, while restraining the membrane from longitudinal contraction. While still under constraint, the membrane is preferably heated to above the polymer melting point (approximately 342Ā° C.) and then cooled. This nonwoven web is characterized by the following:
(a) average pore size between 0.05 and 0.4 micrometers, and preferably less than 0.2;
(b) a bubble point between 10 and 60 psi;
(c) a pore size distribution value between 1.05 and 1.20;
(d) a ball burst strength between 0.9 and 17 pounds/force;
(e) an air flow of between 20 Frazier and 10 Gurley seconds;
(f) a thickness between 1.32 Ī¼m and 25.4 Ī¼m; and
(g) a fiber diameter of between 5 and 20 Nm.
Suitable ion exchange materials 2 include, but are not limited to, perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers and metal salts with or without a polymer. A mixture of these ion exchange materials may also be employed in treating the membrane 4. Solvents that are suitable for use with the ion exchange material, include for example, alcohols, carbonates, THF (tetrahydrofuran), water, and combinations thereof.
A surfactant having a molecular weight of greater than 100 is preferably employed with the ion exchange material 2 to ensure impregnation of the interior volume of the base material 4. Surfactants or surface active agents having a hydrophobic portion and a hydrophilic portion may be utilized. Preferable surfactants are those having a molecular weight of greater than 100 and may be classified as anionic, nonionic, or amphoteric which may be hydrocarbon or fluorocarbon-based and include for example, MerpolĀ®, a hydrocarbon based surfactant or ZonylĀ®, a fluorocarbon based surfactant, both commercially available from E. I. DuPont de Nemours, Inc. of Wilmington, Del.
A most preferred surfactant is a nonionic material, octylphenoxy polyethoxyethanol having a chemical structure:
Figure USRE037307-20010807-C00001
where x=10 (average)
known as Triton X-100, commercially available from Rohm & Haas of Philadelphia, Pa.
As best seen by reference to FIG. 4, the final composite membrane of the present invention has a uniform thickness free of any discontinuities or pinholes on the surface. The interior volume of the membrane is occluded such that the composite membrane is impermeable to non-polar gases and to bulk flow of liquids.
Optionally, and as shown schematically in FIG. 2, the composite membrane may be reinforced with a woven or non-woven material 6 bonded to one side of the base material 4. Suitable woven materials may include, for example, scrims made of woven fibers of expanded porous polytetrafluoroethylene; webs made of extruded or oriented polypropylene or polypropylene netting, commercially available from Conwed, Inc. of Minneapolis, Minn.; and woven materials of polypropylene and polyester, from Tetko Inc., of Briarcliff Manor, N.Y. Suitable non-woven materials may include, for example, a spun-bonded polypropylene from Reemay Inc. of Old Hickory, Tenn.
The treated membrane may be further processed to remove any surfactant which may have been employed in processing the base material as described in detail herein. This is accomplished by soaking or submerging the membrane in a solution of, for example, water, isopropyl alcohol, hydrogen peroxide, methanol, and/or glycerin. During this step, the surfactant, which was originally mixed in solution with the ion exchange material, is removed. This soaking or submerging causes a slight swelling of the membrane, however the ion exchange material remains within the interior volume of the base material 4.
The membrane is further treated by boiling in a suitable swelling agent, preferably water, causing the membrane to slightly swell in the x and y direction. Additional swelling occurs in the z-direction. A composite membrane results having a higher ion transport rate that is also strong. The swollen membrane retains its mechanical integrity and dimensional stability unlike the membranes consisting only of the ion exchange material and simultaneously maintains desired ionic transport characteristics. A correlation exists between the content of the swelling agent within the membrane structure and transport properties of the membrane. A swollen membrane will transport chemical species faster than an unswollen membrane.
Although the membrane has excellent long term chemical stability, it can be susceptible to poisoning by organics. Accordingly, it is often desirable to remove such organics from the membrane. For example, organics can be removed by regeneration in which the membrane is boiled in a strong acid such as nitric or chromic acid.
To prepare the ultra-thin integral composite membrane of the present invention, a support structure, such as a polypropylene woven fabric, may first be laminated to the untreated base material 4 by any conventional technique, such as, hot roll lamination, ultrasonic lamination, adhesive lamination, or forced hot air lamination so long as the technique does not damage the integrity of the base material. A solution is prepared containing an ion exchange material in solvent mixed with one or more surfactants. The solution may be applied to the base material 4 by any conventional coating technique including forwarding roll coating, reverse roll coating, gravure coating, doctor coating, kiss coating, as well as dipping, brushing, painting, and spraying so long as the liquid solution is able to penetrate the interstices and interior volume of the base material. Excess solution from the surface of the membrane may be removed. The treated membrane is then immediately placed into an oven to dry. Oven temperatures may range from 60Ā°-200Ā° C., but preferably 120Ā°-160Ā° C. Drying the treated membrane in the oven causes the ion exchange resin to become securely adhered to both the external and internal membrane surfaces, i.e., the fibrils and/or nodes of the base material. Additional solution application steps, and subsequent drying, may be repeated until the membrane becomes completely transparent. Typically, between 2 to 8 treatments are required, but the actual number of treatments is dependent on the surfactant concentration and thickness of the membrane. If the membrane is prepared without a support structure, both sides of the membrane may be treated simultaneously thereby reducing the number of treatments required.
The oven treated membrane is then soaked in a solvent, such as the type described hereinabove, to remove the surfactant. Thereafter, the membrane is boiled in a swelling agent and under a pressure ranging from about 1 to about 20 atmospheres absolute thereby increasing the amount of swelling agent the treated membrane is capable of holding.
Alternatively, the ion exchange material may be applied to the membrane without the use of a surfactant. This procedure requires additional treatment with the ion exchange resin. However, this procedure does not require that the oven treated membrane be soaked in a solvent, thereby reducing the total number of process steps. A vacuum may also be used to draw the ion exchange material into the membrane. Treatment without surfactant is made easier if the water content of the solution is lowered. Partial solution dewatering is accomplished by slow partial evaporation of the ion exchange material solution at room temperature followed by the addition of a non-aqueous solvent. Ideally, a fully dewatered solution can be used. This is accomplished in several steps. First, the ion exchange material is completely dried at room temperature. The resulting resin is ground to a fine powder. Finally, this powder is redissolved in a solvent, preferably a combination of methanol and isopropanol.
Because the composite membrane of the present invention is ultra-thin, it is possible to selectively transport ions at a faster rate than previously has been achieved, with only a slight lowering of the selectivity characteristics of the membrane.
The following testing procedures were employed on samples which were prepared in accordance with the teachings of the present invention.
TEST PROCEDURES Tensile Test
Tensile tests were carried out on an Instron Model 1122 tensile strength tester, in accordance with ASTM D 638-91. Machine parameters were set as follows:
Cross head speed (in/min): 0.423 cm/sec.
Full Scale load range (lbs): 222.4N
Humidity (%): 50
Temperature (deg F.): 22.8Ā° C.
Grip Distance: 6.35 cm
Specimens were stamped out to conform with Type (II) of ASTM D638. The specimens had a width of 0.635 cm, and a gauge length of 2.54 cm.
Thickness
Thickness of the base material was determined with the use of a snap gauge (Johannes Kafer Co. Model No. F1000/302). Measurements were taken in at least four areas of each specimen. Thickness of the dried composite membrane was also obtained with the use of the snap gauge. Thicknesses of swollen samples were not measurable with the snap gauge due to the compression or residual water on the surface of the swollen membrane. Thickness measurements of the swollen membranes were also not able to be obtained with the use of scanning electron microscopy due to interferences with the swelling agents.
Moisture Vapor Transmission Rate (MVTR)
A potassium acetate solution, having a paste like consistency, was prepared from potassium acetate and distilled water. (Such a paste may be obtained by combining 230 g potassium acetate with 100 g of water, for example.) This solution was placed into a 133 ml. polypropylene cup, having an inside diameter of 6.5 cm. at its mouth. An expanded polytetrafluoroethylene (ePTFE) membrane was provided having a minimum MVTR of approximately 85,000 g/m2-24 hr as tested by the method described in U.S. Pat. No. 4,862,730 to Crosby. The ePTFE was heat sealed to the lip of the cup to create a taut, leakproof, microporous barrier containing the solution.
A similar ePTFE membrane was mounted to the surface of a water bath. The water bath assembly was controlled at 23Ā° C.Ā±plus or minus 0.2Ā° C., utilizing a temperature controlled room and a water circulating bath.
Prior to performing the MVTR test procedure, a sample to be tested was allowed to condition at a temperature of 23Ā° C. and a relative humidity of 50%. The sample to be tested was placed directly on the ePTFE membrane mounted to the surface of the water bath and allowed to equilibrate for 15 minutes prior to the introduction of the cup assembly.
The cup assembly was weighed to the nearest 1/1000 g. and was placed in an inverted manner onto the center of the test sample.
Water transport was provided by a driving force defined by the difference in relative humidity existing between the water in the water bath and the saturated salt solution of the inverted cup assembly. The sample was tested for 10 minutes and the cup assembly was then removed and weighed again within 1/1000 g.
The MVTR of the sample was calculated from the weight gain of the cup assembly and was expressed in grams of water per square meter of sample surface area per 24 hours.
Peel Strength
Peel strength or membrane adhesion strength tests were conducted on membrane samples prepared with reinforced backings. Test samples were prepared having dimensions of 3 inches by 3.5 inches (7.62 cmƗ8.89 cm). Double coated vinyl tape (typeā€”#419 available from the 3M Company of Saint Paul, Minn.) having a width of 1 inch (2.54 cm) was placed over the edges of a 4 inch by 4 inch (10.2 cm.Ɨ10.2 cm.) chrome steel plate so that tape covered all edges of the plate. The membrane sample was then mounted on top of the adhesive exposed side of the tape and pressure was applied so that sample was adhesively secured to the chrome plate.
The plate and sample were then installed, in a horizontal position, within an Instron tensile test machine Model No. 1000. An upper crosshead of the tensile test machine was lowered so that the jaws of the test machine closed flat and tightly upon the sample. The upper crosshead was then slowly raised pulling the membrane sample from the reinforced backing. When the membrane detached from the reinforced backing, the test was complete. Adhesion strength was estimated from the average strength needed to pull the membrane from the reinforced backing.
Ionic Conductance
The ionic conductance of the membrane was tested using a Palico 9100-2 type test system. This test system consisted of a bath of 1 molar sulfuric acid maintained at a constant temperature of 25Ā° C. Submerged in the bath were four probes used for imposing current and measuring voltage by a standard ā€œKelvinā€ four-terminal measurement technique. A device capable of holding a separator, such as the sample membrane to be tested, was located between the probes. First, a square wave current signal was introduced into the bath, without a separator in place, and the resulting square wave voltage was measured. This provided an indication of the resistance of the acid bath. The sample membrane was then placed in the membrane-holding device, and a second square wave current signal was introduced into the bath. The resulting square wave voltage was measured between the probes. This was a measurement of the resistance due to the membrane and the bath. By subtracting this number from the first, the resistance due to the membrane alone was found.
Dimensional Stability
Reverse expansion in the x and y direction upon dehydration was measured using a type Thermomechanical Analyzer 2940, made by TA Instruments, Inc., of New Castle, Del. This instrument was used to apply a predetermined force to a sample that had been boiled in water for 30 minutes. A quartz probe placed in contact with the sample measured any linear changes in the sample as it dried. A sample was placed in a holder and then dried at 75Ā° C. for greater than 10 min. The change in dimension (i.e., the shrinkage) was recorded as a percentage of the original weight.
Weight Loss With Temperature
A high resolution TGA 2950, Thermogravimetric Analyzer, made by TA Instruments (Newcastle, Del.) was used to determine the weight loss of samples with respect to temperature. This weight loss is an indication of the water content of the ionomer sample. Samples were heated at a rate of 10Ā° C./min up to a temperature of 150Ā° C., and the weight loss was recorded as a percentage of the original weight @100Ā° C. as follows:
Selectivity
Two solutions of KCl, having concentrations of 1 molar and 0.5 molar, respectively, were separated using the membranes of the present invention. Two calomel reference electrodes (available from Fischer Scientific, Pittsburgh Pa., catalog number 13-620-52) were placed in each solution, and the potential difference across the membranes was recorded using a digital multimeter (available from Hewlett Packard, Englewood Calif., catalog number HP34401A). The values obtained correspond to the difference of chloride ion activity across the membrane and are reduced by the rate of anion migration across the membranes. Therefore the obtained values provide an indication of the membrane selectivity. The higher the measured voltage, the better the membrane selectivity.
Bubble Point Test
Liquids with surface free energies less than that of stretched porous PTFE can be forced out of the structure with the application of a differential pressure. This clearing will occur from the largest passageways first. A passageway is then created through which bulk air flow can take place. The air flow appears as a steady stream of small bubbles through the liquid layer on top of the sample. The pressure at which the first bulk air flow takes place is called the bubble point and is dependent on the surface tension of the test fluid and the size of the largest opening. The bubble point can be used as a relative measure of the structure of a membrane and is often correlated with some other type of performance criteria, such as filtration efficiency.
The Bubble Point was measured according to the procedures of ASTM F316-86. Isopropyl alcohol was used as the wetting fluid to fill the pores of the test specimen.
The Bubble Point is the pressure of air required to displace the isopropyl alcohol from the largest pores of the test specimen and create the first continuous stream of bubbles detectable by their rise through a layer of isopropyl alcohol covering the porous media. This measurement provides an estimation of maximum pore size.
Pore Size and Pore Size Distribution
Pore size measurements are made by the Coulter Porometerā„¢, manufactured by Coulter Electronics, Inc., Hialeah, Fla. The Coulter Porometer is an instrument that provides automated measurement of pore size distributions in porous media using the liquid displacement method (described in ASTM Standard E1298-89). The Porometer determines the pore size distribution of a sample by increasing air pressure on the sample and measuring the resulting flow. This distribution is a measure of the degree of uniformity of the membrane (i.e., a narrow distribution means there is little difference between the smallest and largest pore size). The Porometer also calculates the mean flow pore size. By definition, half of the fluid flow through the filter occurs through pores that are above or below this size. It is the mean flow pore size which is most often linked to other filter properties, such as retention of particulates in a liquid stream. The maximum pore size is often linked to the Bubble Point because bulk air flow is first seen through the largest pore.
Ball Burst Test
This text measures the relative strength of a sample by determining the maximum load at break. The sample is challenged with a 1 inch diameter ball while being clamped between two plates. The material is placed taut in the measuring device and pressure applied with the ball burst probe. Pressure at break is recorded.
Air Flow Data
The Gurley air flow test measures the time in seconds for 100 cc of air to flow through a one square inch sample at 4.88 inches of water pressure. The sample is measured in a Gurley Densometer (ASTM 0726-58). The sample is placed between the clamp plates. The cylinder is then dropped gently. The automatic timer (or stopwatch) is used to record the time (seconds) required for a specific volume recited above to be displaced by the cylinder. This time is the Gurley number.
The Frazier air flow test is similar but is mostly used for much thinner or open membranes. The test reports flow in cubic feet per minute per square foot of material at 0.5 inches water pressure. Air flow can also be measured with the Coulter Porometer. In this test, the operator can select any pressure over a wide range. The Porometer can also perform a pressure hold test that measures air flow during a decreasing pressure curve.
BACKGROUND OF EXAMPLES
As may be appreciated by one skilled in the art, the present invention provides for an ultra-thin, integral composite membrane having thicknesses which are significantly less than the thicknesses of conventional multilayer membranes. As a result, the membranes of the present invention provide lower electrical resistance. Also, because no porous surfaces are exposed in the present invention, there is no propensity for gasses to become trapped within the interior volume of the membrane thereby causing increased electrical resistance.
As described hereinabove, the ultra-thin integral composite membrane of the present invention can be advantageously employed in electrolytic processes and chemical separations. In a plate-and-frame type electrodialysis unit, the membrane of the present invention would take the place of existing cation exchange membranes. This membrane could be of the type which is laminated to a spacer screen in accordance with a specific application. Due to the higher conductance of this membrane, an electrodialysis unit could employ less membrane to achieve a given flux rate, thereby saving space and cost. If equipment is retro-fitted with this membrane, the voltage requirements would be reduced at a given current, or higher current could be run at a given voltage. Also, in a diffusion dialysis system, a given unit employing the membrane of the present invention would provide a higher flux.
A fuel cell, utilizing the membrane of the present invention, operates at a higher voltage for a given current density due to the improved ionic conductance of this membrane.
Also, due to improved water transport across the membrane, high limiting current may be achieved with less fuel gas humidification, as compared to membranes which have been employed heretofore. For example, the membrane of the present invention has a resistance of 0.044 ohm-sq cm. At a current density of 1 A/cm2 this causes a voltage drop of about 44 mV, or about a 99 mV improvement in cell voltage compared to NAFION 117 membranes which have a resistance of 0.143 Ī©-cm3. (NAFION is a registered trademark of E. I. DuPont de Nemours and Co., Inc.). As used herein, NAFION 117 means a membrane having a thickness of 7 mils made from perfluorosulfonic acid/tetrafluoroethylene(TFE)/copolymer. This may reduce losses by about 99 mW/sq cm at this operating condition for resistance. If the cell operating voltage increased from 500 mV to 599 mV, the cell voltage efficiency would increase from 41% to 49% of the theoretical 1.23 V. The decrease in the internal resistance of the cell allows the design of smaller or more efficient cells.
Without intending to limit the scope of the present invention, the apparatus and method of production of the present invention may be better understood by referring to the following examples. All samples of ePTFE provided in the following examples were made in accordance with the teachings of U.S. Pat. No. 3,593,566. More particularly, the ePTFE had the following material properties:
TYPE 1 TYPE 2
Thickness (mils) 0.75-0.8 0.5
Gurley (sec.) 3.3 0.9
Bubble Point (psi) 28.3 32.6
Mass/Area (g/m2) 6.1 4.4
Density (g/cc) 0.65 0.77
Longitudinal Maximum Load (lbs.) 1.76 2.18
Transverse Maximum Load (lbs.) 2.33 1.31
As may be appreciated by one skilled in the art, ePTFE membranes having a thickness of less than 0.025 mm may be produced with a wide range of physical property values. The physical property value ranges far exceed the two examples given above.
Example 1
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm), was mounted on a 6 inch wooden embroidery hoop. An ion exchange material/surfactant solution was prepared comprising 95% by volume of a perfluorosulfonic acid/tetrafluoroethylene copolymer resin solution (in H+ form which itself is comprised of 5% perfluorosulfonic acid/tetrafluoroethylene copolymer resin, 45% water, and 50% a mixture of low molecular weight alcohols, commercially available from E. I. DuPont de Nemours, Inc. under the registered trademark NAFIONĀ® type NR-50 (1100 EW) hereinafter ā€œNR-50ā€) and 5% of a nonionic surfactant of octyl phenoxy poly ethoxyethanol (Triton X-100, commercially available from Rohm & Haas of Philadelphia, Pa.). This solution was brushed on both sides of the membrane to impregnate and substantially occlude the interior volume of the membrane. The sample was then dried in the oven at 140Ā° C. for 30 seconds. The procedure was repeated two more times to fully occlude the interior volume. The sample was then soaked in isopropanol for 5 minutes to remove the surfactant. After rinsing with distilled water and allowing the sample to dry at room temperature, a final coat of the ion exchange material/surfactant solution was applied. The wet membrane was again dried in the oven at 140Ā° C. for 30 seconds and soaked in isopropanol for 2 minutes. The membrane was finally boiled in distilled water for 30 minutes under atmospheric pressure to swell the treated membrane. Gurley numbers for this material are summarized in Table 3. Ionic conductive rates are summarized in Table 4. The tensile strength may be found in Table 2. Percent weight change of this sample may be found in Table 6. The swollen membrane was later dried to a dehydrated state in an oven at 140Ā° C. for 30 seconds. The thickness of the dried composite membrane was measured and found to be approximately the same thickness as the base material.
Example 2
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene obtained from Conwed Plastics Corp. of Minneapolis, Minn. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C. No adhesives were used. The reinforced membrane sample was then placed on a 6 inch wooden embroidery hoop. A solution was prepared of 96% by volume of a perfluorosulfonic acid/TFE copolymer resin in alcohol, and 4% of the nonionic surfactant Triton X-100. This solution was brushed only on the membrane side to substantially occlude the interior volume of the membrane. The sample was dried in an oven at 130Ā° C. This procedure was repeated three more times to fully occlude the interior volume of the membrane. The sample was then baked in an oven at 140Ā° C. for 5 minutes. The sample was soaked in isopropanol for 5 minutes to remove the surfactant. The membrane was then boiled in distilled water for 30 minutes under atmospheric pressure causing the treated membrane to swell. Gurley numbers for this material are summarized in Table 3.
This sample was tested for its peel strength in accordance with the method described above. The linear bond strength was found to be 2.06 lb./sq. in. (1450 kg/m2).
Example 3
A TYPE 2 ePTFE membrane, having a thickness of 0.5 mils (0.01 mm), was mounted on a 6 inch wooden embroidery hoop. A solution of 100% by volume of NR-50 was brushed onto both sides of the membrane, without the addition of any surfactants, to substantially occlude the interior volume of the membrane. The sample was then placed in an oven at 140Ā° C. to dry. This procedure was repeated four more times until the membrane was completely transparent and the interior volume of the membrane was fully occluded. The sample was then boiled in distilled water for 30 minutes at atmospheric pressure causing the membrane to swell. Gurley numbers for this material are summarized in Table 3.
Example 4
A TYPE 2 ePTFE membrane, having a thickness of 0.5 mils (0.01 mm), was mounted onto a 6 inch wooden embroidery hoop. A solution was prepared of 95% by volume NR-50 and 5% of the nonionic surfactant, Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, and then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes. Moisture vapor transmission rates for the treated membrane were measured and are summarized in Table 1. The Gurley number of the treated membrane is summarized in Table 3.
Example 5
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm), was mounted onto a 6 inch wooden embroidery hoop. The Gurley Densometer air flow for this membrane was 2-4 seconds. A solution was prepared of 95% by volume NR-50 and 5% Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied in the same manner. The membrane was then soaked in isopropanol for 2 minutes. After rinsing with distilled water and allowing to dry at room temperature, a final coat of the solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. This material was not boiled. No swelling other than the minor swelling during the surfactant removal occurred. The ionic conduction rate for this material is presented in Table 4.
Example 6
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm), was mounted onto a 5 inch plastic embroidery hoop. The Gurley Densometer air flow for this membrane was 2-4 seconds. A solution was prepared of 95% NR-50 and 5% Triton X-100. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds. Two additional coats of solution were applied in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes. After rinsing with distilled water and allowing to dry at room temperature, a final coat of the solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, and then soaked in isopropanol for 2 minutes to remove the surfactant. The sample was rinsed and dried at room temperature.
This sample was weighed before it was mounted on the 5 inch plastic hoop. Following treatment, it was removed from the hoop and weighed again. The ion exchange polymer content was directly calculated by determining the weight change before and after treatment. The ion exchange content for this sample was found to be 98.4 mg or 7.77 grams per square meter of membrane.
Example 7
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene which was obtained from Applied Extrusion Technologies, Inc. of Middleton, Del. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C. The reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop. A solution was prepared consisting of the following: 1) 95% by volume NR-50, containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol; and 5% of Triton X-100 non-ionic surfactant. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the ion exchange material/surfactant solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
Example 8
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop. A solution was prepared consisting of the following: 1) 95% NR-50, containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture being isopropanol and normal propanol; and 5% of Triton X-100 non-ionic surfactant. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
Example 9
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop. The membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol. Next, a solution of NR-50 was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of surfactant solution followed by a coat of NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the ion exchange material/surfactant was applied to the membrane. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
Example 10
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop. The membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol. Next, a 95% by weight NR-50 solution, containing 5% by weight perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol, was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of surfactant solution followed by the NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the NR-50 solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
Example 11
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C. The reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop. The membrane was first submerged in a solution consisting of 25% Triton X-100 non-ionic surfactant, 25% water, and 50% isopropyl alcohol. Next, a solution of NR-50 was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of the surfactant solution followed by the NR-50 solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the NR-50 solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
Example 12
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop. A solution consisting of 5% by weight of perfluorosulfonic acids copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol was allowed to evaporate slowly at room temperature. The resulting resin was ground to a powder with a mortar and pestle. This resin was then dissolved in methanol under low heat (less than 70Ā° C.). The final solution contained the original resin content in a base solvent of methanol such that the resin content of the solution was 5% by weight. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was boiled in distilled water for 5 minutes.
Example 13
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop. A solution consisting of 5% by weight of perfluorosulfonic acid/TFE copolymer resin, in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol, was allowed to evaporate slowly at room temperature. The resulting resin was ground to a powder with a mortar and pestle. This resin was then dissolved in methanol under low heat (less than 70Ā° C.). The final solution contained the original resin content in a base solvent of methanol such that the resin content of the solution was 5% by weight. This solution was used to prepare a new solution comprised of a 95% dewatered resin solution, and 5% Triton X-100 non-ionic surfactant. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Two additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the resin/Triton X-100 non-ionic surfactant solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
Example 14
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop. A solution consisting of 5% by weight of perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water, and the remainder a mixture of isopropanol and normal propanol, was allowed to partially evaporate slowly at room temperature. Before all the solvent evaporated, the viscous liquid was mixed with methanol. The water content of the resulting solution was estimated at 5%. The resin content of the solution was 5%. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was boiled in distilled water for 5 minutes.
Example 15
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was placed on top of a netting of polypropylene. The two materials were bonded together on a laminator with 10 psig pressure, a speed of 15 feet per minute and a temperature of 200Ā° C. The reinforced sample was then mounted on a 6 inch diameter wooden embroidery hoop. A solution consisting of 5% by weight of perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water and the remainder a mixture of isopropanol and normal propanol, was allowed to partially evaporate slowly at room temperature. Before all the solvent evaporated, the viscous liquid was mixed with methanol. The water content of the resulting solution was estimated at 5%. The resin content of the solution was 5%. The solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Three additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was boiled in distilled water for 5 minutes.
Example 16
A TYPE 1 ePTFE membrane, having a nominal thickness of 0.75 mils (0.02 mm) and a Gurley Densometer air flow of 2-4 seconds, was mounted on a 6 inch diameter wooden embroidery hoop. A solution consisting of 5% by weight of perfluorosulfonic acid/TFE copolymer resin in a solvent mixture of less than 25% water, preferably 16-18% water and the remainder a mixture of isopropanol and normal propanol, was allowed to partially evaporate slowly at room temperature. Before all the solvent evaporated, the viscous liquid was mixed with methanol. The water content of the resulting solution was estimated at 5%. The resin content of the solution was 5%. This solution was used to prepare a new solution comprised of 95% of the low-water resin solution, and 5% of the nonionic surfactant, Triton X-100. The new solution was brushed on both sides of the membrane with a foam brush and the excess was wiped off. The wet membrane was dried in an oven at 140Ā° C. for 30 seconds. Two additional coats of solution were applied to the membrane in the same manner to fully occlude the interior volume of the membrane. The membrane was then soaked in isopropanol for 2 minutes to remove the surfactant. The membrane was rinsed with distilled water and allowed to dry at room temperature. A final treatment of the new solution was applied. The wet membrane was dried in the oven at 140Ā° C. for 30 seconds, then soaked in isopropanol for 2 minutes. Finally, the membrane was boiled in distilled water for 5 minutes.
Example 17
A thermoplastic frame was cut and a membrane of ePTFE was placed at a center location of the frame. The ePTFE membrane was heat sealed to the frame. The membrane was then treated in accordance with Example 1. Alternatively, a fluoroionomer membrane made in accordance with Example 1 was secured mechanically within a frame.
This ā€œframedā€ fluoroionomer composite has utility, by providing a unitary construction which can be placed in a device, which beyond serving as an ion exchange medium, can also serve as a sealant between various components of a cell assembly.
Example 18
TEFLONĀ® fine powder was blended with ISOPAR K mineral spirit at a rate of 115 cc per pound of fine powder. The lubricated powder was compressed into a cylinder and was ram extruded at 70Ā° C. to provide a tape. The tape was split into two rolls, layered together and compressed between rolls to a thickness of 0.030 inch. Next, the tape was stretched transversely to 2.6 times its original width. The ISOPAR K was driven off by heating to 210Ā° C. The dry tape was expanded longitudinally between banks of rolls in a heat zone heated to 300Ā° C. The ratio of speed of the second bank of rolls to the first bank of rolls was 35:1 and the third bank of rolls to the second bank of rolls was 1.5:1, for a total of 52:1 longitudinal expansion producing a tape having a width of 3.5 inches. This tape was heated to 295Ā° C. and transversely expanded 13.7 times in width, while being constrained from shrinkage and then heated to 365Ā° C. while still constrained. This process produced a web-like membrane having a porous microstructure composed substantially of fibrils in which no nodes were present.
Comparative Samples
NAFION 117, a perfluorosulfonic acid/tetrafluoroethylene(TFE)/copolymer cation exchange membrane, unreinforced film of 1100 equivalent weight commercially available from E. I. DuPont de Nemours Co., Inc., having a quoted nominal thickness of 7 mils (0.18 mm) was obtained. The samples, originally in the hydrated swollen state, were measured in the x- and y-directions and weighed.
Without intending to limit the scope of the present invention, data collected from testing the ion exchange membranes made in accordance with the procedures of the foregoing examples are summarized in the following tables. As may be appreciated by one skilled in the art, these tables reveal that the ion exchange membrane of this invention has superior ionic conductance and exceptional dimensional stability compared to known ion exchange membranes. Furthermore, this inventive membrane has good mechanical strength in the unswollen state and retains much of its mechanical strength in the swollen state, whereas conventional membranes are substantially weakened upon hydration.
TABLE 1
Moisture Vapor Transmission Rates (MVTR)
Sample ID* MVTR (grams/m2-24 hrs.)
4 25,040
NAFION 117 23,608
*Measurements were obtained on samples in their swollen state.
TABLE 1
Moisture Vapor Transmission Rates (MVTR)
Sample ID* MVTR (grams/m2-24 hrs.)
4 25,040
NAFION 117 23,608
*Measurements were obtained on samples in their swollen state.
TABLE 1
Moisture Vapor Transmission Rates (MVTR)
Sample ID* MVTR (grams/m2-24 hrs.)
4 25,040
NAFION 117 23,608
*Measurements were obtained on samples in their swollen state.
TABLE 1
Moisture Vapor Transmission Rates (MVTR)
Sample ID* MVTR (grams/m2-24 hrs.)
4 25,040
NAFION 117 23,608
*Measurements were obtained on samples in their swollen state.
TABLE 1
Moisture Vapor Transmission Rates (MVTR)
Sample ID* MVTR (grams/m2-24 hrs.)
4 25,040
NAFION 117 23,608
*Measurements were obtained on samples in their swollen state.
TABLE 6
Selectivity
Sample ID Selectivity (millivolts)
NAFION 117, dry 16.3
NAFION 117, boiled 10.8
Example 1, boiled 3.8
Example 2, dry 15.7
TABLE 6
Selectivity
Sample ID Selectivity (millivolts)
NAFION 117, dry 16.3
NAFION 117, boiled 10.8
Example 1, boiled 3.8
Example 2, dry 15.7
Although a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art readily appreciate that many modifications are possible without materially departing from the novel teachings and advantages which are described herein. Accordingly, all such modifications are intended to be included within the scope of the present invention, as defined by the following claims.

Claims (51)

We claim:
1. An ultra-thin composite membrane comprising:
(a) an expanded polytetrafluoroethylene membrane having a porous microstructure of polymeric fibrils and a total thickness of less than 0.025 mm 0.8 mils; and
(b) an ion exchange material impregnated throughout the membrane, the impregnated expanded polytetrafluoroethylene membrane having a Gurley number of greater than 10,000 seconds, wherein the ion exchange material substantially impregnates the membrane to render an interior volume of the membrane substantially occlusive.
2. The ultra-thin composite membrane of claim 1, and wherein the membrane comprises a microstructure of nodes interconnected by fibrils.
3. The ultra-thin composite membrane of claim 1, and wherein the ion exchange material is selected from a group consisting of perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers, and metal salts with or without a polymer.
4. The ultra-thin composite membrane of claim 1, and wherein the ion exchange material is a perfluorosulfonic acid/tetrafluoroethylene copolymer resin dissolved in a solvent solution selected from a group consisting of water, ethanol, propanol, butanol, methanol, and combinations thereof.
5. The ultra-thin composite membrane of claim 1, further comprising a reinforcement backing bonded to the membrane wherein the reinforcement backing is selected from a group consisting of woven and nonwoven materials.
6. The ultra-thin composite membrane of claim 5, and wherein the woven materials are selected from the group consisting of: weaves of expanded porous polytetrafluoroethylene fibers, webs of polypropylene, and netting of polypropylene.
7. The ultra-thin composite membrane of claim 5, and wherein the nonwoven material is spun-bonded polypropylene.
8. An ultra-thin composite membrane comprising:
(a) a membrane having a porous microstructure of polymeric fibrils and a total thickness of less than 13 Ī¼m 0.51 mils; and
(b) an ion exchange material impregnated throughout the membrane, the impregnated expanded polytetrafluoroethylene membrane having a Gurley number of greater than 10,000 seconds, wherein the ion exchange material substantially impregnates the membrane to render an interior volume of the membrane substantially occlusive.
9. The ultra-thin composite membrane of claim 8, and wherein the membrane is expanded polytetrafluoroethylene.
10. The ultra-thin composite membrane of claim 8, and wherein the ion exchange material is selected from a group consisting of perfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers, and metal salts with or without a polymer.
11. The ultra-thin composite membrane of claim 8, and wherein the ion exchange material is a perfluorosulfonic acid/tetrafluoroethylene copolymer resin dissolved in a solvent solution selected from a group consisting of water, ethanol, propanol, butanol, methanol and combinations thereof.
12. The ultra-thin composite membrane of claim 8, further comprising a reinforcement backing bonded to the membrane wherein the reinforcement backing is selected from a group consisting of woven and nonwoven materials.
13. The ultra-thin composite membrane of claim 12, and wherein the woven materials are selected from a group consisting of: weaves of expanded porous polytetrafluoroethylene fibers, webs of polypropylene, and netting of polypropylene.
14. The ultra-thin composite membrane of claim 12, and wherein the nonwoven material is spun-bonded polypropylene.
15. An ion exchange membrane comprising:
(a) a membrane comprising an expanded polytetrafluoroethylene having a porous microstructure defined substantially of only fibrils; and
(b) an ion exchange material impregnated throughout the membrane, the impregnated expanded polytetrafluoroethylene membrane having a Gurley number of greater than 10,000 seconds, wherein the ion exchange material substantially impregnates the membrane to render an interior volume of the membrane substantially occlusive, said membrane having a total thickness within the range of between 0.06 mils and about 0.5 mils.
16. The ion exchange membrane of claim 15 wherein the porous microstructure of the membrane defines pores having an average size of from about 0.05 to about 0.4 Ī¼m.
17. The ion exchange membrane of claim 16, and wherein the average pore size is less than 0.2 Ī¼m.
18. The ion exchange membrane of claim 16, and wherein the total thickness of the membrane is less 13 Ī¼m.
19. The ion exchange membrane of claim 18 and wherein the total thickness of the membrane is from about 1.32 Ī¼m to about 12.7 Ī¼m.
20. The ion exchange membrane of claim 15, and wherein the ion exchange material is selected from a group consisting of polyfluorinated sulfonic acid resin, perfluorinated carboxylic acid resin, polyvinyl alcohol, divinyl benzene, styrene-based polymers, and metal salts with or without a polymer.
21. The ion exchange membrane of claim 15, and wherein the ion exchange material is a perfluorosulfonic acid/tetrafluoroethylene copolymer resin dissolved in a solvent solution selected from a group including water, ethanol, propanol, butanol, methanol, and combinations thereof.
22. The ion exchange membrane of claim 15, further comprising a reinforcement backing bonded to the porous polymeric membrane, wherein the reinforcement backing is selected from a group consisting of woven and nonwoven materials.
23. The ion exchange membrane of claim 22, and wherein the woven materials are selected from a group consisting of: weaves of expanded porous polytetrafluoroethylene fibers, webs of polypropylene, and netting of polypropylene.
24. The ion exchange membrane of claim 22, and wherein the nonwoven material is spun-bonded polyproyplene.
25. A composite, ultra-thin, substantially non-porous membrane consisting essentially of:
(a) a polytetrafluoroethylene base having a pore structure defined by at least fibrils, said pore structure defining a porosity of at least 70 % within said base; and
(b) an ion exchange resin contained within said pore structure and substantially filling said pore structure, such that the composite membrane has a Gurley number which exceeds 10,000 seconds, said composite membrane having a thickness no greater than 0.8 mils.
26. The composite membrane of claim 25, wherein said pore structure is defined by nods interconnected with said fibrils.
27. The composite membrane of claim 25, wherein said composite membrane has a thickness between the range of about 0.06 and 0.8 mils.
28. The composite membrane of claim 25, wherein said composite membrane has a thickness between the range of 0.3 and about 0.5 mils.
29. The composite membrane of claim 25, wherein said composite membrane has a thickness of not more than about 0.5 mils.
30. The composite membrane of claim 25, wherein said ion exchange resin is a mixture of ion exchange resins.
31. The composite membrane of claim 25, wherein said ion exchange resin is a perfluorinated sulfonic acid resin.
32. A composite, substantially non-porous membrane consisting essentially of:
(a) a polytetrafluoroethylene base having a pore structure defined by at least fibrils, said pore structure defining a porosity of at least 70 % within said base; and
(b) an ion exchange resin contained within said pore structure and substantially filling said pore structure, such that the composite membrane has a Gurley number which exceeds 10,000 seconds, said composite membrane having a thickness of at most 0.8 mils and an ionic conductance of at least 8.5 mhos/cm 2 .
33. The composite membrane of claim 32, which has a thickness between the range of about 0.06 and 0.8 mils.
34. The composite membrane of claim 32, which has a thickness between the range of about 0.5 and 0.8 mils.
35. The composite membrane of claim 32, which has a thickness at most about 0.5 mils.
36. The composite membrane of claim 32, where said ion exchange resin is a perfluorosulfonic acid/tetrafluoroethylene copolymer resin.
37. A supported, composite membrane consisting essentially of:
(a) a porous support material; and
(b) a composite, ultra-thin, substantially non-porous membrane, said composite membrane having a polytetrafluoroethylene base having a pore network formed by at least fibrils, said pore network defining a porosity of at least 70 % within said base; and
(c) an ion exchange resin contained within said pore network and substantially filling said pore network, such that the composite membrane has a Gurley number which exceeds 10,000 seconds and said composite membrane has a thickness no greater than 0.8 mils.
38. The supported composite membrane of claim 37, wherein said pore network is formed by nodes interconnected with said fibrils.
39. The composite membrane of claim 31, wherein said composite membrane which has a thickness between the range of about 0.06 and 0.8 mils.
40. The composite membrane of claim 37, wherein said composite membrane which has a thickness between the range of about 0.5 and 0.8 mils.
41. The composite membrane of claim 37, wherein said composite membrane which has a thickness of at most about 0.5 mils.
42. The composite membrane of claim 37, wherein said ion exchange resin is a perfluorinated sulfonic acid resin.
43. The composite membrane of claim 37, where said ion exchange resin is a mixture of ion exchange resins.
44. A composite, ultra-thin, substantially non-porous membrane having a total thickness of at most 0.8 mils having a polytetrafluoroethylene base with a pore structure defining a porosity of at least 70 % within said base, at least one ion exchange resin contained within said pore structure such that said composite membrane has a Gurley number which exceeds 10,000 seconds, and is prepared by the process comprising the steps of:
(a) providing a polytetrafluoroethylene membrane having polytetrafluoroethylene base and a thickness of at most 0.8 mils and having a pore structure defining a porosity of at least 70 % within said base; and
(b) applying an ion exchange resin containing solution to each side of said polytetrafluoroethylene base to substantially fill said pore structure.
45. The composite membrane of claim 44, wherein said process further comprises:
(c) repeating step (b) until said ion exchange resin substantially fills said pore structure.
46. The composite membrane of claim 44, wherein said composite membrane has a thickness in the range of between about 0.06 and 0.8 mils.
47. The composite membrane of claim 44, wherein said composite membrane has a thickness in the range between about 0.5 to 0.8 mils.
48. The composite membrane of claim 44, wherein said step (b) is repeated at least two times.
49. The composite membrane of claim 44, wherein said step (b) is repeated at least three times.
50. The composite membrane of claim 44, wherein step (b) further comprises:
(i) first applying said ion exchange resin containing solution to a first side of said polytetrafluoroethylene base and then evaporating solvent in said solution; and
(ii) thereafter, applying said ion exchange resin containing solution to a second side of said polytetrafluoroethylene base and then evaporating solvent in said solution.
51. The composite membrane of claim 50, wherein said process further includes the step of:
(c) heating said polytetrafluoroethylene base containing ion exchange resin within said pore structure.
US09/137,515 1994-11-14 1998-08-20 Ultra-thin integral composite membrane Expired - Lifetime USRE37307E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/137,515 USRE37307E1 (en) 1994-11-14 1998-08-20 Ultra-thin integral composite membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33942594A 1994-11-14 1994-11-14
US08/404,853 US5547551A (en) 1995-03-15 1995-03-15 Ultra-thin integral composite membrane
US09/137,515 USRE37307E1 (en) 1994-11-14 1998-08-20 Ultra-thin integral composite membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/404,853 Reissue US5547551A (en) 1994-11-14 1995-03-15 Ultra-thin integral composite membrane

Publications (1)

Publication Number Publication Date
USRE37307E1 true USRE37307E1 (en) 2001-08-07

Family

ID=26991619

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/137,515 Expired - Lifetime USRE37307E1 (en) 1994-11-14 1998-08-20 Ultra-thin integral composite membrane

Country Status (1)

Country Link
US (1) USRE37307E1 (en)

Cited By (43)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146148A1 (en) * 2001-12-06 2003-08-07 Wu Huey Shen Low equivalent weight ionomer
US6613203B1 (en) 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
US20040067402A1 (en) * 1994-11-14 2004-04-08 Barndad Bahar Ultra-thin integral composite membrane
US6861489B2 (en) 2001-12-06 2005-03-01 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US20050096442A1 (en) * 2003-10-30 2005-05-05 Arne Thaler Aqueous emulsion polymerization of functionalized fluoromonomers
US20050107532A1 (en) * 2003-11-13 2005-05-19 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US20050107490A1 (en) * 2003-11-13 2005-05-19 Yandrasits Michael A. Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam
US20050107489A1 (en) * 2003-11-13 2005-05-19 Yandrasits Michael A. Polymer electrolyte membranes crosslinked by nitrile trimerization
US20050113528A1 (en) * 2003-11-24 2005-05-26 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US20050131096A1 (en) * 2003-12-08 2005-06-16 3M Innovative Properties Company Crosslinked polymer
US20050131097A1 (en) * 2003-12-11 2005-06-16 3M Innovative Properties Company Polymer electrolytes crosslinked by ultraviolet radiation
US20050137351A1 (en) * 2003-12-17 2005-06-23 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
US20050221134A1 (en) * 2004-04-06 2005-10-06 Liu Wen K Method and apparatus for operating a fuel cell
US20050224341A1 (en) * 2003-07-04 2005-10-13 Bayer Materialscience Ag Electrochemical half-cell
WO2005123599A2 (en) * 2004-01-20 2005-12-29 Boundless Corporation Highly microporous polymers and methods for producing and using the same
WO2006081009A2 (en) 2005-01-24 2006-08-03 Gore Enterprise Holdings, Inc. Method and device to improve operation of a fuel cell
US20060183006A1 (en) * 2005-02-11 2006-08-17 Wen Liu Method for reducing degradation in a fuel cell
US20060204590A1 (en) * 2005-01-11 2006-09-14 Clean Earth Technologies, Llc Formulations for the decontamination of toxic chemicals
US20060241548A1 (en) * 2002-11-27 2006-10-26 Kenji Fukuta Iontophoresis apparatus
US20070037021A1 (en) * 2004-08-03 2007-02-15 Peter Szrama Fuel cell assembly with structural film
US7179847B2 (en) 2003-11-13 2007-02-20 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US20070072036A1 (en) * 2005-09-26 2007-03-29 Thomas Berta Solid polymer electrolyte and process for making same
US20080118802A1 (en) * 2006-11-16 2008-05-22 Peter Szrama Fully Catalyzed Membrane Assembly With Attached Border
US20090093602A1 (en) * 2007-10-04 2009-04-09 Gore Enterprise Holdings, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
US20090155662A1 (en) * 2007-12-14 2009-06-18 Durante Vincent A Highly Stable Fuel Cell Membranes and Methods of Making Them
US20090258958A1 (en) * 2007-10-04 2009-10-15 Ford Lawrence A Expandable TFE Copolymers, Methods of Making, and Porous, Expanded Articles Thereof
US20100167100A1 (en) * 2008-12-26 2010-07-01 David Roger Moore Composite membrane and method for making
US7931995B2 (en) 1997-09-12 2011-04-26 Gore Enterprise Holdings, Inc. Solid electrolyte composite for electrochemical reaction apparatus
US20110177423A1 (en) * 2010-01-21 2011-07-21 Anton Nachtmann Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same
US8323675B2 (en) 2004-04-20 2012-12-04 Genzyme Corporation Soft tissue prosthesis for repairing a defect of an abdominal wall or a pelvic cavity wall
US9419300B2 (en) 2010-04-16 2016-08-16 3M Innovative Properties Company Proton conducting materials
WO2016130529A1 (en) 2015-02-09 2016-08-18 W. L. Gore & Associates, Inc. Membrane electrode assembly manufacturing process
US9644054B2 (en) 2014-12-19 2017-05-09 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
US9650479B2 (en) 2007-10-04 2017-05-16 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
WO2017156293A1 (en) 2016-03-11 2017-09-14 W. L. Gore & Associates, Inc. Reflective laminates
US9893373B2 (en) 2010-05-25 2018-02-13 3M Innovative Properties Company Reinforced electrolyte membrane
US10096855B2 (en) * 2011-11-22 2018-10-09 Sumitomo Electric Industries, Ltd. Redox flow cell membrane
US10125036B2 (en) 2012-12-25 2018-11-13 Kuraray Co., Ltd. Ion exchange membrane, method for producing same, and electrodialyzer
US10256491B2 (en) 2014-05-20 2019-04-09 Johnson Matthey Fuel Cells Limited Membrane electrode assembly
US10333157B2 (en) 2014-11-25 2019-06-25 Johnson Matthey Fuel Cells Limited Membrane-seal assembly
WO2019125490A1 (en) 2017-12-22 2019-06-27 W. L. Gore & Associates, Inc. Catalyst ink containing a c5-c10 alcohol or carboxylic acid, and mea manufacturing process
GB201914335D0 (en) 2019-10-04 2019-11-20 Johnson Matthey Fuel Cells Ltd Membrane electrode assembly
WO2020148545A1 (en) 2019-01-17 2020-07-23 Johnson Matthey Fuel Cells Limited Membrane

Citations (78)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US2681319A (en) 1951-01-10 1954-06-15 Rohm & Haas Permselective films of anionexchange resins
US2827426A (en) 1954-02-12 1958-03-18 Rohm & Haas Cationic permselective membranes and their use in electrolysis
US2951818A (en) 1955-02-10 1960-09-06 Bayer Ag Ion exchanger membranes from polyvinylidene chloride and phenolic resin reactants
US2965697A (en) 1956-11-05 1960-12-20 Electric Storage Battery Co Battery diaphragm
US3692569A (en) 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
US3953566A (en) 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
JPS5171888A (en) 1974-12-19 1976-06-22 Sumitomo Electric Industries Sekisokozokaranaru fuirumu oyobi sonoseizohoho
US4012303A (en) 1974-12-23 1977-03-15 Hooker Chemicals & Plastics Corporation Trifluorostyrene sulfonic acid membranes
US4065534A (en) 1976-04-20 1977-12-27 Ppg Industries, Inc. Method of providing a resin reinforced asbestos diaphragm
US4186076A (en) 1978-03-01 1980-01-29 Oronzio Denora Impianti Elettrochimici S.P.A. Composite diaphragms
US4207163A (en) 1977-09-26 1980-06-10 Olin Corporation Diaphragms for use in the electrolysis of alkali metal chlorides
US4207164A (en) 1977-10-03 1980-06-10 Olin Corporation Diaphragms for use in the electrolysis of alkali metal chlorides
US4210510A (en) 1979-07-25 1980-07-01 Bendix Autolite Corporation Gas sensor with closely wound termination springs
US4218542A (en) 1977-06-03 1980-08-19 Asahi Glass Company Limited Cation exchange membrane of fluorinated polymer containing polytetrafluoroethylene fibrils for electrolysis and preparation thereof
US4224121A (en) 1978-07-06 1980-09-23 General Electric Company Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
GB2052382A (en) 1979-04-28 1981-01-28 Kanegafuchi Chemical Ind A process for joining fluorinated polymer cation exchange membrane
US4262041A (en) 1978-02-02 1981-04-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing a composite amphoteric ion exchange membrane
US4311567A (en) 1980-11-17 1982-01-19 Ppg Industries, Inc. Treatment of permionic membrane
US4313832A (en) 1980-06-12 1982-02-02 Rohm And Haas Company Method for treatment of aqueous solutions with ion exchange fibers
US4341615A (en) 1980-01-29 1982-07-27 Chloe Chimie Diaphragm for electrolysis and process for the preparation thereof
GB2091166A (en) 1981-01-16 1982-07-28 Du Pont Membrane, electrochemical cell, and electrolysis process
JPS57134586A (en) 1981-02-13 1982-08-19 Agency Of Ind Science & Technol Production of joined body for electrolysis
GB2097788A (en) 1981-04-03 1982-11-10 Lilly Co Eli Benzothiophene compounds and process for preparing them
US4433082A (en) 1981-05-01 1984-02-21 E. I. Du Pont De Nemours And Company Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof
US4453991A (en) 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US4469744A (en) 1980-07-11 1984-09-04 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
JPS6084590A (en) 1983-10-17 1985-05-13 ć‚­ćƒ¤ćƒŽćƒ³ę Ŗ式会ē¤¾ Image processing system
US4518650A (en) 1980-07-11 1985-05-21 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4528083A (en) 1983-04-15 1985-07-09 United Technologies Corporation Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4604170A (en) 1984-11-30 1986-08-05 Asahi Glass Company Ltd. Multi-layered diaphragm for electrolysis
JPS61276987A (en) 1985-06-03 1986-12-06 Agency Of Ind Science & Technol Gas and liquid permeable electrode material
US4629563A (en) 1980-03-14 1986-12-16 Brunswick Corporation Asymmetric membranes
US4664801A (en) 1983-10-27 1987-05-12 Brunswick Corporation Filter cartridge sealing composition and process therefor
US4698243A (en) 1986-06-20 1987-10-06 The Dow Chemical Company Method for sizing and hydrolyzing polytetrafluoroethylene fabrics, fibers, yarns, or threads
JPS62240627A (en) 1986-02-18 1987-10-21 ć‚Øć‚Æć‚½ćƒāˆ’ļ¼Œć‚¤ćƒ³ć‚³āˆ’ćƒćƒ¬ć‚¤ćƒ†ć‚¤ćƒ‰ Composition for treating viral and cancerous skin troubles and method of using same
JPS62280230A (en) 1986-05-30 1987-12-05 Asahi Glass Co Ltd Reinforced multilayer ion exchange diaphragm
JPS6311979A (en) 1986-03-12 1988-01-19 Hitachi Metals Ltd Heat roll for electrophotography
US4774039A (en) 1980-03-14 1988-09-27 Brunswick Corporation Dispersing casting of integral skinned highly asymmetric polymer membranes
US4804592A (en) 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
WO1989006055A1 (en) 1987-12-14 1989-06-29 Hughes Aircraft Company Gas-permeable and ion-permeable membrane for electrochemical system
US4849311A (en) 1986-09-24 1989-07-18 Toa Nenryo Kogyo Kabushiki Kaisha Immobilized electrolyte membrane
US4863604A (en) 1987-02-05 1989-09-05 Parker-Hannifin Corporation Microporous asymmetric polyfluorocarbon membranes
US4865930A (en) 1988-10-27 1989-09-12 Hughes Aircraft Company Method for forming a gas-permeable and ion-permeable membrane
US4865925A (en) 1987-12-14 1989-09-12 Hughes Aircraft Company Gas permeable electrode for electrochemical system
US4902308A (en) 1988-06-15 1990-02-20 Mallouk Robert S Composite membrane
US4931168A (en) 1986-03-07 1990-06-05 Masahiro Watanabe Gas permeable electrode
US4954388A (en) 1988-11-30 1990-09-04 Mallouk Robert S Fabric reinforced composite membrane
US4985296A (en) 1989-03-16 1991-01-15 W. L. Gore & Associates, Inc. Polytetrafluoroethylene film
US4990228A (en) 1989-02-28 1991-02-05 E. I. Du Pont De Nemours And Company Cation exchange membrane and use
US4997567A (en) 1984-07-25 1991-03-05 Ben-Gurion University Of The Negev Research And Development Authority Ion-exchange membranes and processes for the preparation thereof
US5041195A (en) 1988-11-17 1991-08-20 Physical Sciences Inc. Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
WO1991014021A1 (en) 1990-03-13 1991-09-19 Japan Gore-Tex Inc. Sheet electrode material containing ion exchange resin, composite material thereof, and production thereof
US5066403A (en) 1990-07-12 1991-11-19 The United States Of America As Represented By The Secretary Of Commerce Process for separating azeotropic or close-boiling mixtures by use of a composite membrane, the membrane, and its process of manufacture
US5075006A (en) 1989-08-09 1991-12-24 Exxon Research And Engineering Company Isocyanurate crosslinked polyurethane membranes and their use for the separation of aromatics from non-aromatics
US5082472A (en) * 1990-11-05 1992-01-21 Mallouk Robert S Composite membrane for facilitated transport processes
US5094895A (en) 1989-04-28 1992-03-10 Branca Phillip A Composite, porous diaphragm
US5124018A (en) 1986-04-03 1992-06-23 Nagakazu Furuya Process for preparing raw materials for reaction layer of gas permeable electrode
US5133842A (en) 1988-11-17 1992-07-28 Physical Sciences, Inc. Electrochemical cell having electrode comprising gold containing electrocatalyst
US5154827A (en) 1990-01-22 1992-10-13 Parker-Nannifin Corporation Laminated microporous fluorocarbon membrane and fluorocarbon filter cartridge using same
US5183713A (en) 1991-01-17 1993-02-02 International Fuel Cells Corporation Carbon monoxide tolerant platinum-tantalum alloyed catalyst
US5183545A (en) 1989-04-28 1993-02-02 Branca Phillip A Electrolytic cell with composite, porous diaphragm
US5186877A (en) 1990-10-25 1993-02-16 Tanaka Kikinzoku Kogyo K.K. Process of preparing electrode for fuel cell
US5190813A (en) 1991-03-15 1993-03-02 W. L. Gore & Associates, Inc. Porous fluorores in material plated with a metal
US5209850A (en) 1992-06-19 1993-05-11 W. L. Gore & Associates, Inc. Hydrophilic membranes
US5234777A (en) 1991-02-19 1993-08-10 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US5256503A (en) 1986-04-07 1993-10-26 Scimat Limited Process for making a composite membrane
US5275725A (en) 1990-11-30 1994-01-04 Daicel Chemical Industries, Ltd. Flat separation membrane leaf and rotary separation apparatus containing flat membranes
JPH0629032A (en) 1992-07-08 1994-02-04 Sumitomo Electric Ind Ltd High polymer electrolyte film and its manufacture
US5288384A (en) 1991-11-08 1994-02-22 E. I. Du Pont De Nemours And Company Wetting of diaphragms
EP0594007A1 (en) 1992-10-13 1994-04-27 Millipore Corporation Composite microporous membranes
US5336384A (en) 1991-11-14 1994-08-09 The Dow Chemical Company Membrane-electrode structure for electrochemical cells
US5350643A (en) 1992-06-02 1994-09-27 Hitachi, Ltd. Solid polymer electrolyte type fuel cell
US5356663A (en) 1992-08-28 1994-10-18 E. I. Du Pont De Nemours And Company Process for making and repairing ion exchange membranes and films
US5415888A (en) 1993-04-26 1995-05-16 E. I. Du Pont De Nemours And Company Method of imprinting catalytically active particles on membrane
WO1995016730A1 (en) * 1993-12-14 1995-06-22 E.I. Du Pont De Nemours And Company Method for making reinforced ion exchange membranes
US5521023A (en) 1990-08-16 1996-05-28 Kejha; Joseph B. Composite electrolytes for electrochemical devices
US5545475A (en) 1994-09-20 1996-08-13 W. L. Gore & Associates Microfiber-reinforced porous polymer film and a method for manufacturing the same and composites made thereof
US5672438A (en) * 1995-10-10 1997-09-30 E. I. Du Pont De Nemours And Company Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell

Patent Citations (81)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US2681319A (en) 1951-01-10 1954-06-15 Rohm & Haas Permselective films of anionexchange resins
US2827426A (en) 1954-02-12 1958-03-18 Rohm & Haas Cationic permselective membranes and their use in electrolysis
US2951818A (en) 1955-02-10 1960-09-06 Bayer Ag Ion exchanger membranes from polyvinylidene chloride and phenolic resin reactants
US2965697A (en) 1956-11-05 1960-12-20 Electric Storage Battery Co Battery diaphragm
US3692569A (en) 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
US3953566A (en) 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
JPS5171888A (en) 1974-12-19 1976-06-22 Sumitomo Electric Industries Sekisokozokaranaru fuirumu oyobi sonoseizohoho
US4012303A (en) 1974-12-23 1977-03-15 Hooker Chemicals & Plastics Corporation Trifluorostyrene sulfonic acid membranes
US4065534A (en) 1976-04-20 1977-12-27 Ppg Industries, Inc. Method of providing a resin reinforced asbestos diaphragm
US4218542A (en) 1977-06-03 1980-08-19 Asahi Glass Company Limited Cation exchange membrane of fluorinated polymer containing polytetrafluoroethylene fibrils for electrolysis and preparation thereof
US4255523A (en) 1977-06-03 1981-03-10 Asahi Glass Company, Limited Cation exchange membrane of fluorinated polymer for electrolysis and preparation thereof
US4207163A (en) 1977-09-26 1980-06-10 Olin Corporation Diaphragms for use in the electrolysis of alkali metal chlorides
US4207164A (en) 1977-10-03 1980-06-10 Olin Corporation Diaphragms for use in the electrolysis of alkali metal chlorides
US4262041A (en) 1978-02-02 1981-04-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing a composite amphoteric ion exchange membrane
US4186076A (en) 1978-03-01 1980-01-29 Oronzio Denora Impianti Elettrochimici S.P.A. Composite diaphragms
US4224121A (en) 1978-07-06 1980-09-23 General Electric Company Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
GB2052382A (en) 1979-04-28 1981-01-28 Kanegafuchi Chemical Ind A process for joining fluorinated polymer cation exchange membrane
US4210510A (en) 1979-07-25 1980-07-01 Bendix Autolite Corporation Gas sensor with closely wound termination springs
US4341615A (en) 1980-01-29 1982-07-27 Chloe Chimie Diaphragm for electrolysis and process for the preparation thereof
US4629563B1 (en) 1980-03-14 1997-06-03 Memtec North America Asymmetric membranes
US4774039A (en) 1980-03-14 1988-09-27 Brunswick Corporation Dispersing casting of integral skinned highly asymmetric polymer membranes
US4629563A (en) 1980-03-14 1986-12-16 Brunswick Corporation Asymmetric membranes
US4313832A (en) 1980-06-12 1982-02-02 Rohm And Haas Company Method for treatment of aqueous solutions with ion exchange fibers
US4518650A (en) 1980-07-11 1985-05-21 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4469744A (en) 1980-07-11 1984-09-04 E. I. Du Pont De Nemours And Company Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer
US4311567A (en) 1980-11-17 1982-01-19 Ppg Industries, Inc. Treatment of permionic membrane
GB2091166A (en) 1981-01-16 1982-07-28 Du Pont Membrane, electrochemical cell, and electrolysis process
JPS57134586A (en) 1981-02-13 1982-08-19 Agency Of Ind Science & Technol Production of joined body for electrolysis
GB2097788A (en) 1981-04-03 1982-11-10 Lilly Co Eli Benzothiophene compounds and process for preparing them
US4433082A (en) 1981-05-01 1984-02-21 E. I. Du Pont De Nemours And Company Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof
US4453991A (en) 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US4528083A (en) 1983-04-15 1985-07-09 United Technologies Corporation Device for evolution of oxygen with ternary electrocatalysts containing valve metals
JPS6084590A (en) 1983-10-17 1985-05-13 ć‚­ćƒ¤ćƒŽćƒ³ę Ŗ式会ē¤¾ Image processing system
US4664801A (en) 1983-10-27 1987-05-12 Brunswick Corporation Filter cartridge sealing composition and process therefor
US4997567A (en) 1984-07-25 1991-03-05 Ben-Gurion University Of The Negev Research And Development Authority Ion-exchange membranes and processes for the preparation thereof
US4604170A (en) 1984-11-30 1986-08-05 Asahi Glass Company Ltd. Multi-layered diaphragm for electrolysis
JPS61276987A (en) 1985-06-03 1986-12-06 Agency Of Ind Science & Technol Gas and liquid permeable electrode material
JPS62240627A (en) 1986-02-18 1987-10-21 ć‚Øć‚Æć‚½ćƒāˆ’ļ¼Œć‚¤ćƒ³ć‚³āˆ’ćƒćƒ¬ć‚¤ćƒ†ć‚¤ćƒ‰ Composition for treating viral and cancerous skin troubles and method of using same
US4931168A (en) 1986-03-07 1990-06-05 Masahiro Watanabe Gas permeable electrode
JPS6311979A (en) 1986-03-12 1988-01-19 Hitachi Metals Ltd Heat roll for electrophotography
US5124018A (en) 1986-04-03 1992-06-23 Nagakazu Furuya Process for preparing raw materials for reaction layer of gas permeable electrode
US5256503A (en) 1986-04-07 1993-10-26 Scimat Limited Process for making a composite membrane
JPS62280230A (en) 1986-05-30 1987-12-05 Asahi Glass Co Ltd Reinforced multilayer ion exchange diaphragm
US4698243A (en) 1986-06-20 1987-10-06 The Dow Chemical Company Method for sizing and hydrolyzing polytetrafluoroethylene fabrics, fibers, yarns, or threads
US4849311A (en) 1986-09-24 1989-07-18 Toa Nenryo Kogyo Kabushiki Kaisha Immobilized electrolyte membrane
US4863604A (en) 1987-02-05 1989-09-05 Parker-Hannifin Corporation Microporous asymmetric polyfluorocarbon membranes
US4804592A (en) 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
WO1989006055A1 (en) 1987-12-14 1989-06-29 Hughes Aircraft Company Gas-permeable and ion-permeable membrane for electrochemical system
US4865925A (en) 1987-12-14 1989-09-12 Hughes Aircraft Company Gas permeable electrode for electrochemical system
US4902308A (en) 1988-06-15 1990-02-20 Mallouk Robert S Composite membrane
US4865930A (en) 1988-10-27 1989-09-12 Hughes Aircraft Company Method for forming a gas-permeable and ion-permeable membrane
US5041195A (en) 1988-11-17 1991-08-20 Physical Sciences Inc. Gold electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods of using them
US5133842A (en) 1988-11-17 1992-07-28 Physical Sciences, Inc. Electrochemical cell having electrode comprising gold containing electrocatalyst
US4954388A (en) 1988-11-30 1990-09-04 Mallouk Robert S Fabric reinforced composite membrane
US4990228A (en) 1989-02-28 1991-02-05 E. I. Du Pont De Nemours And Company Cation exchange membrane and use
US4985296A (en) 1989-03-16 1991-01-15 W. L. Gore & Associates, Inc. Polytetrafluoroethylene film
US5183545A (en) 1989-04-28 1993-02-02 Branca Phillip A Electrolytic cell with composite, porous diaphragm
US5094895A (en) 1989-04-28 1992-03-10 Branca Phillip A Composite, porous diaphragm
US5075006A (en) 1989-08-09 1991-12-24 Exxon Research And Engineering Company Isocyanurate crosslinked polyurethane membranes and their use for the separation of aromatics from non-aromatics
US5154827A (en) 1990-01-22 1992-10-13 Parker-Nannifin Corporation Laminated microporous fluorocarbon membrane and fluorocarbon filter cartridge using same
WO1991014021A1 (en) 1990-03-13 1991-09-19 Japan Gore-Tex Inc. Sheet electrode material containing ion exchange resin, composite material thereof, and production thereof
US5066403A (en) 1990-07-12 1991-11-19 The United States Of America As Represented By The Secretary Of Commerce Process for separating azeotropic or close-boiling mixtures by use of a composite membrane, the membrane, and its process of manufacture
US5521023A (en) 1990-08-16 1996-05-28 Kejha; Joseph B. Composite electrolytes for electrochemical devices
US5186877A (en) 1990-10-25 1993-02-16 Tanaka Kikinzoku Kogyo K.K. Process of preparing electrode for fuel cell
US5082472A (en) * 1990-11-05 1992-01-21 Mallouk Robert S Composite membrane for facilitated transport processes
US5275725A (en) 1990-11-30 1994-01-04 Daicel Chemical Industries, Ltd. Flat separation membrane leaf and rotary separation apparatus containing flat membranes
US5183713A (en) 1991-01-17 1993-02-02 International Fuel Cells Corporation Carbon monoxide tolerant platinum-tantalum alloyed catalyst
US5234777A (en) 1991-02-19 1993-08-10 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US5190813A (en) 1991-03-15 1993-03-02 W. L. Gore & Associates, Inc. Porous fluorores in material plated with a metal
US5288384A (en) 1991-11-08 1994-02-22 E. I. Du Pont De Nemours And Company Wetting of diaphragms
US5336384A (en) 1991-11-14 1994-08-09 The Dow Chemical Company Membrane-electrode structure for electrochemical cells
US5350643A (en) 1992-06-02 1994-09-27 Hitachi, Ltd. Solid polymer electrolyte type fuel cell
US5209850A (en) 1992-06-19 1993-05-11 W. L. Gore & Associates, Inc. Hydrophilic membranes
JPH0629032A (en) 1992-07-08 1994-02-04 Sumitomo Electric Ind Ltd High polymer electrolyte film and its manufacture
US5356663A (en) 1992-08-28 1994-10-18 E. I. Du Pont De Nemours And Company Process for making and repairing ion exchange membranes and films
EP0594007A1 (en) 1992-10-13 1994-04-27 Millipore Corporation Composite microporous membranes
US5415888A (en) 1993-04-26 1995-05-16 E. I. Du Pont De Nemours And Company Method of imprinting catalytically active particles on membrane
WO1995016730A1 (en) * 1993-12-14 1995-06-22 E.I. Du Pont De Nemours And Company Method for making reinforced ion exchange membranes
US5447636A (en) 1993-12-14 1995-09-05 E. I. Du Pont De Nemours And Company Method for making reinforced ion exchange membranes
US5545475A (en) 1994-09-20 1996-08-13 W. L. Gore & Associates Microfiber-reinforced porous polymer film and a method for manufacturing the same and composites made thereof
US5672438A (en) * 1995-10-10 1997-09-30 E. I. Du Pont De Nemours And Company Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell

Non-Patent Citations (5)

* Cited by examiner, ā€  Cited by third party
Title
"Composite Membranes for Fuel-Cell Applications," Mark W. Verbrugge et al., AICHE Journal, Jan. 1992, vol. 38, No. 1, pp. 93-100.
AIChE Journal, vol. 38, No. 1, Jan., 1992, pp. 93-100, Mark W. Verbrugge et al. "Composite Membranes for Fuel-Cell Applications".
Journal Electrochem Soc., vol. 132, No. 2-Son Transporting Composite Membranes, Feb. 1985, pp. 514-515. *
Journal Electrochem Soc., vol. 137, No. 2-Ion Transporting composite Membranes, Feb. 1990 pp. 510-515 (C. Liu et al.).
Literature: Reginal M. Penner and Charles R. Martin, Ion Transporting Composite Membranes, Journal Electrodhem Soc. vol. 132, No. 2, Feb. 1985, pp. 514-515.

Cited By (97)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067402A1 (en) * 1994-11-14 2004-04-08 Barndad Bahar Ultra-thin integral composite membrane
US7931995B2 (en) 1997-09-12 2011-04-26 Gore Enterprise Holdings, Inc. Solid electrolyte composite for electrochemical reaction apparatus
US6613203B1 (en) 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
US7579102B2 (en) 2001-12-06 2009-08-25 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US20060241261A1 (en) * 2001-12-06 2006-10-26 Wu Huey S Low equivalent weight ionomer
US8071702B2 (en) 2001-12-06 2011-12-06 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US6861489B2 (en) 2001-12-06 2005-03-01 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US7094851B2 (en) 2001-12-06 2006-08-22 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US7041409B2 (en) 2001-12-06 2006-05-09 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US7615307B2 (en) 2001-12-06 2009-11-10 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US7022428B2 (en) 2001-12-06 2006-04-04 Gore Enterprise Holdings, Inc. Low equivalent weight ionomer
US20060241260A1 (en) * 2001-12-06 2006-10-26 Wu Huey S Low equivalent weight ionomer
US20050165186A1 (en) * 2001-12-06 2005-07-28 Wu Huey S. Low Equivalent weight ionomer
US20050182215A1 (en) * 2001-12-06 2005-08-18 Wu Huey S. Low equivalent weight ionomer
US20030146148A1 (en) * 2001-12-06 2003-08-07 Wu Huey Shen Low equivalent weight ionomer
US20060241548A1 (en) * 2002-11-27 2006-10-26 Kenji Fukuta Iontophoresis apparatus
US7734339B2 (en) * 2002-11-27 2010-06-08 Tokuyama Corporation Iontophoresis apparatus
US20050224341A1 (en) * 2003-07-04 2005-10-13 Bayer Materialscience Ag Electrochemical half-cell
US20080296153A1 (en) * 2003-07-04 2008-12-04 Bayer Materialscience Ag Electrochemical half-cell
US7691242B2 (en) * 2003-07-04 2010-04-06 Bayer Materialscience Ag Electrochemical half-cell
US20050096442A1 (en) * 2003-10-30 2005-05-05 Arne Thaler Aqueous emulsion polymerization of functionalized fluoromonomers
US7071271B2 (en) 2003-10-30 2006-07-04 3M Innovative Properties Company Aqueous emulsion polymerization of functionalized fluoromonomers
US7435498B2 (en) 2003-11-13 2008-10-14 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by nitrile trimerization
US7411022B2 (en) 2003-11-13 2008-08-12 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7074841B2 (en) 2003-11-13 2006-07-11 Yandrasits Michael A Polymer electrolyte membranes crosslinked by nitrile trimerization
US7514481B2 (en) 2003-11-13 2009-04-07 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US20050107489A1 (en) * 2003-11-13 2005-05-19 Yandrasits Michael A. Polymer electrolyte membranes crosslinked by nitrile trimerization
US20050107490A1 (en) * 2003-11-13 2005-05-19 Yandrasits Michael A. Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam
US20070264561A1 (en) * 2003-11-13 2007-11-15 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US20050107532A1 (en) * 2003-11-13 2005-05-19 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7265162B2 (en) 2003-11-13 2007-09-04 3M Innovative Properties Company Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam
US7259208B2 (en) 2003-11-13 2007-08-21 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7179847B2 (en) 2003-11-13 2007-02-20 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US8802793B2 (en) 2003-11-24 2014-08-12 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US20110045384A1 (en) * 2003-11-24 2011-02-24 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US7847035B2 (en) 2003-11-24 2010-12-07 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US7060756B2 (en) 2003-11-24 2006-06-13 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US20050113528A1 (en) * 2003-11-24 2005-05-26 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US7112614B2 (en) 2003-12-08 2006-09-26 3M Innovative Properties Company Crosslinked polymer
US20050131096A1 (en) * 2003-12-08 2005-06-16 3M Innovative Properties Company Crosslinked polymer
US20050131097A1 (en) * 2003-12-11 2005-06-16 3M Innovative Properties Company Polymer electrolytes crosslinked by ultraviolet radiation
US7060738B2 (en) 2003-12-11 2006-06-13 3M Innovative Properties Company Polymer electrolytes crosslinked by ultraviolet radiation
US7173067B2 (en) 2003-12-17 2007-02-06 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
US20050137351A1 (en) * 2003-12-17 2005-06-23 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
US7326737B2 (en) 2003-12-17 2008-02-05 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
WO2005123599A2 (en) * 2004-01-20 2005-12-29 Boundless Corporation Highly microporous polymers and methods for producing and using the same
WO2005123599A3 (en) * 2004-01-20 2006-12-07 Boundless Corp Highly microporous polymers and methods for producing and using the same
US20050221134A1 (en) * 2004-04-06 2005-10-06 Liu Wen K Method and apparatus for operating a fuel cell
WO2005101560A3 (en) * 2004-04-06 2005-12-15 Gore Enterprise Holdings Inc Method and apparatus for operating a fuel cell
WO2005101560A2 (en) * 2004-04-06 2005-10-27 Gore Enterprise Holdings, Inc. Method and apparatus for operating a fuel cell
US8323675B2 (en) 2004-04-20 2012-12-04 Genzyme Corporation Soft tissue prosthesis for repairing a defect of an abdominal wall or a pelvic cavity wall
US8460695B2 (en) 2004-04-20 2013-06-11 Genzyme Corporation Making a soft tissue prosthesis for repairing a defect of an abdominal wall or a pelvic cavity wall
US20070037021A1 (en) * 2004-08-03 2007-02-15 Peter Szrama Fuel cell assembly with structural film
US20060204590A1 (en) * 2005-01-11 2006-09-14 Clean Earth Technologies, Llc Formulations for the decontamination of toxic chemicals
WO2006081009A2 (en) 2005-01-24 2006-08-03 Gore Enterprise Holdings, Inc. Method and device to improve operation of a fuel cell
US7713650B2 (en) 2005-02-11 2010-05-11 Gore Enterprise Holdings, Inc. Method for reducing degradation in a fuel cell
US7419732B2 (en) 2005-02-11 2008-09-02 Gore Enterprise Holdings, Inc. Method for reducing degradation in a fuel cell
US20060183006A1 (en) * 2005-02-11 2006-08-17 Wen Liu Method for reducing degradation in a fuel cell
EP1856753A2 (en) * 2005-02-11 2007-11-21 Gore Enterprise Holdings, Inc. Method for reducing degradation in a fuel cell
EP1856753A4 (en) * 2005-02-11 2008-07-23 Gore Enterprise Holdings Inc Method for reducing degradation in a fuel cell
US9847533B2 (en) 2005-09-26 2017-12-19 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
WO2007038040A3 (en) * 2005-09-26 2007-10-25 Gore Enterprise Holdings Inc Solid polymer electrolyte and process for making same
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US20100086675A1 (en) * 2005-09-26 2010-04-08 Thomas Berta Solid Polymer Electrolyte and Process for Making Same
US20070072036A1 (en) * 2005-09-26 2007-03-29 Thomas Berta Solid polymer electrolyte and process for making same
WO2007038040A2 (en) * 2005-09-26 2007-04-05 Gore Enterprise Holdings, Inc. Solid polymer electrolyte and process for making same
US20080118802A1 (en) * 2006-11-16 2008-05-22 Peter Szrama Fully Catalyzed Membrane Assembly With Attached Border
US9988506B2 (en) 2007-10-04 2018-06-05 W. L. Gore & Associates, Inc. Dense articles formed tetrafluoroethylene core shell copolymers and methods of making the same
US9593223B2 (en) 2007-10-04 2017-03-14 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, porous, expanded article thereof
US9193811B2 (en) 2007-10-04 2015-11-24 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, and porous, expanded articles thereof
US20090258958A1 (en) * 2007-10-04 2009-10-15 Ford Lawrence A Expandable TFE Copolymers, Methods of Making, and Porous, Expanded Articles Thereof
US9650479B2 (en) 2007-10-04 2017-05-16 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
US20090093602A1 (en) * 2007-10-04 2009-04-09 Gore Enterprise Holdings, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
US8911844B2 (en) 2007-10-04 2014-12-16 W. L. Gore & Associates, Inc. Expanded TFE copolymers, method of making and porous, expanded articles thereof
US8637144B2 (en) 2007-10-04 2014-01-28 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
US9040646B2 (en) 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
US8241814B2 (en) 2007-12-14 2012-08-14 W. L. Gore & Associates, Inc. Highly stable fuel cell membranes and methods of making them
EP2322270A1 (en) 2007-12-14 2011-05-18 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
US20110236793A1 (en) * 2007-12-14 2011-09-29 Durante Vincent A Highly Stable Fuel Cell Membranes and Methods of Making Them
US20090155662A1 (en) * 2007-12-14 2009-06-18 Durante Vincent A Highly Stable Fuel Cell Membranes and Methods of Making Them
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
US20100167100A1 (en) * 2008-12-26 2010-07-01 David Roger Moore Composite membrane and method for making
US20110177423A1 (en) * 2010-01-21 2011-07-21 Anton Nachtmann Five-Layer Membrane Electrode Assembly with Attached Border and Method of Making Same
WO2011089008A1 (en) 2010-01-21 2011-07-28 W.L. Gore & Associates Gmbh Five-layer membrane electrode assembly with attached border and method of making same
US9419300B2 (en) 2010-04-16 2016-08-16 3M Innovative Properties Company Proton conducting materials
US9893373B2 (en) 2010-05-25 2018-02-13 3M Innovative Properties Company Reinforced electrolyte membrane
US10096855B2 (en) * 2011-11-22 2018-10-09 Sumitomo Electric Industries, Ltd. Redox flow cell membrane
US10125036B2 (en) 2012-12-25 2018-11-13 Kuraray Co., Ltd. Ion exchange membrane, method for producing same, and electrodialyzer
US10256491B2 (en) 2014-05-20 2019-04-09 Johnson Matthey Fuel Cells Limited Membrane electrode assembly
US10333157B2 (en) 2014-11-25 2019-06-25 Johnson Matthey Fuel Cells Limited Membrane-seal assembly
US9644054B2 (en) 2014-12-19 2017-05-09 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
WO2016130529A1 (en) 2015-02-09 2016-08-18 W. L. Gore & Associates, Inc. Membrane electrode assembly manufacturing process
US10367217B2 (en) 2015-02-09 2019-07-30 W. L. Gore & Associates, Inc. Membrane electrode assembly manufacturing process
WO2017156293A1 (en) 2016-03-11 2017-09-14 W. L. Gore & Associates, Inc. Reflective laminates
WO2019125490A1 (en) 2017-12-22 2019-06-27 W. L. Gore & Associates, Inc. Catalyst ink containing a c5-c10 alcohol or carboxylic acid, and mea manufacturing process
WO2020148545A1 (en) 2019-01-17 2020-07-23 Johnson Matthey Fuel Cells Limited Membrane
GB201914335D0 (en) 2019-10-04 2019-11-20 Johnson Matthey Fuel Cells Ltd Membrane electrode assembly

Similar Documents

Publication Publication Date Title
USRE37307E1 (en) Ultra-thin integral composite membrane
US5547551A (en) Ultra-thin integral composite membrane
USRE37701E1 (en) Integral composite membrane
US5599614A (en) Integral composite membrane
US6254978B1 (en) Ultra-thin integral composite membrane
US6130175A (en) Integral multi-layered ion-exchange composite membranes
EP0900249B1 (en) Integral multi-layered ion-exchange composite membranes
US6110333A (en) Composite membrane with highly crystalline porous support
US4954388A (en) Fabric reinforced composite membrane
AU2002323440B2 (en) Ion conducting membrane having high hardness and dimensional stability
US6613215B2 (en) Method for electrolysis of water using a polytetrafluoroethylene supported membrane in electrolysis cells
AU2002323440A1 (en) Ion conducting membrane having high hardness and dimensional stability
CA3064784C (en) Highly reinforced ionomer membranes for high selectivity and high strength
WO1997040924A1 (en) Integral ion-exchange composite membranes
CN112514150B (en) Monolithic composite membranes with continuous ionomer phase
ITMI962422A1 (en) INTEGRAL COMPOSITE MEMBRANE

Legal Events

Date Code Title Description
AS Assignment

Owner name: W L GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLOUK, ROBERT S.;REEL/FRAME:010624/0038

Effective date: 19981125

AS Assignment

Owner name: W. L. GORE & ASSOCIATTES INC., DELAWARE

Free format text: ;ASSIGNOR:MALLOUK, ROBERT S.;REEL/FRAME:010616/0073

Effective date: 19981125

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

REMI Maintenance fee reminder mailed
AS Assignment

Owner name: GORE ENTERPRISE HOLDINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:W. L. GORE & ASSOCIATES, INC.;REEL/FRAME:022659/0631

Effective date: 20090508