USRE33900E - Error monitoring in digital transmission systems - Google Patents

Error monitoring in digital transmission systems Download PDF

Info

Publication number
USRE33900E
USRE33900E US07/387,725 US38772589A USRE33900E US RE33900 E USRE33900 E US RE33900E US 38772589 A US38772589 A US 38772589A US RE33900 E USRE33900 E US RE33900E
Authority
US
United States
Prior art keywords
bits
time division
code word
division multiplexed
multiplexed signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/387,725
Inventor
Robert D. Howson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
AT&T Bell Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Bell Laboratories Inc filed Critical AT&T Bell Laboratories Inc
Priority to US07/387,725 priority Critical patent/USRE33900E/en
Application granted granted Critical
Publication of USRE33900E publication Critical patent/USRE33900E/en
Anticipated expiration legal-status Critical
Assigned to LUCENT TECHNOLOGIES, INC. reassignment LUCENT TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AT&T CORP.
Assigned to THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT reassignment THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT CONDITIONAL ASSIGNMENT OF AND SECURITY INTEREST IN PATENT RIGHTS Assignors: LUCENT TECHNOLOGIES INC. (DE CORPORATION)
Assigned to LUCENT TECHNOLOGIES INC. reassignment LUCENT TECHNOLOGIES INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS Assignors: JPMORGAN CHASE BANK, N.A. (FORMERLY KNOWN AS THE CHASE MANHATTAN BANK), AS ADMINISTRATIVE AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • H04L1/008Formats for control data where the control data relates to payload of a different packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/048Speed or phase control by synchronisation signals using the properties of error detecting or error correcting codes, e.g. parity as synchronisation signal

Definitions

  • the present invention relates to digital transmission systems and, more particularly, to monitoring of errors in the transmission of time division multiplexed signals.
  • the basic time division multiplexed digital transmission unit is known as the DS1 signal.
  • the basic DS1 signal format developed by a digital channel bank consists of 24 eight-bit words and one framing bit for a total of 193 bits per frame.
  • the 24 words typically represent 24 separate and distinct messages deposited in 24 separate and distinct channels.
  • the words are PCM (pulse code modulated) encoded and the least significant bit (i.e., eighth bit) of a channel is periodically dedicated for signaling purposes.
  • the frames of the DS1 signal have been arranged into a so-called super frame comprising two groups of six frames each. Framing bits of the odd frames in the super frame are used to provide a pattern for per frame synchronization (1010 . . . pattern) and the framing bits of the even frames are used to provide a pattern for so-called sub-frame identification (111000111000. . . pattern).
  • the subframe pattern identifies the sixth and twelfth frames of the super frame in which A and B signaling bits, respectively, are inserted in the least significant bit of each channel.
  • framing errors are measured and employed to monitor transmission performance.
  • a problem with the use of framing errors is that the framing bits occur relatively infrequently and, consequently, error measurement intervals are substantially longer than those attainable when using bipolar violations.
  • the problem of performance monitoring of digital transmission is overcome, in accordance with an aspect of the invention, by employing a digital code word having a predetermined number of bits which is generated in accordance with a prescribed criterion from bits of a time division multiplexed signal.
  • the code word bits are inserted into predetermined bit positions of a time division multiplexed signal.
  • bits of a received time division multiplexed signal are compared with bits of a code word generated from bits of a received time division multiplexed signal ostensively corresponding to the bits from which the bits of the code word in the presently received time division multiplexed signal were generated to indicate the presence of errors in transmission.
  • bits of a code word are generated in accordance with the prescribed criterion from a prescribed "block" including a predetermined number of bits of a time division multiplexed signal being transmitted.
  • the code word bits are then inserted into predetermined bit positions of a subsequent block of bits of the time division multiplexed signal being transmitted.
  • bits of a code word are generated from a block of bits of the received time division multiplexed signal and compared with bits of the next subsequent received block of bits to indicate the presence of errors in transmission.
  • the code word bits are inserted in predetermined framing bit positions of the time division multiplexed signal.
  • a transmit circuit includes a generator responsive to timing signals and the block of bits of the time division multiplexed signal presently being transmitted for generating a cyclical-redundancy-check (CRC) code word having a predetermined number of bits which are to be inserted into predetermined framing bit positions of the next subsequent block of bits of the time division multiplexed signal.
  • a receive circuit includes a generator responsive to timing signals and the bits of the time division multiplexed signal being received for generating bits of a CRC code word which are to be compared to the bits of the next subsequent received block of bits ostensively corresponding to the transmitted CRC code word to generate indications of errors in transmission.
  • the bits of a CRC code word presently being transmitted in a block of bits were generated from the previously transmitted block of bits of the time division multiplexed signal and the bits of a presently received block of bits are compared to bits of a CRC code word generated from the bits of a previously received block of bits of a time division multiplexed signal for generating indications of errors in transmission.
  • the error indications are employed as desired, for example, in accordance with prescribed criteria to enable so-called major and minor alarms.
  • a six-bit CRC code word is employed wherein the code word bits are inserted into predetermined framing bit positions in the time division multiplexed signal.
  • FIG. 1 illustrates the format of the basic DS1 digital signal
  • FIG. 2 is a simplified block diagram of a portion of a digital terminal incorporating apparatus in accordance with the invention
  • FIG. 3 shows in simplified form details of a transmit circuit included in the transmit unit of FIG. 2;
  • FIG. 4 illustrates a sequence of signals useful in explaining operation of an embodiment of the invention
  • FIG. 5 depicts in simplified form details of the CRC Bit Generator of FIG. 3;
  • FIG. 6 shows details of the feedback shift register employed in FIG. 5;
  • FIG. 7 shows in simplified form a receive circuit employed in the receive unit of FIG. 2;
  • FIG. 8 depicts details of the CRC-Block Error Detector employed in FIG. 7.
  • the aforementioned DS1 signal will be considered in greater detail at the point.
  • all eight bits of a channel are used for carrying message information in five of every six frames, and the eighth bit (D8) is borrowed for signaling purposes in every sixth frame.
  • Each signaling bit of each channel relates only to the signaling information for that particular channel; and, all of the signaling bits of a digital group occur in the same (one-to-six) signaling frame.
  • Framing information is transmitted in the 193rd bit position of each frame. (The framing bit position may equally be considered the first bit of each frame, i.e., the 0 bit position).
  • the DS1 signal has been grouped into a so-called super frame comprising two groups of six frames each with the sixth frame having A signaling bits and the twelfth frame having B signaling bits.
  • the per frame (1010. . .) pattern appears in every other frame, namely-1--X--0--X--1--X--0--.
  • the frames which do not carry per frame framing bits are called signaling subframes and are used to send signaling framing information.
  • the subframe pattern (111000)--1--X--1--X--1--X--0--X--0--X---0 is employed to identify the sixth and twelfth frames.
  • the DS1 signal has served us well and the present invention may equally be utilized with that digital signal format as well as other and different digital formats.
  • a so-called extended digital format including 24 frames in four groups of six frames each hereinafter referred to as an extended super frame (ESF).
  • ESF extended super frame
  • predetermined bits in the format in this example, bit positions previously employed for either per frame (Ft) framing bits or subframe (Fs) framing bits are utilized to realize an additional data link and for use, in accordance with an aspect of the invention, to transmit a cyclical-redundancy-check (CRC) code word to be used in monitoring transmission performance. Since four groups of six frames each are employed, four signaling bits are available, namely, A,B,C and D.
  • the eight kilobit framing bit channel is distributed into a four kilobit facility data link, two kilobit CRC performance monitoring channel and two kilobit channel for framing.
  • a summary of the extended format is shown in the following table:
  • FIG. 2 shows in simplified form a typical digital terminal which includes performance monitoring equipment in accordance with an aspect of the invention.
  • Transmit unit 21 is supplied with time division multiplex (TDM) input data and facility data link (FDL) data, and generates a time division multiplex (XTDM) output signal to be transmitted over a digital transmission line.
  • XTDM includes the requisite framing bits and, in accordance with an aspect of the invention, bits of a CRC code word for monitoring transmission performance.
  • the composite multiplexed signal (XTDM) from transmit unit 21 is coupled to the digital line (e.g., a T1 transmission line) via line interface unit 22.
  • Interface unit 22 typically converts the unipolar XTDM to bipolar for transmission over the digital line.
  • the incoming time division multiplexed (RTDM) signal is coupled from the digital line to receive unit 23 via interface unit 22.
  • Receive unit 23 is employed to extract the data link (FDL) information from RTDM, operate on RTDM to extract the individual channel information and, in accordance with an aspect of the invention, generate error indications by comparing the CRC bits received in RTDM with CRC bits generated in receive unit 23. It is apparent that in a transmission system similar terminals are used at both ends of the digital line.
  • Time division multiplex transmit and receive units have been in use since the early 1960's and have been extensively described in the literature--see for example, "D2 Channel Bank: Digital Functions" by A. J. Cirillo, et al., Bell System Technical Journal, Volume 51, October 1972; "The D3 Channel Bank” by W. B. Gaunt, et al., Bell Laboratories Record, August 1972, pages 229-233; "D4; Up-to-Date Channel Bank for Digital Transmission Plant” by W. G. Albert, et .[.a..]. .Iadd.al., .Iaddend.Bell Laboratories Record, March 1977, pages 68-72; and also U.S. Pat. No. 4,125,745 issued Nov. 14, 1978.
  • FIG. 3 shows in simplified form details of transmit circuit 300 employed in transmit unit 21 for formating a time division multiplexed (TDM) input signal into the desired time division multiplexed signal to be transmitted (XTDM).
  • TDM time division multiplexed
  • XTDM desired time division multiplexed signal to be transmitted
  • AND gates 301, 302, 303 and 304 in conjunction with OR gate 305 are employed to interleave TDM input data signal, FDL data, F-Pat Bits and CRC bits into time division multiplexed signal XTDM to be transmitted.
  • Framing pattern bits and timing generator 306 (hereinafter referred to as CLOCK) is responsive to a bit clock signal supplied via terminal 307 for generating framing pattern bits (F-Pat Bits) in a pattern as shown in Table I above, a data link sync (FDL SYNC) signal, CRC-Bit SYNC, framing pattern sync (F-Pat SYNC), and extended super frame sync (ESF SYNC).
  • the bit clock signal is, for example, the T1 clock having a bit rate of 1,544 megabits per second.
  • a TDM input signal from a time division multiplex circuit (not shown) is supplied via terminal 308 to an input of AND gate 301.
  • FDL SYNC, F-Pat SYNC and CRC-Bit SYNC signals are supplied to inhibit inputs of AND gate 301 for disabling it when FDL data bits, F-Pat Bits and CRC-Bits, respectively, are interleaved into the XTDM signal.
  • An output of AND gate 301 is supplied to an input of OR gate 305.
  • FDL data is supplied via terminal 309 to an input of AND gate 302, FDL SYNC is supplied to another input of AND 302 for enabling it to interleave the FDL data signal into the appropriate bit positions of XTDM.
  • An output of AND gate 302 is supplied to OR gate 305 for this purpose.
  • F-Pat bits and F-Pat SYNC are supplied from CLOCk 306 to first and second inputs, respectively, of AND gate 303.
  • F-Pat SYNC enables AND gate 303 to interleave the framing pattern bits into the appropriate bit positions of XTDM.
  • An output of AND gate 303 is supplied to OR gate 305 for this purpose.
  • Cyclical-redundancy-check code word bits are supplied from CRC bit generator 310 to an input of AND gate 304.
  • CRC-Bit SYNC is supplied from CLOCK 306 to another input of AND gate 304 for enabling it to interleave the CRC-bits, in accordance with an aspect of the invention, into the appropriate bit positions of XTDM.
  • An output of AND gate 306 is supplied to an input of OR gate 305 for this purpose.
  • CRC bit generator 310 is responsive to XTDM, the bit clock signal supplied from terminal 307, and ESF SYNC and CRC-Bit SYNC signals supplied from CLOCK 306 to generate from the currently transmitted ESF of XTDM a CRC code word having a predetermined number of bits which is to be inserted into predetermined bit positions the next ESF of XTDM to be transmitted. That is to say, a CRC code word is generated, in this example, from the bits of the presently transmitted ESF including the previously inserted CRC bits, which is to be inserted in predetermined ones of the bit positions of the next subsequent ESF to be transmitted. Details of CRC bit generator 310 are shown in FIGS. 5 and 6 and described below.
  • the bits of the CRC code word are inserted into framing bit positions, no additional data bits are required and overall efficiency of transmission is not reduced. It should also be noted that the CRC bits could be inserted into any of the bit positions in the time division multiplexed signal so long as the positions are predetermined, and that the format is not restricted to the 24 frame ESF.
  • a CRC code word having six bits is employed to realize a desirable confidence level in detecting errors in transmission of bits of the extended super frame. It has been determined that using the simple CRC-6 code which, in accordance with an aspect of the invention, is inserted in predetermined bit positions of the extended super frame (i.e., a block having a predetermined number of bits) approximately 98.4 percent of errors in all of the bits, in this example 4632, are detectable. This is sufficiently adequate for digital transmission performance monitoring although inadequate for error detection in data transmission.
  • the CRC-6 code word is generated from the bits of the extended superframe (ESF) being transmitted (XTDM) by employing the cyclic code generator polynomial.
  • ESF extended super frame
  • XTDM XTDM
  • RTDM RTDM
  • ESF extended super frame
  • TDM input data from a time division multiplex circuit is supplied via terminal 308, AND gate 301 and OR gate 306 to XTDM except when AND gate 301 is inhibited by either FDL SYNC, F-PAT SYNC or CRC-BIT SYNC.
  • FDL data bits M1 through M12 are supplied via AND gate 302 and OR gate 305 to be inserted into framing bit positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23, respectively, of XTDM.
  • This is achieved by employing FDL SYNC to enable AND gate 302 to sample the corresponding FDL data bits during the appropriate framing bit positions as shown in FIG. 4.
  • Framing pattern bits generated by clock 306 are supplied into framing bit positions 4, 8, 12, 16, 20 and 24 via AND gate 303 and OR gate 305 in response to F-PAT SYNC pulses enabling AND gate 303 during appropriate framing bit positions as shown in FIG. 4.
  • CRC bits generated by CRC bit generator 310 are inserted into framing bit positions 2, 6, 10, 14, 18 and 22 via AND gate 304 and OR gate 305 in response to CRC-BIT SYNC pulses enabling AND gate 304 during the appropriate framing bit positions as shown in FIG. 4.
  • CRC-BIT SYNC pulses enabling AND gate 304 during the appropriate framing bit positions as shown in FIG. 4.
  • FIG. 5 shows in simplified form details of CRC bit generator 310. Accordingly, shown is feedback shift register 501 which is employed to generate the CRC code word, in this example, in accordance with the generating polynomial of equation (1).
  • XTDM is supplied to the data input of shift register 501 while the BIT CLOCK and ESF SYNC signals are supplied to CLK input and RST input, respectively. Details of one example of a circuit which may be employed for this purpose are shown in FIG. 6.
  • Register 501 generates CRC code word bits C1, C2, C3, C4, C5 and C6 which are supplied in parallel in response to ESF SYNC to parallel in serial out (PISO) shift register 502.
  • ESF SYNC is employed to reset register 501 and load PISO 502.
  • ESF SYNC is supplied to the load (LD) input of PISO 502.
  • the bit clock signal is supplied to CLK input of PISO 502 and CRC-BIT SYNC is supplied to the shift input of PISO 502. Consequently, the CRC bits are shifted and supplied in series to AND gate 304 at the CRC-BIT SYNC rate.
  • BIT CLOCK is employed to synchronize the pulse transitions.
  • FIG. 6 shows details of an arrangement which may be employed for feedback shift register 501.
  • This circuit is employed to realize the desired generator polynomial of equation (1) and, therefore, generate bits C1-C6 of the desired CRC-6 code word.
  • XTDM is supplied via the data input to one input of Exclusive OR gate 601.
  • An output from AND gate 602 which is C1, except when AND gate 602 is inhibited, is supplied to a second input of Exclusive OR gate 601. Consequently, Exclusive OR gate 601 adds the binary output of AND gate 602 to the XTDM bit supplied via the data input. This generates the 1+x 6 function.
  • An output from Exclusive OR gate 601 is supplied to one input of Exclusive OR gate 603 and D-type flip-flop 604.
  • the Q output of flip-flop 604 is CRC bit C6 supplied to shift register 502 and is also supplied via AND gate 605 to a second input of Exclusive OR gate 603. This is the x function.
  • the output of Exclusive OR gate 603 is the polynomial x 6 +x+1 and is supplied to D-type flip-flop 606.
  • the output of flip-flop 606 is CRC bit C5 and is supplied to shift register 502 and D-type flip-flop 607.
  • the serial connection of D-type flip-flops 607, 608, 609 and 610 generate CRC bits C4, C3, C2 and C1, respectively, all supplied to register 502.
  • the output of flip-flop 610 is the x 6 function and is supplied via AND gate 602 to an input of Exclusive OR gate 601.
  • BIT CLOCK is supplied via CLK input to one input of AND gate 611 and to the CLK input of flip-flops 604, 606-610.
  • ESF SYNC is supplied via RST input to the set (S) input of flip-flop 612.
  • the Q output of flip-flop 612 is supplied to a second input of AND gate 611.
  • the output of AND gate 611 is supplied to the reset (R) input of flip-flop 612 and to the clear (CLR) inputs of flip-flops 607-610.
  • AND gate 611 and flip-flop 612 generate a reset pulse to initialize feedback shift register 501 to an all 0 state at the beginning of each extended super frame, i.e., C1-C6 are all 0.
  • AND gates 602 and 605 are used to insure processing of a XTDM bit supplied concurrently with ESF SYNC.
  • FIG. 7 shows in simplified form details of receive circuit 700 which is used in receive unit 23 for utilizing the CRC code word bits, in accordance with an aspect of the invention, for detecting errors in a received time division multiplexed (RTDM) signal.
  • received time division multiplexed signal RTDM is supplied via terminal 701 to CRC-bit generator 702 and CRC-block error detector 703.
  • CRC-bit generator 702 is essentially identical to CRC-bit generator 310 employed in transmit circuit 300 and described above.
  • CRC bit generator 702 generates CRC code word bits, in this example, from the presently received extended super frame of RTDM for comparison with the bits of the next received extended super frame of RTDM.
  • CRC bits are serially supplied from CRC generator 702 to CRC-block error detector 703 where they are compared with bits of RTDM. Error indications are supplied from CRC-block error detector 703 to utilization equipment 704. Utilization equipment 704 may be, for example, a microcomputer which uses the individual error indications to monitor performance. For example, specific algorithms may be employed to enable alarms, e.g., major and minor alarms, when prescribed error rates (i.e., errors per number of bits) are exceeded.
  • Timing generator 705 responds to the bit clock signal which is, for example, the 1.544 megabit per second T1 rate, to generate ESF SYNC and CRC-BIT SYNC.
  • Bit clock, ESF SYNC and CRC-BIT SYNC are supplied to CRC bit generator 702 and are utilized as described above in relation to CRC bit generator 310.
  • ESF SYNC and CRC-BIT SYNC are supplied to CRC-block error detector 703.
  • ESF-SYNC and CRC-BIT SYNC are identical to the signals shown in FIG. 4.
  • FIG. 8 shows details of CRC-bit error detector 703.
  • CRC-block error detector 703 includes Exclusive OR gate 801 which is supplied with the incoming time division multiplex signal RTDM, in this example, the extended super frame (ESF) format and with the CRC bits from CRC bit generator 702.
  • Exclusive OR gate 801 compares the bits in RTDM presently being received with CRC bits generated from the previously received ESF.
  • the output of Exclusive OR gate 801 is supplied to one input of AND gate 802 which is enabled at the CRC bit rate via CRC BIT SYNC. Consequently, the output of Exclusive OR gate 801 is interrogated when a received CRC bit should be present.
  • Exclusive OR gate 801 When the received CRC bit and locally generated CRC bit are not similar Exclusive OR gate 801 generates a logic 1 which is supplied via AND gate 802 to the set (S) input of flip-flop 803. Flip-flop 803 is reset via ESF SYNC being supplied to the reset (R) input. Thus, in this example, one or more CRC-BIT error per extended super frame generate one CRC block error per ESF. Output Q of flip-flop 803 is supplied to one input of AND gate 804.
  • ESF SYNC is supplied to another input of AND gate 804 and, consequently interrogates the Q output of flip-flop 803 upon the occurrence of ESF SYNC.
  • An output of AND gate 804 is the CRC block error indication and is supplied to utilization equipment 704.

Abstract

Errors in digital transmission are monitored by employing a cyclical-redundancy-check (CRC). A CRC code word having a predetermined number of bits is generated (via 310) from a block of bits (ESF) of a presently transmitted time division multiplexed (XTDM) signal. The code word bits are then inserted (via 304, 305, 306) into predetermined bit positions of the next subsequent block of bits (ESF) of the XTDM signal. In a receiver (FIG. 7), bits of a presently received time division multiplexed (RTDM) signal are compared (801, 802) to bits of a CRC code word generated from the last previously received block of bits to indicate errors in transmission. In a specific example, a 6-bit CRC code word is employed and the code word bits are inserted into predetermined framing bit positions.

Description

CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation of my copending application, Ser. No. 186,402 filed Sept. 11, 1980 now abandoned.
Copending U.S. patent applications Ser. No. 186,404 and Ser. No. 186,403 were filed on Sept. 11, 1980, now U.S. Pat. Nos. 4,316,285 and 4,316,284 respectively.
TECHNICAL FIELD
The present invention relates to digital transmission systems and, more particularly, to monitoring of errors in the transmission of time division multiplexed signals.
BACKGROUND OF THE INVENTION
The basic time division multiplexed digital transmission unit is known as the DS1 signal. The basic DS1 signal format developed by a digital channel bank consists of 24 eight-bit words and one framing bit for a total of 193 bits per frame. The 24 words typically represent 24 separate and distinct messages deposited in 24 separate and distinct channels. The words are PCM (pulse code modulated) encoded and the least significant bit (i.e., eighth bit) of a channel is periodically dedicated for signaling purposes.
In some existing transmission systems the frames of the DS1 signal have been arranged into a so-called super frame comprising two groups of six frames each. Framing bits of the odd frames in the super frame are used to provide a pattern for per frame synchronization (1010 . . . pattern) and the framing bits of the even frames are used to provide a pattern for so-called sub-frame identification (111000111000. . . pattern). The subframe pattern identifies the sixth and twelfth frames of the super frame in which A and B signaling bits, respectively, are inserted in the least significant bit of each channel.
Prior systems employing the DS1 signal have used various techniques for monitoring transmission performance. To this end, measurements of error indications per unit of bits have been made and when prescribed limits are exceeded, alarms are enabled thereby alerting craftpersons that the system is malfunctioning. One error indication which has been used for alarming is the violation of the bipolar characteristic of the basic DS1 signal. A major problem with using a measure of bipolar violations is that the bipolar nature of the signal is lost in the digital transmission hierarchy. That is to say, when the DS1 signal is transmitted over a transmission system higher in the transmission hierarchy, e.g., T2 or T4M, the bipolar nature of the signal is converted to unipolar and a parity check is employed to monitor performance. Consequently, the use of bipolar violations is restricted only to systems transmitting over T1 carrier repeater lines. Therefore, end-to-end performance monitoring is not possible by monitoring bipolar violations when the signal is transmitted over a system which employs unipolar transmission.
In other applications framing errors are measured and employed to monitor transmission performance. A problem with the use of framing errors is that the framing bits occur relatively infrequently and, consequently, error measurement intervals are substantially longer than those attainable when using bipolar violations.
SUMMARY OF THE INVENTION
The problem of performance monitoring of digital transmission is overcome, in accordance with an aspect of the invention, by employing a digital code word having a predetermined number of bits which is generated in accordance with a prescribed criterion from bits of a time division multiplexed signal. The code word bits are inserted into predetermined bit positions of a time division multiplexed signal. In a receiver, bits of a received time division multiplexed signal are compared with bits of a code word generated from bits of a received time division multiplexed signal ostensively corresponding to the bits from which the bits of the code word in the presently received time division multiplexed signal were generated to indicate the presence of errors in transmission.
More specifically, the bits of a code word are generated in accordance with the prescribed criterion from a prescribed "block" including a predetermined number of bits of a time division multiplexed signal being transmitted. The code word bits are then inserted into predetermined bit positions of a subsequent block of bits of the time division multiplexed signal being transmitted. In the receiver, bits of a code word are generated from a block of bits of the received time division multiplexed signal and compared with bits of the next subsequent received block of bits to indicate the presence of errors in transmission.
In a specific example, the code word bits are inserted in predetermined framing bit positions of the time division multiplexed signal.
In a preferred embodiment of the invention, a transmit circuit includes a generator responsive to timing signals and the block of bits of the time division multiplexed signal presently being transmitted for generating a cyclical-redundancy-check (CRC) code word having a predetermined number of bits which are to be inserted into predetermined framing bit positions of the next subsequent block of bits of the time division multiplexed signal. A receive circuit includes a generator responsive to timing signals and the bits of the time division multiplexed signal being received for generating bits of a CRC code word which are to be compared to the bits of the next subsequent received block of bits ostensively corresponding to the transmitted CRC code word to generate indications of errors in transmission. That is to say, the bits of a CRC code word presently being transmitted in a block of bits were generated from the previously transmitted block of bits of the time division multiplexed signal and the bits of a presently received block of bits are compared to bits of a CRC code word generated from the bits of a previously received block of bits of a time division multiplexed signal for generating indications of errors in transmission. The error indications are employed as desired, for example, in accordance with prescribed criteria to enable so-called major and minor alarms.
In an exemplary embodiment of the invention a six-bit CRC code word is employed wherein the code word bits are inserted into predetermined framing bit positions in the time division multiplexed signal.
BRIEF DESCRIPTION OF THE DRAWING
The invention will be more fully understood from the following detailed description of an illustrative embodiment thereof taken in connection with the appended figures, in which:
FIG. 1 illustrates the format of the basic DS1 digital signal;
FIG. 2 is a simplified block diagram of a portion of a digital terminal incorporating apparatus in accordance with the invention;
FIG. 3 shows in simplified form details of a transmit circuit included in the transmit unit of FIG. 2;
FIG. 4 illustrates a sequence of signals useful in explaining operation of an embodiment of the invention;
FIG. 5 depicts in simplified form details of the CRC Bit Generator of FIG. 3;
FIG. 6 shows details of the feedback shift register employed in FIG. 5;
FIG. 7 shows in simplified form a receive circuit employed in the receive unit of FIG. 2; and
FIG. 8 depicts details of the CRC-Block Error Detector employed in FIG. 7.
DETAILED DESCRIPTION
To facilitate a clear comprehension of the present invention, yet at the risk of redundancy, the aforementioned DS1 signal will be considered in greater detail at the point. As illustrated in FIG. 1, all eight bits of a channel are used for carrying message information in five of every six frames, and the eighth bit (D8) is borrowed for signaling purposes in every sixth frame. Each signaling bit of each channel relates only to the signaling information for that particular channel; and, all of the signaling bits of a digital group occur in the same (one-to-six) signaling frame. Framing information is transmitted in the 193rd bit position of each frame. (The framing bit position may equally be considered the first bit of each frame, i.e., the 0 bit position). In more recent systems, the DS1 signal has been grouped into a so-called super frame comprising two groups of six frames each with the sixth frame having A signaling bits and the twelfth frame having B signaling bits. The per frame (1010. . .) pattern appears in every other frame, namely-1--X--0--X--1--X--0--. The frames which do not carry per frame framing bits are called signaling subframes and are used to send signaling framing information. The subframe pattern (111000)--1--X--1--X--1--X--0--X--0--X-- 0 is employed to identify the sixth and twelfth frames.
The DS1 signal has served us well and the present invention may equally be utilized with that digital signal format as well as other and different digital formats.
However, in practicing the present invention it is contemplated that a so-called extended digital format is to be utilized including 24 frames in four groups of six frames each hereinafter referred to as an extended super frame (ESF). Moreover, predetermined bits in the format, in this example, bit positions previously employed for either per frame (Ft) framing bits or subframe (Fs) framing bits are utilized to realize an additional data link and for use, in accordance with an aspect of the invention, to transmit a cyclical-redundancy-check (CRC) code word to be used in monitoring transmission performance. Since four groups of six frames each are employed, four signaling bits are available, namely, A,B,C and D. In this particular example not to be considered as limiting the scope of the invention the eight kilobit framing bit channel is distributed into a four kilobit facility data link, two kilobit CRC performance monitoring channel and two kilobit channel for framing. A summary of the extended format is shown in the following table:
              TABLE I                                                     
______________________________________                                    
Extended Super Frame (ESF)                                                
                   Bit number(s) in                                       
F-Bits             each time slot                                         
                       Error for    for   Signal-                         
Frame                  Detec-                                             
                             Infor- Signal-                               
                                          ing                             
Number  F      Data    tion  mation ing   Channel                         
______________________________________                                    
 1      --     M1      --    1-8                                          
 2      --     --      C1    1-8                                          
 3      --     M2      --    1-8                                          
 4      0      --      --    1-8                                          
 5      --     M3      --    1-8                                          
 6      --     --      C2    1-7    8     A                               
 7      --     M4      --    1-8                                          
 8      0      --      --    1-8                                          
 9      --     M5      --    1-8                                          
10      --     --      C3    1-8                                          
11      --     M6      --    1-8                                          
12      1      --      --    1-7    8     B                               
13      --     M7      --    1-8                                          
14      --     --      C4    1-8                                          
15      --     M8      --    1-8                                          
16      1      --      --    1-8                                          
17      --     M9      --    1-8                                          
18      --     --      C5    1-7    8     C                               
19      --     M10     --    1-8                                          
20      1      --      --    1-8                                          
21      --     M11     --    1-8                                          
22      --     --      C6    1-8                                          
23      --     M12     --    1-8                                          
24      0      --      --    1-7    8     D                               
______________________________________                                    
FIG. 2 shows in simplified form a typical digital terminal which includes performance monitoring equipment in accordance with an aspect of the invention. Transmit unit 21 is supplied with time division multiplex (TDM) input data and facility data link (FDL) data, and generates a time division multiplex (XTDM) output signal to be transmitted over a digital transmission line. XTDM includes the requisite framing bits and, in accordance with an aspect of the invention, bits of a CRC code word for monitoring transmission performance. The composite multiplexed signal (XTDM) from transmit unit 21 is coupled to the digital line (e.g., a T1 transmission line) via line interface unit 22. Interface unit 22 typically converts the unipolar XTDM to bipolar for transmission over the digital line. In the receiving direction, the converse of the above-described operations is carried out. The incoming time division multiplexed (RTDM) signal is coupled from the digital line to receive unit 23 via interface unit 22. Receive unit 23 is employed to extract the data link (FDL) information from RTDM, operate on RTDM to extract the individual channel information and, in accordance with an aspect of the invention, generate error indications by comparing the CRC bits received in RTDM with CRC bits generated in receive unit 23. It is apparent that in a transmission system similar terminals are used at both ends of the digital line.
The foregoing, admittedly brief, description of time division multiplex transmit and receive units should provide an adequate background to facilitate an understanding of the present invention. Time division multiplex transmit and receive units have been in use since the early 1960's and have been extensively described in the literature--see for example, "D2 Channel Bank: Digital Functions" by A. J. Cirillo, et al., Bell System Technical Journal, Volume 51, October 1972; "The D3 Channel Bank" by W. B. Gaunt, et al., Bell Laboratories Record, August 1972, pages 229-233; "D4; Up-to-Date Channel Bank for Digital Transmission Plant" by W. G. Albert, et .[.a..]. .Iadd.al., .Iaddend.Bell Laboratories Record, March 1977, pages 68-72; and also U.S. Pat. No. 4,125,745 issued Nov. 14, 1978.
FIG. 3 shows in simplified form details of transmit circuit 300 employed in transmit unit 21 for formating a time division multiplexed (TDM) input signal into the desired time division multiplexed signal to be transmitted (XTDM). To this end, AND gates 301, 302, 303 and 304 in conjunction with OR gate 305 are employed to interleave TDM input data signal, FDL data, F-Pat Bits and CRC bits into time division multiplexed signal XTDM to be transmitted.
Framing pattern bits and timing generator 306 (hereinafter referred to as CLOCK) is responsive to a bit clock signal supplied via terminal 307 for generating framing pattern bits (F-Pat Bits) in a pattern as shown in Table I above, a data link sync (FDL SYNC) signal, CRC-Bit SYNC, framing pattern sync (F-Pat SYNC), and extended super frame sync (ESF SYNC). The bit clock signal is, for example, the T1 clock having a bit rate of 1,544 megabits per second. These signals and their relationship to the bits in the extended super frame (ESF) of XTDM or RTDM are shown in FIG. 4 to be described below.
Accordingly, to generate the desired XTDM output, a TDM input signal from a time division multiplex circuit (not shown) is supplied via terminal 308 to an input of AND gate 301. FDL SYNC, F-Pat SYNC and CRC-Bit SYNC signals are supplied to inhibit inputs of AND gate 301 for disabling it when FDL data bits, F-Pat Bits and CRC-Bits, respectively, are interleaved into the XTDM signal. An output of AND gate 301 is supplied to an input of OR gate 305. FDL data is supplied via terminal 309 to an input of AND gate 302, FDL SYNC is supplied to another input of AND 302 for enabling it to interleave the FDL data signal into the appropriate bit positions of XTDM. An output of AND gate 302 is supplied to OR gate 305 for this purpose. F-Pat bits and F-Pat SYNC are supplied from CLOCk 306 to first and second inputs, respectively, of AND gate 303. F-Pat SYNC enables AND gate 303 to interleave the framing pattern bits into the appropriate bit positions of XTDM. An output of AND gate 303 is supplied to OR gate 305 for this purpose. Cyclical-redundancy-check code word bits (CRC-Bits) are supplied from CRC bit generator 310 to an input of AND gate 304. CRC-Bit SYNC is supplied from CLOCK 306 to another input of AND gate 304 for enabling it to interleave the CRC-bits, in accordance with an aspect of the invention, into the appropriate bit positions of XTDM. An output of AND gate 306 is supplied to an input of OR gate 305 for this purpose.
CRC bit generator 310 is responsive to XTDM, the bit clock signal supplied from terminal 307, and ESF SYNC and CRC-Bit SYNC signals supplied from CLOCK 306 to generate from the currently transmitted ESF of XTDM a CRC code word having a predetermined number of bits which is to be inserted into predetermined bit positions the next ESF of XTDM to be transmitted. That is to say, a CRC code word is generated, in this example, from the bits of the presently transmitted ESF including the previously inserted CRC bits, which is to be inserted in predetermined ones of the bit positions of the next subsequent ESF to be transmitted. Details of CRC bit generator 310 are shown in FIGS. 5 and 6 and described below. Since, in this example, the bits of the CRC code word are inserted into framing bit positions, no additional data bits are required and overall efficiency of transmission is not reduced. It should also be noted that the CRC bits could be inserted into any of the bit positions in the time division multiplexed signal so long as the positions are predetermined, and that the format is not restricted to the 24 frame ESF.
In this example, a CRC code word having six bits (CRC-6) is employed to realize a desirable confidence level in detecting errors in transmission of bits of the extended super frame. It has been determined that using the simple CRC-6 code which, in accordance with an aspect of the invention, is inserted in predetermined bit positions of the extended super frame (i.e., a block having a predetermined number of bits) approximately 98.4 percent of errors in all of the bits, in this example 4632, are detectable. This is sufficiently adequate for digital transmission performance monitoring although inadequate for error detection in data transmission.
In this example, the CRC-6 code word is generated from the bits of the extended superframe (ESF) being transmitted (XTDM) by employing the cyclic code generator polynomial.
x.sup.6 +x+1                                               (1)
An arrangement for realizing equation (1) is shown in FIG. 6 and described below. Cyclic codes are further described in an article by W. W. Peterson and D. T. Brown entitled, "Cyclic Codes for Error Detection", Proceedings of the IRE, January 1961, pages 228-235. See also Chapters 7 and 8 of Error Correcting Codes, The MIT Press, 1972 authored by W. W. Peterson and E. J. Weldon, Jr.
Operation of the transmit circuit of FIG. 3 is best explained by employing the waveforms of FIG. 4. Accordingly, shown in FIG. 4 is one extended super frame (ESF) of XTDM or RTDM. As indicated above, in this example not to be construed as limiting the invention, ESF includes 24 frames each having 193 bits for a block of 4632 bits. Each ESF is initiated by ESF SYNC. TDM input data from a time division multiplex circuit is supplied via terminal 308, AND gate 301 and OR gate 306 to XTDM except when AND gate 301 is inhibited by either FDL SYNC, F-PAT SYNC or CRC-BIT SYNC. FDL data bits M1 through M12 are supplied via AND gate 302 and OR gate 305 to be inserted into framing bit positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23, respectively, of XTDM. This is achieved by employing FDL SYNC to enable AND gate 302 to sample the corresponding FDL data bits during the appropriate framing bit positions as shown in FIG. 4. Framing pattern bits generated by clock 306 are supplied into framing bit positions 4, 8, 12, 16, 20 and 24 via AND gate 303 and OR gate 305 in response to F-PAT SYNC pulses enabling AND gate 303 during appropriate framing bit positions as shown in FIG. 4. Similarly, CRC bits generated by CRC bit generator 310 are inserted into framing bit positions 2, 6, 10, 14, 18 and 22 via AND gate 304 and OR gate 305 in response to CRC-BIT SYNC pulses enabling AND gate 304 during the appropriate framing bit positions as shown in FIG. 4. In a receiver the converse operations are performed.
FIG. 5 shows in simplified form details of CRC bit generator 310. Accordingly, shown is feedback shift register 501 which is employed to generate the CRC code word, in this example, in accordance with the generating polynomial of equation (1). XTDM is supplied to the data input of shift register 501 while the BIT CLOCK and ESF SYNC signals are supplied to CLK input and RST input, respectively. Details of one example of a circuit which may be employed for this purpose are shown in FIG. 6. Register 501 generates CRC code word bits C1, C2, C3, C4, C5 and C6 which are supplied in parallel in response to ESF SYNC to parallel in serial out (PISO) shift register 502. ESF SYNC is employed to reset register 501 and load PISO 502. To this end, ESF SYNC is supplied to the load (LD) input of PISO 502. The bit clock signal is supplied to CLK input of PISO 502 and CRC-BIT SYNC is supplied to the shift input of PISO 502. Consequently, the CRC bits are shifted and supplied in series to AND gate 304 at the CRC-BIT SYNC rate. BIT CLOCK is employed to synchronize the pulse transitions.
FIG. 6 shows details of an arrangement which may be employed for feedback shift register 501. This circuit is employed to realize the desired generator polynomial of equation (1) and, therefore, generate bits C1-C6 of the desired CRC-6 code word. To this end, XTDM is supplied via the data input to one input of Exclusive OR gate 601. An output from AND gate 602 which is C1, except when AND gate 602 is inhibited, is supplied to a second input of Exclusive OR gate 601. Consequently, Exclusive OR gate 601 adds the binary output of AND gate 602 to the XTDM bit supplied via the data input. This generates the 1+x6 function. An output from Exclusive OR gate 601 is supplied to one input of Exclusive OR gate 603 and D-type flip-flop 604. The Q output of flip-flop 604 is CRC bit C6 supplied to shift register 502 and is also supplied via AND gate 605 to a second input of Exclusive OR gate 603. This is the x function. The output of Exclusive OR gate 603 is the polynomial x6 +x+1 and is supplied to D-type flip-flop 606. The output of flip-flop 606 is CRC bit C5 and is supplied to shift register 502 and D-type flip-flop 607. Similarly, the serial connection of D-type flip- flops 607, 608, 609 and 610 generate CRC bits C4, C3, C2 and C1, respectively, all supplied to register 502. The output of flip-flop 610 is the x6 function and is supplied via AND gate 602 to an input of Exclusive OR gate 601. BIT CLOCK is supplied via CLK input to one input of AND gate 611 and to the CLK input of flip-flops 604, 606-610. ESF SYNC is supplied via RST input to the set (S) input of flip-flop 612. The Q output of flip-flop 612 is supplied to a second input of AND gate 611. The output of AND gate 611 is supplied to the reset (R) input of flip-flop 612 and to the clear (CLR) inputs of flip-flops 607-610. AND gate 611 and flip-flop 612 generate a reset pulse to initialize feedback shift register 501 to an all 0 state at the beginning of each extended super frame, i.e., C1-C6 are all 0. AND gates 602 and 605 are used to insure processing of a XTDM bit supplied concurrently with ESF SYNC.
FIG. 7 shows in simplified form details of receive circuit 700 which is used in receive unit 23 for utilizing the CRC code word bits, in accordance with an aspect of the invention, for detecting errors in a received time division multiplexed (RTDM) signal. Accordingly, received time division multiplexed signal RTDM is supplied via terminal 701 to CRC-bit generator 702 and CRC-block error detector 703. CRC-bit generator 702 is essentially identical to CRC-bit generator 310 employed in transmit circuit 300 and described above. CRC bit generator 702 generates CRC code word bits, in this example, from the presently received extended super frame of RTDM for comparison with the bits of the next received extended super frame of RTDM. CRC bits are serially supplied from CRC generator 702 to CRC-block error detector 703 where they are compared with bits of RTDM. Error indications are supplied from CRC-block error detector 703 to utilization equipment 704. Utilization equipment 704 may be, for example, a microcomputer which uses the individual error indications to monitor performance. For example, specific algorithms may be employed to enable alarms, e.g., major and minor alarms, when prescribed error rates (i.e., errors per number of bits) are exceeded.
Timing generator 705 responds to the bit clock signal which is, for example, the 1.544 megabit per second T1 rate, to generate ESF SYNC and CRC-BIT SYNC. Bit clock, ESF SYNC and CRC-BIT SYNC are supplied to CRC bit generator 702 and are utilized as described above in relation to CRC bit generator 310. ESF SYNC and CRC-BIT SYNC are supplied to CRC-block error detector 703. ESF-SYNC and CRC-BIT SYNC are identical to the signals shown in FIG. 4.
FIG. 8 shows details of CRC-bit error detector 703. CRC-block error detector 703 includes Exclusive OR gate 801 which is supplied with the incoming time division multiplex signal RTDM, in this example, the extended super frame (ESF) format and with the CRC bits from CRC bit generator 702. Exclusive OR gate 801 compares the bits in RTDM presently being received with CRC bits generated from the previously received ESF. The output of Exclusive OR gate 801 is supplied to one input of AND gate 802 which is enabled at the CRC bit rate via CRC BIT SYNC. Consequently, the output of Exclusive OR gate 801 is interrogated when a received CRC bit should be present. Since the CRC bits being received and the CRC bits generated by CRC bit generator 702 are ostensively derived from the same signal (i.e., XTDM, RTDM) they should be identical. However, errors may result in transmission because of noise or the like. When the received CRC bit and locally generated CRC bit are not similar Exclusive OR gate 801 generates a logic 1 which is supplied via AND gate 802 to the set (S) input of flip-flop 803. Flip-flop 803 is reset via ESF SYNC being supplied to the reset (R) input. Thus, in this example, one or more CRC-BIT error per extended super frame generate one CRC block error per ESF. Output Q of flip-flop 803 is supplied to one input of AND gate 804. ESF SYNC is supplied to another input of AND gate 804 and, consequently interrogates the Q output of flip-flop 803 upon the occurrence of ESF SYNC. An output of AND gate 804 is the CRC block error indication and is supplied to utilization equipment 704.

Claims (16)

What is claimed is:
1. Apparatus for formatting a time division multiplexed signal including a series of blocks of bits, each block including a plurality of data bits and a plurality of additional bit positions,
characterized by
means (310) responsive to bits in a block of bits of the time division multiplexed signal (XTDM) for generating in accordance with a prescribed criterion a code word (CRC BITS) having a predetermined number of bits less in number than the plurality of additional bit positions; and
means (301, 304-306) for inserting said code word bits in predetermined ones of the additional bit positions of a subsequent block of bits of the time division multiplexed signal being transmitted to monitor errors in transmission.
2. Apparatus .Iadd.including means .Iaddend.for monitoring a received time division multiplexed signal including a series of blocks of bits, each block including a plurality of data bits and a plurality of additional bit positions,
characterized by
means (702) responsive to all the bits of a block of bits of the received time division multiplexed signal (RTDM) for generating .Iadd.in .Iaddend.accordance with a prescribed criterion a code word (CRC BITS) having a predetermined number of bits less in number than the plurality of additionsal bit position; and
means (703) for comparing said code word bits with bits of a subsequent received block of bits of the time division multiplexed signal to generate error indications.
3. Apparatus for transmitting and receiving time division multiplexed signals including a series of blocks of bits, each block including a plurality of data bits and a plurality of additional bit positions,
characterized by
means (300) for formatting the time division multiplexed signal (XTDM) including means (310) responsive to bits in a block of bits of the time division multiplexed signal (XTDM) for generating in accordance with a prescribed criterion a code word (CRC BITS) having a predetermined number of bits less in number than the plurality of additional bit positions, and means (301, 304-306) for inserting said code word bits in predetermined ones of the additional bit positions of a subsequent block of bits of the time division multiplexed signal being transmitted to monitor errors in transmission; and
means (700) for monitoring a received time division multiplexed signal including means (702) responsive to bits of a block of bits of the received time division multiplexed signal (RTDM) for generating in accordance with a prescribed criterion a code word (CRC BITS) having a predetermined number of bits less in number than the plurality of additional bit positions, and means (703) for comparing said code word bits with bits of a subsequent received block of bits of the time division multiplexed signal to generate error indications.
4. Apparatus as defined in claims 1 or 2, wherein said code word generating means (310; 702) includes means (501) for generating said code word bits (CRC BITS) from a block having a predetermined number of bits of the time division multiplexed signal (XTDM; RTDM) and means for serially supplying said code word bits (502) during a next subsequent block of bits of the time division multiplexed signal.
5. Apparatus as defined in claim 1 or 2, wherein said prescribed criterion includes a predetermined cyclic code generator polynomial.
6. Apparatus as defined in claim 5 wherein said predetermined number of code word bits is six.
7. Apparatus as defined in claim 5 wherein said means for generating said code word from said block of bits includes a feedback shift register (501).
8. Apparatus as defined in claims 1 or 3 wherein said means for inserting includes means (306) for generating a timing signal (CRC BIT SYNC) including pulses concurrent with said code word bits (CRC BITS).
9. Apparatus as defined in claim 8 wherein said code word generating means (301) includes means (501) for generating said code word bits from a block (ESF) having a predetermined number of bits of the time division multiplexed signal (XTDM) and means (502) for serially supplying said code word bits to said means for inserting during a next subsequent block of bits of the time division multiplexed signal.
10. Apparatus as defined in claim 9 wherein said predetermined additional bit positions are predetermined framing bit positions.
11. Apparatus as defined in claim 10 wherein said means for inserting includes means (301, 304) responsive to said timing signal pulses (CRC BIT SYNC) and said code word bits (CRC BITS) for inserting said code word bits in said predetermined framing bit positions.
12. Apparatus as defined in claims 2 or 3 wherein said means for monitoring further includes means (705) for generating a timing signal (CRC BIT SYNC) having pulses concurrent with said code word bits (CRC BITS), wherein said code word generating means (702) includes means for generating said code word bits from a block having a predetermined number of bits of the time division multiplexed signal and means for serially supplying said code word bits during a next subsequent block of bits of the time division multiplexed signal, and wherein said comparing means (703) is responsive to said bits of the received time division multiplexed signal, to said code word bits, and to said timing signal pulses for generating said error indications (CRC BLOCK ERRORS).
13. A method for formatting a time division multiplexed signal including a series of blocks of bits each block including a plurality of data bits and a plurality of additional bit positions, the method comprising the steps of:
generating a code word having a predetermined number of bits less in number than the plurality of additional bit positions from bits in a block of bits of the time division multiplexed signal in accordance with a prescribed criterion; and
inserting the code word bits in predetermined ones of the additional bit positions of a subsequent block of bits of the time division multiplexed signal.
14. A method for monitoring errors in a received time division multiplexed signal including a series of blocks of bits each block including a plurality of data bits and a plurality of additional bit positions, the method comprising the steps of:
generating a code word having a predetermined number of bits less in number than the plurality of additional bit positions from bits of a block of bits of the time division multiplexed signal in accordance with a prescribed criterion; and
comparing the code word bits with bits of a subsequent received block of bits of the time division multiplexed signal to generate error indications. .Iadd.
15. Apparatus as defined in claim 2 wherein said means for monitoring further includes means for utilizing said error indications to monitor transmission performance. .Iaddend. .Iadd.16. Apparatus as defined in claim 10 wherein said means for monitoring further includes means for utilizing said error indications to monitor transmission performance. .Iaddend. .Iadd.17. Apparatus as defined in claim 12 wherein said means for monitoring further includes means for utilizing said error indications
to monitor transmission performance. .Iaddend. .Iadd.18. Apparatus for transmitting and receiving time division multiplexed signals including a series of blocks of bits, each block including a plurality of data bits and a plurality of additional bit positions,
characterized by
means (300) for formatting the time division multiplexed signal (XTDM) including means (310) responsive to bits in a block of bits of the time division multiplexed signal (XTDM) for generating in accordance with a prescribed criterion a code word (CRC BITS) having a predetermined number of bits less in number than the plurality of additional bit positions, and means (301, 304-306) for inserting said code word bits in predetermined ones of the additional bit positions of a subsequent block of bits of the time division multiplexed signal being transmitted to monitor errors in transmission; and
means (700) for monitoring a received time division multiplexed signal including means (702) responsive to bits of a block of bits of the received time division multiplexed signal (RTDM) for generating in accordance with a prescribed criterion a code word (CRC BITS) having a predetermined number of bits less in number than the plurality of additional bit positions, means (703) for comparing said code word bits with bits of a subsequent received block of bits of the time division multiplexed signal to generate error indications, and means (704) for utilizing said error indications to monitor transmission performance. .Iaddend. .Iadd.19. A method for monitoring errors in a received time division multiplexed signal including a series of blocks of bits each block including a plurality of data bits and a plurality of additional bit positions, the method comprising the steps of:
generating a code word having a predetermined number of bits less in number than the plurality of additional bit positions from bits of a block of bits of the time division multiplexed signal in accordance with a prescribed criterion,
comparing the code word bits with bits of a subsequent received block of bits of the time division multiplexed signal to generate errors indications; and
utilizing said error indications to monitor transmission performance. .Iaddend.
US07/387,725 1980-09-11 1989-07-31 Error monitoring in digital transmission systems Expired - Lifetime USRE33900E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/387,725 USRE33900E (en) 1980-09-11 1989-07-31 Error monitoring in digital transmission systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18640280A 1980-09-11 1980-09-11
US07/387,725 USRE33900E (en) 1980-09-11 1989-07-31 Error monitoring in digital transmission systems

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US18640280A Continuation 1980-09-11 1980-09-11
US06/310,779 Reissue US4397020A (en) 1980-09-11 1981-10-13 Error monitoring in digital transmission systems

Publications (1)

Publication Number Publication Date
USRE33900E true USRE33900E (en) 1992-04-28

Family

ID=26882053

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/387,725 Expired - Lifetime USRE33900E (en) 1980-09-11 1989-07-31 Error monitoring in digital transmission systems

Country Status (1)

Country Link
US (1) USRE33900E (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228030A (en) * 1989-10-31 1993-07-13 At&T Bell Laboratories Time division communication system frame changeover arrangement
US5285456A (en) * 1991-05-15 1994-02-08 International Business Machines Corporation System and method for improving the integrity of control information
US5351244A (en) * 1991-02-22 1994-09-27 Institut Francais Du Petrole Seismic transmission method and device for a very low error rate
US5506956A (en) * 1993-04-07 1996-04-09 Sprint Communications Company L.P. Error correction and channel restoration apparatus for T1 digital links
US5513173A (en) * 1994-03-16 1996-04-30 Xel Communications, Inc. Data link access unit for T1 spans supporting the extended superframe format (ESF)
US5519830A (en) * 1993-06-10 1996-05-21 Adc Telecommunications, Inc. Point-to-multipoint performance monitoring and failure isolation system
US5577196A (en) * 1993-04-07 1996-11-19 Sprint Communications Co. L.P. Intelligent digital signal hitless protection switch
US5610928A (en) * 1993-05-28 1997-03-11 Gpt Limited Data verification method
US5793978A (en) * 1994-12-29 1998-08-11 Cisco Technology, Inc. System for routing packets by separating packets in to broadcast packets and non-broadcast packets and allocating a selected communication bandwidth to the broadcast packets
US5802042A (en) * 1996-06-28 1998-09-01 Cisco Systems, Inc. Autosensing LMI protocols in frame relay networks
US5825765A (en) * 1992-03-31 1998-10-20 Fore Systems, Inc. Communication network based on ATM for general purpose computers
US5867666A (en) * 1994-12-29 1999-02-02 Cisco Systems, Inc. Virtual interfaces with dynamic binding
US6023473A (en) 1996-07-25 2000-02-08 Telebit Corporation Application programming interface for modem and ISDN processing
US6035105A (en) 1996-01-02 2000-03-07 Cisco Technology, Inc. Multiple VLAN architecture system
US6038222A (en) 1996-07-25 2000-03-14 Telebit Corporation Modem command and data interface
US6047308A (en) 1996-07-25 2000-04-04 Cisco Technology, Inc. Modem with integrated control processor and digital signal processor sessions
US6078590A (en) 1997-07-14 2000-06-20 Cisco Technology, Inc. Hierarchical routing knowledge for multicast packet routing
US6091725A (en) 1995-12-29 2000-07-18 Cisco Systems, Inc. Method for traffic management, traffic prioritization, access control, and packet forwarding in a datagram computer network
US6097718A (en) 1996-01-02 2000-08-01 Cisco Technology, Inc. Snapshot routing with route aging
US6101115A (en) 1998-08-07 2000-08-08 Cisco Technology, Inc. CAM match line precharge
US6111877A (en) 1997-12-31 2000-08-29 Cisco Technology, Inc. Load sharing across flows
US6122272A (en) 1997-05-23 2000-09-19 Cisco Technology, Inc. Call size feedback on PNNI operation
US6157641A (en) 1997-08-22 2000-12-05 Cisco Technology, Inc. Multiprotocol packet recognition and switching
US6182224B1 (en) 1995-09-29 2001-01-30 Cisco Systems, Inc. Enhanced network services using a subnetwork of communicating processors
US6182147B1 (en) 1998-07-31 2001-01-30 Cisco Technology, Inc. Multicast group routing using unidirectional links
US6212182B1 (en) 1996-06-27 2001-04-03 Cisco Technology, Inc. Combined unicast and multicast scheduling
US6212183B1 (en) 1997-08-22 2001-04-03 Cisco Technology, Inc. Multiple parallel packet routing lookup
US6226771B1 (en) 1998-12-14 2001-05-01 Cisco Technology, Inc. Method and apparatus for generating error detection data for encapsulated frames
US6243667B1 (en) 1996-05-28 2001-06-05 Cisco Systems, Inc. Network flow switching and flow data export
US6295356B1 (en) 1998-03-26 2001-09-25 Cisco Technology, Inc. Power feed for network devices
US6295615B1 (en) 1991-12-09 2001-09-25 Sprint Communications Company, L. P. Automatic restoration of communication channels
US6304546B1 (en) 1996-12-19 2001-10-16 Cisco Technology, Inc. End-to-end bidirectional keep-alive using virtual circuits
US6308219B1 (en) 1998-07-31 2001-10-23 Cisco Technology, Inc. Routing table lookup implemented using M-trie having nodes duplicated in multiple memory banks
US6308148B1 (en) 1996-05-28 2001-10-23 Cisco Technology, Inc. Network flow data export
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US6343072B1 (en) 1997-10-01 2002-01-29 Cisco Technology, Inc. Single-chip architecture for shared-memory router
US6356530B1 (en) 1997-05-23 2002-03-12 Cisco Technology, Inc. Next hop selection in ATM networks
US6370121B1 (en) 1998-06-29 2002-04-09 Cisco Technology, Inc. Method and system for shortcut trunking of LAN bridges
US6377577B1 (en) 1998-06-30 2002-04-23 Cisco Technology, Inc. Access control list processing in hardware
US6389506B1 (en) 1998-08-07 2002-05-14 Cisco Technology, Inc. Block mask ternary cam
US20020063584A1 (en) * 2000-11-29 2002-05-30 James Molenda Unpowered twisted pair loopback circuit for differential mode signaling
US20020097736A1 (en) * 1998-04-01 2002-07-25 Earl Cohen Route/service processor scalability via flow-based distribution of traffic
US6434120B1 (en) 1998-08-25 2002-08-13 Cisco Technology, Inc. Autosensing LMI protocols in frame relay networks
US6446230B1 (en) 1998-09-14 2002-09-03 Cisco Technology, Inc. Mechanism for enabling compliance with the IEEE standard 1149.1 for boundary-scan designs and tests
US6490260B1 (en) 1998-08-03 2002-12-03 Samsung Electronics, Co., Ltd. Transmitter with increased traffic throughput in digital mobile telecommunication system and method for operating the same
US6493844B1 (en) * 1998-12-09 2002-12-10 Fujitsu Limited Error detector, semiconductor device, and error detection method
US6512766B2 (en) 1997-08-22 2003-01-28 Cisco Systems, Inc. Enhanced internet packet routing lookup
US6532215B1 (en) 1998-08-07 2003-03-11 Cisco Technology, Inc. Device and method for network communications and diagnostics
US6603772B1 (en) 1999-03-31 2003-08-05 Cisco Technology, Inc. Multicast routing with multicast virtual output queues and shortest queue first allocation
US6751236B1 (en) 2000-12-15 2004-06-15 Cisco Technology, Inc. Configurable channel associated signaling (“CAS”) line signaling using plain text strings
US6757791B1 (en) 1999-03-30 2004-06-29 Cisco Technology, Inc. Method and apparatus for reordering packet data units in storage queues for reading and writing memory
US6760331B1 (en) 1999-03-31 2004-07-06 Cisco Technology, Inc. Multicast routing with nearest queue first allocation and dynamic and static vector quantization
US6771642B1 (en) 1999-01-08 2004-08-03 Cisco Technology, Inc. Method and apparatus for scheduling packets in a packet switch
US6909697B1 (en) 1997-12-22 2005-06-21 Cisco Technology, Inc. Method and apparatus for identifying a maximum frame size
US6917966B1 (en) 1995-09-29 2005-07-12 Cisco Technology, Inc. Enhanced network services using a subnetwork of communicating processors
US6920112B1 (en) 1998-06-29 2005-07-19 Cisco Technology, Inc. Sampling packets for network monitoring
US20050268120A1 (en) * 2004-05-13 2005-12-01 Schindler Frederick R Power delivery over ethernet cables
US7026730B1 (en) 2002-12-20 2006-04-11 Cisco Technology, Inc. Integrated connector unit
US20060112288A1 (en) * 2004-11-24 2006-05-25 Schindler Frederick R Increased power for power over ethernet applications
US7061142B1 (en) 2003-05-28 2006-06-13 Cisco Technology, Inc. Inline power device detection
US7065762B1 (en) 1999-03-22 2006-06-20 Cisco Technology, Inc. Method, apparatus and computer program product for borrowed-virtual-time scheduling
US20060149978A1 (en) * 2005-01-04 2006-07-06 Randall Anthony L Method and system for managing power delivery for power over ethernet systems
US7076543B1 (en) 2002-02-13 2006-07-11 Cisco Technology, Inc. Method and apparatus for collecting, aggregating and monitoring network management information
US7099463B1 (en) 2000-11-09 2006-08-29 Cisco Technology, Inc. Method and apparatus for detecting a compatible phantom powered device using common mode signaling
US7106754B1 (en) 1996-07-25 2006-09-12 Cisco Technology, Inc. Application programming interface for modem and ISDN processing
US7116669B1 (en) 1997-06-17 2006-10-03 Cisco Technology, Inc. Format for automatic generation of unique ATM addresses used for PNNI
US7246148B1 (en) 1995-09-29 2007-07-17 Cisco Technology, Inc. Enhanced network services using a subnetwork of communicating processors
US7286525B1 (en) 1997-12-31 2007-10-23 Cisco Technology, Inc. Synchronous pipelined switch using serial transmission
US7366297B1 (en) 2003-05-21 2008-04-29 Cisco Technology, Inc. Method and system for converting alternating current to ethernet in-line power
US7505486B2 (en) 2002-11-19 2009-03-17 Hewlett-Packard Development Company, L.P. Degradable network data path transmission scheme
US7570583B2 (en) 1997-12-05 2009-08-04 Cisco Technology, Inc. Extending SONET/SDH automatic protection switching
USRE41771E1 (en) 1995-02-06 2010-09-28 Adc Telecommunications, Inc. System for multiple use subchannels
USRE42236E1 (en) 1995-02-06 2011-03-22 Adc Telecommunications, Inc. Multiuse subcarriers in multipoint-to-point communication using orthogonal frequency division multiplexing
US8155012B2 (en) 1998-04-10 2012-04-10 Chrimar Systems, Inc. System and method for adapting a piece of terminal equipment
US8601345B1 (en) * 2010-05-12 2013-12-03 Tellabs Operations, Inc. Method and apparatus for searching frame alignment with false alignment protection

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412380A (en) * 1964-09-04 1968-11-19 Westinghouse Electric Corp Two-character, single error-correcting system compatible with telegraph transmission
US3475724A (en) * 1965-10-08 1969-10-28 Bell Telephone Labor Inc Error control system
US3873920A (en) * 1973-12-12 1975-03-25 Bell Telephone Labor Inc Variable block length synchronization system
US3893072A (en) * 1973-08-03 1975-07-01 Int Data Sciences Inc Error correction system
US4012719A (en) * 1975-04-11 1977-03-15 Sperry Rand Corporation Communication multiplexer module
US4032885A (en) * 1976-03-01 1977-06-28 The United States Of America As Represented By The Secretary Of The Navy Digital correlator
US4125725A (en) * 1976-04-06 1978-11-14 The United States Of America As Represented By The Secretary Of The Navy Phenylated carboxyquinoxalines
US4142070A (en) * 1977-12-27 1979-02-27 Wescom, Inc. False framing detector
US4145683A (en) * 1977-11-02 1979-03-20 Minnesota Mining And Manufacturing Company Single track audio-digital recorder and circuit for use therein having error correction
US4154948A (en) * 1972-10-24 1979-05-15 Petrolite Corporation Phosphonium compounds
US4158193A (en) * 1977-06-06 1979-06-12 International Data Sciences, Inc. Data transmission test set with synchronization detector
US4168400A (en) * 1977-03-31 1979-09-18 Compagnie Europeenne De Teletransmission (C.E.T.T.) Digital communication system
US4206440A (en) * 1976-12-24 1980-06-03 Sony Corporation Encoding for error correction of recorded digital signals
US4229792A (en) * 1979-04-09 1980-10-21 Honeywell Inc. Bus allocation synchronization system
US4238852A (en) * 1978-04-17 1980-12-09 Sony Corporation Error correcting system
US4306305A (en) * 1978-10-23 1981-12-15 Sony Corporation PCM Signal transmitting system with error detecting and correcting capability

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412380A (en) * 1964-09-04 1968-11-19 Westinghouse Electric Corp Two-character, single error-correcting system compatible with telegraph transmission
US3475724A (en) * 1965-10-08 1969-10-28 Bell Telephone Labor Inc Error control system
US4154948A (en) * 1972-10-24 1979-05-15 Petrolite Corporation Phosphonium compounds
US3893072A (en) * 1973-08-03 1975-07-01 Int Data Sciences Inc Error correction system
US3873920A (en) * 1973-12-12 1975-03-25 Bell Telephone Labor Inc Variable block length synchronization system
US4012719A (en) * 1975-04-11 1977-03-15 Sperry Rand Corporation Communication multiplexer module
US4032885A (en) * 1976-03-01 1977-06-28 The United States Of America As Represented By The Secretary Of The Navy Digital correlator
US4125725A (en) * 1976-04-06 1978-11-14 The United States Of America As Represented By The Secretary Of The Navy Phenylated carboxyquinoxalines
US4206440A (en) * 1976-12-24 1980-06-03 Sony Corporation Encoding for error correction of recorded digital signals
US4168400A (en) * 1977-03-31 1979-09-18 Compagnie Europeenne De Teletransmission (C.E.T.T.) Digital communication system
US4158193A (en) * 1977-06-06 1979-06-12 International Data Sciences, Inc. Data transmission test set with synchronization detector
US4145683A (en) * 1977-11-02 1979-03-20 Minnesota Mining And Manufacturing Company Single track audio-digital recorder and circuit for use therein having error correction
US4142070A (en) * 1977-12-27 1979-02-27 Wescom, Inc. False framing detector
US4238852A (en) * 1978-04-17 1980-12-09 Sony Corporation Error correcting system
US4306305A (en) * 1978-10-23 1981-12-15 Sony Corporation PCM Signal transmitting system with error detecting and correcting capability
US4229792A (en) * 1979-04-09 1980-10-21 Honeywell Inc. Bus allocation synchronization system

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"DS-1 Extended Framing Format", pp. 1-7; DS-1 Extended Framing Format USITA Meeting at AT&T Co., Basking Ridge, N.J., Apr. 16, 1980.
CCITT Recommendation X.25, "Interface Between Data Terminal Equipment (DTE) and Data Termination Equipment (DCE) for Terminals Operating in the Packet Mode on Public Data Networks", vol. VIII.2--Rec.X.25, Geneva, 1976, pp. 70-76.
CCITT Recommendation X.25, Interface Between Data Terminal Equipment (DTE) and Data Termination Equipment (DCE) for Terminals Operating in the Packet Mode on Public Data Networks , vol. VIII.2 Rec.X.25, Geneva, 1976, pp. 70 76. *
DS 1 Extended Framing Format , pp. 1 7; DS 1 Extended Framing Format USITA Meeting at AT&T Co., Basking Ridge, N.J., Apr. 16, 1980. *
K. Kurahashi et al., "DTS-1 Speech Path System", Review of the Electrical Communications Laboratories, vol. 27, Nos. 9-10, Sep.-Oct., 1979, pp. 728-738.
K. Kurahashi et al., "Speech Path System of Digital Transit Exchange", Electrical Communication Laboratories Technical Journal, vol. 28, No. 7, 1979, pp. 1261-1276, (Japanese).
K. Kurahashi et al., DTS 1 Speech Path System , Review of the Electrical Communications Laboratories, vol. 27, Nos. 9 10, Sep. Oct., 1979, pp. 728 738. *
K. Kurahashi et al., Speech Path System of Digital Transit Exchange , Electrical Communication Laboratories Technical Journal, vol. 28, No. 7, 1979, pp. 1261 1276, (Japanese). *
M. T. Manfred et al., "Digital Loop Carrier Systems", The Bell System Technical Journal, vol. 57, No. 4, Apr. 1978, pp. 1129-1156.
M. T. Manfred et al., Digital Loop Carrier Systems , The Bell System Technical Journal, vol. 57, No. 4, Apr. 1978, pp. 1129 1156. *

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228030A (en) * 1989-10-31 1993-07-13 At&T Bell Laboratories Time division communication system frame changeover arrangement
US5351244A (en) * 1991-02-22 1994-09-27 Institut Francais Du Petrole Seismic transmission method and device for a very low error rate
US5285456A (en) * 1991-05-15 1994-02-08 International Business Machines Corporation System and method for improving the integrity of control information
US6295615B1 (en) 1991-12-09 2001-09-25 Sprint Communications Company, L. P. Automatic restoration of communication channels
US5825765A (en) * 1992-03-31 1998-10-20 Fore Systems, Inc. Communication network based on ATM for general purpose computers
US5506956A (en) * 1993-04-07 1996-04-09 Sprint Communications Company L.P. Error correction and channel restoration apparatus for T1 digital links
US5577196A (en) * 1993-04-07 1996-11-19 Sprint Communications Co. L.P. Intelligent digital signal hitless protection switch
US5610928A (en) * 1993-05-28 1997-03-11 Gpt Limited Data verification method
US5519830A (en) * 1993-06-10 1996-05-21 Adc Telecommunications, Inc. Point-to-multipoint performance monitoring and failure isolation system
US5655068A (en) * 1993-06-10 1997-08-05 Adc Telecommunications, Inc. Point-to-multipoint performance monitoring and failure isolation system
US5513173A (en) * 1994-03-16 1996-04-30 Xel Communications, Inc. Data link access unit for T1 spans supporting the extended superframe format (ESF)
US6418558B1 (en) 1994-09-26 2002-07-09 Adc Telecommunications, Inc. Hybrid fiber/coax video and telephony communication
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US8547824B2 (en) 1994-09-26 2013-10-01 Htc Corporation Systems and methods for orthogonal frequency divisional multiplexing
USRE44460E1 (en) 1994-09-26 2013-08-27 Htc Corporation Systems for synchronous multipoint-to-point orthogonal frequency division multiplexing communication
US8638655B2 (en) 1994-09-26 2014-01-28 Htc Corporation Systems and method for orthogonal frequency divisional multiplexing
US5867666A (en) * 1994-12-29 1999-02-02 Cisco Systems, Inc. Virtual interfaces with dynamic binding
US5793978A (en) * 1994-12-29 1998-08-11 Cisco Technology, Inc. System for routing packets by separating packets in to broadcast packets and non-broadcast packets and allocating a selected communication bandwidth to the broadcast packets
US7872985B2 (en) 1995-02-06 2011-01-18 Adc Dsl Systems, Inc. System for multi-frame alignment
US7756060B2 (en) 1995-02-06 2010-07-13 Adc Telecommunications, Inc. Tone allocation in multipoint-to-point communication using orthogonal frequency division multiplexing
US8576693B2 (en) 1995-02-06 2013-11-05 Htc Corporation Systems and method for orthogonal frequency division multiplexing
US20070157278A1 (en) * 1995-02-06 2007-07-05 Adc Telecommunications, Inc. Contention-based access to tones in orthogonal frequency division multiplexing (ofdm) waveform
US20070162943A1 (en) * 1995-02-06 2007-07-12 Adc Telecommunications, Inc. Multipoint-to-point communication using orthogonal frequency division multiplexing
US8406115B2 (en) 1995-02-06 2013-03-26 Htc Corporation Systems and methods for orthogonal frequency division multiplexing
US20080049604A1 (en) * 1995-02-06 2008-02-28 Adc Telecommunications, Inc. Systems and method for orthogonal frequency divisional multiplexing
US8351321B2 (en) 1995-02-06 2013-01-08 Htc Corporation Systems and method for orthogonal frequency divisional multiplexing
US7672219B2 (en) 1995-02-06 2010-03-02 Adc Telecommunications, Inc. Multipoint-to-point communication using orthogonal frequency division multiplexing
US8315150B2 (en) 1995-02-06 2012-11-20 Htc Corporation Synchronized multipoint-to-point communication using orthogonal frequency division
US7675843B2 (en) 1995-02-06 2010-03-09 Adc Telecommunications, Inc. Multipoint-to-point communication using orthogonal frequency division multiplexing
US8213398B2 (en) 1995-02-06 2012-07-03 Htc Corporation Method for multiple use subchannels
US7697453B2 (en) 1995-02-06 2010-04-13 Adc Telecommunications, Inc. Synchronization techniques in multipoint-to-point communication using orthogonal frequency division multiplexing
US8213399B2 (en) 1995-02-06 2012-07-03 Htc Corporation System for multiple use subchannels
US7706349B2 (en) 1995-02-06 2010-04-27 Adc Telecommunications, Inc. Methods and systems for selecting modulation in an orthogonal frequency division multiplexing system
US7773537B2 (en) 1995-02-06 2010-08-10 Adc Telecommunications, Inc. Ranging and round trip delay timing adjustment in a multi-point to point bidirectional communication system
US8199632B2 (en) 1995-02-06 2012-06-12 Htc Corporation Systems and method for orthogonal frequency divisional multiplexing
USRE41771E1 (en) 1995-02-06 2010-09-28 Adc Telecommunications, Inc. System for multiple use subchannels
US7881180B2 (en) 1995-02-06 2011-02-01 Adc Telecommunications, Inc. Systems and method for orthogonal frequency divisional multiplexing
US7881181B2 (en) 1995-02-06 2011-02-01 Adc Telecommunications, Inc. Systems and method for orthogonal frequency divisional multiplexing
US8174956B2 (en) 1995-02-06 2012-05-08 Htc Corporation Systems and method for orthogonal frequency divisional multiplexing
US7912138B2 (en) 1995-02-06 2011-03-22 Adc Telecommunications, Inc. Timing and symbol alignment in multipoint-to-point communication using orthogonal frequency division multiplexing
US8089853B2 (en) 1995-02-06 2012-01-03 Htc Corporation Systems and method for orthogonal frequency divisional multiplexing
US7995454B2 (en) 1995-02-06 2011-08-09 Htc Corporation Systems and method for orthogonal frequency divisional multiplexing
US7983141B2 (en) 1995-02-06 2011-07-19 Geile Michael J Synchronized multipoint-to-point communication using orthogonal frequency division
US7957265B2 (en) 1995-02-06 2011-06-07 Adc Telecommunications, Inc. Systems and method for orthogonal frequency divisional multiplexing
US7936662B2 (en) 1995-02-06 2011-05-03 Adc Telecommunications, Inc. Ranging and round trip delay timing adjustment in a multi-point to point bidirectional communication system
USRE42236E1 (en) 1995-02-06 2011-03-22 Adc Telecommunications, Inc. Multiuse subcarriers in multipoint-to-point communication using orthogonal frequency division multiplexing
US6327251B1 (en) 1995-08-03 2001-12-04 Cisco Technology, Inc. Snapshot routing
US6182224B1 (en) 1995-09-29 2001-01-30 Cisco Systems, Inc. Enhanced network services using a subnetwork of communicating processors
US6917966B1 (en) 1995-09-29 2005-07-12 Cisco Technology, Inc. Enhanced network services using a subnetwork of communicating processors
US7246148B1 (en) 1995-09-29 2007-07-17 Cisco Technology, Inc. Enhanced network services using a subnetwork of communicating processors
US6640243B1 (en) 1995-09-29 2003-10-28 Cisco Technology, Inc. Enhanced network services using a subnetwork of communicating processors
US6091725A (en) 1995-12-29 2000-07-18 Cisco Systems, Inc. Method for traffic management, traffic prioritization, access control, and packet forwarding in a datagram computer network
US6219699B1 (en) 1996-01-02 2001-04-17 Cisco Technologies, Inc. Multiple VLAN Architecture system
US6035105A (en) 1996-01-02 2000-03-07 Cisco Technology, Inc. Multiple VLAN architecture system
US6097718A (en) 1996-01-02 2000-08-01 Cisco Technology, Inc. Snapshot routing with route aging
US20020116719A1 (en) * 1996-05-20 2002-08-22 Adc Telecommunications, Inc. Controlling service units in a communication system
US6308148B1 (en) 1996-05-28 2001-10-23 Cisco Technology, Inc. Network flow data export
US7260518B2 (en) 1996-05-28 2007-08-21 Cisco Technology, Inc. Network flow switching and flow data report
US6889181B2 (en) 1996-05-28 2005-05-03 Cisco Technology, Inc. Network flow switching and flow data export
US6243667B1 (en) 1996-05-28 2001-06-05 Cisco Systems, Inc. Network flow switching and flow data export
US6212182B1 (en) 1996-06-27 2001-04-03 Cisco Technology, Inc. Combined unicast and multicast scheduling
US7103007B2 (en) 1996-06-28 2006-09-05 Cisco Technology, Inc. Autosensing LMI protocols in frame relay networks
US5802042A (en) * 1996-06-28 1998-09-01 Cisco Systems, Inc. Autosensing LMI protocols in frame relay networks
US20020163891A1 (en) * 1996-06-28 2002-11-07 Cisco Systems, Inc., A California Corporation Autosensing LMI protocols in frame relay networks
US6038222A (en) 1996-07-25 2000-03-14 Telebit Corporation Modem command and data interface
US6023473A (en) 1996-07-25 2000-02-08 Telebit Corporation Application programming interface for modem and ISDN processing
US6347093B1 (en) 1996-07-25 2002-02-12 Cisco Technology, Inc. Application programming interface for modem and ISDN processing
US6047308A (en) 1996-07-25 2000-04-04 Cisco Technology, Inc. Modem with integrated control processor and digital signal processor sessions
US7106754B1 (en) 1996-07-25 2006-09-12 Cisco Technology, Inc. Application programming interface for modem and ISDN processing
US6304546B1 (en) 1996-12-19 2001-10-16 Cisco Technology, Inc. End-to-end bidirectional keep-alive using virtual circuits
US6538988B1 (en) 1996-12-19 2003-03-25 Cisco Technology, Inc. End-to-end bidirectional keep-alive using virtual circuits
US6122272A (en) 1997-05-23 2000-09-19 Cisco Technology, Inc. Call size feedback on PNNI operation
US6356530B1 (en) 1997-05-23 2002-03-12 Cisco Technology, Inc. Next hop selection in ATM networks
US7116669B1 (en) 1997-06-17 2006-10-03 Cisco Technology, Inc. Format for automatic generation of unique ATM addresses used for PNNI
US6611528B1 (en) 1997-07-14 2003-08-26 Cisco Technology, Inc. Hierarchical routing knowledge for multicast packet routing
US6078590A (en) 1997-07-14 2000-06-20 Cisco Technology, Inc. Hierarchical routing knowledge for multicast packet routing
US6512766B2 (en) 1997-08-22 2003-01-28 Cisco Systems, Inc. Enhanced internet packet routing lookup
US6212183B1 (en) 1997-08-22 2001-04-03 Cisco Technology, Inc. Multiple parallel packet routing lookup
US6157641A (en) 1997-08-22 2000-12-05 Cisco Technology, Inc. Multiprotocol packet recognition and switching
US6343072B1 (en) 1997-10-01 2002-01-29 Cisco Technology, Inc. Single-chip architecture for shared-memory router
US7570583B2 (en) 1997-12-05 2009-08-04 Cisco Technology, Inc. Extending SONET/SDH automatic protection switching
US6909697B1 (en) 1997-12-22 2005-06-21 Cisco Technology, Inc. Method and apparatus for identifying a maximum frame size
US6111877A (en) 1997-12-31 2000-08-29 Cisco Technology, Inc. Load sharing across flows
US6603765B1 (en) 1997-12-31 2003-08-05 Cisco Technology, Inc. Load sharing across flows
US7286525B1 (en) 1997-12-31 2007-10-23 Cisco Technology, Inc. Synchronous pipelined switch using serial transmission
US6295356B1 (en) 1998-03-26 2001-09-25 Cisco Technology, Inc. Power feed for network devices
US20020097736A1 (en) * 1998-04-01 2002-07-25 Earl Cohen Route/service processor scalability via flow-based distribution of traffic
US6853638B2 (en) 1998-04-01 2005-02-08 Cisco Technology, Inc. Route/service processor scalability via flow-based distribution of traffic
US8155012B2 (en) 1998-04-10 2012-04-10 Chrimar Systems, Inc. System and method for adapting a piece of terminal equipment
US9812825B2 (en) 1998-04-10 2017-11-07 Chrimar Systems, Inc. Ethernet device
US9049019B2 (en) 1998-04-10 2015-06-02 Chrimar Systems, Inc. Network equipment and optional tether
US9019838B2 (en) 1998-04-10 2015-04-28 Chrimar Systems, Inc. Central piece of network equipment
US8942107B2 (en) 1998-04-10 2015-01-27 Chrimar Systems, Inc. Piece of ethernet terminal equipment
US8902760B2 (en) 1998-04-10 2014-12-02 Chrimar Systems, Inc. Network system and optional tethers
US6920112B1 (en) 1998-06-29 2005-07-19 Cisco Technology, Inc. Sampling packets for network monitoring
US6370121B1 (en) 1998-06-29 2002-04-09 Cisco Technology, Inc. Method and system for shortcut trunking of LAN bridges
US6377577B1 (en) 1998-06-30 2002-04-23 Cisco Technology, Inc. Access control list processing in hardware
US6182147B1 (en) 1998-07-31 2001-01-30 Cisco Technology, Inc. Multicast group routing using unidirectional links
US6308219B1 (en) 1998-07-31 2001-10-23 Cisco Technology, Inc. Routing table lookup implemented using M-trie having nodes duplicated in multiple memory banks
US6490260B1 (en) 1998-08-03 2002-12-03 Samsung Electronics, Co., Ltd. Transmitter with increased traffic throughput in digital mobile telecommunication system and method for operating the same
US6389506B1 (en) 1998-08-07 2002-05-14 Cisco Technology, Inc. Block mask ternary cam
US6101115A (en) 1998-08-07 2000-08-08 Cisco Technology, Inc. CAM match line precharge
US6532215B1 (en) 1998-08-07 2003-03-11 Cisco Technology, Inc. Device and method for network communications and diagnostics
US6434120B1 (en) 1998-08-25 2002-08-13 Cisco Technology, Inc. Autosensing LMI protocols in frame relay networks
US6560739B1 (en) 1998-09-14 2003-05-06 Cisco Technology, Inc. Mechanism for enabling compliance with the IEEE standard 1149.1 for boundary-scan designs and tests
US6446230B1 (en) 1998-09-14 2002-09-03 Cisco Technology, Inc. Mechanism for enabling compliance with the IEEE standard 1149.1 for boundary-scan designs and tests
US6493844B1 (en) * 1998-12-09 2002-12-10 Fujitsu Limited Error detector, semiconductor device, and error detection method
US7032161B2 (en) * 1998-12-09 2006-04-18 Fujitsu Limited Error detector, semiconductor device, and error detection method
US6226771B1 (en) 1998-12-14 2001-05-01 Cisco Technology, Inc. Method and apparatus for generating error detection data for encapsulated frames
US6771642B1 (en) 1999-01-08 2004-08-03 Cisco Technology, Inc. Method and apparatus for scheduling packets in a packet switch
US7065762B1 (en) 1999-03-22 2006-06-20 Cisco Technology, Inc. Method, apparatus and computer program product for borrowed-virtual-time scheduling
US6757791B1 (en) 1999-03-30 2004-06-29 Cisco Technology, Inc. Method and apparatus for reordering packet data units in storage queues for reading and writing memory
US6760331B1 (en) 1999-03-31 2004-07-06 Cisco Technology, Inc. Multicast routing with nearest queue first allocation and dynamic and static vector quantization
US6603772B1 (en) 1999-03-31 2003-08-05 Cisco Technology, Inc. Multicast routing with multicast virtual output queues and shortest queue first allocation
US7099463B1 (en) 2000-11-09 2006-08-29 Cisco Technology, Inc. Method and apparatus for detecting a compatible phantom powered device using common mode signaling
US20020063584A1 (en) * 2000-11-29 2002-05-30 James Molenda Unpowered twisted pair loopback circuit for differential mode signaling
US8094808B2 (en) 2000-11-29 2012-01-10 Cisco Technology, Inc. Unpowered twisted pair loopback circuit for differential mode signaling
US20090129583A1 (en) * 2000-11-29 2009-05-21 Cisco Technology, Inc. A California Corporation Unpowered twisted pair loopback circuit for differential mode signaling
US7447307B2 (en) 2000-11-29 2008-11-04 Cisco Technology, Inc. Unpowered twisted pair loopback circuit for differential mode signaling
US6751236B1 (en) 2000-12-15 2004-06-15 Cisco Technology, Inc. Configurable channel associated signaling (“CAS”) line signaling using plain text strings
US7076543B1 (en) 2002-02-13 2006-07-11 Cisco Technology, Inc. Method and apparatus for collecting, aggregating and monitoring network management information
US7318094B1 (en) 2002-02-13 2008-01-08 Cisco Technology, Inc. Apparatus, system and device for collecting, aggregating and monitoring network management information
US7505486B2 (en) 2002-11-19 2009-03-17 Hewlett-Packard Development Company, L.P. Degradable network data path transmission scheme
US20060175905A1 (en) * 2002-12-20 2006-08-10 Cisco Technology, Inc., A California Corporation Integrated Connector Unit
US7026730B1 (en) 2002-12-20 2006-04-11 Cisco Technology, Inc. Integrated connector unit
US7366297B1 (en) 2003-05-21 2008-04-29 Cisco Technology, Inc. Method and system for converting alternating current to ethernet in-line power
US7061142B1 (en) 2003-05-28 2006-06-13 Cisco Technology, Inc. Inline power device detection
US7603570B2 (en) 2004-05-13 2009-10-13 Cisco Technology, Inc. Power delivery over ethernet cables
US7921314B2 (en) 2004-05-13 2011-04-05 Cisco Technology, Inc. Providing power over ethernet cables
US20050268120A1 (en) * 2004-05-13 2005-12-01 Schindler Frederick R Power delivery over ethernet cables
US20060112288A1 (en) * 2004-11-24 2006-05-25 Schindler Frederick R Increased power for power over ethernet applications
US7373528B2 (en) 2004-11-24 2008-05-13 Cisco Technology, Inc. Increased power for power over Ethernet applications
US7509505B2 (en) 2005-01-04 2009-03-24 Cisco Technology, Inc. Method and system for managing power delivery for power over Ethernet systems
US20080288794A1 (en) * 2005-01-04 2008-11-20 Cisco Technology, Inc. Method and system for managing power delivery for power over ethernet systems
US20060149978A1 (en) * 2005-01-04 2006-07-06 Randall Anthony L Method and system for managing power delivery for power over ethernet systems
US8082457B2 (en) 2005-01-04 2011-12-20 Cisco Technology, Inc. Data communications device for communicating with and concurrently providing power to a set of powerable devices
US8601345B1 (en) * 2010-05-12 2013-12-03 Tellabs Operations, Inc. Method and apparatus for searching frame alignment with false alignment protection

Similar Documents

Publication Publication Date Title
USRE33900E (en) Error monitoring in digital transmission systems
US4397020A (en) Error monitoring in digital transmission systems
US4316285A (en) Framing circuit for digital receiver
US4316284A (en) Frame resynchronization circuit for digital receiver
CA1149976A (en) Data link for digital channel bank systems
US5060229A (en) Serial transport frame format method
CA1105586A (en) Digital data transmission arrangement
JPH0434857B2 (en)
US5151902A (en) Method and apparatus for quality monitoring of at least two transmission sections of a digital signal transmission link
US4862480A (en) Digital data service system
US4581737A (en) Bit compression multiplexing
US4535451A (en) Fourth-order digital multiplex system for transmitting a plurality of digital signals at a nominal bit rate of 44 736 kbit/s
JPH02226926A (en) System for transmitting hdlc frame on multi-channel pcm type ring
CA1312362C (en) Fault detection signal transmission system
EP0596736B1 (en) Split channel data transmission
US4849995A (en) Digital signal transmission system having frame synchronization operation
CA1156384A (en) Error monitoring in digital transmission systems
GB1481849A (en) Digital code transmission systems
AU657305B2 (en) Line monitoring for SDH signals
JP3333053B2 (en) Digital communication device
GB2092413A (en) Method and apparatus for establishing frame synchronization
US4737949A (en) Transmission system for digital repeater supervisory code transmission
US4243930A (en) Method and means for transmitting low speed signals over a PCM framing code
JPH0271636A (en) Time-division multiplexer data transmission system
FI73539C (en) Multiplex connection unit for a digital station.

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: LUCENT TECHNOLOGIES, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T CORP.;REEL/FRAME:011658/0857

Effective date: 19960329

AS Assignment

Owner name: THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT, TEX

Free format text: CONDITIONAL ASSIGNMENT OF AND SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:LUCENT TECHNOLOGIES INC. (DE CORPORATION);REEL/FRAME:011722/0048

Effective date: 20010222

AS Assignment

Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (FORMERLY KNOWN AS THE CHASE MANHATTAN BANK), AS ADMINISTRATIVE AGENT;REEL/FRAME:018590/0287

Effective date: 20061130