USRE32800E - Method of making mosfet by multiple implantations followed by a diffusion step - Google Patents

Method of making mosfet by multiple implantations followed by a diffusion step Download PDF

Info

Publication number
USRE32800E
USRE32800E US07/053,269 US5326987A USRE32800E US RE32800 E USRE32800 E US RE32800E US 5326987 A US5326987 A US 5326987A US RE32800 E USRE32800 E US RE32800E
Authority
US
United States
Prior art keywords
layer
ions
polysilicon
silicon dioxide
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/053,269
Inventor
Yu-Pin Han
Tsiu C. Chan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics lnc USA
Original Assignee
SGS Thomson Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS Thomson Microelectronics Inc filed Critical SGS Thomson Microelectronics Inc
Priority to US07/053,269 priority Critical patent/USRE32800E/en
Application granted granted Critical
Publication of USRE32800E publication Critical patent/USRE32800E/en
Assigned to SGS-THOMSON MICROELECTRONICS, INC. reassignment SGS-THOMSON MICROELECTRONICS, INC. MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 12/31/1987 DELAWARE Assignors: SGS SEMICONDUCTOR CORPORATION, A CORP. OF DE, SGS-THOMSON MICROELECTRONICS, INC. A CORP. OF DE (MERGED INTO), THOMSON HOLDINGS (DELAWARE) INC., A CORP. OF DE
Assigned to SGS-THOMSON MICROELECTRONICS, INC. reassignment SGS-THOMSON MICROELECTRONICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 11/15/1987 Assignors: THOMSON COMPONENTS-MOSTEK CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • H01L29/66598Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET forming drain [D] and lightly doped drain [LDD] simultaneously, e.g. using implantation through the wings a T-shaped layer, or through a specially shaped layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a metal oxide semiconductor device and a process for fabricating such a device, more particularly to field effect transistors used in large scale integrated circuits and a process for fabricating such devices.
  • Nonplanar-type devices have been proposed for such high performance LSI circuits, including a nonplanar diffusion self-aligned (DSA) MOS transistor and a VMOS transistor. These two nonplanar devices have three dimensional configurations, which increase the packing density of the LSI.
  • the process for fabricating such devices include an epitaxial and a V-groove process which require a larger number of fabrication steps than that of the planar-type devices.
  • Planar-type devices utilized for high performance LSI circuits have generally involved scaling down the physical dimensions of the transistor.
  • the short channel lengths involved in such scaled down transistors have involved limitations from the electrical characteristics present in such scaled down devices.
  • the limitations on such short channel device have been the following: limited drain voltage, threshold voltage (V T ) falloff, and impact ionization in the drain pinchoff region.
  • the drain voltage is limited by punch-through voltage decrease, snap back and gate field plated P-N junction avalanche breakdown.
  • the threshold voltage falloff is limited by the drain field induced barrier lowering and the drain and source junction doping profile and substrate doping concentration.
  • the impact ionization in the drain pinchoff region leads to hot-electron injection into the gate oxide and the substrate electron current due to secondary impact ionization.
  • One fabrication technology uses a high resistivity substrate and double channel implants, where a deep implant is used to increase the punch-through voltage and a shallow implant is used to control V T .
  • a second approach has been a diffusion self-aligned MOS transistor or a double-diffused MOS transistor. This device causes double diffusion of P-type impurities from the same diffusion window, the process yields good short channel V T falloff and a source-drain breakdown control.
  • a third approach has been a lightly doped drain-source (LDD) process and a quadruply self-aligned (QSA) process.
  • LDD lightly doped drain-source
  • QSA quadruply self-aligned
  • the LDD structure introduces narrow, self-aligned N-regions between the channel and the N+ source-drain diffusions of an IGFET to spread the high field at the drain pinchoff region and thus reduce the maximum field intensity.
  • the QSA MOS device includes four mutually self-aligned areas: a narrow polysilicon gate, shallow-source/drain to eliminate short-channel effects, deep junctions for high conductance, and specific contacts to afford efficient metal innerconnection.
  • the present invention is an improved process for fabricating a high performance LSI device without the undesirable electrical characteristics of short channel MOS transistors in such circuits.
  • the process reduces the characteristic problems associated with short channel devices having a channel length of one to two microns.
  • the process includes diffusing a very light concentration of P type material, such as boron, to create a very lightly doped P-- substrate region.
  • the source and drain regions are formed from the diffusion of a high concentration of N-type material, such as arsenic, to create an N+ region for the source and drain.
  • a lighter concentration of N-type material is diffused in the region between the N+ material and the gate to create an N- region to reduce punch-through.
  • a high concentration of P-type material, such as boron is implanted at the gate and drain area to form a P region to control the drain field and drain bias, such that the fields can be limited to the drains lightly doped area.
  • a lighter concentration of P-type material is implanted beneath the gate to form a P- region to control the V T falloff for short channel devices.
  • the concentration of boron at the source-gate area is similar to that in the double diffused (D 2 ) process of the applicant, but the triple diffused (D 3 ) process of the present invention does not require the high temperature drive because of the shallow and lightly doped N-source-drain implant.
  • the triple diffusion process of the present invention is a highly localized process in which the special features are in effect independently adjustable.
  • the N+ junction depth (X j ) can be driven independently.
  • the N- junction depth (X j ) and length are adjustable according to device specifications through the undercutting of the polysilicon gate.
  • FIG. 1 is a cross sectional view of a transistor device structure of the present invention
  • FIG. 2 is a profile of the device structure of FIG. 1 taken along the lines 2--2 in FIG. 1;
  • FIG. 3 illustrates the shallow boron implant step in the process
  • FIG. 4 illustrates the device structure after the process steps of polygate photo resist patterning, plasma etching of the oxide and polysilicon, and undercutting of the polysilicon;
  • FIG. 5 illustrates the diffusion of arsenic impurity material to the device structure
  • FIG. 6 illustrates a light diffusion of arsenic material and boron implant
  • FIG. 7 illustrates the process of driving the arsenic and boron impurities into the substrate and oxidizing the surface.
  • FIG. 1 illustrates one FET of a large scale integrated circuit fabricated in accordance with the process of the present invention, the FET device being generally identified by the reference numeral 10.
  • the substrate region 12 of the device is a silicon material lightly doped with a P-type material, such as boron, and designated as a P-- region.
  • a gate 14 is separated from the silicon substrate 12 by a layer of silicon dioxide 15.
  • a channel region 16 above the P-- region 12 and below the gate 14 is slightly heavier doped with a P-type material than substrate 12 and is designated as a P- region.
  • a source 18 and drain 20 are formed by heavily doping a region of the substrate 12 on opposite sides of the gate 14 with an N-type material and designated as an N+ region.
  • Two first regions 22 and 24 are doped with P-type material in a greater concentration than channel region 16, and designated as a P region, extending from beneath the edges of the gate 14 downwardly to the boundary of the N+ source 18 and drain 20.
  • the P-type material implanted in regions 22 and 24 supports the shallow punchthrough and V T falloff.
  • Two second regions 26 and 28 are lightly doped with an N-type material, such as arsenic, to create shallow N- regions between the gate 14 and the N+ source 18 and drain 20.
  • the N- regions 26 and 28 reduce the depletion at the gate 14-drain 20 region and also reduce the overlap of the gate and drain, enhancing the effect of the double diffused P-type material in regions 22 and 24.
  • FIG. 2 illustrates a profile of the concentration of N and P-type impurities implanted into the device 10, taken along the line 2--2 of FIG. 1.
  • the heaviest implantation of N-type material is found in the source and drain regions 18 and 20.
  • the regions 26 and 28 are lightly doped with an N-type material to form N- regions between the N+ regions 18 and 20 and the edges of the gate region 14.
  • the profile of the impurity concentration in the channel region, located directly beneath the gate 14 includes the P-channel region 16 beneath the center of the gate 14 and extending to regions 22 and 24 on either side, which regions contain a greater concentration of P-type material.
  • the process of manufacturing the field effect transistor 10 begins with oxidizing the upper surface of the silicon substrate 12. As illustrated in FIG. 3, a layer of silicon dioxide 40, approximately 300 angstroms thick, is grown atop the substrate 12. A first implantation 42 of a P-type material, such as boron, occurs after the formation of the silicon dioxide layer 40. The boron implantation occurs at an intensity of about 2 ⁇ 10 4 boron ions/cm 2 at an energy level of 40 Kev in accordance with known ion implantation techniques. The first diffusion 42 of P-type material supports the shallow punchthrough and adjustment of the V T falloff.
  • a P-type material such as boron
  • the next process steps for manufacturing the FET 10 is the beginning of the formation of the polysilicon gate .[.14.]. with the deposition of a layer .Iadd.14 .Iaddend.of polysilicon material with a depth of about 5,000 angstroms, using known deposition techniques.
  • the layer of polysilicon material is next implanted with phosphorous, an N-type material.
  • the layer of polysilicon material implanted with phosphorous is then oxidized .[.with.]. .Iadd.to form .Iaddend.a layer .Iadd.46 .Iaddend.of silicon dioxide .Iadd.hereinafter to be termed a polyoxide layer .Iaddend.approximately 1,500 angstroms in thickness.
  • FIG. 4 illustrates the next three steps in the process of manufacturing the FET device 10.
  • the first step is the covering of the polysilicon .[.gate.]. .Iadd.layer .Iaddend.14 with a layer of photoresist 44, .Iadd.patterning the resist in the usual fashion to essentially define the gate electrode portion .Iaddend.followed by a wet etching of the polysilicon oxide layer 46 and the plasma etching of the layer of polysilicon .[.of gate.]. 14 beneath it.
  • the next step is the undercutting of the polysilicon layer of gate 14 beneath the polyoxide layer 46 .Iadd.to achieve the stage shown in FIG. 4.Iaddend.. The distance the polysilicon layer is undercut allows for the adjustment of the N- regions 26 and 28 (FIG. 1).
  • the photoresist layer 44 is then stripped, using conventional techniques.
  • FIG. 5 illustrates the implantation step 50 of an N-type material, such as arsenic, for forming the heavily doped N+ regions 18 and 20 for the source and drain of the FET 10.
  • the energy of the arsenic ion is selected so as to penetrate only through the portions not covered by the .[.polysilicon oxide.]. .Iadd.polyoxide .Iaddend.layer 46.
  • An intensity of about 2 ⁇ 10 16 arsenic ions/cm 2 with an energy level of 60 Kev is selected, using known ion implantation techniques.
  • the .[.silicon dioxide.]. .Iadd.polyoxide .Iaddend.layer 46 is etched away.
  • FIG. 6 illustrates an implantation step 52 of N-type material, such as arsenic, as indicated by the solid arrows, for forming regions 26 and 28.
  • the intensity of the arsenic ions is 1 ⁇ 10 13 arsenic ions/cm 2 with an energy level of 60 Kev.
  • the implantation step 52 provides a lightly doped area forming the N- region 26 and 28, which are between gate region 14, and a heavier N+ region 18 and 20 for the source and drain.
  • a second implantation 54 of P-type material, such as boron is indicated by the dashed arrow in FIG. 6.
  • An intensity of about 5 ⁇ 10 12 boron ions/cm 2 with an energy level of 35 Kev is used in accordance with known ion implantation techniques.
  • the triple diffusion process is the implantation step 50 to form N+ regions 18 and 20, the implantation step 52 to form N- regions 26 and 28, and the implantation step 54 to form the P regions 22 and 24.
  • FIG. 7 illustrates the next process step of thermally oxidizing the upper layer of the .[.FET 10, and the.]. .Iadd.silicon wafer to form layer 32.
  • the .Iaddend.oxidation process drives the boron .[.D 2 .]. implantation to greater depths within the substrate 12.
  • .Iaddend.a metalization process to form the contacts, .Iadd.and thus .Iaddend.the metal oxide semiconductor FET transistor structure 10 has been constructed.
  • the process described above for manufacturing the metal oxide semiconductor FET 10 has a number of advantages over previous device processes.
  • the principle advantage is the individual adjustment of special features of the device 10.
  • the substrate 12 with it lightly doped P-- region has high resistivity.
  • the N+ regions of the source 18 and drain 20 can be driven independently to adjust the penetration of the N+ region into the substrate.
  • the double diffusion of the boron does not need as long a drive time as in previous processes, since the N- region is a lightly doped region of N-type material, and the double diffused boron can be driven at the same time the N- material is driven.
  • the N- regions at the edge of gate 14 are adjustable according to manufacturer's specifications. As indicated above, the N- region can be controlled by the undercutting of the polysilicon gate 14. Finally, there is a small overlap capacitance between the polysilicon gate 14 and the source/drain in the semiconductor device 10 made in accordance with the present invention.
  • the gate 14 had a length of approximately 1.5 microns
  • the source and drain N+ region had a X j dimension of 0.7 microns
  • the N- regions have a X j dimension of approximately 1.5 microns
  • the P-type regions 22 and 24 had a thickness of approximately 0.3 microns.

Abstract

A short channel metal oxide semiconductor transistor device is processed without undesirable short channel effects, such as VT falloff and with a reasonable source-drain operating voltage support. In a substrate lightly doped with P-type conductivity material and source and drain region heavily doped with an N-type conductivity material, two lightly doped N- regions are disposed between the edge of the gate and the source and drain regions. A channel region is more heavily doped with P-type material than the substrate. Two regions extend from opposite sides of the channel region to an area generally below the two N- regions and above the substrate, which regions are more heavily doped than the channel regions.

Description

This is a division of application Ser. No. 335,608, filed Dec. 30, 1981, now abandoned.
TECHNICAL FIELD
The present invention relates to a metal oxide semiconductor device and a process for fabricating such a device, more particularly to field effect transistors used in large scale integrated circuits and a process for fabricating such devices.
BACKGROUND OF THE INVENTION
Process and device technology have been developed to improve the performance of large scale integrated circuits. Increasing the density of MOS devices and LSI circuits result in improved higher speeds of operation.
Nonplanar-type devices have been proposed for such high performance LSI circuits, including a nonplanar diffusion self-aligned (DSA) MOS transistor and a VMOS transistor. These two nonplanar devices have three dimensional configurations, which increase the packing density of the LSI. However, the process for fabricating such devices include an epitaxial and a V-groove process which require a larger number of fabrication steps than that of the planar-type devices.
Planar-type devices utilized for high performance LSI circuits have generally involved scaling down the physical dimensions of the transistor. The short channel lengths involved in such scaled down transistors have involved limitations from the electrical characteristics present in such scaled down devices. The limitations on such short channel device have been the following: limited drain voltage, threshold voltage (VT) falloff, and impact ionization in the drain pinchoff region. The drain voltage is limited by punch-through voltage decrease, snap back and gate field plated P-N junction avalanche breakdown. The threshold voltage falloff is limited by the drain field induced barrier lowering and the drain and source junction doping profile and substrate doping concentration. The impact ionization in the drain pinchoff region leads to hot-electron injection into the gate oxide and the substrate electron current due to secondary impact ionization.
There have been several approaches in device structures and fabrication technologies to remove some of these limitations. One fabrication technology uses a high resistivity substrate and double channel implants, where a deep implant is used to increase the punch-through voltage and a shallow implant is used to control VT. A second approach has been a diffusion self-aligned MOS transistor or a double-diffused MOS transistor. This device causes double diffusion of P-type impurities from the same diffusion window, the process yields good short channel VT falloff and a source-drain breakdown control. Yet a third approach has been a lightly doped drain-source (LDD) process and a quadruply self-aligned (QSA) process. The LDD structure introduces narrow, self-aligned N-regions between the channel and the N+ source-drain diffusions of an IGFET to spread the high field at the drain pinchoff region and thus reduce the maximum field intensity. The QSA MOS device includes four mutually self-aligned areas: a narrow polysilicon gate, shallow-source/drain to eliminate short-channel effects, deep junctions for high conductance, and specific contacts to afford efficient metal innerconnection.
A need has thus arisen to develop an improved process to produce short one to two micron channel length devices without short channel VT falloff and reasonable source-drain operating voltage support.
SUMMARY OF THE INVENTION
The present invention is an improved process for fabricating a high performance LSI device without the undesirable electrical characteristics of short channel MOS transistors in such circuits. The process reduces the characteristic problems associated with short channel devices having a channel length of one to two microns.
The process includes diffusing a very light concentration of P type material, such as boron, to create a very lightly doped P-- substrate region. The source and drain regions are formed from the diffusion of a high concentration of N-type material, such as arsenic, to create an N+ region for the source and drain. A lighter concentration of N-type material is diffused in the region between the N+ material and the gate to create an N- region to reduce punch-through. A high concentration of P-type material, such as boron, is implanted at the gate and drain area to form a P region to control the drain field and drain bias, such that the fields can be limited to the drains lightly doped area. A lighter concentration of P-type material is implanted beneath the gate to form a P- region to control the VT falloff for short channel devices.
The concentration of boron at the source-gate area is similar to that in the double diffused (D2) process of the applicant, but the triple diffused (D3) process of the present invention does not require the high temperature drive because of the shallow and lightly doped N-source-drain implant. The triple diffusion process of the present invention is a highly localized process in which the special features are in effect independently adjustable. The N+ junction depth (Xj) can be driven independently. In addition, the N- junction depth (Xj) and length are adjustable according to device specifications through the undercutting of the polysilicon gate.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention of the advantages and features thereof, reference is now made to the accompanying Detailed Description taken in conjunction with the following figures in which:
FIG. 1 is a cross sectional view of a transistor device structure of the present invention;
FIG. 2 is a profile of the device structure of FIG. 1 taken along the lines 2--2 in FIG. 1;
FIG. 3 illustrates the shallow boron implant step in the process;
FIG. 4 illustrates the device structure after the process steps of polygate photo resist patterning, plasma etching of the oxide and polysilicon, and undercutting of the polysilicon;
FIG. 5 illustrates the diffusion of arsenic impurity material to the device structure;
FIG. 6 illustrates a light diffusion of arsenic material and boron implant; and
FIG. 7 illustrates the process of driving the arsenic and boron impurities into the substrate and oxidizing the surface.
DETAILED DESCRIPTION
FIG. 1 illustrates one FET of a large scale integrated circuit fabricated in accordance with the process of the present invention, the FET device being generally identified by the reference numeral 10. The substrate region 12 of the device is a silicon material lightly doped with a P-type material, such as boron, and designated as a P-- region. A gate 14 is separated from the silicon substrate 12 by a layer of silicon dioxide 15. A channel region 16 above the P-- region 12 and below the gate 14 is slightly heavier doped with a P-type material than substrate 12 and is designated as a P- region. A source 18 and drain 20 are formed by heavily doping a region of the substrate 12 on opposite sides of the gate 14 with an N-type material and designated as an N+ region.
Two first regions 22 and 24 are doped with P-type material in a greater concentration than channel region 16, and designated as a P region, extending from beneath the edges of the gate 14 downwardly to the boundary of the N+ source 18 and drain 20. The P-type material implanted in regions 22 and 24 supports the shallow punchthrough and VT falloff.
Two second regions 26 and 28 are lightly doped with an N-type material, such as arsenic, to create shallow N- regions between the gate 14 and the N+ source 18 and drain 20. The N- regions 26 and 28 reduce the depletion at the gate 14-drain 20 region and also reduce the overlap of the gate and drain, enhancing the effect of the double diffused P-type material in regions 22 and 24.
FIG. 2 illustrates a profile of the concentration of N and P-type impurities implanted into the device 10, taken along the line 2--2 of FIG. 1. The heaviest implantation of N-type material is found in the source and drain regions 18 and 20. The regions 26 and 28 are lightly doped with an N-type material to form N- regions between the N+ regions 18 and 20 and the edges of the gate region 14. The profile of the impurity concentration in the channel region, located directly beneath the gate 14 includes the P-channel region 16 beneath the center of the gate 14 and extending to regions 22 and 24 on either side, which regions contain a greater concentration of P-type material.
The process of manufacturing the field effect transistor 10 begins with oxidizing the upper surface of the silicon substrate 12. As illustrated in FIG. 3, a layer of silicon dioxide 40, approximately 300 angstroms thick, is grown atop the substrate 12. A first implantation 42 of a P-type material, such as boron, occurs after the formation of the silicon dioxide layer 40. The boron implantation occurs at an intensity of about 2×104 boron ions/cm2 at an energy level of 40 Kev in accordance with known ion implantation techniques. The first diffusion 42 of P-type material supports the shallow punchthrough and adjustment of the VT falloff.
The next process steps for manufacturing the FET 10 is the beginning of the formation of the polysilicon gate .[.14.]. with the deposition of a layer .Iadd.14 .Iaddend.of polysilicon material with a depth of about 5,000 angstroms, using known deposition techniques. The layer of polysilicon material is next implanted with phosphorous, an N-type material. The layer of polysilicon material implanted with phosphorous is then oxidized .[.with.]. .Iadd.to form .Iaddend.a layer .Iadd.46 .Iaddend.of silicon dioxide .Iadd.hereinafter to be termed a polyoxide layer .Iaddend.approximately 1,500 angstroms in thickness.
FIG. 4 illustrates the next three steps in the process of manufacturing the FET device 10. The first step is the covering of the polysilicon .[.gate.]. .Iadd.layer .Iaddend.14 with a layer of photoresist 44, .Iadd.patterning the resist in the usual fashion to essentially define the gate electrode portion .Iaddend.followed by a wet etching of the polysilicon oxide layer 46 and the plasma etching of the layer of polysilicon .[.of gate.]. 14 beneath it. The next step is the undercutting of the polysilicon layer of gate 14 beneath the polyoxide layer 46 .Iadd.to achieve the stage shown in FIG. 4.Iaddend.. The distance the polysilicon layer is undercut allows for the adjustment of the N- regions 26 and 28 (FIG. 1). The photoresist layer 44 is then stripped, using conventional techniques.
FIG. 5 illustrates the implantation step 50 of an N-type material, such as arsenic, for forming the heavily doped N+ regions 18 and 20 for the source and drain of the FET 10. The energy of the arsenic ion is selected so as to penetrate only through the portions not covered by the .[.polysilicon oxide.]. .Iadd.polyoxide .Iaddend.layer 46. An intensity of about 2×1016 arsenic ions/cm2 with an energy level of 60 Kev is selected, using known ion implantation techniques. Following the implantation of the arsenic, the .[.silicon dioxide.]. .Iadd.polyoxide .Iaddend.layer 46 is etched away.
FIG. 6 illustrates an implantation step 52 of N-type material, such as arsenic, as indicated by the solid arrows, for forming regions 26 and 28. The intensity of the arsenic ions is 1×1013 arsenic ions/cm2 with an energy level of 60 Kev. The implantation step 52 provides a lightly doped area forming the N- region 26 and 28, which are between gate region 14, and a heavier N+ region 18 and 20 for the source and drain. A second implantation 54 of P-type material, such as boron, is indicated by the dashed arrow in FIG. 6. An intensity of about 5×1012 boron ions/cm2 with an energy level of 35 Kev is used in accordance with known ion implantation techniques. The triple diffusion process is the implantation step 50 to form N+ regions 18 and 20, the implantation step 52 to form N- regions 26 and 28, and the implantation step 54 to form the P regions 22 and 24.
FIG. 7 illustrates the next process step of thermally oxidizing the upper layer of the .[.FET 10, and the.]. .Iadd.silicon wafer to form layer 32. The .Iaddend.oxidation process drives the boron .[.D2 .]. implantation to greater depths within the substrate 12. Following .Iadd.selective removal of portions of layer 32 where the contacts are to be provided, there follows .Iaddend.a metalization process to form the contacts, .Iadd.and thus .Iaddend.the metal oxide semiconductor FET transistor structure 10 has been constructed.
The process described above for manufacturing the metal oxide semiconductor FET 10 has a number of advantages over previous device processes. The principle advantage is the individual adjustment of special features of the device 10. The substrate 12 with it lightly doped P-- region has high resistivity. The N+ regions of the source 18 and drain 20 can be driven independently to adjust the penetration of the N+ region into the substrate. The double diffusion of the boron does not need as long a drive time as in previous processes, since the N- region is a lightly doped region of N-type material, and the double diffused boron can be driven at the same time the N- material is driven. The N- regions at the edge of gate 14 are adjustable according to manufacturer's specifications. As indicated above, the N- region can be controlled by the undercutting of the polysilicon gate 14. Finally, there is a small overlap capacitance between the polysilicon gate 14 and the source/drain in the semiconductor device 10 made in accordance with the present invention.
In one semiconductor device 10 manufactured in accordance with the present invention, the gate 14 had a length of approximately 1.5 microns, the source and drain N+ region had a Xj dimension of 0.7 microns, the N- regions have a Xj dimension of approximately 1.5 microns, and the P- type regions 22 and 24 had a thickness of approximately 0.3 microns.
Although a preferred embodiment of the invention has been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed herein, but they are capable of numerous rearrangements, modifications and substitution without departing from the spirit of the invention.

Claims (4)

What is claimed is:
1. A method for manufacturing a metal oxide semiconductor transistor device comprising:
providing a semiconductor substrate of a first conductivity type;
forming a first insulating layer of silicon dioxide on an active surface of the substrate;
implanting ions of a first conductivity type into said substrate;
depositing a layer of polysilicon on said first insulating layer;
implanting ions of a second conductivity type through said polysilicon layer;
growing a second region of silicon dioxide, said silicon dioxide region being grown over said polysilicon layer;
placing a photoresistive mask over said second oxidation layer for forming a gate of the semiconductor device;
etching a predetermined portion of said second oxidation layer;
plasma etching said polysilicon layer;
removing a predetermined portion of said polysilicon layer underneath said second silicon dioxide layer;
.[.etching said second layer of silicon dioxide;.].
stripping said photoresist area from said second oxidation layer;
implanting ions of the second conductivity type;
.[.implanting ions of the first conductivity type;.].
etching said second layer of silicon dioxide overhanging said polysilicon gate layer;
.[.etching said first layer of silicon dioxide surrounding said polysilicon gate layer;.].
implanting ions of said first conductivity type;
implanting ions of said second conductivity type;
diffusing the implanted ions into said substrate; and
oxidizing the active surface of said substrate, including said polysilicon gate.
2. The method of making a metal oxide semiconductor transistor device of claim 1, wherein the implantation of ions of the first conductivity type are boron ions and the implantation of ions of the second conductivity type are arsenic ions. .Iadd.
3. A method for forming an MOS transistor comprising the steps of
providing a silicon wafer of p-type,
forming a gate oxide layer over the top surface of the wafer,
implanting acceptor ions non-selectively into the top surface of the wafer,
depositing a polysilicon layer over the gate oxide layer,
oxidizing the top surface of the polysilicon layer to form a polyoxide layer,
depositing a layer of photoresist over the polysilicon layer and patterning the photoresist to leave a selected portion overlying the polyoxide layer,
using a selected portion of the photoresist while etching the polyoxide layer and the polysilicon layer and undercutting the polyoxide layer a prescribed amount,
implanting donor ions selectively into the wafer using the polyoxide layer and the polysilicon layer as a mask,
removing the polyoxide layer from the top surface of the polysilicon layer,
implanting donor and acceptor ions selectively into the wafer using the polysilicon layer as a mask, and
heating the wafer for diffusing the implanted acceptor ions deeper into the wafer than the implanted donor ions. .Iaddend. .Iadd.
4. The process of claim 3 in which the acceptor ions implanted are boron ions and the donor ions implanted are arsenic ions. .Iaddend. .Iadd.5. The process of claim 3 which includes the further steps of providing separately a gate connection to the polycrystalline layer, and source and drain connections to the donor-rich surface layer portions adjacent to the acceptor-rich region underlying the polycrystalline layer. .Iaddend. .Iadd.6. The method of claim 3 wherein the implantation of ions of the first conductivity type are boron ions and the implantation of ions of the second conductivity type are arsenic ions. .Iaddend. .Iadd.7. A method for manufacturing a metal oxide semiconductor transistor device characterized in that it comprises the following steps:
providing a semiconductor substrate (12) of a first conductivity type,
forming a first insulating layer (40) of silicon dioxide on an active surface of the substrate,
implanting (42) ions of a first conductivity type into said substrate,
depositing a layer (14) of polysilicon on said first insulating layer,
implanting ions of a second conductivity type in said polysilicon layer,
growing a second region (46) of silicon dioxide, said silicon dioxide region being grown over said polysilicon layer,
placing a photoresistive mask (44) over said second silicon dioxide region
etching a predetermined portion of said second dioxide region and plasma etching said polysilicon layer; to leave a double layer of silicon dioxide and polysilicon longer than desire for the gate,
removing a predetermined portion of said polysilicon layer underneath said second silicon dioxide layer to realize the polysilicon gate (14)
stripping the photoresist mask from said second silicon dioxide layer leaving a portion of the second layer of silicon dioxide overhanging said polysilicon gate
implanting (50) ions of the second conductivity type by using said second layer of silicon dioxide as a mask for forming heavily doped regions
etching said second layer (46) of silicon dioxide overhanging said polysilicon gate layer
implanting (52) ions of said second conductivity type for forming lightly doped regions between the gate region and the heavily doped regions
implanting (54) ions of said first conductivity type for forming doped regions under the edges of the gate
diffusing the implanted ions into said substrate, and oxidizing the active surface of said substrate, including said polysilicon gate. .Iaddend.
US07/053,269 1981-12-30 1987-05-21 Method of making mosfet by multiple implantations followed by a diffusion step Expired - Lifetime USRE32800E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/053,269 USRE32800E (en) 1981-12-30 1987-05-21 Method of making mosfet by multiple implantations followed by a diffusion step

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33560881A 1981-12-30 1981-12-30
US07/053,269 USRE32800E (en) 1981-12-30 1987-05-21 Method of making mosfet by multiple implantations followed by a diffusion step

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US33560881A Division 1981-12-30 1981-12-30
US06/654,281 Reissue US4599118A (en) 1981-12-30 1984-09-24 Method of making MOSFET by multiple implantations followed by a diffusion step

Publications (1)

Publication Number Publication Date
USRE32800E true USRE32800E (en) 1988-12-13

Family

ID=26731654

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/053,269 Expired - Lifetime USRE32800E (en) 1981-12-30 1987-05-21 Method of making mosfet by multiple implantations followed by a diffusion step

Country Status (1)

Country Link
US (1) USRE32800E (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902636A (en) * 1988-01-18 1990-02-20 Matsushita Electric Works, Ltd. Method for manufacturing a depletion type double-diffused metal-oxide semiconductor field effect transistor device
US4943537A (en) * 1988-06-23 1990-07-24 Dallas Semiconductor Corporation CMOS integrated circuit with reduced susceptibility to PMOS punchthrough
US4990974A (en) * 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
US5100820A (en) * 1990-06-14 1992-03-31 Oki Electric Industry Co., Ltd. MOSFET fabrication process with lightly-doped drain using local oxidation step to pattern gate electrode
US5122474A (en) * 1988-06-23 1992-06-16 Dallas Semiconductor Corporation Method of fabricating a CMOS IC with reduced susceptibility to PMOS punchthrough
EP0513923A2 (en) * 1991-05-15 1992-11-19 Koninklijke Philips Electronics N.V. Protected programmable transistor with reduced parasitic capacitances and method of fabrication
US5187117A (en) * 1991-03-04 1993-02-16 Ixys Corporation Single diffusion process for fabricating semiconductor devices
US5227321A (en) * 1990-07-05 1993-07-13 Micron Technology, Inc. Method for forming MOS transistors
US5367186A (en) * 1992-01-28 1994-11-22 Thunderbird Technologies, Inc. Bounded tub fermi threshold field effect transistor
US5369295A (en) * 1992-01-28 1994-11-29 Thunderbird Technologies, Inc. Fermi threshold field effect transistor with reduced gate and diffusion capacitance
US5426063A (en) * 1993-03-24 1995-06-20 Sharp Kabushiki Kaisha Method of making a field effect transistor with submicron channel length and threshold implant using oblique implantation
US5440160A (en) * 1992-01-28 1995-08-08 Thunderbird Technologies, Inc. High saturation current, low leakage current fermi threshold field effect transistor
US5525822A (en) * 1991-01-28 1996-06-11 Thunderbird Technologies, Inc. Fermi threshold field effect transistor including doping gradient regions
US5543654A (en) * 1992-01-28 1996-08-06 Thunderbird Technologies, Inc. Contoured-tub fermi-threshold field effect transistor and method of forming same
US5606191A (en) * 1994-12-16 1997-02-25 Mosel Vitelic, Inc. Semiconductor device with lightly doped drain regions
US5686324A (en) * 1996-03-28 1997-11-11 Mosel Vitelic, Inc. Process for forming LDD CMOS using large-tilt-angle ion implantation
US5780902A (en) * 1995-12-25 1998-07-14 Nec Corporation Semiconductor device having LDD structure with pocket on drain side
US5786620A (en) * 1992-01-28 1998-07-28 Thunderbird Technologies, Inc. Fermi-threshold field effect transistors including source/drain pocket implants and methods of fabricating same
US5796145A (en) * 1993-12-13 1998-08-18 Nec Corporation Semiconductor device composed of MOSFET having threshold voltage control section
US5814869A (en) * 1992-01-28 1998-09-29 Thunderbird Technologies, Inc. Short channel fermi-threshold field effect transistors
US5827747A (en) * 1996-03-28 1998-10-27 Mosel Vitelic, Inc. Method for forming LDD CMOS using double spacers and large-tilt-angle ion implantation
US6261886B1 (en) * 1998-08-04 2001-07-17 Texas Instruments Incorporated Increased gate to body coupling and application to DRAM and dynamic circuits
US20100315070A1 (en) * 2009-06-12 2010-12-16 Wen-Jan Hong Inclinometer
US20110221000A1 (en) * 2009-09-15 2011-09-15 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078947A (en) * 1976-08-05 1978-03-14 International Business Machines Corporation Method for forming a narrow channel length MOS field effect transistor
US4149904A (en) * 1977-10-21 1979-04-17 Ncr Corporation Method for forming ion-implanted self-aligned gate structure by controlled ion scattering
US4198250A (en) * 1979-02-05 1980-04-15 Intel Corporation Shadow masking process for forming source and drain regions for field-effect transistors and like regions
US4282646A (en) * 1979-08-20 1981-08-11 International Business Machines Corporation Method of making a transistor array
US4317273A (en) * 1979-11-13 1982-03-02 Texas Instruments Incorporated Method of making high coupling ratio DMOS electrically programmable ROM
US4342149A (en) * 1979-11-23 1982-08-03 Siemens Aktiengesellschaft Method of making very short channel length MNOS and MOS devices by double implantation of one conductivity type subsequent to other type implantation
US4354307A (en) * 1979-12-03 1982-10-19 Burroughs Corporation Method for mass producing miniature field effect transistors in high density LSI/VLSI chips
US4366495A (en) * 1979-08-06 1982-12-28 Rca Corporation Vertical MOSFET with reduced turn-on resistance
US4376947A (en) * 1979-09-04 1983-03-15 Texas Instruments Incorporated Electrically programmable floating gate semiconductor memory device
US4420870A (en) * 1980-10-09 1983-12-20 Tokyo Shibaura Denki Kabushiki Kaisha Method of controlling channel length by implanting through polycrystalline and single crystalline regions followed by diffusion anneal
US4488351A (en) * 1983-01-27 1984-12-18 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078947A (en) * 1976-08-05 1978-03-14 International Business Machines Corporation Method for forming a narrow channel length MOS field effect transistor
US4149904A (en) * 1977-10-21 1979-04-17 Ncr Corporation Method for forming ion-implanted self-aligned gate structure by controlled ion scattering
US4198250A (en) * 1979-02-05 1980-04-15 Intel Corporation Shadow masking process for forming source and drain regions for field-effect transistors and like regions
US4366495A (en) * 1979-08-06 1982-12-28 Rca Corporation Vertical MOSFET with reduced turn-on resistance
US4282646A (en) * 1979-08-20 1981-08-11 International Business Machines Corporation Method of making a transistor array
US4376947A (en) * 1979-09-04 1983-03-15 Texas Instruments Incorporated Electrically programmable floating gate semiconductor memory device
US4317273A (en) * 1979-11-13 1982-03-02 Texas Instruments Incorporated Method of making high coupling ratio DMOS electrically programmable ROM
US4342149A (en) * 1979-11-23 1982-08-03 Siemens Aktiengesellschaft Method of making very short channel length MNOS and MOS devices by double implantation of one conductivity type subsequent to other type implantation
US4354307A (en) * 1979-12-03 1982-10-19 Burroughs Corporation Method for mass producing miniature field effect transistors in high density LSI/VLSI chips
US4420870A (en) * 1980-10-09 1983-12-20 Tokyo Shibaura Denki Kabushiki Kaisha Method of controlling channel length by implanting through polycrystalline and single crystalline regions followed by diffusion anneal
US4488351A (en) * 1983-01-27 1984-12-18 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing semiconductor device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ohkura et al., IEEE Trans. Electron Devices, ED 26, (Apr. 1979), 430. *
Ohkura et al., IEEE-Trans. Electron Devices, ED-26, (Apr. 1979), 430.
Ohta et al., IEEE Trans. Electron Devices, ED 27, (Aug. 1980), 1352. *
Ohta et al., IEEE-Trans. Electron Devices, ED-27, (Aug. 1980), 1352.

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055895A (en) * 1988-01-18 1991-10-08 Matsushuta Electric Works, Ltd. Double-diffused metal-oxide semiconductor field effect transistor device
US4902636A (en) * 1988-01-18 1990-02-20 Matsushita Electric Works, Ltd. Method for manufacturing a depletion type double-diffused metal-oxide semiconductor field effect transistor device
US5122474A (en) * 1988-06-23 1992-06-16 Dallas Semiconductor Corporation Method of fabricating a CMOS IC with reduced susceptibility to PMOS punchthrough
US4943537A (en) * 1988-06-23 1990-07-24 Dallas Semiconductor Corporation CMOS integrated circuit with reduced susceptibility to PMOS punchthrough
US5688722A (en) * 1988-06-23 1997-11-18 Dallas Semiconductor Corporation CMOS integrated circuit with reduced susceptibility to PMOS punchthrough
US5151759A (en) * 1989-03-02 1992-09-29 Thunderbird Technologies, Inc. Fermi threshold silicon-on-insulator field effect transistor
US4990974A (en) * 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
US5100820A (en) * 1990-06-14 1992-03-31 Oki Electric Industry Co., Ltd. MOSFET fabrication process with lightly-doped drain using local oxidation step to pattern gate electrode
US5227321A (en) * 1990-07-05 1993-07-13 Micron Technology, Inc. Method for forming MOS transistors
US5525822A (en) * 1991-01-28 1996-06-11 Thunderbird Technologies, Inc. Fermi threshold field effect transistor including doping gradient regions
US5187117A (en) * 1991-03-04 1993-02-16 Ixys Corporation Single diffusion process for fabricating semiconductor devices
EP0513923A2 (en) * 1991-05-15 1992-11-19 Koninklijke Philips Electronics N.V. Protected programmable transistor with reduced parasitic capacitances and method of fabrication
EP0513923A3 (en) * 1991-05-15 1993-06-02 N.V. Philips' Gloeilampenfabrieken Protected programmable transistor with reduced parasitic capacitances and method of fabrication
US5440160A (en) * 1992-01-28 1995-08-08 Thunderbird Technologies, Inc. High saturation current, low leakage current fermi threshold field effect transistor
US5374836A (en) * 1992-01-28 1994-12-20 Thunderbird Technologies, Inc. High current fermi threshold field effect transistor
US5814869A (en) * 1992-01-28 1998-09-29 Thunderbird Technologies, Inc. Short channel fermi-threshold field effect transistors
US5369295A (en) * 1992-01-28 1994-11-29 Thunderbird Technologies, Inc. Fermi threshold field effect transistor with reduced gate and diffusion capacitance
US5367186A (en) * 1992-01-28 1994-11-22 Thunderbird Technologies, Inc. Bounded tub fermi threshold field effect transistor
US5786620A (en) * 1992-01-28 1998-07-28 Thunderbird Technologies, Inc. Fermi-threshold field effect transistors including source/drain pocket implants and methods of fabricating same
US5543654A (en) * 1992-01-28 1996-08-06 Thunderbird Technologies, Inc. Contoured-tub fermi-threshold field effect transistor and method of forming same
WO1994011900A1 (en) * 1992-02-11 1994-05-26 Ixys Corporation Single diffusion process for fabricating semiconductor devices
US5532508A (en) * 1993-03-24 1996-07-02 Sharp Kabushiki Kaisha Semiconductor device with LDD structure
US5426063A (en) * 1993-03-24 1995-06-20 Sharp Kabushiki Kaisha Method of making a field effect transistor with submicron channel length and threshold implant using oblique implantation
US5796145A (en) * 1993-12-13 1998-08-18 Nec Corporation Semiconductor device composed of MOSFET having threshold voltage control section
US5606191A (en) * 1994-12-16 1997-02-25 Mosel Vitelic, Inc. Semiconductor device with lightly doped drain regions
US5780902A (en) * 1995-12-25 1998-07-14 Nec Corporation Semiconductor device having LDD structure with pocket on drain side
US5686324A (en) * 1996-03-28 1997-11-11 Mosel Vitelic, Inc. Process for forming LDD CMOS using large-tilt-angle ion implantation
US5827747A (en) * 1996-03-28 1998-10-27 Mosel Vitelic, Inc. Method for forming LDD CMOS using double spacers and large-tilt-angle ion implantation
US6261886B1 (en) * 1998-08-04 2001-07-17 Texas Instruments Incorporated Increased gate to body coupling and application to DRAM and dynamic circuits
US20100315070A1 (en) * 2009-06-12 2010-12-16 Wen-Jan Hong Inclinometer
US20110221000A1 (en) * 2009-09-15 2011-09-15 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing semiconductor device
US8841725B2 (en) * 2009-09-15 2014-09-23 Fujitsu Semiconductor Limited Semiconductor device having channel dose region and method for manufacturing semiconductor device
US9123742B2 (en) 2009-09-15 2015-09-01 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4599118A (en) Method of making MOSFET by multiple implantations followed by a diffusion step
USRE32800E (en) Method of making mosfet by multiple implantations followed by a diffusion step
US5409848A (en) Angled lateral pocket implants on p-type semiconductor devices
US5248627A (en) Threshold adjustment in fabricating vertical dmos devices
EP0537684B1 (en) Improved performance lateral double-diffused MOS transistor and method of fabrication thereof
EP0083447B1 (en) Triple diffused short channel device structure
US6297104B1 (en) Methods to produce asymmetric MOSFET devices
US6022778A (en) Process for the manufacturing of integrated circuits comprising low-voltage and high-voltage DMOS-technology power devices and non-volatile memory cells
US4931408A (en) Method of fabricating a short-channel low voltage DMOS transistor
US5382538A (en) Method for forming MOS transistors having vertical current flow and resulting structure
US6614075B2 (en) Semiconductor device and method of manufacturing the same
KR100468342B1 (en) LDMOS device with self-aligned RESURF region and method of manufacturing the same
US4906588A (en) Enclosed buried channel transistor
EP0707345B1 (en) Method for fabricating an integrated circuit
US5382536A (en) Method of fabricating lateral DMOS structure
US7517759B2 (en) Method of fabricating metal oxide semiconductor device
JP3831615B2 (en) Semiconductor device and manufacturing method thereof
US6261885B1 (en) Method for forming integrated circuit gate conductors from dual layers of polysilicon
US5920781A (en) Method of making semiconductor device
US7736961B2 (en) High voltage depletion FET employing a channel stopping implant
US6159814A (en) Spacer formation by poly stack dopant profile design
KR0138234B1 (en) Structure of high voltage mos transistor
KR0167606B1 (en) Process of fabricating mos-transistor
KR101044778B1 (en) Asymmetry high voltage transistor and method for manufacturing thereof
KR940001057B1 (en) Mos fet and manufacturing method thereof

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SGS-THOMSON MICROELECTRONICS, INC.

Free format text: MERGER;ASSIGNORS:SGS SEMICONDUCTOR CORPORATION, A CORP. OF DE;THOMSON HOLDINGS (DELAWARE) INC., A CORP. OF DE;SGS-THOMSON MICROELECTRONICS, INC. A CORP. OF DE (MERGED INTO);REEL/FRAME:005270/0725

Effective date: 19871224

Owner name: SGS-THOMSON MICROELECTRONICS, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:THOMSON COMPONENTS-MOSTEK CORPORATION;REEL/FRAME:005270/0714

Effective date: 19871023

REFU Refund

Free format text: REFUND PROCESSED. MAINTENANCE FEE TENDERED TOO EARLY (ORIGINAL EVENT CODE: R161); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: REFUND OF EXCESS PAYMENTS PROCESSED (ORIGINAL EVENT CODE: R169); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12