USRE31406E - Oxygen permeable contact lens composition, methods and article of manufacture - Google Patents

Oxygen permeable contact lens composition, methods and article of manufacture Download PDF

Info

Publication number
USRE31406E
USRE31406E US06/215,486 US21548680A USRE31406E US RE31406 E USRE31406 E US RE31406E US 21548680 A US21548680 A US 21548680A US RE31406 E USRE31406 E US RE31406E
Authority
US
United States
Prior art keywords
iaddend
iadd
contact lens
monomer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/215,486
Inventor
Norman G. Gaylord
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syntex USA LLC
Original Assignee
Syntex USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26910083&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE31406(E) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US00263541A external-priority patent/US3808178A/en
Application filed by Syntex USA LLC filed Critical Syntex USA LLC
Priority to US06/215,486 priority Critical patent/USRE31406E/en
Application granted granted Critical
Publication of USRE31406E publication Critical patent/USRE31406E/en
Assigned to SOLA U.S.A. INC. reassignment SOLA U.S.A. INC. ASSIGNS NUNC PRO TUNC AS OF DECEMBER 19, 1985 THE ENTIRE INTEREST. Assignors: SYNTEX (U.S.A.) INC. A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses

Definitions

  • This invention relates to novel copolymer compositions.
  • the invention relates to methods for increasing the oxygen permeability of polymerized acrylates and methacrylates.
  • the invention concerns contact lenses having increased oxygen permeability.
  • the invention relates to wettable contact lens materials.
  • the invention concerns oxygen-permeable, wettable transparent copolymers which can be cast, molded or machined to provide improved contact lenses.
  • Polymethylmethacrylate is rigid and durable but relatively impermeable to oxygen.
  • the hydrogel materials based on hydrophilic polymers such as polyhydroxyethylmethacrylate are soft and have poor durability. In addition, they provide an environment which is favorable for bacterial growth and are also relatively impermeable to oxygen.
  • Silicone rubber is soft and resilient and is highly permeable to oxygen.
  • a filler which increases the refractive index of the mixture, must be added to improve the durability.
  • the precision machining and polishing which is necessary in the fabrication of a corrective contact lens is extremely difficult with the elastomeric silicone rubbers.
  • novel copolymers which I have discovered are prepared by copolymerizing a polysiloxanylalkyl ester of acrylic or methacrylic acid with an alkanol ester of acrylic or methacrylic acid.
  • the polysiloxanylalkyl ester monomer has the structural formula ##STR1## wherein X and Y are selected from the class consisting of C 1 -C 5 alkyl groups, phenyl groups and Z groups; Z is a group of the structure ##STR2## A is selected from the class consisting of C 1 -C 5 alkyl groups and phenyl groups; R is selected from the class consisting of methyl groups and hydrogen; m is an integer from one to five; and n is an integer from one to three.
  • the alkyl group contains from 1 to 20 carbon atoms.
  • polysiloxanylalkyl ester comonomers which may be employed in the practice of the invention include: ##STR3##
  • alkanol ester comonomers which may be employed in the practice of the invention include:
  • novel copolymers of the present invention comprise about 10-60 parts by weight of one or more of the polysiloxanylalkyl ester monomers copolymerized with about 40-90 parts by weight of one or more of the alkanol ester comonomers.
  • polysiloxanyl acrylate and methacrylate esters which have a straight or branched siloxane chain containing two to four silicon atoms having methyl or phenyl substituents and one to three ethylene groups connecting the siloxanyl chain to the acryloxy or methacryloxy group. Best results are obtained if the polysiloxanyl ester content of the comonomer is up to 35% by weight and correspondingly less, e.g., 10-15%, as the silica content of the ester is increased.
  • branched chain alkanol ester e.g., 2-ethylhexyl acrylate
  • a lower polysiloxanyl ester comonomer e.g., pentamethyldisiloxanylmethyl acrylate.
  • the copolymers of the invention are prepared by contacting the mixture of comonomers with a free radical generating polymerization initiator of the type commonly used in polymerizing ethylenically unsaturated compounds.
  • a free radical generating polymerization initiator of the type commonly used in polymerizing ethylenically unsaturated compounds.
  • Representative free radical polymerization initiators include:
  • the comonomer mixture containing between about 0.05-2% by weight of the free radical initiator is heated to a temperature between 30° C.-100° C., preferably below 70° C., to initiate and complete the polymerization.
  • the polymerization can be carried out directly in a contact lens mold to form a lens generally having the desired configuration.
  • the polymerization mixture can be heated in a suitable mold or container to form discs, rods or sheets which can then be machined to the desired shape using conventional equipment and procedures employed for fabricating lenses from polymethyl methacrylate.
  • the temperature is preferably maintained below 70° C. in order to minimize the formation of bubbles in the copolymer.
  • the novel copolymers have vastly increased oxygen permeability in comparison to conventional contact lens materials.
  • a copolymer comprising 35 parts pentamethyldisiloxanylmethyl methacrylate and 65 parts of methyl methacrylate has an oxygen permeability of 500 cc.-mil/100 in. 2 /24 hr./atm. compared to an oxygen permeability of 34 for polymethyl methacrylate and 13 for polyhydroxyethylmethacrylate.
  • These oxygen permeability values were determined in accordance with ASTM D1434, using a tester which has a 3 "Dow" cell pressure change detection units. Discs were cut to proper size to fit the tester, placed in the apparatus and conditioned a minimum of 16 hours under both vacuum and oxygen.
  • the test was performed by plotting a curve of cell pressure versus time. The slope of the curve was then used to calculate the oxygen transmission rate.
  • the oxygen permeability of the copolymers of the invention is at least 4 times to as much as several hundred times higher than that of lenses prepared from polymethylmethacrylate or the so-called "hydrogel" lenses prepared from polyhydroxyethylmethacrylate.
  • wettability can be imparted to the copolymer by the addition of from about 0.1% to about 10% by weight of one or more hydrophilic monomers to the copolymerization mixture.
  • hydrophilic monomers include hydroxyalkyl acrylates and methacrylates wherein the alkyl group contains 1 to 4 carbon atoms, acrylic and methacrylic acid, acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, glycidyl acrylate and methacrylate and N-vinylpyrrolidone.
  • the wettability of the surface of contact lenses made from the novel copolymers can be improved by the application of a wetting agent such as, for example, a dilute aqueous solution of alkyldimethylbenzylammonium chloride, by exposure of the surface to a corona discharge or by chemical treatment of the surface with a strong oxidizing agent such as nitric acid.
  • a wetting agent such as, for example, a dilute aqueous solution of alkyldimethylbenzylammonium chloride
  • the rigidity of the contact lenses prepared from materials useful in the practice of this invention may be varied by changing the ratio of comonomers and/or their chemical composition.
  • contact lenses prepared from acrylate monomers are more flexible than those prepared from methacrylate monomers.
  • a copolymer of a polysiloxanylalkyl methacrylate and an alkyl methacrylate may be fabricated into a contact lens which is more rigid than a lens prepared from the copolymer of the corresponding acrylates. The lower the alkyl methacrylate content of the copolymer the more flexible the contact lens prepared therefrom.
  • the rigidity of a contact lens prepared from the materials useful in the practice of this invention may be increased, if desired, by the incorporation into the copolymer composition of 0.01% to about 2% by weight of a crosslinking monomer such as a polyol dimethacrylate or diacrylate or a polyol acrylic ester of higher functionality, for example, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, neopentyl glycol diacrylate and pentaerythritol triacrylate or tetra-acrylate.
  • a crosslinking monomer such as a polyol dimethacrylate or diacrylate or a polyol acrylic ester of higher functionality, for example, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, neopentyl glycol diacrylate and pentaerythritol triacrylate or tetra-acrylate.
  • the refractive index is an important but noncritical characteristic of a contact lens.
  • the refractive index of polymethylmethacrylate the polymer most widely used in the fabrication of contact lenses, is 1.49.
  • the refractive indices of the copolymers useful in the practice of this invention may be varied between 1.35 and 1.50 by varying the ratio and nature of the comonomers. In general, increasing the polysiloxanyl monomer content of the copolymer will decrease its refractive index. The nature of the substituents on the silicon atoms of the polysiloxanyl monomer also importantly affects the refractive index of the copolymer. Lower straight chain alkyl substituents produce copolymers of lower refractive index while polysiloxanyl monomers having phenyl substituents on the silicon atoms yield copolymers having a higher refractive index.
  • This example illustrates the synthesis of a representative polysiloxanylalkyl ester comonomer, pentamethyldisiloxanylmethyl methacrylate.
  • Distilled trimethylchlorosilane (635 ml., 5 moles), B.P. 59.9° C., is placed in a 1-liter, 3-necked, round-bottom flask equipped with a magnetic stirrer, a thermometer, a gas inlet tube and a Dry-Ice cooled reflux condenser whose outlet is connected to a water scrubber.
  • chlorine gas is introduced through the gas inlet tube and the flask is irradiated by ultraviolet light from a General Electric 15-watt germicidal lamp placed at a distance of 6 in. from the flask.
  • Gaseous hydrogen chloride is evolved and absorbed in the water scrubber which contains a caustic soda solution and a small amount of phenolphthalein.
  • the temperature is maintained in the range 30°-40° C. while chlorine is bubbled through the reaction mixture.
  • 5 moles of hydrogen chloride is evolved, as indicated by the discharge of the pink color in the water scrubber.
  • the product is distilled through a column with 18 theoretic plates and the fraction distilling at 115° C. is collected.
  • the disiloxane monomer recovered by distillation contains co-distilled hydroquinone. Purification is accomplished by washing the monomer with aqueous alkali solution containing 25% sodium carbonate and 1% sodium hydroxide until the aqueous layer is colorless. The oily monomer layer is then washed with water until neutral and dried over anhydrous sodium carbonate. The dried monomer is refrigerated until used.
  • This example illustrates the preparation of a representative oxygen-permeable copolymer.
  • a mixture of 35 parts of the disiloxane monomer of Example 1, 65 parts of methyl methacrylate and 0.004 ml. of tert-butyl peroxypivalate per ml. of monomer mixture is placed in a polypropylene Petri dish to a height of one-eighth of an inch.
  • the dish is covered and placed in a vacuum oven which has been purged with nitrogen. The oven is closed and the temperature is maintained at 45° C. for 20 hours.
  • the copolymer disc is hard, colorless, transparent and rigid.
  • the oxygen permeability is 500 cc.-mil/100 in. 2 /24 hr./atm.
  • the oxygen permeability of a disc of polymethylmethacrylate is 34 cc.-mil/100 in. 2 /24 hr./atm. while that of a disc of polyhydroxyethylmethacrylate is 13 cc.-mil/100 in. 2 /24 hr./atm.
  • a cylindrical plug having dimensions of 1/4 inch thickness and 1/2 inch diameter is prepared by copolymerizing the 35/65 disiloxane monomer/methyl methacrylate mixture in a polyethylene cap at 45° C. for 20 hours.
  • the plug is machined, cut, polished and finished to a concavo-convex lens.
  • the polymerized plugs are machined and finished in the usual manner to lenses with a concave surface on one side and a convex surface on the opposite side.
  • the lenses are easily wetted by water and an aqueous saline solution.
  • This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
  • a disc is prepared in the manner described in Example 2 from a mixture of 45 parts of the disiloxane monomer of Example 1, 50 parts of methyl methacrylate and 5 parts of hydroxyethylmethacrylate using tert-butyl peroxypivalate as catalyst. The polymerization is carried out at 45° C. for 20 hours. The resultant disc is colorless, transparent, hard and semi-rigid. The surface of the disc is readily wetted by water and saline solution. The oxygen permeability of the terpolymer is 765 cc.-mil/100 in. 2 /24 hr./atm.
  • This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
  • Cylindrical plugs are prepared in the manner described in Example 3 from mixtures of the disiloxane monomer (DSM) of Example 1, methyl methacrylate (MMA), octadecyl methacrylate (ODMA), hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) by polymerization at 70° C. for 2.5 hours using tert-butyl peroxypivalate as catalyst.
  • DSM disiloxane monomer
  • MMA methyl methacrylate
  • ODMA octadecyl methacrylate
  • HEMA hydroxyethyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • This example illustrates the synthesis of 1,1,1-tris(trimethylsiloxy)methacrylatopropylsilane.
  • Methacrylatopropyltrimethoxysilane (0.1 mole, 24.8 g.), is mixed with 0.3 mole (39.6 g.) of trimethylacetoxysilane in a flask equipped with a magnetic stirrer.
  • Ethylsulfuric acid (6.5 g.), prepared as described above, is added dropwise from a dropping funnel into the stirred mixture.
  • the flask is cooled during the addition of the ethylsulfuric acid catalyst solution in an ice water bath. After completion of the catalyst addition, the solution is stirred at room temperature for two days. The upper oily layer is then separated, washed with sodium bicarbonate solution, washed with water and then dried over anhydrous sodium sulfate.
  • the produce is distilled under vacuum to remove ethyl acetate.
  • the distillation flask is immersed in a water bath whose temperature is maintained at 40°-45° C. to prevent premature polymerization of the monomer.
  • the yield of tris(trimethylsiloxy)methacrylatopropylsilane is 86% and the density of the monomer is 0.989 g./cc. at 20° C.
  • the monomer is refrigerated until used.
  • This example illustrates the preparation of a copolymer of methyl methacrylate with the novel polysiloxanyl ester of Example 15.
  • a cylindrical plug is prepared by polymerizing a mixture of 40 parts of tris(trimethylsiloxy)- ⁇ -methacryloxypropylsilane and 60 parts of methyl methacrylate in the presence of tert-butyl peroxypivalate at 50° C. Lenses prepared from the plug are hard, transparent and oxygen permeable.
  • This example illustrates the preparation of various copolymers of polysiloxanyl esters and various alkyl acrylates or methacrylates.
  • the polysiloxanyl ester comonomers are prepared according to the general techniques of Examples 1 and 15.
  • the copolymer is prepared according to the general technique of Example 2. All copolymers resulting are transparent, hard and rigid so as to be suitable for contact lens manufacture.
  • the oxygen permeability of the copolymers varies from 300-500 cc.-mil/100 in. 2 /24 hr./atm. as measured by the technique previously described.

Abstract

Contact lenses are fabricated from a copolymer of a polysiloxanylalkyl acrylic ester and an alkyl acrylic ester. The copolymer has increased oxygen permeability.

Description

.Iadd.
This is a continuation of application Ser. No. 931,355, abandoned, filed Aug. 7, 1978 which was a reissue application of Ser. No. 263,541, filed June 16, 1972, now U.S. Pat. No. 3,808,178. .Iaddend.
This invention relates to novel copolymer compositions.
In another aspect, the invention relates to methods for increasing the oxygen permeability of polymerized acrylates and methacrylates.
In still another respect, the invention concerns contact lenses having increased oxygen permeability.
In yet another respect, the invention relates to wettable contact lens materials.
In a further aspect, the invention concerns oxygen-permeable, wettable transparent copolymers which can be cast, molded or machined to provide improved contact lenses.
The prior art teaches the use of many different polymeric materials in contact lenses. However, although these polymers possess the optical clarity necessary for corrective lenses, they suffer from other characteristics which reduce their potential utility.
Polymethylmethacrylate is rigid and durable but relatively impermeable to oxygen. The hydrogel materials based on hydrophilic polymers such as polyhydroxyethylmethacrylate are soft and have poor durability. In addition, they provide an environment which is favorable for bacterial growth and are also relatively impermeable to oxygen.
Silicone rubber is soft and resilient and is highly permeable to oxygen. However, due to the low strength of polysiloxanes, a filler which increases the refractive index of the mixture, must be added to improve the durability. Further, the precision machining and polishing which is necessary in the fabrication of a corrective contact lens is extremely difficult with the elastomeric silicone rubbers.
Accordingly, it would be highly desirable to provide a polymeric material suitable for use in fabricating contact lenses having increased oxygen permeability, improved mechanical strength, and which is sufficiently rigid to permit precision machining and polishing. I have now discovered novel copolymer materials which possess these properties.
The novel copolymers which I have discovered are prepared by copolymerizing a polysiloxanylalkyl ester of acrylic or methacrylic acid with an alkanol ester of acrylic or methacrylic acid.
The polysiloxanylalkyl ester monomer has the structural formula ##STR1## wherein X and Y are selected from the class consisting of C1 -C5 alkyl groups, phenyl groups and Z groups; Z is a group of the structure ##STR2## A is selected from the class consisting of C1 -C5 alkyl groups and phenyl groups; R is selected from the class consisting of methyl groups and hydrogen; m is an integer from one to five; and n is an integer from one to three.
In the alkanol ester comonomers, the alkyl group contains from 1 to 20 carbon atoms.
Representative polysiloxanylalkyl ester comonomers which may be employed in the practice of the invention include: ##STR3##
Representative alkanol ester comonomers which may be employed in the practice of the invention include:
methyl acrylate and methacrylate
ethyl acrylate and methacrylate
propyl acrylate and methacrylate
isopropyl acrylate and methacrylate
butyl acrylate and methacrylate
amyl acrylate and methacrylate
hexyl acrylate and methacrylate
heptyl acrylate and methacrylate
octyl acrylate and methacrylate
2-ethylhexyl acrylate and methacrylate
nonyl acrylate and methacrylate
decyl acrylate and methacrylate
undecyl acrylate and methacrylate
lauryl acrylate and methacrylate
cetyl acrylate and methacrylate
octadecyl acrylate and methacrylate
The novel copolymers of the present invention comprise about 10-60 parts by weight of one or more of the polysiloxanylalkyl ester monomers copolymerized with about 40-90 parts by weight of one or more of the alkanol ester comonomers.
At present it is preferred to employ polysiloxanyl acrylate and methacrylate esters which have a straight or branched siloxane chain containing two to four silicon atoms having methyl or phenyl substituents and one to three ethylene groups connecting the siloxanyl chain to the acryloxy or methacryloxy group. Best results are obtained if the polysiloxanyl ester content of the comonomer is up to 35% by weight and correspondingly less, e.g., 10-15%, as the silica content of the ester is increased. If one employs a branched chain alkanol ester, e.g., 2-ethylhexyl acrylate, one preferably, employs a lower polysiloxanyl ester comonomer, e.g., pentamethyldisiloxanylmethyl acrylate.
The copolymers of the invention are prepared by contacting the mixture of comonomers with a free radical generating polymerization initiator of the type commonly used in polymerizing ethylenically unsaturated compounds. Representative free radical polymerization initiators include:
acetyl peroxide
lauroyl peroxide
decanoyl peroxide
caprylyl peroxide
benzoyl peroxide
tertiarybutyl peroxypivalate
diisopropyl peroxycarbonate
tertiarybutyl peroctoate
α,α'-azobisisobutyronitrile
Conventional polymerization techniques can be employed to produce the novel copolymers. The comonomer mixture containing between about 0.05-2% by weight of the free radical initiator is heated to a temperature between 30° C.-100° C., preferably below 70° C., to initiate and complete the polymerization. The polymerization can be carried out directly in a contact lens mold to form a lens generally having the desired configuration. Alternatively, the polymerization mixture can be heated in a suitable mold or container to form discs, rods or sheets which can then be machined to the desired shape using conventional equipment and procedures employed for fabricating lenses from polymethyl methacrylate. The temperature is preferably maintained below 70° C. in order to minimize the formation of bubbles in the copolymer. Instead of employing the bulk polymerization techniques described above, one can employ solution, emulsion or suspension polymerization to prepare the novel copolymers, using techniques conventionally used in the preparation of polymers from ethylenically unsaturated monomers. The copolymer thus produced may be extruded, pressed or molded into rods, sheets or other convenient shapes which are then machined to produce the contact lenses.
The novel copolymers have vastly increased oxygen permeability in comparison to conventional contact lens materials. For example, a copolymer comprising 35 parts pentamethyldisiloxanylmethyl methacrylate and 65 parts of methyl methacrylate has an oxygen permeability of 500 cc.-mil/100 in.2 /24 hr./atm. compared to an oxygen permeability of 34 for polymethyl methacrylate and 13 for polyhydroxyethylmethacrylate. These oxygen permeability values were determined in accordance with ASTM D1434, using a tester which has a 3 "Dow" cell pressure change detection units. Discs were cut to proper size to fit the tester, placed in the apparatus and conditioned a minimum of 16 hours under both vacuum and oxygen. Immediately following the conditioning period, the test was performed by plotting a curve of cell pressure versus time. The slope of the curve was then used to calculate the oxygen transmission rate. In general, the oxygen permeability of the copolymers of the invention is at least 4 times to as much as several hundred times higher than that of lenses prepared from polymethylmethacrylate or the so-called "hydrogel" lenses prepared from polyhydroxyethylmethacrylate.
While some of the novel copolymers are inherently wettable by human tears, it may be necessary to improve the wettability of others. This can be accomplished by several alternate methods. For example, wettability can be imparted to the copolymer by the addition of from about 0.1% to about 10% by weight of one or more hydrophilic monomers to the copolymerization mixture. Such monomers include hydroxyalkyl acrylates and methacrylates wherein the alkyl group contains 1 to 4 carbon atoms, acrylic and methacrylic acid, acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, glycidyl acrylate and methacrylate and N-vinylpyrrolidone. Alternatively, the wettability of the surface of contact lenses made from the novel copolymers can be improved by the application of a wetting agent such as, for example, a dilute aqueous solution of alkyldimethylbenzylammonium chloride, by exposure of the surface to a corona discharge or by chemical treatment of the surface with a strong oxidizing agent such as nitric acid.
The rigidity of the contact lenses prepared from materials useful in the practice of this invention may be varied by changing the ratio of comonomers and/or their chemical composition. Thus, contact lenses prepared from acrylate monomers are more flexible than those prepared from methacrylate monomers. A copolymer of a polysiloxanylalkyl methacrylate and an alkyl methacrylate may be fabricated into a contact lens which is more rigid than a lens prepared from the copolymer of the corresponding acrylates. The lower the alkyl methacrylate content of the copolymer the more flexible the contact lens prepared therefrom.
The rigidity of a contact lens prepared from the materials useful in the practice of this invention may be increased, if desired, by the incorporation into the copolymer composition of 0.01% to about 2% by weight of a crosslinking monomer such as a polyol dimethacrylate or diacrylate or a polyol acrylic ester of higher functionality, for example, ethylene glycol dimethacrylate, butylene glycol dimethacrylate, neopentyl glycol diacrylate and pentaerythritol triacrylate or tetra-acrylate.
The refractive index is an important but noncritical characteristic of a contact lens. Thus, the refractive index of polymethylmethacrylate, the polymer most widely used in the fabrication of contact lenses, is 1.49. The refractive indices of the copolymers useful in the practice of this invention may be varied between 1.35 and 1.50 by varying the ratio and nature of the comonomers. In general, increasing the polysiloxanyl monomer content of the copolymer will decrease its refractive index. The nature of the substituents on the silicon atoms of the polysiloxanyl monomer also importantly affects the refractive index of the copolymer. Lower straight chain alkyl substituents produce copolymers of lower refractive index while polysiloxanyl monomers having phenyl substituents on the silicon atoms yield copolymers having a higher refractive index.
The following examples are presented to illustrate the practice of the invention and not as an indication of the limits of the scope thereof.
EXAMPLE 1
This example illustrates the synthesis of a representative polysiloxanylalkyl ester comonomer, pentamethyldisiloxanylmethyl methacrylate.
Synthesis of dimethylchloromethylchlorosilane
Distilled trimethylchlorosilane (635 ml., 5 moles), B.P. 59.9° C., is placed in a 1-liter, 3-necked, round-bottom flask equipped with a magnetic stirrer, a thermometer, a gas inlet tube and a Dry-Ice cooled reflux condenser whose outlet is connected to a water scrubber. After flushing the apparatus with dry nitrogen for 15 minutes, chlorine gas is introduced through the gas inlet tube and the flask is irradiated by ultraviolet light from a General Electric 15-watt germicidal lamp placed at a distance of 6 in. from the flask. Gaseous hydrogen chloride is evolved and absorbed in the water scrubber which contains a caustic soda solution and a small amount of phenolphthalein. The temperature is maintained in the range 30°-40° C. while chlorine is bubbled through the reaction mixture. After 30 hours of photochlorination, 5 moles of hydrogen chloride is evolved, as indicated by the discharge of the pink color in the water scrubber. The product is distilled through a column with 18 theoretic plates and the fraction distilling at 115° C. is collected. The yield of dimethylchloromethylchlorosilane (d25 =1.07) is 30%.
Synthesis of pentamethylchloromethyldisiloxane
134 ml. dimethylchloromethylchlorosilane (1 mole) and 127 ml. (1 mole) of trimethylchlorosilane are mixed and shaken thoroughly. When 600 ml. of distilled water is added, exothermic hydrolytic reactions occur immediately. The mixture is shaken on a mechanical shaker overnight to complete hydrolysis. The upper oily layer is separated and is dried over anhydrous sodium carbonate. After drying, the product is distilled through a column of 13 theoretical plates and the fraction which distills at 151°-152° C. is collected. The yield of pentamethylchloromethyldisiloxane (B.P. 151.8° C., d25 =0.910, nD 20 =1.4106) is 30%.
Synthesis of pentamethyldisiloxanylmethyl methacrylate
30 ml. pentamethylchloromethyldisiloxane (0.14 mole), 13.8 ml. (0.16 mole) distilled methacrylic acid, 21.0 ml. (0.15 mole) triethylamine, 30 ml. xylene and 0.8 g. hyroquinone are mixed and refluxed for 16 hours. Triethylamine hydrochloride precipitates and is filtered. The filtrate is mixed with 1 g. of hydroquinone and 1 g. of copper powder. Xylene is distilled from the mixture at atmospheric pressure. The distillation apparatus is then connected to a vacuum line and the fraction which distills at 73°-75° C. under 4-5 mm. Hg pressure is collected. The yield of pentamethyldisiloxanylmethyl methacrylate (B.P. 73°-74° C./4 mm. Hg, d20 =0.910, nD 20 =1.420) is 45%.
The disiloxane monomer recovered by distillation contains co-distilled hydroquinone. Purification is accomplished by washing the monomer with aqueous alkali solution containing 25% sodium carbonate and 1% sodium hydroxide until the aqueous layer is colorless. The oily monomer layer is then washed with water until neutral and dried over anhydrous sodium carbonate. The dried monomer is refrigerated until used.
EXAMPLE 2
This example illustrates the preparation of a representative oxygen-permeable copolymer.
A mixture of 35 parts of the disiloxane monomer of Example 1, 65 parts of methyl methacrylate and 0.004 ml. of tert-butyl peroxypivalate per ml. of monomer mixture is placed in a polypropylene Petri dish to a height of one-eighth of an inch. The dish is covered and placed in a vacuum oven which has been purged with nitrogen. The oven is closed and the temperature is maintained at 45° C. for 20 hours. The copolymer disc is hard, colorless, transparent and rigid. The oxygen permeability is 500 cc.-mil/100 in.2 /24 hr./atm.
The oxygen permeability of a disc of polymethylmethacrylate is 34 cc.-mil/100 in.2 /24 hr./atm. while that of a disc of polyhydroxyethylmethacrylate is 13 cc.-mil/100 in.2 /24 hr./atm.
A cylindrical plug having dimensions of 1/4 inch thickness and 1/2 inch diameter is prepared by copolymerizing the 35/65 disiloxane monomer/methyl methacrylate mixture in a polyethylene cap at 45° C. for 20 hours. The plug is machined, cut, polished and finished to a concavo-convex lens.
EXAMPLES 3-9
These examples illustrate the preparation and properties of copolymers containing varying proportions of a siloxanyl monomer, methyl methacrylate, and a hydrophilic monomer (hydroxyethyl methacrylate).
Mixtures of the disiloxane monomer of Example 1 (DSM), methyl methacrylate (MMA), hydroxyethyl methacrylate (HEMA) and tert-butyl peroxy pivalate (0.004 ml. per ml. of monomer mixture) is polymerized in polyethylene caps under the conditions shown in the following table:
______________________________________                                    
Composition, wt. %  Temp.   Time                                          
Example                                                                   
       DSM     MMA     HEMA   °C.                                  
                                    hr.  Properties*                      
______________________________________                                    
3      20      75      5      50    6.5  T, H, R                          
4      35      60      5      45    20   T, H, R                          
5      44      50      6      50    48   T, H, SR                         
6      45      50      5      45    20   T, H. SR                         
7      45      49      6      70    1    T, H, SR                         
                              50    16                                    
8      51      40      9      75    2.5  T, H. SR                         
9      65      30      5      60    4    NT, S, E                         
______________________________________                                    
 *T = transparent;                                                        
 H = hard;                                                                
 R = Rigid;                                                               
 SR = Semirigid;                                                          
 NT = hazy;                                                               
 S = soft;                                                                
 E = elastomeric                                                          
The polymerized plugs are machined and finished in the usual manner to lenses with a concave surface on one side and a convex surface on the opposite side. The lenses are easily wetted by water and an aqueous saline solution.
EXAMPLE 10
This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
A disc is prepared in the manner described in Example 2 from a mixture of 45 parts of the disiloxane monomer of Example 1, 50 parts of methyl methacrylate and 5 parts of hydroxyethylmethacrylate using tert-butyl peroxypivalate as catalyst. The polymerization is carried out at 45° C. for 20 hours. The resultant disc is colorless, transparent, hard and semi-rigid. The surface of the disc is readily wetted by water and saline solution. The oxygen permeability of the terpolymer is 765 cc.-mil/100 in.2 /24 hr./atm.
EXAMPLE 11
This example illustrates the preparation and properties of a wettable oxygen-permeable terpolymer.
A disc prepared in the same manner described in Example 2 by polymerizing a mixture of 20 parts of the disiloxane monomer of Example 1, 75 parts of methyl methacrylate, 5 parts of hydroxyethyl methacrylate and 0.004 ml. of tert-butyl peroxypivalate per ml. of monomer mixture, at 50° C. has an oxygen permeability of 135 cc.-mil/100 in.2 /24 hr./atm. Lenses cut and machined from the disc are transparent, hard and rigid.
EXAMPLES 12-14
These examples illustrate the preparation and properties of copolymers of a siloxanyl monomer with various proportions of other methacrylate ester comonomers.
Cylindrical plugs are prepared in the manner described in Example 3 from mixtures of the disiloxane monomer (DSM) of Example 1, methyl methacrylate (MMA), octadecyl methacrylate (ODMA), hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) by polymerization at 70° C. for 2.5 hours using tert-butyl peroxypivalate as catalyst. The properties of lenses prepared from the plugs are shown in the following table:
______________________________________                                    
Ex-                                                                       
am-  Composition, wt. %         Prop-                                     
ple  DSM     MMA     ODMA   HEMA   EGDMA  erties                          
______________________________________                                    
12   35      30      30     5      0      T, H, E                         
13   45      30      20     5      0      T, S, E                         
14   45      38      10     5      2      T, S, R                         
______________________________________                                    
EXAMPLE 15
This example illustrates the synthesis of 1,1,1-tris(trimethylsiloxy)methacrylatopropylsilane.
23.8 g. (13.0 ml.) of concentrated sulfuric acid is added slowly with stirring to a mixture of 11.6 g. (14.7 ml.) of absolute ethanol and 16.5 ml. of water. The mixture is cooled in a water bath.
Methacrylatopropyltrimethoxysilane (0.1 mole, 24.8 g.), is mixed with 0.3 mole (39.6 g.) of trimethylacetoxysilane in a flask equipped with a magnetic stirrer. Ethylsulfuric acid (6.5 g.), prepared as described above, is added dropwise from a dropping funnel into the stirred mixture. The flask is cooled during the addition of the ethylsulfuric acid catalyst solution in an ice water bath. After completion of the catalyst addition, the solution is stirred at room temperature for two days. The upper oily layer is then separated, washed with sodium bicarbonate solution, washed with water and then dried over anhydrous sodium sulfate. The produce is distilled under vacuum to remove ethyl acetate. The distillation flask is immersed in a water bath whose temperature is maintained at 40°-45° C. to prevent premature polymerization of the monomer. The yield of tris(trimethylsiloxy)methacrylatopropylsilane is 86% and the density of the monomer is 0.989 g./cc. at 20° C. The monomer is refrigerated until used.
EXAMPLE 16
This example illustrates the preparation of a copolymer of methyl methacrylate with the novel polysiloxanyl ester of Example 15.
A cylindrical plug is prepared by polymerizing a mixture of 40 parts of tris(trimethylsiloxy)-α-methacryloxypropylsilane and 60 parts of methyl methacrylate in the presence of tert-butyl peroxypivalate at 50° C. Lenses prepared from the plug are hard, transparent and oxygen permeable.
EXAMPLES 17-28
This example illustrates the preparation of various copolymers of polysiloxanyl esters and various alkyl acrylates or methacrylates. The polysiloxanyl ester comonomers are prepared according to the general techniques of Examples 1 and 15. The copolymer is prepared according to the general technique of Example 2. All copolymers resulting are transparent, hard and rigid so as to be suitable for contact lens manufacture. The oxygen permeability of the copolymers varies from 300-500 cc.-mil/100 in.2 /24 hr./atm. as measured by the technique previously described.
__________________________________________________________________________
POLYSILOXANYL ESTER                ALKANOL ESTER                          
     Wt. % in                       Wt. % in                              
.Iadd.Example.Iaddend.                                                    
     Copolymer                                                            
           Monomer                  Copolymer                             
                                          Monomer                         
__________________________________________________________________________
17   35    heptamethyltrisiloxanylethyl acrylate                          
                                    65    2-ethylhexyl acrylate           
18   30    isobutylhexamethyltrisiloxanylmethyl methacrylate              
                                    70    t-butyl methacrylate            
19   30    n-propyloctamethyltetrasiloxanylpropyl methacrylate            
                                    70    decyl methacrylate              
20   25    tri-i-propyltetramethyltrisiloxanylethyl acrylate              
                                    75    isopropyl acrylate              
21   25    t-butyltetramethyldisiloxanylethyl acrylate                    
                                    75    methyl acrylate                 
22   20    n-pentylhexamethyltrisiloxanylmethyl methacrylate              
                                    80    ethyl methacrylate              
23   20    phenyltetramethyldisiloxanylethyl acrylate                     
                                    80    octadecyl acrylate              
24   20    phenyltetraethyldisiloxanylethyl methacrylate                  
                                    80    hexyl methacrylate              
25   15    triphenyldimethylsiloxanylmethyl acrylate                      
                                    85    methyl acrylate                 
26   15    tris(trimethylsiloxy)-γ-methacryloxypropylsilane         
                                    85    methyl methacrylate             
27   15    methyldi(trimethylsiloxy)-methacryloxymethylsilane             
                                    85    n-propyl methacrylate           
28   10    pentamethyldi(trimethylsiloxy)-acryloxymethylsilane            
                                    90    ethyl acrylate                  
__________________________________________________________________________
As illustrated by Examples 17-28, it is preferred to use a straight chain alkanol ester monomer if the polysiloxanyl ester monomer is a branched chain compound, and vice versa. Also, it is preferred to employ two acrylate or two methacrylate comonomers to prepare the copolymer, rather than an acrylate monomer and a methacrylate monomer. Finally, where more complex polysiloxanyl ester comonomers are employed, the proportion of polysiloxanyl ester is lower, e.g., 10-20%, than if simpler polysiloxanyl esters are employed. In general, the presence of larger, more complex substituents on the interior silicon atoms tend to increase the refractive index of the copolymer, all other factors being equal.

Claims (3)

Having described my invention in such manner as to enable those skilled in the art to understand and practice it and having identified the preferred embodiments thereof, I claim: .[.
1. A new composition of matter specially adapted for the production of contact lenses having increased oxygen permeability, said new composition being a solid copolymer of comonomers consisting essentially of:
(a) about 10 to 60 parts by weight of a polysiloxanylalkyl ester of the structure ##STR4## wherein:
(1) X and Y are selected from the class consisting of C1 -C5 alkyl groups, phenyl groups and Z groups,
(2) Z is a group of the structure ##STR5## (3) A is selected from the class consisting of C1 -C5 alkyl groups and phenyl groups,
(4) R is selected from the class consisting of methyl groups and hydrogen,
(5) m is an integer from one to five, and
(6) n is an integer from one to three; and
(b) about 40 to 90 parts by weight of an ester of a C1 -C20 monohydric alkanol and an acid selected from the class consisting of acrylic and methacrylic acids..].
2. As a new article of manufacture, a contact lens having increased oxygen permeability .Iadd.in comparison with poly(methylmethacrylate).Iaddend., said lens being fabricated from .[.the copolymer composition of claim 1,.]. .Iadd.a solid copolymer of comonomers consisting essentially of:
(a) about 10 to 60 parts by weight of a polysiloxanylalkyl ester of the structure ##STR6## wherein (1) X and Y are selected from the class consisting of C1 -C5 alkyl groups, phenyl groups and Z groups,
(2) Z is a group of the structure ##STR7## (3) A is selected from the class consisting of C1 -C5 alkyl groups and phenyl groups,
(4) R is selected from the class consisting of methyl groups and hydrogen,
(5) m is an integer from one to five, and
(6) n is an integer from one to three; and
(b) about 40 to 90 parts by weight of an ester of a C1 -C20 monohydric alkanol and an acid selected from the class consisting of acrylic and methacrylic acids,
said lens .Iaddend.having a refractive index of from 1.35 to 1.50. .Iadd.
3. The contact lens of claim 2 wherein said solid copolymer of comonomers includes as a comonomer a minor amount of a crosslinking monomer. .Iaddend. .Iadd. 4. The contact lens of claim 3 wherein said cross-linking monomer is a polyol dimethacrylate or a polyol diacrylate. .Iaddend..Iadd. 5. The contact lens of claim 3 wherein said cross-linking monomer is present in an amount equal to about 0.01% to about 2% by weight of said copolymer. .Iaddend..Iadd. 6. The contact lens of claim 5 wherein said cross-linking monomer is a polyol dimethacrylate or a polyol diacrylate. .Iaddend. .Iadd. 7. The contact lens of claim 3 wherein said solid copolymer of comonomers includes as a comonomer a minor amount of a wetting monomer. .Iaddend. .Iadd. 8. The contact lens of claim 7 wherein said wetting monomer is methacrylic acid. .Iaddend..Iadd. 9. The contact lens of claim 7 wherein said wetting monomer is present in an amount equal to about 0.1% to about 10% by weight of said copolymer. .Iaddend..Iadd. 10. The contact lens of claim 9 wherein said wetting monomer is methacrylic acid. .Iaddend..Iadd. 11. The contact lens of claim 2 wherein said solid copolymer of comonomers includes as a comonomer a minor amount of a wetting monomer. .Iaddend..Iadd. 12. The contact lens of claim 11 wherein said wetting monomer is methacrylic acid. .Iaddend..Iadd. 13. The contact lens of claim 11 wherein said wetting monomer is present in an amount equal to about 0.1% to about 10% by weight of said copolymer. .Iaddend..Iadd. 14. The contact lens of claim 13 wherein said wetting monomer is methacrylic acid. .Iaddend. .Iadd. 15. The contact lens of claims 2 or 3 wherein a wetting agent is applied to the surface of said lens. .Iaddend..Iadd. 16. The contact lens of claim 15 wherein said wetting agent is a dilute aqueous solution of an alkyldimethylbenzylammonium chloride. .Iaddend..Iadd. 17. The contact lens of claims 2 or 3 wherein the wettability of the surface of said lens is improved by exposure of the surface to a corona discharge. .Iaddend..Iadd. 18. The contact lens of claims 2 or 3 wherein the wettability of the surface of said lens is improved by treatment of the surface with a strong oxidizing agent. .Iaddend..Iadd. 19. The contact lens of claim 18 wherein said strong oxidizing agent is nitric acid. .Iaddend.
US06/215,486 1972-06-16 1980-12-11 Oxygen permeable contact lens composition, methods and article of manufacture Expired - Lifetime USRE31406E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/215,486 USRE31406E (en) 1972-06-16 1980-12-11 Oxygen permeable contact lens composition, methods and article of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00263541A US3808178A (en) 1972-06-16 1972-06-16 Oxygen-permeable contact lens composition,methods and article of manufacture
US06/215,486 USRE31406E (en) 1972-06-16 1980-12-11 Oxygen permeable contact lens composition, methods and article of manufacture

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US00263541A Reissue US3808178A (en) 1972-06-16 1972-06-16 Oxygen-permeable contact lens composition,methods and article of manufacture
US05931355 Continuation 1978-08-07

Publications (1)

Publication Number Publication Date
USRE31406E true USRE31406E (en) 1983-10-04

Family

ID=26910083

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/215,486 Expired - Lifetime USRE31406E (en) 1972-06-16 1980-12-11 Oxygen permeable contact lens composition, methods and article of manufacture

Country Status (1)

Country Link
US (1) USRE31406E (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507452A (en) 1984-03-08 1985-03-26 John D. McCarry Silicone hydride contact lens and polymer
US4633003A (en) 1985-11-25 1986-12-30 Alcon Laboratories, Inc. Siloxane monomers for ophthalmic applications
US4690993A (en) 1985-11-25 1987-09-01 Alcon Laboratories, Inc. p-(2-Hydroxy hexafluoroisopropyl) styrene [HFIS] monomer for ophthalmic applications
US4711943A (en) 1985-04-26 1987-12-08 Sola U.S.A. Inc. Hydrophilic siloxane monomers and dimers for contact lens materials, and contact lenses fabricated therefrom
US4997897A (en) * 1990-04-03 1991-03-05 Bausch & Lomb Incorporated Polymerizable dye
US5055602A (en) * 1989-05-02 1991-10-08 Bausch & Lomb Incorporated Polymerizable dye
US5177167A (en) * 1988-07-08 1993-01-05 Mitsubishi Rayon Co., Ltd. Oxygen-permeable shaped articles and process for producing same
US5206097A (en) * 1991-06-05 1993-04-27 Motorola, Inc. Battery package having a communication window
US5331067A (en) * 1990-04-10 1994-07-19 Permeable Technologies, Inc. Silicone-containing contact lens polymers, oxygen permeable contact lenses and methods for making these lenses and treating patients with visual impairment
US5371147A (en) * 1990-10-11 1994-12-06 Permeable Technologies, Inc. Silicone-containing acrylic star polymers, block copolymers and macromonomers
US5399612A (en) * 1990-12-20 1995-03-21 S. C. Johnson & Son, Inc. Blended polymeric compositions
US5438098A (en) * 1991-03-25 1995-08-01 Nippon Petrochemicals Co., Ltd. Thermoplastic resin composition
US5986001A (en) 1993-06-16 1999-11-16 Rasor Associates, Inc. Ocular lens composition and method of formation
US6630522B2 (en) * 2001-02-16 2003-10-07 Kusumoto Chemicals Ltd. Flow-and-leveling agents for paints and links
US6951894B1 (en) 1994-09-06 2005-10-04 Ciba Vision Corporation Extended wear ophthalmic lens
US7468398B2 (en) 1994-09-06 2008-12-23 Ciba Vision Corporation Extended wear ophthalmic lens
WO2014126834A2 (en) 2013-02-12 2014-08-21 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication with feed through carrier
WO2014126830A2 (en) 2013-02-12 2014-08-21 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication
WO2015142546A1 (en) 2014-03-21 2015-09-24 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication with gas injection through carrier
WO2015195924A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
WO2015195920A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing method using increased light intensity and apparatus therefore
WO2015195909A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing using tiled light engines
WO2015200201A1 (en) 2014-06-23 2015-12-30 Carbon3D, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
WO2016025579A1 (en) 2014-08-12 2016-02-18 Carbon3D, Inc. Three-dimensional printing with build plates having a smooth or patterned surface and related methods
WO2016109550A1 (en) 2014-12-31 2016-07-07 Carbon3D, Inc. Three-dimensional printing of objects with breathing orifices
WO2016112084A1 (en) 2015-01-06 2016-07-14 Carbon3D, Inc. Build plate for three dimensional printing having a rough or patterned surface
WO2016112090A1 (en) 2015-01-07 2016-07-14 Carbon3D, Inc. Microfluidic devices and methods of making the same
WO2016115236A1 (en) 2015-01-13 2016-07-21 Carbon3D, Inc. Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods
WO2016123506A1 (en) 2015-01-30 2016-08-04 Carbon3D, Inc. Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices
WO2016126779A1 (en) 2015-02-05 2016-08-11 Carbon3D, Inc. Method of additive manufacturing by fabrication through multiple zones
WO2016140891A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Continuous liquid interface production with sequential patterned exposure
WO2016140886A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with multiple operating modes
WO2016140888A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with variable slice thickness
WO2016145050A1 (en) 2015-03-10 2016-09-15 Carbon3D, Inc. Microfluidic devices having flexible features and methods of making the same
WO2016149097A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with reduced pressure build plate unit
WO2016149104A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with flexible build plates
WO2016149151A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
WO2017053783A1 (en) 2015-09-25 2017-03-30 Carbon3D, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
WO2017112521A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Production of flexible products by additive manufacturing with dual cure resins
WO2017112571A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
WO2017112682A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins
WO2017112653A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
WO2017112483A2 (en) 2015-12-22 2017-06-29 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
WO2018006018A1 (en) 2016-07-01 2018-01-04 Carbon, Inc. Three-dimensional printing method and apparatus for reducing bubbles by de-gassing through build plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922807A (en) * 1957-02-01 1960-01-26 Dow Corning Preparation of acryloxyalkylorganodisiloxanes
US2956044A (en) * 1956-08-06 1960-10-11 Dow Corning Acryloxymethylsilicon polymers
US3203919A (en) * 1962-09-19 1965-08-31 Du Pont Acrylic/siloxane copolymer, polysiloxane composition containing same, and article coated with the composition
US3228741A (en) * 1962-06-29 1966-01-11 Mueller Welt Contact Lenses In Corneal contact lens fabricated from transparent silicone rubber
US3431046A (en) * 1964-02-14 1969-03-04 Studies Inc Flexible polyethylene corneal contact lens
US3661735A (en) * 1969-10-14 1972-05-09 Johnson & Johnson Shaped articles having improved surface properties and corona discharge methods and apparatus for making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956044A (en) * 1956-08-06 1960-10-11 Dow Corning Acryloxymethylsilicon polymers
US2922807A (en) * 1957-02-01 1960-01-26 Dow Corning Preparation of acryloxyalkylorganodisiloxanes
US3228741A (en) * 1962-06-29 1966-01-11 Mueller Welt Contact Lenses In Corneal contact lens fabricated from transparent silicone rubber
US3203919A (en) * 1962-09-19 1965-08-31 Du Pont Acrylic/siloxane copolymer, polysiloxane composition containing same, and article coated with the composition
US3431046A (en) * 1964-02-14 1969-03-04 Studies Inc Flexible polyethylene corneal contact lens
US3661735A (en) * 1969-10-14 1972-05-09 Johnson & Johnson Shaped articles having improved surface properties and corona discharge methods and apparatus for making the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bull. Acad. Sci. USSR, Chem., No. 4, pp. 467-472 (1957). *
Physicians' Desk Reference, p. 575 (1969). *
R. L. Merker et al., Journal of Org. Chem., 21, pp. 1537-1539 (1956). *
R. L. Merker et al., Journal of Pol. Sci., 25, Issue No. 108, pp. 115-117 (1957). *

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507452A (en) 1984-03-08 1985-03-26 John D. McCarry Silicone hydride contact lens and polymer
US4711943A (en) 1985-04-26 1987-12-08 Sola U.S.A. Inc. Hydrophilic siloxane monomers and dimers for contact lens materials, and contact lenses fabricated therefrom
US4633003A (en) 1985-11-25 1986-12-30 Alcon Laboratories, Inc. Siloxane monomers for ophthalmic applications
US4690993A (en) 1985-11-25 1987-09-01 Alcon Laboratories, Inc. p-(2-Hydroxy hexafluoroisopropyl) styrene [HFIS] monomer for ophthalmic applications
US5177167A (en) * 1988-07-08 1993-01-05 Mitsubishi Rayon Co., Ltd. Oxygen-permeable shaped articles and process for producing same
US5055602A (en) * 1989-05-02 1991-10-08 Bausch & Lomb Incorporated Polymerizable dye
US4997897A (en) * 1990-04-03 1991-03-05 Bausch & Lomb Incorporated Polymerizable dye
US5331067A (en) * 1990-04-10 1994-07-19 Permeable Technologies, Inc. Silicone-containing contact lens polymers, oxygen permeable contact lenses and methods for making these lenses and treating patients with visual impairment
US5371147A (en) * 1990-10-11 1994-12-06 Permeable Technologies, Inc. Silicone-containing acrylic star polymers, block copolymers and macromonomers
US5399612A (en) * 1990-12-20 1995-03-21 S. C. Johnson & Son, Inc. Blended polymeric compositions
US5438098A (en) * 1991-03-25 1995-08-01 Nippon Petrochemicals Co., Ltd. Thermoplastic resin composition
US5206097A (en) * 1991-06-05 1993-04-27 Motorola, Inc. Battery package having a communication window
US5986001A (en) 1993-06-16 1999-11-16 Rasor Associates, Inc. Ocular lens composition and method of formation
US6951894B1 (en) 1994-09-06 2005-10-04 Ciba Vision Corporation Extended wear ophthalmic lens
US7468398B2 (en) 1994-09-06 2008-12-23 Ciba Vision Corporation Extended wear ophthalmic lens
US7538146B2 (en) 1994-09-06 2009-05-26 Ciba Vision Corporation Extended wear ophthalmic lens
US7553880B2 (en) 1994-09-06 2009-06-30 Ciba Vision Corporation Extended wear ophthalmic lens
US8415404B2 (en) 1994-09-06 2013-04-09 Ciba Vision Corporation Extended wear ophthalmic lens
US8568626B2 (en) 1994-09-06 2013-10-29 Ciba Vision Corporation Extended wear ophthalmic lens
US9612455B2 (en) 1995-04-04 2017-04-04 Novartis Ag Extended wear ophthalmic lens
US6630522B2 (en) * 2001-02-16 2003-10-07 Kusumoto Chemicals Ltd. Flow-and-leveling agents for paints and links
WO2014126837A2 (en) 2013-02-12 2014-08-21 Eipi Systems, Inc. Continuous liquid interphase printing
WO2014126830A2 (en) 2013-02-12 2014-08-21 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication
EP3358405A1 (en) 2013-02-12 2018-08-08 Carbon, Inc. Method and apparatus for three-dimensional fabrication
EP3203318A1 (en) 2013-02-12 2017-08-09 CARBON3D, Inc. Continuous liquid interphase printing
EP3187938A1 (en) 2013-02-12 2017-07-05 CARBON3D, Inc. Method and apparatus for three-dimensional fabrication with feed through carrier
WO2014126834A2 (en) 2013-02-12 2014-08-21 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication with feed through carrier
WO2015142546A1 (en) 2014-03-21 2015-09-24 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication with gas injection through carrier
WO2015195924A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
WO2015195920A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing method using increased light intensity and apparatus therefore
WO2015195909A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing using tiled light engines
WO2015200173A1 (en) 2014-06-23 2015-12-30 Carbon3D, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
WO2015200189A1 (en) 2014-06-23 2015-12-30 Carbon3D, Inc. Three-dimensional objects produced from materials having multiple mechanisms of hardening
US11850803B2 (en) 2014-06-23 2023-12-26 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
US11707893B2 (en) 2014-06-23 2023-07-25 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
EP4079484A1 (en) 2014-06-23 2022-10-26 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
EP4074485A1 (en) 2014-06-23 2022-10-19 Carbon, Inc. Three-dimensional objects produced from materials having multiple mechanisms of hardening
WO2015200201A1 (en) 2014-06-23 2015-12-30 Carbon3D, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
WO2015200179A1 (en) 2014-06-23 2015-12-30 Carbon3D, Inc. Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
WO2016025579A1 (en) 2014-08-12 2016-02-18 Carbon3D, Inc. Three-dimensional printing with build plates having a smooth or patterned surface and related methods
WO2016109550A1 (en) 2014-12-31 2016-07-07 Carbon3D, Inc. Three-dimensional printing of objects with breathing orifices
WO2016112084A1 (en) 2015-01-06 2016-07-14 Carbon3D, Inc. Build plate for three dimensional printing having a rough or patterned surface
WO2016112090A1 (en) 2015-01-07 2016-07-14 Carbon3D, Inc. Microfluidic devices and methods of making the same
WO2016115236A1 (en) 2015-01-13 2016-07-21 Carbon3D, Inc. Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods
WO2016123506A1 (en) 2015-01-30 2016-08-04 Carbon3D, Inc. Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices
WO2016126779A1 (en) 2015-02-05 2016-08-11 Carbon3D, Inc. Method of additive manufacturing by fabrication through multiple zones
WO2016140888A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with variable slice thickness
WO2016140886A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with multiple operating modes
WO2016140891A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Continuous liquid interface production with sequential patterned exposure
WO2016145050A1 (en) 2015-03-10 2016-09-15 Carbon3D, Inc. Microfluidic devices having flexible features and methods of making the same
WO2016149151A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
WO2016149104A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with flexible build plates
WO2016149097A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with reduced pressure build plate unit
WO2017053783A1 (en) 2015-09-25 2017-03-30 Carbon3D, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
WO2017112653A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
WO2017112483A2 (en) 2015-12-22 2017-06-29 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
WO2017112682A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins
WO2017112571A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
WO2017112521A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Production of flexible products by additive manufacturing with dual cure resins
WO2018006029A1 (en) 2016-07-01 2018-01-04 Carbon, Inc. Three-dimensional printing with build plates having reduced pressure and/or channels for increased fluid flow
WO2018006018A1 (en) 2016-07-01 2018-01-04 Carbon, Inc. Three-dimensional printing method and apparatus for reducing bubbles by de-gassing through build plate
US11685117B2 (en) 2016-07-01 2023-06-27 Carbon, Inc. Three-dimensional printing methods for reducing bubbles by de-gassing through build plate

Similar Documents

Publication Publication Date Title
USRE31406E (en) Oxygen permeable contact lens composition, methods and article of manufacture
US3808178A (en) Oxygen-permeable contact lens composition,methods and article of manufacture
US4120570A (en) Method for correcting visual defects, compositions and articles of manufacture useful therein
EP0016138B1 (en) Hydrophilic, soft and oxygen permeable copolymer compositions
US3808179A (en) Oxygen-permeable contact lens composition,methods and article of manufacture
US4182822A (en) Hydrophilic, soft and oxygen permeable copolymer composition
US4525563A (en) Oxygen permeable soft contact lens composition
US4235985A (en) Polymer for contact lens and contact lens made thereof
US4463149A (en) Silicone-containing contact lens material and contact lenses made thereof
US4419505A (en) Contact lens composition, article and method of manufacture
US4743667A (en) Contact lens material
JPS5929194B2 (en) Methyldi(trimethylsiloxy)silylpropylglycerol methacrylate
JPH0270713A (en) Dimethylacrylamide copolymer hydrogel having high oxygen permeability
JP4144088B2 (en) Contact lens polymer and contact lens using the same
EP0194277A1 (en) Alkylsilane contact lens and polymer
US4868260A (en) Hard contact lens material consisting of alkyl fumarate and silicon-alkyl fumarate copolymers
EP0075004A1 (en) Silicone methacrylate hydrogels for contact lenses
US4410674A (en) Silicone-vinyl acetate composition for contact lenses
US4500695A (en) Silicone-vinyl acetate composition for contact lenses
JPH0117129B2 (en)
US5142009A (en) Hard contact lens material
CA1049191A (en) Oxygen-permeable contact lens composition, methods and article of manufacture
JP3050586B2 (en) contact lens
JPS6311908A (en) Contact lens material
JP2793363B2 (en) contact lens

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLA U.S.A. INC., 1100 EAST BELL ROAD, PHOENIX, AR

Free format text: ASSIGNS NUNC PRO TUNC AS OF DECEMBER 19, 1985 THE ENTIRE INTEREST.;ASSIGNOR:SYNTEX (U.S.A.) INC. A CORP. OF DE.;REEL/FRAME:004561/0861

Effective date: 19860520