USRE30190E - Electrically heated surgical cutting instrument - Google Patents

Electrically heated surgical cutting instrument Download PDF

Info

Publication number
USRE30190E
USRE30190E US05/656,730 US65673076A USRE30190E US RE30190 E USRE30190 E US RE30190E US 65673076 A US65673076 A US 65673076A US RE30190 E USRE30190 E US RE30190E
Authority
US
United States
Prior art keywords
iaddend
iadd
surgical instrument
tissue
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/656,730
Inventor
Robert F. Shaw
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US05/656,730 priority Critical patent/USRE30190E/en
Application granted granted Critical
Publication of USRE30190E publication Critical patent/USRE30190E/en
Anticipated expiration legal-status Critical
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAPSTONE TURBINE CORPORATION, A DELAWARE CORPORATION
Assigned to GOLDMAN SACHS SPECIALTY LENDING HOLDINGS, INC. reassignment GOLDMAN SACHS SPECIALTY LENDING HOLDINGS, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAPSTONE TURBINE CORPORATION
Assigned to CAPSTONE GREEN ENERGY CORPORATION F/K/A CAPSTONE TURBINE CORPORATION reassignment CAPSTONE GREEN ENERGY CORPORATION F/K/A CAPSTONE TURBINE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: GOLDMAN SACHS SPECIALTY LENDING GROUP, L.P.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2401Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor using a heating element as a sensing element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor

Definitions

  • the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed.
  • This is accomplished in accordance with the illustrated embodiment of this invention by providing an electrically heated element disposed as the cutting edges of the blade and by providing a control system which maintains the cutting edge at a high substantially constant temperature during its use.
  • the hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision.
  • the material used in the electrically heated cutting edge has a negative temperature coefficient of resistance to insure that electrical power applied to the cutting edge is dissipated primarily in the regions thereof which tend to be cooled by contact with tissue.
  • the temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300°-1,000° C. for typical incisions.
  • the instantaneous temperature of the cutting edge is monitored by measuring the resistance of the heating element itself or through the use of thermocouple elements disposed in the blade near the cutting edge, and the monitoring signal thus derived controls the power applied to the heating element.
  • the handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically heated cutting edge are detachable for easy replacement and interchangeability with blade, scoops and cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.
  • FIG. 1 is a schematic diagram showing the cutting instrument and the temperature control system therefor, according to the preferred embodiment of the present invention
  • FIGS. 2 and 3 are pictorial views of other embodiments of cutting instruments according to the present invention for use with circuitry as shown in FIG. 1.
  • the surgical cutting instrument 9 connected to a temperature-measuring and power-controlling system 11.
  • the cutting instrument 9 includes a thin ceramic card 12 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10.
  • An electrically heated element 13 is disposed along the leading edge of the card 12 to form its cutting edge and is electrically connected to the control circuit through the cable 14 and the connectors 16.
  • the element 13 may be a single filament attached to the edge of the card 12, for example, using conventional ceramic welding materials or may be a layer of electrically conductive material vapor-deposited along the edge of the card 12.
  • the heating element 13 may have sufficient cross-sectional area to be self-supporting, as shown in FIG.
  • the material used in the element 13 ideally should have a negative temperature coefficient of resistance so that as selected portions of the element cool when in contact with tissue, the resistance of such portions will increase and thereby localize the portions of the element 13 in which additional power supplied by the control system will be dissipated.
  • the temperature of the element may thus be maintained substantially constant over the entire length thereof as portions of the element 13 contact tissue.
  • Suitable materials having negative temperature coefficients of resistance include silicon carbide, carbon, boron silicate and such semiconductor materials as silicon and germanium. Of course, material having a positive coefficient of resistance may also be used. However, when materials of this type are used, care should be taken to shape the element 13 so that substantially the entire length of the element 13 contacts tissue in use.
  • the element 13 may consist of a plurality of electrically isolated elements 13 and 13', as shown in FIG. 3, with each of the elements 13 and 13' connected to a separate temperature measuring and power-controlling system of the type shown in FIG. 1.
  • the resistance of the element 13 is included in a bridge circuit 15 which is connected to receive alternating signal appearing on lines 17 and 19.
  • the level of alternating signal appearing on lines 17 and 19 and, hence, the power applied to element 13 is determined by the conduction angles of the controlled rectifiers 21 and 23 which are connected in conduction opposition in parallel across the series resistor 25.
  • Power is supplied to the control system 11 through the primary and secondary windings 26 and 27 of power input transformer 29.
  • Alternating line signal 28 applied to the transformer 29 is stepped down typically to about 24 volts for the safety of the patient and the surgeon and the average current flow per half cycle of the alternating signal is determined in part by the series resistor 25 and by the conduction angle of a silicon-controlled rectifier 21, 23.
  • the operating temperature of the element 13 may be determined by adjusting one of the resistors, say resistor 31, in the bridge circuit 15. Any variation in the operating temperature of element 13 from a set value unbalances the bridge 15 and produces a control signal 33 across the diagonal terminals 35, 37 of the bridge circuit 15 which is either in phase or out of phase with the applied line signal, depending upon whether the operating temperature of the element is above or below the set value of operating temperature.
  • a phase-shifting network 39 is connected to the output terminals of the bridge circuit 15 for applying the error signal 44 with respect to ground to the input of error amplifier 41 with a small amount of phase shift relative to the applied line signal 28. This provides control of the conduction angle of the controlled rectifiers 21, 23 over a greater portion of a half cycle of the applied line signal.
  • the output of amplifier 41 is applied to the threshold detectors 43, 45 which respond to the amplified error signal attaining selected values slightly above and below zero.
  • the threshold detectors 47 and 49 thus activate the trigger pulse generators 47 and 49 at the proper times in alternate half cycles of applied line signal 28 to apply conduction-initiating pulses to the gate electrodes 51, 53 of the controlled rectifiers 21, 23.
  • increased conduction angle of the controlled rectifiers 21 and 23 increases the power applied to the element 13 to maintain the element at a preselected operating temperature as the element tends to cool down in contact with skin tissue.
  • the phase of the error signal 33 with respect to the applied line signal reverses.
  • This causes the trigger pulse generators to supply conduction-initiating pulses to the gate electrodes of the controlled rectifiers 21, 23 during alternate half cycles when these rectifiers are back biased.
  • This causes a decrease in the power delivered to the element 13 with a concomitant drop in its operating temperature to about the set value of operating temperature.
  • thermocouple sensor may be disposed on the card 12 in close proximity with the element 13 or a thermocouple element may even be formed on element 13 using another material or dissimilar work function to form the thermocouple junction. The signal from such thermocouple may then be used to control the operating temperature of the element 13 by controlling the power supplied thereto.

Abstract

A surgical cutting instrument includes an electrically heated cutting edge and an automatic control system for maintaining the cutting edge at a constant high temperature for sterilizing the blade, cutting tissue, and cauterizing the incised tissue to reduce hemorrhage from the cut surfaces of the tissues (hemostasis).

Description

.[.This is a divisional application of pending application Ser. No. 63,645, filed Aug. 13, 1970..]..Iadd.
This application is a reissue of U.S. Pat. No. 3,826,263; a division of Ser. No. 63,645, 08/13/70, abandoned; a continuation of Ser. No. 681,737, 11/09/67, abandoned. .Iaddend.
BACKGROUND OF THE INVENTION
The control of bleeding during surgery accounts for a major portion of the total time involved in an operation. The bleeding that occurs when tissue is incised obscures the surgeon's vision, reduces his precision and often dictates slow and elaborate procedures in surgical operations. Each bleeding vessel must be grasped in pincer-like clamps to stop the flow of blood and the tissue and vessel within each clamp must then be tied with pieces of fine thread. These ligated masses of tissue die and decompose and thus tend to retard healing and promote infection.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides a surgical cutting instrument having a cutting edge which is electrically heated to a constant high temperature for sterilizing the blade, cutting the tissue and cauterizing the surfaces of the incision, thereby allowing surgery to be more rapidly performed. This is accomplished in accordance with the illustrated embodiment of this invention by providing an electrically heated element disposed as the cutting edges of the blade and by providing a control system which maintains the cutting edge at a high substantially constant temperature during its use. The hot cutting edge according to the present invention decreases the amount of tissue that is damaged and reduces the tendency of the instrument to stick to the heated tissue in the incision. The material used in the electrically heated cutting edge has a negative temperature coefficient of resistance to insure that electrical power applied to the cutting edge is dissipated primarily in the regions thereof which tend to be cooled by contact with tissue. The temperature at which the cutting edge of the blade is maintained depends upon such factors as the nature of the tissue to be cut, the speed of cutting desired, the degree of tissue coagulation desired, and the non-adherence of the blade to the incised tissue and generally is maintained between 300°-1,000° C. for typical incisions. The instantaneous temperature of the cutting edge is monitored by measuring the resistance of the heating element itself or through the use of thermocouple elements disposed in the blade near the cutting edge, and the monitoring signal thus derived controls the power applied to the heating element. The handle of the cutting instrument is thermally insulated from the blade to permit comfortable use of the instrument and the handle and blade with its electrically heated cutting edge are detachable for easy replacement and interchangeability with blade, scoops and cutting edges of various shapes and sizes determined by the nature of the incision to be made and the tissue to be cut.
DESCRIPTION OF THE DRAWING
FIG. 1 is a schematic diagram showing the cutting instrument and the temperature control system therefor, according to the preferred embodiment of the present invention, and FIGS. 2 and 3 are pictorial views of other embodiments of cutting instruments according to the present invention for use with circuitry as shown in FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to FIG. 1 of the drawing, there is shown the surgical cutting instrument 9 connected to a temperature-measuring and power-controlling system 11. The cutting instrument 9 includes a thin ceramic card 12 in the desired shape of a surgical cutting blade which is detachable from the handle or holder 10. An electrically heated element 13 is disposed along the leading edge of the card 12 to form its cutting edge and is electrically connected to the control circuit through the cable 14 and the connectors 16. The element 13 may be a single filament attached to the edge of the card 12, for example, using conventional ceramic welding materials or may be a layer of electrically conductive material vapor-deposited along the edge of the card 12. Also, the heating element 13 may have sufficient cross-sectional area to be self-supporting, as shown in FIG. 2, so that the blade 18 is formed entirely by the element 13 alone. The material used in the element 13 ideally should have a negative temperature coefficient of resistance so that as selected portions of the element cool when in contact with tissue, the resistance of such portions will increase and thereby localize the portions of the element 13 in which additional power supplied by the control system will be dissipated. The temperature of the element may thus be maintained substantially constant over the entire length thereof as portions of the element 13 contact tissue. Suitable materials having negative temperature coefficients of resistance include silicon carbide, carbon, boron silicate and such semiconductor materials as silicon and germanium. Of course, material having a positive coefficient of resistance may also be used. However, when materials of this type are used, care should be taken to shape the element 13 so that substantially the entire length of the element 13 contacts tissue in use. This is required to prevent the additional power supplied by the control system 11 from being dissipated in the portions of the element which do not cool when in contact with tissue and, hence, which have higher resistance than the cooler portions. For cutting applications where it is not convenient to shape the element 13 so that its entire length is in contact with tissue each time it is used, the element 13 may consist of a plurality of electrically isolated elements 13 and 13', as shown in FIG. 3, with each of the elements 13 and 13' connected to a separate temperature measuring and power-controlling system of the type shown in FIG. 1.
The resistance of the element 13 is included in a bridge circuit 15 which is connected to receive alternating signal appearing on lines 17 and 19. The level of alternating signal appearing on lines 17 and 19 and, hence, the power applied to element 13 is determined by the conduction angles of the controlled rectifiers 21 and 23 which are connected in conduction opposition in parallel across the series resistor 25. Power is supplied to the control system 11 through the primary and secondary windings 26 and 27 of power input transformer 29. Alternating line signal 28 applied to the transformer 29 is stepped down typically to about 24 volts for the safety of the patient and the surgeon and the average current flow per half cycle of the alternating signal is determined in part by the series resistor 25 and by the conduction angle of a silicon-controlled rectifier 21, 23.
The operating temperature of the element 13 may be determined by adjusting one of the resistors, say resistor 31, in the bridge circuit 15. Any variation in the operating temperature of element 13 from a set value unbalances the bridge 15 and produces a control signal 33 across the diagonal terminals 35, 37 of the bridge circuit 15 which is either in phase or out of phase with the applied line signal, depending upon whether the operating temperature of the element is above or below the set value of operating temperature. A phase-shifting network 39 is connected to the output terminals of the bridge circuit 15 for applying the error signal 44 with respect to ground to the input of error amplifier 41 with a small amount of phase shift relative to the applied line signal 28. This provides control of the conduction angle of the controlled rectifiers 21, 23 over a greater portion of a half cycle of the applied line signal. The output of amplifier 41 is applied to the threshold detectors 43, 45 which respond to the amplified error signal attaining selected values slightly above and below zero. The threshold detectors 47 and 49 thus activate the trigger pulse generators 47 and 49 at the proper times in alternate half cycles of applied line signal 28 to apply conduction-initiating pulses to the gate electrodes 51, 53 of the controlled rectifiers 21, 23. Thus, increased conduction angle of the controlled rectifiers 21 and 23 increases the power applied to the element 13 to maintain the element at a preselected operating temperature as the element tends to cool down in contact with skin tissue. However, if the operating temperature of the element 13 should exceed the set value due, for example, to thermal overshoot upon removal of the element 13 from contact with skin tissue, the phase of the error signal 33 with respect to the applied line signal reverses. This causes the trigger pulse generators to supply conduction-initiating pulses to the gate electrodes of the controlled rectifiers 21, 23 during alternate half cycles when these rectifiers are back biased. This causes a decrease in the power delivered to the element 13 with a concomitant drop in its operating temperature to about the set value of operating temperature. When this occurs, the proper phase relationship between error signal and line signal is restored and power is again supplied to the element 13. Conversion of the control system 11 for operation with elements 13 having negative or positive temperature coefficients of resistance merely requires that the trigger pulses from the generators 47 and 49 be applied through reversing switch 55 to the proper controlled rectifier 21, 23 during the forward-biasing half cycle of line signal 28.
It should be apparent that other temperature control systems may also be used to maintain the operating temperature of the element 13 substantially constant at a preselected value. For example, a thermocouple sensor may be disposed on the card 12 in close proximity with the element 13 or a thermocouple element may even be formed on element 13 using another material or dissimilar work function to form the thermocouple junction. The signal from such thermocouple may then be used to control the operating temperature of the element 13 by controlling the power supplied thereto.

Claims (3)

I claim:
1. A surgical instrument for cutting tissue with simultaneous hemostasis, the instrument comprising:
a blade .[.shaped support wafer of electrically insulating material.]. having .[.disposed thereon.]. an electrically heatable element of electrically conductive material having a resistance which varies as a function of the temperature thereof, the element including a plurality of sections which form segments or portions .[.of a.]. .Iadd.disposed in the region along the .Iaddend.tissue cutting edge of said .[.support wafer.]. .Iadd.blade,.Iaddend.each of said sections conducting electrical current .[.along said edge.]. for .[.directly.]. heating .Iadd.segments along said .Iaddend.edge; and
connection means .Iadd.for .Iaddend.providing electrical connections to each of said sections for independently supplying electrical power thereto for maintaining the resistance of each of said sections at a substantially constant selected value.
2. A surgical instrument as in claim 1 comprising:
means for each of said sections operatively coupled thereto for sensing the electrical resistance of the corresponding section;
circuit means for each of said sections having an input for receiving electrical current from a source and being responsive to the electrical resistance of the corresponding section of said element for altering the electrical power supplied through said connection means to the corresponding section from the signal received at said input to maintain the temperature of the corresponding section substantially at a preselected value independent of the temperature of another section of said element.
3. A surgical instrument as in claim 2 wherein each of said circuit means comprise a plurality of circuit elements and said corresponding section connected in a bridge circuit having first and second pairs of bridge terminals, and including control means coupling said input to the first pair of bridge terminals, and bridge-balance sensing means connected to the second pair of bridge terminals and to said control means for altering the electrical power applied through the bridge circuit to said corresponding section for maintaining the resistance thereof substantially at a preselected value. .Iadd. 4. A surgical instrument for cutting tissue with simultaneous hemostasis, the instrument comprising:
blade-shaped means of said instrument that has an edge which forms the tissue-cutting edge thereof; and
a plural number of heater means each disposed along the tissue-cutting edge and each capable of being heated to elevate the temperature of the blade-shaped means in said regions of the tissue-cutting edge. .Iaddend..Iadd. 5. A surgical instrument as in claim 4 wherein:
each of said heater means elevates the temperature in the corresponding region of said tissue-cutting edge to within the range between 300° C. and 1000° C. .Iaddend..Iadd. 6. A surgical instrument as in claim 4 wherein:
said blade-shaped means is formed of non-metallic material. .Iaddend..Iadd. 7. A surgical instrument as in claim 4 wherein:
said blade-shaped means includes a ceramic material. .Iaddend. .Iadd. 8. A surgical instrument as in claim 4 wherein:
said blade-shaped means includes electrically insulative material. .Iaddend..Iadd. 9. A surgical instrument as in claim 4 wherein:
each of said heater means elevates the temperature of said corresponding region in response to an electrical signal independently applied thereto. .Iaddend..Iadd. 10. A surgical instrument as in claim 4 comprising:
a circuit means connecting each of said heater means to a source of electrical power for independently controlling the flow of an electrical current through a corresponding one of said heater means to maintain the average operating temperature thereof within said range. .Iaddend. .Iadd. 11. A surgical instrument as in claim 10, said circuit means further including: resistance measuring means disposed adjacent said tissue-cutting edge for measuring the resistance of said heater means for said independently controlling of said flow of electrical current through said heater means in response thereto. .Iaddend..Iadd. 12. A surgical instrument as in claim 10, said circuit means further including: thermocouple means, disposed near said tissue-cutting edge, for measuring the temperature of said tissue-cutting edge for said independently controlling of said flow of electrical current through said heater means in response thereto. .Iaddend. .Iadd. 13. A surgical instrument for cutting tissue with simultaneous hemostasis, the instrument comprising:
blade means having a tissue-cutting edge; and
a plural number of heater means each disposed along a region of the cutting edge and each capable of being heated in the corresponding region of said edge and each having a physical parameter which varies as a function of temperature to increase power dissipation in response to selective cooling of regions along said edge upon contact with tissue being cut such that each of said corresponding regions of said tissue-cutting edge is maintained at a selected temperature range. .Iaddend..Iadd. 14. A surgical instrument as in claim 13 wherein:
each of said heater means elevates the temperature in the corresponding region of said tissue-cutting edge to within the range between 300° C. and 1000° C. .Iaddend. .Iadd. 15. A surgical instrument as in claim 13 wherein:
said blade-shaped means is formed of non-metallic material. .Iaddend..Iadd. 16. A surgical instrument as in claim 13 wherein:
said blade-shaped means includes a ceramic material. .Iaddend..Iadd. 17. A surgical instrument as in claim 13 wherein:
said blade-shaped means includes electrically insulative material. .Iaddend..Iadd. 18. A surgical instrument as in claim 13 wherein:
each of said heater means elevates the temperature of said corresponding region in response to an electrical signal independently applied thereto. .Iaddend..Iadd. 19. A surgical instrument as in claim 13 wherein:
a circuit means connecting each of said heater means to a source of electrical power for independently controlling the flow of an electrical current through a corresponding one of said heater means to maintain the average operating temperature thereof within said range. .Iaddend.
US05/656,730 1967-11-09 1976-02-09 Electrically heated surgical cutting instrument Expired - Lifetime USRE30190E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/656,730 USRE30190E (en) 1967-11-09 1976-02-09 Electrically heated surgical cutting instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68173767A 1967-11-09 1967-11-09
US05/656,730 USRE30190E (en) 1967-11-09 1976-02-09 Electrically heated surgical cutting instrument

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US6364570A Division 1967-11-09 1970-08-13
US00278684A Reissue US3826263A (en) 1970-08-13 1972-08-07 Electrically heated surgical cutting instrument

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/852,470 Division USRE31723E (en) 1967-11-09 1977-11-17 Surgical cutting instrument having electrically heated cutting edge

Publications (1)

Publication Number Publication Date
USRE30190E true USRE30190E (en) 1980-01-15

Family

ID=24736566

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/656,730 Expired - Lifetime USRE30190E (en) 1967-11-09 1976-02-09 Electrically heated surgical cutting instrument

Country Status (8)

Country Link
US (1) USRE30190E (en)
AU (1) AU461384B2 (en)
BE (1) BE818178A (en)
DE (1) DE2423537C3 (en)
FR (1) FR2272635B1 (en)
GB (1) GB1441549A (en)
NL (1) NL158698B (en)
SU (1) SU849983A3 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116022A1 (en) * 2000-07-25 2002-08-22 Lebouitz Kyle S. Method of making a cutting instrument having integrated sensors
US6740085B2 (en) * 2000-11-16 2004-05-25 Olympus Corporation Heating treatment system
US20100268210A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated surgical implement driver
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2724558C3 (en) * 1977-05-31 1979-12-06 Dr. Karl Thomae Gmbh, 7950 Biberach Thermistor circuit for a surgical cutting and / or coagulation instrument
US4461990A (en) * 1982-10-01 1984-07-24 General Electric Company Phase control circuit for low voltage load
GB2150713B (en) * 1983-12-03 1987-11-11 Ki Z Elektrobytpribor Temperature regulator
USRE34556E (en) * 1985-01-23 1994-03-01 Smith & Nephew Dyonics Inc. Surgical system for powered instruments
US4815462A (en) * 1987-04-06 1989-03-28 Clark Vickie J Lipectomy device
US5749885A (en) * 1995-10-02 1998-05-12 Smith & Nephew, Inc. Surgical instrument with embedded coding element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359506A (en) * 1887-03-15 David h
US1735271A (en) * 1928-03-14 1929-11-12 Sutten H Groff Diathermy knife
US1794296A (en) * 1927-08-24 1931-02-24 Mortimer N Hyams Surgical instrument
US1930214A (en) * 1931-03-23 1933-10-10 Wappler Frederick Charles Surgical electrode
US2012938A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing knife
US2012937A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing forceps
US2120598A (en) * 1937-03-06 1938-06-14 George H Beuoy Electrical cutting instrument
US2795697A (en) * 1949-06-11 1957-06-11 Westinghouse Electric Corp Temperature control
US2917614A (en) * 1957-09-18 1959-12-15 Vincent J Caliri Cauterizing device
US3234356A (en) * 1963-05-07 1966-02-08 Raymond F Babb Electrically heated medical implement
US3526750A (en) * 1967-06-02 1970-09-01 William J Siegel Thermal tool

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359506A (en) * 1887-03-15 David h
US1794296A (en) * 1927-08-24 1931-02-24 Mortimer N Hyams Surgical instrument
US1735271A (en) * 1928-03-14 1929-11-12 Sutten H Groff Diathermy knife
US1930214A (en) * 1931-03-23 1933-10-10 Wappler Frederick Charles Surgical electrode
US2012938A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing knife
US2012937A (en) * 1934-11-27 1935-09-03 George H Beuoy Electrical caponizing forceps
US2120598A (en) * 1937-03-06 1938-06-14 George H Beuoy Electrical cutting instrument
US2795697A (en) * 1949-06-11 1957-06-11 Westinghouse Electric Corp Temperature control
US2917614A (en) * 1957-09-18 1959-12-15 Vincent J Caliri Cauterizing device
US3234356A (en) * 1963-05-07 1966-02-08 Raymond F Babb Electrically heated medical implement
US3526750A (en) * 1967-06-02 1970-09-01 William J Siegel Thermal tool

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116022A1 (en) * 2000-07-25 2002-08-22 Lebouitz Kyle S. Method of making a cutting instrument having integrated sensors
US6494882B1 (en) 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
US6972199B2 (en) 2000-07-25 2005-12-06 Verimetra, Inc. Method of making a cutting instrument having integrated sensors
US6740085B2 (en) * 2000-11-16 2004-05-25 Olympus Corporation Heating treatment system
US9265553B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US8292879B2 (en) 2009-04-17 2012-10-23 Domain Surgical, Inc. Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US20100268212A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method for inductively heating a surgical implement
US20100268215A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Catheter with inductively heated regions
US20100268205A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool
US20100268209A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated snare
US10441342B2 (en) 2009-04-17 2019-10-15 Domain Surgical, Inc. Multi-mode surgical tool
US8372066B2 (en) 2009-04-17 2013-02-12 Domain Surgical, Inc. Inductively heated multi-mode surgical tool
US8377052B2 (en) 2009-04-17 2013-02-19 Domain Surgical, Inc. Surgical tool with inductively heated regions
US8414569B2 (en) 2009-04-17 2013-04-09 Domain Surgical, Inc. Method of treatment with multi-mode surgical tool
US8419724B2 (en) 2009-04-17 2013-04-16 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US10405914B2 (en) 2009-04-17 2019-09-10 Domain Surgical, Inc. Thermally adjustable surgical system and method
US8430870B2 (en) 2009-04-17 2013-04-30 Domain Surgical, Inc. Inductively heated snare
US8491578B2 (en) 2009-04-17 2013-07-23 Domain Surgical, Inc. Inductively heated multi-mode bipolar surgical tool
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US11123127B2 (en) 2009-04-17 2021-09-21 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8523850B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Method for heating a surgical implement
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US8617151B2 (en) 2009-04-17 2013-12-31 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US8425503B2 (en) 2009-04-17 2013-04-23 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US10639089B2 (en) 2009-04-17 2020-05-05 Domain Surgical, Inc. Thermal surgical tool
US20100268207A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Adjustable ferromagnetic coated conductor thermal surgical tool
US20100268213A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated multi-mode surgical tool
US8523852B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Thermally adjustable surgical tool system
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US10213247B2 (en) 2009-04-17 2019-02-26 Domain Surgical, Inc. Thermal resecting loop
US9220557B2 (en) 2009-04-17 2015-12-29 Domain Surgical, Inc. Thermal surgical tool
US9265555B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Multi-mode surgical tool
US9265554B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical system and method
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US20100268210A1 (en) * 2009-04-17 2010-10-21 Kim Manwaring Inductively heated surgical implement driver
US9320560B2 (en) 2009-04-17 2016-04-26 Domain Surgical, Inc. Method for treating tissue with a ferromagnetic thermal surgical tool
US10149712B2 (en) 2009-04-17 2018-12-11 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9549774B2 (en) 2009-04-17 2017-01-24 Domain Surgical, Inc. System and method of controlling power delivery to a surgical instrument
US9730749B2 (en) 2009-04-17 2017-08-15 Domain Surgical, Inc. Surgical scalpel with inductively heated regions
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US9149321B2 (en) 2011-04-08 2015-10-06 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US11266459B2 (en) 2011-09-13 2022-03-08 Domain Surgical, Inc. Sealing and/or cutting instrument
US9526558B2 (en) 2011-09-13 2016-12-27 Domain Surgical, Inc. Sealing and/or cutting instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
US11701160B2 (en) 2014-05-14 2023-07-18 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Also Published As

Publication number Publication date
FR2272635A1 (en) 1975-12-26
NL7409929A (en) 1976-01-27
SU849983A3 (en) 1981-07-23
NL158698B (en) 1978-12-15
BE818178A (en) 1974-11-18
FR2272635B1 (en) 1977-06-24
DE2423537B2 (en) 1977-07-28
DE2423537A1 (en) 1975-11-20
GB1441549A (en) 1976-07-07
AU7105274A (en) 1975-05-22
AU461384B2 (en) 1975-05-22
DE2423537C3 (en) 1978-03-23

Similar Documents

Publication Publication Date Title
US6726683B1 (en) Electrically heated surgical cutting instrument
US4089336A (en) Electrically heated surgical cutting instrument and method of using the same
US4198957A (en) Method of using an electrically heated surgical cutting instrument
US3826263A (en) Electrically heated surgical cutting instrument
USRE30190E (en) Electrically heated surgical cutting instrument
USRE31723E (en) Surgical cutting instrument having electrically heated cutting edge
USRE29088E (en) Surgical cutting instrument having electrically heated cutting edge
US3768482A (en) Surgical cutting instrument having electrically heated cutting edge
US4219025A (en) Electrically heated surgical cutting instrument
US6132426A (en) Temperature and current limited ablation catheter
US5443463A (en) Coagulating forceps
US8382749B2 (en) Temperature monitoring return electrode
US8388612B2 (en) Temperature monitoring return electrode
KR102151368B1 (en) System and method of controlling power delivery to a surgical instrument
US4485810A (en) Surgical cutting blade
EP1905372B1 (en) Temperature sensing return electrode pad
US20080147057A1 (en) High-Frequency Surgical Device
EP0566731A1 (en) Radiofrequency ablation with phase sensitive power detection
WO2002071966A1 (en) Electrosurgical device having a tissue reduction sensor
SE433703B (en) Thermoelectric cooling probe
EP0566726A1 (en) Systems and methods for ablating tissue while monitoring tissue impedance
CA2627972A1 (en) System and method for providing even heat distribution and cooling return pads
EP0783274B1 (en) Coagulating forceps
US4182183A (en) Thermistor circuit
CA1051305A (en) Electrically heated surgical cutting instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:CAPSTONE TURBINE CORPORATION, A DELAWARE CORPORATION;REEL/FRAME:022320/0030

Effective date: 20090209

AS Assignment

Owner name: GOLDMAN SACHS SPECIALTY LENDING HOLDINGS, INC., NE

Free format text: SECURITY INTEREST;ASSIGNOR:CAPSTONE TURBINE CORPORATION;REEL/FRAME:048262/0001

Effective date: 20190204

AS Assignment

Owner name: CAPSTONE GREEN ENERGY CORPORATION F/K/A CAPSTONE TURBINE CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS SPECIALTY LENDING GROUP, L.P.;REEL/FRAME:065835/0541

Effective date: 20231207