USRE28212E - Table iii - Google Patents

Table iii Download PDF

Info

Publication number
USRE28212E
USRE28212E US36795873A USRE28212E US RE28212 E USRE28212 E US RE28212E US 36795873 A US36795873 A US 36795873A US RE28212 E USRE28212 E US RE28212E
Authority
US
United States
Prior art keywords
polyolefin
antistatic
composition
polyamide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE28212E publication Critical patent/USRE28212E/en
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters

Definitions

  • ABSTRACT OF THE DISCLOSURE An antistatic composition and a shaped article produced therefrom in the form of yarns, fabric, knitted fabric, etc., comprising a base thermoplastic synthetic polymer selected from polyamides and polyesters containing dispersed therein a polyolefin having an average molecular weight of greater than 1000 in an amount of about 1 to about percent by weight, said polyolefin comprising a polymer with the recurring structural unit of the formula:
  • R is selected from hydrogen and methyl; R is selected from hydrogen, alkyl or aryl; and x is an integer of l to 600.
  • the present invention relates to an antistatic and soilresistant composition having as a base a synthetic polymer, e.g., a polyamide or polyester; more particularly, the present invention relates to such an antistatic and soilresistant composition and shaped articles produced therefrom wherein such antistatic characteristics are associated with the incorporation of a minor amount of a polyolefin containing pendant antistatic groupings.
  • antistatic compositions by incorporating into synthetic polymers such as polyamides or polyesters, either before or after polycondensation, alkylene polyethers dispersed in the product in a minor amount. Since these linear polyethers are partially soluble in water, however, they are progressively eliminated during the course of successive domestic washings. Accordingly, while the preparation of antistatic compositions containing the alkylene polyethers does in fact reduce the tendency for the polymer to build up electrostatic charges for a period of time, such answer to the basic problem is unsatisfactory when considering filaments and fibers for textiles, including clothing and rugs, which are normally subjected to many washings during use. Accordingly, notwithstanding the foregoing attcmpts to eliminate the static electricity build-up of synthetic polymers, no completely satisfactory answer has been developed until the development of the present invention.
  • thermoplastic synthetic polymer composition and a shaped article therefrom, e.g., a fiber or filament, etc., wherein such composition is based upon a polyester or polyamide containing dispersed therein a polyolefin having an average molecular weight of greater than 1000, such polyolefin having antistatic groupings pendant thereto.
  • a polyolefin having an average molecular weight of greater than 1000, such polyolefin having antistatic groupings pendant thereto.
  • a still further object of the present invention comprises shaped articles produced from the foregoing composition wherein such shaped articles in the form of fibers, filaments, film, etc. have a reduced tendency to accumulate these electrostatic charges while maintaining the advantageous physical characteristics of the base polyester or polyamide, such articles being prepared from a composition containing from about 1 to about 10 percent by weight of a polyolefin dispersed in a polyester or polyamide, the polyolefin having an average molecular weight of greater than 1000 and pendant antistatic groupings.
  • thermoplastic synthetic polymer composition and shaped articles produced therefrom in the form of fibers, filaments, films, etc. such compositions being based upon a polyamide or a polyester and containing dispersed therein a polyolefin having an average molecular weight of greater than 1000 and having pendant antistatic groupings laterally attached thereto. It has been discovered in accordance with the present invention that by providing such a thermoplastic synthetic polymer composition with a polyolefin finely and evenly dispersed therein, the antistatic properties of the base polyamide or polyester are substantially improved while the other advantageous physical properties of the base polymer are not in any way impaired.
  • the polyolefin which is finely and evenly dispersed in the synthetic polymer composition is generally a material having a molecular weight of greater than 1000, the same being formed essentially of a linear hydrocarbon chain with lateral antistatic groupings pendant thereto. Accordingly, such polyolefin is one which consists essentially of the recurring structural unit of the formula:
  • R is selected from hydrogen and methyl; R is selected from hydrogen, alkyl and aryl; and x is an integer of 1 to 600.
  • suitable R groups include such as methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, n-hexyl, noctyl, oxo-octyl, decyl, dodecyl, hexadecyl, stearyl, cicosyl, phenyl, butylphenyl, hexylphenyl, octylphenyl, nonylphenyl, etc.
  • polyolefins form emulsions in Water and are therefore not easily removed from the shaped articles by Washing and, in fact, the polyolefins can be removed from the products only with extreme difiiculty. This therefore produces a permanence in the antistatic effect in a manner not heretofore possible with previous antistatic compositions.
  • a further advantage results from the fact that the polyolefins that are employed in accordance with the present invention are produced through the polymerization of allyl compounds which do not polymerize uniformly. This therefore results in a polyolefinic mass which is composed of products having a high molecular weight, products having a low molecular weight, and a certain ratio of unreacted monomers.
  • Such diversity in the molecular weight and composition of the product is not in any way disadvantageous in accordance with the present invention in that such diversity establishes further interesting properties with regard to the utilization of the polyolefin as an additive to improve the antistatic and anti-soil properties of polyamides and polyesters.
  • any monomer which remains is more or less rapidly eliminated, depending upon its molecular weight and structure.
  • the low molecular weight polymers are susceptible to slow migration to the surface while the high molecular weight polymers impart permanent improvement in the properties of the shaped articles.
  • the polyolefin which is incorporated in accordance with the present invention is one which has an average molecular weight of greater than 1000.
  • such polyolefins employed in accordance with the present invention have a hydrophilic or absorbent characteristic which is much higher than most of the antistatic polymers heretofore known and heretofore employed to produce antistatic synthetic polymer compositions.
  • the hydrophilic character of polymers prepared from alkylene oxides increases with the number of hydroxyl groups present in the polymer but that this number decreases when the molecular weight of the polymer increases.
  • the polyolefins which are employed in accordance with the present invention as an additive for the polyamide or polyester composition can have a great number of lateral chains ending with the hydroxyl group. Accordingly, the relative number of hydroxyl groups in the polymer is independent of the molecular weight of the polymer in that the groups are attached to pendant side chains. Accordingly, the polymer additives employed in accordance with the present invention simultaneously have a high molecular weight and a satisfactory water pick-up rate. This makes them eminently suitable for use in the antistatic compositions of the present invention to impart the antistatic characteristics to polyamides and polyesters While not in any way interfering with the other essential and advantageous characteristics of the base polymer.
  • polystyrene resin that are employed in accordance with the antistatic characteristics to polyamides and polyesters of an allyl monomer or monomers having one or more polyoxyalkylene chains with hydroxyl r ether terminal groups. Accordingly, the monomer which can be employed in the production of the polyolefin utilized in accordance with the present invention generally correspond to the formula:
  • the monomer system comprises one or more of the foregoing allyl monomers corresponding to the above formula in an amount of at least 75 percent by weight with up to about 25 percent by weight of a comonomer having the formula:
  • R and x have the same meanings as set forth above.
  • the basic allyl monomers which are employed in the production of the polyolefin component utilized in accordance with the present invention are obtained in their usual manner, either through the condensation of allyl chloride with a monoalcohol in the form of its alcoholate or through the oxyethylation of an allyl alcohol.
  • allyl monomers which are polymerized in accordance with the present invention to produce the polyolefin component are well known in the art and can be easily prepared by well-known prior art procedures.
  • the polyether chain may comprise copolymers derived both from ethylene oxide and propylene oxide.
  • the method of producing such copolymers is well-known in the art and any prior art procedure can be utilized in the production of the materials useful in accordance with the present invention.
  • polyolefin components in accordance with the present invention generally comprise a homopolymer or copolymer of one or more of the foregoing allyl monomers
  • other comonmers can be employed in a minor amount, i.e., up to about 20 percent by weight based upon the weight of the polyolefin.
  • other comonomers which can be copolymerized with the allyl monomers include such materials as styrene, sodium vinyl-sulfonate, methyl-5-vinyl-2-pyridine, and N-vinyl pyrrolidone.
  • other comonomers which do not in any way adversely affect the antistatic characteristics of the polyolefin can be advantageously copolymerized in accordance with the present invention.
  • polyolefin component which is employed in accordance with the present invention is uniformly dispersed in the polyamide or polyester and is generally present in the form of inclusions having an average diameter of between about 1 and about microns.
  • polyolefin component in accordance with the present invention is finely and evenly dispersed in the polyamide or polyester composition in an amount of from about 1 to about 10 percent by weight, preferably from about 2 to about 5 percent by weight.
  • the proportion of the polyolefin component necessary to obtain a composition having excellent antistatic properties does not exceed about 10 percent by weight, the softening point of the final preparation and its behavior in a melted condition are very close to the softening point and behavior of the basic polymer, i.e., polyamides and polyesters. This, therefore, is a distinct advantage of the novel composition and shaped articles of the present invention when compared to conventional antistatic compositions.
  • the polyolefins of the present invention are incorporated in a polyester or polyamidein order to improve the antistatic characteristics thereof while not in any way adversely affecting other physical characteristics of the base polymer.
  • the polyamides within which the polyolefins can be incorporated can be any of the linear super-polyamides well-known for the production of fibers, films, and other shaped articles.
  • the polyamides employed in accordance with the present invention can comprise any of the long-chain polyamides having a recurring amide group as an integral part of the main polymer chain.
  • nylon 66 i.e., a polyamide produced by condensing hexamethylene diamine and adipic acid
  • nylon 610 prepared by condensing hexamethylene diamine with sebacic acid
  • nylon 8 a polyamide based upon capryllactam
  • nylon 9 a polyamide based on 9- aminononanoic acid
  • nylon 12 a polyamide produced by the polymerization of lauric lactam or cyclododecalactam
  • nylon 6 a polyamide produced by the polycondensation of caprolactam.
  • copolyamides of one or more of the above types can be advantageously carried out in accordance with the present invention.
  • the present invention is applicable to any long-chain polyamide having a recurring amide group as an integral part of the main polymer chain.
  • polyesters which can be employed in accordance with the present invention comprise any of the linear high molecular weight thermoplastics having a saturated polyester backbone.
  • Such polyesters are prepared by condensing (1) a glycol such as ethylene, propylene, diethylene, dipropylene or butylene glycol; and (2) terephthalic or isophthalic acid, eventually in mixture with an acid or anhydride such as adipic acid, azelaic acid.
  • a glycol such as ethylene, propylene, diethylene, dipropylene or butylene glycol
  • terephthalic or isophthalic acid eventually in mixture with an acid or anhydride such as adipic acid, azelaic acid.
  • Such materials are typified, for example, by polyethylene terephthalate, made by condensing ethyleene glycol and terephthalic acid and particularly suited for the production of fibers and films.
  • Such material is known under the trade names Terphane Mylar" and Ter
  • copolyesters and polyesteramides e.g., polyterephthalamides
  • present invention is not directed to any specific base polymers and any conventional polyester or polyamide can have its antistatic properties improved in accordance with the present invention.
  • the incorporation of the polyolefin in the polyester or polyamide composition in accordance with the present invention can be effected in a number of dilfercnt manners.
  • the polyolefin can be prepared in situ by polymerizing the allyl monomer in the polycondensation reaction in which the base polyester or polyamide is formed.
  • the allyl monomer or comonomers can be added to the polyester or polyamide monomer systems so as to simultaneously polymerize and polycondense the monomers present. In this way, the polyolefin can be incorporated in the system without in any way altering the basic poly-condensation reaction.
  • the polyolefin can be first prepared by polymerizing the monomer or monomers and thereafter introducing the polyolefin into the base polymer composition during the polycondensation reaction.
  • the polyolefin can be first prepared by polymerization of the monomer or monomers and the preformed polyolefin can be incorporated into a preformed base polyamide or polyester in a suitable melting device or mixer. Regardless of the manner of incorporation of the polyolefin into the polyester or polyamide composition, the polyolefin is present in the form of inclusions,
  • the diameter of which is between approximately 1 and 10 microns.
  • the anti static properties and antisoiling properties of the composition are miproved by including an amount of polyolefin not exceeding about 10 percent by weight, based upon the weight of the total composition. Accordingly, the properties of the composition can be improved with a minor amount of polyolefin and the addition of the polyolefin component does not in any way adversely affect the other advantageous characteristics of the polyamide or polyester.
  • a free radical polymerization catalyst such as, for example, organic peroxides redox systems, and other conventional catalysts such as azodi-isobutyro-nitrile.
  • a free radical polymerization catalyst such as, for example, organic peroxides redox systems, and other conventional catalysts such as azodi-isobutyro-nitrile.
  • Such catalysts merely aid in the polymerization of the allyl monomer or monomers so as to facilitate preparation of the polyolefin during polycondensation.
  • the simultaneous polymerization and polyconclensation can normally be conducted under the same conditions as the polycondensation reaction itself, it is often possible to modify the usual conditions of temperature, pressure or duration of one of the phases of the operation, particularly when a portion of the olefinic monomer might be eliminated, for example, by water.
  • the normal conditions for the polycondensation reaction in the production of the base polyester or polyamide need not be deviated from.
  • EXAMPLE 1 A stainless steel, 7.5 liter autoclave, previously cleansed by a How of nitrogen was loaded with 5.240 g. of an aqueous solution of hexamethylene diarnmonium adipate, the concentration of which was 50% by Weight, 4.5 g. of pure acetic acid, as a viscosity stabilizer for the polyamide, and 113 g. (i.e., by weight with respect to the polyamide) of a monomer olefin with a molecular weight of approximately 1,700 and of the formula:
  • the pressure was slowly raised to 18 kg./cm. and the temperature to 220 C. This pressure was maintained constant while the water was eliminated from the reaction mixture by distillation.
  • the pressure was then decreased progressivly to atmospheric pressure in approximately 90 minutes, while the temperature increased to 280 C.
  • the reaction mixture was kept under these conditions for one hour.
  • This preparation was extruded in the form of a reed which was cooled and then cut up into grains.
  • the grains were melted and extruded in a conventional melt spinning apparatus, then they were drawn Without any oiling, so that it was possible to measure the intrinsic antistatic properties of the yarn.
  • the drawn yarns had a count of 78 dtex. for 23 filaments.
  • a control yarn was prepared with hexamethylene diamine polyadipate which was not modified.
  • This control yarn and the yarn made from the compound obtained according to the example above were knitted with the same texture and tested from the point of view of soil resistance, after degreasing, in the following manner:
  • Hydrophilic testing This consists in measuring the time of diffusion of a measured drop of distilled water on knitted fabric presented in identical manner.
  • Greying test.-Two comparable samples are treated successively in the Lauderometer (v -lo) in distilled water for 30 minutes at 60, in the presence of 30 metal marbles having a diameter of 6 mm., with a flanelette sample (having the same weight as the sample to be treated) which has been soiled with a mixture containing tallow, paratfin oil, carbon black and trichloroethylene. The condition of the samples is compared after 1 hour hour of treatment.
  • Oleophobia test This consists in depositing an oil film on the knitted fabrics, which are then agitated in distilled water: the facility with which the oil is removed from the knit is noted.
  • olefin monomer was one with a molecular weight of approximately 600 and with the formula:
  • a control yarn was prepared from hexamethylene diamine polyadipate under the same conditions.
  • Table II shows the measurements taken in these examples.
  • EXAMPLE 7 20 percent to about 10 percent by weight based on the A polyolefin identical to that described in Example 6 was prepared.
  • This polymer was inserted in melted hexamethylene diamine polyadipate, at the rate of 3.5% by weight with respect to the polyamide.
  • the resulting preparation was spun and drawn under conditions identical to those described in the preceding examples.
  • a control yarn was prepared with hexamethylene diamine polyadipate.
  • the samples were charged to a potential of 100 volts by static induction.
  • the duration of half and of three quarters discharge in the air was measured, at a temperature equal to 22 C.
  • thermoplastic polymer selected from linear polyamides and polyesters.
  • the foregoing examples clearly illustrate that by incorporating within the polyamide or polyester composition from about 1 percent to about 10 percent by weight based on the weight of the total composition of a polyolefin having an average molecular weight of higher than 1000 and having pendant antistatic groupings as previously set forth, the antistatic and anti-soiling characteristics of the polyamide or polyester are improved.
  • such improvement is seen whether the polyolefin is prepared in suit through simultaneous polymerization and polycondensation or whether the polyolefin is preformed and added either to the polycondensation reaction or to the preformed base polymer.
  • An antistatic and anti-soiling composition comprising a thermoplastic linear polyamide and from about 1 weight of the total composition of a polyolefin having pendant polyoxyalkylene chains having an average molecular weight higher than 1000 and consisting essentially of the repeating structural unit of the formula:
  • composition of claim 1 wherein said polyolefin is present as finely dispersed inclusions raving an average diameter of from 1 to 10 microns.
  • composition of claim 1 wherein said polyolefin is present in an amount of 2 to 5 percent by weight based on the weight of the total composition.
  • composition of claim 1 wherein said polyolefin is prepared in situ during the polycondensation reaction in the preparation of said polyamide through the simultaneous polymerization of a monomer of the formula:
  • CHI CHCIHI (o-cm-Cnn-om wherein R is selected from hydrogen and methyl; R is selected from hydrogen, alkyl and aryl; and x is an integer of l to 600.
  • composition of claim 1 wherein said composition is in the form of fibers.

Abstract

1. AN ANTISTATIC AND ANTI-SOILING COMPOSITION COMPRISING A THERMOPLASTIC LINEAR POLYAMIDE AND FROM ABOUT 1 PERCENT TO ABOUT 10 PERCENT BY WEIGHT BASED ON THE WEIGHT OF THE TOTAL COMPOSITION OF A POLYOLEFIN HAVING PENDANT POLYOXYALKYLENE CHAINS HAVING AN AVERAGE MOLECULAR WEIGHT HIGHER THAN 1000 AND CONSISTING ESSENTAILLY OF THE REPEATING STRUCTURAL UNIT OF THE FORMULA:

-CH2-CH(-CH2-(O-CH2-CH(-R1))X-O-R2)-CH2-CH(-CH2-(O-CH2-

CH(-R1))X-O-R2)-

WHEREIN R1 IS SELECTED FROM HYDROGEN AND METHYL; R2 IS SELECTED FROM HYDROGEN, ALKYL AND ARYL; AND X IS AN INTEGER OF 1 TO 600.

Description

United States Patent Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE An antistatic composition and a shaped article produced therefrom in the form of yarns, fabric, knitted fabric, etc., comprising a base thermoplastic synthetic polymer selected from polyamides and polyesters containing dispersed therein a polyolefin having an average molecular weight of greater than 1000 in an amount of about 1 to about percent by weight, said polyolefin comprising a polymer with the recurring structural unit of the formula:
wherein R is selected from hydrogen and methyl; R is selected from hydrogen, alkyl or aryl; and x is an integer of l to 600.
The present invention relates to an antistatic and soilresistant composition having as a base a synthetic polymer, e.g., a polyamide or polyester; more particularly, the present invention relates to such an antistatic and soilresistant composition and shaped articles produced therefrom wherein such antistatic characteristics are associated with the incorporation of a minor amount of a polyolefin containing pendant antistatic groupings.
It has been known for a long period of time that synthetic polymers, while possessing excellent mechanical and chemical properties making them particularly suited for a number of applications, such synthetic polymers also have a strong tendency to acquire an electrostatic charge through friction. Such tendency to develop an electrostatic charge brings about many practical difiiculties and disadvantages both with regard to the production and use of shaped articles prepared from such synthetic polymers. This is particularly true in textile applications such as in the production and use of woven or knitted clothing,
Re. 28,212 Reissuecl Oct. 29, 1974 carpeting, etc. Accordingly, while such synthetic polymers have a number of advantages, the same have not been particularly applicable for certain applications due to the disadvantageous accumulation of electrostatic charges.
In order to overcome the foregoing disadvantages, it has been previously proposed to superficially treat the surface of the shaped articles produced from the synthetic polymers by coating the shaped articles with a material for the purpose of reducing the accumulation of static electricity. While such surface treatment does eliminate the electrostatic charge built up for a short period of time, such surface treatment is not in and of itself the answer to the foregoing problem since the treatment is temporary at best since the coating tends to become worn 01f or washed off of the surface of the article. Where such a surface treatment is made permanent as by making the coating insoluble on the fiber or similar article, the shaped articles having such coatings are disadvantageous in that the permanent surface coating eliminates some of the advantageous physical characteristics of the synthetic polymer while giving the fiber or similar shaped article a rather unpleasant rough feel. Accordingly, the use of such surface coatings has not supplied the answer nor has the same eliminated the disadvantages associated with the build-up of electrostatic charges in synthetic polymers.
Various other attempts to improve the antistatic properties of synthetic polymers have involved, for example, the preparation of antistatic compositions from copolymers prepared from absorbent monomers and hydrophobic monomers so as to nullify the effects of the buildup of electrostatic charges. While such production of copolymers does eliminate the electrostatic charge build-up to some extent, it is usually accompanied by a reduction in the physical properties of the composition, e.g., the tenacity or elongation, etc. of the filament or similar shaped article is drastically reduced when compared with the same properties of the hydrophobic homopolymers. Accordingly, the production of such copolymers has not proved entirely satisfactory and has not provided a complete answer to the antistatic build-up of synthetic polymers.
It has similarly been known prior to the present invention to prepare antistatic compositions by incorporating into synthetic polymers such as polyamides or polyesters, either before or after polycondensation, alkylene polyethers dispersed in the product in a minor amount. Since these linear polyethers are partially soluble in water, however, they are progressively eliminated during the course of successive domestic washings. Accordingly, while the preparation of antistatic compositions containing the alkylene polyethers does in fact reduce the tendency for the polymer to build up electrostatic charges for a period of time, such answer to the basic problem is unsatisfactory when considering filaments and fibers for textiles, including clothing and rugs, which are normally subjected to many washings during use. Accordingly, notwithstanding the foregoing attcmpts to eliminate the static electricity build-up of synthetic polymers, no completely satisfactory answer has been developed until the development of the present invention.
The foregoing disadvantages and deficiencies of previous developed synthetic polymer compositions have been overcome in accordance with the present invention, whereby applicant has developed a thermoplastic synthetic polymer composition and a shaped article therefrom, e.g., a fiber or filament, etc., wherein such composition is based upon a polyester or polyamide containing dispersed therein a polyolefin having an average molecular weight of greater than 1000, such polyolefin having antistatic groupings pendant thereto. By incorporating such polyolefin in the thermoplastic synthetic polymer composition in an amount of from about 1 to about percent by weight, the foregoing disadvantages with regard to electrostatic charge build-up are overcome and the physical characteristics of the polymer are in no way impaired.
Accordingly, it is a principal object of the present invention to provide a novel antistatic synthetic thermoplastic resin composition and shaped articles produced therefrom, e.g., fibers, filaments, films, etc., which composition and shaped articles have eliminated the inherent deficiencies and disadvantages of previously described antistatic compositions.
It is a further object of the present invention to produce such antistatic compositions based upon a polyester or polyamide wherein such polyester or polyamide has incorporated therein a minor amount a polyolefin having an average molecular Weight of greater than 1000 and containing pendant antistatic groupings.
A still further object of the present invention comprises shaped articles produced from the foregoing composition wherein such shaped articles in the form of fibers, filaments, film, etc. have a reduced tendency to accumulate these electrostatic charges while maintaining the advantageous physical characteristics of the base polyester or polyamide, such articles being prepared from a composition containing from about 1 to about 10 percent by weight of a polyolefin dispersed in a polyester or polyamide, the polyolefin having an average molecular weight of greater than 1000 and pendant antistatic groupings.
Still further objects and advantages of the novel composition and articles of the present invention will become more apparent from the following more detailed description thereof.
The foregoing objects and advantages of the present invention are provided by a thermoplastic synthetic polymer composition and shaped articles produced therefrom in the form of fibers, filaments, films, etc., such compositions being based upon a polyamide or a polyester and containing dispersed therein a polyolefin having an average molecular weight of greater than 1000 and having pendant antistatic groupings laterally attached thereto. It has been discovered in accordance with the present invention that by providing such a thermoplastic synthetic polymer composition with a polyolefin finely and evenly dispersed therein, the antistatic properties of the base polyamide or polyester are substantially improved while the other advantageous physical properties of the base polymer are not in any way impaired.
The polyolefin which is finely and evenly dispersed in the synthetic polymer composition is generally a material having a molecular weight of greater than 1000, the same being formed essentially of a linear hydrocarbon chain with lateral antistatic groupings pendant thereto. Accordingly, such polyolefin is one which consists essentially of the recurring structural unit of the formula:
wherein R is selected from hydrogen and methyl; R is selected from hydrogen, alkyl and aryl; and x is an integer of 1 to 600.
Accordingly, suitable R groups include such as methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, n-hexyl, noctyl, oxo-octyl, decyl, dodecyl, hexadecyl, stearyl, cicosyl, phenyl, butylphenyl, hexylphenyl, octylphenyl, nonylphenyl, etc.
The incorporation of such polyolefin into a polyester or polyamide composition has certain distinct advantages when compared, for example, with other polymer additives that have been heretofore utilized to produce antistatic properties in a synthetic polymer composition. Thus, for example, because of their low water solubility, the polyolefins form emulsions in Water and are therefore not easily removed from the shaped articles by Washing and, in fact, the polyolefins can be removed from the products only with extreme difiiculty. This therefore produces a permanence in the antistatic effect in a manner not heretofore possible with previous antistatic compositions.
A further advantage results from the fact that the polyolefins that are employed in accordance with the present invention are produced through the polymerization of allyl compounds which do not polymerize uniformly. This therefore results in a polyolefinic mass which is composed of products having a high molecular weight, products having a low molecular weight, and a certain ratio of unreacted monomers. Such diversity in the molecular weight and composition of the product is not in any way disadvantageous in accordance with the present invention in that such diversity establishes further interesting properties with regard to the utilization of the polyolefin as an additive to improve the antistatic and anti-soil properties of polyamides and polyesters. Thus, for example, when incorporating the polyolefin product into a polyamide or polyester, any monomer which remains is more or less rapidly eliminated, depending upon its molecular weight and structure. The low molecular weight polymers are susceptible to slow migration to the surface while the high molecular weight polymers impart permanent improvement in the properties of the shaped articles. Accordingly, by introducing the polymerizaiton product into the polyamide or polyester article both immediate and prolonged improvement in the antistatic and anti-soiling properties of the composition are realized. Again, it is pointed out that the polyolefin which is incorporated in accordance with the present invention is one which has an average molecular weight of greater than 1000. Thus such polyolefins employed in accordance with the present invention have a hydrophilic or absorbent characteristic which is much higher than most of the antistatic polymers heretofore known and heretofore employed to produce antistatic synthetic polymer compositions.
It is well known that the hydrophilic character of polymers prepared from alkylene oxides increases with the number of hydroxyl groups present in the polymer but that this number decreases when the molecular weight of the polymer increases. The polyolefins which are employed in accordance with the present invention as an additive for the polyamide or polyester composition can have a great number of lateral chains ending with the hydroxyl group. Accordingly, the relative number of hydroxyl groups in the polymer is independent of the molecular weight of the polymer in that the groups are attached to pendant side chains. Accordingly, the polymer additives employed in accordance with the present invention simultaneously have a high molecular weight and a satisfactory water pick-up rate. This makes them eminently suitable for use in the antistatic compositions of the present invention to impart the antistatic characteristics to polyamides and polyesters While not in any way interfering with the other essential and advantageous characteristics of the base polymer.
The polyolefins that are employed in accordance with the antistatic characteristics to polyamides and polyesters of an allyl monomer or monomers having one or more polyoxyalkylene chains with hydroxyl r ether terminal groups. Accordingly, the monomer which can be employed in the production of the polyolefin utilized in accordance with the present invention generally correspond to the formula:
wherein R R and it have the meanings previously ascribed.
Generally, in preparing the polyolefin component in accordance with the present invention, the monomer system comprises one or more of the foregoing allyl monomers corresponding to the above formula in an amount of at least 75 percent by weight with up to about 25 percent by weight of a comonomer having the formula:
wherein R and x have the same meanings as set forth above.
The basic allyl monomers which are employed in the production of the polyolefin component utilized in accordance with the present invention are obtained in their usual manner, either through the condensation of allyl chloride with a monoalcohol in the form of its alcoholate or through the oxyethylation of an allyl alcohol. In this regard, such allyl monomers which are polymerized in accordance with the present invention to produce the polyolefin component are well known in the art and can be easily prepared by well-known prior art procedures.
Similarly, while the above formula represents an ethylene oxide or propylene oxide chain in the polyether portion of the polyolefin, it should be recognized that the polyether chain may comprise copolymers derived both from ethylene oxide and propylene oxide. Here again, the method of producing such copolymers is well-known in the art and any prior art procedure can be utilized in the production of the materials useful in accordance with the present invention.
While the polyolefin components in accordance with the present invention generally comprise a homopolymer or copolymer of one or more of the foregoing allyl monomers, it is of course obvious that other comonmers can be employed in a minor amount, i.e., up to about 20 percent by weight based upon the weight of the polyolefin. Thus, for example, other comonomers which can be copolymerized with the allyl monomers include such materials as styrene, sodium vinyl-sulfonate, methyl-5-vinyl-2-pyridine, and N-vinyl pyrrolidone. In addition, other comonomers which do not in any way adversely affect the antistatic characteristics of the polyolefin can be advantageously copolymerized in accordance with the present invention.
The polyolefin component which is employed in accordance with the present invention is uniformly dispersed in the polyamide or polyester and is generally present in the form of inclusions having an average diameter of between about 1 and about microns. In addition, as indicated previously, such polyolefin component in accordance with the present invention is finely and evenly dispersed in the polyamide or polyester composition in an amount of from about 1 to about 10 percent by weight, preferably from about 2 to about 5 percent by weight. Accordingly, since the proportion of the polyolefin component necessary to obtain a composition having excellent antistatic properties does not exceed about 10 percent by weight, the softening point of the final preparation and its behavior in a melted condition are very close to the softening point and behavior of the basic polymer, i.e., polyamides and polyesters. This, therefore, is a distinct advantage of the novel composition and shaped articles of the present invention when compared to conventional antistatic compositions.
As indicated previously, the polyolefins of the present invention are incorporated in a polyester or polyamidein order to improve the antistatic characteristics thereof while not in any way adversely affecting other physical characteristics of the base polymer. The polyamides within which the polyolefins can be incorporated can be any of the linear super-polyamides well-known for the production of fibers, films, and other shaped articles. Thus, for example, the polyamides employed in accordance with the present invention can comprise any of the long-chain polyamides having a recurring amide group as an integral part of the main polymer chain. Such polyamides, for example, are commercially known as nylon 66, i.e., a polyamide produced by condensing hexamethylene diamine and adipic acid; nylon 610, prepared by condensing hexamethylene diamine with sebacic acid; nylon 8, a polyamide based upon capryllactam; nylon 9, a polyamide based on 9- aminononanoic acid; nylon 12, a polyamide produced by the polymerization of lauric lactam or cyclododecalactam; and nylon 6, a polyamide produced by the polycondensation of caprolactam. Of course, in addition to the foregoing polyamides, copolyamides of one or more of the above types can be advantageously carried out in accordance with the present invention. Here again, the present invention is applicable to any long-chain polyamide having a recurring amide group as an integral part of the main polymer chain.
Similarly, the polyesters which can be employed in accordance with the present invention comprise any of the linear high molecular weight thermoplastics having a saturated polyester backbone. Such polyesters are prepared by condensing (1) a glycol such as ethylene, propylene, diethylene, dipropylene or butylene glycol; and (2) terephthalic or isophthalic acid, eventually in mixture with an acid or anhydride such as adipic acid, azelaic acid. Such materials are typified, for example, by polyethylene terephthalate, made by condensing ethyleene glycol and terephthalic acid and particularly suited for the production of fibers and films. Such material is known under the trade names Terphane Mylar" and Tergal Dacron. In addition to the foregoing polyesters and polyamides, it is of course obvious that copolyesters and polyesteramides, e.g., polyterephthalamides, can be advantageously utilized in accordance with the present invention. Here again, the present invention is not directed to any specific base polymers and any conventional polyester or polyamide can have its antistatic properties improved in accordance with the present invention.
The incorporation of the polyolefin in the polyester or polyamide composition in accordance with the present invention can be effected in a number of dilfercnt manners. Thus, for example, the polyolefin can be prepared in situ by polymerizing the allyl monomer in the polycondensation reaction in which the base polyester or polyamide is formed. Thus, for example, the allyl monomer or comonomers can be added to the polyester or polyamide monomer systems so as to simultaneously polymerize and polycondense the monomers present. In this way, the polyolefin can be incorporated in the system without in any way altering the basic poly-condensation reaction.
Alternatively, the polyolefin can be first prepared by polymerizing the monomer or monomers and thereafter introducing the polyolefin into the base polymer composition during the polycondensation reaction. As a still further alternative, however, the polyolefin can be first prepared by polymerization of the monomer or monomers and the preformed polyolefin can be incorporated into a preformed base polyamide or polyester in a suitable melting device or mixer. Regardless of the manner of incorporation of the polyolefin into the polyester or polyamide composition, the polyolefin is present in the form of inclusions,
the diameter of which is between approximately 1 and 10 microns. In addition, it is again pointed out that the anti static properties and antisoiling properties of the composition are miproved by including an amount of polyolefin not exceeding about 10 percent by weight, based upon the weight of the total composition. Accordingly, the properties of the composition can be improved with a minor amount of polyolefin and the addition of the polyolefin component does not in any way adversely affect the other advantageous characteristics of the polyamide or polyester.
Under certain circumstances, where the polyole fin is prepared in situ during simultaneous polymerization and polycondensation of the base polyester or polyamide, it is sometimes advantageous to add to the reaction system a free radical polymerization catalyst such as, for example, organic peroxides redox systems, and other conventional catalysts such as azodi-isobutyro-nitrile. Such catalysts merely aid in the polymerization of the allyl monomer or monomers so as to facilitate preparation of the polyolefin during polycondensation. Similarly, while the simultaneous polymerization and polyconclensation can normally be conducted under the same conditions as the polycondensation reaction itself, it is often possible to modify the usual conditions of temperature, pressure or duration of one of the phases of the operation, particularly when a portion of the olefinic monomer might be eliminated, for example, by water. In general, however, the normal conditions for the polycondensation reaction in the production of the base polyester or polyamide need not be deviated from.
The novel composition and articles of the present invention will now be illustrated by reference to the following specific examples. It is to be understood that such examples are presented for purposes of illustration only, and the present invention is in no way to be deemed as limited thereto.
EXAMPLE 1 A stainless steel, 7.5 liter autoclave, previously cleansed by a How of nitrogen was loaded with 5.240 g. of an aqueous solution of hexamethylene diarnmonium adipate, the concentration of which was 50% by Weight, 4.5 g. of pure acetic acid, as a viscosity stabilizer for the polyamide, and 113 g. (i.e., by weight with respect to the polyamide) of a monomer olefin with a molecular weight of approximately 1,700 and of the formula:
in which 75% of the chains are derived from propylene oxide.
The pressure was slowly raised to 18 kg./cm. and the temperature to 220 C. This pressure was maintained constant while the water was eliminated from the reaction mixture by distillation.
The pressure was then decreased progressivly to atmospheric pressure in approximately 90 minutes, while the temperature increased to 280 C. The reaction mixture was kept under these conditions for one hour.
Microscopic examination of the compound obtained according to this process showed that the polyolefin phase was finely and evenly dispersed in the polyamide, under the form of inclusions with a diameter in the order of 4 microns.
This preparation was extruded in the form of a reed which was cooled and then cut up into grains. The grains were melted and extruded in a conventional melt spinning apparatus, then they were drawn Without any oiling, so that it was possible to measure the intrinsic antistatic properties of the yarn.
The drawn yarns had a count of 78 dtex. for 23 filaments.
A control yarn was prepared with hexamethylene diamine polyadipate which was not modified. This control yarn and the yarn made from the compound obtained according to the example above were knitted with the same texture and tested from the point of view of soil resistance, after degreasing, in the following manner:
Hydrophilic testing.-This consists in measuring the time of diffusion of a measured drop of distilled water on knitted fabric presented in identical manner.
This test is defined in the Technical Manual of the American Association of Textile Chemists and Colourists (l966volume 42, page B151) Wettability evaluation" Standard test method AATCC 39, 1952.
Greying test.-Two comparable samples are treated successively in the Lauderometer (v -lo) in distilled water for 30 minutes at 60, in the presence of 30 metal marbles having a diameter of 6 mm., with a flanelette sample (having the same weight as the sample to be treated) which has been soiled with a mixture containing tallow, paratfin oil, carbon black and trichloroethylene. The condition of the samples is compared after 1 hour hour of treatment.
Oleophobia test.-This consists in depositing an oil film on the knitted fabrics, which are then agitated in distilled water: the facility with which the oil is removed from the knit is noted.
The results of these tests are shown in the following table:
tion were prepared under the same conditions as those described above except that the olefin monomer was one with a molecular weight of approximately 600 and with the formula:
in which 50% of the chains are derived from propylene oxide.
The polycondensation, spinning and drawing were effected under operating conditions identical to those of Example 1.
EXAMPLES 3 AND 4 A compound was prepared from the same components as in Example 1, but an ethylene comonomer (Example 3) and a free radical polymerization catalyst (Example 4) were introduced into the reaction mixture.
The polycondensation, spinning and drawing were effected under operating conditions identical to those of Example 1.
A control yarn was prepared from hexamethylene diamine polyadipate under the same conditions.
The antistaticity of the yarns obtained in Examples 1, 2, 3, and 4 was evaluated with respect to that of the control yarn, by friction electrification under given conditions, i.e., in controlled atmosphere, on Rotschilds Static Voltmeter R 1019, and the average of ten measurements was noted.
Table II shows the measurements taken in these examples.
The abbreviations used have the following meaning:
vRzRelative viscosity vFzMelted viscosity in poises GT COOH COOH groups GT NH NH groups PR C.):Softening point HR=Relative humidity rate of the atmosphere in which the tests are made TABLE III Characteristics of M i tn.
the polymer Elcctrifiret n tiohi cation by percent in Y P R friction weight Example R V F C.) l-lR=35% Hydmphilia test by drop AA'ICC Greying test Oleoplionia test HR=6?% S3 2, 540 260 350 minutes but penetration slightly faster. Iligh Low eliminationMun t). 75 Control 630 10 minutes Very high. No elimination 0. 29
TABLE IV 4 Electri- Charactenstics of the polymer Characteristics of fieation Moisture compound yarns upon pick up friction in percent GT G T P R Tenacity Elongation in volts in weight Example Vl't VF COOH NH; C.) in ga'tex. percent HR=48% HR=65 e 31.1 1. 340 78 43 265. 3 42. 6 3, 600 5. 3 Control 5, 000 3. 9
EXAMPLE 7 20 percent to about 10 percent by weight based on the A polyolefin identical to that described in Example 6 was prepared.
This polymer was inserted in melted hexamethylene diamine polyadipate, at the rate of 3.5% by weight with respect to the polyamide.
The resulting preparation was spun and drawn under conditions identical to those described in the preceding examples.
A control yarn was prepared with hexamethylene diamine polyadipate.
The samples were charged to a potential of 100 volts by static induction.
The duration of half and of three quarters discharge in the air was measured, at a temperature equal to 22 C.
The results obtained are shown in Table V.
The foregoing examples clearly illustrate the advantages of the novel antistatic and anti-soiling composition of the present invention based upon a thermoplastic polymer selected from linear polyamides and polyesters. In this regard the foregoing examples clearly illustrate that by incorporating within the polyamide or polyester composition from about 1 percent to about 10 percent by weight based on the weight of the total composition of a polyolefin having an average molecular weight of higher than 1000 and having pendant antistatic groupings as previously set forth, the antistatic and anti-soiling characteristics of the polyamide or polyester are improved. In this regard, such improvement is seen whether the polyolefin is prepared in suit through simultaneous polymerization and polycondensation or whether the polyolefin is preformed and added either to the polycondensation reaction or to the preformed base polymer.
It is obvious from the foregoing that certain objects and advantages of the present invention have been illustrated by Way of the foregoing exemplification. It is to be understood, however, that such examples as set forth are for purposes of exemplification only and the present invention is not in any way to be deemed as limited thereto but rather, must be construed as broadly as all or any equivalents thereof.
I claim:
1. An antistatic and anti-soiling composition comprising a thermoplastic linear polyamide and from about 1 weight of the total composition of a polyolefin having pendant polyoxyalkylene chains having an average molecular weight higher than 1000 and consisting essentially of the repeating structural unit of the formula:
cHiCIIcH(|3H- wherein R is selected from hydrogen and methyl; R is selected from hydrogen, alkly and aryl; and x is an integer of l to 600.
2. The composition of claim 1 wherein said polyolefin is present as finely dispersed inclusions raving an average diameter of from 1 to 10 microns.
3. The composition of claim 1 wherein said polyolefin is present in an amount of 2 to 5 percent by weight based on the weight of the total composition.
4. The composition of claim 1 wherein said polyolefin is prepared in situ during the polycondensation reaction in the preparation of said polyamide through the simultaneous polymerization of a monomer of the formula:
CHI=CHCIHI (o-cm-Cnn-om wherein R is selected from hydrogen and methyl; R is selected from hydrogen, alkyl and aryl; and x is an integer of l to 600.
5. The composition of claim 1 wherein said composition is in the form of fibers.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 3,431,227 3/1969 Kastning 260-857 3,475,898 11/1969 Magat et al. 260857 3,522,329 7/1970 Okazaki 260-857 3,549,724 12/1970 Okazaki 260857 PAUL LIEBERMAN, Primary Examiner US. Cl. X.R.
26091.l R, 91.1 S, 91.3 R, 873

Claims (1)

1. AN ANTISTATIC AND ANTI-SOILING COMPOSITION COMPRISING A THERMOPLASTIC LINEAR POLYAMIDE AND FROM ABOUT 1 PERCENT TO ABOUT 10 PERCENT BY WEIGHT BASED ON THE WEIGHT OF THE TOTAL COMPOSITION OF A POLYOLEFIN HAVING PENDANT POLYOXYALKYLENE CHAINS HAVING AN AVERAGE MOLECULAR WEIGHT HIGHER THAN 1000 AND CONSISTING ESSENTAILLY OF THE REPEATING STRUCTURAL UNIT OF THE FORMULA:
US36795873 1969-08-22 1973-06-07 Table iii Expired USRE28212E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR6928876A FR2057498A5 (en) 1969-08-22 1969-08-22 Antistatic polyalkene additive for polyami - des or polyesters

Publications (1)

Publication Number Publication Date
USRE28212E true USRE28212E (en) 1974-10-29

Family

ID=9039314

Family Applications (1)

Application Number Title Priority Date Filing Date
US36795873 Expired USRE28212E (en) 1969-08-22 1973-06-07 Table iii

Country Status (7)

Country Link
US (1) USRE28212E (en)
BE (1) BE755158A (en)
BR (1) BR7021524D0 (en)
DE (1) DE2041659A1 (en)
FR (1) FR2057498A5 (en)
LU (1) LU61557A1 (en)
NL (1) NL7012434A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430081A (en) * 1993-11-16 1995-07-04 Sumitomo Chemical Company, Ltd. Fire retardant additive and fire retardant thermoplastic resin composition
US20050256283A1 (en) * 2002-04-26 2005-11-17 Moody David J Monomers containing polyoxyalkylenes and polymer supports therefrom
US20080176979A1 (en) * 2005-03-14 2008-07-24 Tetsuji Abe Antistatic Composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3924082C1 (en) * 1989-07-20 1990-09-27 Th. Goldschmidt Ag, 4300 Essen, De

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430081A (en) * 1993-11-16 1995-07-04 Sumitomo Chemical Company, Ltd. Fire retardant additive and fire retardant thermoplastic resin composition
US20050256283A1 (en) * 2002-04-26 2005-11-17 Moody David J Monomers containing polyoxyalkylenes and polymer supports therefrom
US7365132B2 (en) * 2002-04-26 2008-04-29 Avecia Biotechnology Inc. Monomers containing polyoxyalkylenes and polymer supports therefrom
US20080176979A1 (en) * 2005-03-14 2008-07-24 Tetsuji Abe Antistatic Composition
US7629401B2 (en) * 2005-03-14 2009-12-08 Adeka Corporation Antistatic composition

Also Published As

Publication number Publication date
LU61557A1 (en) 1970-10-22
DE2041659A1 (en) 1971-02-25
NL7012434A (en) 1971-02-24
FR2057498A5 (en) 1971-05-21
BE755158A (en) 1971-02-22
BR7021524D0 (en) 1973-01-11

Similar Documents

Publication Publication Date Title
US3549724A (en) Polyamide - polyether - polyamide block copolymer blend composition,a process for the production thereof and shaped articles thereof
US3557039A (en) Aqueous dispersion of block or graft polymer useful in surface modifying treatment of polyester shaped articles
US3900676A (en) Antistatic filaments
US3839245A (en) Poly(ether-ester-amide) antistatic compositions derived from dimr acids
US3679541A (en) Sheath/core bicomponent filaments and process of preparing same
US3636135A (en) Polyamides admixed with polyetheresteramides
US3329557A (en) Static resistant filament and process therefor
US3514498A (en) Antistatic synthetic resin composition containing a polyether - polyamide block copolymer wherein an ionic functional group is made to coexist
US3459697A (en) Reaction product of a polyamide,a halogenated polyoxyalkylene,and an epihalohydrin
US3639502A (en) Antistatic shaped articles containing polyetherpolyamide block copolymer and a polyamide polyester or polyolefin
US3473956A (en) Shaped polyamide coated with the same polyamide modified by polyalkylene oxides
US3475898A (en) Static resistant filament
US3553286A (en) Polyamides and sulfonic acid group containing vinyl polymers
US3629053A (en) Novel polyamide and fiber thereof
US3395107A (en) Antistatic composition for synthetic fibers
US3657386A (en) Antistatic polyamide fiber containing polyether
US4150674A (en) Three-component blends of a polyamide, and a polyester and a lactam terpolymer
US3639154A (en) Process for manufacturing fibrous structure having excellent recovery from extension by treatment with polyorganosiloxane and a polyethylene glycol or derivative thereof
US3539664A (en) Homogeneous nylon graft copolymers onto ethylene copolymer backbones
US3787523A (en) Antistatic polyamide fiber containing sulfonic acid polyether reaction product
CN100363403C (en) Thermoplastic polymer, use thereof in polyamide composition with improved hydrophily and anti-staticity
USRE28212E (en) Table iii
US20040087734A1 (en) Polyamide compositions with improved antistatic and hydrophilic properties
US3755497A (en) Antistatic polyester fiber containing polyether
US3641198A (en) Polyamides containing antistatic polyolefins having pendant polyoxyalkylene chains