USH2086H1 - Fine particle liquid filtration media - Google Patents

Fine particle liquid filtration media Download PDF

Info

Publication number
USH2086H1
USH2086H1 US09/358,125 US35812599A USH2086H US H2086 H1 USH2086 H1 US H2086H1 US 35812599 A US35812599 A US 35812599A US H2086 H USH2086 H US H2086H
Authority
US
United States
Prior art keywords
nonwoven
fibers
nonwoven web
web
filtration media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/358,125
Inventor
Nicole Michele Amsler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Worldwide Inc
Original Assignee
Kimberly Clark Worldwide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Worldwide Inc filed Critical Kimberly Clark Worldwide Inc
Priority to US09/358,125 priority Critical patent/USH2086H1/en
Assigned to KIMBERLY-CLARK WORLDWIDE reassignment KIMBERLY-CLARK WORLDWIDE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMSLER, NICOLE MICHELE
Priority to CA002279174A priority patent/CA2279174A1/en
Application granted granted Critical
Publication of USH2086H1 publication Critical patent/USH2086H1/en
Assigned to KIMBERLY-CLARK WORLDWIDE, INC. reassignment KIMBERLY-CLARK WORLDWIDE, INC. NAME CHANGE Assignors: KIMBERLY-CLARK WORLDWIDE, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres

Definitions

  • the present invention relates to nonwoven composite fabrics suitable for use for fine particle liquid filtration.
  • Nonwoven fabrics have been used for a variety of filtration and filtration-like applications.
  • fine fiber webs such as meltblown fabrics and laminates thereof have commonly been used within air filtration media.
  • Meltblown fabrics comprise a web of randomly inter-laid fine fibers, which provide a structure having excellent barrier properties.
  • fabrics with finer fibers or smaller diameter fibers typically have increased barrier properties when compared to like webs of relatively larger fiber size. Therefore, due to fine fibers achievable in meltblown fiber webs and the excellent barrier properties resulting therefrom, meltblown fiber webs have been used in a variety of air filtration media such as, for example, in HEPA filters as discussed in U.S. Pat. No. 4,824,451, bag filters as discussed in U.S. Pat. No. 5,586,997, and filtering bacteria from fluids as discussed in U.S. Pat. No. 5,582,907 to Paul.
  • the needs of air filtration media often vary considerably from those of liquid filtration media.
  • the particle size distribution within a liquid stream is typically much larger than particles associated with an air stream.
  • air filtration media are often expected to collect particles having a size less than about 5 ⁇ whereas with fine particle liquid filtration the particle size often varies between about 5 ⁇ to about 30 ⁇ .
  • Multilayer filtration media suitable for air filtration such as that described above, will often have an unacceptably short filter life when used for liquid filtration.
  • the particles sizes associated with liquid filtration are typically of a size and distribution that the meltblown webs and/or laminates thereof quickly become fully saturated and/or create high pressure drops.
  • meltblown fiber nonwoven webs can be relatively weak fabrics and often cannot, by themselves, withstand the conditions experienced by liquid filtration media.
  • meltblown webs have been supported in multilayer structures to provide filter media or filter-like articles with improved strength and/or durability.
  • meltblown fiber nonwoven webs have been laminated with spunbond fiber nonwoven webs in order to provide a material with a combination of good strength and barrier properties.
  • spunbond/meltblown/spunbond media have been used in sterilization wraps and other like media such as, for example, those described in U.S. Pat. No. 5,464,688 to Timmons et al. and U.S. Pat. No. 4,041,203 to Brock et al.
  • nonwoven laminates are point bonded to form an integrated structure and, in this regard, the point bonds undesirably increase pressure drop without a corresponding increase in filter life and/or efficiency.
  • Additional spunbond fabrics and/or laminates thereof utilized in filtration media are described in PCT Publication Nos. WO 96/13319 and WO 95/13856.
  • composite meltblown nonwoven fabrics such as those described in U.S. Pat. No. 4,100,324 to Anderson et al., have also been used in liquid filtration applications wherein the composite nonwoven fabric is supported by a spunbond carrier sheet and a felt material.
  • the filtration media of the present invention comprising (a) a nonwoven composite material having a first and second side and comprising a matrix of thermoplastic microfibers having within said matrix at least about 50%, by weight, of a secondary material; (b) a first nonwoven web proximate the first side of the nonwoven composite material and comprising a substantially uniform nonwoven web of bonded fibers; and (c) a second nonwoven web proximate the second side of the nonwoven composite material such that the nonwoven composite material is positioned between the first and second nonwoven web.
  • the nonwoven composite material and the first and second nonwoven webs form an integrated, autogenously bonded laminate.
  • the nonwoven composite material desirably has a basis weight between about 30 g/m 2 and about 300 g/m 2 and further the secondary material of the nonwoven composite material desirably comprises a fibrous material such as, for example, pulp or polymeric staple fibers.
  • the substantially uniform nonwoven material desirably comprises a nonwoven web having inter-fiber bonds throughout the web such as, for example, an autogenously bonded web of crimped polyethylene/polypropylene bicomponent fibers having a density between about 0.01 g/cm 3 and about 0.2 g/cm 3 .
  • liquids containing particulate matter can be filtered by providing the filter media of the present invention, supporting the filter media on a foraminous surface, and then drawing the liquid through the filter media, wherein particulate matter is collected in the filter media as the liquid passes therethrough.
  • the liquid to be filtered desirably contains a substantial amount of particulate matter having a particle size of from about 5 ⁇ to about 25 ⁇ .
  • FIG. 1 is a partially elevated side view of a three layer material of the present invention shown partially broken away;
  • FIG. 2 is a side cross-sectional view of a three-layer material of the present invention.
  • FIG. 3 is a partially elevated side view of a four layer filter material of the present invention shown partially broken away;
  • FIG. 4 is a schematic illustration of a method of making the nonwoven composite fabrics of the present invention.
  • FIG. 5 is a schematic illustration of a process of filtering liquids containing particulate matter.
  • nonwoven fabric or “nonwoven web” means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted fabric.
  • Nonwoven fabrics or webs have been formed from many processes such as for example, meltblowing processes, spunbonding processes, air-laid and bonded-carded web processes.
  • microfibers or “fine fibers” means small diameter fibers having an average fiber size not greater than about 20 microns.
  • fiber size refers to the diameter of round fibers or the mean diameter for non-round fibers.
  • spunbonded fibers or “spunbond fibers” refers to small diameter fibers of drawn or substantially oriented polymer.
  • spunbond fibers are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced such as, for example, in U.S. Pat. No. 4,340,563 to Appel et al., U.S. Pat. No. 3,802,817 to Matsuki et al., U.S. Pat. No. 3,542,615 to Dobo et al. and U.S. Pat. No.
  • Spunbond fibers are generally not tacky when they are deposited onto a collecting surface and thus often require additional mechanical or chemical bonding to form an integrated stabilized web.
  • meltblown fibers means fibers which are generally formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot, gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are generally carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers.
  • gas e.g. air
  • polymer generally includes but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and/or modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible spatial configurations of the molecule. These configurations include, but are not limited to, isotactic, syndiotactic and/or random symmetries.
  • the term “monocomponent” fiber refers to a fiber formed a single, continuous polymer segment.
  • multiconstituent fibers refers to fibers that have been formed from at least two polymers extruded from the same extruder. Multiconstituent fibers do not have the various polymer components arranged in constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofibrils which start and end at random. Biconstituent fibers are a specific class of multiconstituent fibers wherein the fiber comprises two distinct polymers.
  • blend means a mixture of two or more polymers while the term “alloy” means a sub-class of blends wherein the components are immiscible but have been compatibilized.
  • ultrasonic bonding means a process performed, for example, by passing the fabric between a sonic horn and anvil roll as illustrated in U.S. Pat. 4,374,888 to Bornslaeger.
  • point bonding means bonding one or more layers of fabric at numerous small, discrete bond points.
  • thermal point bonding generally involves passing one or more layers to be bonded between heated rolls such as, for example an engraved patterned roll and a flat calender roll.
  • the engraved roll is patterned in some way so that the entire fabric is not bonded over its entire surface, and the anvil roll is usually flat.
  • various patterns for engraved rolls have been developed for functional as well as aesthetic reasons.
  • One example of a pattern has points and is the Hansen Pennings or “H&P” pattern with about a 30% bond area and with about 200 bonds/square inch as taught in U.S. Pat. No. 3,855,046 to Hansen et al.
  • autogenous bonding refers to bonding between discrete parts and/or surfaces independently of external mechanical fasteners or external additives such as adhesives, solders, and so forth.
  • multicomponent fibers and multiconstituent fibers can be autogenously bonded by developing inter-fiber bonds at fiber contact points without destroying the fiber structure.
  • multilayer filtration media 10 can comprise a nonwoven composite material 12 , a first substantially uniform nonwoven fabric 14 and a second nonwoven fabric 16 such that nonwoven composite material 12 is disposed there between.
  • the first substantially uniform nonwoven fabric 14 desirably comprises a low density and/or high-loft material and faces upstream of the composite material 12 such that larger particles are collected within first substantially uniform nonwoven fabric 14 prior to reaching nonwoven composite material 12 .
  • Nonwoven composite materials suitable for use with the present invention include materials comprising a mixture or stabilized matrix of thermoplastic fibers and a distinct secondary particulate or fibrous material therein.
  • suitable nonwoven composite materials may be made by a process in which at least one meltblown die head is arranged near a chute through which other materials are added to the web while it is forming.
  • Suitable secondary materials include, but are not limited to, pulp, cellulose, feathers, polymeric staple fibers and/or other fibrous or particulate matter.
  • the composite material comprises a matrix of thermoplastic fibers and a second non-thermoplastic material.
  • Composite materials made from such a process are often referred to as “coform” materials and examples of such processes are described in commonly assigned U.S. Pat. No.
  • the composite material desirably comprises fine fibers having an average fiber diameter of less than about 20 ⁇ and even more desirably between about 0.5 ⁇ and about 15 ⁇ and still more desirably between about 1 ⁇ and about 10 ⁇ . Additionally, the fine fiber composite material desirably has a basis weight between about 30 g/m 2 to about 300 g/m 2 and even more desirably between about 50 g/m 2 to about 150 g/m 2 .
  • the secondary material desirably comprises between about 50% by weight and about 85% by weight and still more desirably between about 70% by weight and about 80% by weight of the nonwoven composite material.
  • the use of the secondary material within the fine fiber matrix creates a material having a fiber structure which is considerably more irregular and non-uniform as compared to microfiber meltblown fabrics more commonly utilized in filtration applications. Further, due to the more irregular internal structure of the composite material, relative to microfiber meltblown nonwoven webs, larger average pore structures are created. However, the composite material has a structure with less uniform fiber orientation and as a result has numerous tortuous paths through the fabric. This forces particles traveling through the composite material to flow in a multitude of directions which allows the filter to trap particles smaller than that of the complex pathway.
  • the fine fiber nonwoven composite material can comprise a nonwoven web of polypropylene meltblown fibers and the secondary material can comprise generally ribbon-shaped pulp fibers having an average length between about 30 ⁇ and 50 ⁇ with an average height of about 5 ⁇ .
  • the nonwoven composite material has a mean pore size ranging from about 15 ⁇ to about 45 ⁇ and, still more desirably, a mean pore size of about 30 ⁇ .
  • the nonwoven composite material desirably has a wide range of pore sizes such as, for example, having pore sizes ranging from about 10 ⁇ to about 140 ⁇ .
  • the complex and tortuous pathways through the composite material provide a filtration medium capable of efficiently entraping particles of a size from about 5 ⁇ to about 25 ⁇ . Moreover, such a structure also provides filtration media having good pressure drop as well as capacity and filter life.
  • the filtration media also has a first or upstream layer comprising a substantially uniform nonwoven web of continuous, bonded fibers.
  • the first nonwoven web desirably has inter-fiber bonds throughout the web and an average pore size greater than that of the composite material.
  • substantially uniform means a material which does not have regions of significantly high and low densities such as point bonded fabrics or other similar fabrics having high density and low density regions across the face or central portion of the fabric. Having relatively high-density areas, such as those created at bond points, generally decreases the filtration efficiency of the first nonwoven web and also increases the pressure drop across the filtration media.
  • the substantially uniform, bonded nonwoven fabric can have inter-fiber bonds created by an external adhesive applied to the fibers or autogenous inter-fiber bonding.
  • the outer nonwoven web is directly attached to the composite material.
  • other intermediate materials may be disposed therebetween.
  • An exemplary substantially uniform nonwoven material comprises autogenously bonded fibers and still more desirably comprises autogenously bonded multicomponent spunbond fibers.
  • multicomponent fibers refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber.
  • Bicomponent fibers refer to a common, specific class of multicomponent fiber wherein the fiber comprises two distinct components. The polymers are arranged in substantially constantly positioned distinct zones or segments across the cross-section of the fibers and extend continuously along the length of the fibers.
  • the configuration of such fibers may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side-by-side arrangement, a pie arrangement or other arrangement.
  • Multicomponent fibers are taught in U.S. Pat. No. 5,108,820 to Kaneko et al., U.S. Pat. No. 4,795,668 to Krueger et al., U.S. Pat. No. 5,336,552 to Strack et al. and in U.S. Pat. No. 5,382,400 to Pike et al.; the entire content of each of the aforesaid patents is incorporated herein by reference.
  • the polymers are desirably present in ratios of 75/25, 50/50, 25/75 or any other desired ratios.
  • the fibers may also have various shapes such as, for example, ribbon, hollow, multilobal and so forth.
  • the autogenously bonded nonwoven web has a basis weight of at least 15 g/m 2 and desirably between about 30 g/m 2 to about 300 g/m 2 and even more desirably a basis weight between about 50 g/m 2 to about 150 g/m 2 .
  • Multiconstituent fibers capable of forming interfiber bonds are also believed suitable for use with the present invention.
  • the autogenously bonded nonwoven web can comprise a multicomponent spunbond fiber web such as is described in U.S. Pat. No. 5,382,400 to Pike et al., U.S. Pat. No. 5,534,339 to Stokes and U.S. Pat. No. 5,855,784 to Pike et al.; the entire contents of the aforesaid patents are incorporated herein by reference.
  • the autogenously bonded nonwoven web can comprise a high-loft web comprising crimped polyethylene/polypropylene conjugate fibers having a density between about 0.01 g/cm 3 and about 0.2 g/cm 3 .
  • crimped polyethylene/nylon spunbond fiber webs are also believed well suited for use in the present invention.
  • the substantially uniform nonwoven webs are autogenously bonded using hot air such as developed by “through-air bonding.”
  • through-air bonding refers to a process of bonding nonwoven fiber webs in which hot air, that is sufficiently hot to melt one of the polymers comprising the fibers, is forced through the web.
  • the hot air melts the lower melting polymer component and the resolidification of the melted polymer forms bonds between the filaments at contact points to integrate the web.
  • an exemplary through-air bonding process suitable for use with the fabrics of the present invention can employ an air velocity between 100 and 500 feet per minute and dwell times up to about 6 seconds.
  • Exemplary through-air bonding equipment can direct hot air, having a temperature above the melting temperature of one component and below the melting temperature of another component, from a surrounding hood, through the web, and into a perforated roller supporting the web.
  • the through-air bonder may be a flat arrangement wherein the air is directed vertically downward onto the web. It will be appreciated by those skilled in the art that the requisite air temperature, air velocity and dwell time will vary with respect to the particular polymers comprising the nonwoven web, the composition or structure of the same as well as the degree of bonding desired.
  • the multilayer filtration media further comprises a second or downstream nonwoven web positioned such that the nonwoven composite web is disposed between the first and second nonwoven webs.
  • the second nonwoven layer comprises a material capable of providing additional filtration properties, strength and/or support to the nonwoven composite web.
  • the second nonwoven web can comprise one or more of the materials discussed herein above with regard to the first outer nonwoven web.
  • the second nonwoven web can comprise spunbond fibers comprising monocomponent, multiconstituent or multicomponent fibers.
  • the second nonwoven web likewise comprises a substantially uniform material.
  • the particular polymer(s) or polymer blends used in the second nonwoven web can be selected to achieve the desired strength, abrasion resistance and/or other desired characteristics.
  • the second or downstream nonwoven web desirably has a basis weight between about 15 g/m 2 and about 225 g/m 2 and still more desirably has a basis weight between about 30 g/m 2 and about 100 g/m 2 .
  • both the first and second nonwoven webs can comprise through-air bonded high-loft, multicomponent spunbond fiber webs.
  • the second nonwoven web likewise comprise a polymer having a softening and/or melting point which is the same as or substantially similar to the low melting component of the upstream or first nonwoven web so as to allow autogenous bonding of the entire laminate without the need for externally applied adhesive, point bonding and/or other additional means of attachment.
  • the multiple layers can be bonded as desired by one or more means known in the art such as use of an adhesive, mechanical crimping or stitching, thermal bonding, and/or ultrasonic bonding.
  • the potential negative impact of adhesives or point bonding on filtration properties may be limited and/or eliminated by bonding only the edges of the multilayer filtration material.
  • the upstream side of the filter media can comprise a plurality of substantially uniform and autogenously bonded layers.
  • the multilayer filter media 20 can comprise a nonwoven composite material 22 having first side 24 and second side 26 .
  • First autogenously bonded nonwoven web 30 can be attached to first side 24 of nonwoven composite material 22 .
  • Second autogenously bonded nonwoven web 28 can be attached to the second side 26 of nonwoven composite material 22 .
  • Third autogenously bonded nonwoven web 32 can be attached to the first autogenously bonded nonwoven web 30 thereby forming a four-layer laminate.
  • the first and third nonwoven webs 30 and 32 comprise fibers having at least one polymer having the same or substantially similar melting points.
  • the first and third autogenously bonded nonwoven webs 30 and 32 comprise the same materials.
  • the first and third nonwoven webs 30 and 32 can have the same or different basis weights.
  • the first and third autogenously bonded nonwoven webs can comprise materials having the same or different pore structures.
  • the nonwoven fabric having a larger average pore size is preferably positioned upstream of the lower loft, lower density structure thereby allowing the layers to act as a depth filter and provide a filter medium having improved filter life and/or capacity.
  • the first nonwoven web can comprise crimped polyethylene/polypropylene bicomponent spunbond fiber web having a density in the range between about 0.01 and 0.2 g/cm 3 and the third nonwoven web can comprise a crimped polyethylene/polypropylene bicomponent spunbond fiber web having a lower density than the first web.
  • the third layer can have a lower density by comprising a nonwoven web of spunbond fibers with a higher degree of crimp than that of the first nonwoven web.
  • a process line 50 for fabricating a laminate of the present invention is disclosed.
  • Hoppers 52 a and 52 b may be filled with the respective polymeric components 53 a and 53 b.
  • the polymeric components are then melted and extruded by the respective extruders 54 a and 54 b through polymer conduits 56 a and 56 b and through spinneret 58 .
  • Spinnerets are well known to those skilled in the art and, generally, include a housing containing a spin pack which includes a plurality of plates stacked one on top of the another with a pattern of openings arranged to create the desired flow paths through the spinneret.
  • a stream of air from quench blower 60 quenches bicomponent filaments 62 .
  • the filaments 62 are drawn into a fiber draw unit or aspirator 64 and then onto traveling foraminous surface 66 , with the aid of vacuum 68 , to form an unbonded layer of bicomponent spunbond fibers 70 .
  • the unbonded bicomponent fiber layer 70 may be lightly compressed by compression or compaction rollers 72 .
  • the bicomponent fiber layer can optionally be through-air bonded prior to formation of the composite nonwoven material.
  • a bonded spunbond fiber web could be made previously and wound on a supply roll and fed into the present process.
  • Fine fiber composite material 101 can be made using the desired process equipment such as coform apparatus 80 .
  • Polymer is progressively heated to a molten state as it advances through extruder 82 and into meltblowing dies 84 and 85 .
  • Meltblowing dies 84 and 85 can be configured so that two streams of attenuating gas per die converge to form a single stream of gas which entrains and attenuates molten threads 88 , as the threads 88 exit small holes or orifices 86 of the meltblowing dies 84 and 85 .
  • the molten threads 88 are attenuated into fibers and desirably, depending upon the degree of attenuation, microfibers.
  • each meltblowing die 84 and 85 has a corresponding single stream of gas (not shown) containing entrained and attenuated polymer fibers.
  • the gas streams containing polymer fibers are aligned to converge at an impingement zone 90 .
  • One or more types of secondary fibers 92 and/or particulates are added to the two streams of thermoplastic polymer fibers or microfibers at the impingement zone 90 .
  • Introduction of the secondary fibers 92 into the two streams of thermoplastic polymer fibers 88 is designed to produce a graduated distribution of secondary fibers 92 within the combined streams of thermoplastic polymer fibers. This may be accomplished by merging a secondary gas stream containing the secondary fibers 92 between the two streams of thermoplastic polymer fibers 88 so that all three gas streams converge in a controlled manner.
  • Apparatus for accomplishing this merger may include a conventional picker roll assembly 96 which has a plurality of teeth that are adapted to separate a mat or batt 98 of secondary fibers into the individual secondary fibers 92 .
  • the mat or batt 98 of secondary fibers which is fed to the picker roll 96 may be a sheet of pulp fibers (if a two-component mixture of thermoplastic polymer fibers and secondary pulp fibers is desired), a mat of staple fibers (if a two-component mixture of thermoplastic polymer fibers and a secondary staple fibers is desired) or both a sheet of pulp fibers and a mat of staple fibers (if a three-component mixture of thermoplastic polymer fibers, secondary staple fibers and secondary pulp fibers is desired).
  • thermoplastic polymer fibers 88 are usually still semi-molten and tacky at the time of incorporation of the secondary fibers 92 into the thermoplastic polymer fiber streams
  • the secondary fibers 92 are usually not only mechanically entangled within the matrix formed by the thermoplastic polymer fibers 88 but are also thermally bonded or joined to the thermoplastic polymer fibers 88 .
  • the merged stream 100 of thermoplastic polymer fibers and secondary fibers are collected to form a coherent matrix of fibers, which is nonwoven composite web 101 , on the surface of the spunbond fibers 70 .
  • Vacuum boxes can assist in retention and/or formation of the matrix on the surface of the spunbond fibers.
  • a collecting device can be located in the path of the composite stream and the nonwoven composite web fed onto the multicomponent spunbond fiber material.
  • a second nonwoven web 104 such as an autogenously bonded bicomponent spunbond fiber web, can be unwound from a supply roll 102 and fed over the nonwoven composite web 101 .
  • the three layers can then, while in a face-to-face relation, be fed through through-air bonder 108 thereby bonding the respective layers to form an integrated, autogenously bonded three layer laminate 110 .
  • the laminate 110 can be wound on winder roll 112 or further processed and/or converted in-line as desired.
  • the method set forth above, for making a laminate of the present invention can be modified in one or more ways as desired.
  • the entire laminate can be made in-line, replacing the unwind 102 with a second spunbond forming apparatus.
  • each of the individual layers can be made off-line and unwound in series, and bonded together to form the filter media.
  • the coform material lacks sufficient integrity to be wound/unwound without the use of a carrier sheet such as, for example, a lightweight spunbond sheet.
  • Carrier sheets often have basis weights between about 10 g/m 2 and 16 g/m 2 .
  • adhesive can be applied to one or more of the materials in order to increase the peel strength of the multilayer laminate.
  • additional materials can be added to the multilayer laminate in order to further improve the strength, abrasion resistance or other properties of the multilayer laminate as desired.
  • the filtration media of the present invention can have a variety of uses.
  • the filter media can be converted as desired for use with a support member or within a filter element such as, for example, filter cartridges, frames, wire mesh, screen supports and so forth.
  • the fabric can be used in filtration systems associated with metal working, auto grinding, aluminum rolling, sewage or waste water treatment and so forth.
  • filtration media 152 can be unwound from supply roll 150 and travels in the direction of the arrow associated therewith.
  • Container 154 holds contaminated liquid 156 having particulate matter therein. Contaminated liquid 156 is drawn through filtration media 152 thereby producing filtered liquid 158 that is collected in second container 160 .
  • Filtration media 152 can be supported on an open or foraminous surface 159 such as, for example, a mesh screen, a series of pinner bars, or another substantially open structure. As filtration media 152 filters particulate matter within contaminated liquid 156 the filter media eventually becomes saturated forming spent filter medium 153 .
  • the spent filtration medium 153 can be fed to a waste disposal apparatus 162 and/or recycling apparatus.
  • the filtration media 152 is desirably cycled through the filtration system such that filter medium is at least substantially saturated at or fully saturated at or near the end of the filtering window.
  • contaminated liquid 156 can be drawn through filter medium 152 with the aid of a vacuum (not shown) and, as the filtration medium becomes more highly saturated, the pressure drop across the fabric increases.
  • the filtration medium can be cycled through the filtration zone or window.
  • the filtration medium can simply be cycled through the filtration window at a predetermined rate, e.g. at a constant rate or at set intervals.
  • the filtration media has a filtration efficiency of at least 50% for particles ranging in size from about 5 ⁇ to about 25 ⁇ .
  • a 51 g/m 2 nonwoven web of crimped bicomponent spunbond fibers is formed in accord with U.S. Pat. No. 5,382,400 to Pike et al.
  • the bicomponent spunbond fibers comprise 50/50 components of polypropylene (Exxon Chemical Co. polypropylene 3155) and polyethylene (Dow Chemical Co. polyethylene 6811) having a side-by-side configuration.
  • the bicomponent spunbond fiber webs are through-air bonded to form an autogenously bonded nonwoven web having inter-fiber bonds dispersed throughout the web.
  • the autogenously bonded bicomponent spunbond fiber web is then slit to the desired width and wound onto a winder roll.
  • the autogenously bonded spunbond fiber web is subsequently unwound from the winder roll and fed onto a foraminous surface.
  • a coform material is formed directly upon the surface of the autogenously bonded spunbond fiber web forming a two-layer spunbond/coform material which is then wound on a winder roll.
  • the 90 g/m 2 coform material is made in accord with U.S. Pat. No. 4,100,324 to Anderson et al.
  • the meltblown fibers comprise polypropylene (Montell North America polypropylene PF015) and the secondary fibers comprise a fluff pulp (Georgia Pacific fluff pulp RM 4821) with the fluff pulp comprising about 60%, by weight, of the coform.
  • the two-layer spunbond/coform material is subsequently unwound from the winder roll and fed onto a foraminous surface.
  • Bicomponent spunbond fibers the same as those described above with regard to the 51 g/m 2 spunbond fiber web, are formed directly upon the coform layer of the spunbond/coform material.
  • the three layers are then passed through a through-air bonder thereby forming a cohesive three-layer laminate.

Abstract

The present invention provides a filter media comprising (a) a nonwoven composite material comprising a stabilized mixture of thermoplastic microfibers and at least about 50%, by weight, of a secondary fibrous material such as pulp or polymeric staple fibers; (b) a first outer nonwoven web comprising a substantially uniform nonwoven web of autogenously bonded multicomponent fibers; and (c) a second outer nonwoven web wherein the nonwoven composite material is positioned between the first outer nonwoven web and second outer nonwoven web. The filter material is well suited to filtering liquid borne particulate matter ranging in size from 5μ to about 25μ.

Description

This application claims priority from U.S. Provisional Application No. 60/098,526 filed on Aug. 31, 1998.
FIELD OF THE INVENTION
The present invention relates to nonwoven composite fabrics suitable for use for fine particle liquid filtration.
BACKGROUND OF THE INVENTION
Nonwoven fabrics have been used for a variety of filtration and filtration-like applications. As an example, fine fiber webs such as meltblown fabrics and laminates thereof have commonly been used within air filtration media. Meltblown fabrics comprise a web of randomly inter-laid fine fibers, which provide a structure having excellent barrier properties. Generally, as the average fiber diameter decreases there is a corresponding decrease in the average pore size of the fabric. Thus, fabrics with finer fibers or smaller diameter fibers typically have increased barrier properties when compared to like webs of relatively larger fiber size. Therefore, due to fine fibers achievable in meltblown fiber webs and the excellent barrier properties resulting therefrom, meltblown fiber webs have been used in a variety of air filtration media such as, for example, in HEPA filters as discussed in U.S. Pat. No. 4,824,451, bag filters as discussed in U.S. Pat. No. 5,586,997, and filtering bacteria from fluids as discussed in U.S. Pat. No. 5,582,907 to Paul.
However, the needs of air filtration media often vary considerably from those of liquid filtration media. Notably, the particle size distribution within a liquid stream is typically much larger than particles associated with an air stream. In this regard, air filtration media are often expected to collect particles having a size less than about 5μ whereas with fine particle liquid filtration the particle size often varies between about 5μto about 30μ. Multilayer filtration media suitable for air filtration, such as that described above, will often have an unacceptably short filter life when used for liquid filtration. While having an excellent filtration efficiency, the particles sizes associated with liquid filtration are typically of a size and distribution that the meltblown webs and/or laminates thereof quickly become fully saturated and/or create high pressure drops.
Additionally, meltblown fiber nonwoven webs can be relatively weak fabrics and often cannot, by themselves, withstand the conditions experienced by liquid filtration media. Thus, meltblown webs have been supported in multilayer structures to provide filter media or filter-like articles with improved strength and/or durability. In this regard, meltblown fiber nonwoven webs have been laminated with spunbond fiber nonwoven webs in order to provide a material with a combination of good strength and barrier properties. As examples thereof, spunbond/meltblown/spunbond media have been used in sterilization wraps and other like media such as, for example, those described in U.S. Pat. No. 5,464,688 to Timmons et al. and U.S. Pat. No. 4,041,203 to Brock et al. However, many nonwoven laminates are point bonded to form an integrated structure and, in this regard, the point bonds undesirably increase pressure drop without a corresponding increase in filter life and/or efficiency. Additional spunbond fabrics and/or laminates thereof utilized in filtration media are described in PCT Publication Nos. WO 96/13319 and WO 95/13856. Further, composite meltblown nonwoven fabrics, such as those described in U.S. Pat. No. 4,100,324 to Anderson et al., have also been used in liquid filtration applications wherein the composite nonwoven fabric is supported by a spunbond carrier sheet and a felt material.
However, there exists a need for filtration media suitable for use in liquid filtration that has good filtration efficiency and yet which also exhibit a suitable or even extended filtration life. Further, there exists a need for such materials which can provide the desired filtration efficiency and filter life and which are capable of servicing high volumes without creating high pressure drops. Still further, there exists a need for such materials that can be economically produced and which can withstand the pressures, handling and other conditions commonly associated with liquid filtration.
SUMMARY OF THE INVENTION
The aforesaid needs are fulfilled and the problems experienced by those skilled in the art overcome by the filtration media of the present invention comprising (a) a nonwoven composite material having a first and second side and comprising a matrix of thermoplastic microfibers having within said matrix at least about 50%, by weight, of a secondary material; (b) a first nonwoven web proximate the first side of the nonwoven composite material and comprising a substantially uniform nonwoven web of bonded fibers; and (c) a second nonwoven web proximate the second side of the nonwoven composite material such that the nonwoven composite material is positioned between the first and second nonwoven web. Desirably the nonwoven composite material and the first and second nonwoven webs form an integrated, autogenously bonded laminate. The nonwoven composite material desirably has a basis weight between about 30 g/m2 and about 300 g/m2 and further the secondary material of the nonwoven composite material desirably comprises a fibrous material such as, for example, pulp or polymeric staple fibers. The substantially uniform nonwoven material desirably comprises a nonwoven web having inter-fiber bonds throughout the web such as, for example, an autogenously bonded web of crimped polyethylene/polypropylene bicomponent fibers having a density between about 0.01 g/cm3 and about 0.2 g/cm3.
In a further aspect of the invention, liquids containing particulate matter can be filtered by providing the filter media of the present invention, supporting the filter media on a foraminous surface, and then drawing the liquid through the filter media, wherein particulate matter is collected in the filter media as the liquid passes therethrough. The liquid to be filtered desirably contains a substantial amount of particulate matter having a particle size of from about 5μ to about 25μ.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a partially elevated side view of a three layer material of the present invention shown partially broken away;
FIG. 2 is a side cross-sectional view of a three-layer material of the present invention;
FIG. 3 is a partially elevated side view of a four layer filter material of the present invention shown partially broken away;
FIG. 4 is a schematic illustration of a method of making the nonwoven composite fabrics of the present invention; and
FIG. 5 is a schematic illustration of a process of filtering liquids containing particulate matter.
DEFINITIONS
As used herein and in the claims, the term “comprising” is inclusive or open-ended and does not exclude additional unrecited elements, compositional components, or method steps.
As used herein the term “nonwoven fabric” or “nonwoven web” means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted fabric. Nonwoven fabrics or webs have been formed from many processes such as for example, meltblowing processes, spunbonding processes, air-laid and bonded-carded web processes.
As used herein the term “microfibers” or “fine fibers” means small diameter fibers having an average fiber size not greater than about 20 microns. As used herein “fiber size” refers to the diameter of round fibers or the mean diameter for non-round fibers.
As used herein the term “spunbonded fibers” or “spunbond fibers” refers to small diameter fibers of drawn or substantially oriented polymer. Generally, spunbond fibers are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced such as, for example, in U.S. Pat. No. 4,340,563 to Appel et al., U.S. Pat. No. 3,802,817 to Matsuki et al., U.S. Pat. No. 3,542,615 to Dobo et al. and U.S. Pat. No. 5,382,400 to Pike et al.; the entire contents of each of the aforesaid references are incorporated herein by reference. Spunbond fibers are generally not tacky when they are deposited onto a collecting surface and thus often require additional mechanical or chemical bonding to form an integrated stabilized web.
As used herein the term “meltblown fibers” means fibers which are generally formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot, gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are generally carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. Such a process is disclosed, for example, in Naval Research Laboratory Report No. 4364, “Manufacture of Super-fine Organic Fibers” by V. A. Wendt, E. L. Boon, and C. D. Fluharty, Naval Research Laboratory Report No. 5265, “An Improved Device for the Formation of Super-fine Thermoplastic Fibers” by K. D. Lawrence, R. T. Lukas, and J. A. Young, U.S. Pat. No. 3,849,241 to Butin et al.; U.S. Pat. No. 3,849,241 to Butin et al. and U.S. Pat. No. 5,213,881 to Timmons et al.; the entire contents of the aforesaid references are incorporated herein by reference. Meltblown fibers are often microfibers which can be continuous or discontinuous and are generally tacky when deposited onto a collecting surface.
As used herein the term “polymer” generally includes but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and/or modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible spatial configurations of the molecule. These configurations include, but are not limited to, isotactic, syndiotactic and/or random symmetries.
As used herein the term “monocomponent” fiber refers to a fiber formed a single, continuous polymer segment.
As used herein the term “multiconstituent fibers” refers to fibers that have been formed from at least two polymers extruded from the same extruder. Multiconstituent fibers do not have the various polymer components arranged in constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofibrils which start and end at random. Biconstituent fibers are a specific class of multiconstituent fibers wherein the fiber comprises two distinct polymers.
As used herein the term “blend” means a mixture of two or more polymers while the term “alloy” means a sub-class of blends wherein the components are immiscible but have been compatibilized.
As used herein, “ultrasonic bonding” means a process performed, for example, by passing the fabric between a sonic horn and anvil roll as illustrated in U.S. Pat. 4,374,888 to Bornslaeger.
As used herein “point bonding” means bonding one or more layers of fabric at numerous small, discrete bond points. For example, thermal point bonding generally involves passing one or more layers to be bonded between heated rolls such as, for example an engraved patterned roll and a flat calender roll. The engraved roll is patterned in some way so that the entire fabric is not bonded over its entire surface, and the anvil roll is usually flat. As a result, various patterns for engraved rolls have been developed for functional as well as aesthetic reasons. One example of a pattern has points and is the Hansen Pennings or “H&P” pattern with about a 30% bond area and with about 200 bonds/square inch as taught in U.S. Pat. No. 3,855,046 to Hansen et al.
As used herein, the term “autogenous bonding” refers to bonding between discrete parts and/or surfaces independently of external mechanical fasteners or external additives such as adhesives, solders, and so forth. As an example, multicomponent fibers and multiconstituent fibers can be autogenously bonded by developing inter-fiber bonds at fiber contact points without destroying the fiber structure.
DESCRIPTION OF THE INVENTION
In reference to FIGS. 1 and 2, multilayer filtration media 10 can comprise a nonwoven composite material 12, a first substantially uniform nonwoven fabric 14 and a second nonwoven fabric 16 such that nonwoven composite material 12 is disposed there between. The first substantially uniform nonwoven fabric 14 desirably comprises a low density and/or high-loft material and faces upstream of the composite material 12 such that larger particles are collected within first substantially uniform nonwoven fabric 14 prior to reaching nonwoven composite material 12.
Nonwoven composite materials suitable for use with the present invention include materials comprising a mixture or stabilized matrix of thermoplastic fibers and a distinct secondary particulate or fibrous material therein. As an example, suitable nonwoven composite materials may be made by a process in which at least one meltblown die head is arranged near a chute through which other materials are added to the web while it is forming. Suitable secondary materials include, but are not limited to, pulp, cellulose, feathers, polymeric staple fibers and/or other fibrous or particulate matter. Desirably, the composite material comprises a matrix of thermoplastic fibers and a second non-thermoplastic material. Composite materials made from such a process are often referred to as “coform” materials and examples of such processes are described in commonly assigned U.S. Pat. No. 4,818,464 to Lau, U.S. Pat. No. 4,100,324 to Anderson et al., and U.S. Pat. No. 5,350,624 to Georger et al., and U.S. patent application Ser. No. 08/882,308 to Strack et al. filed Jun. 25, 1997; the entire contents of the aforesaid patents and application are incorporated herein by reference. The composite material desirably comprises fine fibers having an average fiber diameter of less than about 20μ and even more desirably between about 0.5μ and about 15μ and still more desirably between about 1μ and about 10μ. Additionally, the fine fiber composite material desirably has a basis weight between about 30 g/m2 to about 300 g/m2 and even more desirably between about 50 g/m2 to about 150 g/m2.
The secondary material desirably comprises between about 50% by weight and about 85% by weight and still more desirably between about 70% by weight and about 80% by weight of the nonwoven composite material. The use of the secondary material within the fine fiber matrix creates a material having a fiber structure which is considerably more irregular and non-uniform as compared to microfiber meltblown fabrics more commonly utilized in filtration applications. Further, due to the more irregular internal structure of the composite material, relative to microfiber meltblown nonwoven webs, larger average pore structures are created. However, the composite material has a structure with less uniform fiber orientation and as a result has numerous tortuous paths through the fabric. This forces particles traveling through the composite material to flow in a multitude of directions which allows the filter to trap particles smaller than that of the complex pathway. As a specific example, the fine fiber nonwoven composite material can comprise a nonwoven web of polypropylene meltblown fibers and the secondary material can comprise generally ribbon-shaped pulp fibers having an average length between about 30μ and 50μ with an average height of about 5μ. Desirably, the nonwoven composite material has a mean pore size ranging from about 15μ to about 45μ and, still more desirably, a mean pore size of about 30μ. In a further aspect, the nonwoven composite material desirably has a wide range of pore sizes such as, for example, having pore sizes ranging from about 10μ to about 140μ. Despite having a mean flow pore size larger than many of the particles to be trapped, the complex and tortuous pathways through the composite material provide a filtration medium capable of efficiently entraping particles of a size from about 5μ to about 25μ. Moreover, such a structure also provides filtration media having good pressure drop as well as capacity and filter life.
The filtration media also has a first or upstream layer comprising a substantially uniform nonwoven web of continuous, bonded fibers. The first nonwoven web desirably has inter-fiber bonds throughout the web and an average pore size greater than that of the composite material. As used herein the term “substantially uniform” means a material which does not have regions of significantly high and low densities such as point bonded fabrics or other similar fabrics having high density and low density regions across the face or central portion of the fabric. Having relatively high-density areas, such as those created at bond points, generally decreases the filtration efficiency of the first nonwoven web and also increases the pressure drop across the filtration media. The substantially uniform, bonded nonwoven fabric can have inter-fiber bonds created by an external adhesive applied to the fibers or autogenous inter-fiber bonding. Desirably, the outer nonwoven web is directly attached to the composite material. However, other intermediate materials may be disposed therebetween.
An exemplary substantially uniform nonwoven material comprises autogenously bonded fibers and still more desirably comprises autogenously bonded multicomponent spunbond fibers. As used herein the term “multicomponent fibers” refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber. Bicomponent fibers refer to a common, specific class of multicomponent fiber wherein the fiber comprises two distinct components. The polymers are arranged in substantially constantly positioned distinct zones or segments across the cross-section of the fibers and extend continuously along the length of the fibers. The configuration of such fibers may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side-by-side arrangement, a pie arrangement or other arrangement. Multicomponent fibers are taught in U.S. Pat. No. 5,108,820 to Kaneko et al., U.S. Pat. No. 4,795,668 to Krueger et al., U.S. Pat. No. 5,336,552 to Strack et al. and in U.S. Pat. No. 5,382,400 to Pike et al.; the entire content of each of the aforesaid patents is incorporated herein by reference. For bicomponent fibers, the polymers are desirably present in ratios of 75/25, 50/50, 25/75 or any other desired ratios. The fibers may also have various shapes such as, for example, ribbon, hollow, multilobal and so forth. Desirably the autogenously bonded nonwoven web has a basis weight of at least 15 g/m2 and desirably between about 30 g/m2 to about 300 g/m2 and even more desirably a basis weight between about 50 g/m2 to about 150 g/m2. Multiconstituent fibers capable of forming interfiber bonds are also believed suitable for use with the present invention. In a preferred embodiment, the autogenously bonded nonwoven web can comprise a multicomponent spunbond fiber web such as is described in U.S. Pat. No. 5,382,400 to Pike et al., U.S. Pat. No. 5,534,339 to Stokes and U.S. Pat. No. 5,855,784 to Pike et al.; the entire contents of the aforesaid patents are incorporated herein by reference. As a specific example, the autogenously bonded nonwoven web can comprise a high-loft web comprising crimped polyethylene/polypropylene conjugate fibers having a density between about 0.01 g/cm3 and about 0.2 g/cm3. As a further example, crimped polyethylene/nylon spunbond fiber webs are also believed well suited for use in the present invention.
Desirably, the substantially uniform nonwoven webs are autogenously bonded using hot air such as developed by “through-air bonding.” As used herein, through-air bonding refers to a process of bonding nonwoven fiber webs in which hot air, that is sufficiently hot to melt one of the polymers comprising the fibers, is forced through the web. The hot air melts the lower melting polymer component and the resolidification of the melted polymer forms bonds between the filaments at contact points to integrate the web. As an example, an exemplary through-air bonding process suitable for use with the fabrics of the present invention can employ an air velocity between 100 and 500 feet per minute and dwell times up to about 6 seconds. Exemplary through-air bonding equipment can direct hot air, having a temperature above the melting temperature of one component and below the melting temperature of another component, from a surrounding hood, through the web, and into a perforated roller supporting the web. Alternatively, the through-air bonder may be a flat arrangement wherein the air is directed vertically downward onto the web. It will be appreciated by those skilled in the art that the requisite air temperature, air velocity and dwell time will vary with respect to the particular polymers comprising the nonwoven web, the composition or structure of the same as well as the degree of bonding desired.
The multilayer filtration media further comprises a second or downstream nonwoven web positioned such that the nonwoven composite web is disposed between the first and second nonwoven webs. Desirably, the second nonwoven layer comprises a material capable of providing additional filtration properties, strength and/or support to the nonwoven composite web. The second nonwoven web can comprise one or more of the materials discussed herein above with regard to the first outer nonwoven web. In one aspect of the invention, the second nonwoven web can comprise spunbond fibers comprising monocomponent, multiconstituent or multicomponent fibers. Desirably, the second nonwoven web likewise comprises a substantially uniform material. The particular polymer(s) or polymer blends used in the second nonwoven web can be selected to achieve the desired strength, abrasion resistance and/or other desired characteristics. The second or downstream nonwoven web desirably has a basis weight between about 15 g/m2 and about 225 g/m2 and still more desirably has a basis weight between about 30 g/m2 and about 100 g/m2. In one embodiment of the present invention, both the first and second nonwoven webs can comprise through-air bonded high-loft, multicomponent spunbond fiber webs. Further, it is desirable that the second nonwoven web likewise comprise a polymer having a softening and/or melting point which is the same as or substantially similar to the low melting component of the upstream or first nonwoven web so as to allow autogenous bonding of the entire laminate without the need for externally applied adhesive, point bonding and/or other additional means of attachment. However, where additional integrity is desired the multiple layers can be bonded as desired by one or more means known in the art such as use of an adhesive, mechanical crimping or stitching, thermal bonding, and/or ultrasonic bonding. The potential negative impact of adhesives or point bonding on filtration properties may be limited and/or eliminated by bonding only the edges of the multilayer filtration material.
In a further aspect of the present invention, the upstream side of the filter media can comprise a plurality of substantially uniform and autogenously bonded layers. In reference to FIG. 3, the multilayer filter media 20 can comprise a nonwoven composite material 22 having first side 24 and second side 26. First autogenously bonded nonwoven web 30 can be attached to first side 24 of nonwoven composite material 22. Second autogenously bonded nonwoven web 28 can be attached to the second side 26 of nonwoven composite material 22. Third autogenously bonded nonwoven web 32 can be attached to the first autogenously bonded nonwoven web 30 thereby forming a four-layer laminate. Desirably, the first and third nonwoven webs 30 and 32 comprise fibers having at least one polymer having the same or substantially similar melting points. Still more desirably, the first and third autogenously bonded nonwoven webs 30 and 32 comprise the same materials. The first and third nonwoven webs 30 and 32 can have the same or different basis weights. Further, the first and third autogenously bonded nonwoven webs can comprise materials having the same or different pore structures. Desirably, the nonwoven fabric having a larger average pore size is preferably positioned upstream of the lower loft, lower density structure thereby allowing the layers to act as a depth filter and provide a filter medium having improved filter life and/or capacity. As a particular example, the first nonwoven web can comprise crimped polyethylene/polypropylene bicomponent spunbond fiber web having a density in the range between about 0.01 and 0.2 g/cm3 and the third nonwoven web can comprise a crimped polyethylene/polypropylene bicomponent spunbond fiber web having a lower density than the first web. In one embodiment, the third layer can have a lower density by comprising a nonwoven web of spunbond fibers with a higher degree of crimp than that of the first nonwoven web.
In reference to FIG. 4, a process line 50 for fabricating a laminate of the present invention is disclosed. Hoppers 52 a and 52 b may be filled with the respective polymeric components 53 a and 53 b. The polymeric components are then melted and extruded by the respective extruders 54 a and 54 b through polymer conduits 56 a and 56 b and through spinneret 58. Spinnerets are well known to those skilled in the art and, generally, include a housing containing a spin pack which includes a plurality of plates stacked one on top of the another with a pattern of openings arranged to create the desired flow paths through the spinneret. As the extruded filaments extend below spinneret 58, a stream of air from quench blower 60 quenches bicomponent filaments 62. The filaments 62 are drawn into a fiber draw unit or aspirator 64 and then onto traveling foraminous surface 66, with the aid of vacuum 68, to form an unbonded layer of bicomponent spunbond fibers 70. The unbonded bicomponent fiber layer 70 may be lightly compressed by compression or compaction rollers 72. The bicomponent fiber layer can optionally be through-air bonded prior to formation of the composite nonwoven material. Those skilled in the art will appreciate that a bonded spunbond fiber web could be made previously and wound on a supply roll and fed into the present process.
Fine fiber composite material 101 can be made using the desired process equipment such as coform apparatus 80. Polymer is progressively heated to a molten state as it advances through extruder 82 and into meltblowing dies 84 and 85. Meltblowing dies 84 and 85 can be configured so that two streams of attenuating gas per die converge to form a single stream of gas which entrains and attenuates molten threads 88, as the threads 88 exit small holes or orifices 86 of the meltblowing dies 84 and 85. The molten threads 88 are attenuated into fibers and desirably, depending upon the degree of attenuation, microfibers. Thus, each meltblowing die 84 and 85 has a corresponding single stream of gas (not shown) containing entrained and attenuated polymer fibers. The gas streams containing polymer fibers are aligned to converge at an impingement zone 90.
One or more types of secondary fibers 92 and/or particulates are added to the two streams of thermoplastic polymer fibers or microfibers at the impingement zone 90. Introduction of the secondary fibers 92 into the two streams of thermoplastic polymer fibers 88 is designed to produce a graduated distribution of secondary fibers 92 within the combined streams of thermoplastic polymer fibers. This may be accomplished by merging a secondary gas stream containing the secondary fibers 92 between the two streams of thermoplastic polymer fibers 88 so that all three gas streams converge in a controlled manner.
Apparatus for accomplishing this merger may include a conventional picker roll assembly 96 which has a plurality of teeth that are adapted to separate a mat or batt 98 of secondary fibers into the individual secondary fibers 92. The mat or batt 98 of secondary fibers which is fed to the picker roll 96 may be a sheet of pulp fibers (if a two-component mixture of thermoplastic polymer fibers and secondary pulp fibers is desired), a mat of staple fibers (if a two-component mixture of thermoplastic polymer fibers and a secondary staple fibers is desired) or both a sheet of pulp fibers and a mat of staple fibers (if a three-component mixture of thermoplastic polymer fibers, secondary staple fibers and secondary pulp fibers is desired). FIG. 4 further illustrates that the secondary gas stream 94 carrying the secondary fibers 92 is directed between the streams of thermoplastic polymer fibers 88 so that the streams contact at the impingement zone 90. Due to the fact that the thermoplastic polymer fibers 88 are usually still semi-molten and tacky at the time of incorporation of the secondary fibers 92 into the thermoplastic polymer fiber streams, the secondary fibers 92 are usually not only mechanically entangled within the matrix formed by the thermoplastic polymer fibers 88 but are also thermally bonded or joined to the thermoplastic polymer fibers 88. The merged stream 100 of thermoplastic polymer fibers and secondary fibers are collected to form a coherent matrix of fibers, which is nonwoven composite web 101, on the surface of the spunbond fibers 70. Vacuum boxes (not shown) can assist in retention and/or formation of the matrix on the surface of the spunbond fibers. Alternately, a collecting device can be located in the path of the composite stream and the nonwoven composite web fed onto the multicomponent spunbond fiber material.
A second nonwoven web 104, such as an autogenously bonded bicomponent spunbond fiber web, can be unwound from a supply roll 102 and fed over the nonwoven composite web 101. The three layers can then, while in a face-to-face relation, be fed through through-air bonder 108 thereby bonding the respective layers to form an integrated, autogenously bonded three layer laminate 110. The laminate 110 can be wound on winder roll 112 or further processed and/or converted in-line as desired.
The method set forth above, for making a laminate of the present invention, can be modified in one or more ways as desired. As an example, the entire laminate can be made in-line, replacing the unwind 102 with a second spunbond forming apparatus. Additionally, to achieve the desired basis weights or web characteristics it may likewise be desirable to employ a series of spunbond or coform forming apparatus. Still further, each of the individual layers can be made off-line and unwound in series, and bonded together to form the filter media. However, typically the coform material lacks sufficient integrity to be wound/unwound without the use of a carrier sheet such as, for example, a lightweight spunbond sheet. Carrier sheets often have basis weights between about 10 g/m2 and 16 g/m2. Further, adhesive can be applied to one or more of the materials in order to increase the peel strength of the multilayer laminate. Still further, additional materials can be added to the multilayer laminate in order to further improve the strength, abrasion resistance or other properties of the multilayer laminate as desired.
The filtration media of the present invention can have a variety of uses. The filter media can be converted as desired for use with a support member or within a filter element such as, for example, filter cartridges, frames, wire mesh, screen supports and so forth. As specific examples thereof the fabric can be used in filtration systems associated with metal working, auto grinding, aluminum rolling, sewage or waste water treatment and so forth. In reference to FIG. 5, filtration media 152 can be unwound from supply roll 150 and travels in the direction of the arrow associated therewith. Container 154 holds contaminated liquid 156 having particulate matter therein. Contaminated liquid 156 is drawn through filtration media 152 thereby producing filtered liquid 158 that is collected in second container 160. The liquid flows through the filter media in the direction of the arrows associated therewith. Filtration media 152 can be supported on an open or foraminous surface 159 such as, for example, a mesh screen, a series of pinner bars, or another substantially open structure. As filtration media 152 filters particulate matter within contaminated liquid 156 the filter media eventually becomes saturated forming spent filter medium 153. The spent filtration medium 153 can be fed to a waste disposal apparatus 162 and/or recycling apparatus. The filtration media 152 is desirably cycled through the filtration system such that filter medium is at least substantially saturated at or fully saturated at or near the end of the filtering window. In this regard, contaminated liquid 156 can be drawn through filter medium 152 with the aid of a vacuum (not shown) and, as the filtration medium becomes more highly saturated, the pressure drop across the fabric increases. When a particular pressure drop is reached the filtration medium can be cycled through the filtration zone or window. Additionally and/or alternatively, the filtration medium can simply be cycled through the filtration window at a predetermined rate, e.g. at a constant rate or at set intervals. Desirably, the filtration media has a filtration efficiency of at least 50% for particles ranging in size from about 5μ to about 25μ.
EXAMPLE 1
A 51 g/m2 nonwoven web of crimped bicomponent spunbond fibers is formed in accord with U.S. Pat. No. 5,382,400 to Pike et al. The bicomponent spunbond fibers comprise 50/50 components of polypropylene (Exxon Chemical Co. polypropylene 3155) and polyethylene (Dow Chemical Co. polyethylene 6811) having a side-by-side configuration. The bicomponent spunbond fiber webs are through-air bonded to form an autogenously bonded nonwoven web having inter-fiber bonds dispersed throughout the web. The autogenously bonded bicomponent spunbond fiber web is then slit to the desired width and wound onto a winder roll. The autogenously bonded spunbond fiber web is subsequently unwound from the winder roll and fed onto a foraminous surface. A coform material is formed directly upon the surface of the autogenously bonded spunbond fiber web forming a two-layer spunbond/coform material which is then wound on a winder roll. The 90 g/m2 coform material is made in accord with U.S. Pat. No. 4,100,324 to Anderson et al. The meltblown fibers comprise polypropylene (Montell North America polypropylene PF015) and the secondary fibers comprise a fluff pulp (Georgia Pacific fluff pulp RM 4821) with the fluff pulp comprising about 60%, by weight, of the coform. The two-layer spunbond/coform material is subsequently unwound from the winder roll and fed onto a foraminous surface. Bicomponent spunbond fibers, the same as those described above with regard to the 51 g/m2 spunbond fiber web, are formed directly upon the coform layer of the spunbond/coform material. The three layers are then passed through a through-air bonder thereby forming a cohesive three-layer laminate.
While various patents and other reference materials have been incorporated herein by reference, to the extent there is any inconsistency between incorporated material and that of the written specification, the written specification shall control. In addition, while the invention has been described in detail with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various alterations, modifications and other changes may be made to the invention without departing from the spirit and scope of the present invention. It is therefore intended that the appended claims cover all such modifications, alterations and other changes.

Claims (14)

What is claimed is:
1. Filtration media consisting essentially of:
a nonwoven composite material having a first and second side and comprising a stabilized matrix of thermoplastic microfibers having within said microfiber matrix at least about 50%, by weight, of a secondary material;
a first nonwoven web adjacent said first side of said nonwoven composite material wherein said first nonwoven web comprises a substantially uniform nowoven web having inter-fiber bonds throughout the web; and
a second nonwoven web adjacent said second side of said nonwoven composite material and wherein said first and second nonwoven webs and said nonwoven composite material comprise an integrated autogenously bonded multilayer laminate.
2. The filtration media of claim 1 wherein said nonwoven composite material has a basis weight between about 30 g/m2 and about 300 g/m2.
3. The filtration media of claim 2 wherein said secondary material of the nonwoven composite material comprises a fibrous material selected from pulp, polymeric staple fibers, and feathers.
4. The filtration media of claim 2 wherein said secondary material of the nonwoven composite material comprises a fibrous, non-polymeric material.
5. The filtration media of claim 4 wherein said secondary material of the nonwoven composite material comprises pulp.
6. The filtration media of claim 3 wherein said first nonwoven web comprises a nonwoven web of continuous fibers selected from the group consisting of multicomponent and multiconstituent fibers.
7. The filtration media of claim 6 wherein said first nonwoven web comprises an autogenously bonded web of crimped multicomponent spunbond fibers having a density between about 0.01 g/cm3 and about 0.2 g/cm3.
8. The filtration media of claim 7 wherein said first nonwoven web of multicomponent spunbond fibers comprises a web of polyethylene/polypropylene bicomponent spunbond fibers.
9. The filtration media of claim 8 wherein said second nonwoven web comprises a nonwoven web of continuous fibers selected from the group consisting of multicomponent and multiconstituent fibers.
10. The filtration media of claim 8 wherein said composite material comprises meltblown fibers having an average fiber size less than about 15μ.
11. The filtration media of claim 9 wherein said second nonwoven web comprises a substantially uniform, autogenously bonded nonwoven web of crimped multicomponent spunbond fibers and further wherein said fibers of said second nonwoven web comprise polyethylene and a second polymer.
12. The filtration media of claim 11 wherein said first autogenously bonded nonwoven web has a basis weight between about 30 g/m2 and 150 g/m2, and said second nonwoven web has a basis weight of between about 30 g/m2 and 150 g/m2.
13. The filtration media of claim 7 further comprising a third nonwoven web wherein said third nonwoven web comprises a substantially uniform and autogenously bonded nonwoven web of crimped multicomponent spunbond fibers and further wherein said third nonwoven web has a density greater than the density of said first nonwoven web.
14. The filtration media of claim 13 wherein said nonwoven composite material has a basis weight between about 50 g/m2 and 300 g/m2, said first and third nonwoven webs have a combined basis weight between about 50 g/m2 and 150 g/m2, and said second nonwoven web a basis weight of between about 30 g/m2 and 150 g/m2.
US09/358,125 1998-08-31 1999-07-20 Fine particle liquid filtration media Abandoned USH2086H1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/358,125 USH2086H1 (en) 1998-08-31 1999-07-20 Fine particle liquid filtration media
CA002279174A CA2279174A1 (en) 1998-08-31 1999-07-30 Fine particle liquid filtration media

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9852698P 1998-08-31 1998-08-31
US09/358,125 USH2086H1 (en) 1998-08-31 1999-07-20 Fine particle liquid filtration media

Publications (1)

Publication Number Publication Date
USH2086H1 true USH2086H1 (en) 2003-10-07

Family

ID=28677808

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/358,125 Abandoned USH2086H1 (en) 1998-08-31 1999-07-20 Fine particle liquid filtration media

Country Status (2)

Country Link
US (1) USH2086H1 (en)
CA (1) CA2279174A1 (en)

Cited By (400)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030203694A1 (en) * 2002-04-26 2003-10-30 Kimberly-Clark Worldwide, Inc. Coform filter media having increased particle loading capacity
US20030213546A1 (en) * 2002-03-11 2003-11-20 Herbert Hartgrove Extensible nonwoven fabric
US20050023201A1 (en) * 2003-07-31 2005-02-03 Nifco Inc. Fuel filter device
US20050197622A1 (en) * 2004-03-02 2005-09-08 Dragerwerk Aktiengsellschaft Device for dispensing substances
US20060054571A1 (en) * 2004-09-10 2006-03-16 Lopez Gerardo V Continuous loop filter media and method of filtering particulate
US20060096932A1 (en) * 2004-11-05 2006-05-11 Dema Keh B High strength, high capacity filter media and structure
US20090283519A1 (en) * 2003-02-21 2009-11-19 Gloria Newton Disposable microwave protector
US20100252510A1 (en) * 2009-04-03 2010-10-07 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
EP2308579A1 (en) 2004-11-05 2011-04-13 Donaldson Company, Inc. Aerosol separator
US8021455B2 (en) 2007-02-22 2011-09-20 Donaldson Company, Inc. Filter element and method
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
US8148278B2 (en) 2003-06-19 2012-04-03 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8178199B2 (en) 2003-06-19 2012-05-15 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8177875B2 (en) 2005-02-04 2012-05-15 Donaldson Company, Inc. Aerosol separator; and method
US8236713B2 (en) 2003-06-19 2012-08-07 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
WO2012106659A1 (en) 2011-02-03 2012-08-09 Donaldson Company, Inc. Filter media pack, filter assembly, and method
US8267681B2 (en) 2009-01-28 2012-09-18 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US20150108199A1 (en) * 2012-03-28 2015-04-23 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising tissue ingrowth features
US9114339B2 (en) 2007-02-23 2015-08-25 Donaldson Company, Inc. Formed filter element
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US9283501B2 (en) 2010-04-27 2016-03-15 Hollingsworth & Vose Company Filter media with a multi-layer structure
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
EP4026600A1 (en) 2004-11-05 2022-07-13 Donaldson Company, Inc. Filter medium and structure
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821384B2 (en) * 2017-08-28 2020-11-03 Ronie Reuben Down feather filter medium

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041203A (en) 1972-09-06 1977-08-09 Kimberly-Clark Corporation Nonwoven thermoplastic fabric
US4047534A (en) 1977-01-03 1977-09-13 Kimberly-Clark Corporation Nursing pad
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US4118531A (en) * 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
US4375718A (en) 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
US4436780A (en) 1982-09-02 1984-03-13 Kimberly-Clark Corporation Nonwoven wiper laminate
US4795668A (en) 1983-10-11 1989-01-03 Minnesota Mining And Manufacturing Company Bicomponent fibers and webs made therefrom
US4818464A (en) 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
US4824451A (en) 1985-12-31 1989-04-25 Kimberly-Clark Corporation Melt-blown filter medium
US4973503A (en) 1985-06-26 1990-11-27 Kimberly-Clark Corporation Mixed fiber tow or tube and method of making
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5350624A (en) 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5370830A (en) 1992-09-23 1994-12-06 Kimberly-Clark Corporation Hydrosonic process for forming electret filter media
US5409768A (en) 1990-08-07 1995-04-25 Kimberly-Clark Corporation Multicomponent nonwoven fibrous web
US5418045A (en) 1992-08-21 1995-05-23 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric
WO1995013856A1 (en) 1993-11-16 1995-05-26 Kimberly-Clark Corporation Nonwoven filter media
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
US5498463A (en) 1994-03-21 1996-03-12 Kimberly-Clark Corporation Polyethylene meltblown fabric with barrier properties
WO1996013319A1 (en) 1994-10-31 1996-05-09 Kimberly-Clark Worldwide, Inc. High density nonwoven filter media
US5534339A (en) 1994-02-25 1996-07-09 Kimberly-Clark Corporation Polyolefin-polyamide conjugate fiber web
US5533991A (en) 1991-07-17 1996-07-09 Kimberly-Clark Corporation Bodyside cover for an absorbent article
WO1996037276A1 (en) 1995-05-25 1996-11-28 Kimberly-Clark Worldwide, Inc. Filter matrix
US5586997A (en) 1994-07-28 1996-12-24 Pall Corporation Bag filter
US5603830A (en) 1995-05-24 1997-02-18 Kimberly-Clark Corporation Caffeine adsorbent liquid filter with integrated adsorbent
US5645057A (en) * 1995-06-07 1997-07-08 Fiberweb North America, Inc. Meltblown barrier webs and processes of making same
US5667562A (en) 1996-04-19 1997-09-16 Kimberly-Clark Worldwide, Inc. Spunbond vacuum cleaner webs
US5705251A (en) 1995-06-27 1998-01-06 Kimberly-Clark Worldwide, Inc. Garment with liquid intrusion protection
US5709735A (en) 1995-10-20 1998-01-20 Kimberly-Clark Worldwide, Inc. High stiffness nonwoven filter medium
US5721180A (en) 1995-12-22 1998-02-24 Pike; Richard Daniel Laminate filter media
US5736473A (en) 1994-09-14 1998-04-07 Kimberly-Clark Corp. Fibrous composite structure including particulates
US5773375A (en) * 1996-05-29 1998-06-30 Swan; Michael D. Thermally stable acoustical insulation
US5906743A (en) 1995-05-24 1999-05-25 Kimberly Clark Worldwide, Inc. Filter with zeolitic adsorbent attached to individual exposed surfaces of an electret-treated fibrous matrix
US6037282A (en) * 1994-08-22 2000-03-14 Sca Hygiene Paper Ab Nonwoven material comprising a certain proportion of recycled fibres originating from nonwoven and/or textile waste

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041203A (en) 1972-09-06 1977-08-09 Kimberly-Clark Corporation Nonwoven thermoplastic fabric
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US4118531A (en) * 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
US4047534A (en) 1977-01-03 1977-09-13 Kimberly-Clark Corporation Nursing pad
US4375718A (en) 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
US4436780A (en) 1982-09-02 1984-03-13 Kimberly-Clark Corporation Nonwoven wiper laminate
US4795668A (en) 1983-10-11 1989-01-03 Minnesota Mining And Manufacturing Company Bicomponent fibers and webs made therefrom
US4818464A (en) 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
US4973503A (en) 1985-06-26 1990-11-27 Kimberly-Clark Corporation Mixed fiber tow or tube and method of making
US4824451A (en) 1985-12-31 1989-04-25 Kimberly-Clark Corporation Melt-blown filter medium
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5409768A (en) 1990-08-07 1995-04-25 Kimberly-Clark Corporation Multicomponent nonwoven fibrous web
US5533991A (en) 1991-07-17 1996-07-09 Kimberly-Clark Corporation Bodyside cover for an absorbent article
US5418045A (en) 1992-08-21 1995-05-23 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric
US5370830A (en) 1992-09-23 1994-12-06 Kimberly-Clark Corporation Hydrosonic process for forming electret filter media
US5350624A (en) 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
WO1995013856A1 (en) 1993-11-16 1995-05-26 Kimberly-Clark Corporation Nonwoven filter media
US5534339A (en) 1994-02-25 1996-07-09 Kimberly-Clark Corporation Polyolefin-polyamide conjugate fiber web
US5498463A (en) 1994-03-21 1996-03-12 Kimberly-Clark Corporation Polyethylene meltblown fabric with barrier properties
US5586997A (en) 1994-07-28 1996-12-24 Pall Corporation Bag filter
US6037282A (en) * 1994-08-22 2000-03-14 Sca Hygiene Paper Ab Nonwoven material comprising a certain proportion of recycled fibres originating from nonwoven and/or textile waste
US5736473A (en) 1994-09-14 1998-04-07 Kimberly-Clark Corp. Fibrous composite structure including particulates
WO1996013319A1 (en) 1994-10-31 1996-05-09 Kimberly-Clark Worldwide, Inc. High density nonwoven filter media
US5603830A (en) 1995-05-24 1997-02-18 Kimberly-Clark Corporation Caffeine adsorbent liquid filter with integrated adsorbent
US5906743A (en) 1995-05-24 1999-05-25 Kimberly Clark Worldwide, Inc. Filter with zeolitic adsorbent attached to individual exposed surfaces of an electret-treated fibrous matrix
WO1996037276A1 (en) 1995-05-25 1996-11-28 Kimberly-Clark Worldwide, Inc. Filter matrix
US5877099A (en) * 1995-05-25 1999-03-02 Kimberly Clark Co Filter matrix
US5645057A (en) * 1995-06-07 1997-07-08 Fiberweb North America, Inc. Meltblown barrier webs and processes of making same
US5705251A (en) 1995-06-27 1998-01-06 Kimberly-Clark Worldwide, Inc. Garment with liquid intrusion protection
US5709735A (en) 1995-10-20 1998-01-20 Kimberly-Clark Worldwide, Inc. High stiffness nonwoven filter medium
US5721180A (en) 1995-12-22 1998-02-24 Pike; Richard Daniel Laminate filter media
US5873968A (en) 1995-12-22 1999-02-23 Kimberly-Clark Worldwide, Inc. Laminate filter media
US5667562A (en) 1996-04-19 1997-09-16 Kimberly-Clark Worldwide, Inc. Spunbond vacuum cleaner webs
US5773375A (en) * 1996-05-29 1998-06-30 Swan; Michael D. Thermally stable acoustical insulation

Cited By (806)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213546A1 (en) * 2002-03-11 2003-11-20 Herbert Hartgrove Extensible nonwoven fabric
US20030203694A1 (en) * 2002-04-26 2003-10-30 Kimberly-Clark Worldwide, Inc. Coform filter media having increased particle loading capacity
US20090283519A1 (en) * 2003-02-21 2009-11-19 Gloria Newton Disposable microwave protector
US8388877B2 (en) 2003-06-19 2013-03-05 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8314041B2 (en) 2003-06-19 2012-11-20 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8435908B2 (en) 2003-06-19 2013-05-07 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8623247B2 (en) 2003-06-19 2014-01-07 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8444896B2 (en) 2003-06-19 2013-05-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8398907B2 (en) 2003-06-19 2013-03-19 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8236713B2 (en) 2003-06-19 2012-08-07 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8178199B2 (en) 2003-06-19 2012-05-15 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8444895B2 (en) 2003-06-19 2013-05-21 Eastman Chemical Company Processes for making water-dispersible and multicomponent fibers from sulfopolyesters
US8691130B2 (en) 2003-06-19 2014-04-08 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8262958B2 (en) 2003-06-19 2012-09-11 Eastman Chemical Company Process of making woven articles comprising water-dispersible multicomponent fibers
US8257628B2 (en) 2003-06-19 2012-09-04 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8247335B2 (en) 2003-06-19 2012-08-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8148278B2 (en) 2003-06-19 2012-04-03 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8163385B2 (en) 2003-06-19 2012-04-24 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US20050023201A1 (en) * 2003-07-31 2005-02-03 Nifco Inc. Fuel filter device
US7833192B2 (en) * 2004-03-02 2010-11-16 DRäGERWERK AKTIENGESELLSCHAFT Device for dispensing substances
US20050197622A1 (en) * 2004-03-02 2005-09-08 Dragerwerk Aktiengsellschaft Device for dispensing substances
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US20060054571A1 (en) * 2004-09-10 2006-03-16 Lopez Gerardo V Continuous loop filter media and method of filtering particulate
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
EP4026600A1 (en) 2004-11-05 2022-07-13 Donaldson Company, Inc. Filter medium and structure
US8268033B2 (en) 2004-11-05 2012-09-18 Donaldson Company, Inc. Filter medium and structure
US8512435B2 (en) 2004-11-05 2013-08-20 Donaldson Company, Inc. Filter medium and breather filter structure
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
US8641796B2 (en) 2004-11-05 2014-02-04 Donaldson Company, Inc. Filter medium and breather filter structure
US8277529B2 (en) 2004-11-05 2012-10-02 Donaldson Company, Inc. Filter medium and breather filter structure
US20060096932A1 (en) * 2004-11-05 2006-05-11 Dema Keh B High strength, high capacity filter media and structure
US10610813B2 (en) 2004-11-05 2020-04-07 Donaldson Company, Inc. Filter medium and breather filter structure
US20080073296A1 (en) * 2004-11-05 2008-03-27 Donaldson Company Inc. High strength, high capacity filter media and structure
USRE49097E1 (en) 2004-11-05 2022-06-07 Donaldson Company, Inc. Filter medium and structure
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
EP2308579A1 (en) 2004-11-05 2011-04-13 Donaldson Company, Inc. Aerosol separator
EP2311543A1 (en) 2004-11-05 2011-04-20 Donaldson Company, Inc. Aerosol separator
US11504663B2 (en) 2004-11-05 2022-11-22 Donaldson Company, Inc. Filter medium and breather filter structure
EP2311542A1 (en) 2004-11-05 2011-04-20 Donaldson Company, Inc. Aerosol separator
US7985344B2 (en) 2004-11-05 2011-07-26 Donaldson Company, Inc. High strength, high capacity filter media and structure
US8021457B2 (en) 2004-11-05 2011-09-20 Donaldson Company, Inc. Filter media and structure
US8177875B2 (en) 2005-02-04 2012-05-15 Donaldson Company, Inc. Aerosol separator; and method
US8460424B2 (en) 2005-02-04 2013-06-11 Donaldson Company, Inc. Aerosol separator; and method
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8021455B2 (en) 2007-02-22 2011-09-20 Donaldson Company, Inc. Filter element and method
US9114339B2 (en) 2007-02-23 2015-08-25 Donaldson Company, Inc. Formed filter element
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11925346B2 (en) 2007-06-29 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US10316468B2 (en) 2009-01-28 2019-06-11 Donaldson Company, Inc. Fibrous media
US8267681B2 (en) 2009-01-28 2012-09-18 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
US9885154B2 (en) 2009-01-28 2018-02-06 Donaldson Company, Inc. Fibrous media
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US20100252510A1 (en) * 2009-04-03 2010-10-07 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US10682595B2 (en) 2009-04-03 2020-06-16 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US10022657B2 (en) 2009-04-03 2018-07-17 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8951420B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US9950284B2 (en) 2009-04-03 2018-04-24 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US9283501B2 (en) 2010-04-27 2016-03-15 Hollingsworth & Vose Company Filter media with a multi-layer structure
US10155187B2 (en) 2010-04-27 2018-12-18 Hollingsworth & Vose Company Filter media with a multi-layer structure
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
WO2012106659A1 (en) 2011-02-03 2012-08-09 Donaldson Company, Inc. Filter media pack, filter assembly, and method
US10610812B2 (en) 2011-02-03 2020-04-07 Donaldson Company, Inc. Filter media pack, filter assembly, and method
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US9175440B2 (en) 2012-01-31 2015-11-03 Eastman Chemical Company Processes to produce short-cut microfibers
US8906200B2 (en) 2012-01-31 2014-12-09 Eastman Chemical Company Processes to produce short cut microfibers
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
US8871052B2 (en) 2012-01-31 2014-10-28 Eastman Chemical Company Processes to produce short cut microfibers
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US11918220B2 (en) * 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US20150108199A1 (en) * 2012-03-28 2015-04-23 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising tissue ingrowth features
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US10441285B2 (en) * 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US11931031B2 (en) 2014-10-16 2024-03-19 Cilag Gmbh International Staple cartridge comprising a deck including an upper surface and a lower surface
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11931038B2 (en) 2014-10-29 2024-03-19 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11167232B2 (en) 2014-12-19 2021-11-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US11684885B2 (en) 2014-12-19 2023-06-27 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Also Published As

Publication number Publication date
CA2279174A1 (en) 2000-02-29

Similar Documents

Publication Publication Date Title
USH2086H1 (en) Fine particle liquid filtration media
US5817584A (en) High efficiency breathing mask fabrics
US5709735A (en) High stiffness nonwoven filter medium
US5667562A (en) Spunbond vacuum cleaner webs
US5707735A (en) Multilobal conjugate fibers and fabrics
US8410006B2 (en) Composite filter media with high surface area fibers
US6169045B1 (en) Nonwoven filter media
EP0729375B1 (en) Nonwoven filter media
US20110210081A1 (en) Fine fiber liquid particulate filter media
US20030045192A1 (en) Rigidified nonwoven and method of producing same
DE10332439B3 (en) Two-layer synthetic filter element
EP3601656A1 (en) Spun-bonded fabric material, object comprising a spun-bonded fabric material, filter medium, filter element, and use thereof
DE60128317T2 (en) Non-woven fabric with powder, process and associated fabrics
US20030203694A1 (en) Coform filter media having increased particle loading capacity
US20050148266A1 (en) Self-supporting pleated electret filter media
US20220228306A1 (en) Method of making a nonwoven fiber web, nonwoven fiber web, and multi-component fiber
MXPA99007929A (en) Fine particle liquid filtration media
CA2231507C (en) High stiffness nonwoven filter medium
CA2249317A1 (en) Spunbond vacuum cleaner webs
MXPA98008570A (en) Fabrics for cleaner with vacuum united by hil

Legal Events

Date Code Title Description
AS Assignment

Owner name: KIMBERLY-CLARK WORLDWIDE, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMSLER, NICOLE MICHELE;REEL/FRAME:010118/0430

Effective date: 19990720

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: KIMBERLY-CLARK WORLDWIDE, INC., WISCONSIN

Free format text: NAME CHANGE;ASSIGNOR:KIMBERLY-CLARK WORLDWIDE, INC.;REEL/FRAME:034880/0634

Effective date: 20150101