USH1029H - Particulate additives to increase the modulus of thermoplastic materials - Google Patents

Particulate additives to increase the modulus of thermoplastic materials Download PDF

Info

Publication number
USH1029H
USH1029H US07/376,280 US37628089A USH1029H US H1029 H USH1029 H US H1029H US 37628089 A US37628089 A US 37628089A US H1029 H USH1029 H US H1029H
Authority
US
United States
Prior art keywords
powder
filler
thermoplastic
microns
particle sizes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/376,280
Inventor
Theodore J. Reinhart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US07/376,280 priority Critical patent/USH1029H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: REINHART, THEODORE J.
Application granted granted Critical
Publication of USH1029H publication Critical patent/USH1029H/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals

Definitions

  • the present invention relates generally to matrix materials used in making fiber reinforced composite materials, and more specifically to particulate additives to thermoplastic matrix materials to increase the modulus of the matrix materials and provide greater stabilization of the fibers.
  • Advanced composites are high modulus (stiffness), high strength composite materials used in applications requiring high strength to weight ratios. They are typically made by embedding very high stiffness continuous fibers, such as glass, carbon or silicon carbide, into a polymer matrix, such as an epoxy or polyester resin.
  • continuous fibers is understood to have its commonly understood meanings in the art of composite materials, particularly that of very long fibers, generally mutually aligned for enhanced strength along a particular axis, and not chopped or very short fibers generally randomly aligned.
  • the fibers provide stiffness and strength to the composite material, but are brittle and highly sensitive to cracks and flaws.
  • the matrix material absorbs energy and hinders the spread of small cracks. The presence of the matrix material allows a closer approach to using the theoretical maximum strength of the fibers in practical applications.
  • Thermosetting resins such as epoxies and polyesters, take a permanent set when molded, and cannot thereafter be remolded.
  • Thermoplastic resins such as nylons, polycarbonates, acetals, polyethylenes, some polyesters, polysulfone and polyetheretherketone, become soft and pliable when heated and may be remolded without changing their physical properties. This property makes thermoplastic resins, when not used as a composite material matrix, very adaptable to low cost manufacturing methods such as injection molding and extrusion.
  • polymer resins are generally impregnated into continuous reinforcing fibers to form preimpregnated fiber material (generally films or sheets), called prepregs, which are laid up in laminated plies and then cured under heat and pressure to make final structural shapes.
  • prepregs preimpregnated fiber material
  • the overall shape of composite structures fabricated from laminated prepregs made with thermoplastic resins can, under heat and pressure, be later reshaped and reformed.
  • processing of the prepregs themselves is easier with thermoplastic resins than with thermosetting resins.
  • thermoplastic resins are not as strong in compression as those made with thermosetting resins. While thermoplastic resins do promise better resistance against delaminating, their lower strength in compression makes composites made with thermoplastic matrix materials generally more susceptible to fiber microbuckling, kinking and shear band formation.
  • thermoplastic matrix materials without significantly affecting their desirable mechanical properties and processing and fabrication advantages.
  • thermoplastic matrix materials used in continuous fiber reinforced composite materials.
  • thermoplastic matrix materials are not changed and the desirable processing and fabrication conditions remain the same.
  • the present invention provides a method for improving the compression strength of thermoplastic matrix materials used in continuous fiber reinforced composite materials.
  • the unique discovery of the present invention is that blending mineral or metallic powder (filler) with powdered thermoplastic resin material will produce a thermoplastic powder and filler blend that can be impregnated into continuous reinforcing fibers to produce a thermoplastic resin prepreg having the improved workability of thermoplastic resin advanced composites, compared to more conventional thermosetting resin prepregs, and also having much improved modulus properties (Young's and shear), especially in compression.
  • the present invention is directed to a blended powder of thermoplastic resin and filler, comprising a powdered thermoplastic resin, having particle sizes of about 1 to 5 microns and a filler, comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
  • the invention is also directed to a method for making a blended powder of thermoplastic resin and filler having, when made into a thermoplastic matrix material as part of a continuous fiber reinforced fiber composite material, increased modulus properties over the unblended thermoplastic resin, comprising the step of blending into a powdered thermoplastic resin, having particle sizes of about 1 to 5 microns, a filler comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
  • the invention is further directed to a method for making an improved continuous fiber reinforced composite material having a thermoplastic resin matrix, comprising the step of making the matrix using a blended powder of thermoplastic resin and filler comprising a powdered thermoplastic resin, having particle sizes of about 1 to 5 microns, and a filler, comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
  • thermoplastic resins of the present invention are combined in powdered form with metallic or mineral filler powder to produce a filled thermoplastic resin powder that, when made into a matrix material for advanced composites, has improved modulus properties, especially in compression, over matrix materials made from unfilled thermoplastic resin powder.
  • Thermoplastic resin materials in powdered form are readily available in a variety of particle sizes. Adding finely divided powdered metallic and mineral fillers, preferably having particle sizes of about 0.2 to 5 microns, to thermoplastic resin powder, having particle sizes about 1 to 5 microns, in quantities from about 1 to 20 percent by weight increases the modulus, especially in compression, of the resulting processed thermoplastic material.
  • the modulus increase does not materially change any of the otherwise advantageous processing properties of the thermoplastic material.
  • the resulting modulus increase survives in the matrix material, thereby providing thermoplastic resin composites having increased resistance against microbuckling and similar weaknesses.
  • the filler materials may include silica (SiO 2 ), titania (TiO 2 ), silicon carbide (SiC) and a variety of other materials as will occur to those with skill in the art of the invention.
  • the disclosed invention successfully demonstrates the use of an additional reinforcing material in a matrix for continuous fiber reinforced composite materials, the additional reinforcing material serving a function related to, but different from that served by the continuous reinforcing material.
  • the disclosed use is specialized, its teachings will find application in other areas where synergistic effects from the interaction of two components, as in advanced composites, can be extended by the addition of further synergistically acting components.

Abstract

Particulate additives for increasing the modulus of thermoplastic matrix materials used in making fiber reinforced composites is disclosed. Finely divided filler materials, such as silica, titania and silicon carbide, having particle sizes about 1 to 5 microns, is added to thermoplastic resin powder to increase the modulus properties, especially in compression, of the resulting matrix without materially changing any of the otherwise advantageous properties of the thermoplastic material.

Description

RIGHTS OF THE GOVERNMENT
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
BACKGROUND OF THE INVENTION
The present invention relates generally to matrix materials used in making fiber reinforced composite materials, and more specifically to particulate additives to thermoplastic matrix materials to increase the modulus of the matrix materials and provide greater stabilization of the fibers.
Advanced composites are high modulus (stiffness), high strength composite materials used in applications requiring high strength to weight ratios. They are typically made by embedding very high stiffness continuous fibers, such as glass, carbon or silicon carbide, into a polymer matrix, such as an epoxy or polyester resin. The term "continuous fibers" is understood to have its commonly understood meanings in the art of composite materials, particularly that of very long fibers, generally mutually aligned for enhanced strength along a particular axis, and not chopped or very short fibers generally randomly aligned. The fibers provide stiffness and strength to the composite material, but are brittle and highly sensitive to cracks and flaws. The matrix material absorbs energy and hinders the spread of small cracks. The presence of the matrix material allows a closer approach to using the theoretical maximum strength of the fibers in practical applications.
Thermosetting resins, such as epoxies and polyesters, take a permanent set when molded, and cannot thereafter be remolded. Thermoplastic resins, however, such as nylons, polycarbonates, acetals, polyethylenes, some polyesters, polysulfone and polyetheretherketone, become soft and pliable when heated and may be remolded without changing their physical properties. This property makes thermoplastic resins, when not used as a composite material matrix, very adaptable to low cost manufacturing methods such as injection molding and extrusion.
For use in advanced composites, polymer resins are generally impregnated into continuous reinforcing fibers to form preimpregnated fiber material (generally films or sheets), called prepregs, which are laid up in laminated plies and then cured under heat and pressure to make final structural shapes. Unlike composite structures fabricated by laminating prepregs made with thermosetting resins, the overall shape of composite structures fabricated from laminated prepregs made with thermoplastic resins can, under heat and pressure, be later reshaped and reformed. Moreover, processing of the prepregs themselves is easier with thermoplastic resins than with thermosetting resins.
Unfortunately, despite their advantages of lower cost and greater flexibility and ease of use in making composite structures, composites, especially advanced composites, made with thermoplastic resins are not as strong in compression as those made with thermosetting resins. While thermoplastic resins do promise better resistance against delaminating, their lower strength in compression makes composites made with thermoplastic matrix materials generally more susceptible to fiber microbuckling, kinking and shear band formation.
Thus it is seen that there is a need for methods for increasing the compression strength of thermoplastic matrix materials without significantly affecting their desirable mechanical properties and processing and fabrication advantages.
It is, therefore, a principal object of the present invention to provide a method for increasing the compression strength of thermoplastic matrix materials used in continuous fiber reinforced composite materials.
It is a feature of the present invention that the desirable mechanical properties of the thermoplastic matrix materials are not changed and the desirable processing and fabrication conditions remain the same.
These and other objects, features and advantages of the present invention will become apparent as the description of certain representative embodiments proceeds.
SUMMARY OF THE INVENTION
The present invention provides a method for improving the compression strength of thermoplastic matrix materials used in continuous fiber reinforced composite materials. The unique discovery of the present invention is that blending mineral or metallic powder (filler) with powdered thermoplastic resin material will produce a thermoplastic powder and filler blend that can be impregnated into continuous reinforcing fibers to produce a thermoplastic resin prepreg having the improved workability of thermoplastic resin advanced composites, compared to more conventional thermosetting resin prepregs, and also having much improved modulus properties (Young's and shear), especially in compression.
Accordingly, the present invention is directed to a blended powder of thermoplastic resin and filler, comprising a powdered thermoplastic resin, having particle sizes of about 1 to 5 microns and a filler, comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
The invention is also directed to a method for making a blended powder of thermoplastic resin and filler having, when made into a thermoplastic matrix material as part of a continuous fiber reinforced fiber composite material, increased modulus properties over the unblended thermoplastic resin, comprising the step of blending into a powdered thermoplastic resin, having particle sizes of about 1 to 5 microns, a filler comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
The invention is further directed to a method for making an improved continuous fiber reinforced composite material having a thermoplastic resin matrix, comprising the step of making the matrix using a blended powder of thermoplastic resin and filler comprising a powdered thermoplastic resin, having particle sizes of about 1 to 5 microns, and a filler, comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
DETAILED DESCRIPTION
The thermoplastic resins of the present invention are combined in powdered form with metallic or mineral filler powder to produce a filled thermoplastic resin powder that, when made into a matrix material for advanced composites, has improved modulus properties, especially in compression, over matrix materials made from unfilled thermoplastic resin powder.
Thermoplastic resin materials in powdered form are readily available in a variety of particle sizes. Adding finely divided powdered metallic and mineral fillers, preferably having particle sizes of about 0.2 to 5 microns, to thermoplastic resin powder, having particle sizes about 1 to 5 microns, in quantities from about 1 to 20 percent by weight increases the modulus, especially in compression, of the resulting processed thermoplastic material. The modulus increase does not materially change any of the otherwise advantageous processing properties of the thermoplastic material. And, when used to make thermoplastic matrix material for composite materials, typically through the intermediate step of making prepregs, the resulting modulus increase survives in the matrix material, thereby providing thermoplastic resin composites having increased resistance against microbuckling and similar weaknesses.
The filler materials may include silica (SiO2), titania (TiO2), silicon carbide (SiC) and a variety of other materials as will occur to those with skill in the art of the invention.
The disclosed invention successfully demonstrates the use of an additional reinforcing material in a matrix for continuous fiber reinforced composite materials, the additional reinforcing material serving a function related to, but different from that served by the continuous reinforcing material. Although the disclosed use is specialized, its teachings will find application in other areas where synergistic effects from the interaction of two components, as in advanced composites, can be extended by the addition of further synergistically acting components.
It is understood that modifications to the invention as described may be made, as might occur to one with skill in the field of the invention, within the intended scope of the claims. Therefore, all embodiments contemplated have not been shown in complete detail. Other embodiments may be developed without departing from the spirit of the invention or from the scope of the claims.

Claims (2)

I claim:
1. A continuous fiber reinforced composite material, comprising:
(a) continuous reinforcing fibers; and,
(b) impregnated into the continuous fibers, a blended powder of thermoplastic polymer resin and filler, comprising:
(i) a powdered thermoplastic resin, having particle sizes of about 1 to 5 microns; and,
(ii) a filler, comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
2. A method for making an improved continuous fiber reinforced composite material having a thermoplastic polymer resin matrix, comprising the steps of:
(a) providing continuous reinforcing fibers; and,
(b) impregnating into the continuous fibers, a matrix made using a blended powder of thermoplastic resin and filler comprising:
(i) a powdered thermoplastic polymer resin, having particle sizes of about 1 to 5 microns; and,
(ii) a filler, comprising a powder, selected from the group consisting of a metallic powder, a mineral powder, and a blend of metallic and mineral powders, having particle sizes of about 0.2 to 5 microns, in a percentage of about 1% to 20%, by weight, of filler to total blended powder.
US07/376,280 1989-07-05 1989-07-05 Particulate additives to increase the modulus of thermoplastic materials Abandoned USH1029H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/376,280 USH1029H (en) 1989-07-05 1989-07-05 Particulate additives to increase the modulus of thermoplastic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/376,280 USH1029H (en) 1989-07-05 1989-07-05 Particulate additives to increase the modulus of thermoplastic materials

Publications (1)

Publication Number Publication Date
USH1029H true USH1029H (en) 1992-03-03

Family

ID=23484365

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/376,280 Abandoned USH1029H (en) 1989-07-05 1989-07-05 Particulate additives to increase the modulus of thermoplastic materials

Country Status (1)

Country Link
US (1) USH1029H (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648407A (en) * 1995-05-16 1997-07-15 Minnesota Mining And Manufacturing Company Curable resin sols and fiber-reinforced composites derived therefrom
US6399670B1 (en) 2000-01-21 2002-06-04 Congoleum Corporation Coating having macroscopic texture and process for making same
US6759096B2 (en) 2001-09-24 2004-07-06 Congoleum Corporation Method for making differential gloss coverings
US20050260414A1 (en) * 2004-05-18 2005-11-24 Macqueen Richard C Coatings having low surface energy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648407A (en) * 1995-05-16 1997-07-15 Minnesota Mining And Manufacturing Company Curable resin sols and fiber-reinforced composites derived therefrom
US6399670B1 (en) 2000-01-21 2002-06-04 Congoleum Corporation Coating having macroscopic texture and process for making same
US6730388B2 (en) 2000-01-21 2004-05-04 Congoleum Corporation Coating having macroscopic texture and process for making same
US6759096B2 (en) 2001-09-24 2004-07-06 Congoleum Corporation Method for making differential gloss coverings
US20050260414A1 (en) * 2004-05-18 2005-11-24 Macqueen Richard C Coatings having low surface energy

Similar Documents

Publication Publication Date Title
US4596736A (en) Fiber-reinforced resinous sheet
EP2412760A2 (en) Resinous materials, articles made therewith and methods of producing same
RU2590539C2 (en) Interfacial amplification of impact strength of thermoplastic materials
CN101364669B (en) Polyethylene reinforced radar cowl of ultra-high molecular weight, preparation and application thereof
KR102065367B1 (en) Cyanate Ester Resin Compositions and Prepregs
KR101923381B1 (en) Composite material for reinforcement and articles comprising the same
Dutta et al. Blends containing liquid crystalline polymers: Preparation and properties of melt‐drawn fibers, unidirectional prepregs, and composite laminates
USH1029H (en) Particulate additives to increase the modulus of thermoplastic materials
CA1254822A (en) Thermoset interleafed resin matrix composites with improved compression properties
EP0326409A1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
US5558932A (en) Integrated structural composite and ceramic flame barrier
JP2000017090A5 (en)
JP2604778B2 (en) Matrix resin composition
JPH0269566A (en) Fiber-reinforced composite material toughened with long thin rigid particle
JP3065690B2 (en) Prepreg
CN113388228A (en) Resin composition, resin-based composite material, and preparation method and application thereof
KR101746026B1 (en) Multilayer hybrid prepreg and its manufacturing method
KR101951205B1 (en) Fiber reinforced composite material and method of manufacturing the same
JPH01185351A (en) Epoxy resin composition for carbon fiber reinforced material
JP3137671B2 (en) Prepreg
EP2889332A1 (en) Thermoplastic resin composite composition, thermoplastic resin composite material, and method for manufacturing same
Hashim et al. Effect of Silica Powder Addition on Mechanical Properties of Polymer Laminate Composite
KR101737319B1 (en) Multilayer hybrid prepreg and its manufacturing method
CA2048079A1 (en) Fiber-reinforced composites toughened with resin particles
JPH02286323A (en) Resin fiber-reinforced composite material

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: LICENSE;ASSIGNOR:REINHART, THEODORE J.;REEL/FRAME:005136/0375

Effective date: 19890629

STCF Information on status: patent grant

Free format text: PATENTED CASE