Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS9622732 B2
Publication typeGrant
Application numberUS 11/665,039
PCT numberPCT/US2005/036454
Publication date18 Apr 2017
Filing date11 Oct 2005
Priority date8 Oct 2004
Also published asUS8876904, US9486199, US20070100212, US20090018399, US20150119989, US20170215856, WO2006042241A2, WO2006042241A3
Publication number11665039, 665039, PCT/2005/36454, PCT/US/2005/036454, PCT/US/2005/36454, PCT/US/5/036454, PCT/US/5/36454, PCT/US2005/036454, PCT/US2005/36454, PCT/US2005036454, PCT/US200536454, PCT/US5/036454, PCT/US5/36454, PCT/US5036454, PCT/US536454, US 9622732 B2, US 9622732B2, US-B2-9622732, US9622732 B2, US9622732B2
InventorsScot Martinelli, Jared Arambula, Eric Finley, Patrick Miles
Original AssigneeNuvasive, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Surgical access system and related methods
US 9622732 B2
Abstract
A surgical access system including a tissue distraction assembly 40 and a tissue retraction assembly 10, both of which may be equipped with one or more electrodes 23 for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor 15 to a surgical target site. The tissue retraction assembly 10 has a plurality of blades 12, 16, 18 which may be introduced while in a closed configuration, after which point they may be opened to create an operation corridor 15 to the surgical target site, including pivoting at least one blade 12, 16, 18 to expand the operative corridor 15 adjacent to the operative site.
Images(50)
Previous page
Next page
Claims(43)
What is claimed is:
1. A system for accessing a spinal surgical target site, comprising: a retractor assembly having first, second, and third blades and a blade holder assembly, the first, second, and third blades being advanceable to said surgical target site while in a first position in which the first blade is immediately adjacent the second and third blades, the second blade is immediately adjacent the first and third blades, and the third blade is immediately adjacent the first and second blades, and adjustable to a second position in which the first, second, and third blades are separated relative to said first position, said blade holder assembly including first arm having a first longitudinal axis and a second arm having a second longitudinal axis, the first and second arms being coupled about a pivot, said first retractor blade being coupled to said first arm distally to said pivot and said second retractor blade being coupled to said second arm distally to said pivot, wherein adjustment from the first position to the second position includes pivoting movement of the first and second arms about said pivot such that said first longitudinal axis and said second longitudinal axis move away from each other distal of said pivot, said first arm having a first rotatable arm section situated distally to a first static arm section, the first retractor blade being rigidly secured to the first rotatable arm section, said first rotatable arm section rotatable relative to said first static arm section and about said first longitudinal axis to translocate a distal end of said first blade relative to a proximal end of the first blade, said second arm having a second rotatable arm section situated distally to a second static arm section, the second retractor blade being rigidly secured to the second rotatable arm section, said second rotatable arm section rotatable relative to said second static arm section and about said second longitudinal axis to translocate a distal end of said second blade relative to a proximal end of the second blade.
2. The system of claim 1, including a distraction assembly for creating a distraction corridor to said surgical target site prior to advancing said first, second and third blades to said surgical target site.
3. The system of claim 2, wherein said distraction assembly includes a first dilator having a stimulation electrode on a distal end portion thereof.
4. The system of claim 3, including a secondary distraction assembly including a plurality of sequentially larger diameter dilators that advance along the first dilator for distracting said initial distraction corridor to a secondary distraction corridor, said first, second and third blades being advanced through said secondary distraction corridor to said surgical target site.
5. The system of claim 4, wherein each dilator of the plurality of sequentially larger diameter dilators includes a stimulation electrode on a distal end portion.
6. The system of claim 5, wherein another stimulation electrode is positioned near a distal end of the third retractor blade.
7. The system of claim 3, further comprising a control unit configured to electrically stimulate said stimulation electrode, sense a response of a nerve depolarized by said stimulation, determine a relative proximity from said first dilator to the nerve based upon the sensed response, and communicate said direction to a user.
8. The system of claim 7, further comprising an electrode configured to sense a neuromuscular response of a muscle coupled to said depolarized nerve, the electrode being operable to send the response to the control unit.
9. The system of claim 8, wherein the control unit comprises a display operable to display an electromyographic (EMG) response of the muscle.
10. The system of claim 7, further comprising a coupling device that provides an electrical connection to said first dilator for delivering an electrical stimulation signal to the first dilator at the direction of said control unit.
11. The system of claim 7, wherein the control unit comprises a touch-screen display operable to receive commands from a user.
12. The system of claim 3, wherein said distraction assembly also includes a K-wire configured for disposal within the first dilator.
13. The system of claim 1, wherein said third retractor blade includes a stimulation electrode.
14. The system of claim 13, wherein the stimulation electrode is positioned near a distal end of said third blade.
15. The system of claim 13, further comprising a control unit capable of electrically stimulating said stimulation electrode, sensing a response of a nerve depolarized by said stimulation, determining a relative proximity from said distraction assembly to the nerve based upon the sensed response, and communicating said relative proximity to a user.
16. The system of claim 15, further comprising an electrode configured to sense a neuromuscular response of a muscle coupled to the depolarized nerve, the electrode being operable to send the response to the control unit.
17. The system of claim 16, wherein the control unit comprises a display operable to display an electromyographic (EMG) response of the muscle.
18. The system of claim 15, further comprising a coupling device that provides an electrical connection between said stimulation electrode and said control unit.
19. The system of claim 15, wherein the control unit comprises a touch-screen display operable to receive commands from a user.
20. The system of claim 1, wherein said system for accessing a spinal surgical target site is configured to provide said access to the spinal surgical target site via a lateral, trans-psoas approach.
21. The system of claim 1, wherein at least one of the first, second, and third blades is constructed from a material that is at least partially radiolucent.
22. The system of claim 1, wherein said first rotatable arm section and said second rotatable arm section are each equipped with a locking mechanism to selectively lock the first and second blades in a selected position.
23. The system of claim 22, wherein the locking mechanism allows the first and second blades to be locked in any of a variety of predetermined angles.
24. The system of claim 23, wherein the locking mechanism includes a plurality of pre-selected stops corresponding to said predetermined angles.
25. The system of claim 23, wherein the predetermined angles include the range of 0 to 20 degrees relative to when the first and second blades are in the first position.
26. The system of claim 1, further comprising at least one tool for moving the distal ends of the first and second blades relative to the proximal ends thereof, wherein the at least one tool comprises at least one of a wrench and a blade expander.
27. The system of claim 1, further comprising at least one of a blade extender and a blade shim configured to be releasably coupled to at least one of the three retractor blades.
28. The system of claim 27, wherein at least one of the blade extender and the blade shim include a lateral extension to increase the width of the blade extender and blade shim.
29. The system of claim 27, wherein at least one of the blade extender and the blade shim include a distal extension to increase the length of the blade extender and blade shim.
30. A system for accessing a spinal surgical target site, comprising:
a retractor assembly having first, second, and third blades and a blade holder assembly, the first, second, and third blades being advanceable to said surgical target site while in a first position in which the first blade is immediately adjacent the second and third blades, the second blade is immediately adjacent the first and third blades, and the third blade is immediately adjacent the first and second blades, and adjustable to a second position in which the first, second, and third blades are separated relative to said first position, said blade holder assembly including first arm having a first longitudinal axis and a second arm having a second longitudinal axis, the first and second arms being coupled about a pivot, said first retractor blade being coupled to said first arm distally to said pivot and said second retractor blade being coupled to said second arm distally to said pivot, said blade holder assembly also including a third translating arm coupled to said third retractor blade, wherein adjustment from the first position to the second position includes both pivoting movement of the first and second arms about said pivot such that said first longitudinal axis and said second longitudinal axis move away from each other distal of said pivot and linearly moving said third retractor blade relative to said first and second retractor blades, said first arm having a first rotatable arm section situated distally to a first static arm section, said first rotatable arm section rotatable relative to said first static arm section and about said first longitudinal axis to translocate a distal end of said first blade relative to a proximal end of the first blade, said second arm having a second rotatable arm section situated distally to a second static arm section, said second rotatable arm section rotatable relative to said second static arm section and about said second longitudinal axis to translocate a distal end of said second blade relative to a proximal end of the second blade.
31. A method of accessing a surgical target site, comprising the steps of:
introducing a retractor assembly including first, second, and third retractor blades coupled to a blade holder assembly to a surgical target site while the three retractor blades are in a first position with the first blade being immediately adjacent the second and third blades, the second blade being immediately adjacent the first and third blades, and the third blade being immediately adjacent the first and second blades, said blade holder assembly having a first arm having a first longitudinal axis and second arm having a second longitudinal axis, the first and second arms being coupled about a pivot, the first arm having a first rotating arm section situated distal to a first static arm section, said first rotating arm section being rotatable relative to said first static arm section and around said first longitudinal axis, the second arm having a second rotating arm section situated distal to a second static arm section, the second rotatable arm section being rotatable relative to said second static arm section and around said second longitudinal axis, said blade holder assembly further having a third arm that translates linearly relative to the pivot, wherein the first retractor blade is coupled to the first arm, the second retractor blade is coupled to the second arm, and the third retractor blade is coupled to said third arm; and
pivoting said first arm and said second arm around said pivot such that said first said longitudinal axis and said second longitudinal axis move away from each other distal of said pivot and said first retractor blade and said second retractor move away from each other to create an operative corridor to said surgical target site, and further expanding a distal dimension of the operative corridor adjacent the surgical target site by rotating said first rotating arm section to translocate a distal end of said first retractor blade outward relative to a proximal end of the first retractor blade and rotating said second rotating arm section to translocate a distal end of said second retractor blade outward relative to a proximal end of the second retractor blade.
32. The method of claim 31, further comprising moving the third retractor blade linearly relative to the first and second retractor blades to enlarge the operative corridor.
33. The method of claim 31, further comprising the step of advancing a sequential dilation system including a plurality of dilators of increasing diameter to the surgical target site, the first, second, and third retractor blades thereafter being slidably advanced along the sequential dilation system to the surgical target site.
34. The method of claim 33, wherein at least one of said dilators of said sequential dilation system includes a stimulation electrode situated on a distal end portion for transmitting an electrical stimulation signal.
35. The method of claim 34, further comprising electrically coupling a control unit capable of directing the electrical stimulation signal to said at least one stimulation electrode, sensing a response of a nerve depolarized by said stimulation, determining a relative proximity of the at least on dilator to the nerve based upon the sensed response, and communicating said relative proximity to a user.
36. The method of claim 31, wherein said first rotating arm section and said second rotating arm section are each equipped with a locking mechanism to selectively lock the first and second blades in a selected position.
37. The method of claim 36, wherein the locking mechanism allows the first and second blades to be locked in any of a variety of predetermined angles.
38. The method of claim 37, wherein the locking mechanism includes a plurality of pre-selected stops corresponding to said predetermined angles.
39. The method of claim 38, wherein the predetermined angles include the range of 0 to 20 degrees relative to when the first and second blades are in the first position.
40. The method of claim 38, further comprising the step of providing at least one tool for rotating the first and second rotating arm sections, wherein the at least one tool comprises at least one of a wrench and a blade expander.
41. The method of claim 31, including the step of providing at least one of a blade extender and a blade shim configured to be releasably coupled to at least one of the three retractor blades.
42. The method of claim 41, wherein at least one of the blade extender and the blade shim include a lateral extension to increase the width of the blade extender and blade shim.
43. The method of claim 41, wherein at least one of the blade extender and the blade shim include a distal extension to increase the length of the blade extender and blade shim.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

The present international patent application claims the benefit of priority from commonly owned and U.S. Provisional Patent Application Ser. No. 60/617,498, entitled “Surgical Access System and Related Methods,” filed on Oct. 8, 2004 and U.S. Provisional Patent Application Ser. No. 60/720,710, entitled “Surgical Access System and Related Methods,” filed on Sep. 26, 2005, the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth fully herein. The present application also incorporates by reference the following co-pending and co-assigned patent applications in their entireties: PCT App. Ser. No. PCT/US02/22247, entitled “System and Methods for Determining Nerve Proximity, Direction, and Pathology During Surgery,” filed on Jul. 11, 2002; PCT App. Ser. No. PCT/US02/30617, entitled “System and Methods for Performing Surgical Procedures and Assessments,” filed on Sep. 25, 2002; PCT App. Ser. No. PCT/US02/35047, entitled “System and Methods for Performing Percutaneous Pedicle Integrity Assessments,” filed on Oct. 30, 2002; and PCT App. Ser. No. PCT/US03/02056, entitled “System and Methods for Determining Nerve Direction to a Surgical Instrument,” filed Jan. 15, 2003 (collectively “NeuroVision PCT Applications”).

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates generally to systems and methods for performing surgical procedures and, more particularly, for accessing a surgical target site in order to perform surgical procedures.

II. Discussion of the Prior Art

A noteworthy trend in the medical community is the move away from performing surgery via traditional “open” techniques in favor of minimally invasive or minimal access techniques. Open surgical techniques are generally undesirable in that they typically require large incisions and high amounts of tissue displacement to gain access to the surgical target site, which produces concomitantly high amounts of pain, lengthened hospitalization (increasing health care costs), and high morbidity in the patient population. Less-invasive surgical techniques (including so-called “minimal access” and “minimally invasive” techniques) are gaining favor due to the fact that they involve accessing the surgical target site via incisions of substantially smaller size with greatly reduced tissue displacement requirements. This, in turn, reduces the pain, morbidity and cost associated with such procedures. The access systems developed to date, however, fail in various respects to meet all the needs of the surgeon population.

One drawback associated with prior art surgical access systems relates to the ease with which the operative corridor can be created, as well as maintained over time, depending upon the particular surgical target site. For example, when accessing surgical target sites located beneath or behind musculature or other relatively strong tissue (such as, by way of example only, the psoas muscle adjacent to the spine), it has been found that advancing an operative corridor-establishing instrument directly through such tissues can be challenging and/or lead to unwanted or undesirable effects (such as stressing or tearing the tissues). While certain efforts have been undertaken to reduce the trauma to tissue while creating an operative corridor, such as (by way of example only) the sequential dilation system of U.S. Pat. No. 5,792,044 to Foley et al., these attempts are nonetheless limited in their applicability based on the relatively narrow operative corridor. More specifically, based on the generally cylindrical nature of the so-called “working cannula,” the degree to which instruments can be manipulated and/or angled within the cannula can be generally limited or restrictive, particularly if the surgical target site is a relatively deep within the patient.

This highlights yet another drawback with the prior art surgical access systems, namely, the challenges in establishing an operative corridor through or near tissue having major neural structures which, if contacted or impinged, may result in neural impairment for the patient. Due to the threat of contacting such neural structures, efforts thus far have largely restricted to establishing operative corridors through tissue having little or substantially reduced neural structures, which effectively limits the number of ways a given surgical target site can be accessed. This can be seen, by way of example only, in the spinal arts, where the exiting nerve roots and neural plexus structures in the psoas muscle have rendered a lateral or far lateral access path (so-called trans-psoas approach) to the lumbar spine virtually impossible. Instead, spine surgeons are largely restricted to accessing the spine from the posterior (to perform, among other procedures, posterior lumbar interbody fusion (PLIF)) or from the anterior (to perform, among other procedures, anterior lumbar interbody fusion (ALIF)).

Posterior-access procedures involve traversing a shorter distance within the patient to establish the operative corridor, albeit at the price of oftentimes having to reduce or cut away part of the posterior bony structures (e.g. lamina, facets, spinous process) in order to reach the target site (which typically comprises the disc space). Anterior-access procedures are relatively simple for surgeons in that they do not involve reducing or cutting away bony structures to reach the surgical target site. However, they are nonetheless disadvantageous in that they require traversing through a much greater distance within the patient to establish the operative corridor, oftentimes requiring an additional surgeon to assist with moving the various internal organs out of the way to create the operative corridor.

The present invention is directed at eliminating, or at least minimizing the effects of, the above-identified drawbacks in the prior art.

SUMMARY OF THE INVENTION

The present invention accomplishes this goal by providing a novel access system and related methods which involve detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor through (or near) any of a variety of tissues having such neural structures which, if contacted or impinged, may otherwise result in neural impairment for the patient. It is expressly noted that, although described herein largely in terms of use in spinal surgery, the access system of the present invention is suitable for use in any number of additional surgical procedures wherein tissue having significant neural structures must be passed through (or near) in order to establish an operative corridor. It is also expressly noted that, although shown and described herein largely within the context of lateral surgery in the lumbar spine, the access system of the present invention may be employed in any number of other spine surgery access approaches, including but not limited to posterior, postero-lateral, anterior, and antero-lateral access, and may be employed in the lumbar, thoracic and/or cervical spine, all without departing from the present invention.

According to one broad aspect of the present invention, the access system comprises a tissue distraction assembly and a tissue retraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures. The tissue distraction assembly (in conjunction with one or more elements of the tissue retraction assembly) is capable of, as an initial step, distracting a region of tissue between the skin of the patient and the surgical target site. The tissue retraction assembly is capable of, as a secondary step, being introduced into this distracted region to thereby define and establish the operative corridor. Once established, any of a variety of surgical instruments, devices, or implants may be passed through and/or manipulated within the operative corridor depending upon the given surgical procedure. The electrode(s) are capable of, during both tissue distraction and retraction, detecting the existence of (and optionally the distance and/or direction to) neural structures such that the operative corridor may be established through (or near) any of a variety of tissues having such neural structures which, if contacted or impinged, may otherwise result in neural impairment for the patient. In this fashion, the access system of the present invention may be used to traverse tissue that would ordinarily be deemed unsafe or undesirable, thereby broadening the number of manners in which a given surgical target site may be accessed.

The tissue distraction assembly may include any number of components capable of performing the necessary distraction. By way of example only, the tissue distraction assembly may include a K-wire and one or more dilators (e.g., sequentially dilating cannulae) for performing the necessary tissue distraction to receive the remainder of the tissue retractor assembly thereafter. One or more electrodes may be provided on one or more of the K-wire and dilator(s) to detect the presence of (and optionally the distance and/or direction to) neural structures during tissue distraction.

The tissue retraction assembly may include any number of components capable of performing the necessary retraction. By way of example only, the tissue retraction assembly may include one or more retractor blades extending from a handle assembly. The handle assembly may be manipulated to open the retractor assembly; that is, allowing the retractor blades to separate from one another (simultaneously or sequentially) to create an operative corridor to the surgical target site. In a preferred embodiment, this is accomplished by maintaining a posterior retractor blade in a fixed position relative to the surgical target site (so as to avoid having it impinge upon any exiting nerve roots near the posterior elements of the spine) while the additional retractor blades (i.e. cephalad-most and caudal-most blades) are moved or otherwise translated away from the posterior retractor blade (and each other) so as to create the operative corridor in a fashion that doesn't impinge upon the region of the exiting nerve roots. In one optional aspect of the present invention, the cephalad-most and/or caudal-most blades may pivot or rotate outward from a central axis of insertion, such that the operative corridor may be further expanded. In a further optional aspect of the present invention, the retractor may include a locking element to maintain the blades in an initial alignment during insertion, and a variable-stop mechanism to allow the user to control the degree of expansion of the operative corridor. A blade expander tool may be provided to facilitate manual pivoting of the retractor blades.

The retractor blades may be optionally dimensioned to receive and direct a rigid shim element to augment the structural stability of the retractor blades and thereby ensure the operative corridor, once established, will not decrease or become more restricted, such as may result if distal ends of the retractor blades were permitted to “slide” or otherwise move in response to the force exerted by the displaced tissue. In a preferred embodiment, only the posterior retractor blade is equipped with such a rigid shim element. In an optional aspect, this shim element may be advanced into the disc space after the posterior retractor blade is positioned, but before the retractor is opened into the fully retracted position. The rigid shim element is preferably oriented within the disc space such that is distracts the adjacent vertebral bodies, which serves to restore disc height. It also preferably advances a sufficient distance within the disc space (preferably past the midline), which advantageously forms a protective barrier that prevents the migration of tissue (such as nerve roots) into the operative field and the inadvertent advancement of instruments outside the operative field. In an optional embodiment, the caudal-most and/or cephalad-most blades may be fitted with any number of retractor extenders for extending (laterally or length-wise) the blades, which advantageously forms a protective barrier that prevents the migration of tissue (such as muscle and soft tissue) into the operative field and the inadvertent advancement of instruments outside the operative field.

The retractor blades may optionally be equipped with a mechanism for transporting or emitting light at or near the surgical target site to aid the surgeon's ability to visualize the surgical target site, instruments and/or implants during the given surgical procedure. According to one embodiment, this mechanism may comprise, but need not be limited to, coupling one or more light sources to the retractor blades such that the terminal ends are capable of emitting light at or near the surgical target site. According to another embodiment, this mechanism may comprise, but need not be limited to, constructing the retractor blades of suitable material (such as clear polycarbonate) and configuration such that light may be transmitted generally distally through the walls of the retractor blade light to shine light at or near the surgical target site. This may be performed by providing the retractor blades having light-transmission characteristics (such as with clear polycarbonate construction) and transmitting the light almost entirely within the walls of the retractor blade (such as by frosting or otherwise rendering opaque portions of the exterior and/or interior) until it exits a portion along the interior (or medially-facing) surface of the retractor blade to shine at or near the surgical target site. The exit portion may be optimally configured such that the light is directed towards the approximate center of the surgical target site and may be provided along the entire inner periphery of the retractor blade or one or more portions therealong.

BRIEF DESCRIPTION OF THE DRAWINGS

Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:

FIG. 1 is a perspective view of a tissue retraction assembly forming part of a surgical access system according to the present invention, shown in a fully retracted or “open” position;

FIGS. 2-3 are top and perspective views, respectively, of the tissue retraction assembly of FIG. 1 shown in a closed position according to the present invention;

FIGS. 4-5 are top and perspective views, respectively, of the tissue retraction assembly of FIG. 1 in an open position;

FIGS. 6-7 are perspective views illustrating the front and back of a wide retractor extender for use with any one of the retractor blades according to the retractor of the present invention;

FIGS. 8-9 are perspective views illustrating the front and back of a narrow retractor extender for use with one of the retractor blades according to the retractor of the present invention;

FIGS. 10-11 are perspective views illustrating the front and back of a shim element for use with a posterior retractor blade of the retractor according to the retractor of the present invention;

FIGS. 12-13 are perspective views of the front and back, respectively, of a shim element according to one embodiment of the present invention;

FIGS. 14-15 are perspective and top views, respectively, of a tissue retraction assembly of according to one embodiment of the present invention, shown in an open position with a shim and/or retractor extender installed on each retractor blade;

FIGS. 16-17 are perspective views of an arm member comprising part of the tissue retraction assembly of FIG. 1;

FIG. 18 is a top view of the arm member of FIG. 16;

FIGS. 19-20 are perspective and top views, respectively, of the arm member of FIG. 16 in which a pivot wrench is coupled with a distal pivot region of the arm member;

FIG. 21 is a perspective view of the arm member of FIG. 19 after the distal pivot region as been pivoted and the locking mechanism has been engaged;

FIGS. 22-23 are perspective and top views, respectively, of the arm member of FIG. 21 in which the pivot wrench has been removed;

FIG. 24 is a perspective view of the tissue retraction assembly of FIG. 1 in conjunction with a pair of pivot wrenches before the blades have been pivoted;

FIG. 25 is a perspective view of the tissue retraction assembly of FIG. 24 after pivoting of the blades;

FIG. 26 is a perspective view of the tissue retraction assembly of FIG. 25, in which the locking mechanisms have been activated;

FIGS. 27-28 are perspective and top views, respectively, of the tissue retraction assembly of FIG. 25, in which the cephalad-most and caudal-most blades have been pivoted and the locking mechanisms have been engaged;

FIGS. 29-30 are side views of a retractor blade expander tool according to one embodiment of the present invention, shown in initial closed and secondary open positions, respectively;

FIG. 31 is a perspective view of a retractor blade expander tool of FIG. 29 inserted into an operative corridor formed by the tissue retraction assembly of FIG. 1 with the blades in a retracted position;

FIGS. 32-33 are perspective views of the retractor blade expander tool of FIG. 31 in an open position causing the cephalad-most and caudal-most retractor blades of the tissue retraction assembly of FIG. 31 to pivot in an outward direction;

FIGS. 34-35 are side and perspective views, respectively, of a shim inserter according to a preferred embodiment of the present invention;

FIGS. 36-37 are side and perspective views, respectively, the shim inserter of FIG. 34 coupled to a shim;

FIGS. 38-39 are side and top views, respectively, of the shim inserter of FIG. 36 prior to insertion of the shim;

FIGS. 40-41 are perspective and top views, respectively, of a shim inserter according to the present invention coupled to a shim in the initial phase of insertion, where the shim is entering the operative corridor at the skin level;

FIGS. 42-43 are perspective and top views, respectively, of the shim inserter & shim of FIG. 52, where the shim has been inserted beyond the skin level and fully into the operative corridor;

FIGS. 44-45 are top and perspective views, respectively, of a fully inserted shim, wherein the shim inserter has been removed;

FIG. 46 is a side view illustrating the use of a tissue distraction assembly (comprising a plurality of dilating cannulae over a K-wire) to distract tissue between the skin of the patient and the surgical target site according to the present invention;

FIG. 47 is a side view of a retractor assembly according to the present invention, comprising a handle assembly having three (3) retractor blades extending there from (posterior, cephalad-most, and caudal-most), shown in a first, closed position and disposed over the tissue distraction assembly of FIG. 46;

FIG. 48 is a side view of a retractor assembly according to the present invention, comprising a handle assembly having three (3) retractor blades extending there from (posterior, cephalad-most, and caudal-most) with the tissue distraction assembly of FIG. 46 removed and shim element introduced;

FIG. 49-50 are perspective and top views, respectively, of the retractor assembly in a second, opened (i.e. retracted) position to thereby create an operative corridor to a surgical target site according to the present invention;

FIGS. 51-52 are perspective views of the retractor assembly of FIG. 50 with the retractor arms in a pivoted position;

FIG. 53 is a perspective view of the retractor assembly in the second, opened (i.e. retracted) position (with the secondary distraction assembly removed) and with one retractor extender of FIGS. 6-7 coupled to a retractor blade and another retractor being inserted onto a second retractor blade according to the present invention.

FIGS. 54-55 are perspective views of a handle assembly forming part of the tissue retraction assembly of FIG. 1 shown in an initial closed position;

FIG. 56 is a perspective view of the handle assembly of FIG. 54 shown in a secondary open position;

FIG. 57 is a perspective view of an exemplary nerve monitoring system capable of performing nerve monitoring before, during and after the creating of an operative corridor to a surgical target site using the surgical access system in accordance with the present invention;

FIG. 58 is a block diagram of the nerve monitoring system shown in FIG. 57; and

FIGS. 59-60 are screen displays illustrating exemplary features and information communicated to a user during the use of the nerve monitoring system of FIG. 57.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. It is furthermore to be readily understood that, although discussed below primarily within the context of spinal surgery, the surgical access system of the present invention may be employed in any number of anatomical settings to provide access to any number of different surgical target sites throughout the body. It is also expressly noted that, although shown and described herein largely within the context of lateral surgery in the lumbar spine, the access system of the present invention may be employed in any number of other spine surgery access approaches, including but not limited to posterior, postero-lateral, anterior, and antero-lateral access, and may be employed in the lumbar, thoracic and/or cervical spine, all without departing from the present invention. The surgical access system disclosed herein boasts a variety of inventive features and components that warrant patent protection, both individually and in combination.

The present invention involves accessing a surgical target site in a fashion less invasive than traditional “open” surgeries and doing so in a manner that provides access in spite of the neural structures required to be passed through (or near) in order to establish an operative corridor to the surgical target site. Generally speaking, the surgical access system of the present invention accomplishes this by providing a tissue distraction assembly and a tissue retraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures.

These electrodes are preferably provided for use with a nerve surveillance system such as, by way of example, the type shown and described in the above referenced NeuroVision PCT Applications. Generally speaking, this nerve surveillance system is capable of detecting the existence of (and optionally the distance and/or direction to) neural structures during the distraction and retraction of tissue by detecting the presence of nerves by applying a stimulation signal to such instruments and monitoring the evoked EMG signals from the myotomes associated with the nerves being passed by the distraction and retraction systems of the present invention. In so doing, the system as a whole (including the surgical access system of the present invention) may be used to form an operative corridor through (or near) any of a variety of tissues having such neural structures, particularly those which, if contacted or impinged, may otherwise result in neural impairment for the patient. In this fashion, the access system of the present invention may be used to traverse tissue that would ordinarily be deemed unsafe or undesirable, thereby broadening the number of manners in which a given surgical target site may be accessed.

The tissue distraction assembly of the present invention (comprising a K-wire, an initial dilator, and a plurality of sequentially dilating cannulae) is employed to distract the tissues extending between the skin of the patient and a given surgical target site (preferably along the posterior region of the target intervertebral disc). Once distracted, the resulting void or distracted region within the patient is of sufficient size to accommodate a tissue retraction assembly of the present invention. More specifically, the tissue retraction assembly (comprising a plurality of retractor blades extending from a handle assembly) may be advanced relative to the secondary distraction assembly such that the retractor blades, in a first, closed position, are advanced over the exterior of the secondary distraction assembly. At that point, the handle assembly may be operated to move the retractor blades into a second, open or “retracted” position to create an operative corridor to the surgical target site.

According to one aspect of the invention, following (or before) this retraction, a posterior shim element (which is preferably slidably engaged with the posterior retractor blade) may be advanced such that a distal shim extension in positioned within the posterior region of the disc space. If done before retraction, this helps ensure that the posterior retractor blade will not move posteriorly during the retraction process, even though the other retractor blades (e.g. cephalad-most and caudal-most) are able to move and thereby create an operative corridor. Fixing the posterior retractor blade in this fashion serves several important functions. First, the distal end of the shim element serves to distract the adjacent vertebral bodies, thereby restoring disc height. It also rigidly couples the posterior retractor blade in fixed relation relative to the vertebral bodies. The posterior shim element also helps ensure that surgical instruments employed within the operative corridor are incapable of being advanced outside the operative corridor, preventing inadvertent contact with the exiting nerve roots during the surgery. Once in the appropriate retracted state, the cephalad-most and caudal-most retractor blades may be locked in position and, thereafter, retractor extenders advanced therealong to prevent the ingress or egress of instruments or biological structures (e.g. nerves, vasculature, etc. . . . ) into or out of the operative corridor. Optionally, the cephalad-most and/or caudal-most retractor blades may be pivoted in an outward direction to further expand the operative corridor. Once the operative corridor is established, any of a variety of surgical instruments, devices, or implants may be passed through and/or manipulated within the operative corridor depending upon the given surgical procedure.

FIGS. 1-5 illustrate a tissue retraction assembly 10 forming part of a surgical access system according to the present invention, including a plurality of retractor blades extending from a handle assembly 20. By way of example only, the handle assembly 20 is provided with a first retractor blade 12, a second retractor blade 16, and a third retractor blade 18. FIG. 1 illustrates the retractor assembly 10 in a fully retracted or “open” configuration, with the retractor blades 12, 16, 18 positioned a distance from one another so as to form an operative corridor 15 therebetween which extends to a surgical target site (e.g. an annulus of an intervertebral disc). In an important aspect of the present invention, the blades 16, 18 are capable of being pivoted or rotated relative to the handle 10, as best appreciated with combined reference to FIGS. 1 and 4-5. FIGS. 2-3 show the retractor assembly 10 in an initial “closed” configuration, with the retractor blades 12, 16, 18 in a generally abutting relation to one another. Although shown and described below with regard to the three-bladed configuration, it is to be readily appreciated that the number of retractor blades may be increased or decreased without departing from the scope of the present invention. Moreover, although described and shown herein with reference to a generally lateral approach to a spinal surgical target site (with the first blade 12 being the “posterior” blade, the second blade 16 being the “cephalad-most” blade, and the third blade 18 being the “caudal-most” blade), it will be appreciated that the retractor assembly 10 of the present invention may find use in any number of different surgical approaches, including generally posterior, generally postero-lateral, generally anterior and generally antero-lateral.

The retractor blades 12, 16, 18 may be composed of any material suitable for introduction into the human body, including but not limited to aluminum, titanium, and/or clear polycarbonate, that would ensure rigidity during tissue distraction. The retractor blades 12, 16, 18 may be optionally coated with a carbon fiber reinforced coating to increase strength and durability. The blades 12, 16, 18 may be optionally constructed from partially or wholly radiolucent materials (e.g. aluminum, PEEK, carbon-fiber, and titanium) to improve the visibility of the surgeon during imaging (e.g. radiographic, MRI, CT, fluoroscope, etc. . . . ). The retractor blades 12, 14, 18 may also be composed of a material that would destruct when autoclaved (such as polymer containing a portion of glass particles), which may be advantageous in preventing the unauthorized re-use of the blades 12, 16, 18 (which would be provided to the user in a sterile state). The retractor blades 12, 16, 18 may be provided in any number of suitable lengths, depending upon the anatomical environment and surgical approach, such as (by way of example only) the range from 20 mm to 150 mm. Based on this range of sizes, the tissue retraction assembly 10 of the present invention is extremely versatile and may be employed in any of a variety of desired surgical approaches, including but not limited to lateral, posterior, postero-lateral, anterior, and antero-lateral, by simply selecting the desired size retractor blades 12, 16, 18 and attaching them to the handle assembly 20 as will be described herein.

The retractor blades 12, 16, 18 may be equipped with various additional features or components. By way of example only, one or more of the retractor blades 12, 16, 18 may be equipped with a retractor extender, such as a wide retractor extender 22 as shown in FIGS. 6-7, a narrow retractor extender 24 as shown in FIGS. 8-9 and/or an extra wide retractor extender 60 as shown in FIGS. 12-13. The retractor extenders 22, 24, 60 extend from the retractor blades 12, 16, 18 (as shown in FIGS. 14-15, by way of example, with reference to retractor extender 60) to form a protective barrier to prevent the ingress or egress of instruments or biological structures (e.g. nerves, vasculature, etc. . . . ) into or out of the operative corridor 15. Depending upon the anatomical setting and surgical approach, one or more of the retractor blades 12, 16, 18 may be equipped with a shim element 25 as shown in FIGS. 10-11. Shim element 25 has a distal tapered region 45 which may be advanced into tissue (e.g. bone, soft tissue, etc. . . . ) for the purpose of anchoring the blades 12, 16, 18 and/or advanced into the disc space to distract the adjacent vertebral bodies (thereby restoring disc height). In similar fashion to the retractor extenders 22, 24, 60, the shim element 25 also forms a protective barrier to prevent the ingress or egress of instruments or biological structures (e.g. nerves, vasculature, etc. . . . ) into or out of the operative corridor 15.

Retractor extenders 22, 24, 60 and/or shim element 25 may be made out any material suitable for use in the human body, including but not limited to biologically compatible plastic and/or metal, preferably partially or wholly radiolucent in nature material (such as aluminum, PEEK, carbon-fibers and titanium). Construction from plastic or thin metal provides the additional benefit of allowing the shim 25 and/or retractor extenders 22, 24, 60 to be collapsed into a compressed or low profile configuration at the skin level as the element is inserted, and then expanded once it is below skin level and within the operative corridor 15. Retractor extenders 22, 24, 60 may have symmetric narrow configurations (FIGS. 8-9) and/or broad configurations (FIGS. 6-7 and 12-13) and/or an asymmetric configuration of narrow and broad elements (FIGS. 14-15). For example, any or all of the retractor extenders 22, 24, 60 may be provided with a lateral section 64 of the type shown in FIGS. 6-7, a narrow configuration (without lateral sections 64, 66) of the type shown in FIGS. 8-9, and/or a lateral section 66 of the type shown in FIGS. 12-13, all without departing from the scope of the present invention. The retractor extenders 22, 24, 60 and/or the shim element 25 may be composed of a material that would destruct when autoclaved (such as polymer containing a portion of glass particles), which may be advantageous in preventing the unauthorized re-use of the retractor extenders 22, 24, 60 and/or the shim element 25 (which would be provided to the user in a sterile state). Slits may also be provided on the shim 25 to improve flexibility. The retractor extenders 22, 24, 60 and/or the shim element 25 may have a parabolic concave curvature in addition to the configuration shown by way of example only in FIGS. 12-13.

Each of the retractor extenders 22, 24, 60 and/or the shim element 25 may be equipped with a mechanism to selectively and releasably engage with the respective retractor blades 12, 16, 18. By way of example only, this may be accomplished by configuring the retractor extenders 22, 24, 60 and/or the shim element 25 with a tab element 27 capable of engaging with corresponding ratchet-like grooves (shown at 29 in FIG. 1) along the inner-facing surfaces of the retractor blades 12, 16, 18. Each of the retractor extenders 22, 24, 60 and/or the shim element 25 is provided with a pair of engagement elements 37 having, by way of example only, a generally dove-tailed cross-sectional shape. The engagement elements 37 are dimensioned to engage with receiving portions 21 on the respective retractor blades 12, 16, 18. In a preferred embodiment, each of the retractor extenders 22, 24, 60 and/or the shim element 25 may be provided with an elongate slot 43 for engagement with an insertion tool 140 of the type shown in FIGS. 34-37 (as will be described in greater detail below). Each tab member 27 is also equipped with an enlarged tooth element 49 which engages within corresponding grooves 29 provided along the inner surface of the retractor blades 12, 16, 18. On the wide and extra wide retractor extenders 22, 60, respectively, each includes a center portion 62 flanked by a pair of lateral sections 64, 66, which effectively increase the width of the retractor blades 12, 16, 18.

According to the present invention, any or all of the retractor blades 12, 16, 18, the retractor extenders 22, 24, 60, and/or the shim element 25 may be provided with one or more electrodes 23 (preferably at or near their distal regions) equipped for use with a nerve surveillance system, such as, by way of example, the type shown and described in the NeuroVision PCT Applications. Such a nerve surveillance system is capable of detecting the existence of (and optionally the distance and/or direction to) neural structures during the retraction of tissue by detecting the presence of nerves by applying a stimulation signal to electrodes 23 and monitoring the evoked EMG signals from the myotomes associated with the nerves in the vicinity of the retraction system 10 of the present invention. In so doing, the system as a whole (including the surgical retraction system 10 of the present invention) may be used to form an operative corridor through (or near) any of a variety of tissues having such neural structures, particularly those which, if contacted or impinged, may otherwise result in neural impairment for the patient. In this fashion, the access system of the present invention may be used to traverse tissue that would ordinarily be deemed unsafe or undesirable, thereby broadening the number of manners in which a given surgical target site may be accessed.

With reference to FIGS. 1-5, the handle assembly 20 may be coupled to any number of mechanisms for rigidly registering the handle assembly 20 in fixed relation to the operative site, such as through the use of an articulating arm mounted to the operating table (not shown). The handle assembly 20 includes first and second arm members 26, 28 hingedly coupled via coupling mechanism shown generally at 30. The second retractor blade 16 is rigidly coupled (generally perpendicularly) to the end of the first arm member 26. The third retractor blade 18 is rigidly coupled (generally perpendicularly) to the end of the second arm member 28. The first retractor blade 12 is rigidly coupled (generally perpendicularly to) a translating member 17, which is coupled to the handle assembly 20 via a linkage assembly shown generally at 14. The linkage assembly 14 includes a roller member 34 having a pair of manual knob members 36 which, when rotated via manual actuation by a user, causes teeth 35 on the roller member 34 to engage within ratchet-like grooves 37 in the translating member 17. Thus, manual operation of the knobs 36 causes the translating member 17 to move relative to the first and second arm members 26, 28.

Through the use of handle extenders 31, 33, the arms 26, 28 may be simultaneously opened such that the second and third retractor blades 16, 18 move away from one another. In this fashion, the dimension and/or shape of the operative corridor 15 may be tailored depending upon the degree to which the translating member 17 is manipulated relative to the arms 26, 28. That is, the operative corridor 15 may be tailored to provide any number of suitable cross-sectional shapes, including but not limited to a generally circular cross-section, a generally ellipsoidal cross-section, and/or an oval cross-section. Optional light emitting devices (not shown) may be coupled to one or more of the retractor blades 12, 16, 18 to direct light down the operative corridor 15.

FIGS. 16-18 illustrate the first arm member 26 in greater detail. First arm member 26 includes a distal pivot member 70, a coupling aperture 72, a proximal region 74 at which handle extender 31 may be attached, an aperture 76 through which knob 36 passes, and a slidable locking mechanism 84 (which may include a single-step lock 86 shown by way of example in FIGS. 14-15 and/or a variable-stop lock 88 as shown in FIGS. 16-18 and described by way of example below). The distal pivot member 70 includes a blade aperture 78, an aperture 80, and a cutout region 82. The blade aperture 78 is dimensioned to interact with the proximal region of the retractor blade 16 in a male-female relationship, such that the male end of blade 16 fits into the female blade aperture 78. To rigidly secure blade 16 to retractor arm 26, a pin or screw (not shown) may be inserted into aperture 80.

The variable-stop lock 88 allows the user to control the degree of expansion of the operative corridor 15. Variable-stop lock 88 includes a variable-stop region 90 and a user engagement region 92, and is dimensioned to slidably engage locking bar 94. The variable-stop region 90 may include any number of sequential step-wise cutout regions corresponding to the angulation desired for the retractor blades 16, 18. By way of example only, the variable-stop locking mechanism includes four sequential step-wise cutout regions 96, 98, 100, 102. Each sequential step-wise cutout region 96, 98, 100, 102 may correspond to a distinct degree of angulation of the retractor blades 16, 18 (relative to the “closed” position shown in FIGS. 2-3). By way of example only, sequential step-wise cutout regions 96, 98, 100, 102 may correspond to 5░, 10░, 15░ and 20░ of angulation, respectively. Each sequential step-wise cutout region 96, 98, 100, 102 is dimensioned to interact with the distal pivot member 70 once the desired degree of angulation is determined. The user engagement region 92 may include a series of ridges 104 or any other suitable friction-causing element to allow a user to manually operate the variable-stop lock 88 (to adjust and/or lock it).

Initially, the retractor assembly 10 of the present invention is introduced to the surgical target site with the retractor blades 12, 16, 18 in a first, closed position (shown generally in FIGS. 2-3). In this configuration, the retractor blades 16, 18 are oriented in a generally perpendicular configuration. In some instances it may be desirable to pivot either the second retractor blade 16 or the third retractor blade 18 (or both) outward in order to increase the volume of the operative corridor 15 (by increasing the distal dimension of the operative corridor). To accomplish this (with respect to blade 16), a pivot wrench 106 is engaged to the distal pivot member 70 of arm 26, as shown in FIGS. 19-21. The pivot wrench 106 includes a gripping portion 108 and a handle 110. The gripping portion 108 is dimensioned to snugly interact with the distal pivot member 70 of arm 26. When the handle 110 is moved in a medial direction (relative to the retractor 10), the blade 16 will pivot in a lateral (outward) direction (FIGS. 21 and 25). Distal pivot member 70 of retractor arm 26 is configured in such a way that it prevents the blade 16 from pivoting in a medial direction. In this manner, the blade 16 may be pivoted to a desired angulation (any angle between 0 and 45 degrees from center, denoted by δ1 & δ2 in FIG. 25). While maintaining this desired angulation, the user may engage the user engagement region 92 and exert a force to slide the variable-stop lock 88 in a distal direction along locking bar 94 (FIGS. 22 and 26) until the sequential step-wise cutout region 96, 98, 100, 102 corresponding to the particular angulation engages the distal pivot member 70 of the first arm member 26. By way of example only, if a 5░ angulation is desired, cutout region 96 will interact with the distal pivot member 70, preventing further pivoting of the retractor blade 16. On the other hand, if a 15░ angulation is desired, the variable-stop lock 88 should be moved along locking bar 94 until cutout region 100 interacts with the distal pivot member 70 (shown by way of example in FIGS. 22-23). After engaging the variable-stop lock 88, the pivot wrench 106 may be removed because the retractor blades 16, 18 are locked into a desired degree of angulation (FIGS. 27-28).

Although described with reference to first arm member 26, it will be appreciated that the detailed features and operation of the present invention as embodied within first arm member 26 are generally applicable (though in a mirror-image orientation) to the second arm member 28. Furthermore, the blade 18 may be pivoted independently of blade 16 such that different angles for each blade 16, 18 are achieved. Thus, it may be desirable to use blades of differing lengths and still maintain a symmetrical operating corridor wherein the distal ends of blades 16, 18 are oriented along the same general plane. Before removing the tissue retraction system 10 from the operative corridor, the variable-stop lock 88 should be disengaged by sliding it in a proximal direction along locking bar 94, allowing retractor blades 16, 18 to return to an initial alignment to facilitate removal.

As an alternative to the pivot wrench 106, a blade expander 112, such as shown by way of example only in FIGS. 29-33, may be provided to facilitate the manual pivoting of the retractor blades 16, 18. The blade expander 112 may include first and second blade engagement members 114, 116 located on first and second elongated extenders 118, 120, respectively, a pivot joint 122, a locking element 124 and pair of handle extensions 126, 128. By way of example only, the locking element 124 may include a generally curved member 130 including a series of engagement features 132 located along one edge. By way of example only, the engagement features 132 may consist of a series of “teeth” having a generally triangular cross-section. The locking element 124 may further include a release member 134 including a series of engagement features 136 that interact with engagement features 132 to effectively lock the blade expander 112 in a second variable configuration. The release member 134 further includes a manual depressor 138 that, when depressed, causes engagement features 136 to disengage from engagement features 132, allowing blade expander 112 to return from a second configuration to a first configuration.

With the retractor blades 16, 18 in an initial alignment (i.e. generally perpendicular to the handle 20) and the first and second arm members 26, 28 in an “open” position, the blade expander 112 may be inserted into the operative corridor in a first “closed” position, as shown by way of example in FIG. 31. The blade engagement members 114, 116 may be positioned to interact with the retractor blades 16, 18, respectively. The user may then operate the blade expander 112 by squeezing handle extensions 126, 128, thereby causing first and second elongated extenders 118, 120 to spread apart into a second “open” position shown generally in FIG. 30. Blade engagement members 114, 116 are thus forced against the retractor blades 16, 18, causing distal pivot members 70, 71 to pivot in an outward direction (shown by way of example in FIGS. 32-33). Once the desired degree of angulation (secondary alignment) of the retractor blades 16, 18 is achieved, the user should cease squeezing the handle extensions 126, 128. Due to the interaction between engagement features 132, 136 of the locking element 124, the blade expander 112 is effectively locked in this second position. When desired, the blade expander 112 may be returned to a first closed position by engaging manual depressor 138 on release member 134, allowing blade expander 112 to be removed from the operative corridor 15.

FIGS. 34-38 illustrate an inserter 140 for inserting retractor extenders 22, 24, 60 and/or shim element 25 according to a preferred embodiment of the present invention. By way of example only, inserter 140 is shown and described herein in conjunction with retractor extender 60, although it is to be readily appreciated that the inserter 140 may be employed in a similar manner with retractor extenders 22, 24 and shim element 25 according to the present invention. Inserter 140 includes a handle 142, and elongated region 144, and a distal end 146. The handle 142 may be any configuration suitable to allow purchase with the human hand, including but not limited to a grip (composed of any suitable material including but not limited to rubber, plastic, or metal) or a T-handle. The elongated region 144 may be straight or included any number of curved regions, and may be of any length necessary to mate the retractor extender 60 with the retractor blade 16/18. The distal end 146 may include a distal stub 148, a grip protrusion 150, and a recessed region 152. The distal stub 148 is configured to interact with elongated slot 43 of retractor extender 60 such that the retractor extender 60 is rigid relative to the inserter 140. Grip protrusion 150 is dimensioned to engage snugly over the edge of retractor extender 60 such that the retractor extender 60 is locked into place on the inserter 140 (FIG. 36).

In use, once the retractor extender 60 is attached to the inserter 140 (FIG. 37), the retractor extender 60/inserter 140 combination is positioned over the desired retractor blade (shown as the posterior blade 12 in FIG. 38). As the retractor extender 60 is inserted through the operative opening at the level of the skin (FIGS. 40-41), the retractor extender 60 may compress together such that the panels 64, 66 are oriented at a greater angle (denoted by 64 in FIG. 41) than at default position (denoted by 63 in FIG. 39). As the retractor extender 60 is inserted beyond the level of the skin and into the operative corridor 15 (FIGS. 42-43), the panels 64, 66 may expand to a lesser angle (denoted by δ5 in FIG. 43), which may or may not be the same angle as in default position. Once the retractor extender 60 has been inserted onto the retractor blade 12, the inserter 140 may be removed (FIGS. 44-45).

FIG. 46 illustrates a tissue distraction assembly 40 forming part of the surgical access system according to the present invention. The tissue distraction assembly 40 includes a K-wire 42, an initial dilating cannula 44, and a sequential dilation system 50. In use, the K-wire 42 is disposed within the initial dilating cannula 44 and the assembly is advanced through the tissue towards the surgical target site (e.g. annulus). Again, this is preferably accomplished while employing the nerve detection and/or direction features described above. After the initial dilating assembly is advanced such that the distal end of the initial dilator 44 is positioned within the disc space, the sequential dilation system 50 consisting of one or more supplemental dilators 52, 54 may be employed for the purpose of further dilating the tissue down to the surgical target site. Once again, each component of the sequential dilation system 50 (namely, the K-wire 42 and the supplemental dilators 52, 54) may be, according to the present invention, provided with one or more electrodes (preferably at their distal regions) equipped for use with a nerve surveillance system, such as, by way of example, the type shown and described in the NeuroVision PCT Applications.

As shown in FIG. 47, the retraction assembly 10 of the present invention is thereafter advanced along the exterior of the sequential dilation system 50. This is accomplished by maintaining the retractor blades 12, 16, 18 in a first, closed position (with the retractor blades 12-16 in generally abutting relation to one another as shown in FIGS. 2-3). Once advanced to the surgical target site, the sequential dilation assembly 50 may be removed and the shim element 25 engaged with the first retractor blade 12 such that the distal end thereof extends into the disc space as shown in FIG. 48. At this point, the handle assembly 20 may be operated to move the retractor blades 16, 18 into a second, “retracted” position as shown generally in FIGS. 49-50. As will be appreciated, the first retractor blade 12 is allowed to stay in the same general position during this process, such that the second and third retractor blades 16, 18 move away from the first retractor blade 12. Optionally, the second retractor blade 16 and/or the third retractor blade 18 may be pivoted in an outward direction as shown in FIGS. 51-52. At this point, the narrow and wide retractor extenders 22, 24, 60 may be engaged with any combination of retractor blades 12, 16, 18 as described above and as shown in FIG. 53.

Various improvements and modifications may be made to the surgical access system disclosed herein without deviating from the scope of the present invention. For example, as exemplified in FIGS. 54-56, the tissue retraction system 10 may include an optional locking feature to maintain the blades 16, 18 in an initial alignment (e.g. generally parallel) during insertion. By way of example only, this locking feature may consist of a pair of tabs 160, 162 located on the distal pivot member 70, 71 of first and second arm members 26, 28, respectively. The tabs 160, 162 are dimensioned to extend at least partially over the translating member 17 such that when the tissue retraction system 10 is in an initial closed position as shown in FIGS. 54-55 (e.g. as the tissue retraction system 10 is advanced along the exterior of sequential dilation system 50), the distal pivot members 70, 71 are prevented from pivoting, thereby maintaining the retractor blades 16, 18 in an initial alignment.

Once the tissue retraction system 10 is fully in place and the sequential dilation system 50 has been removed as described above, the handle assembly 20 may be operated to move the first and second arm members 26, 28 into a second position shown generally in FIG. 56. In so doing, retractor blades 16, 18 are also moved into a second, “retracted” position. The presence of the patient's soft tissue defining the walls of the operative corridor is generally sufficient to maintain the retractor blades 16, 18 in the initial (e.g. generally vertical) alignment despite the fact that locking tabs 160, 162 are no longer engaged with translating member 17. At this point, the surgeon may elect to expand the operative corridor 15 by manually pivoting the retractor blades 16, 18 in a generally outward direction, using by way of example only either a pivot wrench 106 (FIGS. 24-26) and/or a blade expander 112 (FIGS. 31-33) as described above.

As mentioned above, any number of distraction components and/or retraction components (including but not limited to those described herein) may be equipped to detect the presence of (and optionally the distance and/or direction to) neural structures during tissue distraction and/or retraction. This is accomplished by employing the following steps: (1) one or more stimulation electrodes are provided on the various distraction and/or retraction components; (2) a stimulation source (e.g. voltage or current) is coupled to the stimulation electrodes; (3) a stimulation signal is emitted from the stimulation electrodes as the various components are advanced towards or maintained at or near the surgical target site; and (4) the patient is monitored to determine if the stimulation signal causes muscles associated with nerves or neural structures within the tissue to innervate. If the nerves innervate, this may indicate that neural structures may be in close proximity to the distraction and/or retraction components.

Neural monitoring may be accomplished via any number of suitable fashions, including but not limited to observing visual twitches in muscle groups associated with the neural structures likely to found in the tissue, as well as any number of monitoring systems, including but not limited to any commercially available “traditional” electromyography (EMG) system (that is, typically operated by a neurophysiologist). Such monitoring may also be carried out via the surgeon-driven EMG monitoring system shown and described in the commonly owned and co-pending NeuroVision PCT Applications referenced above. In any case (visual monitoring, traditional EMG and/or surgeon-driven EMG monitoring), the access system of the present invention may advantageously be used to traverse tissue that would ordinarily be deemed unsafe or undesirable, thereby broadening the number of manners in which a given surgical target site may be accessed.

FIGS. 57-58 illustrate, by way of example only, a monitoring system 170 of the type disclosed in the NeuroVision PCT Applications suitable for use with the surgical access system 10 of the present invention. The monitoring system 170 includes a control unit 172, a patient module 174, and an EMG harness 176 and return electrode 178 coupled to the patient module 174, and a cable 182 for establishing electrical communication between the patient module 174 and any number of surgical accessories 196, including the surgical access system of the present invention (retractor assembly 10 of FIG. 1 and distraction assemblies 40, 50 of FIGS. 46-47, including K-wire 42, initial dilator 44 and sequentially dilating cannulae 52, 54). The surgical accessories 196 may further include, but are not necessarily limited to, devices for performing pedicle screw tests (such as a screw test probe 198), neural pathology monitoring devices (such as a nerve root retractor 200), coupling devices for electronically coupling surgical instruments to the system 170 (such as electric coupling devices 202, 204 and stimulator driver 206), and pilot hole forming components (such as a tap member 208, pedicle access probe 210, or other similar device). More specifically, this electrical communication can be achieved by providing, by way of example only, a hand-held stimulation driver 206 capable of selectively providing a stimulation signal (due to the operation of manually operated buttons on the hand-held stimulation controller 206) to one or more connectors (e.g., coupling devices 202, 204). The coupling devices 202, 204 are suitable to establish electrical communication between the hand-held stimulation controller 206 and (by way of example only) the stimulation electrodes on the K-wire 42, the dilators 44, 52, 54, the retractor blades 12, 16, 18 and/or the shim members 22, 24, 25, 60 (collectively “surgical access instruments”).

In order to use the monitoring system 170, then, these surgical access instruments must be connected to at least one of coupling devices 202, 204 (or their equivalent), at which point the user may selectively initiate a stimulation signal (preferably, a current signal) from the control unit 172 to a particular surgical access instruments. Stimulating the electrode(s) on these surgical access instruments before, during and/or after establishing operative corridor will cause nerves that come into close or relative proximity to the surgical access instruments to depolarize, producing a response in a myotome associated with the innervated nerve.

The control unit 172 includes a touch screen display 190 and a base 192, which collectively contain the essential processing capabilities (software and/or hardware) for controlling the monitoring system 170. The control unit 172 may include an audio unit 168 that emits sounds according to a location of a surgical element with respect to a nerve. The patient module 174 is connected to the control unit 172 via a data cable 194, which establishes the electrical connections and communications (digital and/or analog) between the control unit 172 and patient module 174. The main functions of the control unit 172 include receiving user commands via the touch screen display 190, activating stimulation electrodes on the surgical access instruments, processing signal data according to defined algorithms, displaying received parameters and processed data, and monitoring system status and report fault conditions. The touch screen display 190 is preferably equipped with a graphical user interface (GUI) capable of communicating information to the user and receiving instructions from the user. The display 190 and/or base 192 may contain patient module interface circuitry (hardware and/or software) that commands the stimulation sources, receives digitized signals and other information from the patient module 174, processes the EMG responses to extract characteristic information for each muscle group, and displays the processed data to the operator via the display 190.

In one embodiment, the monitoring system 170 is capable of determining nerve direction relative to one or more of the K-wire 42, the dilators 44, 52, 54, the retractor blades 12, 16, 18 and/or the shim elements 22, 24, 25, 60 before, during and/or following the creation of an operative corridor to a surgical target site. Monitoring system 170 accomplishes this by having the control unit 172 and patient module 174 cooperate to send electrical stimulation signals to one or more of the stimulation electrodes provided on these instruments. Depending upon the location of the surgical access system 10 within a patient (and more particularly, to any neural structures), the stimulation signals may cause nerves adjacent to or in the general proximity of the surgical access system 10 to depolarize. This causes muscle groups to innervate and generate EMG responses, which can be sensed via the EMG harness 176. The nerve direction feature of the system 170 is based on assessing the evoked response of the various muscle myotomes monitored by the system 170 via the EMG harness 176.

By monitoring the myotomes associated with the nerves (via the EMG harness 176 and recording electrode 177) and assessing the resulting EMG responses (via the control unit 172), the surgical access system 10 is capable of detecting the presence of (and optionally the distant and/or direction to) such nerves. This provides the ability to actively negotiate around or past such nerves to safely and reproducibly form the operative corridor to a particular surgical target site, as well as monitor to ensure that no neural structures migrate into contact with the surgical access system 10 after the operative corridor has been established. In spinal surgery, for example, this is particularly advantageous in that the surgical access system 10 may be particularly suited for establishing an operative corridor to an intervertebral target site in a postero-lateral, trans-psoas fashion so as to avoid the bony posterior elements of the spinal column.

FIGS. 59-60 are exemplary screen displays (to be shown on the display 190) illustrating one embodiment of the nerve direction feature of the monitoring system shown and described with reference to FIGS. 57-58. These screen displays are intended to communicate a variety of information to the surgeon in an easy-to-interpret fashion. This information may include, but is not necessarily limited to, a display of the function 230 (in this case “DIRECTION”), a graphical representation of a patient 231, the myotome levels being monitored 232, the nerve or group associated with a displayed myotome 233, the name of the instrument being used 234 (in this case, a dilator 52, 54), the size of the instrument being used 235, the stimulation threshold current 236, a graphical representation of the instrument being used 237 (in this case, a cross-sectional view of a dilator 52, 54) to provide a reference point from which to illustrate relative direction of the instrument to the nerve, the stimulation current being applied to the stimulation electrodes 238, instructions for the user 239 (in this case, “ADVANCE” and/or “HOLD”), and (in FIG. 60) an arrow 240 indicating the direction from the instrument to a nerve. This information may be communicated in any number of suitable fashions, including but not limited to the use of visual indicia (such as alpha-numeric characters, light-emitting elements, and/or graphics) and audio communications (such as a speaker element). Although shown with specific reference to a dilating cannula (such as at 234), it is to be readily appreciated that the present invention is deemed to include providing similar information on the display 190 during the use of any or all of the various instruments forming the surgical access system 10 of the present invention, including the distraction assembly 40 (i.e. the K-wire 42 and dilators 44, 52, 54) and/or the retractor blades 12, 16, 18 and/or the shim elements 22, 24, 25, 60.

As evident from the above discussion and drawings, the present invention accomplishes the goal of gaining access a surgical target site in a fashion less invasive than traditional “open” surgeries and, moreover, does so in a manner that provides the ability to access such a surgical target site regardless of the neural structures required to be passed through (or near) in order to establish an operative corridor to the surgical target site. The present invention furthermore provides the ability to perform neural monitoring in the tissue or regions adjacent the surgical target site during any procedures performed after the operative corridor has been established. The surgical access system of the present invention can be used in any of a wide variety of surgical or medical applications, above and beyond the spinal applications discussed herein. Such spinal applications may include any procedure wherein instruments, devices, implants and/or compounds are to be introduced into or adjacent the surgical target site, including but not limited to discectomy, fusion (including PLIF, ALIF, TLIF and any fusion effectuated via a lateral or far-lateral approach and involving, by way of example, the introduction and/or removal of bone products (such as allograft or autograft) and/or devices having ceramic, metal and/or plastic construction (such as mesh) and/or compounds such as bone morphogenic protein), total disc replacement, etc. . . . ).

Moreover, the surgical access system of the present invention opens the possibility of accessing an increased number of surgical target sites in a “less invasive” fashion by eliminating or greatly reducing the threat of contacting nerves or neural structures while establishing an operative corridor through or near tissues containing such nerves or neural structures. In so doing, the surgical access system of the present invention represents a significant advancement capable of improving patient care (via reduced pain due to “less-invasive” access and reduced or eliminated risk of neural contact before, during, and after the establishment of the operative corridor) and lowering health care costs (via reduced hospitalization based on “less-invasive” access and increased number of suitable surgical target sites based on neural monitoring). Collectively, these translate into major improvements to the overall standard of care available to the patient population, both domestically and overseas.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2082279 Mar 187824 Sep 1878 Improvement in vaginal speculums
US75147521 Nov 19019 Feb 1904 Speculum
US97298317 May 190918 Oct 1910Lester R LantzDilator.
US100323215 Oct 191012 Sep 1911Ferdinando CerboUrethroscope.
US104434829 Jun 191212 Nov 1912Ferdinando CerboUrethroscope.
US132862413 Aug 191720 Jan 1920Graham Frank BDilator
US154818411 Apr 19234 Aug 1925Cameron Will JHolder and control for pulp testers
US179607225 Oct 192810 Mar 1931Baer Walter KSpeculum
US230004031 May 194027 Oct 1942Betts Frank ASurgical speculum
US23207091 Aug 19411 Jun 1943Nat Electric Instr Co IncSpeculum
US259408629 Apr 195022 Apr 1952Smith David PTable supported abdominal retractor
US270406410 Sep 195215 Mar 1955Meditron CompanyNeurosurgical stimulator
US27360022 Sep 195221 Feb 1956 oriel
US280725924 Feb 195524 Sep 1957Guerriero Federico D CVaginal speculum and surgical retractor
US280882619 Jan 19568 Oct 1957Teca CorpElectro-diagnostic apparatus and a circuit therefor
US336492921 Dec 196423 Jan 1968Burroughs Wellcome CoMethod for administering muscle relaxant drug
US36643299 Mar 197023 May 1972ConceptNerve locator/stimulator
US36821624 Dec 19698 Aug 1972Wellcome FoundCombined electrode and hypodermic syringe needle
US374759230 Jun 197024 Jul 1973Santos MMultiply adjustable surgical retractor
US375214916 Dec 197114 Aug 1973Rosenthal AVaginal speculum
US378536823 Aug 197115 Jan 1974Lumb DAbnormal nerve pressure locus detector and method
US37898291 Jun 19715 Feb 1974Hasson HVaginal radium applicator
US380371614 Apr 197216 Apr 1974Micro Mega SaHandpieces for dental surgery and the like
US383022615 Jun 197320 Aug 1974ConceptVariable output nerve locator
US39570363 Feb 197518 May 1976Baylor College Of MedicineMethod and apparatus for recording activity in intact nerves
US398512521 Mar 197512 Oct 1976Ewald RoseVaginal speculum
US409951914 Jan 197711 Jul 1978Warren Fred EDiagnostic device
US41564241 May 197829 May 1979Burgin Kermit HLocking adjustable speculum
US416421425 Jul 197714 Aug 1979The Regents Of The University Of CaliforniaMethod and apparatus for measuring the sensitivity of teeth
US420789713 Jul 197717 Jun 1980Spembly LimitedCryosurgical probe
US422494917 Nov 197730 Sep 1980Cornell Research Foundation, Inc.Method and electrical resistance probe for detection of estrus in bovine
US4226228 *2 Nov 19787 Oct 1980Shin Hee JMultiple joint retractor with light
US42262885 May 19787 Oct 1980California Institute Of TechnologySide hole drilling in boreholes
US42352422 Apr 197925 Nov 1980Med General, Inc.Electronic circuit permitting simultaneous use of stimulating and monitoring equipment
US42638998 Nov 197828 Apr 1981Burgin Kermit HLocking adjustable speculum
US428534725 Jul 197925 Aug 1981Cordis CorporationStabilized directional neural electrode lead
US429170510 Sep 197929 Sep 1981The Regents Of The University Of CaliforniaNeuromuscular block monitor
US444953230 Jun 198122 May 1984Karl StorzDilator to facilitate endoscope insertion into the body
US446130018 Jan 198224 Jul 1984Sutter Biomedical, Inc.Bone and tissue healing device including a special electrode assembly and method
US451235119 Nov 198223 Apr 1985Cordis CorporationPercutaneous lead introducing system and method
US451516822 Jul 19837 May 1985Chester Martin HClamp-on nerve stimulator and locator
US451940329 Apr 198328 May 1985Medtronic, Inc.Balloon lead and inflator
US45453743 Sep 19828 Oct 1985Jacobson Robert EMethod and instruments for performing a percutaneous lumbar diskectomy
US456144525 May 198331 Dec 1985Joseph J. BerkeElongated needle electrode and method of making same
US456283221 Jan 19847 Jan 1986Wilder Joseph RMedical instrument and light pipe illumination assembly
US45734485 Oct 19834 Mar 1986Pilling Co.Method for decompressing herniated intervertebral discs
US45923698 Jul 19833 Jun 1986National Research Development Corp.Method and apparatus for use in temporal analysis of waveforms
US459501317 Aug 198417 Jun 1986Neurologics, Inc.Electrode harness
US45950186 Jun 198417 Jun 1986Instrumentarium Corp.Method of further developing the measuring of a neuro-muscular junction
US46115972 Nov 198316 Sep 1986Werner KrausImplantable device for the stimulation of bone growth
US46166354 Apr 198514 Oct 1986Aesculap-Werke AktiengesellschaftSurgical instrument for the splaying of wound edges
US463388912 Dec 19846 Jan 1987Andrew TalallaStimulation of cauda-equina spinal nerves
US465883525 Jul 198521 Apr 1987Cordis CorporationNeural stimulating lead with fixation canopy formation
US471690125 Sep 19855 Jan 1988Pratt Burnerd International LimitedSurgical appliance for forming an opening through the skin
US474437127 Apr 198717 May 1988Cordis Leads, Inc.Multi-conductor lead assembly for temporary use
US47532237 Nov 198628 Jun 1988Bremer Paul WSystem for controlling shape and direction of a catheter, cannula, electrode, endoscope or similar article
US475937726 Nov 198626 Jul 1988Regents Of The University Of MinnesotaApparatus and method for mechanical stimulation of nerves
US476531114 Apr 198723 Aug 1988Kulik Yaroslav PWound retractor
US47841504 Nov 198615 Nov 1988Research CorporationSurgical retractor and blood flow monitor
US480760015 Oct 198628 Feb 1989Hayes Allen LSpeculum protector
US480764218 Aug 198628 Feb 1989Brown David AElectromyographic repetitive strain injury monitor
US481758731 Aug 19874 Apr 1989Janese Woodrow WRing para-spinal retractor
US4836186 *16 Jan 19876 Jun 1989Scholz Francis JBody compression device for patients under fluoroscopic examination
US486289114 Mar 19885 Sep 1989Canyon Medical ProductsDevice for sequential percutaneous dilation
US489210511 Jan 19889 Jan 1990The Cleveland Clinic FoundationElectrical stimulus probe
US491313429 Jul 19883 Apr 1990Biotechnology, Inc.Spinal fixation system
US491727419 Sep 198417 Apr 1990Maurice AsaMiniscule droplet dispenser tip
US49177048 Jun 198817 Apr 1990Sulzer Brothers LimitedIntervertebral prosthesis
US492686517 Jan 198922 May 1990Oman Paul SMicrocomputer-based nerve and muscle stimulator
US495025715 Sep 198821 Aug 1990Mallinckrodt, Inc.Catheter introducer with flexible tip
US496276619 Jul 198916 Oct 1990Herzon Garrett DNerve locator and stimulator
US496441113 Jul 198923 Oct 1990Empi, Inc.Evoked EMG signal processing
US498958726 Apr 19895 Feb 1991Farley Daniel KSternal retractor
US500790222 Feb 198916 Apr 1991B. Braun Melsungen AgCatheter set for plexus anesthesia
US501524713 Jun 198814 May 1991Michelson Gary KThreaded spinal implant
US50450546 Feb 19903 Sep 1991Advanced Osseous Technologies Inc.Apparatus for implantation and extraction of osteal prostheses
US505237310 Apr 19901 Oct 1991Michelson Gary KSpinal retractor
US50586024 Oct 198922 Oct 1991Brody Stanley RParaspinal electromyography scanning
US508199011 May 199021 Jan 1992New York UniversityCatheter for spinal epidural injection of drugs and measurement of evoked potentials
US50884724 Apr 199018 Feb 1992Mehdi FakhraiRetractor
US509234419 Nov 19903 Mar 1992Lee Tzium ShouRemote indicator for stimulator
US512740321 Aug 19907 Jul 1992Cardiac Control Systems, Inc.Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal
US516153319 Sep 199110 Nov 1992Xomed-Treace Inc.Break-apart needle electrode system for monitoring facial EMG
US517127917 Mar 199215 Dec 1992Danek MedicalMethod for subcutaneous suprafascial pedicular internal fixation
US519232722 Mar 19919 Mar 1993Brantigan John WSurgical prosthetic implant for vertebrae
US519554118 Oct 199123 Mar 1993Obenchain Theodore GMethod of performing laparoscopic lumbar discectomy
US519601530 Apr 199223 Mar 1993Neubardt Seth LProcedure for spinal pedicle screw insertion
US521510029 Apr 19911 Jun 1993Occupational Preventive Diagnostic, Inc.Nerve condition monitoring system and electrode supporting structure
US525569113 Nov 199126 Oct 1993Medtronic, Inc.Percutaneous epidural lead introducing system and method
US52824688 Jan 19921 Feb 1994Medtronic, Inc.Implantable neural electrode
US528415314 Apr 19928 Feb 1994Brigham And Women's HospitalMethod for locating a nerve and for protecting nerves from injury during surgery
US528415423 Oct 19928 Feb 1994Brigham And Women's HospitalApparatus for locating a nerve and for protecting nerves from injury during surgery
US529599415 Nov 199122 Mar 1994Bonutti Peter MActive cannulas
US529956331 Jul 19925 Apr 1994Seton Joseph ZMethod of using a surgical retractor
US531241729 Jul 199217 May 1994Wilk Peter JLaparoscopic cannula assembly and associated method
US53139563 Dec 199124 May 1994Dorsograf AbApparatus for measuring the transport time of nerve signals
US53139621 Mar 199324 May 1994Obenchain Theodore GMethod of performing laparoscopic lumbar discectomy
US532790214 May 199312 Jul 1994Lemmen Roger DApparatus for use in nerve conduction studies
US53319752 Mar 199026 Jul 1994Bonutti Peter MFluid operated retractors
US533361830 Jun 19932 Aug 1994Gregory LekhtmanPortable self-contained instrument for the measurement of nerve resistance of a patient
US534238413 Aug 199230 Aug 1994Brigham & Women's HospitalSurgical dilator
US53579834 Jan 199325 Oct 1994Danek Medical, Inc.Method for subcutaneous suprafascial pedicular internal fixation
US537506711 Dec 199220 Dec 1994Nicolet Instrument CorporationMethod and apparatus for adjustment of acquisition parameters in a data acquisition system such as a digital oscilloscope
US537559429 Mar 199327 Dec 1994Cueva; Roberto A.Removable medical electrode system
US53776673 Dec 19923 Jan 1995Michael T. PattonSpeculum for dilating a body cavity
US538387622 Mar 199424 Jan 1995American Cardiac Ablation Co., Inc.Fluid cooled electrosurgical probe for cutting and cauterizing tissue
US539531730 Oct 19917 Mar 1995Smith & Nephew Dyonics, Inc.Unilateral biportal percutaneous surgical procedure
US545084511 Jan 199319 Sep 1995Axelgaard; JensMedical electrode system
US547242617 Aug 19935 Dec 1995B.E.I. MedicalCervical discectomy instruments
US547405721 Jul 199412 Dec 1995Valleylab Inc.Laparoscopic dissection tension retractor device and method
US547455818 Jul 199412 Dec 1995Neubardt; Seth L.Procedure and system for spinal pedicle screw insertion
US54804407 Jul 19932 Jan 1996Smith & Nephew Richards, Inc.Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient
US548203828 Jun 19949 Jan 1996Cadwell Industries, Inc.Needle electrode assembly
US548443710 Jun 199316 Jan 1996Michelson; Gary K.Apparatus and method of inserting spinal implants
US54877392 Jun 199530 Jan 1996Brown University Research FoundationImplantable therapy systems and methods
US55098935 Jun 199223 Apr 1996Meditech International Pty Ltd.Speculum
US551203815 Nov 199330 Apr 1996O'neal; Darrell D.Spinal retractor apparatus having a curved blade
US551415314 Feb 19947 May 1996General Surgical Innovations, Inc.Method of dissecting tissue layers
US554023530 Jun 199430 Jul 1996Wilson; John R.Adaptor for neurophysiological monitoring with a personal computer
US554965615 May 199527 Aug 1996Med Serve Group, Inc.Combination neuromuscular stimulator and electromyograph system
US55603722 Feb 19941 Oct 1996Cory; Philip C.Non-invasive, peripheral nerve mapping device and method of use
US55666785 Jan 199522 Oct 1996Cadwell Industries, Inc.Digital EEG noise synthesizer
US556929030 Jan 199529 Oct 1996Paul C. McAfeeMethod of and apparatus for laparoscopic or endoscopic spinal surgery using an unsealed anteriorly inserted transparent trochar
US557114913 Apr 19945 Nov 1996E.P., Inc.Non-intrusive analgesic neuroaugmentive and iontophoretic delivery apparatus and management system
US557978113 Oct 19943 Dec 1996Cooke; Thomas H.Wireless transmitter for needle electrodes as used in electromyography
US559342928 Jun 199414 Jan 1997Cadwell Industries, Inc.Needle electrode with depth of penetration limiter
US559927929 Jan 19964 Feb 1997Gus J. SlotmanSurgical instruments and method useful for endoscopic spinal procedures
US56308138 Dec 199420 May 1997Kieturakis; Maciej J.Electro-cauterizing dissector and method for facilitating breast implant procedure
US5667481 *1 Feb 199516 Sep 1997Villalta; Josue J.Four blade medical retractor
US56675081 May 199616 Sep 1997Fastenetix, LlcUnitary locking cap for use with a pedicle screw
US567175231 Mar 199530 Sep 1997Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University)Diaphragm electromyography analysis method and system
US568126517 Aug 199528 Oct 1997Yufu Seiki Co., Ltd.Cylindrical anal retractor
US56882238 Nov 199518 Nov 1997Minnesota Scientific, Inc.Retractor support with adjustable retractor blades
US570735914 Nov 199513 Jan 1998Bufalini; BrunoExpanding trocar assembly
US571130713 Apr 199527 Jan 1998Liberty Mutual Insurance CompanyMethod and apparatus for detecting myoelectric activity from the surface of the skin
US5728046 *18 Mar 199617 Mar 1998Aesculap AgSurgical retractor
US574125329 Oct 199221 Apr 1998Michelson; Gary KarlinMethod for inserting spinal implants
US574126125 Jun 199621 Apr 1998Sdgi Holdings, Inc.Minimally invasive spinal surgical methods and instruments
US575915925 Sep 19962 Jun 1998Ormco CorporationMethod and apparatus for apical detection with complex impedance measurement
US57626292 May 19969 Jun 1998Smith & Nephew, Inc.Oval cannula assembly and method of use
US577266127 Feb 199530 Jun 1998Michelson; Gary KarlinMethods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US57753317 Jun 19957 Jul 1998Uromed CorporationApparatus and method for locating a nerve
US57761447 Oct 19967 Jul 1998Implex Gmbh SpezialhorgerateDevice for positioning and fixing of therapeutic, surgical, or diagnostic instruments
US577964218 Feb 199714 Jul 1998Nightengale; ChristopherInterrogation device and method
US57856489 Oct 199628 Jul 1998David Min, M.D., Inc.Speculum
US57856587 Jun 199528 Jul 1998Sexant Medical CorporationIn vivo tissue analysis methods and apparatus
US578863030 Jan 19974 Aug 1998Genzyme CorporationRib retractor
US579204422 Mar 199611 Aug 1998Danek Medical, Inc.Devices and methods for percutaneous surgery
US57952917 Feb 199718 Aug 1998Koros; TiborCervical retractor system
US57978541 Aug 199525 Aug 1998Hedgecock; James L.Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance
US57979097 Jun 199525 Aug 1998Michelson; Gary KarlinApparatus for inserting spinal implants
US581407313 Dec 199629 Sep 1998Bonutti; Peter M.Method and apparatus for positioning a suture anchor
US583015126 Nov 19973 Nov 1998Innovative Design AssociatesApparatus for locating and anesthetizing peripheral nerves a method therefor
US58511911 Jul 199722 Dec 1998Neurometrix, Inc.Apparatus and methods for assessment of neuromuscular function
US58533735 Aug 199629 Dec 1998Becton, Dickinson And CompanyBi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures
US586097330 Oct 199619 Jan 1999Michelson; Gary KarlinTranslateral spinal implant
US58623141 Nov 199619 Jan 1999Micron Electronics, Inc.System and method for remapping defective memory locations
US586866815 Jul 19989 Feb 1999Weiss; SolSurgical instrument
US587231425 Jul 199716 Feb 1999Clinton; Robert P.Method and apparatus for measuring characteristics of meat
US588521021 Sep 199823 Mar 1999Cox; Victor M.Surgical retractor
US588521921 Oct 199723 Mar 1999Nightengale; ChristopherInterrogation device and method
US58881965 Jun 199530 Mar 1999General Surgical Innovations, Inc.Mechanically expandable arthroscopic retractors
US589114729 Sep 19976 Apr 1999Sdgi Holdings, Inc.Minimally invasive spinal surgical methods & instruments
US590223124 Oct 199611 May 1999Sdgi Holdings, Inc.Devices and methods for percutaneous surgery
US5928139 *8 Jul 199827 Jul 1999Koros; Tibor B.Retractor with adjustable length blades and light pipe guides
US592815825 Mar 199727 Jul 1999Aristides; ArellanoMedical instrument with nerve sensor
US5931777 *11 Mar 19983 Aug 1999Sava; Gerard A.Tissue retractor and method for use
US593513111 Apr 199710 Aug 1999Bonutti; Peter M.Apparatus and method for tissue removal
US59386884 Dec 199717 Aug 1999Cornell Research Foundation, Inc.Deep brain stimulation method
US5944658 *23 Sep 199731 Aug 1999Koros; Tibor B.Lumbar spinal fusion retractor and distractor system
US595463529 Aug 199721 Sep 1999Sdgi Holdings Inc.Devices and methods for percutaneous surgery
US597609412 Feb 19982 Nov 1999Neurometrix, Inc.Apparatus and methods for assessment of neuromuscular function
US599338518 Aug 199730 Nov 1999Johnston; TerrySelf-aligning side-loading surgical retractor
US60042624 May 199821 Dec 1999Ad-Tech Medical Instrument Corp.Visually-positioned electrical monitoring apparatus
US600431227 Feb 199821 Dec 1999Paraspinal Diagnostic CorporationComputerized EMG diagnostic system
US60043415 Dec 199621 Dec 1999Loma Linda University Medical CenterVascular wound closure device
US600748729 Aug 199728 Dec 1999Sdgi Holdings, Inc.Tissue retractor for use through a cannula
US60105201 May 19984 Jan 2000Pattison; C. PhillipDouble tapered esophageal dilator
US602469624 Apr 199815 Feb 2000Hoftman; MosheSide wall support speculum
US602469711 Jan 199915 Feb 2000Pisarik; PaulMulti-bladed speculum for dilating a body cavity
US602745610 Jul 199822 Feb 2000Advanced Neuromodulation Systems, Inc.Apparatus and method for positioning spinal cord stimulation leads
US603846910 Mar 199814 Mar 2000Ortivus AbMyocardial ischemia and infarction analysis and monitoring method and apparatus
US603847723 Dec 199814 Mar 2000Axon Engineering, Inc.Multiple channel nerve stimulator with channel isolation
US604254018 Aug 199728 Mar 2000Pacific Surgical Innovations, Inc.Side-loading surgical retractor
US605099219 May 199718 Apr 2000Radiotherapeutics CorporationApparatus and method for treating tissue with multiple electrodes
US607434316 Apr 199913 Jun 2000Nathanson; MichaelSurgical tissue retractor
US608315422 Oct 19984 Jul 2000Sofamor S.N.C.Surgical instrumentation and method for retracting and shifting tissues
US609598719 Sep 19971 Aug 2000Imagyn Medical Techonologies California, Inc.Apparatus and methods of bioelectrical impedance analysis of blood flow
US609604624 Jun 19981 Aug 2000Weiss; SolSurgical instrument
US609954713 Feb 19988 Aug 2000Scimed Life Systems, Inc.Method and apparatus for minimally invasive pelvic surgery
US6102853 *22 Jan 199915 Aug 2000United States Surgical CorporationSurgical instrument
US610495721 Aug 199815 Aug 2000Alo; Kenneth M.Epidural nerve root stimulation with lead placement method
US610496013 Jul 199815 Aug 2000Medtronic, Inc.System and method for providing medical electrical stimulation to a portion of the nervous system
US6120436 *25 May 199919 Sep 2000Cardiothoracic Systems, Inc.Apparatus and method for cardiac stabilization and arterial occlusion
US61205035 Sep 199719 Sep 2000Michelson; Gary KarlinApparatus instrumentation, and method for spinal fixation
US612666029 Jul 19983 Oct 2000Sofamor Danek Holdings, Inc.Spinal compression and distraction devices and surgical methods
US613238616 Mar 199917 Oct 2000Neurometrix, Inc.Methods for the assessment of neuromuscular function by F-wave latency
US613238716 Mar 199917 Oct 2000Neurometrix, Inc.Neuromuscular electrode
US61359652 Dec 199624 Oct 2000Board Of Regents, The University Of Texas SystemSpectroscopic detection of cervical pre-cancer using radial basis function networks
US6139493 *1 Jul 199931 Oct 2000Koros; Tibor B.Retractor with adjustable length blades and light pipe guides
US614633516 Mar 199914 Nov 2000Neurometrix, Inc.Apparatus for methods for the assessment of neuromuscular function of the lower extremity
US615287125 Sep 199828 Nov 2000Sdgi Holdings, Inc.Apparatus for percutaneous surgery
US615917912 Mar 199912 Dec 2000Simonson; Robert E.Cannula and sizing and insertion method
US616104730 Apr 199812 Dec 2000Medtronic Inc.Apparatus and method for expanding a stimulation lead body in situ
US617431128 Oct 199816 Jan 2001Sdgi Holdings, Inc.Interbody fusion grafts and instrumentation
US618196116 Dec 199830 Jan 2001Richard L. PrassMethod and apparatus for an automatic setup of a multi-channel nerve integrity monitoring system
US619696921 May 19996 Mar 2001Lab Engineering & Manufacturing, Inc.Tissue retractor adapted for the attachment of an auxiliary element
US6206826 *18 Jun 199927 Mar 2001Sdgi Holdings, Inc.Devices and methods for percutaneous surgery
US621750920 Jan 199917 Apr 2001Sdgi Holdings, Inc.Devices and methods for percutaneous surgery
US622454523 Jul 19991 May 2001Core Surgical, Inc.Surgical retractor and method for use
US622454920 Apr 19991 May 2001Nicolet Biomedical, Inc.Medical signal monitoring and display
US62450829 Feb 200012 Jun 2001Scimed Life Systems, Inc.System for attaching a urethral sling to a suture
US625994530 Apr 199910 Jul 2001Uromed CorporationMethod and device for locating a nerve
US62646511 Jul 199924 Jul 2001Arthrocare CorporationMethod for electrosurgical spine surgery
US62665581 Dec 199824 Jul 2001Neurometrix, Inc.Apparatus and method for nerve conduction measurements with automatic setting of stimulus intensity
US6273905 *1 Jul 199914 Aug 2001Jackson StreeterMethod for treating spinal cord transection
US62873224 Jun 199911 Sep 2001Loma Linda University Medical CenterTissue opening locator and everter and method
US629270129 Jul 199918 Sep 2001Medtronic Xomed, Inc.Bipolar electrical stimulus probe with planar electrodes
US630284211 Jan 200116 Oct 2001Innovative Surgical Design LlcEpisiotomy retractor
US630610016 Dec 199823 Oct 2001Richard L. PrassIntraoperative neurophysiological monitoring system
US630871223 Jun 200030 Oct 2001Fredrick C. ShawImmobilizing apparatus having a sterile insert
US630934910 Apr 199730 Oct 2001Endoscopic Technologies, Inc.Surgical retractor and stabilizing device and method for use
US63123926 Apr 20006 Nov 2001Garrett D. HerzonBipolar handheld nerve locator and evaluator
US632576410 Nov 19974 Dec 2001Becton, Dickinson And CompanyBi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures
US633406814 Sep 199925 Dec 2001Medtronic Xomed, Inc.Intraoperative neuroelectrophysiological monitor
US634805810 Dec 199819 Feb 2002Surgical Navigation Technologies, Inc.Image guided spinal surgery guide, system, and method for use thereof
US636075021 Jan 200026 Mar 2002Medtronic, Inc.Minimally invasive surgical techniques for implanting devices that deliver stimulant to the nervous system
US63719688 May 199716 Apr 2002Olympus Optical Co., Ltd.Cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool, and a procedure for surgery
US639500714 Mar 200028 May 2002American Osteomedix, Inc.Apparatus and method for fixation of osteoporotic bone
US64258599 Nov 199930 Jul 2002Sdgi Holdings, Inc.Cannula and a retractor for percutaneous surgery
US642588722 Sep 200030 Jul 2002Cook IncorporatedMulti-directional needle medical device
US64259014 Dec 199730 Jul 2002Loma Linda University Medical CenterVascular wound closure system
US645095222 Apr 199917 Sep 2002Scimed Life Systems, Inc.Medical body access device
US645101518 Nov 199817 Sep 2002Sherwood Services AgMethod and system for menu-driven two-dimensional display lesion generator
US64668178 Jun 200015 Oct 2002Nuvasive, Inc.Nerve proximity and status detection system and method
US646820527 Dec 199922 Oct 2002General Surgical Innovations, Inc.Method and apparatus for combined dissection and retraction
US646820715 Sep 200022 Oct 2002Lone Star Medical Products, Inc.Deep tissue surgical retractor apparatus and method of retracting tissue
US65001166 Sep 200031 Dec 2002Genzyme CorporationSurgical retractor having improved blades
US65001288 Jun 200131 Dec 2002Nuvasive, Inc.Nerve movement and status detection system and method
US652090730 Nov 199918 Feb 2003Sdgi Holdings, Inc.Methods for accessing the spinal column
US652432015 May 200125 Feb 2003Endius IncorporatedCannula for receiving surgical instruments
US653575920 Oct 200018 Mar 2003Blue Torch Medical Technologies, Inc.Method and device for locating and mapping nerves
US6554768 *5 Sep 200029 Apr 2003Genzyme CorporationIlluminated deep pelvic retractor
US65640784 Jun 199913 May 2003Nuvasive, Inc.Nerve surveillance cannula systems
US657924424 Oct 200217 Jun 2003Cutting Edge Surgical, Inc.Intraosteal ultrasound during surgical implantation
US659929426 Jul 200129 Jul 2003Aesculap Ag & Co. KgSurgical instrument for introducing intervertebral implants
US662015728 Dec 200016 Sep 2003Senorx, Inc.High frequency power source
US664519421 Dec 200111 Nov 2003Medtronic, Inc.Flexible disc obturator for a cannula assembly
US667983323 Mar 200120 Jan 2004Sdgi Holdings, Inc.Devices and methods for percutaneous surgery
US67127957 Jun 200230 Mar 2004Lester CohenSurgical procedure and apparatus
US671969223 Oct 200113 Apr 2004Aesculap Ag & Co. KgRotating surgical tool
US6760616 *18 May 20016 Jul 2004Nu Vasive, Inc.Tissue discrimination and applications in medical procedures
US677007417 Nov 20013 Aug 2004Gary Karlin MichelsonApparatus for use in inserting spinal implants
US679698527 Mar 200228 Sep 2004Spinevision S.A.Method for drilling bone, in particular for setting a pedicle screw, equipment, instrument and control device for implementing said method
US681028121 Dec 200126 Oct 2004Endovia Medical, Inc.Medical mapping system
US681995611 Nov 200116 Nov 2004Dilorenzo Daniel J.Optimal method and apparatus for neural modulation for the treatment of neurological disease, particularly movement disorders
US68295084 Apr 20027 Dec 2004Alfred E. Mann Foundation For Scientific ResearchElectrically sensing and stimulating system for placement of a nerve stimulator or sensor
US68478497 Apr 200125 Jan 2005Medtronic, Inc.Minimally invasive apparatus for implanting a sacral stimulation lead
US684904728 Mar 20031 Feb 2005Cutting Edge Surgical, Inc.Intraosteal ultrasound during surgical implantation
US684906425 Oct 20021 Feb 2005James S. HamadaMinimal access lumbar diskectomy instrumentation and method
US685143030 Nov 20018 Feb 2005Paul M. TsouMethod and apparatus for endoscopic spinal surgery
US685510511 Jul 200215 Feb 2005Jackson, Iii Avery M.Endoscopic pedicle probe
US6860850 *4 Oct 20021 Mar 2005Boss Instruments Ltd.Retractor blade connector head
US6869398 *6 Jan 200322 Mar 2005Theodore G. ObenchainFour-blade surgical speculum
US687109913 Aug 200122 Mar 2005Advanced Bionics CorporationFully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
US690256917 Aug 20017 Jun 2005Image-Guided Neurologics, Inc.Trajectory guide with instrument immobilizer
US691633030 Oct 200112 Jul 2005Depuy Spine, Inc.Non cannulated dilators
US692672816 Oct 20019 Aug 2005St. Francis Medical Technologies, Inc.Curved dilator and method
US692960613 May 200316 Aug 2005Depuy Spine, Inc.Retractor and method for spinal pedicle screw placement
US694593326 Jun 200220 Sep 2005Sdgi Holdings, Inc.Instruments and methods for minimally invasive tissue retraction and surgery
US695153829 Jan 20024 Oct 2005Depuy Spine, Inc.Retractor and method for spinal pedicle screw placement
US70470828 Feb 200016 May 2006Micronet Medical, Inc.Neurostimulating lead
US705084829 Mar 200423 May 2006Nuvasive, Inc.Tissue discrimination and applications in medical procedures
US70798837 May 200318 Jul 2006Nuvaslve, Inc.Nerve surveillance cannulae systems
US70890593 Nov 20008 Aug 2006Pless Benjamin DPredicting susceptibility to neurological dysfunction based on measured neural electrophysiology
US717767716 Oct 200213 Feb 2007Nuvasive, Inc.Nerve proximity and status detection system and method
US718272917 Sep 200427 Feb 2007Stryker SpineSurgical retractor with removable scissor arms
US719859820 Jan 20043 Apr 2007Warsaw Orthopedic, Inc.Devices and methods for percutaneous surgery
US720794925 May 200524 Apr 2007Nuvasive, Inc.Surgical access system and related methods
US72264512 Oct 20035 Jun 2007Shluzas Alan EMinimally invasive access device and method
US7261688 *5 Apr 200228 Aug 2007Warsaw Orthopedic, Inc.Devices and methods for percutaneous tissue retraction and surgery
US73745349 Mar 200520 May 2008Dalton Brian ERetractor and method for percutaneous tissue retraction and surgery
US7435219 *25 Mar 200414 Oct 2008Depuy Spine, Inc.Surgical retractor positioning device
US747023624 Nov 200030 Dec 2008Nuvasive, Inc.Electromyography system
US747322215 Jun 20056 Jan 2009Warsaw Orthopedic, Inc.Instruments and methods for minimally invasive tissue retraction and surgery
US748176613 Aug 200427 Jan 2009Synthes (U.S.A.)Multiple-blade retractor
US7522953 *25 Mar 200421 Apr 2009Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US75566011 Aug 20037 Jul 2009Warsaw Orthopedic, Inc.Systems and techniques for illuminating a surgical space
US758205826 Jun 20031 Sep 2009Nuvasive, Inc.Surgical access system and related methods
US764388431 Jan 20055 Jan 2010Warsaw Orthopedic, Inc.Electrically insulated surgical needle assembly
US769105716 Jan 20046 Apr 2010Nuvasive, Inc.Surgical access system and related methods
US769356231 Oct 20076 Apr 2010Nuvasive, Inc.Nerve surveillance cannulae systems
US771795928 Mar 200318 May 2010Lytton WilliamIntervertebral device and method of use
US781980127 Feb 200426 Oct 2010Nuvasive, Inc.Surgical access system and related methods
US785060819 Jul 200614 Dec 2010K2M, Inc.Minimal incision maximal access MIS spine instrumentation and method
US793505122 Apr 20093 May 2011Nuvasive, Inc.Surgical access system and related methods
US794698225 Aug 200624 May 2011K2M, Inc.Minimal incision maximal access MIS spine instrumentation and method
US80007821 Dec 200916 Aug 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US800553514 Apr 200923 Aug 2011Nuvasive, Inc.System and methods for performing surgical procedures and assessments
US80214307 Sep 201020 Sep 2011Warsaw Orthopedic, Inc.Anatomic spinal implant having anatomic bearing surfaces
US813317330 Dec 200913 Mar 2012Nuvasive, Inc.Surgical access system and related methods
US819235610 Dec 20095 Jun 2012Nuvasive, Inc.Surgical access system and related methods
US825199729 Nov 201128 Aug 2012Warsaw Orthopedic, Inc.Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US830345831 Mar 20096 Nov 2012Smc Kabushiki KaishaAutomatic speed reduction ratio switching apparatus
US834304612 Mar 20121 Jan 2013Nuvasive, Inc.Surgical access system and related methods
US834322416 Mar 20111 Jan 2013Pinnacle Spine Group, LlcIntervertebral implants and graft delivery systems and methods
US838852731 Dec 20095 Mar 2013Nuvasive, Inc.Surgical access system and related method
US2001003994929 Jan 200115 Nov 2001Loubser Paul G.Superglottic and peri-laryngeal apparatus for supraglottic airway insertion
US20010056280 *18 May 200127 Dec 2001Underwood Ronald A.Systems and methods for electrosurgical spine surgery
US200200071298 Jun 200117 Jan 2002Marino James F.Nerve movement and status detection system and method
US200200103926 Aug 200124 Jan 2002Desai Jawahar M.Apparatus and method for cardiac ablation
US20020072686 *18 May 200113 Jun 2002Nuvasive, Inc.Tissue discrimination and applications in medical procedures
US2002007763230 Nov 200120 Jun 2002Tsou Paul M.Method and apparatus for endoscopic spinal surgery
US20020111538 *15 Feb 200115 Aug 2002Wright John T.M.Quadretractor and method of use
US2002012374428 Dec 20005 Sep 2002Michael ReynardPhacophotolysis method and apparatus
US200201237805 Mar 20015 Sep 2002Case Western Reserve UniversityWaveforms for selective stimulation of central nervous system neurons
US2002016141526 Apr 200131 Oct 2002Ehud CohenActuation and control of limbs through motor nerve stimulation
US200201938439 Aug 200219 Dec 2002Hill Michael R.S.Method and system for spinal cord stimulation prior to and during a medical procedure
US2003003296627 Sep 200213 Feb 2003Foley Kevin T.Methods and instrumentation for distraction of a disc space
US2003007068210 Oct 200217 Apr 2003Wilson Peter M.Bronchial flow control devices and methods of use
US2003008368830 Oct 20011 May 2003Simonson Robert E.Configured and sized cannula
US2003010550331 Dec 20025 Jun 2003Nuvasive, Inc.Relative nerve movement and status detection system and method
US200301396486 Feb 200324 Jul 2003Foley Kevin ThomasDevices and methods for percutaneous surgery
US200301493416 Feb 20027 Aug 2003Clifton Guy L.Retractor and/or distractor for anterior cervical fusion
US2003022540530 May 20024 Dec 2003Millennium Medical Technologies, Inc.Fixator with outrigger
US2003023654419 Mar 200325 Dec 2003Lunsford John P.Method and inflatable chamber apparatus for separating layers of tissue
US20040087833 *12 Feb 20036 May 2004Thomas BauerRetractor
US20040176665 *3 Mar 20049 Sep 2004Branch Charles L.Instruments and methods for minimally invasive tissue retraction and surgery
US2004019908421 Apr 20047 Oct 2004Nuvasive, Inc.Electromyography system
US2004022522810 May 200411 Nov 2004Ferree Bret A.Neurophysiological apparatus and procedures
US2005000459326 Jul 20046 Jan 2005Depuy Spine, Inc.Non cannulated dilators
US2005000462330 Apr 20046 Jan 2005Patrick MilesSystem and methods for performing percutaneous pedicle integrity assessments
US200500333803 Aug 200410 Feb 2005Philip TannerMethod and device for stimulating the brain
US2005007557825 Mar 20047 Apr 2005James GharibSystem and methods for performing surgical procedures and assessments
US2005008032013 Aug 200414 Apr 2005Lee Andrew MaxMultiple-blade retractor
US20050096508 *8 Nov 20045 May 2005Valerio ValentiniAdjustable surgical retractor
US20050113644 *29 Dec 200426 May 2005Obenchain Theodore G.Four-blade surgical speculum
US2005014903518 Oct 20047 Jul 2005Nuvasive, Inc.Surgical access system and related methods
US20050159650 *17 Dec 200421 Jul 2005Depuy Spine, Inc.Surgical methods and surgical kits
US200501824549 Jan 200418 Aug 2005Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
US2005019257518 Feb 20051 Sep 2005Pacheco Hector O.Method of improving pedicle screw placement in spinal surgery
US20050215866 *25 Mar 200429 Sep 2005Depuy Spine, Inc.Surgical retractor positioning device
US20060025656 *22 Jul 20052 Feb 2006North Carolina State UniversityForce-determining retraction device and associated method
US2006002570318 Feb 20052 Feb 2006Nuvasive, Inc.System and methods for performing dynamic pedicle integrity assessments
US20060052672 *9 Sep 20049 Mar 2006Landry Michael ESurgical retraction apparatus method of use
US200600528287 Sep 20059 Mar 2006Kim Daniel HMethods for stimulating a nerve root ganglion
US2006006931525 May 200530 Mar 2006Patrick MilesSurgical access system and related methods
US2006022407823 May 20065 Oct 2006Nuvasive, Inc.Tissue discrimination and applications in medical procedures
US2007001609715 Jul 200518 Jan 2007Nuvasive, Inc.System and methods for determining nerve direction to a surgical instrument
US2007019806223 Apr 200723 Aug 2007Nuvasive, Inc.Surgical access system and related methods
US2007029378221 Aug 200720 Dec 2007Nu Vasive, Inc.Electromyography system
US20080058606 *8 Oct 20036 Mar 2008Nuvasive, Inc.Surgical access system and related methods
US2008005883830 Oct 20076 Mar 2008Active Implants CorporationMethod and apparatus for computerized surgery
US2008006497631 Oct 200713 Mar 2008Nuvasive, Inc.Electromyography system
US2008006497731 Oct 200713 Mar 2008Nuvasive, Inc.Electromyography system
US2008006517831 Oct 200713 Mar 2008Nuvasive, Inc.Electromyography system
US2008007119131 Oct 200720 Mar 2008Nuvasive, Inc.Electromyography system
US2008009716416 Jan 200424 Apr 2008Nuvasive, Inc.Surgical access system and related methods
US200803004658 Sep 20064 Dec 2008Gregor FeigenwinterSpine Retractor and Distractor Device
US2009012486027 Feb 200414 May 2009Nuvasive, Inc.Surgical access system and related methods
US2009013805023 Jan 200928 May 2009Nuvasive Inc.Neurophysiological apparatus and procedures
US2009019240314 Apr 200930 Jul 2009Nuvasive, Inc.System And Methods For Performing Surgical Procedures and Assessments
US2009020401620 Apr 200913 Aug 2009Nuvasive, Inc.System And Methods For Performing Surgical Procedures and Assessments
US2010006978320 Nov 200918 Mar 2010Nuvasive, Inc.Surgical access system and related methods
US2010013082711 Dec 200927 May 2010Nuvasive, Inc.Surgical access system and related methods
US201001526037 Dec 200917 Jun 2010Nuvasive, Inc.Surgical access system and related methods
US2010016073814 Dec 200924 Jun 2010Nuvasive, Inc.Surgical access system and related methods
US2010017414630 Dec 20098 Jul 2010Patrick MilesSurgical access system and related methods
US2010017414817 Mar 20108 Jul 2010Nuvasive, Inc.Surgical access system and related methods
US201202388221 Jun 201220 Sep 2012Nuvasive, Inc.Surgical access system and related methods
USD2457895 Nov 197513 Sep 1977 Bone drill
USD29544519 Sep 198526 Apr 1988 Combined punctum plug dilator and inserter for treating dry eye or other ophthalmic ailments
USD3005614 Dec 19854 Apr 1989 Fluid dispenser tip
USD3405219 Apr 199019 Oct 1993Colgate-Palmolive CompanyPeriodontal instrument
USRE3439028 Feb 199128 Sep 1993Nicolet Instrument CorporationApparatus and method for topographic display of multichannel EEG data
DE10048790A12 Oct 200025 Apr 2002Aesculap Ag & Co KgVorrichtung zur Schaffung eines perkutanen Zugangs
DE20016971U12 Oct 200021 Dec 2000Aesculap Ag & Co KgVorrichtung zur Schaffung eines perkutanen Zugangs
DE29908259U17 May 199915 Jul 1999Aesculap Ag & Co KgRotierendes chirurgisches Werkzeug
EP0334116A19 Mar 198927 Sep 1989Canyon Medical ProductsDevice for sequential percutaneous dilation
EP0567424A123 Apr 199327 Oct 1993Bilbao Ortiz de Zarate, JosÚ RamonVertebral prosthesis for the substitution of a vertebra in malignant tumour surgery
EP0972538A225 Jun 199919 Jan 2000Medtronic, Inc.System for providing medical electrical stimulation to a portion of the nervous system
EP1002500A119 Oct 199924 May 2000B. Braun Melsungen AgCatheter set for plexus anaesthesia
EP1192905A14 Sep 20013 Apr 2002Aesculap AG & Co. KGSurgical retractor
FR613642A Title not available
FR2702364A1 Title not available
FR2795624A1 Title not available
JPH0793186A Title not available
JPH1014928A Title not available
KR3019990007098S Title not available
RU2019136C1 Title not available
RU2157656C2 Title not available
RU2192177C2 Title not available
WO1993020741A125 Mar 199328 Oct 1993Jako Geza JPercutaneous surgical endoscopy
WO1994028824A29 Jun 199422 Dec 1994Karlin Technology, Inc.Apparatus and method of inserting spinal implants
WO1997000702A118 Apr 19969 Jan 1997Critical Device CorporationNeedleless injection site
WO1998023324A126 Nov 19974 Jun 1998Cook Vascular(Tm) IncorporatedRadio frequency dilator sheath
WO1999052446A29 Apr 199921 Oct 1999Sdgi Holdings, Inc.Method and instrumentation for posterior interbody fusion
WO2000027291A110 Nov 199918 May 2000EurosSpacing device for acceding by anterior approach to a part of the spine
WO2000038574A14 Jun 19996 Jul 2000Nuvasive, Inc.Nerve surveillance cannulae systems
WO2000044288A127 Jan 20003 Aug 2000Aesculap Ag & Co. KgSurgical instrument for inserting intervertebral implants
WO2000066217A128 Apr 20009 Nov 2000Uromed CorporationMethod and device for locating a nerve
WO2000067645A115 Mar 200016 Nov 2000Aesculap Ag & Co. KgRotating surgical instrument
WO2001008563A228 Jul 20008 Feb 2001Gaya LimitedA surgical access device
WO2001037728A124 Nov 200031 May 2001Nuvasive, Inc.Electromyography system
WO2001060263A114 Feb 200123 Aug 2001Axiamed, Inc.Apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
WO2002054960A214 Dec 200118 Jul 2002Genzyme CorpSegmented arm assembly for use with a surgical retractor and instruments and methods related thereto
WO2002058780A111 Jan 20021 Aug 2002Medinnova SfDevice and method for localization of fossa ovalis
WO2002071953A27 Mar 200219 Sep 2002Scimed Life Systems, Inc.System for implanting an implant and method thereof
WO2002087678A111 Feb 20027 Nov 2002Medtronic, Inc.Percutaneous medical probe and flexible guide wire
WO2003005887A211 Jul 200223 Jan 2003Nuvasive, Inc.System and methods for determining nerve proximity, direction, and pathology during surgery
WO2003026482A225 Sep 20023 Apr 2003Nuvasive, Inc.System and methods for performing surgical procedures and assessments
WO2003037170A230 Oct 20028 May 2003Nuvasive, Inc.System and methods for performing percutaneous pedicle integrity assessments
WO2005013805A25 Aug 200417 Feb 2005Nuvasive, Inc.Systemand methods for performing dynamic pedicle integrity assessments
WO2005030318A127 Sep 20047 Apr 2005Nuvasive, Inc.Surgical access system and related methods
WO2006042241A211 Oct 200520 Apr 2006Nuvasive, Inc.Surgical access system and related methods
WO2006066217A216 Dec 200522 Jun 2006Alcoa Inc.Weight redistribution in freight trucks
Non-Patent Citations
Reference
1"Brackmann II EMG System," Medical Electronics, 1999, 4 pages.
2"Electromyography System," International Search report from International Application No. PCT/US00/32329, Apr. 27, 2001, 9 pages.
3"MetRx System MicroEndoscopic Discectomy: An Evolution in Minimally Invasive Spine Surgery," Sofamor Danek, 1999, 6 pages.
4"Nerve Proximity and Status Detection System and Method," International Search Report from International Application No. PCT/US01/18606, Oct. 18, 2001, 6 pages.
5"Neurovision SE Nerve Locator/Monitor", RLN Systems Inc. Operators Manual, 1999, 22 pages.
6"NuVasive's spine surgery system cleared in the US," Pharm & Medical Industry Week, Dec. 10, 2001, 1 page.
7"NuVasiveTM Receives Clearance to Market Two Key Elem Minimally Invasive Spine Surgery System," Nov. 27, 2001, 20 pages.
8"Relative Nerve Movement and Status Detection System and Method," International Search Report from International Application No. PCT/US01/18579, Jan. 15, 2002, 6 pages.
9"Sofamor Danek MED Microendoscopic Discectomy System Brochure" including Rapp "New endoscopic lumbar technique improves access preserves tissue" Reprinted with permission from: Orthopedics Today, 1998, 18(1): 2 pages.
10"System and Method for Determining Nerve Proximity Direction and Pathology During Surgery," International Search Report from International Application No. PCT/US02/22247, Mar. 27, 2003, 4 pages.
11"System and Methods for Determining Nerve Direction to a Surgical Instrument," International Search Report from International Application No. PCT/US03/02056, Aug. 12, 2003, 5 pages.
12"Systems and Methods for Performing Percutaneous Pedicle Integrity Assessments," International Search Report from International Application No. PCT/US02/35047, Aug. 11, 2003, 5 pages.
13"Systems and Methods for Performing Surgery Procedures and Assessments," International Search Report from International Application No. PCT/US02/30617, Jun. 5, 2003, 4 pages.
14"The Brackmann II EMG Monitoring System," Medical Electronics Co. Operator's Manual Version 1.1, 1995, 50 pages.
15"The Nicolet Viking IV," Nicolet Biomedical Products, 1999, 6 pages.
16Amended Complaint for NuVasive, Inc. v. Globus Medical, Inc., Case No. 1:10-cv-0849 (D. Del., Oct. 5, 2010), 28 pages.
17Amendment in reply to Action of Feb. 7, 2011 and Notice of May 12, 2011, in U.S. Appl. No. 11/789,284, dated May 17, 2011, 16 pages.
18Amendment in reply to Feb. 15, 2012 Office Action in U.S. Appl. No. 12/635,418, dated Mar. 16, 2012, 24 pages.
19Anatomy of the Lumbar Spine in MED TM MicroEndoscopic Discectomy (1997, Ludann Grand Rapids MI), 14 pgs.
20Anderson et al., "Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG," Spine, Department of Orthopaedic Surgery University of Virginia, Jul. 15, 2002, 27(14): 1577-1581.
21Axon 501(k) Notification: Epoch 2000 Neurological Workstation, Dec. 3, 1997, 464 pages.
22Baulot et al., Adjuvant Anterior Spinal Fusion Via Thoracoscopy, Lyon Chirurgical, 1994, 90(5): 347-351 including English Translation and Certificate of Translation.
23Bergey et al., "Endoscopic Lateral Transpsoas Approach to the Lumbar Spine," Spine, 2004, 29(15): 1681-1688.
24Bose et al., "Neurophysiologic Monitoring of Spinal Nerve Root Function During Instrumented Posterior Lumber Spine Surgery," Spine, 2002, 27(13):1444-1450.
25Brau, "Chapter 22: Anterior Retroperitoneal Muscle-Sparing approach to L2-S1 of the Lumbar Spine," Surgical Approaches to the Spine. Robert G. Watkins, MD. (ed) 2003. pp. 165-181.
26Calancie et al., "Stimulus-Evoked EMG Monitoring During Transpedicular Lumbosacral Spine Instrumentation" Spine, 1994, 19(24): 2780-2786.
27Caspar W., "The Microsurgical Technique for Herniated Lumbar Disk Operations." in: Aesculap Scientific Information, Edition 4, No later than Jun. 25, 2001, 4 pages.
28Catalogue of Surgical Instruments and Appliances (Philip Harris & Co.) 1904, 7 pages.
29Clements et al., "Evoked and Spontaneous Electromyography to Evaluate Lumbosacral Pedicle Screw Placement," Spine, 1996, 21(5): 600-604.
30Counterclaim Defendants' Corrected Amended Invalidity Contentions re U.S. Pat. Nos. 8,000,782; 8,005,535; 8,016,767; 8,192,356; 8,187,334; 8,361,156, D652,922; D666,294 re Case No. 3:12-cv02738-CAB(MDD), dated Aug. 19, 2013, 30 pages.
31Crock, H.V. MD., "Anterior Lumbar Interbody Fusion," Clinical Orthopaedics and Related Research, Number One Hundred Sixty Five, 1982, pp. 157-163, 13 pages.
32Danesh-Clough et al. ,"The Use of Evoked EMG in Detecting Misplaced Thoracolumbar Pedicle Screws," Spine, Orthopaedic Department Dunedin Hospital, Jun. 15, 2001, 26(12): 1313-1316.
33Darden et al., "A Comparison of Impedance and Electromyogram Measurements in Detecting the Presence of Pedicle Wall Breakthrough," Spine, Charlotte Spine Center North Carolina, Jan. 15, 1998, 23(2): 256-262.
34de Peretti et al., "New possibilities in L2-L5 lumbar arthrodesis using a lateral retroperitoneal approach assisted by laparoscopy: preliminary results," Eur Spine J, 1996, 5: 210-216.
35De Vilbiss Speculum I, Dittrick Museum of Medical History, No later than Jun. 25, 2001, 8 pages.
36De Vilbiss Speculum II, Dittrick Museum of Medical History, No later than Jun. 25, 2001, 2 pages.
37De Vilbiss Speculum III, Dittrick Museum of Medical History, No later than Jun. 25, 2001, 7 pages.
38Decision on Appeal in Inter Partes Reexamination Control No. 95/001,247, dated Mar. 18, 2013, 49 pages.
39Declaration of David Hacker from IPR2014-00034, Oct. 4, 2013, 64 pages.
40Declaration of David Hacker from IPR2014-00081, Oct. 10, 2013, 64 pages.
41Declaration of David Hacker from IPR2014-00087, Oct. 10, 2013, 64 pages.
42Declaration of David Hacker, from IPR2014-00073, Oct. 10, 2013, 64 pages.
43Declaration of David Hacker, from IPR2014-00074, Oct. 10, 2013, 64 pages.
44Declaration of David Hacker, from IPR2014-00075, Oct. 10, 2013, 64 pages.
45Declaration of David Hacker, from IPR2014-00076, Oct. 10, 2013, 64 pages.
46Declaration of Lee Grant, from IPR2014-00034, Oct. 7, 2013, 36 pages.
47Declaration of Lee Grant, from IPR2014-00073, Oct. 9, 2013, 36 pages.
48Declaration of Lee Grant, from IPR2014-00074, Oct. 9, 2013, 36 pages.
49Declaration of Lee Grant, from IPR2014-00076, Oct. 9, 2013, 36 pages.
50Declaration of Lee Grant, from IPR2014-0081, Oct. 9, 2013, 36 pages.
51Declaration of Lee Grant, from IPR2014-0087, Oct. 9, 2013, 36 pages.
52Defendant's Disclosure of Asserted Claims and Preliminary Infringement Contentions Regarding U.S. Pat. Nos. 7,207,949; 7,470,236 and 7,582,058, Aug. 31, 2009, 21 pages.
53Dezawa et al., "Retroperitoneal Laparoscopic Lateral Approach to the Lumbar Spine: A New Approach, Technique, and Clinical Trial," Journal of Spinal Disorders, 2000, 13(2): 138-143.
54Dirksmeier et al., "Microendoscopic and Open Laminotomy and Discectomy in Lumbar Disc Disease" Seminars in Spine Surgery, 1999, 11(2): 138-146.
55Ebraheim et al., "Anatomic Relations Between the Lumbar Pedicle and the Adjacent Neural Structures," Spine, Department of Orthopaedic Surgery Medical College of Ohio, Oct. 15, 1997, 22(20): 2338-2341.
56Foley and Smith, "Microendoscopic Discectomy," Techniques in Neurosurgery, 1997, 3(4):301-307.
57Ford et al. "Electrical Characteristics of Peripheral Nerve Stimulators Implications for Nerve Localization," Regional Anesthesia, 1984, 9: 73-77.
58Friedman, "Percutaneous discectomy: An alternative to chemonucleolysis," Neurosurgery, 1983, 13(5): 542-547.
59Gardocki, "Tubular diskectomy minimizes collateral damage: A logical progression moves spine surgery forward," AAOS Now, 2009, 5 pages.
60Glassman et al., "A Prospective Analysis of Intraoperative Electromyographic Monitoring of Pedicle Screw Placement With Computed Tomographic Scan Confirmation," Spine, 1995, 20(12): 1375-1379.
61Goodell's Speculum I, Dittrick Museum of Medical History, No later than Jun. 25, 2001, 6 pages.
62Goodell's Speculum II, Dittrick Museum of Medical History, No later than Jun. 25, 2001, 8 pages.
63Greenblatt et al., "Needle Nerve Stimulator-Locator: Nerve Blocks with a New Instrument for Locating Nerves," Anesthesia& Analgesia, 1962, 41(5): 599-602.
64Haig et al., "The Relation Among Spinal Geometry on MRI, Paraspinal Electromyographic Abnormalities, and Age in Persons Referred for Electrodiagnostic Testing of Low Back Symptoms," Spine, Department of Physical Medicine and Rehabilitation University of Michigan, Sep. 1, 2002, 27(17): 1918-1925.
65Haig, "Point of view," Spine, 2002, 27(24): 2819.
66Holland et al., "Higher Electrical Stimulus Intensities are Required to Activate Chronically Compressed Nerve Roots: Implications for Intraoperative Electromyographic Pedicle Screw Testing," Spine, Department of Neurology, Johns Hopkins University School of Medicine, Jan. 15, 1998, 23(2): 224-227.
67Holland, "Intraoperative Electromyography During Thoracolumbar Spinal Surgery," Spine, 1998, 23(17): 1915-1922.
68Hovorka et al., "Five years' experience of retroperitoneal lumbar and thoracolumbar surgery," Eur Spine J., 2000, 9(1): S30-S34.
69Illustrated Catalogue of Surgical and Scientific Instruments and Appliances (The Surgical Manufacturing Co.) 1920, 3 pages.
70Illustrated Catalogue of Surgical and Scientific Instruments and Appliances, The Surgical Manufacturing Co., London, 1920, 3 pages.
71Illustrated Catalogue of Surgical Instruments, Medical Appliances, Diagnostic Apparatus, Etc., by Hynson, Westcott & Co., 1895, 9 pages.
72International Search Report from PCT/US2005/036454, dated Jul. 26, 2007, 2 pages; International Preliminary Report on Patentability from PCT/US2005/036454, dated Aug. 21, 2007, 8 pages.
73Isley et al., "Recent Advances in Intraoperative Neuromonitoring of Spinal Cord Function: Pedicle Screw Stimulation Techniques," American Journal of Electroneurodiagnostic Technology, Jun. 1997, 37(2): 93-126.
74Japanese Patent Office JP Patent Application No. 2006-528306 Office Action with English Translation, Jun. 10, 2009, 4 pages.
75Journee et al., "System for Intra-Operative Monitoring of the Cortical Integrity of the Pedicle During Pedicle Screw Placement in Low-Back Surgery: Design and Clinical Results," Sensory and Neuromuscular Diagnostic Instrumentation and Data Analysis I, 18th Annual International Conference on Engineering in Medicine and Biology Society, Amsterdam, 1996, pp. 144-145.
76Kossman et al., "The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine," Eur Spine J, 2001, 10: 396-402.
77Kossmann et al., "Minimally Invasive Vertebral Replacement with Cages in Thoracic and Lumbar Spine," European Journal of Trauma, 2001, 27: 292-300.
78Kossmann et al., "The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine," Eur Spine J., 2001, 10: 396-402.
79Larson and Maiman, "Surgery of the Lumbar Spine," Thieme Medical Publishers, Inc., 1999, pp. 305-319.
80Lenke et al., "Triggered Electromyographic Threshold for Accuracy of Pedicle Screw Placement," Spine, 1995, 20(4): 1585-1591.
81Leu et al., "Percutaneous Fusion of the Lumbar Spine," Spine, 1992, 6(3): 593-604.
82Litwin et al., "Hand-assisted laparoscopic surgery (HALS) with the handport system," Annals of Surgery, 2000, 231(5): 715-723.
83Maguire et al., "Evaluation of Intrapedicular Screw Position Using Intraoperative Evoked Electromyography," Spine, 1995, 20(9): 1068-1074.
84Marina, "New Technology for Guided Navigation with Real Time Nerve Surveillance for Minimally Invasive Spine Discectomy & Arthrodesis," Spineline, 2000, p. 39.
85Martin et al. "Initiation of Erection and Semen Release by Rectal Probe Electrostimulation (RPE)," The Journal of Urology, The Williams& Wilkins Co., 1983, 129: 637-642.
86Mathews et al., "Laparoscopic Discectomy with Anterior Lumbar Interbody Fusion," Spine, 1995, 20(16): 1797-1802.
87Mayer and Brock, "Percutaneous endoscopic discectomy: surgical technique and preliminary results compared to microsurgical discectomy," J. Neurosurg, 1993, 78: 216-225.
88Mayer and Wiechert, "Microsurgical Anterior Approaches to the Lumbar Spine for Interbody Fusion and Total Disc Replacement," Neurosurgery, 2002, 51(2): 159-165.
89Mayer H. M. (ed.) Minimally Invasive Spine Surgery: A Surgical Manual. 2000. 51 pages.
90Mayer, "A New Microsurgical Technique for Minimally Invasive Anterior Lumbar Interbody Fusion," Spine, 1997, 22(6): 691-699.
91Mayer, "The ALIF Concept," Eur Spine J., 2000, 9(1): S35-S43.
92McAfee et al., "Minimally Invasive Anterior Retroperitoneal Approach to the Lumbar Spine: Emphasis on the Lateral BAK," Spine, 1998, 23(13): 1476-1484.
93McCulloch and Young, "Instrumentation for Spinal Microsurgery, Including Ancillary Equipment." in: Essentials of Spinal Microsurgery, (Philadelphia, Lippincott-Raven,1998), 24 pages.
94Medtronic Sofamor Danek "METRx System Surgical Technique," 2004, 22 pages.
95Medtronic Sofamor Danek "METRx™ MicroDiscectomy System," Medtronic Sofamor Danek USA, 2000, 21 pgs.
96Medtronic Sofamor Danek "UNION™ / UNION-L™ Anterior & Lateral Impacted Fusion Devices: Clear choice of stabilization," Medtronic Sofamor Danek, 2000, 4 pages.
97Medtronic Sofamor Danek "UNION™ / UNION-L™ Anterior & Lateral Impacted Fusion Devices: Surgical Technique" Medtronic Sofamor Danek, 2001, 20 pages.
98Medtronic XOMED Surgical Products, Inc., NIM-Response Nerve Integrity Monitor Intraoperative EMG Monitor User's Guide, Revision B, 2000, 47 pages.
99Merriam-Webster's Collegiate Dictionary, p. 65 (10th ed. 1998).
100METRx Delivered Order Form, 1999, 13 pages.
101Minahan et al., "The Effect of Neuromuscular Blockade on Pedicle Screw Stimulation Thresholds" Spine, Department of Neurology, Johns Hopkins University School of Medicine, Oct. 1, 2000, 25(19): 2526-2530.
102Moed et al., "Evaluation of Intraoperative Nerve-Monitoring During Insertion of an Iliosacral Implant in an Animal Model, Journal of Bone and Joint Surgery," 1999, 81-A(11): 9.
103Montgomery, E. "Endometritis: Uterine Dilatation and Drainage." in: The Medical News: A Weekly Medical Journal, vol. 60 (Jan.-Jun. 1892), pp. 404-407.
104Notice of Allowance in U.S. Appl. No. 11/789,284, dated Jul. 18, 2011, 8 pages.
105NuVasive "INS-1 Screw Test," 2001, 10 pages.
106NuVasive 510(k) Premarket Notification: Neurovision JJB System (Device Description), Aug. 20, 2007, 8 pages.
107NuVasive 510(k) Premarket Notification: Spinal System (Summary), Apr. 12, 2004, 10 pages.
108NuVasive 510(k) Summary NIM Monitor, Sep. 4, 1998, 4 pages.
109NuVasive correspondence re 510(k) Premarket Notification INS-1 Intraoperative Nerve Surveillance System: Section IV Device Description, pp. 12-51 (prior to Sep. 25, 2003).
110NuVasive letter re 510k Guided Arthroscopy System, Oct. 5, 1999, 6 pages.
111NuVasive letter re 510k INS-1 Intraoperative Nerve Surveillance System, Nov. 13, 2000, 7 pages.
112NuVasive letter re 510k Neuro Vision JJB System, Oct. 16, 2001, 5 pages.
113NuVasive letter re: 510(k) for Neurovision JJB System (Summary), Sep. 25, 2001, 28 pages.
114NuVasive letter re: 510(k) Premarket Notification: Guided Spinal Arthroscopy System (Device Description), Feb. 1, 1999, 40 pages.
115NuVasive letter re: 510(k) Premarket Notification: Neurovision JJB System (Device Description), Jun. 24, 2005, 16 pages.
116NuVasive letter re: Special 510(k) Premarket Notification: Neurovision JJB System (Device Description), Jul. 3, 2003, 18 pages.
117NuVasive letter re: Special 510(k) Premarket Notification: Neurovision JJB System (Device Description), Mar. 1, 2004, 16 pages.
118NuVasive letter re: Special 510(k) Premarket Notification: Neurovision JJB System (Device Description), May 26, 2005, 17 pages.
119NuVasive letter re: Special 510(k) Premarket Notification: Neurovision JJB System (Device Description), Sep. 14, 2006, 17 pages.
120NuVasive Triad™ Cortical Bone Allograft, 2000, 1 page (prior to Sep. 25, 2003).
121NuVasive Triad™ Tri-Columnar Spinal EndoArthrodesis™ via Minimally Invasive Guidance, 2000, 1 page (prior to Sep. 25, 2003).
122NuVasive Vector™ Cannulae, 2000, 1 page.
123NuVasive Vertebral Body Access System, 2000, 1 page.
124NuVasive, Inc's Opening Claim Construction Brief Regarding U.S. Pat. Nos. 8,000,782; 8,005,535; 8,016,767; 8,192,356; 8,187,334; 8,361,156; D652,922; and 5,676,146 C2, filed Sep. 3, 2013, in Warsaw Orthopedic, Inc. v. NuVasive, Inc., No. 3:12-cv-02738-CAB-MDD (S.D. Cal.)., 34 pages.
125Office action from U.S. Appl. No. 11/789,284, dated Feb. 7, 2011, 10 pages.
126Papavero and Caspar, "The Lumbar Microdiscectomy," Acts Orthop Scand (Suppl. 251), 1993, 64:34-37.
127Petition for Inter Partes Review IPR2014-00034, filed Oct. 8, 2013, 65 pages.
128Petition for Inter Partes Review IPR2014-00035, filed Oct. 8, 2013, 65 pages.
129Petition for Inter Partes Review IPR2014-00073, filed Oct. 18, 2013, 65 pages.
130Petition for Inter Partes Review IPR2014-00074, filed Oct. 18, 2013, 65 pages.
131Petition for Inter Partes Review IPR2014-00075, filed Oct. 21, 2013, 66 pages.
132Petition for Inter Partes Review IPR2014-00076, filed Oct. 21, 2013, 65 pages.
133Petition for Inter Partes Review IPR2014-00081, filed Oct. 22, 2013, 64 pages.
134Petition for Inter Partes Review IPR2014-00087, filed Oct. 22, 2013, 64 pages.
135Pimenta et al., "Implante de protese de nucleo pulposo: analise inicial," Journal Brasileiro de Neurocirurgia, 2001, 12(2): 93-96.
136Pimenta et al., "The Lateral Endoscopic Transpsoas Retroperitoneal Approach (Letra) for Implants in the Lumbar Spine," World Spine II-Second Interdisciplinary Congress on Spine Care, Aug. 2003, 2 pages.
137Pimenta et al., "The Lateral Endoscopic Transpsoas Retroperitoneal Approach (Letra) for Implants in the Lumbar Spine," World Spine II—Second Interdisciplinary Congress on Spine Care, Aug. 2003, 2 pages.
138Pimenta, "Initial Clinical Results of Direct Lateral, Minimally Invasive Access to the Lumbar Spine for Disc Nucleus Replacement Using a Novel Neurophysiological Monitoring System." The 9th IMAST, May 2002, 1 page.
139Pither et al., "The Use of Peripheral Nerve Stimulators for Regional Anesthesia: Review of Experimental Characteristics Technique and Clinical Applications," Regional Anesthesia, 1985, 10:49-58.
140Plaintiffs' Preliminary Invalidity Contentions re U.S. Pat. Nos. 7,207,949; 7,470,236 and 7,582,058, Sep. 18, 2009, 19 pages.
141Plaintiffs' Supplemental Preliminary Invalidity Contentions re U.S. Pat. Nos. 7,207,949, 7,470,236, and 7,582,058, Sep. 29, 2009, 21 pages.
142Raj et al., "Infraclavicular Brachial Plexus Block-A New Approach" Anesthesia and Analgesia, 1973, (52)6: 897-904.
143Raj et al., "The Use of Peripheral Nerve Stimulators for Regional Anesthesia," Clinical Issues in Regional Anesthesia, 1985, 1(4):1-6.
144Raj et al., "Use of the Nerve Stimulator for Peripheral Blocks," Regional Anesthesia, Apr.-Jun. 1980, pp. 14-21.
145Raj et al., "Infraclavicular Brachial Plexus Block—A New Approach" Anesthesia and Analgesia, 1973, (52)6: 897-904.
146Rao, et al. "Dynamic retraction of the psoas muscle to expose the lumbar spine using the retroperitoneal approach," J. Neurosurg Spine, 2006, 5: 468-470.
147Raymond et al., "The Nerve Seeker: A System for Automated Nerve Localization," Regional Anesthesia, 1992, 17(3): 151-162.
148Reid, "New Bivalve Speculum." in: The Transactions of the Edinburgh Obsterical Society (Edinburgh, Oliver & Boyd, 1883), pp. 57-59.
149Reid, "On the Vaginal Speculum." in: The American Journal of Obstetrics and Diseases of Women and Children, vol. 16 (New York, W.A. Townsend & Adams, 1883), pp. 276-281.
150Request for Inter Partes Reexamination in re U.S. Pat. No. 7,905,840, dated Feb. 8, 2012, 204 pages.
151Request for Inter Partes Reexamination in re: U.S. Pat. No. 7,691,057, dated Feb. 8, 2012, 50 pages.
152Request for Inter PartesReexamination in re U.S. Pat. No. 7,819,801, dated Feb. 8, 2012, 89 pages.
153Ricci, The Vaginal Speculum and Its Modifications Throughout the Ages (New York Medical College, City Hospital Division, 1949), 29 pages.
154Riordan, T. "A business man invents a device to give laparoscopic surgeons a better view of their work," The New York Times, Mar. 29, 2004, 1 page.
155Rose et al., "Persistently Electrified Pedicle Stimulation Instruments in Spinal Instrumentation: Techniques and Protocol Development," Spine, 1997, 22(3): 334-343.
156Rosenthal et al., "Removal of a Protruded Thoracic Disc Using Microsurgical Endoscopy," Spine, 1994, 19(9): 1087-1091.
157Schaffer and Kambin, "Percutaneous Posterolateral Lumbar Discectomy and Decompression with a 6.9-Millimeter Cannula," The Journal of Bone and Joint Surgery, 1991, 73A(6): 822-831.
158Schick et al., "Microendoscopic lumbar discectomy versus open surgery: an intraoperative EMG study," Eur Spine J, 2002, 11: 20-26.
159Shafik, "Cavernous Nerve Simulation through an Extrapelvic Subpubic Approach: Role in Penile Erection," Eur. Urol, 1994, 26: 98-102.
160Smith and Foley "MetRx System MicroEndoscopic Discectomy: Surgical Technique" Medtronic Sofamor Danek, 2000, 24 pages.
161Standard Surgical Instruments, Medical Department, U.S. Army, 1920, 23 pages.
162Surgical & Dental Instruments, by Noyes Bros. & Cutler, St. Paul, MN US, 1895, 6 pages.
163The Surgical Armamentarium (V. Mueller 1973), 2 pages.
164Thorburn, A Practical Treatise on the Diseases of Women (Philadelphia, Miller, 1887), pp. 16-17.
165Toleikis et al., "The Usefulness of Electrical Stimulation for Assessing Pedicle Screw Replacements," Journal of Spinal Disorder, 2000, 13(4): 283-289.
166Traynelis, "Spinal Arthroplasty," Neurological Focus, 2002, 13(2): 12 pages.
167U.S. Appl. No. 60/392,214, filed Jun. 26, 2002, 97 pages.
168Wolfhard Caspar, Technique of Microsurgery, in Microsurgery of the Lumbar Spine, Ch. 12 (Dec. 1989 Williams et al. ed.) , pp. 105-122.
169Wolfla et al., "Retroperitoneal lateral lumbar interbody fusion with titanium threaded fusion cages," J. Neurosurg (Spine 1), 2002, 96: 50-55.
170Zdeblick, Thomas A. (ed.). Anterior Approaches to the Spine. 1999. 43 pages.
Legal Events
DateCodeEventDescription
9 Apr 2007ASAssignment
Owner name: NUVASIVE, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTINELLI, SCOT;ARAMBULA, JARED;FINLEY, ERIC;AND OTHERS;REEL/FRAME:019202/0652
Effective date: 20070405
16 Nov 2016ASAssignment
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CA
Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:NUVASIVE, INC.;IMPULSE MONITORING, INC.;REEL/FRAME:040634/0404
Effective date: 20160208
17 May 2017ASAssignment
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, TE
Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:NUVASIVE, INC.;BIOTRONIC NATIONAL, LLC;NUVASIVE CLINICAL SERVICES MONITORING, INC.;AND OTHERS;REEL/FRAME:042490/0236
Effective date: 20170425