US9612099B2 - Compliant thumb wheel assembly coupled to a caliper jaw - Google Patents

Compliant thumb wheel assembly coupled to a caliper jaw Download PDF

Info

Publication number
US9612099B2
US9612099B2 US14/644,079 US201514644079A US9612099B2 US 9612099 B2 US9612099 B2 US 9612099B2 US 201514644079 A US201514644079 A US 201514644079A US 9612099 B2 US9612099 B2 US 9612099B2
Authority
US
United States
Prior art keywords
thumb wheel
compliant
wheel assembly
caliper
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/644,079
Other versions
US20160265893A1 (en
Inventor
Casey Edward Emtman
MIchael Edward Goldsworthy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to US14/644,079 priority Critical patent/US9612099B2/en
Assigned to MITUTOYO CORPORATION reassignment MITUTOYO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMTMAN, CASEY EDWARD, GOLDSWORTHY, MICHAEL EDWARD
Publication of US20160265893A1 publication Critical patent/US20160265893A1/en
Application granted granted Critical
Publication of US9612099B2 publication Critical patent/US9612099B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/20Slide gauges
    • G01B3/205Slide gauges provided with a counter for digital indication of the measured dimension

Definitions

  • the invention relates to precision measurement instruments, and particularly to calipers with a movable jaw for measuring the dimensions of an object.
  • Calipers are known that utilize pairs of jaws for determining measurements.
  • a first jaw is generally fixed at one end of a measurement scale while a second jaw is attached to a slider assembly that moves along the measurement scale.
  • An outer dimension of an object may be measured by arranging the object between and against inner surfaces of the first and second jaws.
  • An inner dimension of an object may be measured by arranging outer surfaces of the first and second jaws between and against the inner surfaces of the object (e.g., the walls of a hole).
  • the slider assembly may be moved with a user's thumb, and a thumb wheel may be provided for enabling controlled movement of the slider.
  • a thumb wheel may be provided for enabling controlled movement of the slider.
  • electronic position encoders may be used, based on low-power inductive, capacitive, or magnetic position sensing technology.
  • an encoder may comprise a readhead and a scale.
  • the readhead may generally comprise a readhead sensor and readhead electronics.
  • the readhead outputs signals that vary as a function of the position of the readhead sensor relative to the scale along a measuring axis.
  • the scale may be affixed to an elongated scale member that includes a fixed first measuring jaw.
  • the readhead is affixed to a slider assembly including the second measuring jaw, which is movable along the scale member. Measurements of the distance between the two measuring jaws may be determined based on the signals from the readhead.
  • Exemplary electronic calipers are disclosed in commonly assigned U.S. Pat. Nos. RE37490, 5,574,381, and 5,973,494, each of which is hereby incorporated by reference in its entirety.
  • a prior art electronic caliper that is capable of measuring force is disclosed in U.S. Patent Publication No. 2003/0047009. As described in the '009 publication, one deficiency in the use of prior calipers is the variation in force which can be applied by the measuring jaws and the differences in measurement which can occur as a result.
  • the measurement of the object may be unreliable or non-repeatable because one may apply either a higher force on the jaws of the caliper such that the soft object is “more compressed”, or apply a lower force such that the soft object is “less compressed”.
  • the '009 publication discloses a caliper that is capable of measuring both the size and force applied to an object, which may be analyzed to provide more repeatable measurements.
  • the force sensing and indicating features of the caliper of the '009 publication may be considered “overkill” in many applications, and/or may be considered too expensive and/or complex by many caliper users.
  • a compliant thumb wheel coupled to a caliper jaw that moves along a caliper scale member along a measuring axis direction in a caliper comprises a thumb wheel, a compliant element, and a thumb wheel mounting portion coupled to the caliper jaw.
  • the compliant element is configured to locate the thumb wheel in an operational arrangement for driving the caliper jaw while at the same time transmitting forces between the thumb wheel and the thumb wheel mounting portion by elastic deformation.
  • the compliant element When a force is applied to the thumb wheel along the measuring axis direction, the compliant element flexes such that the thumb wheel displaces along the measuring axis direction relative to the thumb wheel mounting portion and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
  • FIG. 1 is a diagram of a portion of a caliper with a first embodiment of a wheel assembly with a displacement indicator that provides visual feedback regarding an amount of applied measuring force in the caliper.
  • FIGS. 2A-2D are diagrams of the components of an embodiment of the wheel assembly of FIG. 1 .
  • FIGS. 3A-3D are diagrams of the components of FIGS. 2A-2D engaging a caliper spar.
  • FIGS. 4A-4C are diagrams illustrating operations of the caliper and wheel assembly of FIG. 1 for measuring an object.
  • FIGS. 5A-5D are diagrams of a second embodiment of a wheel assembly in which a displacement indicator is not utilized.
  • FIG. 6 is a diagram of a third embodiment of a wheel assembly in which a displacement indicator provides auditory or tactile feedback regarding an amount of applied measuring force in a caliper.
  • FIGS. 7A-7C are diagrams of a compliant thumb wheel assembly.
  • FIGS. 8A-8B are diagrams of a compliant thumb wheel assembly.
  • FIGS. 9A-9B are diagrams of a compliant thumb wheel assembly.
  • FIGS. 10A-10B are diagrams of a compliant thumb wheel assembly.
  • FIGS. 11A-11B are diagrams of a compliant thumb wheel assembly.
  • FIGS. 12A-12B are diagrams of a compliant thumb wheel assembly.
  • FIG. 1 shows a portion of a caliper 100 with a first embodiment of a wheel assembly 150 .
  • the caliper 100 includes a scale member 107 and a readhead member 108 .
  • the scale member 107 may be a conventional electronic caliper member comprising fixed jaw portions 117 and 117 ′ and a spar 130 carrying a transducer scale 101 ′, a portion of which is revealed in FIG. 1 .
  • the readhead member 108 may be a conventional electronic caliper member including jaw portions 118 and 118 ′, a hub capture element 144 for coupling to the wheel assembly 150 , and a guide and mounting portion (not shown) that aligns and guides the readhead member 108 along the spar 130 and carries a readhead assembly 101 .
  • the guide and mounting portion (as known by one of ordinary skill in the art and/or as disclosed in the incorporated references) underlies the readhead assembly 101 shown in FIG. 1 , and is approximately the same size as the readhead assembly 101 .
  • the readhead member 108 carries the transducer readhead assembly 101 , also referred to simply as readhead assembly 101 , which includes a display 104 , a mode-selecting button 105 , and an origin-selecting button 106 .
  • the readhead assembly 101 also includes a transducer readhead (not shown) that is operable to provide signals indicative of the position of the transducer readhead assembly 101 along the transducer scale 101 ′ to a signal processing and control unit (not shown).
  • the display 104 generally comprises an alphanumeric measurement display portion 123 and a mode indicator display portion 122 .
  • the display may be a custom LCD display, or any other suitable type of display.
  • the mode indicator portion 122 is capable of displaying conventional measurement mode/unit indicators such as “in” for mode indicator 110 and “mm” for mode indicator 111 , which indicate units of inches and millimeters, respectively. These indicators may take any convenient written or symbolic form and are not restricted to the exemplary “in” and “mm” forms.
  • the mode-selecting button 105 selects/changes in the operating mode and/or units of measurement displayed by the caliper 100 .
  • the illustrated embodiment of the hub capture element 144 is an elongated component that supports the wheel assembly 150 .
  • the hub capture element 144 includes a hole 147 which may operate to accept a screw or shaft 149 that pins it to the readhead member 108 .
  • the hub capture element 144 includes a slot 147 A that captures a hub or axle 110 A included in the wheel assembly 150 , such that the wheel assembly 150 may rotate in the slot 147 A and may move toward and away from the spar 130 in the slot 147 A, depending on a user's manual pressure or force on the wheel assembly 150 .
  • the hub capture element 144 fits snugly into a clearance portion 146 in the readhead member 108 .
  • the hub capture element 144 and the associated components 145 - 149 may be located at the front of the readhead member 108 or alternatively enclosed under a cover, such that primarily or only the wheel assembly 150 is visible.
  • the user may close the jaw portions 117 and 118 , such that their edges contact the outer surfaces of the measurement object.
  • the user may separate the jaw portions 117 ′ and 118 ′, such that their edges contact the inner surfaces of the measurement object.
  • the alphanumeric measurement display portion 123 is responsive to reflect the distance between the measuring edges of the jaw portions 117 and 118 or 117 ′ and 118 ′.
  • An origin or zero button can be pressed with the jaw portions 117 and 118 or 117 ′ and 118 ′ at a selected separation or offset distance. Thereafter, measurement values are displayed relative to that offset distance.
  • the wheel assembly 150 is configured to engage the spar 130 when activated by a user (e.g., when pushed against the spar 130 and rotated by a user's thumb) so as to adjust the position of the readhead member 108 and its associated jaw portions 118 and 118 ′.
  • various features of the wheel assembly 150 improve the amount of control that the user has for moving the readhead member 108 , in that the wheel assembly 150 includes a compliant element to provide an improved means of tactile feedback to the user regarding the amount of measuring force exerted on the object by the jaw portions 117 and 118 or the jaw portions 117 ′ and 118 ′. It should be appreciated that using a more consistent or repeatable measuring force results in more consistent or repeatable measurement results, especially for compliant workpieces.
  • a compliant wheel assembly 150 as disclosed herein may provide tactile feedback which prevents them from exerting an excessive measuring force which distorts the alignment of the jaw portion 118 ( 118 ′), and produces erroneous or non-repeatable measurements.
  • FIGS. 2A-2D are diagrams of components of one embodiment of the compliant wheel assembly 150 of FIG. 1 .
  • the wheel assembly 150 may include a rotary bearing member 210 including the hub 210 A, rotary actuator portions 220 A and 220 B, a compliant coupling element 230 , assembly screw 249 A, and an optional hub/spacer 248 .
  • the rotary actuator portions 220 A and 220 B may be rigidly coupled together (e.g., against the hub/spacer 248 ) by the screw/axle 249 A to form a single rotary actuation member 220 (e.g., an outer thumb wheel portion) that is actuated by a user to apply measuring force, as will be described in more detail below.
  • the assembly screw 249 A is fastened into threads in the actuator portion 220 B, and has an unthreaded length configured to provide an axial clearance between the assembled components of the wheel assembly 150 , such that the rotary bearing member 210 may pivot freely relative to the actuator portions 220 A and 220 B after the assembly screw 249 A is tightened.
  • the rotary actuator portion 220 A may be omitted, and the compliant coupling element 230 may be repositioned (and reconfigured if needed) to couple the rotary actuator portion 220 B to the rotary bearing member 210 .
  • the screw/axle 249 A, and/or the hub/spacer 248 may be reconfigured if needed, to hold the resulting assembly together in an operational manner as outlined above.
  • the hub 210 A of rotary bearing member 210 and thereby the wheel assembly 150 is coupled to the readhead member 108 and thereby the caliper jaw portion 118 through the hub capture element 144 , as outlined above with reference to the hub 110 A of FIG. 1 .
  • the compliant coupling element 230 is configured to elastically couple the rotary actuation member 220 to the rotary bearing member 210 . More specifically, in the embodiment of FIG. 2A , the compliant coupling element 230 is illustrated as consisting of a torsion spring with a first end portion 232 and a second end portion 234 . The first end portion 232 is received in a hole 228 of the rotary actuator portion 220 A, while the second end portion 234 is received in a hole of the rotary bearing member 210 , so as to elastically couple the rotary actuator portion 220 A to the rotary bearing member 210 . While the compliant coupling element 230 is illustrated in FIG.
  • torsion spring 2A as consisting of a torsion spring, it will be appreciated that other similar components may be utilized in other implementations (e.g., an elastomeric torsion spring, a helical spring arranged in an arc about an axis of rotation of the wheel assembly, a flexure pivot, etc.).
  • FIGS. 2B, 2C and 2D are side, top and end views, respectively, of the assembled wheel assembly 150 .
  • the end portion 232 of the compliant coupling element 230 may extend through the hole 228 of the rotary actuator portion 220 A.
  • the assembly screw 249 A is shown to be centrally located along the axis of rotation of the wheel assembly 150 .
  • the central portion of the rotary bearing member 210 (located between the rotary actuator portions 220 A and 220 B in the assembled representation) is shown to include a spar engagement feature 212 which consists of a groove having sides that are intended to frictionally engage the caliper spar 130 , as will be described in more detail below with respect to FIGS. 3A-3D .
  • a displacement indicator 240 may indicate an amount of torque and/or resultant measuring force being applied due to the rotation of the actuation member 220 ( 220 B) of the wheel assembly 150 .
  • the displacement indicator 240 may consist of a pointer element (e.g., a pin attached to the side of the rotary bearing member 210 ) which extends through a clearance opening 222 (e.g., an arc-shaped hole) in the side of the rotary actuator portion 220 B.
  • the displacement indicator 240 shown at a rest or disengaged position corresponding to zero measuring force (and/or disengagement of the rotary bearing member 210 from the caliper spar 130 ), is configured to operate in conjunction with first and second polarity portions, which may correspond to first and second ranges 224 and 226 . More specifically, the first range 224 may be for a torque or force used during the measurement of an outer dimension of an object wherein outer surfaces of the object are contacted by the caliper jaw portions 117 and 118 , while the second range 226 may be for a torque or force used during measurement of an inner dimension of an object wherein inner surfaces of the object are contacted by the caliper jaw portions 117 ′ and 118 ′.
  • graduated markings may be included for indicating positions within the respective ranges 224 and 226 .
  • a set of graduated markings A, B and C may correspond to the beginning, middle and end, respectively, of the range 224 .
  • FIGS. 3A-3D are diagrams of the assembled wheel assembly 150 as engaging a caliper spar 130 (e.g., as being pushed by the thumb of a user). As shown in FIG. 3A , the spar engagement feature 212 of the rotary bearing member 210 is illustrated as engaging the caliper spar 130 .
  • a rotational displacement of the rotary actuation member 220 (e.g., as pushed by a thumb of a user) relative to the rotary bearing member 210 (which resists the rotation due to the frictional force of the spar engagement feature 212 engaging the spar 130 and pushing the jaw portion 118 to compress an object that is being measured) generates a deformation of the compliant coupling element 230 , allowing the rotary actuation member 220 and the rotary bearing member 210 to rotate relative to one another.
  • the deformation of the compliant coupling element 230 generates a corresponding force which is applied to the rotary bearing member 210 and is thereby coupled to generate a force on the caliper jaw portion 118 (or 118 ′), through the coupling of the hub capture element 144 shown in FIG. 1 , along its direction of motion which is related to the rotational displacement.
  • FIG. 3B is a side view of the wheel assembly 150
  • FIGS. 3C and 3D are end views directed toward the rotary actuator portions 220 A and 220 B, respectively.
  • the spar engagement feature 212 includes a groove having sides that are tapered inward and which frictionally engage the caliper spar 130 as the wheel assembly 150 is pushed toward the caliper spar 130 (e.g., such as by a user's thumb).
  • the caliper spar 130 may have a width W 1 of approximately 3.50 mm.
  • an outer portion of the spar engagement feature 212 may have a groove width W 2 of approximately 3.70 mm (for providing clearance for allowing the spar 130 to be initially slid into the outer portion of the groove).
  • the central portion of the spar engagement feature 212 i.e., near the central hub 210 A between the sides as they are tapered inward may have a groove width W 3 of approximately 3.48 mm (for allowing the tapered sides to frictionally engage the spar 130 as it is slid further into the groove).
  • the edge of the spar 130 may be separated from the central axis of the wheel assembly 150 by a distance D 1 of approximately 4.12 mm.
  • the displacement indicator 240 is at the graduated marking A, which may correspond to a “zero” position in the middle between the ranges 224 and 226 of the clearance opening 222 .
  • this condition may exist when the wheel assembly 150 is first pushed inward to engage the caliper spar 130 and before rotational force is applied (e.g., by the user's thumb) to move the readhead member 108 and the associated caliper jaw portions 118 and 118 ′ to apply measurement force to an object that is being measured.
  • This “zero” position of the displacement indicator 240 also exists when the wheel assembly 150 is disengaged from the caliper spar. As will be described in more detail below with respect to FIGS.
  • the displacement indicator 240 may provide an indication of the amount of force that is being applied on the object by the jaws of the caliper 100 .
  • the rotary bearing member 210 is coupled to the hub capture element 144 ( FIG. 1 ) that is connected to the readhead member 108 and the associated caliper jaw portions 118 and 118 ′.
  • the hub capture element 144 is configured to allow the rotary bearing member 210 to move toward the caliper spar 130 such that the spar engagement feature 212 bears on the caliper spar 130 , as illustrated in FIGS. 3A-3D .
  • the hub capture element 144 is also configured to allow the rotary bearing member 210 to move away from the caliper spar 130 (e.g., when the wheel assembly 150 is not being pushed by a user's thumb) such that the spar engagement feature 212 of the rotary bearing member 210 disengages from the caliper spar 130 .
  • the wheel assembly 150 is configured such that when the spar engagement feature 212 is disengaged from the caliper spar 130 , the rotary bearing member 210 is able to rotate freely with the rotary actuation member 220 such that there is no significant rotational displacement of the rotary actuation member 220 relative to the rotary bearing member 210 and no significant deformation of the compliant coupling element 230 .
  • the spar engagement feature 212 engages the caliper spar 130 , and further rotation of the rotary actuation member 220 (e.g., by the user's thumb) to apply measurement force to an object that is being measured generates a deformation of the compliant coupling element 230 .
  • the deformation of the compliant coupling element 230 generates a force which is applied to the rotary bearing member 210 and is thereby coupled to generate a force on the caliper jaw portion 118 (or 118 ′), through the coupling of the hub capture element 144 shown in FIG. 1 , along its direction of motion which is related to the rotational displacement.
  • the compliant coupling element 230 is configured for bi-directional elastic coupling of the rotary actuation member 220 to the rotary bearing member 210 .
  • a clockwise rotational displacement of the rotary actuation member 220 relative to the rotary bearing member 210 generates a first polarity deformation of the compliant coupling element 230 which generates a first polarity force applied to the rotary bearing member 210 .
  • the displacement indicator 240 is correspondingly configured to operate in conjunction with the range 224 of the first polarity portion for indicating a response to counter-clockwise rotational displacement and with the range 226 of the second polarity portion for indicating a response to clockwise rotational displacement.
  • the range 224 may be for the measurement of an outer dimension of an object wherein outer surfaces of the object are contacted by the caliper jaw portions 117 and 118
  • the range 226 is for the measurement of an inner dimension of an object wherein inner surfaces of the object are contacted by the caliper jaw portions 117 ′ and 118 ′. Examples for a measurement of an outer dimension of an object utilizing the range 224 will be described in more detail below with respect to FIGS. 4A-4C .
  • the ends of the clearance opening 222 at the end of the ranges 224 and 226 may function as rotary stop arrangements 225 and 227 , respectively. More specifically, the rotary stop arrangements 225 and 227 may be configured to provide a maximum rotational displacement limit between the rotary bearing member 210 and the rotary actuation member 220 such that deformation of the compliant coupling element 230 is limited to substantially exclude plastic deformation of the compliant coupling element 230 . The rotary stop arrangements 225 and 227 may also be configured to transmit additional force between the rotary actuation member 220 and the rotary bearing member 210 once the maximum rotational displacement limit is reached.
  • the displacement indicator 240 (e.g., consisting of a pin attached to the side of the rotary bearing member 210 ) reaches either the rotary stop arrangement 225 or 227 , additional rotation of the rotary actuation member 220 in the corresponding direction may result in a correspondingly fixed rotation of the rotary bearing member 210 .
  • FIGS. 4A-4C are diagrams illustrating operations of the caliper 100 and wheel assembly 150 of FIG. 1 for measuring the outer dimensions of an object 440 .
  • the hub capture element 144 for coupling to the wheel assembly 150 is hidden behind an outer cover of the readhead member 108 .
  • the jaw portions 117 and 118 have been moved (e.g., by a user) such that their respective measuring edges are either very near or only just in contact with the outer surfaces of the measurement object 440 . In this configuration, very little or no force may yet be applied to compress the object 440 between the jaw portions 117 and 118 of the caliper 100 .
  • the displacement indicator 240 of the wheel assembly 150 is positioned with the displacement indicator 240 at the graduated marking A, which corresponds to a “zero” position in the middle between the ranges 224 and 226 (see FIG. 2D ) of the clearance opening 222 .
  • This condition may exist before the wheel assembly 150 has been pushed to engage the caliper spar 130 or also when the wheel assembly 150 is first pushed to engage the caliper spar 130 and before rotational force is applied (e.g., by the user's thumb) to move the readhead member 108 and the associated caliper jaw portion 118 to compress the object 440 .
  • the width of the object 440 between the jaw portions 117 and 118 is indicated according to a dimension 420 , which corresponds to a reading on the alphanumeric measurement display portion 123 of “1.0100” (e.g., which may correspond to selected measurement units, such as inches, millimeters, etc.).
  • FIG. 4B illustrates a configuration in which a user's thumb has pushed the actuation member 220 of the wheel assembly 150 toward the caliper spar 130 , and further rotation of the rotary actuation member 220 by the user's thumb has generated a deformation of the compliant coupling element 230 .
  • the deformation of the compliant coupling element 230 generates a force which is applied to the rotary bearing member 210 and is thereby coupled to generate a force on the jaw portion 118 , through the coupling of the hub capture element 144 (shown in FIG. 1 ), along its direction of motion which is related to the rotational displacement.
  • the displacement indicator 240 of the wheel assembly 150 is at the graduated marking B, which may correspond to a mid-range position in the middle of the range 224 (see FIG. 2D ) of the clearance opening 222 .
  • the width of the object 440 between the jaw portions 117 and 118 is indicated according to a dimension 420 ′, which corresponds to a reading on the alphanumeric measurement display portion 123 of “1.0000”.
  • the reading of “1.0000” may correspond to a previously determined “accurate” measurement of the object 440 , and may correspond to a desirable amount of measurement force and minimal compression of the object 440 between the jaw portions 117 and 118 for obtaining the measurement. It will be appreciated that while in this specific illustrative example the desired amount of measurement force is indicated as corresponding to the graduated marking B, in other implementations other markings may be utilized for a desired amount of measurement force.
  • the components of the caliper 100 may be configured for applying different amounts of measurement force (e.g., low force calipers, etc.), and different measurement objects may be more or less compliant (i.e., compressible), for which different amounts of measurement force may be appropriate.
  • the wheel assembly 150 may be configured such that a change in the rotational displacement of the rotary actuation member 220 relative to the rotary bearing member 210 of 20 degrees may generate a related change in force of at least 0.5 newtons and at most 10 newtons on the caliper jaw portion 118 (or 118 ′) along its direction of motion.
  • a more consistent comparison between the measurements of the similar objects may be achieved.
  • FIG. 4C illustrates a configuration in which further rotation of the rotary actuation member 220 by the user's thumb has generated an additional deformation of the compliant coupling element 230 .
  • an undesirably excessive amount of measurement force is being applied to compress the object 440 between the jaw portions 117 and 118 of the caliper 100 .
  • the displacement indicator 240 of the wheel assembly 150 is at the graduated marking C, which may correspond to an end-of-range position at or near the end of the range 224 (see FIG. 2D ) of the clearance opening 222 .
  • the width of the object 440 between the jaw portions 117 and 118 is indicated according to a dimension 420 ′′, which corresponds to a reading on the alphanumeric measurement display portion 123 of “0.9900”.
  • this configuration indicates that the object 440 is being compressed too tightly between the jaw portions 117 and 118 .
  • the object 440 has been compressed beyond the “accurate” dimension of “1.0000” which can result in the inaccurate measurement of “0.9900” and/or potentially cause damage to the object 440 .
  • the displacement indicator 240 does not have a significant range of motion as compared to the clearance opening 222 that rotates around it, in other implementations there may be a greater range of motion for the displacement indicator 240 .
  • the displacement indicator 240 moves with the rotary bearing member 210 , for which additional rotation corresponds to the compression of the object 440 .
  • FIGS. 5A-5D are diagrams of a second embodiment of a wheel assembly 550 in which a displacement indicator is not included. It will be appreciated that the components of the wheel assembly 550 may be similar or identical to the similarly numbered components of the wheel assembly 150 of FIGS. 2A-2D , and will be understood to operate in the same manner except as otherwise described below. As shown in FIGS. 5A-5D , the wheel assembly 550 includes a rotary bearing member 210 , a rotary actuation member 220 , and a compliant coupling element 230 .
  • the primary difference of the wheel assembly 550 as compared to the wheel assembly 150 is the lack of a displacement indicator.
  • the outer surface of the rotary actuator portion 220 B does not include a clearance opening or a visual displacement indicator. Instead, only the amount of rotation of the rotary actuation member 220 and the manually sensed (tactile) resistance provided by the compliant coupling element 230 as it applies force to turn the rotary bearing member 210 provide feedback to the user.
  • the required amount of rotation and force for the utilization of the wheel assembly 550 (or 150 ) is advantageous over prior methods using a rigid thumb wheel in a traditional caliper.
  • the combination of the rotary bearing member 210 , the rotary actuation member 220 , and the compliant coupling element 230 provide a greater range of rotation for a given range of force in comparison to a rigid thumb wheel that allows for greater control by a user's thumb than a rigid thumb wheel. More specifically, with a rigid thumb wheel, all of the rotational force from a user's thumb is directly and immediately applied as measurement force (e.g., similar to if the rotary bearing member 210 were being directly rotated by the user's thumb).
  • a very small degree of rotation results in a sharp change in the applied measurement force against a hard workpiece for a rigid thumb.
  • a small degree of rotation results in a small change in the applied measurement force against a hard workpiece.
  • a user may become familiar with a configuration in which a proper amount of measurement force is applied after rotating the rotary actuation member 220 by a specific amount (e.g., 45 degrees). This may be in contrast to a rigid thumb wheel, where a proper amount of measurement force may be applied over a much smaller degree of rotation (e.g., 10 degrees or less), which may be much more difficult for the user to precisely control with the movement of the user's thumb over such a small range of motion.
  • the wheel assembly 550 or 150
  • the user is thus better able to control and repeat the amount of measurement force that is applied for the measurement of an object.
  • FIG. 6 is a diagram of a third embodiment of a wheel assembly 550 ′ in which an auditory and/or tactile displacement indicator provides auditory and/or tactile feedback (e.g., a clicking) related to a changing or target amount of applied measuring force in a caliper.
  • an auditory and/or tactile displacement indicator provides auditory and/or tactile feedback (e.g., a clicking) related to a changing or target amount of applied measuring force in a caliper.
  • the components of the wheel assembly 550 ′ may be similar or identical to the similarly numbered components of the wheel assembly 550 of FIGS. 5A-5D , and will be understood to operate in the same manner except as otherwise described below. As shown in FIG.
  • the rotary bearing member 210 ′ includes a schematically represented noise generating feature 210 NGF (e.g., ridges, knurling, holes, bumps, etc.) and the rotary actuation member 220 includes a schematically represented cooperating noise generating feature 220 NGF (e.g., a spring member including a raised portion that clicks over elements of the noise generating feature 210 NGF during relative motion).
  • NGF noise generating feature 210 NGF
  • cooperating noise generating feature 220 NGF e.g., a spring member including a raised portion that clicks over elements of the noise generating feature 210 NGF during relative motion
  • a user may determine that a proper amount of measurement force is being applied when a certain number of clicks are reached.
  • a user may determine that a proper amount of measurement force is being applied when a second click is reached, wherein a first click indicates that too little measurement force is yet being applied, and a third click indicates that too much measurement force is being applied.
  • the noise generating feature 210 NGF may include just one element that is positioned to generate a click at a target or standard measuring force of each measuring polarity. It will be appreciated that these examples are exemplary only and not limiting. The noise generating features may be positioned differently and take other forms than those outlined above, as will be appreciated by one of ordinary skill in the art based on this disclosure.
  • any of the above described wheel assemblies may be configured such that they are interchangeable with a rigid thumb wheel that is supplied for use with a traditional caliper.
  • the wheel assembly may thus be configured to be coupled without modification to the caliper after the rigid thumb wheel has been removed. It will be appreciated that such a configuration simplifies the utilization of any of the above described wheel assemblies for replacing an existing rigid thumb wheel on an existing caliper.
  • FIGS. 7A, 7B and 7C are diagrams of a compliant thumb wheel assembly 755 .
  • the compliant thumb wheel assembly may be attached to a caliper such as the caliper 100 , in order to provide benefits analogous to those previously outlined for the wheel assemblies 150 , 550 and/or 550 ′.
  • various features of the compliant thumb wheel assembly 755 improve the amount of control that the user has for moving a readhead member, in that the compliant thumb wheel assembly 755 includes a compliant element to provide an improved means of tactile feedback to the user regarding the amount of measuring force exerted on an object by jaw portions of a caliper.
  • a compliant thumb wheel assembly 755 as disclosed herein may provide tactile and/or visual feedback which prevents them from exerting an excessive measuring force which distorts the alignment of a jaw portion, and produces erroneous or non-repeatable measurements.
  • the compliant element of the compliant thumb wheel assembly 755 is arranged between a thumb wheel hub or axle and a hub capture element, as opposed to being internal to a thumb wheel assembly itself.
  • the compliant thumb wheel assembly 755 comprises a thumb wheel 720 comprising a hub 710 , a compliant element comprising a leaf spring 730 , and a thumb wheel mounting portion comprising a hub capture element 744 which may be coupled to a caliper jaw (not shown) in a manner analogous to that illustrated for the hub capture element 144 coupled to the caliper jaw portion 118 in FIG. 1 .
  • the leaf spring 730 is coupled to the hub capture element 744 by known fastening means (e.g., fasteners, adhesive, friction fit, spot welding, overmolding, etc.) and is configured to compliantly constrain and locate the hub 710 of the thumb wheel 720 in an operational arrangement for driving a caliper jaw through the hub capture element 744 while at the same time transmitting forces between the hub 710 and the hub capture element 744 (and thereby to the caliper jaw) by elastic deformation.
  • the leaf spring 730 bends primarily in a plane parallel to the measuring axis direction.
  • FIG. 7A shows the compliant thumb wheel assembly 755 in a rest position without force applied to thumb wheel 720 or the leaf spring 730 . As shown in FIG.
  • the hub 710 engages the leaf spring 730 , which flexes such that the thumb wheel 720 displaces relative to the hub capture element 744 and the caliper jaw along the measuring axis direction, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
  • FIG. 7C shows a top view of the compliant thumb wheel assembly 755 , without the caliper spar 130 present.
  • the thumb wheel 720 includes rotary actuator portions 720 A and 720 B and a spar engagement feature 712 which consists of a groove having slanted sides that are intended to frictionally engage the caliper spar 130 .
  • the rotary actuator portions 720 A and 720 B may be rigidly coupled together by the hub 710 to form a “monolithic” thumb wheel (e.g., by fastening or by monolithic fabrication).
  • a compliant thumb wheel assembly may be configured such that it may be retrofit to a caliper by replacing all or part of a previously installed non-compliant thumb wheel assembly with parts of the compliant thumb wheel assembly, and without altering the portion of the caliper jaw that couples to the thumb wheel mounting portion.
  • the hub capture element 744 including the leaf spring 730 may be used to replace a previously installed typical hub capture element, or the leaf spring 730 may be configured to be coupled to a previously installed typical hub capture element.
  • a previously installed typical non-compliant thumb wheel may be reused in some embodiments.
  • a retrofit thumb wheel of slightly modified form may be used.
  • the previously installed typical hub capture element may be removed and the entire compliant thumb wheel assembly 755 may be installed as a retrofit.
  • FIGS. 8A and 8B are diagrams of a compliant thumb wheel assembly 855 analogous to the compliant thumb wheel assembly 755 .
  • the compliant thumb wheel assembly 855 comprises a thumb wheel 820 comprising a hub 810 , a compliant element comprising a leaf spring 830 , a thumb wheel mounting portion comprising a hub capture element 844 , and the force indicators 840 A and 840 B.
  • the force indicators 840 A and 840 B are coupled to (e.g., formed integrally with) the leaves of the leaf spring 830 , and follow the leaf spring deflection to provide the additional capability of indicating an amount of measuring force being applied due to the deflection of the leaf spring 830 by force exerted through the thumb wheel 820 of the compliant thumb wheel assembly 855 .
  • the force indicators 840 A and 840 B are pointer elements guided in grooves in the face of the hub capture element 844 to indicate an amount of force based on the alignment of the ends with force indicating marks 841 A and 841 B formed in the face of the hub capture element 844 adjacent to the grooves.
  • FIGS. 9A and 9B are diagrams of a compliant thumb wheel assembly 955 analogous to the compliant thumb wheel assemblies 755 and/or 855 .
  • the compliant thumb wheel assembly 955 comprises a thumb wheel 920 comprising a hub 910 , a compliant element 930 , a thumb wheel mounting portion 944 and force indicating marks 941 A and 941 B (e.g., formed in the face of, or applied to, the thumb wheel mounting portion 944 ).
  • the compliant element 930 comprises a shuttle 931 arranged around the hub 910 and a compliant portion comprising a coil spring 932 which may be fastened (e.g., by friction fit or bonding or the like) between the shuttle 931 and the thumb wheel mounting portion 944 .
  • the coil spring 932 may operate in compression or extension.
  • the shuttle 931 may comprise features such as over travel stops to prevent damage to the coil spring 932 from excessive compression or extension.
  • FIG. 9A shows the compliant thumb wheel assembly 955 without force applied. As shown in FIG.
  • the hub 910 exerts force on the shuttle 931 which causes the attached coil spring 932 to flex such that the thumb wheel 920 displaces along the measuring axis direction relative to the thumb wheel mounting portion 944 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
  • the edge of the thumb wheel 920 is configured to align in relationship to the force indicating marks 941 A and 941 B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
  • FIGS. 10A and 10B are diagrams of a compliant thumb wheel assembly 1055 analogous to the compliant thumb wheel assembly 955 .
  • the compliant thumb wheel assembly 1055 comprises a thumb wheel 1020 comprising a hub 1010 , a compliant element 1030 , a thumb wheel mounting portion 1044 1044 and force indicating marks 1041 A and 1041 B.
  • the compliant element 1030 comprises a shuttle 1031 arranged around the hub 1040 , a compliant portion comprising a coil spring 1032 and a coil spring 1033 which may be held in an assembled position by compressing them between the adjacent elements during assembly, by fastening them to one or both adjacent elements, or both.
  • the coil spring 1032 and the coil spring 1033 may operate in compression or extension.
  • FIG. 10A shows the compliant thumb wheel assembly 1055 without force applied. As shown in FIG.
  • the hub 1010 exerts force on the shuttle 1031 which causes the coil springs 1032 and 1033 to compress or extend such that the thumb wheel 1020 displaces along the measuring axis direction relative to the thumb wheel mounting portion 1044 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
  • the edge of the thumb wheel 1020 is configured to align in relationship to the force indicating marks 1041 A and 1041 B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
  • FIGS. 11A and 11B are diagrams of a compliant thumb wheel assembly 1155 analogous to the compliant thumb wheel assemblies 755 and/or 855 .
  • the compliant thumb wheel assembly 1155 comprises a thumb wheel 1120 comprising a hub 1110 , a compliant portion comprising a coil spring 1130 , a thumb wheel mounting portion 1144 and force indicating marks 1141 A and 1141 B (e.g., formed in the face of, or applied to, the thumb wheel mounting portion 1144 ).
  • the coil spring 1130 may be fastened (e.g., by friction fit or bonding or the like) between the hub 1110 and the thumb wheel mounting portion 1144 .
  • the coil spring 1130 may operate in compression or extension.
  • FIG. 11A shows the compliant thumb wheel assembly 1155 in a rest position without force applied to thumb wheel 1120 or the coil spring 1130 . As shown in FIG.
  • the hub 1110 exerts force on the coil spring 1130 which flexes such that the thumb wheel 1120 displaces along the measuring axis direction relative to the thumb wheel mounting portion 1144 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
  • the edge of the thumb wheel 1120 is configured to align in relationship to the force indicating marks 1141 A and 1141 B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
  • FIGS. 12A-12B are diagrams of a compliant thumb wheel assembly 1255 analogous to the compliant thumb wheel assemblies 755 and/or 855 .
  • the compliant thumb wheel assembly 1255 comprises a thumb wheel 1220 comprising a hub 1210 , a compliant portion comprising an elastomeric ring 1230 , a thumb wheel mounting portion 1244 and force indicating marks 1241 A and 1241 B (e.g., formed in the face of, or applied to, the thumb wheel mounting portion 1244 ).
  • the elastomeric ring 1230 is arranged around the hub 1210 and is configured to locate the hub 1210 of the thumb wheel 1220 in an operational arrangement for driving a caliper jaw while at the same time transmitting forces between the hub 1210 and the thumb wheel mounting portion 1244 .
  • FIG. 12A shows the compliant thumb wheel assembly 1255 in a rest position without force applied to thumb wheel 1220 or the elastomeric ring 1230 . As shown in FIG.
  • the hub 1210 exerts force on the elastomeric ring 1230 which flexes such that the thumb wheel 1220 displaces along the measuring axis direction relative to the thumb wheel mounting portion 1244 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
  • the elastomeric ring 1230 is configured for bi-directional elastic coupling of the thumb wheel 1220 to the thumb wheel mounting portion 1244 . In the embodiment shown in FIGS.
  • the edge of the thumb wheel 1220 is configured to align in relationship to one of the force indicating marks 1241 A and 1241 B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
  • a double cone coil spring may be utilized in place of the elastomeric ring 1230 to provide a linearly compliant element.

Abstract

A compliant thumb wheel assembly coupled to a caliper jaw that moves along a caliper scale member along a measuring axis direction in a caliper comprises a thumb wheel, a compliant element, and a thumb wheel mounting portion rigidly coupled to the caliper jaw. The compliant element is configured to locate the thumb wheel in an operational arrangement for driving the caliper jaw while at the same time transmitting forces between the thumb wheel and the thumb wheel mounting portion by elastic deformation. When a force is applied to the thumb wheel along the measuring axis direction, the compliant element flexes such that the thumb wheel displaces along the measuring axis direction relative to the thumb wheel mounting portion and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.

Description

BACKGROUND
Technical Field
The invention relates to precision measurement instruments, and particularly to calipers with a movable jaw for measuring the dimensions of an object.
Description Related Art
Calipers are known that utilize pairs of jaws for determining measurements. A first jaw is generally fixed at one end of a measurement scale while a second jaw is attached to a slider assembly that moves along the measurement scale. An outer dimension of an object may be measured by arranging the object between and against inner surfaces of the first and second jaws. An inner dimension of an object may be measured by arranging outer surfaces of the first and second jaws between and against the inner surfaces of the object (e.g., the walls of a hole). The slider assembly may be moved with a user's thumb, and a thumb wheel may be provided for enabling controlled movement of the slider. One exemplary caliper utilizing a thumb wheel is described in U.S. Pat. No. 7,533,474, which is hereby incorporated herein by reference in its entirety.
For measuring the distance between the jaws of the caliper, electronic position encoders may be used, based on low-power inductive, capacitive, or magnetic position sensing technology. In general, such an encoder may comprise a readhead and a scale. The readhead may generally comprise a readhead sensor and readhead electronics. The readhead outputs signals that vary as a function of the position of the readhead sensor relative to the scale along a measuring axis. The scale may be affixed to an elongated scale member that includes a fixed first measuring jaw. The readhead is affixed to a slider assembly including the second measuring jaw, which is movable along the scale member. Measurements of the distance between the two measuring jaws may be determined based on the signals from the readhead.
Exemplary electronic calipers are disclosed in commonly assigned U.S. Pat. Nos. RE37490, 5,574,381, and 5,973,494, each of which is hereby incorporated by reference in its entirety. A prior art electronic caliper that is capable of measuring force is disclosed in U.S. Patent Publication No. 2003/0047009. As described in the '009 publication, one deficiency in the use of prior calipers is the variation in force which can be applied by the measuring jaws and the differences in measurement which can occur as a result. Particularly when a soft object is being measured, the measurement of the object may be unreliable or non-repeatable because one may apply either a higher force on the jaws of the caliper such that the soft object is “more compressed”, or apply a lower force such that the soft object is “less compressed”. The '009 publication discloses a caliper that is capable of measuring both the size and force applied to an object, which may be analyzed to provide more repeatable measurements. However, the force sensing and indicating features of the caliper of the '009 publication may be considered “overkill” in many applications, and/or may be considered too expensive and/or complex by many caliper users. A need exists for improving measurement force control and/or repeatability in a caliper in an economical, ergonomically convenient, repeatable, and intuitively understandable manner.
BRIEF SUMMARY
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A compliant thumb wheel coupled to a caliper jaw that moves along a caliper scale member along a measuring axis direction in a caliper comprises a thumb wheel, a compliant element, and a thumb wheel mounting portion coupled to the caliper jaw. The compliant element is configured to locate the thumb wheel in an operational arrangement for driving the caliper jaw while at the same time transmitting forces between the thumb wheel and the thumb wheel mounting portion by elastic deformation. When a force is applied to the thumb wheel along the measuring axis direction, the compliant element flexes such that the thumb wheel displaces along the measuring axis direction relative to the thumb wheel mounting portion and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 is a diagram of a portion of a caliper with a first embodiment of a wheel assembly with a displacement indicator that provides visual feedback regarding an amount of applied measuring force in the caliper.
FIGS. 2A-2D are diagrams of the components of an embodiment of the wheel assembly of FIG. 1.
FIGS. 3A-3D are diagrams of the components of FIGS. 2A-2D engaging a caliper spar.
FIGS. 4A-4C are diagrams illustrating operations of the caliper and wheel assembly of FIG. 1 for measuring an object.
FIGS. 5A-5D are diagrams of a second embodiment of a wheel assembly in which a displacement indicator is not utilized.
FIG. 6 is a diagram of a third embodiment of a wheel assembly in which a displacement indicator provides auditory or tactile feedback regarding an amount of applied measuring force in a caliper.
FIGS. 7A-7C are diagrams of a compliant thumb wheel assembly.
FIGS. 8A-8B are diagrams of a compliant thumb wheel assembly.
FIGS. 9A-9B are diagrams of a compliant thumb wheel assembly.
FIGS. 10A-10B are diagrams of a compliant thumb wheel assembly.
FIGS. 11A-11B are diagrams of a compliant thumb wheel assembly.
FIGS. 12A-12B are diagrams of a compliant thumb wheel assembly.
DETAILED DESCRIPTION
FIG. 1 shows a portion of a caliper 100 with a first embodiment of a wheel assembly 150. The caliper 100 includes a scale member 107 and a readhead member 108. The scale member 107 may be a conventional electronic caliper member comprising fixed jaw portions 117 and 117′ and a spar 130 carrying a transducer scale 101′, a portion of which is revealed in FIG. 1. The readhead member 108 may be a conventional electronic caliper member including jaw portions 118 and 118′, a hub capture element 144 for coupling to the wheel assembly 150, and a guide and mounting portion (not shown) that aligns and guides the readhead member 108 along the spar 130 and carries a readhead assembly 101. The guide and mounting portion (as known by one of ordinary skill in the art and/or as disclosed in the incorporated references) underlies the readhead assembly 101 shown in FIG. 1, and is approximately the same size as the readhead assembly 101.
In the embodiment shown in FIG. 1, the readhead member 108 carries the transducer readhead assembly 101, also referred to simply as readhead assembly 101, which includes a display 104, a mode-selecting button 105, and an origin-selecting button 106. The readhead assembly 101 also includes a transducer readhead (not shown) that is operable to provide signals indicative of the position of the transducer readhead assembly 101 along the transducer scale 101′ to a signal processing and control unit (not shown).
The display 104 generally comprises an alphanumeric measurement display portion 123 and a mode indicator display portion 122. The display may be a custom LCD display, or any other suitable type of display. The mode indicator portion 122 is capable of displaying conventional measurement mode/unit indicators such as “in” for mode indicator 110 and “mm” for mode indicator 111, which indicate units of inches and millimeters, respectively. These indicators may take any convenient written or symbolic form and are not restricted to the exemplary “in” and “mm” forms. In one embodiment, when activated, the mode-selecting button 105 selects/changes in the operating mode and/or units of measurement displayed by the caliper 100.
The illustrated embodiment of the hub capture element 144 is an elongated component that supports the wheel assembly 150. The hub capture element 144 includes a hole 147 which may operate to accept a screw or shaft 149 that pins it to the readhead member 108. The hub capture element 144 includes a slot 147A that captures a hub or axle 110A included in the wheel assembly 150, such that the wheel assembly 150 may rotate in the slot 147A and may move toward and away from the spar 130 in the slot 147A, depending on a user's manual pressure or force on the wheel assembly 150. In the illustrated embodiment, the hub capture element 144 fits snugly into a clearance portion 146 in the readhead member 108. In various implementations, the hub capture element 144 and the associated components 145-149 may be located at the front of the readhead member 108 or alternatively enclosed under a cover, such that primarily or only the wheel assembly 150 is visible.
To measure an outer dimension of an object, the user may close the jaw portions 117 and 118, such that their edges contact the outer surfaces of the measurement object. To measure an inner dimension of an object, the user may separate the jaw portions 117′ and 118′, such that their edges contact the inner surfaces of the measurement object. During measurement, the alphanumeric measurement display portion 123 is responsive to reflect the distance between the measuring edges of the jaw portions 117 and 118 or 117′ and 118′. An origin or zero button can be pressed with the jaw portions 117 and 118 or 117′ and 118′ at a selected separation or offset distance. Thereafter, measurement values are displayed relative to that offset distance.
As will be described in more detail below with respect to FIGS. 2A-2D, 3A-3D and 4A-4C, the wheel assembly 150 is configured to engage the spar 130 when activated by a user (e.g., when pushed against the spar 130 and rotated by a user's thumb) so as to adjust the position of the readhead member 108 and its associated jaw portions 118 and 118′.
In accordance with various implementations described herein, various features of the wheel assembly 150 improve the amount of control that the user has for moving the readhead member 108, in that the wheel assembly 150 includes a compliant element to provide an improved means of tactile feedback to the user regarding the amount of measuring force exerted on the object by the jaw portions 117 and 118 or the jaw portions 117′ and 118′. It should be appreciated that using a more consistent or repeatable measuring force results in more consistent or repeatable measurement results, especially for compliant workpieces. In addition, for unskilled users, a compliant wheel assembly 150 as disclosed herein may provide tactile feedback which prevents them from exerting an excessive measuring force which distorts the alignment of the jaw portion 118 (118′), and produces erroneous or non-repeatable measurements.
FIGS. 2A-2D are diagrams of components of one embodiment of the compliant wheel assembly 150 of FIG. 1. As shown in FIG. 2A, the wheel assembly 150 may include a rotary bearing member 210 including the hub 210A, rotary actuator portions 220A and 220B, a compliant coupling element 230, assembly screw 249A, and an optional hub/spacer 248. In various implementations, the rotary actuator portions 220A and 220B may be rigidly coupled together (e.g., against the hub/spacer 248) by the screw/axle 249A to form a single rotary actuation member 220 (e.g., an outer thumb wheel portion) that is actuated by a user to apply measuring force, as will be described in more detail below. In one embodiment, the assembly screw 249A is fastened into threads in the actuator portion 220B, and has an unthreaded length configured to provide an axial clearance between the assembled components of the wheel assembly 150, such that the rotary bearing member 210 may pivot freely relative to the actuator portions 220A and 220B after the assembly screw 249A is tightened. In one implementation, the rotary actuator portion 220A may be omitted, and the compliant coupling element 230 may be repositioned (and reconfigured if needed) to couple the rotary actuator portion 220B to the rotary bearing member 210. The screw/axle 249A, and/or the hub/spacer 248 may be reconfigured if needed, to hold the resulting assembly together in an operational manner as outlined above. The hub 210A of rotary bearing member 210 and thereby the wheel assembly 150 is coupled to the readhead member 108 and thereby the caliper jaw portion 118 through the hub capture element 144, as outlined above with reference to the hub 110A of FIG. 1.
The compliant coupling element 230 is configured to elastically couple the rotary actuation member 220 to the rotary bearing member 210. More specifically, in the embodiment of FIG. 2A, the compliant coupling element 230 is illustrated as consisting of a torsion spring with a first end portion 232 and a second end portion 234. The first end portion 232 is received in a hole 228 of the rotary actuator portion 220A, while the second end portion 234 is received in a hole of the rotary bearing member 210, so as to elastically couple the rotary actuator portion 220A to the rotary bearing member 210. While the compliant coupling element 230 is illustrated in FIG. 2A as consisting of a torsion spring, it will be appreciated that other similar components may be utilized in other implementations (e.g., an elastomeric torsion spring, a helical spring arranged in an arc about an axis of rotation of the wheel assembly, a flexure pivot, etc.).
FIGS. 2B, 2C and 2D are side, top and end views, respectively, of the assembled wheel assembly 150. As illustrated in FIGS. 2B and 2C, the end portion 232 of the compliant coupling element 230 may extend through the hole 228 of the rotary actuator portion 220A. The assembly screw 249A is shown to be centrally located along the axis of rotation of the wheel assembly 150. The central portion of the rotary bearing member 210 (located between the rotary actuator portions 220A and 220B in the assembled representation) is shown to include a spar engagement feature 212 which consists of a groove having sides that are intended to frictionally engage the caliper spar 130, as will be described in more detail below with respect to FIGS. 3A-3D.
As will also be described in more detail below, when the spar engagement feature 212 engages the caliper spar 130, a displacement indicator 240 may indicate an amount of torque and/or resultant measuring force being applied due to the rotation of the actuation member 220 (220B) of the wheel assembly 150. As shown in FIG. 2D, in one implementation the displacement indicator 240 may consist of a pointer element (e.g., a pin attached to the side of the rotary bearing member 210) which extends through a clearance opening 222 (e.g., an arc-shaped hole) in the side of the rotary actuator portion 220B. The displacement indicator 240, shown at a rest or disengaged position corresponding to zero measuring force (and/or disengagement of the rotary bearing member 210 from the caliper spar 130), is configured to operate in conjunction with first and second polarity portions, which may correspond to first and second ranges 224 and 226. More specifically, the first range 224 may be for a torque or force used during the measurement of an outer dimension of an object wherein outer surfaces of the object are contacted by the caliper jaw portions 117 and 118, while the second range 226 may be for a torque or force used during measurement of an inner dimension of an object wherein inner surfaces of the object are contacted by the caliper jaw portions 117′ and 118′. In one implementation, graduated markings may be included for indicating positions within the respective ranges 224 and 226. As will be described in more detail below with respect to FIGS. 4A-4C, a set of graduated markings A, B and C may correspond to the beginning, middle and end, respectively, of the range 224.
FIGS. 3A-3D are diagrams of the assembled wheel assembly 150 as engaging a caliper spar 130 (e.g., as being pushed by the thumb of a user). As shown in FIG. 3A, the spar engagement feature 212 of the rotary bearing member 210 is illustrated as engaging the caliper spar 130. In this configuration, a rotational displacement of the rotary actuation member 220 (e.g., as pushed by a thumb of a user) relative to the rotary bearing member 210 (which resists the rotation due to the frictional force of the spar engagement feature 212 engaging the spar 130 and pushing the jaw portion 118 to compress an object that is being measured) generates a deformation of the compliant coupling element 230, allowing the rotary actuation member 220 and the rotary bearing member 210 to rotate relative to one another. The deformation of the compliant coupling element 230 generates a corresponding force which is applied to the rotary bearing member 210 and is thereby coupled to generate a force on the caliper jaw portion 118 (or 118′), through the coupling of the hub capture element 144 shown in FIG. 1, along its direction of motion which is related to the rotational displacement.
FIG. 3B is a side view of the wheel assembly 150, and FIGS. 3C and 3D are end views directed toward the rotary actuator portions 220A and 220B, respectively. As shown in FIG. 3B, the spar engagement feature 212 includes a groove having sides that are tapered inward and which frictionally engage the caliper spar 130 as the wheel assembly 150 is pushed toward the caliper spar 130 (e.g., such as by a user's thumb). In one specific example implementation, the caliper spar 130 may have a width W1 of approximately 3.50 mm. Correspondingly, an outer portion of the spar engagement feature 212 (i.e., near the outer edge of the rotary bearing member 210) may have a groove width W2 of approximately 3.70 mm (for providing clearance for allowing the spar 130 to be initially slid into the outer portion of the groove). In contrast, the central portion of the spar engagement feature 212 (i.e., near the central hub 210A) between the sides as they are tapered inward may have a groove width W3 of approximately 3.48 mm (for allowing the tapered sides to frictionally engage the spar 130 as it is slid further into the groove). As shown in FIGS. 3C, when the spar 130 is frictionally engaged in the groove of the spar engagement feature 212, the edge of the spar 130 may be separated from the central axis of the wheel assembly 150 by a distance D1 of approximately 4.12 mm.
As shown in FIG. 3D, the displacement indicator 240 is at the graduated marking A, which may correspond to a “zero” position in the middle between the ranges 224 and 226 of the clearance opening 222. As previously outlined, this condition may exist when the wheel assembly 150 is first pushed inward to engage the caliper spar 130 and before rotational force is applied (e.g., by the user's thumb) to move the readhead member 108 and the associated caliper jaw portions 118 and 118′ to apply measurement force to an object that is being measured. This “zero” position of the displacement indicator 240 also exists when the wheel assembly 150 is disengaged from the caliper spar. As will be described in more detail below with respect to FIGS. 4A-4C, when an object is being measured, the displacement indicator 240 may provide an indication of the amount of force that is being applied on the object by the jaws of the caliper 100. With regard to the operation of the wheel assembly 150 as it engages and disengages to and from the caliper spar 130, the rotary bearing member 210 is coupled to the hub capture element 144 (FIG. 1) that is connected to the readhead member 108 and the associated caliper jaw portions 118 and 118′. The hub capture element 144 is configured to allow the rotary bearing member 210 to move toward the caliper spar 130 such that the spar engagement feature 212 bears on the caliper spar 130, as illustrated in FIGS. 3A-3D. The hub capture element 144 is also configured to allow the rotary bearing member 210 to move away from the caliper spar 130 (e.g., when the wheel assembly 150 is not being pushed by a user's thumb) such that the spar engagement feature 212 of the rotary bearing member 210 disengages from the caliper spar 130. The wheel assembly 150 is configured such that when the spar engagement feature 212 is disengaged from the caliper spar 130, the rotary bearing member 210 is able to rotate freely with the rotary actuation member 220 such that there is no significant rotational displacement of the rotary actuation member 220 relative to the rotary bearing member 210 and no significant deformation of the compliant coupling element 230.
In contrast, as described above with respect to FIG. 3A, when the wheel assembly 150 is pushed toward the caliper spar 130 (e.g., by a user's thumb), the spar engagement feature 212 engages the caliper spar 130, and further rotation of the rotary actuation member 220 (e.g., by the user's thumb) to apply measurement force to an object that is being measured generates a deformation of the compliant coupling element 230. The deformation of the compliant coupling element 230 generates a force which is applied to the rotary bearing member 210 and is thereby coupled to generate a force on the caliper jaw portion 118 (or 118′), through the coupling of the hub capture element 144 shown in FIG. 1, along its direction of motion which is related to the rotational displacement.
In the implementation of FIGS. 2A-2D and 3A-3D, the compliant coupling element 230 is configured for bi-directional elastic coupling of the rotary actuation member 220 to the rotary bearing member 210. In such a configuration, a clockwise rotational displacement of the rotary actuation member 220 relative to the rotary bearing member 210 generates a first polarity deformation of the compliant coupling element 230 which generates a first polarity force applied to the rotary bearing member 210. Furthermore, a counter-clockwise rotational displacement of the rotary actuation member 220 relative to the rotary bearing member 210 generates a second polarity deformation of the compliant coupling element 230 which generates a second polarity force applied to the rotary bearing member 210. In one implementation, these first and second polarity forces are generated at least in part according to the physical properties of the compliant coupling element 230 (e.g., a torsion spring) for the clockwise or counterclockwise rotational displacements, respectively.
As shown in FIGS. 2D and 3D, the displacement indicator 240 is correspondingly configured to operate in conjunction with the range 224 of the first polarity portion for indicating a response to counter-clockwise rotational displacement and with the range 226 of the second polarity portion for indicating a response to clockwise rotational displacement. In one implementation, the range 224 may be for the measurement of an outer dimension of an object wherein outer surfaces of the object are contacted by the caliper jaw portions 117 and 118, while the range 226 is for the measurement of an inner dimension of an object wherein inner surfaces of the object are contacted by the caliper jaw portions 117′ and 118′. Examples for a measurement of an outer dimension of an object utilizing the range 224 will be described in more detail below with respect to FIGS. 4A-4C.
In various implementations, the ends of the clearance opening 222 at the end of the ranges 224 and 226 may function as rotary stop arrangements 225 and 227, respectively. More specifically, the rotary stop arrangements 225 and 227 may be configured to provide a maximum rotational displacement limit between the rotary bearing member 210 and the rotary actuation member 220 such that deformation of the compliant coupling element 230 is limited to substantially exclude plastic deformation of the compliant coupling element 230. The rotary stop arrangements 225 and 227 may also be configured to transmit additional force between the rotary actuation member 220 and the rotary bearing member 210 once the maximum rotational displacement limit is reached. In other words, once the displacement indicator 240 (e.g., consisting of a pin attached to the side of the rotary bearing member 210) reaches either the rotary stop arrangement 225 or 227, additional rotation of the rotary actuation member 220 in the corresponding direction may result in a correspondingly fixed rotation of the rotary bearing member 210. This occurs due to the displacement indicator pin 240 being pressed against the rotary stop arrangement 225 or 227 at the end of the clearance opening 222 for fixably rotating the rotary bearing member 210 with the rotary actuation member 220 without causing further deformation of the compliant coupling element 230, and thus preventing plastic deformation of the compliant coupling element 230.
FIGS. 4A-4C are diagrams illustrating operations of the caliper 100 and wheel assembly 150 of FIG. 1 for measuring the outer dimensions of an object 440. In the embodiments of FIGS. 4A-4C, the hub capture element 144 for coupling to the wheel assembly 150 is hidden behind an outer cover of the readhead member 108. As shown in FIG. 4A, the jaw portions 117 and 118 have been moved (e.g., by a user) such that their respective measuring edges are either very near or only just in contact with the outer surfaces of the measurement object 440. In this configuration, very little or no force may yet be applied to compress the object 440 between the jaw portions 117 and 118 of the caliper 100. As such, the displacement indicator 240 of the wheel assembly 150 is positioned with the displacement indicator 240 at the graduated marking A, which corresponds to a “zero” position in the middle between the ranges 224 and 226 (see FIG. 2D) of the clearance opening 222. This condition may exist before the wheel assembly 150 has been pushed to engage the caliper spar 130 or also when the wheel assembly 150 is first pushed to engage the caliper spar 130 and before rotational force is applied (e.g., by the user's thumb) to move the readhead member 108 and the associated caliper jaw portion 118 to compress the object 440. The width of the object 440 between the jaw portions 117 and 118 is indicated according to a dimension 420, which corresponds to a reading on the alphanumeric measurement display portion 123 of “1.0100” (e.g., which may correspond to selected measurement units, such as inches, millimeters, etc.).
FIG. 4B illustrates a configuration in which a user's thumb has pushed the actuation member 220 of the wheel assembly 150 toward the caliper spar 130, and further rotation of the rotary actuation member 220 by the user's thumb has generated a deformation of the compliant coupling element 230. The deformation of the compliant coupling element 230 generates a force which is applied to the rotary bearing member 210 and is thereby coupled to generate a force on the jaw portion 118, through the coupling of the hub capture element 144 (shown in FIG. 1), along its direction of motion which is related to the rotational displacement. In this configuration, a desired amount of measurement force is being applied to compress the object 440 between the jaw portions 117 and 118 of the caliper 100. As such, the displacement indicator 240 of the wheel assembly 150 is at the graduated marking B, which may correspond to a mid-range position in the middle of the range 224 (see FIG. 2D) of the clearance opening 222.
The width of the object 440 between the jaw portions 117 and 118 is indicated according to a dimension 420′, which corresponds to a reading on the alphanumeric measurement display portion 123 of “1.0000”.
In this specific illustrative example, the reading of “1.0000” may correspond to a previously determined “accurate” measurement of the object 440, and may correspond to a desirable amount of measurement force and minimal compression of the object 440 between the jaw portions 117 and 118 for obtaining the measurement. It will be appreciated that while in this specific illustrative example the desired amount of measurement force is indicated as corresponding to the graduated marking B, in other implementations other markings may be utilized for a desired amount of measurement force. For example, in various implementations the components of the caliper 100 may be configured for applying different amounts of measurement force (e.g., low force calipers, etc.), and different measurement objects may be more or less compliant (i.e., compressible), for which different amounts of measurement force may be appropriate. In one specific example implementation, the wheel assembly 150 may be configured such that a change in the rotational displacement of the rotary actuation member 220 relative to the rotary bearing member 210 of 20 degrees may generate a related change in force of at least 0.5 newtons and at most 10 newtons on the caliper jaw portion 118 (or 118′) along its direction of motion. For any of the different potential configurations and settings, it will generally be appreciated that by keeping the amount of measurement force that is applied at a consistent level for the measurements of similar objects, a more consistent comparison between the measurements of the similar objects may be achieved.
FIG. 4C illustrates a configuration in which further rotation of the rotary actuation member 220 by the user's thumb has generated an additional deformation of the compliant coupling element 230. In this configuration, an undesirably excessive amount of measurement force is being applied to compress the object 440 between the jaw portions 117 and 118 of the caliper 100. As such, the displacement indicator 240 of the wheel assembly 150 is at the graduated marking C, which may correspond to an end-of-range position at or near the end of the range 224 (see FIG. 2D) of the clearance opening 222. The width of the object 440 between the jaw portions 117 and 118 is indicated according to a dimension 420″, which corresponds to a reading on the alphanumeric measurement display portion 123 of “0.9900”. As noted above, in this specific illustrative example, this configuration indicates that the object 440 is being compressed too tightly between the jaw portions 117 and 118. As such, the object 440 has been compressed beyond the “accurate” dimension of “1.0000” which can result in the inaccurate measurement of “0.9900” and/or potentially cause damage to the object 440.
It will be appreciated that while in the specific illustrative examples of FIGS. 4A-4C the displacement indicator 240 does not have a significant range of motion as compared to the clearance opening 222 that rotates around it, in other implementations there may be a greater range of motion for the displacement indicator 240. In other words, in the configuration of FIGS. 4A-4C, the displacement indicator 240 moves with the rotary bearing member 210, for which additional rotation corresponds to the compression of the object 440. If the object is relatively compressible, the rotary bearing member 210 may rotate over a larger range, and the attached displacement indictor 240 may correspondingly move further for a given amount of rotation of the rotary actuation member 220 and corresponding deformation of the compliant coupling element 230.
FIGS. 5A-5D are diagrams of a second embodiment of a wheel assembly 550 in which a displacement indicator is not included. It will be appreciated that the components of the wheel assembly 550 may be similar or identical to the similarly numbered components of the wheel assembly 150 of FIGS. 2A-2D, and will be understood to operate in the same manner except as otherwise described below. As shown in FIGS. 5A-5D, the wheel assembly 550 includes a rotary bearing member 210, a rotary actuation member 220, and a compliant coupling element 230.
The primary difference of the wheel assembly 550 as compared to the wheel assembly 150 is the lack of a displacement indicator. As shown in FIG. 5D (as compared to FIG. 2D), the outer surface of the rotary actuator portion 220B does not include a clearance opening or a visual displacement indicator. Instead, only the amount of rotation of the rotary actuation member 220 and the manually sensed (tactile) resistance provided by the compliant coupling element 230 as it applies force to turn the rotary bearing member 210 provide feedback to the user.
It will be appreciated that the required amount of rotation and force for the utilization of the wheel assembly 550 (or 150) is advantageous over prior methods using a rigid thumb wheel in a traditional caliper. In particular, the combination of the rotary bearing member 210, the rotary actuation member 220, and the compliant coupling element 230 provide a greater range of rotation for a given range of force in comparison to a rigid thumb wheel that allows for greater control by a user's thumb than a rigid thumb wheel. More specifically, with a rigid thumb wheel, all of the rotational force from a user's thumb is directly and immediately applied as measurement force (e.g., similar to if the rotary bearing member 210 were being directly rotated by the user's thumb). In addition, a very small degree of rotation results in a sharp change in the applied measurement force against a hard workpiece for a rigid thumb. In contrast, for the compliant wheel assembly 550, a small degree of rotation results in a small change in the applied measurement force against a hard workpiece. A user can therefore easily apply a more repeatable measuring force and/or detect an excessive measuring force associated with feeling the compliant element reaching the end of its travel (e.g., associated with a rotary stop arrangement as outlined above.)
As a further illustrative example, a user may become familiar with a configuration in which a proper amount of measurement force is applied after rotating the rotary actuation member 220 by a specific amount (e.g., 45 degrees). This may be in contrast to a rigid thumb wheel, where a proper amount of measurement force may be applied over a much smaller degree of rotation (e.g., 10 degrees or less), which may be much more difficult for the user to precisely control with the movement of the user's thumb over such a small range of motion. Through the utilization of the wheel assembly 550 (or 150), the user is thus better able to control and repeat the amount of measurement force that is applied for the measurement of an object.
FIG. 6 is a diagram of a third embodiment of a wheel assembly 550′ in which an auditory and/or tactile displacement indicator provides auditory and/or tactile feedback (e.g., a clicking) related to a changing or target amount of applied measuring force in a caliper. It will be appreciated that the components of the wheel assembly 550′ may be similar or identical to the similarly numbered components of the wheel assembly 550 of FIGS. 5A-5D, and will be understood to operate in the same manner except as otherwise described below. As shown in FIG. 6, the rotary bearing member 210′ includes a schematically represented noise generating feature 210NGF (e.g., ridges, knurling, holes, bumps, etc.) and the rotary actuation member 220 includes a schematically represented cooperating noise generating feature 220NGF (e.g., a spring member including a raised portion that clicks over elements of the noise generating feature 210NGF during relative motion).
In operation, a user may determine that a proper amount of measurement force is being applied when a certain number of clicks are reached. As a specific illustrative example, a user may determine that a proper amount of measurement force is being applied when a second click is reached, wherein a first click indicates that too little measurement force is yet being applied, and a third click indicates that too much measurement force is being applied. In some embodiments, the noise generating feature 210NGF may include just one element that is positioned to generate a click at a target or standard measuring force of each measuring polarity. It will be appreciated that these examples are exemplary only and not limiting. The noise generating features may be positioned differently and take other forms than those outlined above, as will be appreciated by one of ordinary skill in the art based on this disclosure.
In various implementations, any of the above described wheel assemblies, with or without a displacement indicator, may be configured such that they are interchangeable with a rigid thumb wheel that is supplied for use with a traditional caliper. The wheel assembly may thus be configured to be coupled without modification to the caliper after the rigid thumb wheel has been removed. It will be appreciated that such a configuration simplifies the utilization of any of the above described wheel assemblies for replacing an existing rigid thumb wheel on an existing caliper.
FIGS. 7A, 7B and 7C are diagrams of a compliant thumb wheel assembly 755. The compliant thumb wheel assembly may be attached to a caliper such as the caliper 100, in order to provide benefits analogous to those previously outlined for the wheel assemblies 150, 550 and/or 550′. For example, in accordance with various implementations described herein, various features of the compliant thumb wheel assembly 755 improve the amount of control that the user has for moving a readhead member, in that the compliant thumb wheel assembly 755 includes a compliant element to provide an improved means of tactile feedback to the user regarding the amount of measuring force exerted on an object by jaw portions of a caliper. It should be appreciated that using a more consistent or repeatable measuring force results in more consistent or repeatable measurement results, especially for compliant workpieces. In addition, for unskilled users, a compliant thumb wheel assembly 755 as disclosed herein may provide tactile and/or visual feedback which prevents them from exerting an excessive measuring force which distorts the alignment of a jaw portion, and produces erroneous or non-repeatable measurements. In contrast with the wheel assemblies 150, 550 and/or 550′, in various implementations, the compliant element of the compliant thumb wheel assembly 755 is arranged between a thumb wheel hub or axle and a hub capture element, as opposed to being internal to a thumb wheel assembly itself.
The compliant thumb wheel assembly 755 comprises a thumb wheel 720 comprising a hub 710, a compliant element comprising a leaf spring 730, and a thumb wheel mounting portion comprising a hub capture element 744 which may be coupled to a caliper jaw (not shown) in a manner analogous to that illustrated for the hub capture element 144 coupled to the caliper jaw portion 118 in FIG. 1. The leaf spring 730 is coupled to the hub capture element 744 by known fastening means (e.g., fasteners, adhesive, friction fit, spot welding, overmolding, etc.) and is configured to compliantly constrain and locate the hub 710 of the thumb wheel 720 in an operational arrangement for driving a caliper jaw through the hub capture element 744 while at the same time transmitting forces between the hub 710 and the hub capture element 744 (and thereby to the caliper jaw) by elastic deformation. The leaf spring 730 bends primarily in a plane parallel to the measuring axis direction. FIG. 7A shows the compliant thumb wheel assembly 755 in a rest position without force applied to thumb wheel 720 or the leaf spring 730. As shown in FIG. 7B, when a force is applied to the thumb wheel 720 along the measuring axis direction (e.g., causing it to roll along a caliper spar 130), the hub 710 engages the leaf spring 730, which flexes such that the thumb wheel 720 displaces relative to the hub capture element 744 and the caliper jaw along the measuring axis direction, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
FIG. 7C shows a top view of the compliant thumb wheel assembly 755, without the caliper spar 130 present. As shown in FIG. 7C, the thumb wheel 720 includes rotary actuator portions 720A and 720B and a spar engagement feature 712 which consists of a groove having slanted sides that are intended to frictionally engage the caliper spar 130. In various implementations, the rotary actuator portions 720A and 720B may be rigidly coupled together by the hub 710 to form a “monolithic” thumb wheel (e.g., by fastening or by monolithic fabrication).
Commonly assigned U.S. patent application Ser. No. 14/231,492, which is hereby incorporated herein by reference in its entirety, discloses a flexible mount for coupling a force actuator to a caliper jaw. In various implementations, the flexible mount includes a jaw mounting portion, an actuator mounting portion and a flexible element. The flexible element is coupled between the jaw mounting portion and the actuator mounting portion. In contrast, in the embodiment shown in FIGS. 7A-7C, a similar result is achieved without the need for a flexible mount including a jaw mounting portion and an actuator mounting portion.
It should be appreciated that in various implementations according to the principles disclosed herein, a compliant thumb wheel assembly may be configured such that it may be retrofit to a caliper by replacing all or part of a previously installed non-compliant thumb wheel assembly with parts of the compliant thumb wheel assembly, and without altering the portion of the caliper jaw that couples to the thumb wheel mounting portion. For example, in the present case the hub capture element 744 including the leaf spring 730 may be used to replace a previously installed typical hub capture element, or the leaf spring 730 may be configured to be coupled to a previously installed typical hub capture element. A previously installed typical non-compliant thumb wheel may be reused in some embodiments. In other embodiments, a retrofit thumb wheel of slightly modified form may be used. Alternatively, the previously installed typical hub capture element may be removed and the entire compliant thumb wheel assembly 755 may be installed as a retrofit.
FIGS. 8A and 8B are diagrams of a compliant thumb wheel assembly 855 analogous to the compliant thumb wheel assembly 755. Thus, it may be understood by analogy to the previous description of the compliant thumb wheel assembly 755, except for the additional force indicators 840A and 840B described below. Briefly, the compliant thumb wheel assembly 855 comprises a thumb wheel 820 comprising a hub 810, a compliant element comprising a leaf spring 830, a thumb wheel mounting portion comprising a hub capture element 844, and the force indicators 840A and 840B. The force indicators 840A and 840B are coupled to (e.g., formed integrally with) the leaves of the leaf spring 830, and follow the leaf spring deflection to provide the additional capability of indicating an amount of measuring force being applied due to the deflection of the leaf spring 830 by force exerted through the thumb wheel 820 of the compliant thumb wheel assembly 855. In the embodiment shown in FIGS. 8A-8B, the force indicators 840A and 840B are pointer elements guided in grooves in the face of the hub capture element 844 to indicate an amount of force based on the alignment of the ends with force indicating marks 841A and 841B formed in the face of the hub capture element 844 adjacent to the grooves. FIG. 8A shows the compliant thumb wheel assembly 855 without force applied. As shown in FIG. 8B, when a force is applied to the thumb wheel 820 along the measuring axis direction, the leaf spring 830 flexes, which displaces the force indicator 840A along the measuring axis direction such that it aligns with one of the force indicating marks 841A. The leaf spring 830 is configured for bi-directional elastic coupling of the thumb wheel 820 to the hub capture element 844. If a force is applied in the opposite direction, the force indicator 840B will align with one of the force indicating marks 841B.
FIGS. 9A and 9B are diagrams of a compliant thumb wheel assembly 955 analogous to the compliant thumb wheel assemblies 755 and/or 855. Thus, it may be understood by analogy to the previous description of the compliant thumb wheel assemblies 755 and 855, except for the differences outlined below. Briefly, the compliant thumb wheel assembly 955 comprises a thumb wheel 920 comprising a hub 910, a compliant element 930, a thumb wheel mounting portion 944 and force indicating marks 941A and 941B (e.g., formed in the face of, or applied to, the thumb wheel mounting portion 944). The compliant element 930 comprises a shuttle 931 arranged around the hub 910 and a compliant portion comprising a coil spring 932 which may be fastened (e.g., by friction fit or bonding or the like) between the shuttle 931 and the thumb wheel mounting portion 944. The coil spring 932 may operate in compression or extension. In various embodiments, the shuttle 931 may comprise features such as over travel stops to prevent damage to the coil spring 932 from excessive compression or extension. FIG. 9A shows the compliant thumb wheel assembly 955 without force applied. As shown in FIG. 9B, when a force is applied to the thumb wheel 920 along the measuring axis direction, the hub 910 exerts force on the shuttle 931 which causes the attached coil spring 932 to flex such that the thumb wheel 920 displaces along the measuring axis direction relative to the thumb wheel mounting portion 944 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction. In the embodiment shown in FIGS. 9A-9B, the edge of the thumb wheel 920 is configured to align in relationship to the force indicating marks 941A and 941B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
FIGS. 10A and 10B are diagrams of a compliant thumb wheel assembly 1055 analogous to the compliant thumb wheel assembly 955. Thus, it may be understood by analogy to the previous description of the compliant thumb wheel assembly 955, except for the differences outlined below. Briefly, the compliant thumb wheel assembly 1055 comprises a thumb wheel 1020 comprising a hub 1010, a compliant element 1030, a thumb wheel mounting portion 1044 1044 and force indicating marks 1041A and 1041B. The compliant element 1030 comprises a shuttle 1031 arranged around the hub 1040, a compliant portion comprising a coil spring 1032 and a coil spring 1033 which may be held in an assembled position by compressing them between the adjacent elements during assembly, by fastening them to one or both adjacent elements, or both. The coil spring 1032 and the coil spring 1033 may operate in compression or extension. FIG. 10A shows the compliant thumb wheel assembly 1055 without force applied. As shown in FIG. 10B, when a force is applied to the thumb wheel 1020 along the measuring axis direction, the hub 1010 exerts force on the shuttle 1031 which causes the coil springs 1032 and 1033 to compress or extend such that the thumb wheel 1020 displaces along the measuring axis direction relative to the thumb wheel mounting portion 1044 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction. In the embodiment shown in FIGS. 10A and 10B, the edge of the thumb wheel 1020 is configured to align in relationship to the force indicating marks 1041A and 1041B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
FIGS. 11A and 11B are diagrams of a compliant thumb wheel assembly 1155 analogous to the compliant thumb wheel assemblies 755 and/or 855. Thus, it may be understood by analogy to the previous description of the compliant thumb wheel assemblies 755 and 855, except for the differences outlined below. Briefly, the compliant thumb wheel assembly 1155 comprises a thumb wheel 1120 comprising a hub 1110, a compliant portion comprising a coil spring 1130, a thumb wheel mounting portion 1144 and force indicating marks 1141A and 1141B (e.g., formed in the face of, or applied to, the thumb wheel mounting portion 1144). The coil spring 1130 may be fastened (e.g., by friction fit or bonding or the like) between the hub 1110 and the thumb wheel mounting portion 1144. The coil spring 1130 may operate in compression or extension. FIG. 11A shows the compliant thumb wheel assembly 1155 in a rest position without force applied to thumb wheel 1120 or the coil spring 1130. As shown in FIG. 11B, when a force is applied to the thumb wheel 1120 along the measuring axis direction, the hub 1110 exerts force on the coil spring 1130 which flexes such that the thumb wheel 1120 displaces along the measuring axis direction relative to the thumb wheel mounting portion 1144 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction. In the embodiment shown in FIGS. 11A and 11B, the edge of the thumb wheel 1120 is configured to align in relationship to the force indicating marks 1141A and 1141B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
FIGS. 12A-12B are diagrams of a compliant thumb wheel assembly 1255 analogous to the compliant thumb wheel assemblies 755 and/or 855. Thus, it may be understood by analogy to the previous description of the compliant thumb wheel assemblies 755 and 855, except for the differences outlined below. Briefly, the compliant thumb wheel assembly 1255 comprises a thumb wheel 1220 comprising a hub 1210, a compliant portion comprising an elastomeric ring 1230, a thumb wheel mounting portion 1244 and force indicating marks 1241A and 1241B (e.g., formed in the face of, or applied to, the thumb wheel mounting portion 1244). The elastomeric ring 1230 is arranged around the hub 1210 and is configured to locate the hub 1210 of the thumb wheel 1220 in an operational arrangement for driving a caliper jaw while at the same time transmitting forces between the hub 1210 and the thumb wheel mounting portion 1244. FIG. 12A shows the compliant thumb wheel assembly 1255 in a rest position without force applied to thumb wheel 1220 or the elastomeric ring 1230. As shown in FIG. 12B, when a force is applied to the thumb wheel 1220 along the measuring axis direction, the hub 1210 exerts force on the elastomeric ring 1230 which flexes such that the thumb wheel 1220 displaces along the measuring axis direction relative to the thumb wheel mounting portion 1244 and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction. The elastomeric ring 1230 is configured for bi-directional elastic coupling of the thumb wheel 1220 to the thumb wheel mounting portion 1244. In the embodiment shown in FIGS. 12A-12B, the edge of the thumb wheel 1220 is configured to align in relationship to one of the force indicating marks 1241A and 1241B, the relationship indicating an amount of force. It should be appreciated, however, that such marks are an optional feature and may not be present in some implementations.
It should be appreciated that some embodiments of a compliant thumb wheel assembly which are similar to the compliant thumb wheel assembly 1255 and configured according to the principles disclosed herein, a double cone coil spring may be utilized in place of the elastomeric ring 1230 to provide a linearly compliant element.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents and U.S. patent applications referred to in this specification are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents and applications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled.

Claims (14)

The invention claimed is:
1. A compliant thumb wheel assembly coupled to a caliper jaw that moves along a caliper scale member along a measuring axis direction in a caliper, the compliant thumb wheel assembly comprising:
a thumb wheel;
a compliant element; and
a thumb wheel mounting portion coupled to the caliper jaw, wherein:
the compliant element is configured to locate the thumb wheel in an operational arrangement for driving the caliper jaw while at the same time transmitting forces between the thumb wheel and the thumb wheel mounting portion by elastic deformation; and
when a force is applied to the thumb wheel along the measuring axis direction, the compliant element flexes such that the thumb wheel displaces along the measuring axis direction relative to the thumb wheel mounting portion and the caliper jaw, and generates a measuring force that depends on that relative displacement and which is applied to the caliper jaw along the measuring axis direction.
2. The compliant thumb wheel assembly of claim 1, wherein the compliant element comprises a leaf spring that bends primarily in a plane parallel to the measuring axis direction.
3. The compliant thumb wheel assembly of claim 1, wherein the compliant element is arranged around a hub of the thumb wheel.
4. The compliant thumb wheel assembly of claim 3, wherein the compliant element comprises an elastomeric ring.
5. The compliant thumb wheel assembly of claim 3, wherein the compliant element comprises a double cone coil spring.
6. The compliant thumb wheel assembly of claim 1, wherein the compliant element comprises at least one coil spring.
7. The compliant thumb wheel assembly of claim 6, wherein the compliant element comprises a shuttle arranged between the at least one coil spring and the thumb wheel mounting portion.
8. The compliant thumb wheel assembly of claim 1, further comprising at least one set of force indicating marks which indicate an amount of measuring force.
9. The compliant thumb wheel assembly of claim 1, wherein the thumb wheel mounting portion comprises a thumb wheel hub capture element that is connected to the caliper jaw.
10. The compliant thumb wheel assembly of claim 1, wherein the thumb wheel comprises a groove having sides that frictionally engage a caliper spar.
11. The compliant thumb wheel assembly of claim 1, wherein the compliant element is configured for bi-directional elastic coupling between the thumb wheel and the thumb wheel mounting portion.
12. The wheel assembly of claim 1, wherein the compliant thumb wheel assembly is configured such that it may be retrofit to the caliper by replacing all or part of a previously installed non-compliant thumb wheel assembly with parts of the compliant thumb wheel assembly, and without altering the portion of the caliper jaw that couples to the thumb wheel mounting portion.
13. The compliant thumb wheel assembly of claim 12, wherein a thumb wheel hub capture element of the previously installed non-compliant thumb wheel assembly is replaced with a thumb wheel mounting portion having the compliant element coupled to it.
14. The compliant thumb wheel assembly of claim 13, wherein a thumb wheel of the previously installed non-compliant thumb wheel assembly is replaced with a thumb wheel of the compliant thumb wheel assembly.
US14/644,079 2015-03-10 2015-03-10 Compliant thumb wheel assembly coupled to a caliper jaw Active 2035-07-15 US9612099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/644,079 US9612099B2 (en) 2015-03-10 2015-03-10 Compliant thumb wheel assembly coupled to a caliper jaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/644,079 US9612099B2 (en) 2015-03-10 2015-03-10 Compliant thumb wheel assembly coupled to a caliper jaw

Publications (2)

Publication Number Publication Date
US20160265893A1 US20160265893A1 (en) 2016-09-15
US9612099B2 true US9612099B2 (en) 2017-04-04

Family

ID=56887583

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/644,079 Active 2035-07-15 US9612099B2 (en) 2015-03-10 2015-03-10 Compliant thumb wheel assembly coupled to a caliper jaw

Country Status (1)

Country Link
US (1) US9612099B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313108A1 (en) * 2007-01-05 2016-10-27 American Radionic Company, Inc. Multiple Display Electronic Caliper
US10690473B2 (en) * 2017-06-26 2020-06-23 Mitutoyo Corporation Thumb roller constant-pressure mechanism of slide caliper
US10996043B2 (en) * 2018-04-20 2021-05-04 Mitutoyo Corporation Method for controlling small-sized measurement device
US20210372760A1 (en) * 2020-05-26 2021-12-02 Mitutoyo Corporation Caliper measurement force detecting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696162A1 (en) * 2012-08-08 2014-02-12 Hexagon Technology Center GmbH Handheld measuring Instrument
CN107957307A (en) * 2017-11-17 2018-04-24 南京上美冠丰塑胶有限公司 A kind of thumb wheel torque automatic force device and method

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US517208A (en) 1894-03-27 Caliper-gage
US2741848A (en) 1952-10-21 1956-04-17 Livingston Leo Combination micrometer caliper
US2952916A (en) 1957-09-21 1960-09-20 Germann Werner Calliper squares
US3113384A (en) 1960-10-17 1963-12-10 Keszler Ernest Slide calipers
GB1135553A (en) 1965-01-11 1968-12-04 Nakamura Seisakujo Kk Improvements in or relating to vernier calipers
US3742609A (en) 1970-05-20 1973-07-03 Tesa Sa Measuring instrument
WO1986001285A1 (en) 1984-08-03 1986-02-27 Establissement Sinoval Slide gauge with driving wheel
US4873771A (en) 1987-04-16 1989-10-17 Schnyder & Cie Slide gauge
US5029402A (en) 1986-12-24 1991-07-09 Rene Lazecki Sliding gauge
US5483751A (en) 1992-08-31 1996-01-16 Mitutoyo Corporation Caliper gauge
US5574381A (en) 1995-01-06 1996-11-12 Mitutoyo Corporation Sealed mechanical configuration for electronic calipers for reliable operation in contaminated environments
JPH0949720A (en) 1995-08-04 1997-02-18 Mitsutoyo Corp Butting-type measuring device
US5886519A (en) 1997-01-29 1999-03-23 Mitutoyo Corporation Multi-scale induced current absolute position transducer
US5901458A (en) 1997-11-21 1999-05-11 Mitutoyo Corporation Electronic caliper using a reduced offset induced current position transducer
US5973494A (en) 1996-05-13 1999-10-26 Mitutoyo Corporation Electronic caliper using a self-contained, low power inductive position transducer
US6400138B1 (en) 1998-12-17 2002-06-04 Mitutoyo Corporation Reduced offset high accuracy induced current absolute position transducer
US6522129B2 (en) 2000-03-13 2003-02-18 Mitutoyo Corporation Induction type transducer and electronic caliper
US20030047009A1 (en) 2002-08-26 2003-03-13 Webb Walter L. Digital callipers
US7246032B2 (en) 2004-10-30 2007-07-17 Mitutoyo Corporation Multimode electronic calipers having ratiometric mode and simplified user interface
US7266906B2 (en) 2005-09-28 2007-09-11 Mitutoyo Corporation Measuring tool
US7443159B2 (en) 2004-12-17 2008-10-28 Cherry Gmbh Sensor unit with staggered actuation faces
US7530177B1 (en) 2007-11-08 2009-05-12 Mitutoyo Corporation Magnetic caliper with reference scale on edge
US7533474B2 (en) 2006-08-24 2009-05-19 Mitutoyo Corporation Caliper gauge
US20110137967A1 (en) 2009-12-08 2011-06-09 Mitutoyo Corporation Display configuration for multimode electronic calipers having a ratiometric measurement mode
US8205510B2 (en) 2009-10-27 2012-06-26 Diluigi And Associates, Llc Hand brake torque input coupler and indicator
US8357120B2 (en) 2004-10-21 2013-01-22 Novo Nordisk A/S Injection device with torsion spring and rotatable display
US20140150570A1 (en) 2012-12-05 2014-06-05 Mitutoyo Corporation System and method for setting measurement force thresholds in a force sensing caliper
US20150059480A1 (en) 2013-09-03 2015-03-05 Mitutoyo Corporation Method for Validating a Workpiece Measurement in a Dimensional Metrology Hand Tool
US20150247717A1 (en) 2014-02-28 2015-09-03 Mitutoyo Corporation Wheel assembly for moving caliper jaw with repeatable force
US20150247742A1 (en) 2014-02-28 2015-09-03 Mitutoyo Corporation Displacement sensor for force indicating caliper
US20150276366A1 (en) 2014-03-31 2015-10-01 Mitutoyo Corporation Flexible mount for coupling force actuator to caliper jaw
US9212883B2 (en) * 2014-05-01 2015-12-15 Mitutoyo Corporation Caliper force indicator with tactile or auditory feedback
US20160061574A1 (en) * 2014-08-27 2016-03-03 Mitutoyo Corporation Measuring instrument

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US517208A (en) 1894-03-27 Caliper-gage
US2741848A (en) 1952-10-21 1956-04-17 Livingston Leo Combination micrometer caliper
US2952916A (en) 1957-09-21 1960-09-20 Germann Werner Calliper squares
US3113384A (en) 1960-10-17 1963-12-10 Keszler Ernest Slide calipers
GB1135553A (en) 1965-01-11 1968-12-04 Nakamura Seisakujo Kk Improvements in or relating to vernier calipers
US3742609A (en) 1970-05-20 1973-07-03 Tesa Sa Measuring instrument
WO1986001285A1 (en) 1984-08-03 1986-02-27 Establissement Sinoval Slide gauge with driving wheel
US5029402A (en) 1986-12-24 1991-07-09 Rene Lazecki Sliding gauge
US4873771A (en) 1987-04-16 1989-10-17 Schnyder & Cie Slide gauge
US5483751A (en) 1992-08-31 1996-01-16 Mitutoyo Corporation Caliper gauge
US5574381A (en) 1995-01-06 1996-11-12 Mitutoyo Corporation Sealed mechanical configuration for electronic calipers for reliable operation in contaminated environments
JPH0949720A (en) 1995-08-04 1997-02-18 Mitsutoyo Corp Butting-type measuring device
US5973494A (en) 1996-05-13 1999-10-26 Mitutoyo Corporation Electronic caliper using a self-contained, low power inductive position transducer
US5886519A (en) 1997-01-29 1999-03-23 Mitutoyo Corporation Multi-scale induced current absolute position transducer
US5901458A (en) 1997-11-21 1999-05-11 Mitutoyo Corporation Electronic caliper using a reduced offset induced current position transducer
USRE37490E1 (en) 1997-11-21 2002-01-01 Mitutoyo Corporation Electronic caliper using a reduced offset induced current position transducer
US6400138B1 (en) 1998-12-17 2002-06-04 Mitutoyo Corporation Reduced offset high accuracy induced current absolute position transducer
US6522129B2 (en) 2000-03-13 2003-02-18 Mitutoyo Corporation Induction type transducer and electronic caliper
US20030047009A1 (en) 2002-08-26 2003-03-13 Webb Walter L. Digital callipers
US8357120B2 (en) 2004-10-21 2013-01-22 Novo Nordisk A/S Injection device with torsion spring and rotatable display
US7246032B2 (en) 2004-10-30 2007-07-17 Mitutoyo Corporation Multimode electronic calipers having ratiometric mode and simplified user interface
US7443159B2 (en) 2004-12-17 2008-10-28 Cherry Gmbh Sensor unit with staggered actuation faces
US7266906B2 (en) 2005-09-28 2007-09-11 Mitutoyo Corporation Measuring tool
US7533474B2 (en) 2006-08-24 2009-05-19 Mitutoyo Corporation Caliper gauge
US7530177B1 (en) 2007-11-08 2009-05-12 Mitutoyo Corporation Magnetic caliper with reference scale on edge
US8205510B2 (en) 2009-10-27 2012-06-26 Diluigi And Associates, Llc Hand brake torque input coupler and indicator
US20110137967A1 (en) 2009-12-08 2011-06-09 Mitutoyo Corporation Display configuration for multimode electronic calipers having a ratiometric measurement mode
US20140150570A1 (en) 2012-12-05 2014-06-05 Mitutoyo Corporation System and method for setting measurement force thresholds in a force sensing caliper
US8898923B2 (en) 2012-12-05 2014-12-02 Mitutoyo Corporation System and method for setting measurement force thresholds in a force sensing caliper
US20150059480A1 (en) 2013-09-03 2015-03-05 Mitutoyo Corporation Method for Validating a Workpiece Measurement in a Dimensional Metrology Hand Tool
US20150247717A1 (en) 2014-02-28 2015-09-03 Mitutoyo Corporation Wheel assembly for moving caliper jaw with repeatable force
US20150247742A1 (en) 2014-02-28 2015-09-03 Mitutoyo Corporation Displacement sensor for force indicating caliper
US9347757B2 (en) * 2014-02-28 2016-05-24 Mitutoyo Corporation Wheel assembly for moving caliper jaw with repeatable force
US9417094B2 (en) * 2014-02-28 2016-08-16 Mitutoyo Corporation Displacement sensor for force indicating caliper
US20150276366A1 (en) 2014-03-31 2015-10-01 Mitutoyo Corporation Flexible mount for coupling force actuator to caliper jaw
US9267779B2 (en) * 2014-03-31 2016-02-23 Mitutoyo Corporation Flexible mount for coupling force actuator to caliper jaw
US9212883B2 (en) * 2014-05-01 2015-12-15 Mitutoyo Corporation Caliper force indicator with tactile or auditory feedback
US20160061574A1 (en) * 2014-08-27 2016-03-03 Mitutoyo Corporation Measuring instrument

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
U.S. Appl. No. 14/194,320, filed Feb. 28, 2014, entitled "Displacement Sensor for Force Indicating Caliper," 59 pages.
U.S. Appl. No. 14/194,461, filed Feb. 28, 2014, entitled "Wheel Assembly for Moving Caliper Jaw with Repeatable Force," 47 pages.
U.S. Appl. No. 14/231,492, filed Mar. 31, 2014, entitled "Flexible Mount for Coupling Force Actuator to Caliper Jaw," 41 pages.
U.S. Appl. No. 14/267,666, filed May 1, 2014, entitled "Caliper Force Indicator with Tactile or Auditory Feedback," 69 pages.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313108A1 (en) * 2007-01-05 2016-10-27 American Radionic Company, Inc. Multiple Display Electronic Caliper
US10054417B2 (en) * 2007-01-05 2018-08-21 American Radionic Company, Inc. Multiple display electronic caliper
US11215438B2 (en) 2007-01-05 2022-01-04 Dynamic Engineering Innovations, Inc. Multiple display electronic caliper
US10690473B2 (en) * 2017-06-26 2020-06-23 Mitutoyo Corporation Thumb roller constant-pressure mechanism of slide caliper
US10996043B2 (en) * 2018-04-20 2021-05-04 Mitutoyo Corporation Method for controlling small-sized measurement device
US20210372760A1 (en) * 2020-05-26 2021-12-02 Mitutoyo Corporation Caliper measurement force detecting device
US11543225B2 (en) * 2020-05-26 2023-01-03 Mitutoyo Corporation Caliper measurement force detecting device

Also Published As

Publication number Publication date
US20160265893A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
US9347757B2 (en) Wheel assembly for moving caliper jaw with repeatable force
US9612099B2 (en) Compliant thumb wheel assembly coupled to a caliper jaw
US9267779B2 (en) Flexible mount for coupling force actuator to caliper jaw
EP1892497B1 (en) Caliper gauge
JP6262512B2 (en) System and method for setting a measurement force threshold in a force sensing caliper
US9212883B2 (en) Caliper force indicator with tactile or auditory feedback
US9417094B2 (en) Displacement sensor for force indicating caliper
US7111413B2 (en) Precision distance-measuring instrument
US9377282B2 (en) Method for validating a workpiece measurement in a dimensional metrology hand tool
US10493973B2 (en) Device for measuring the thickness of automotive disc brake rotors
WO2016067683A1 (en) Shape measurement apparatus
EP2378238B1 (en) Displacement measuring instrument
US10690473B2 (en) Thumb roller constant-pressure mechanism of slide caliper
JP6224372B2 (en) Measuring instrument
CN103076125B (en) Torque sensor
KR200422751Y1 (en) Vernier Calipers
EP4230349A1 (en) Digital display torque wrench for easy torque adjustment
JP6189072B2 (en) Measuring instrument
JP6333970B2 (en) Equipment for measuring the size and / or shape of machine parts
JP3160431B2 (en) Inside and outside measuring instruments

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITUTOYO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EMTMAN, CASEY EDWARD;GOLDSWORTHY, MICHAEL EDWARD;REEL/FRAME:035743/0782

Effective date: 20150528

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4