Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS9516996 B2
Publication typeGrant
Application numberUS 14/488,408
Publication date13 Dec 2016
Filing date17 Sep 2014
Priority date27 Jun 2008
Also published asCN102170835A, CN102170835B, EP2349053A1, EP3115159A1, US8864652, US20090326556, US20150065793, WO2010039394A1
Publication number14488408, 488408, US 9516996 B2, US 9516996B2, US-B2-9516996, US9516996 B2, US9516996B2
InventorsNicola Diolaiti, David Q. Larkin, Daniel H. Gomez, Tabish Mustufa, Paul W. Mohr, Paul E. Lilagan
Original AssigneeIntuitive Surgical Operations, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the position and orienting of its tip
US 9516996 B2
Abstract
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations and displayed on a display screen from the perspective of a specified viewing point. Intuitive control is provided to an operator with respect to the auxiliary view while the operator controls the positioning and orienting of the camera.
Images(18)
Previous page
Next page
Claims(7)
We claim:
1. A method implemented by a processor for positioning and orienting a distal tip of an articulated image capturing instrument while the distal tip of the articulated image capturing instrument is extending out of an entry guide, the method comprising:
determining, by using the processor, a position and orientation of the distal tip of the articulated image capturing instrument;
generating, by using the processor, an auxiliary view of a portion of the articulated image capturing instrument that is extending out of the entry guide by the processor using the determined position and orientation of the distal tip of the articulated image capturing instrument, wherein the auxiliary view is from a three-dimensional viewing point from which the portion of the articulated image capturing instrument is viewable throughout an available workspace of the portion of the articulated image capturing instrument;
displaying, by using the processor, the auxiliary view on a display; and
controlling, by using the processor, positioning and orienting the distal tip of the articulated image capturing instrument in response to movement of an input device by: accounting for misalignment between an orientation of the input device with respect to the auxiliary view being displayed on the display and the determined orientation of the distal tip of the articulated image capturing instrument with respect to a control reference frame, and mapping movement of the input device with respect to the auxiliary view being displayed on the display screen to a commanded movement of the distal tip of the articulated image capturing instrument with respect to the control reference frame.
2. The method of claim 1, wherein the control reference frame has an origin located at a point in space where the articulated image capturing instrument extends out of the entry guide.
3. The method of claim 1, wherein the control reference frame has an origin and orientation aligned with a perspective of the auxiliary view being displayed on the display.
4. The method of claim 1,
wherein the method further comprises determining, by using the processor, a position and orientation of a distal tip of an articulated tool instrument when the distal tip of the articulated tool instrument is extending out of the entry guide;
wherein the generated auxiliary view further includes a portion of the articulated tool instrument that is extending out of the entry guide as determined by the processor using the determined position and orientation of the distal tip of the articulated tool instrument; and
wherein the portion of the articulated tool instrument is viewable throughout an available workspace of the portion of the articulated tool instrument from the three-dimensional viewing point.
5. The method of claim 1, wherein generating, by using the processor, an auxiliary view of a portion of the articulated image capturing instrument that is extending out of the entry guide comprises:
generating, by using the processor, a view of a computer model of the portion of the articulated image capturing instrument from the perspective of the three-dimensional viewing point.
6. The method of claim 1, wherein mapping movement of the input device with respect to the auxiliary view being displayed on the display screen to a commanded movement of the distal tip of the articulated image capturing instrument with respect to the control reference frame comprises at least one of cancelling translational offsets and scaling the commanded movement of the distal tip of the articulated image capturing instrument with respect to the control reference frame.
7. The method of claim 6, wherein scaling the commanded movement of the distal tip of the articulated image capturing instrument with respect to the control reference frame comprises scaling the commanded movement of the distal tip of the articulated image capturing instrument with respect to the control reference frame by using a user-selectable scaling factor.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/366,713 (filed Dec. 17, 2008), which is a continuation-in-part to U.S. application Ser. No. 12/163,087 (filed Jun. 27, 2008), each of which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention generally relates to medical robotic systems and in particular, to a medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip.

BACKGROUND OF THE INVENTION

Medical robotic systems such as systems used in performing minimally invasive surgical procedures offer many benefits over traditional open surgery techniques, including less pain, shorter hospital stays, quicker return to normal activities, minimal scarring, reduced recovery time, and less injury to tissue. Consequently, demand for such medical robotic systems is strong and growing.

One example of such a medical robotic system is the da Vinci® Surgical System from Intuitive Surgical, Inc., of Sunnyvale, Calif., which is a minimally invasive robotic surgical system. The da Vinci® Surgical System has a number of robotic arms that move attached medical devices, such as an image capturing device and Intuitive Surgical's proprietary EndoWrist® articulating surgical instruments, in response to movement of input devices by a surgeon viewing images captured by the image capturing device of a surgical site. Each of the medical devices is inserted through its own minimally invasive incision into the patient and positioned to perform a medical procedure at the surgical site. The incisions are placed about the patient's body so that the surgical instruments may be used to cooperatively perform the medical procedure and the image capturing device may view it without their robotic arms colliding during the procedure.

To perform certain medical procedures, it may be advantageous to use a single entry aperture, such as a minimally invasive incision or a natural body orifice, to enter a patient to perform a medical procedure. For example, an entry guide may first be inserted, positioned, and held in place in the entry aperture. Instruments such as an articulatable camera and a plurality of articulatable surgical tools, which are used to perform the medical procedure, may then be inserted into a proximal end of the entry guide so as to extend out of its distal end. Thus, the entry guide provides a single entry aperture for multiple instruments while keeping the instruments bundled together as it guides them toward the work site.

Since the entry guide generally has a relatively small diameter in order to fit through a minimally invasive incision or a natural body orifice, a number of problems may arise while teleoperating the surgical tools to perform the medical procedure and the camera to view it. For example, because the camera instrument is bundled with the surgical tools, it is limited in its positioning relative to the surgical tools and consequently, its view of the surgical tools.

Thus, although the tips of the articulatable surgical tools may be kept in the field of view of the camera, links coupled by controllable joints which facilitate the articulatability of the surgical tools may not be in the field of view of the camera. As a consequence, the links of the surgical tools may inadvertently collide with each other (or with a link of the camera instrument) during the performance of a medical procedure and as a result, cause harm to the patient or otherwise adversely impact the performance of the medical procedure.

Also, since the articulatable camera instrument is generally incapable of viewing its own controllable linkage, operator movement of the camera tip is especially a concern where collisions with the surgical tool links are to be avoided. Further, when intuitive control is provided to assist the operator in teleoperatively moving the surgical tools and camera, the motions of the linkages required to produce such intuitive motions of the tips of the tools and camera may not be obvious or intuitive to the operator, thus making it even more difficult for the operator to avoid collisions between links that are outside the field of view of the camera.

OBJECTS AND SUMMARY OF THE INVENTION

Accordingly, one object of one or more aspects of the present invention is a method implemented in a medical robotic system that provides a computer generated auxiliary view of a camera for positioning and orienting the camera.

Another object of one or more aspects of the present invention is a method implemented in a medical robotic system that provides intuitive control to an operator controlling the positioning and orienting of a camera while viewing an auxiliary view of the camera.

Another object of one or more aspects of the present invention is a method implemented in a medical robotic system that improves an operator's understanding of the configuration of linkages of articulatable instruments that are outside of the field of view of a camera while controllably positioning and orienting the camera.

These and additional objects are accomplished by the various aspects of the present invention, wherein briefly stated, one aspect is a method for positioning and orienting a camera tip (i.e., the viewing or image capturing end of the camera), the method comprising: determining positions of mechanical elements used for positioning and orienting the camera tip; determining a position and orientation of the camera tip using the determined positions of the mechanical elements; generating a view of a computer model of the camera corresponding to a perspective of a virtual camera; displaying the view on a display screen; and controlling the positioning and orienting of the camera tip by moving the mechanical elements in response to manipulation of an input device so that the positioning and orienting of the camera tip intuitively appears to an operator who is manipulating the input device while viewing the display screen to correspond to the displayed view of the computer model of the camera.

Another aspect is a medical robotic system comprising a camera, mechanical elements used for positioning and orienting a tip of the camera, a display screen, an input device, and a controller. The controller is configured to determine positions of the mechanical elements, determine a position and orientation of the camera tip using the determined positions of the mechanical elements, generate a view of a computer model of the camera corresponding to a perspective of a virtual camera, display the view on the display screen, and control the positioning and orienting of the camera tip by moving the mechanical elements in response to manipulation of the input device so that the positioning and orienting of the camera tip intuitively appears to an operator who is manipulating the input device while viewing the display screen to correspond to the displayed view of the computer model of the camera.

Additional objects, features and advantages of the various aspects of the present invention will become apparent from the following description of its preferred embodiment, which description should be taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a top view of an operating room employing a medical robotic system utilizing aspects of the present invention.

FIG. 2 illustrates a block diagram of components for controlling and selectively associating device manipulators to left and right hand-manipulatable input devices in a medical robotic system utilizing aspects of the present invention.

FIGS. 3-4 respectively illustrate top and side views of an articulatable camera and a pair of articulatable surgical tools extending out of a distal end of an entry guide as used in a medical robotic system utilizing aspects of the present invention.

FIG. 5 illustrates a perspective view of an entry guide and its four degrees-of-freedom movement as used in a medical robotic system utilizing aspects of the present invention.

FIG. 6 illustrates a cross-sectional view of an entry guide with passages defined therein that extend between its proximal and distal ends as used in a medical robotic system utilizing aspects of the present invention.

FIG. 7 illustrates a block diagram of interacting components of an entry guide manipulator as used in a medical robotic system utilizing aspects of the present invention.

FIG. 8 illustrates a block diagram of interacting components of an articulatable instrument manipulator and an articulatable instrument as used in a medical robotic system utilizing aspects of the present invention.

FIG. 9 illustrates a flow diagram of a method for providing a computer generated auxiliary view, utilizing aspects of the present invention.

FIG. 10 illustrates a data and processing flow diagram to determine instrument link positions and orientations using instrument joint positions and forward kinematics, as used in a medical robotic system utilizing aspects of the present invention.

FIG. 11 illustrates a data and processing flow diagram to determine instrument joint positions using a sensed instrument tip position and inverse kinematics, as used in a medical robotic system utilizing aspects of the present invention.

FIGS. 12-13 respectively illustrate top and side auxiliary views as generated and displayed on a display screen by a method implemented in a medical robotic system utilizing aspects of the present invention.

FIG. 14 illustrates top and side auxiliary views as generated and displayed in separate windows on a display screen by a method implemented in a medical robotic system utilizing aspects of the present invention.

FIG. 15 illustrates an auxiliary view displayed adjacent to an image captured by the articulatable camera on a monitor in a medical robotic system utilizing aspects of the present invention.

FIG. 16 illustrates an auxiliary side view of an articulatable camera having a frustum as generated and displayed by a method implemented in a medical robotic system utilizing aspects of the present invention on a display screen.

FIG. 17 illustrates a combined display of an auxiliary view of a pair of articulatable surgical tools from a viewing point of a camera, along with an image captured by the camera, as generated and displayed by a method implemented in a medical robotic system utilizing aspects of the present invention on a display screen.

FIG. 18 illustrates a flow diagram of a method for providing auxiliary viewing modes that correspond to device control modes in a medical robotic system, utilizing aspects of the present invention.

FIG. 19 illustrates a flow diagram of a method for positioning and orienting a camera tip utilizing aspects of the present invention.

FIG. 20 illustrates a side view of an articulatable camera and articulatable surgical tool extending out of a distal end of an entry guide with a zero position reference frame shown relative to a computer generated auxiliary view as used in a medical robotic system utilizing aspects of the present invention.

FIG. 21 illustrates a side view of an articulatable camera and articulatable surgical tool extending out of a distal end of an entry guide with an isometric auxiliary view reference frame shown relative to a computer generated auxiliary view as used in a medical robotic system utilizing aspects of the present invention.

FIG. 22 illustrates a block diagram of a camera controller as used in a medical robotic system utilizing aspects of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 illustrates, as an example, a top view of an operating room in which a medical robotic system 100 is being utilized by a Surgeon 20 for performing a medical procedure on a Patient 40 who is lying face up on an operating table 50. One or more Assistants 30 may be positioned near the Patient 40 to assist in the procedure while the Surgeon 20 performs the procedure teleoperatively by manipulating input devices 108, 109 on a surgeon console 10.

In the present example, an entry guide (EG) 200 is inserted through a single entry aperture 150 into the Patient 40. Although the entry aperture 150 is a minimally invasive incision in the present example, in the performance of other medical procedures, it may instead be a natural body orifice. The entry guide 200 is held and manipulated by a robotic arm assembly 130.

As with other parts of the medical robotic system 100, the illustration of the robotic arm assembly 130 is simplified in FIG. 1. In one example of the medical robotic system 100, the robotic arm assembly 130 includes a setup arm and an entry guide manipulator. The setup arm is used to position the entry guide 200 at the entry aperture 150 so that it properly enters the entry aperture 150. The entry guide manipulator is then used to robotically insert and retract the entry guide 200 into and out of the entry aperture 150. It may also be used to robotically pivot the entry guide 200 in pitch, roll and yaw about a pivot point located at the entry aperture 150. An example of such an entry guide manipulator is the entry guide manipulator 202 of FIG. 2 and an example of the four degrees-of-freedom movement that it manipulates the entry guide 200 with is shown in FIG. 5.

The console 10 includes a 3-D monitor 104 for displaying a 3-D image of a surgical site to the Surgeon, left and right hand-manipulatable input devices 108, 109, and a processor (also referred to herein as a “controller”) 102. The input devices 108, 109 may include any one or more of a variety of input devices such as joysticks, gloves, trigger-guns, hand-operated controllers, or the like. Other input devices that are provided to allow the Surgeon to interact with the medical robotic system 100 include a foot pedal 105, a conventional voice recognition system 160 and a Graphical User Interface (GUI) 170.

An auxiliary display screen 140 is coupled to the console 10 (and processor 102) for providing auxiliary views to the Surgeon to supplement those shown on the monitor 104. A second auxiliary display screen 140′ is also coupled to the console 10 (and processor 102) for providing auxiliary views to the Assistant(s). An input device 180 is also coupled to the console to allow the Assistant(s) to select between available auxiliary views for display on the second auxiliary display screen 140′.

The console 10 is usually located in the same room as the Patient so that the Surgeon may directly monitor the procedure, is physically available if necessary, and is able to speak to the Assistant(s) directly rather than over the telephone or other communication medium. However, it will be understood that the Surgeon can also be located in a different room, a completely different building, or other remote location from the Patient allowing for remote surgical procedures. In such a case, the console 10 may be connected to the second auxiliary display screen 140′ and input device 180 through a network connection such as a local area network, wide area network, or the Internet.

As shown in FIGS. 3-4, the entry guide 200 has articulatable instruments such as articulatable surgical tools 231, 241 and an articulatable stereo camera 211 extending out of its distal end. Although only two tools 231, 241 are shown, the entry guide 200 may guide additional tools as required for performing a medical procedure at a work site in the Patient. For example, as shown in FIG. 4, a passage 351 is available for extending another articulatable surgical tool through the entry guide 200 and out through its distal end. Each of the surgical tools 231, 241 is associated with one of the input devices 108, 109 in a tool following mode. The Surgeon performs a medical procedure by manipulating the input devices 108, 109 so that the controller 102 causes corresponding movement of their respectively associated surgical tools 231, 241 while the Surgeon views the work site in 3-D on the console monitor 104 as images of the work site are being captured by the articulatable camera 211.

Preferably, input devices 108, 109 will be provided with at least the same degrees of freedom as their associated tools 231, 241 to provide the Surgeon with telepresence, or the perception that the input devices 108, 109 are integral with the tools 231, 241 so that the Surgeon has a strong sense of directly controlling the tools 231, 241. To this end, the monitor 104 is also positioned near the Surgeon's hands so that it will display a projected image that is oriented so that the Surgeon feels that he or she is actually looking directly down onto the work site and images of the tools 231, 241 appear to be located substantially where the Surgeon's hands are located.

In addition, the real-time image on the monitor 104 is preferably projected into a perspective image such that the Surgeon can manipulate the end effectors 331, 341 of the tools 231, 241 through their corresponding input devices 108, 109 as if viewing the work site in substantially true presence. By true presence, it is meant that the presentation of an image is a true perspective image simulating the viewpoint of an operator that is physically manipulating the end effectors 331, 341. Thus, the processor 102 may transform the coordinates of the end effectors 331, 341 to a perceived position so that the perspective image being shown on the monitor 104 is the image that the Surgeon would see if the Surgeon was located directly behind the end effectors 331, 341.

The processor 102 performs various functions in the system 100. One important function that it performs is to translate and transfer the mechanical motion of input devices 108, 109 through control signals over bus 110 so that the Surgeon can effectively manipulate devices, such as the tools 231, 241, camera 211, and entry guide 200, that are selectively associated with the input devices 108, 109 at the time. Another function is to perform various methods and controller functions described herein.

Although described as a processor, it is to be appreciated that the processor 102 may be implemented in practice by any combination of hardware, software and firmware. Also, its functions as described herein may be performed by one unit or divided up among different components, each of which may be implemented in turn by any combination of hardware, software and firmware. Further, although being shown as part of or being physically adjacent to the console 10, the processor 102 may also comprise a number of subunits distributed throughout the system.

For additional details on the construction and operation of various aspects of a medical robotic system such as described herein, see, e.g., U.S. Pat. No. 6,493,608 “Aspects of a Control System of a Minimally Invasive Surgical Apparatus,” and U.S. Pat. No. 6,671,581 “Camera Referenced Control in a Minimally Invasive Surgical Apparatus,” which are incorporated herein by reference.

FIG. 2 illustrates, as an example, a block diagram of components for controlling and selectively associating device manipulators to the input devices 108, 109. Various surgical tools such as graspers, cutters, and needles may be used to perform a medical procedure at a work site within the Patient. In this example, two surgical tools 231, 241 are used to robotically perform the procedure and the camera 211 is used to view the procedure. The tools 231, 241 and camera 211 are inserted through passages in the entry guide 200. As described in reference to FIG. 1, the entry guide 200 is inserted into the Patient through entry aperture 150 using the setup portion of the robotic arm assembly 130 and maneuvered by the entry guide manipulator (EGM) 202 of the robotic arm assembly 130 towards the work site where the medical procedure is to be performed.

Each of the devices 231, 241, 211, 200 is manipulated by its own manipulator. In particular, the camera 211 is manipulated by a camera manipulator (ECM) 212, the first surgical tool 231 is manipulated by a first tool manipulator (PSM1) 232, the second surgical tool 241 is manipulated by a second tool manipulator (PSM2) 242, and the entry guide 200 is manipulated by an entry guide manipulator (EGM) 202. So as to not overly encumber the figure, the devices 231, 241, 211, 200 are not shown, only their respective manipulators 232, 242, 212, 202 are shown in the figure.

Each of the instrument manipulators 232, 242, 212 is a mechanical assembly that carries actuators and provides a mechanical, sterile interface to transmit motion to its respective articulatable instrument. Each instrument 231, 241, 211 is a mechanical assembly that receives the motion from its manipulator and, by means of a cable transmission, propagates the motion to its distal articulations (e.g., joints). Such joints may be prismatic (e.g., linear motion) or rotational (e.g., they pivot about a mechanical axis). Furthermore, the instrument may have internal mechanical constraints (e.g., cables, gearing, cams, belts, etc.) that force multiple joints to move together in a pre-determined fashion. Each set of mechanically constrained joints implements a specific axis of motion, and constraints may be devised to pair rotational joints (e.g., joggle joints). Note also that in this way the instrument may have more joints than the available actuators.

In contrast, the entry guide manipulator 202 has a different construction and operation. A description of the parts and operation of the entry guide manipulator 202 is described below in reference to FIG. 7.

In this example, each of the input devices 108, 109 may be selectively associated with one of the devices 211, 231, 241, 200 so that the associated device may be controlled by the input device through its controller and manipulator. For example, by placing switches 258, 259 respectively in tool following modes “T2” and “T1”, the left and right input devices 108, 109 may be respectively associated with the first and second surgical tools 231, 241, which are telerobotically controlled through their respective controllers 233, 243 (preferably implemented in the processor 102) and manipulators 232, 242 so that the Surgeon may perform a medical procedure on the Patient while the entry guide 200 is locked in place.

When the camera 211 or the entry guide 200 is to be repositioned by the Surgeon, either one or both of the left and right input devices 108, 109 may be associated with the camera 211 or entry guide 200 so that the Surgeon may move the camera 211 or entry guide 200 through its respective controller (213 or 203) and manipulator (212 or 202). In this case, the disassociated one(s) of the surgical tools 231, 241 is locked in place relative to the entry guide 200 by its controller. For example, by placing switches 258, 259 respectively in camera positioning modes “C2” and “C1”, the left and right input devices 108, 109 may be associated with the camera 211, which is telerobotically controlled through its controller 213 (preferably implemented in the processor 102) and manipulator 212 so that the Surgeon may position the camera 211 while the surgical tools 231, 241 and entry guide 200 are locked in place by their respective controllers 233, 243, 203. If only one input device is to be used for positioning the camera, then only one of the switches 258, 259 is placed in its camera positioning mode while the other one of the switches 258, 259 remains in its tool following mode so that its respective input device may continue to control its associated surgical tool.

On the other hand, by placing switches 258, 259 respectively in entry guide positioning modes “G2” and “G1”, the left and right input devices 108, 109 may be associated with the entry guide 200, which is telerobotically controlled through its controller 203 (preferably implemented in the processor 102) and manipulator 202 so that the Surgeon may position the entry guide 200 while the surgical tools 231, 241 and camera 211 are locked in place relative to the entry guide 200 by their respective controllers 233, 243, 213. As with the camera positioning mode, if only one input device is to be used for positioning the entry guide, then only one of the switches 258, 259 is placed in its entry guide positioning mode while the other one of the switches 258, 259 remains in its tool following mode so that its respective input device may continue to control its associated surgical tool.

The selective association of the input devices 108, 109 to other devices in this example may be performed by the Surgeon using the GUI 170 or the voice recognition system 160 in a conventional manner. Alternatively, the association of the input devices 108, 109 may be changed by the Surgeon depressing a button on one of the input devices 108, 109 or depressing the foot pedal 105, or using any other well known mode switching technique.

FIGS. 3-4 respectively illustrate, as examples, top and right side views of a distal end of the entry guide 200 with the camera 211 and surgical tools 231, 241 extending outward. As shown in a perspective view of a simplified (not to scale) entry guide 200 in FIG. 5, the entry guide 200 is generally cylindrical in shape and has a longitudinal axis X′ running centrally along its length. The pivot point, which is also referred to as a remote center “RC”, serves as an origin for both a fixed reference frame having X, Y and Z axes as shown and an entry guide reference frame having X′, Y′ and Z′ axes as shown. When the system 100 is in the entry guide positioning mode, the entry guide manipulator 202 is capable of pivoting the entry guide 200 in response to movement of one or more associated input devices about the Z axis (which remains fixed in space) at the remote center “RC” in yaw ψ. In addition, the entry guide manipulator 202 is capable of pivoting the entry guide 200 in response to movement of the one or more input devices about the Y′ axis (which is orthogonal to the longitudinal axis X′ of the entry guide 200) in pitch θ, capable of rotating the entry guide 200 about its longitudinal axis X′ in roll Φ, and linearly moving the entry guide 200 along its longitudinal axis X′ in insertion/retraction or in/out “I/O” directions in response to movement of the one or more associated input devices. Note that unlike the Z-axis which is fixed in space, the X′ and Y′ axes move with the entry guide 200.

As shown in FIG. 7, the entry guide manipulator (EGM) 202 has four actuators 701-704 for actuating the four degrees-of-freedom movement of the entry guide 200 (i.e., pitch θ, yaw ψ, roll Φ, and in/out I/O) and four corresponding assemblies 711-714 to implement them.

Referring back to FIGS. 3-4, the articulatable camera 211 extends through passage 321 and the articulatable surgical tools 231, 241 respectively extend through passages 431, 441 of the entry guide 200. The camera 211 includes a tip 311 (which houses a stereo camera connected to a camera controller and a fiber-optic cable connected to an external light source), first, second, and third links 322, 324, 326, first and second joint assemblies (also referred to herein simply as “joints”) 323, 325, and a wrist assembly 327. The first joint assembly 323 couples the first and second links 322, 324 and the second joint assembly 325 couples the second and third links 324, 326 so that the second link 324 may pivot about the first joint assembly 323 in pitch and yaw while the first and third links 322, 326 remain parallel to each other.

The first and second joints 323, 325 are referred to as “joggle joints”, because they cooperatively operate together so that as the second link 324 pivots about the first joint 323 in pitch and/or yaw, the third link 326 pivots about the second joint 325 in a complementary fashion so that the first and third links 322, 326 always remain parallel to each other. The first link 322 may also rotate around its longitudinal axis in roll as well as move in and out (e.g., insertion towards the work site and retraction from the worksite) through the passage 321. The wrist assembly 327 also has pitch and yaw angular movement capability so that the camera's tip 311 may be oriented up or down and to the right or left, and combinations thereof.

The joints and links of the tools 231, 241 are similar in construction and operation to those of the camera 211. In particular, the tool 231 includes an end effector 331 (having jaws 338, 339), first, second, and third links 332, 334, 336, first and second joint assemblies 333, 335, and a wrist assembly 337 that are driven by actuators such as described in reference to FIG. 8 (plus an additional actuator for actuating the end effector 331). Likewise, the tool 241 includes an end effector 341 (having jaws 348, 349), first, second, and third links 342, 344, 346, first and second joint assemblies 343, 345, and a wrist assembly 347 that are also driven by actuators such as described in reference to FIG. 8 (plus an additional actuator for actuating the end effector 341).

FIG. 8 illustrates, as an example, a diagram of interacting parts of an articulatable instrument (such as the articulatable camera 211 and the articulatable surgical tools 231, 241) and its corresponding instrument manipulator (such as the camera manipulator 212 and the tool manipulators 232, 242). Each of the instruments includes a number of actuatable assemblies 821-823, 831-833, 870 for effectuating articulation of the instrument (including its end effector), and its corresponding manipulator includes a number of actuators 801-803, 811-813, 860 for actuating the actuatable assemblies.

In addition, a number of interface mechanisms may also be provided. For example, pitch/yaw coupling mechanisms 840, 850 (respectively for the joggle joint pitch/yaw and the wrist pitch/yaw) and gear ratios 845, 855 (respectively for the instrument roll and the end effector actuation) are provided in a sterile manipulator/instrument interface to achieve the required range of motion of the instrument joints in instrument joint space while both satisfying compactness constraints in the manipulator actuator space and preserving accurate transmissions of motion across the interface. Although shown as a single block 840, the coupling between the joggle joint actuators 801, 802 (differentiated as #1 and #2) and joggle joint pitch/yaw assemblies 821, 822 may include a pair of coupling mechanisms—one on each side of the sterile interface (i.e., one on the manipulator side of the interface and one on the instrument side of the interface). Likewise, although shown as a single block 850, the coupling between the wrist actuators 812, 813 (differentiated as #1 and #2) and wrist pitch/yaw joint assemblies 832, 833 may also comprise a pair of coupling mechanisms—one on each side of the sterile interface.

Both the joggle joint pitch assembly 821 and the joggle joint yaw assembly 822 share the first, second and third links (e.g., links 322, 324, 326 of the articulatable camera 211) and the first and second joints (e.g., joints 322, 325 of the articulatable camera 211). In addition to these shared components, the joggle joint pitch and yaw assemblies 821, 822 also include mechanical couplings that couple the first and second joints (through joggle coupling 840) to the joggle joint pitch and yaw actuators 801, 802 so that the second link may controllably pivot about a line passing through the first joint and along an axis that is latitudinal to the longitudinal axis of the first link (e.g., link 322 of the articulatable camera 211) and the second link may controllably pivot about a line passing through the first joint and along an axis that is orthogonal to both the latitudinal and longitudinal axes of the first link.

The in/out (I/O) assembly 823 includes the first link (e.g., link 322 of the articulatable camera 211) and interfaces through a drive train coupling the in/out (I/O) actuator 803 to the first link so that the first link is controllably moved linearly along its longitudinal axis by actuation of the I/O actuator 803. The roll assembly 831 includes the first link and interfaces through one or more gears (i.e., having the gear ratio 845) that couple a rotating element of the roll actuator 811 (such as a rotor of a motor) to the first link so that the first link is controllably rotated about its longitudinal axis by actuation of the roll actuator 811.

The instrument manipulator (e.g., camera manipulator 212) includes wrist actuators 812, 813 that actuate through wrist coupling 850 pitch and yaw joints 832, 833 of the wrist assembly (e.g., wrist 327 of the articulatable camera 211) so as to cause the instrument tip (e.g., camera tip 311) to controllably pivot in an up-down (i.e., pitch) and side-to-side (i.e., yaw) directions relative to the wrist assembly. The grip assembly 870 includes the end effector (e.g., end effector 331 of the surgical tool 231) and interfaces through one or more gears (i.e., having the gear ratio 855) that couple the grip actuator 860 to the end effector so as to controllably actuate the end effector.

FIG. 9 illustrates, as an example, a flow diagram of a method implemented in controller 102 of the medical robotic system 100 for providing a computer generated auxiliary view including articulatable instruments, such as the articulatable camera 211 and/or one or more of the articulatable surgical tools 231, 241, extending out of the distal end of the entry guide 200. For the purposes of this example, it is assumed that the articulatable camera 211 and surgical tools 231, 241 extend out of the distal end of the entry guide 200 and are included in the auxiliary view. However, it is to be appreciated that the method is applicable to any combination of articulatable instruments, including those without an articulatable camera and/or those with an alternative type of image capturing device such as an ultrasound probe.

In 901, the method determines whether or not an auxiliary view is to be generated. If the determination in 901 is NO, then the method loops back to periodically check to see whether the situation has changed. On the other hand, if the determination in 901 is YES, then the method proceeds to 902. The indication that an auxiliary view is to be generated may be programmed into the controller 102, created automatically or created by operator command.

In 902, the method receives state information, such as positions and orientations, for each of the instruments 211, 231, 241 and the entry guide 200. This information may be provided by encoders coupled to the actuators in their respective manipulators 212, 232, 242, 202. Alternatively, the information may be provided by sensors coupled to joints and/or links of the instruments 211, 231, 241 and the entry guide manipulator 202, or the coupling mechanisms, gears and drive trains of the interface between corresponding manipulators and instruments, so as to measure their movement. In this second case, the sensors may be included in the instruments 211, 231, 241 and entry guide manipulator 202 such as rotation sensors that sense rotational movement of rotary joints and linear sensors that sense linear movement of prismatic joints in the instruments 211, 231, 241 and entry guide manipulator 202. Other sensors may also be used for providing information of the positions and orientations of the instruments 211, 231, 241 and entry guide 200 such as external sensors that sense and track trackable elements, which may be active elements (e.g., radio frequency, electromagnetic, etc.) or passive elements (e.g., magnetic, etc.), placed at strategic points on the instruments 211, 231, 241, the entry guide 200 and/or the entry guide manipulator 202 (such as on their joints, links and/or tips).

In 903, the method generates a three-dimensional computer model of the articulatable camera 211 and articulatable surgical tools 231, 241 extending out of the distal end of the entry guide 200 using the information received in 902 and the forward kinematics and known constructions of the instruments 211, 231, 241, entry guide 200, and entry guide manipulator 202. The generated computer model in this example may be referenced to the remote center reference frame (X, Y, Z axes) depicted in FIG. 5. Alternatively, the generated computer model may be referenced to a reference frame defined at the distal end of the entry guide 200. In this latter case, if the orientation and extension of the entry guide 200 from the remote center does not have to be accounted for in the auxiliary view that is being generated by the method, then the position and orientation information for the entry guide 200 may be omitted in 902.

For example, referring to FIG. 10, if the state information received in 902 is the instruments' joint positions 1001, then this information may be applied to the instruments' forward kinematics 1002 using the instruments' kinematic models 1003 to generate the instruments' link positions and orientations 1005 relative to reference frame 1004. The same process may also be generally applied if the state information received in 902 is sensed states of the joggle coupling and gear mechanisms in the manipulator/instrument interfaces.

On the other hand, referring to FIG. 11, if the state information received in 902 is the instruments' tip positions 1101 (in the reference frame 1004), then this information may be applied to the instruments' inverse kinematics 1102 using the instruments' kinematic models 1003 and the sensor reference frame to generate the instruments' joint positions 1001. The instruments' joint positions 1001 may then be applied as described in reference to FIG. 10 to generate the instruments' link positions and orientations 1005 relative to reference frame 1004.

Alternatively, also referring to FIG. 11, if the state information provided in 902 is limited to only the camera's tip position, then the positions of the tips of the surgical tools 231, 241 may be determined relative to the camera reference frame by identifying the tips in the image captured by the camera 211 using conventional image processing techniques and then translating their positions to the reference frame 1004, so that the positions of the camera and tool tips may be applied as described in reference to FIGS. 10, 11 to generate the instruments' link positions and orientations 1005 relative to the reference frame 1004.

In 904, the method adjusts the view of the computer model of the articulatable camera 211 and articulatable surgical tools 231, 241 extending out of the distal end of the entry guide 200 in the three-dimensional space of the reference frame to a specified viewing point (wherein the term “viewing point” is to be understood herein to include position and orientation). For example, FIG. 12 illustrates a top view of the articulatable camera 211 and articulatable surgical tools 231, 241 extending out of the distal end of the entry guide 200 which corresponds to a viewing point above and slightly behind the distal end of the entry guide 200. As another example, FIG. 13 illustrates a side view of the articulatable camera 211 and articulatable surgical tools 231, 241 extending out of the distal end of the entry guide 200 which corresponds to a viewing point to the right and slightly in front of the distal end of the entry guide 200. Note that although the auxiliary views depicted in FIGS. 12-13 are two-dimensional, they may also be three-dimensional views since three-dimensional information is available from the generated computer model. In this latter case, the auxiliary display screen 140 that they are being displayed on would have to be a three-dimensional display screen like the monitor 104.

The viewing point may be set at a fixed point such as one providing an isometric (three-dimensional) view from the perspective shown in FIG. 12. This perspective provides a clear view to the surgeon of the articulatable camera 211 and the articulatable surgical tools 231, 241 when the tools 231, 241 are bent “elbows out” as shown (which is a typical configuration for performing a medical procedure using the surgical tools 231, 241). On the other hand, when a third surgical tool is being used (e.g., inserted in the passage 351 shown in FIG. 6), a side view from the perspective of FIG. 13 may additionally be useful since the third surgical tool may be beneath the articulatable camera 211 and therefore obscured by it in the perspective shown in FIG. 12.

Rather than setting the viewing point to a fixed point at all times, the viewing point may also be automatically changed depending upon the control mode (i.e., one of the modes described in reference to FIG. 2) that is operative at the time. As an example, FIG. 18 illustrates a method for automatically changing the auxiliary viewing mode depending upon the control mode currently operative in the medical robotic system 100. In particular, using this method, a first auxiliary viewing mode is performed in 1802 when the medical robotic system 100 is determined in 1801 to be in a tool following mode, a second auxiliary viewing mode is performed in 1804 when the medical robotic system 100 is determined in 1803 to be in an entry guide positioning mode, and a third auxiliary viewing mode is performed in 1806 when the medical robotic system 100 is determined in 1805 to be in a camera positioning mode. The viewing modes for each control mode are selected so as to be most beneficial to the surgeon for performing actions during that mode. For example, in the tool following and camera positioning modes, either or both the surgical tools 231, 241 and camera 211 is being moved at the time and therefore, an auxiliary view of the articulatable camera 211 and articulatable surgical tools 231, 241 extending out of the distal end of the entry guide 200, such as depicted in FIGS. 12 and 13, is useful to avoid collisions between links that are out of the field of view of the camera 211. On the other hand, in the entry guide positioning mode, the articulatable camera 211 and the articulatable surgical tools 231, 241 are locked in position relative to the entry guide 200 and therefore, an auxiliary view providing information on other things such as depicted in FIGS. 16 and 17 may be useful.

Alternatively, operator selectable means for changing the viewing point during the performance of a medical procedure may be provided. For example, the GUI 170 or voice recognition system 160 may be adapted to provide an interactive means for the Surgeon to select the viewing mode and/or change the viewing point of an auxiliary view of the articulatable camera 211 and/or articulatable surgical tools 231, 241 as they extend out of the distal end of the entry guide 200. Buttons on the input devices 108, 109 or the foot pedal 105 may also be used for Surgeon selection of viewing modes. For the Assistant(s), the input device 180 may be used along with a GUI associated with the display screen 140′ for selection of viewing modes. Thus, the viewing modes that the Surgeon and Assistant(s) see at the time may be optimized for their particular tasks at the time. Examples of such operator selectable viewing modes and viewing angles are depicted in FIGS. 12-17.

In 905, the method renders the computer model. Rendering in this case includes adding three-dimensional qualities such as known construction features of the instruments 211, 231, 241 and the distal end of the entry guide 200 to the model, filling-in any gaps to make solid models, and providing natural coloring and shading. In addition, rendering may include altering the color or intensity of one or more of the instruments 211, 231, 241 (or one or more of their joints or links or portions thereof) so that the instrument (or joint or link or portion thereof) stands out for identification purposes.

Alternatively, the altering of the color, intensity, or frequency of blinking on and off (e.g., flashing) of one or more of the instruments 211, 231, 241 (or their joints, links, or portions thereof) may serve as a warning that the instrument (or joint or link or portion thereof) is approaching an undesirable event or condition such as nearing a limit of its range of motion or getting too close to or colliding with another one of the instruments. When color is used as a warning, the color may go from a first color (e.g., green) to a second color (e.g., yellow) when a warning threshold of an event to be avoided (e.g., range of motion limitation or collision) is reached, and from the second color to a third color (e.g., red) when the event to be avoided is reached. When intensity is used as a warning, the intensity of the color changes as the instrument (or portion thereof) moves past the warning threshold towards the event to be avoided with a maximum intensity provided when the event is reached. When blinking of the color is used as a warning, the frequency of blinking changes as the instrument (or portion thereof) moves past the warning threshold towards the event to be avoided with a maximum frequency provided when the event is reached. The warning threshold may be based upon a range of motion of the instrument (or portion thereof, such as its joints) or upon a distance between the instrument (or portion thereof) and another instrument (or portion thereof) that it may collide with. Velocity of the instrument's movement may also be a factor in determining the warning threshold. The warning threshold may be programmed by the operator, using the GUI 170, for example, or determined automatically by a programmed algorithm in the processor 102 that takes into account other factors such as the velocity of the instruments' movements.

Alternatively, the altering of the color, intensity, or frequency of blinking on and off (e.g., flashing) of one or more of the instruments 211, 231, 241 (or their joints, links, or portions thereof) may serve as an alert that the instrument (or joint or link or portion thereof) is approaching a desirable event or condition such as an optimal position or configuration for performing or viewing a medical procedure. In this case, an alert threshold may be defined so that the color, intensity, and/or blinking of the one or more of the instruments 211, 231, 241 (or their joints, links, or portions thereof) may change in a similar manner as described previously with respect to warning thresholds and undesirable events or conditions, except that in this case, the change starts when the alert threshold is reached and maximizes or otherwise ends when the desirable event or condition is reached or otherwise achieved. The alert threshold may also be programmed by the operator or determined automatically by a programmed algorithm in a conceptually similar manner as the warning threshold.

As an example of such highlighting of an instrument for identification, warning or alerting purposes, FIG. 15 shows an auxiliary view of the camera 211 and surgical tools 231, 241 in a window 1502, where the camera 211 has been highlighted. As an example of such highlighting of joints of instruments for identification, warning or alerting purposes, FIG. 12 shows joints of the surgical tools 231, 241 that have been highlighted. As an example of highlighting portions of instruments for warning purposes, FIG. 14 shows a portion 1402 of the surgical tool 241 and a portion 1403 of the camera 211 highlighted to indicate that these portions are dangerously close to colliding.

Rendering may also include overlaying the image captured by the camera 211 over the auxiliary view when the viewing point of the auxiliary image is the same as or directly behind that of the camera 211. As an example, FIG. 17 illustrates a captured image 1700 of the camera 211 rendered as an overlay to an auxiliary view of surgical tools 231, 241 which has been generated from a viewing point of (or right behind) the camera 211. In this example, the auxiliary view of the surgical tools 231, 241 being displayed on the auxiliary display screen 140 (and/or the auxiliary display screen 140′) includes portions (e.g., 1731, 1741) in the overlaying captured image 1700 and portions (e.g., 1732, 1742) outside of the overlaying captured image 1700. Thus, the portions of the surgical tools 231, 241 outside of the captured image 1700 provide the Surgeon with additional information about their respective links or articulating arms that are out of the field of view of the camera 211. Highlighting of the instrument portions (e.g., 1732, 1742) outside of the captured image 1700 may also be done for identification purposes or to indicate a warning or alerting condition as described above. Overlaying the captured image 1700 onto the auxiliary view also has the advantage in this case of showing an anatomic structure 360 which is in front of the surgical tools 231, 241 that would not otherwise normally be in the auxiliary view. Although this example shows the captured image 1700 overlaying the auxiliary view on the auxiliary display screen 140, in another rendering scheme, the auxiliary view may overlay the captured image that is being displayed on the monitor 104.

Rather than overlaying the captured image, rendering may also include using the auxiliary view to augment the image captured by the camera 211 by displaying only the portions of the instruments 231, 241 that are not seen in the captured image (i.e., the dotted line portion of the instruments 231, 241 in FIG. 17) in proper alignment and adjacent the captured image in a mosaic fashion.

In addition to, or in lieu of, overlaying the captured image over the auxiliary view or augmenting the captured image with the auxiliary view, rendering may also include providing other useful information in the auxiliary view. As an example, FIG. 16 illustrates an auxiliary side view of an articulatable camera 211 with a frustum 1601 rendered on the auxiliary view so as to be displayed on the auxiliary display 140 as emanating from, and moving with, the camera tip 311. Note that although the frustum 1601 is shown in the figure as a truncated cone, it may also appear as a truncated pyramid to correspond to the captured image that is shown on the monitor 104. The sides of the frustum 1601 indicate a viewing range of the camera 211 and the base 1602 of the frustum 1601 displays an image 1650 that was captured by the camera 211. Note that for simplification purposes, the surgical tools 231, 241 normally in the auxiliary view have been removed for this example. As another example, FIG. 14 shows a semi-translucent sphere or bubble 1401 (preferably colored red) which is displayed by the method as part of the rendering process when a warning threshold is reached so as to indicate to the operator that the highlighted portions 1402, 1403 of the surgical tool 241 and camera 211 are dangerously close to colliding. In this case, the highlighted portions 1402, 1403 are preferably centered within the sphere. As yet another example, FIG. 14 also shows a marker or other indicator 1410 indicating an optimal position for the camera tip 311 for viewing the end effectors of the surgical tools 231, 241 as they are being used to perform a medical procedure. The optimal position may be determined, for example, by finding a location where the tips of the end effectors are equidistant from a center of the captured image.

In 906, the method causes the rendered computer model (i.e., the auxiliary view) to be displayed on one or more displayed screens (e.g., 140 and 140′) from the perspective of the selected viewing point. As shown in FIGS. 12-14 and 16-17, the auxiliary view is displayed on the auxiliary display screen 140. As shown in FIG. 14, more than one auxiliary view may be displayed at one time (e.g., top and side perspectives may be provided at the same time respectively in windows 1421 and 1422). As shown in FIG. 15, the auxiliary view may also be displayed on the primary monitor 104 in a window 1502 that is adjacent to an image captured by the articulatable camera 211 which is being shown in another window 1501. Although the windows 1501 and 1502 appear in this example to be the same size, it is to be appreciated that the position and size of the auxiliary view window 1502 may vary and still be within the scope of the present invention. Also, as previously mentioned, the auxiliary view may be overlayed the captured image in the window 1501 instead of in its own separate window 1502. In such case, the overlayed auxiliary view may be switched on and off by the Surgeon so as not to clutter the captured image during the performance of a medical procedure. The switching on and off in this case may be performed by depressing a button on one of the input devices 108, 109 or depressing the foot pedal 105. Alternatively, it may be done by voice activation using the voice recognition system 160 or through Surgeon interaction with the GUI 170 or using any other conventional function switching means.

After completing 906, the method then loops back to 901 to repeat 901-906 for the next processing cycle of the controller 102.

When the Surgeon desires to reposition the camera tip 311 to a more advantageous position and/or orientation to view a medical procedure being or to be performed at a work site in the Patient, one or both of the input devices 108, 109 may be used to do so by temporarily associating it/them with the camera manipulator 212. One way that the Surgeon may perform such repositioning is for him or her to view images on the 3-D monitor 104 that were captured by the stereoscopic camera in the camera tip 311, such as the image shown in window 1501 of FIG. 15, and use the captured images to guide his or her manipulation of the input device. This type of camera control is referred to as “image referenced control” since the Surgeon uses the image captured by the camera 211 as a reference for his or her controlling of the camera movement (i.e., the motion of the input device 108 corresponds to the motion of the camera tip 311 with respect to the captured image). Although image referenced control may be useful when the Surgeon is fine tuning the position and/or orientation of the camera tip 311, for larger movements problems may occur as a result of unintentional collisions between instrument links outside the field of view of the camera 211. In this latter case, an “instrument referenced control” may be more desirable where an auxiliary image of the camera 211 and tools 231, 241 extending out of the distal end of the entry guide 200, such as shown in window 1502 of FIG. 15, may be preferable for guiding the Surgeon's manipulation of the input device (i.e., the motion of the input device 108 corresponds to the motion of the camera tip 311 with respect to the auxiliary image).

FIG. 19 illustrates, as an example of “instrument referenced control”, a flow diagram of a method implemented in the medical robotic system 100 for positioning and orienting the tip 311 of the articulatable camera instrument 211 in response to operator manipulation of the input device 108 (in camera positioning mode) while the operator views a computer generated auxiliary view of the camera 211 on either the display screen 140 or the console monitor 104. Although both input devices 108, 109 may be used for positioning and orienting the camera 211, such as a bicycle “handlebar” type control, the present example assumes that only one input device 108 (also referred to herein as the “master” or “master manipulator”) is used so that the other input device 109 may still be associated with and control its tool 231.

In 1901, a determination is made whether the medical robotic system is in camera positioning mode. As previously described in reference to FIG. 2, this may be determined for the left input device 108 by checking the state of its switch 258. If the switch 258 is in the “C2” position, then the input device 108 is in camera positioning mode. Otherwise, the input device 108 is not in camera positioning mode.

If the determination in 1901 is NO, then the method periodically loops back (e.g., at each processing cycle or a programmable multiple of a processing cycle) to check the current status of the switch 258. On the other hand, if the determination in 1901 is YES, then the method performs preparatory tasks 1902-1906 before enabling control over the positioning and orienting of the camera tip 311 by the input device 108 in 1907.

In 1902, the other medical devices 241, 200 associated with the input device 108 are soft-locked so that they are commanded to remain in their present stationary state by their controllers 242, 202.

In 1903, the method computes the reference frame which is used for control purposes (the “control reference frame”). This reference frame is necessary to map between the Cartesian motion of the master 108 and the Cartesian motion of the camera tip 311. The reference frame is preferably fixed in space during camera positioning mode for ease of computation. Thus, a reference frame defined by the camera tip 311, such as in tool following mode, is not desirable in camera positioning mode because in camera positioning mode, the camera tip 311 is moving and therefore, even though its state is determinable, its pose is not clearly perceivable by the Surgeon. Therefore, the Surgeon may find it more difficult in this situation to position the camera tip 311 at the desired location with respect to the Patient's anatomy using the master 108.

As one possible reference frame that may be used, FIG. 20 illustrates a so-called “zero position” reference frame 2002 which corresponds to the position and orientation where the joints 323, 325, 327 are rotated so that the links 321, 324, 326 are in a straight line and their insertion position is a fully retracted position (i.e., the camera tip 311 is just inside the passage 321 of the entry guide 200). In this position, a reference frame defined at the camera tip (i.e., the camera reference frame 2010) coincides with the “zero position” reference frame 2002. This frame has the property of being aligned with the entry guide 200 and is centered with respect to the workspace of the camera tip 311. Therefore, the range of motion limits (perceived by the operator through haptic feedback on the input device 108) can be used to find the center position of the camera tip 311 and the operator can easily understand how the camera instrument 211 moves in response to the motions of his or her arm/hand. In other words, the kinesthetic mapping between user arm/hand and camera tip 311 is aligned to the visual mapping between the camera motion and the auxiliary view seen by the Surgeon at the console 104 and/or auxiliary display 140.

As another possible reference frame that may be used, FIG. 21 illustrates an “isometric auxiliary view” reference frame 2102 which corresponds to a viewing point of the auxiliary view being displayed on the auxiliary display 140 (such as shown in FIG. 12) and/or monitor 104 (such as shown in window 1502 of FIG. 15). The viewing point in this case may be thought of as a view taken from the perspective of a virtual camera 2103 whose position and orientation is preferably fixed in space during the camera positioning mode. The reference frame 2102 is defined at the tip (i.e., viewing end) of the virtual camera 2103 and its position and orientation are computed so that it has an azimuth angle α with respect to a focal point 2104 (of the virtual camera 2103) on the central longitudinal axis 2101 of the passage 321 of the entry guide 200 through which the camera instrument 211 extends. In particular, the location of the focal point 2104 along the longitudinal axis 2101 and the size of the azimuth angle α are selected so that the virtual camera 2103 has a slight elevation that provides adequate depth perception in the isometric rendering of the auxiliary view and its field of view 2106 includes the links of the camera instrument 211 and surgical tool 231 during the camera positioning mode. User studies have indicated that an angle α of approximately 25 degrees is particularly desirable for this purpose. The symmetry properties of the “zero position” reference frame are also applicable in the “auxiliary view” reference frame, with the potential advantage that the operator can use the isometric view to drive the position and orientation of the camera tip 311 and have entirely consistent haptic feedback in that frame.

In 1904, the orientation of a hand-grippable part of the input device 108 (referred to herein as the “master orientation”) is aligned so that the master orientation with respect to a camera generated auxiliary view of the camera, which is being displayed on the 3-D monitor 104, is the same as the current orientation of the camera tip 311 with respect to the reference frame computed in 1903 for camera control. Alternatively, this orientation alignment may be avoided by, for example, computing and accounting for the offset between the current master orientation and the current camera orientation so that the master angular motions with respect to the initial orientation are used to command the movement of the camera tip 311.

In 1905, the current position of the hand-grippable part of the input device 108 is mapped to the current position of the camera tip 311 so as to cancel translational offsets, and in 1906, user-selectable scaling factors are set between the input device 108 and the camera 211 workspaces.

In 1907, the camera controller (CTRLC) 213 is enabled so that the input device 108 now controls the positioning and orienting of the articulatable camera instrument 211 through the camera controller (CTRLC) 213 and manipulator (ECM) 212, and in 1908, the camera tip 311 is moved to the desired position and/or orientation. A description of the camera controller 213 using the control reference frame is provided below in reference to FIG. 22.

Once the camera tip 311 has been positioned and/or oriented as desired, then the method performs preparatory tasks 1909-1910 before enabling control over the tool 241 by the input device 108 in 1911. In particular, in 1909, the camera 211 is soft-locked so that it is commanded to remain in its present stationary state (i.e., the desired position and/or orientation) by the camera controller 213, and in 1910, the master orientation is aligned with that of the tool 241.

FIG. 22 illustrates, as an example, a block diagram of the camera controller (CTRLC) 213 for controlling movement of the camera manipulator (ECM) 212 (also referred to herein as “slave manipulator” or “slave”) and consequently, the position and orientation of the tip 311 of the camera instrument 211, as commanded by movement of the input device 108 (also referred to herein as “master manipulator” or “master”) by the Surgeon.

The input device 108 includes a number of links connected by joints so as to facilitate multiple degrees-of-freedom movement. For example, as the Surgeon moves the input device 108 from one position to another, sensors associated with the joints of the input device 108 sense such movement at sampling intervals (appropriate for the processing speed of the controller 102 and camera control purposes) and provide digital information indicating such sampled movement in joint space to input processing block 2210.

Input processing block 2210 processes the information received from the joint sensors of the input device 108 to transform the information into a corresponding desired position and velocity for the camera tip 311 in its Cartesian space relative to a reference frame associated with the position of the Surgeon's eyes (the “eye reference frame”) by computing a joint velocity from the joint position information and performing the transformation using a Jacobian matrix and eye related information using well-known transformation techniques.

Scale and offset processing blocks 2201 receives the processed information 2211 from the input processing block 2210 and applies scale and offset adjustments to the information so that the resulting movement of the camera tip 311 and consequently, its computer generated auxiliary view being viewed by the Surgeon at the time on the monitor 104 and/or auxiliary display 140 appears natural and as expected by the Surgeon. The scale adjustment is useful where small movements of the camera tip 311 are desired relative to larger movement of the input device 108 in order to allow more precise movement of the camera tip 311 as it views the work site. An offset adjustment is applied for aligning the input device 108 with respect to the Surgeon's eyes as he or she manipulates the input device 108 to command movement of the camera tip 311 through the auxiliary view that is being displayed at the time on the monitor 104 and/or auxiliary display 140.

A simulated camera block 2204 receives the output 2221 of the scale and offset processing block 2201 and transforms the commanded position and velocity for the camera tip 311 from the Cartesian space of the eye reference frame to the joint space of the camera manipulator 212 using its inverse kinematics while avoiding singularities in its operation and limiting the commanded joint positions and velocities to avoid physical limitations or other constraints such as avoiding harmful contact with tissue or other parts of the Patient. To perform such transformation, a mapping is performed between the eye frame and the control reference frame (provided by the reference frame computation block 2250) and another mapping is performed between a tip of the hand-grippable part of the master 108 and the camera tip 311. Note that these mappings preserve orientations while offsets are compensated for in the scale and offset block 2201. Once the mappings are established, the inverse and forward kinematics blocks 2204, 2206 use this information to perform their computations since the mappings describe the positions and orientations of the master and camera tips with respect to the control reference frame.

The output 2224 of the simulated camera block 2204 is then provided to a joint controller block 2205 and a forward kinematics block 2206. The joint controller block 2205 includes a joint control system for each controlled joint (or operatively coupled joints such as “joggle joints”) of the camera instrument 211 (such as translational and orientational assemblies shown and described in reference to FIG. 8). The output 2224 of the simulated camera block 2204 provides the commanded value for each joint of the camera instrument 211. For feedback control purposes, sensors associated with each of the controlled joints of the camera instrument 211 provide sensor data 2232 back to the joint controller block 2205 indicating the current position and/or velocity of each joint of the camera instrument 211. The sensors may sense this joint information either directly (e.g., from the joint on the camera instrument 211) or indirectly (e.g., from the actuator in the camera manipulator 212 driving the joint). Each joint control system in the joint controller 2205 then generates torque commands for its respective actuator in the camera manipulator 212 so as to drive the difference between the commanded and sensed joint values to zero in a conventional feedback control system manner.

The forward kinematics block 2206 transforms the output 2224 of the simulated camera block 2204 from joint space back to Cartesian space relative to the eye reference frame using the forward kinematics of the camera instrument 211 with respect to the control reference frame (provided by the reference frame computation block 2250). The scale and offset block 2201 performs an inverse scale and offset function on the output 2242 of the forward kinematics block 2206 before passing its output 2212 to the input processing block 2210 where an error value is calculated between its output 2211 and input 2212. If no limitation or other constraint had been imposed on the input 2221 to the simulated camera block 2204, then the calculated error value would be zero. On the other hand, if a limitation or constraint had been imposed, then the error value is not zero and it is converted to a torque command that drives actuators in the input device 108 to provide force feedback felt by the hands of the Surgeon. Thus, the Surgeon becomes aware that a limitation or constraint is being imposed by the force that he or she feels resisting his or her movement of the input device 108 in that direction. In addition to this force feedback, forces coming from other sensors or algorithms (e.g., a force/pressure sensor or an algorithm to avoid the work volume of the surgical tools to prevent collisions) may be superimposed on the force feedback.

An output 2241 of the forward kinematics block 2206 may also be provided to the simulated camera block 2204 for control purposes. For example, the simulated position output may be fed back and compared with the commanded position.

Although the various aspects of the present invention have been described with respect to a preferred embodiment, it will be understood that the invention is entitled to full protection within the full scope of the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US362853512 Nov 196921 Dec 1971Nibot CorpSurgical instrument for implanting a prosthetic heart valve or the like
US38182847 Dec 197218 Jun 1974Marotta Scientific ControlsValve control with pulse width modulation
US390521526 Jun 197416 Sep 1975Wright John RUltrasensitive force measuring instrument employing torsion balance
US392316611 Oct 19732 Dec 1975Blaise Herman TRemote manipulator system
US415032619 Sep 197717 Apr 1979Unimation, Inc.Trajectory correlation and error detection method and apparatus
US43498376 May 198014 Sep 1982Spar Aerospace LimitedSatellite servicing
US45776213 Dec 198425 Mar 1986Patel Jayendrakumar IEndoscope having novel proximate and distal portions
US458834827 May 198313 May 1986At&T Bell LaboratoriesRobotic system utilizing a tactile sensor array
US464423717 Oct 198517 Feb 1987International Business Machines Corp.Collision avoidance system
US46729637 Jun 198516 Jun 1987Israel BarkenApparatus and method for computer controlled laser surgery
US472205618 Feb 198626 Jan 1988Trustees Of Dartmouth CollegeReference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US47624551 Jun 19879 Aug 1988Remote Technology CorporationRemote manipulator
US476245611 Jun 19869 Aug 1988Nelson Arthur JAccommodations to exchange containers between vessels
US47919347 Aug 198620 Dec 1988Picker International, Inc.Computer tomography assisted stereotactic surgery system and method
US48154501 Feb 198828 Mar 1989Patel Jayendra IEndoscope having variable flexibility
US483154928 Jul 198716 May 1989Brigham Young UniversityDevice and method for correction of robot inaccuracy
US483338313 Aug 198723 May 1989Iowa State University Research Foundation, Inc.Means and method of camera space manipulation
US483770317 Jun 19876 Jun 1989Toshiba Kikai Kabushiki KaishaMethod for generating tool path
US483773426 Feb 19876 Jun 1989Hitachi, Ltd.Method and apparatus for master-slave manipulation supplemented by automatic control based on level of operator skill
US483983830 Mar 198713 Jun 1989Labiche MitchellSpatial input apparatus
US485387420 Nov 19871 Aug 1989Hitachi, Ltd.Master-slave manipulators with scaling
US485814918 Aug 198715 Aug 1989International Business Machines CorporationMethod and system for solid modelling
US48602156 Apr 198722 Aug 1989California Institute Of TechnologyMethod and apparatus for adaptive force and position control of manipulators
US486313326 May 19875 Sep 1989Leonard MedicalArm device for adjustable positioning of a medical instrument or the like
US494253921 Dec 198817 Jul 1990Gmf Robotics CorporationMethod and system for automatically determining the position and orientation of an object in 3-D space
US497994926 Apr 198825 Dec 1990The Board Of Regents Of The University Of WashingtonRobot-aided system for surgery
US498415721 Sep 19888 Jan 1991General Electric CompanySystem and method for displaying oblique planar cross sections of a solid body using tri-linear interpolation to determine pixel position dataes
US498925315 Apr 198829 Jan 1991The Montefiore Hospital Association Of Western PennsylvaniaVoice activated microscope
US504602210 Mar 19883 Sep 1991The Regents Of The University Of MichiganTele-autonomous system and method employing time/position synchrony/desynchrony
US505397622 May 19891 Oct 1991Honda Giken Kogyo Kabushiki KaishaMethod of teaching a robot
US50796999 Aug 19897 Jan 1992Picker International, Inc.Quick three-dimensional display
US508640111 May 19904 Feb 1992International Business Machines CorporationImage-directed robotic system for precise robotic surgery including redundant consistency checking
US50984266 Feb 198924 Mar 1992Phoenix Laser Systems, Inc.Method and apparatus for precision laser surgery
US509984623 Dec 198831 Mar 1992Hardy Tyrone LMethod and apparatus for video presentation from a variety of scanner imaging sources
US514293029 Mar 19911 Sep 1992Allen George SInteractive image-guided surgical system
US517034730 Apr 19908 Dec 1992Picker International, Inc.System to reformat images for three-dimensional display using unique spatial encoding and non-planar bisectioning
US517427620 Nov 198929 Dec 1992Hillway Surgical LimitedEndoscope device for applying an aneurysm clip
US51767027 Feb 19925 Jan 1993Symbiosis CorporationRatchet locking mechanism for surgical instruments
US518264117 Jun 199126 Jan 1993The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationComposite video and graphics display for camera viewing systems in robotics and teleoperation
US51840096 Apr 19902 Feb 1993Wright Scott MOptical attenuator movement detection system
US51846015 Aug 19919 Feb 1993Putman John MEndoscope stabilizer
US518779616 Jul 199016 Feb 1993Computer Motion, Inc.Three-dimensional vector co-processor having I, J, and K register files and I, J, and K execution units
US521700318 Mar 19918 Jun 1993Wilk Peter JAutomated surgical system and apparatus
US523033822 Apr 199227 Jul 1993Allen George SInteractive image-guided surgical system for displaying images corresponding to the placement of a surgical tool or the like
US523062310 Dec 199127 Jul 1993Radionics, Inc.Operating pointer with interactive computergraphics
US523551022 Nov 199110 Aug 1993Kabushiki Kaisha ToshibaComputer-aided diagnosis system for medical use
US52392468 Jul 199224 Aug 1993The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationForce reflection with compliance control
US525112731 Jul 19905 Oct 1993Faro Medical Technologies Inc.Computer-aided surgery apparatus
US52516117 May 199112 Oct 1993Zehel Wendell EMethod and apparatus for conducting exploratory procedures
US525720316 Apr 199226 Oct 1993Regents Of The University Of MinnesotaMethod and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US52614048 Jul 199116 Nov 1993Mick Peter RThree-dimensional mammal anatomy imaging system and method
US526687523 May 199130 Nov 1993Massachusetts Institute Of TechnologyTelerobotic system
US527930927 Jul 199218 Jan 1994International Business Machines CorporationSignaling device and method for monitoring positions in a surgical operation
US529928818 Sep 199129 Mar 1994International Business Machines CorporationImage-directed robotic system for precise robotic surgery including redundant consistency checking
US53133061 Jun 199317 May 1994Telerobotics International, Inc.Omniview motionless camera endoscopy system
US532135313 May 199214 Jun 1994Storage Technolgy CorporationSystem and method for precisely positioning a robotic tool
US533773311 Sep 199016 Aug 1994Peter BauerfeindTubular inserting device with variable rigidity
US53419509 Feb 199330 Aug 1994Sinz Dirk PeterTransport container
US534338517 Aug 199330 Aug 1994International Business Machines CorporationInterference-free insertion of a solid body into a cavity
US53680157 Jun 199329 Nov 1994Wilk; Peter J.Automated surgical system and apparatus
US53684285 Jan 199329 Nov 1994Grumman Aerospace CorporationApparatus and method for producing a video display
US53828859 Aug 199317 Jan 1995The University Of British ColumbiaMotion scaling tele-operating system with force feedback suitable for microsurgery
US539732330 Oct 199214 Mar 1995International Business Machines CorporationRemote center-of-motion robot for surgery
US540280128 Apr 19944 Apr 1995International Business Machines CorporationSystem and method for augmentation of surgery
US540840920 Dec 199318 Apr 1995International Business Machines CorporationImage-directed robotic system for precise robotic surgery including redundant consistency checking
US541721027 May 199223 May 1995International Business Machines CorporationSystem and method for augmentation of endoscopic surgery
US543064311 Mar 19924 Jul 1995The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationConfiguration control of seven degree of freedom arms
US54451666 Apr 199429 Aug 1995International Business Machines CorporationSystem for advising a surgeon
US545482724 May 19943 Oct 1995Aust; Gilbert M.Surgical instrument
US54745717 Feb 199412 Dec 1995Karl Storz Gmbh & Co.Medical forceps with jaws which first tilt and then open
US548202924 Jun 19939 Jan 1996Kabushiki Kaisha ToshibaVariable flexibility endoscope system
US54935952 Jun 199420 Feb 1996Schoolman Scientific Corp.Stereoscopically displayed three dimensional medical imaging
US550332019 Aug 19932 Apr 1996United States Surgical CorporationSurgical apparatus with indicator
US551547813 Sep 19947 May 1996Computer Motion, Inc.Automated endoscope system for optimal positioning
US55241803 Jun 19934 Jun 1996Computer Motion, Inc.Automated endoscope system for optimal positioning
US55289558 Sep 199425 Jun 1996Hannaford; BlakeFive axis direct-drive mini-robot having fifth actuator located at non-adjacent joint
US553174215 Jan 19922 Jul 1996Barken; IsraelApparatus and method for computer controlled cryosurgery
US555143219 Jun 19953 Sep 1996New York Eye & Ear InfirmaryScanning control system for ultrasound biomicroscopy
US555319829 Nov 19943 Sep 1996Computer Motion, Inc.Automated endoscope system for optimal positioning
US557299926 Jan 199512 Nov 1996International Business Machines CorporationRobotic system for positioning a surgical instrument relative to a patient's body
US56015492 Nov 199511 Feb 1997Machida Endoscope Co., Ltd.Medical observing instrument
US561785828 Jul 19958 Apr 1997Vingmed Sound A/SApparatus for endoscopic or gastroscopic examination
US56243988 Feb 199629 Apr 1997Symbiosis CorporationEndoscopic robotic surgical tools and methods
US56319735 May 199420 May 1997Sri InternationalMethod for telemanipulation with telepresence
US563881929 Aug 199517 Jun 1997Manwaring; Kim H.Method and apparatus for guiding an instrument to a target
US56574296 Jun 199512 Aug 1997Computer Motion, Inc.Automated endoscope system optimal positioning
US56955006 Apr 19949 Dec 1997International Business Machines CorporationSystem for manipulating movement of a surgical instrument with computer controlled brake
US57048972 Aug 19936 Jan 1998Truppe; Michael J.Apparatus and method for registration of points of a data field with respective points of an optical image
US571572928 Nov 199510 Feb 1998Toyoda Koki Kabushiki KaishaMachine tool having parallel structure
US573750028 Apr 19957 Apr 1998California Institute Of TechnologyMobile dexterous siren degree of freedom robot arm with real-time control system
US574876710 Aug 19935 May 1998Faro Technology, Inc.Computer-aided surgery apparatus
US574936226 Jan 199512 May 1998International Business Machines CorporationMethod of creating an image of an anatomical feature where the feature is within a patient's body
US575474116 Dec 199619 May 1998Computer Motion, Inc.Automated endoscope for optimal positioning
US57557256 Sep 199426 May 1998Deemed International, S.A.Computer-assisted microsurgery methods and equipment
US57591517 Jun 19952 Jun 1998Carnegie Mellon UniversityFlexible steerable device for conducting exploratory procedures
US575915313 Nov 19962 Jun 1998Cardiovascular Imaging Systems, Inc.Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same
US576245820 Feb 19969 Jun 1998Computer Motion, Inc.Method and apparatus for performing minimally invasive cardiac procedures
US57655617 Oct 199416 Jun 1998Medical Media SystemsVideo-based surgical targeting system
US578454223 Oct 199621 Jul 1998California Institute Of TechnologyDecoupled six degree-of-freedom teleoperated robot system
US578868822 Dec 19944 Aug 1998Bauer Laboratories, Inc.Surgeon's command and control
US579123117 May 199311 Aug 1998Endorobotics CorporationSurgical robotic system and hydraulic actuator therefor
US579213516 May 199711 Aug 1998Intuitive Surgical, Inc.Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US57978497 Mar 199725 Aug 1998Sonometrics CorporationMethod for carrying out a medical procedure using a three-dimensional tracking and imaging system
US579790016 May 199725 Aug 1998Intuitive Surgical, Inc.Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US580737716 May 199715 Sep 1998Intuitive Surgical, Inc.Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity
US58086659 Sep 199615 Sep 1998Sri InternationalEndoscopic surgical instrument and method for use
US58100083 Dec 199622 Sep 1998Isg Technologies Inc.Apparatus and method for visualizing ultrasonic images
US58108801 May 199722 Sep 1998Sri InternationalSystem and method for releasably holding a surgical instrument
US581403827 Mar 199729 Sep 1998Sri InternationalSurgical manipulator for a telerobotic system
US581564031 Jul 199729 Sep 1998Computer Motion, Inc.Automated endoscope system for optimal positioning
US581702211 Mar 19976 Oct 1998Sonometrics CorporationSystem for displaying a 2-D ultrasound image within a 3-D viewing environment
US582054513 Aug 199613 Oct 1998Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V.Method of tracking a surgical instrument with a mono or stereo laparoscope
US582062320 Jun 199513 Oct 1998Ng; Wan SingArticulated arm for medical procedures
US583140812 May 19973 Nov 1998Cybernet Systems CorporationForce feedback system
US583569322 Jul 199410 Nov 1998Lynch; James D.Interactive system for simulation and display of multi-body systems in three dimensions
US583688012 Nov 199617 Nov 1998Micro Chemical, Inc.Automated system for measuring internal tissue characteristics in feed animals
US584195031 Jul 199724 Nov 1998Computer Motion, Inc.Automated endoscope system for optimal positioning
US584247324 Nov 19951 Dec 1998Life Imaging SystemsThree-dimensional imaging system
US584299310 Dec 19971 Dec 1998The Whitaker CorporationNavigable ultrasonic imaging probe assembly
US585336717 Mar 199729 Dec 1998General Electric CompanyTask-interface and communications system and method for ultrasound imager control
US585555316 Feb 19965 Jan 1999Hitchi, Ltd.Remote surgery support system and method thereof
US585558322 Nov 19965 Jan 1999Computer Motion, Inc.Method and apparatus for performing minimally invasive cardiac procedures
US585993414 Jan 199712 Jan 1999Sri InternationalMethod and apparatus for transforming coordinate systems in a telemanipulation system
US587632530 Sep 19972 Mar 1999Olympus Optical Co., Ltd.Surgical manipulation system
US587781921 Apr 19982 Mar 1999Branson; Philip J.Managing information in an endoscopy system
US587819316 Oct 19962 Mar 1999Computer Motion, Inc.Automated endoscope system for optimal positioning
US588712117 Jul 199723 Mar 1999International Business Machines CorporationMethod of constrained Cartesian control of robotic mechanisms with active and passive joints
US590766411 Mar 199625 May 1999Computer Motion, Inc.Automated endoscope system for optimal positioning
US591103631 Jul 19978 Jun 1999Computer Motion, Inc.Head cursor control interface for an automated endoscope system for optimal positioning
US593183220 Jul 19953 Aug 1999Sri InternationalMethods for positioning a surgical instrument about a remote spherical center of rotation
US593867811 Jun 199717 Aug 1999Endius IncorporatedSurgical instrument
US595062928 Apr 199414 Sep 1999International Business Machines CorporationSystem for assisting a surgeon during surgery
US59647079 Sep 199812 Oct 1999Life Imaging Systems Inc.Three-dimensional imaging system
US597197628 Jan 199826 Oct 1999Computer Motion, Inc.Motion minimization and compensation system for use in surgical procedures
US59804601 Apr 19989 Nov 1999Nycomed Imaging AsUltrasound imaging
US59804611 May 19989 Nov 1999Rajan; Subramaniam D.Ultrasound imaging apparatus for medical diagnostics
US598759124 Dec 199616 Nov 1999Fanuc LimitedMultiple-sensor robot system for obtaining two-dimensional image and three-dimensional position information
US599339018 Sep 199830 Nov 1999Hewlett- Packard CompanySegmented 3-D cardiac ultrasound imaging method and apparatus
US599339124 Sep 199830 Nov 1999Kabushiki Kaisha ToshibaUltrasound diagnostic apparatus
US60197248 Feb 19961 Feb 2000Gronningsaeter; AageMethod for ultrasound guidance during clinical procedures
US603663722 Apr 199814 Mar 2000Olympus Optical Co., Ltd.Treating system utilizing an endoscope
US60597182 Jun 19959 May 2000Olympus Optical Co., Ltd.Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US606309518 Sep 199816 May 2000Computer Motion, Inc.Method and apparatus for performing minimally invasive surgical procedures
US60724661 Aug 19976 Jun 2000U.S. Philips CorporationVirtual environment manipulation device modelling and control
US608317015 May 19974 Jul 2000Biosense, Inc.Self-aligning catheter
US608437119 Feb 19994 Jul 2000Lockheed Martin Energy Research CorporationApparatus and methods for a human de-amplifier system
US60960256 Nov 19981 Aug 2000Hill-Rom, Inc.Mobile surgical support apparatus
US61150532 Aug 19945 Sep 2000New York UniversityComputer animation method and system for synthesizing human-like gestures and actions
US612043314 Oct 199719 Sep 2000Olympus Optical Co., Ltd.Surgical manipulator system
US612967029 May 199810 Oct 2000Burdette Medical SystemsReal time brachytherapy spatial registration and visualization system
US618486817 Sep 19986 Feb 2001Immersion Corp.Haptic feedback control devices
US61960813 Feb 19996 Mar 2001Hexel CorporationSystems and methods employing a rotary track for machining and manufacturing
US620198426 Jan 199513 Mar 2001International Business Machines CorporationSystem and method for augmentation of endoscopic surgery
US620462010 Dec 199920 Mar 2001Fanuc Robotics North AmericaMethod of controlling an intelligent assist device
US62245424 Jan 19991 May 2001Stryker CorporationEndoscopic camera system with non-mechanical zoom
US622656618 Feb 19991 May 2001International Business Machines CorporationMethod of constrained cartesian control of robotic mechanisms with active and passive joints
US624172511 Jun 19965 Jun 2001Sherwood Services AgHigh frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US624362419 Mar 19995 Jun 2001Northwestern UniversityNon-Linear muscle-like compliant controller
US62462003 Aug 199912 Jun 2001Intuitive Surgical, Inc.Manipulator positioning linkage for robotic surgery
US625652924 Nov 19973 Jul 2001Burdette Medical Systems, Inc.Virtual reality 3D visualization for surgical procedures
US627045327 Dec 19997 Aug 2001Suzuki Motor CorporationBending device for examining insertion tube
US629271229 Jan 199818 Sep 2001Northrop Grumman CorporationComputer interface system for a robotic system
US63072856 Nov 200023 Oct 2001Coactive Drive CorporationActuator with repulsive magnetic forces
US63124358 Oct 19996 Nov 2001Intuitive Surgical, Inc.Surgical instrument with extended reach for use in minimally invasive surgery
US63258088 Dec 19984 Dec 2001Advanced Realtime Control Systems, Inc.Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery
US633083727 Aug 199818 Dec 2001Microdexterity Systems, Inc.Parallel mechanism
US633118115 Oct 199918 Dec 2001Intuitive Surgical, Inc.Surgical robotic tools, data architecture, and use
US634288912 Mar 199929 Jan 2002Dicomit Dicom Information Technologies Corp.Method and system for selecting at least one optimal view of a three dimensional image
US63587492 Dec 199819 Mar 2002Ozo Diversified Automation, Inc.Automated system for chromosome microdissection and method of using same
US637190919 Feb 199916 Apr 2002California Institute Of TechnologyApparatus and method for providing spherical viewing during endoscopic procedures
US637195228 Jun 199916 Apr 2002Intuitive Surgical, Inc.Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US639499817 Sep 199928 May 2002Intuitive Surgical, Inc.Surgical tools for use in minimally invasive telesurgical applications
US63987269 Nov 19994 Jun 2002Intuitive Surgical, Inc.Stabilizer for robotic beating-heart surgery
US640273719 Mar 199911 Jun 2002Hitachi, Ltd.Surgical apparatus
US642488513 Aug 199923 Jul 2002Intuitive Surgical, Inc.Camera referenced control in a minimally invasive surgical apparatus
US642586511 Jun 199930 Jul 2002The University Of British ColumbiaRobotically assisted medical ultrasound
US64361073 Mar 199920 Aug 2002Computer Motion, Inc.Method and apparatus for performing minimally invasive surgical procedures
US644241728 Nov 200027 Aug 2002The Board Of Trustees Of The Leland Stanford Junior UniversityMethod and apparatus for transforming view orientations in image-guided surgery
US645690120 Apr 200124 Sep 2002Univ MichiganHybrid robot motion task level control system
US645992617 Sep 19991 Oct 2002Intuitive Surgical, Inc.Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US64682659 Nov 199922 Oct 2002Intuitive Surgical, Inc.Performing cardiac surgery without cardioplegia
US64936087 Apr 199910 Dec 2002Intuitive Surgical, Inc.Aspects of a control system of a minimally invasive surgical apparatus
US652290614 Dec 199918 Feb 2003Intuitive Surgical, Inc.Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US654778211 Aug 200015 Apr 2003International Business Machines, Corp.System and method for augmentation of surgery
US65507577 Aug 200122 Apr 2003Hewlett-Packard CompanyStapler having selectable staple size
US656908428 Mar 200027 May 2003Olympus Optical Co., Ltd.Endoscope holder and endoscope device
US657435521 Mar 20013 Jun 2003Intuitive Surigical, Inc.Method and apparatus for transforming coordinate systems in a telemanipulation system
US659452225 Feb 199915 Jul 2003Tetsuya KorenagaTherapeutic device for generating low-or middle-frequency electromagnetic waves
US65945526 Apr 200015 Jul 2003Intuitive Surgical, Inc.Grip strength with tactile feedback for robotic surgery
US659924711 Oct 200029 Jul 2003University Of PittsburghSystem and method for location-merging of real-time tomographic slice images with human vision
US660218514 Feb 20005 Aug 2003Olympus Optical Co., Ltd.Remote surgery support system
US662017331 May 200116 Sep 2003Intuitive Surgical, Inc.Method for introducing an end effector to a surgical site in minimally invasive surgery
US664283628 Oct 19974 Nov 2003Computer Motion, Inc.General purpose distributed operating room control system
US664356315 Jul 20024 Nov 2003Brooks Automation, Inc.Trajectory planning and motion control strategies for a planar three-degree-of-freedom robotic arm
US664519616 Jun 200011 Nov 2003Intuitive Surgical, Inc.Guided tool change
US66488161 Oct 200118 Nov 2003Karl Storz Gmbh & Co. KgDevice for intracorporal, minimal-invasive treatment of a patient
US665403113 Oct 200025 Nov 2003Hitachi Kokusai Electric Inc.Method of editing a video program with variable view point of picked-up image and computer program product for displaying video program
US66599393 Nov 19999 Dec 2003Intuitive Surgical, Inc.Cooperative minimally invasive telesurgical system
US666555418 Nov 199916 Dec 2003Steve T. CharlesMedical manipulator for use with an imaging device
US66715815 Jun 200230 Dec 2003Intuitive Surgical, Inc.Camera referenced control in a minimally invasive surgical apparatus
US667666916 Jan 200213 Jan 2004Microdexterity Systems, Inc.Surgical manipulator
US669917724 Apr 20002 Mar 2004Computer Motion, Inc.Method and apparatus for performing minimally invasive surgical procedures
US671483917 Sep 199930 Mar 2004Intuitive Surgical, Inc.Master having redundant degrees of freedom
US676556925 Sep 200120 Jul 2004University Of Southern CaliforniaAugmented-reality tool employing scene-feature autocalibration during camera motion
US67700817 Jan 20003 Aug 2004Intuitive Surgical, Inc.In vivo accessories for minimally invasive robotic surgery and methods
US678689618 Sep 19987 Sep 2004Massachusetts Institute Of TechnologyRobotic apparatus
US67990657 Dec 199928 Sep 2004Intuitive Surgical, Inc.Image shifting apparatus and method for a telerobotic system
US681797316 Mar 200116 Nov 2004Immersion Medical, Inc.Apparatus for controlling force for manipulation of medical instruments
US68378835 Oct 20014 Jan 2005Intuitive Surgical, Inc.Arm cart for telerobotic surgical system
US68479226 Jan 200025 Jan 2005General Motors CorporationMethod for computer-aided layout of manufacturing cells
US685210716 Jan 20028 Feb 2005Computer Motion, Inc.Minimally invasive surgical training using robotics and tele-collaboration
US687689119 Feb 19995 Apr 2005Immersion CorporationMethod and apparatus for providing tactile responsiveness in an interface device
US69054607 Jan 200314 Jun 2005Intuitive Surgical, Inc.Method and apparatus for performing minimally invasive surgical procedures
US692670917 May 20019 Aug 2005Siemens AktiengesellschaftFully automatic, robot-assisted camera guidance system employing position sensors for laparoscopic interventions
US696016225 Oct 20021 Nov 2005Usgi Medical Inc.Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US698420327 Nov 200210 Jan 2006Neoguide Systems, Inc.Endoscope with adjacently positioned guiding apparatus
US699162715 Feb 200231 Jan 2006Intuitive Surgical Inc.Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US70410534 Sep 20039 May 2006Olympus Optical Co., Ltd.Endoscope provided with a section for bending the endoscope
US71070905 Dec 200212 Sep 2006Intuitive SurgicalDevices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US710712416 Dec 200412 Sep 2006Sri InternationalRoll-pitch-roll wrist methods for minimally invasive robotic surgery
US71443679 Mar 20045 Dec 2006Chen David TAnatomical visualization system
US715531512 Dec 200526 Dec 2006Intuitive Surgical, Inc.Camera referenced control in a minimally invasive surgical apparatus
US715531613 Aug 200326 Dec 2006Microbotics CorporationMicrosurgical robot system
US71813157 Oct 200420 Feb 2007Fanuc LtdManual-mode operating system for robot
US719411810 Nov 200020 Mar 2007Lucid, Inc.System for optically sectioning and mapping surgically excised tissue
US730228825 Nov 199627 Nov 2007Z-Kat, Inc.Tool position indicator
US741356523 Sep 200419 Aug 2008Intuitive Surgical, Inc.Minimally invasive surgical training using robotics and telecollaboration
US749119827 Apr 200417 Feb 2009Bracco Imaging S.P.A.Computer enhanced surgical navigation imaging system (camera probe)
US749315313 Jun 200117 Feb 2009Volume Interactions Pte., Ltd.Augmented reality system controlled by probe position
US75742504 Feb 200311 Aug 2009Intuitive Surgical, Inc.Image shifting apparatus and method for a telerobotic system
US772521413 Jun 200725 May 2010Intuitive Surgical Operations, Inc.Minimally invasive surgical system
US780689115 Mar 20065 Oct 2010Intuitive Surgical Operations, Inc.Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US781985930 Jun 200626 Oct 2010Intuitive Surgical Operations, Inc.Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator
US796391320 Dec 200621 Jun 2011Intuitive Surgical Operations, Inc.Instrument interface of a robotic surgical system
US797915725 Jul 200512 Jul 2011Mcmaster UniversityMulti-purpose robotic operating system and method
US799611020 Nov 20069 Aug 2011Macdonald, Dettwiler And Associates Ltd.Surgical robot and robotic controller
US799805828 Sep 200616 Aug 2011Olympus Medical Systems CorporationEndoscope system comprising endoscope to which medical instrument is attached
US80055713 Jul 200623 Aug 2011Neuroarm Surgical Ltd.Microsurgical robot system
US80622888 Jul 200922 Nov 2011Intuitive Surgical Operations, Inc.Offset remote center manipulator for robotic surgery
US810807230 Sep 200731 Jan 2012Intuitive Surgical Operations, Inc.Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US81203019 Mar 200921 Feb 2012Intuitive Surgical Operations, Inc.Ergonomic surgeon control console in robotic surgical systems
US813090711 Sep 20096 Mar 2012Accuray IncorporatedControlling X-ray imaging based on target motion
US815547928 Mar 200810 Apr 2012Intuitive Surgical Operations Inc.Automated panning and digital zooming for robotic surgical systems
US817071622 Feb 20071 May 2012Intuitive Surgical Operations, Inc.Methods and apparatus for surgical planning
US817586121 Apr 20098 May 2012Mori Seiki Co., Ltd.Machining simulation method and machining simulation apparatus
US82213045 Aug 200417 Jul 2012Olympus CorporationOperation microscope
US82563193 Oct 20114 Sep 2012Intuitive Surgical Operations, Inc.Offset remote center manipulator for robotic surgery
US83066565 Jan 20106 Nov 2012Titan Medical Inc.Method and system for performing medical procedure
US831572026 Sep 200820 Nov 2012Intuitive Surgical Operations, Inc.Method for graphically providing continuous change of state directions to a user of a medical robotic system
US833559023 Dec 200818 Dec 2012Intuitive Surgical Operations, Inc.System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device
US839854111 Aug 200819 Mar 2013Intuitive Surgical Operations, Inc.Interactive user interfaces for robotic minimally invasive surgical systems
US855436816 Apr 20088 Oct 2013Tim FieldingFrame mapping and force feedback methods, devices and systems
US862047314 May 201031 Dec 2013Intuitive Surgical Operations, Inc.Medical robotic system with coupled control modes
US886465217 Dec 200821 Oct 2014Intuitive Surgical Operations, Inc.Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US890354615 Aug 20092 Dec 2014Intuitive Surgical Operations, Inc.Smooth control of an articulated instrument across areas with different work space conditions
US891821112 Feb 201023 Dec 2014Intuitive Surgical Operations, Inc.Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US894407030 Mar 20053 Feb 2015Intuitive Surgical Operations, Inc.Non-force reflecting method for providing tool force information to a user of a telesurgical system
US90846235 Nov 200921 Jul 2015Intuitive Surgical Operations, Inc.Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US908925623 Jun 200928 Jul 2015Intuitive Surgical Operations, Inc.Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US910139721 Aug 201311 Aug 2015Intuitive Surgical Operations, Inc.Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US913812911 Nov 201122 Sep 2015Intuitive Surgical Operations, Inc.Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US923298410 Nov 201012 Jan 2016Intuitive Surgical Operations, Inc.Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US93330423 Dec 201310 May 2016Intuitive Surgical Operations, Inc.Medical robotic system with coupled control modes
US934538713 Jun 200724 May 2016Intuitive Surgical Operations, Inc.Preventing instrument/tissue collisions
US2001003587130 Mar 20011 Nov 2001Johannes BiegerSystem and method for generating an image
US200200441044 Sep 200118 Apr 2002Wolfgang FriedrichAugmented-reality system for situation-related support of the interaction between a user and an engineering apparatus
US2002004590531 May 200118 Apr 2002Gerbi Craig RichardTool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US2002008954422 Aug 200111 Jul 2002Dirk JahnSystem and method for combined use of different display/appliance types with system-controlled, context-dependent information display
US2002012018821 Dec 200129 Aug 2002Brock David L.Medical mapping system
US20020156345 *16 May 200224 Oct 2002Wolfgang EpplerMethod of guiding an endoscope for performing minimally invasive surgery
US2002019380027 Jun 200219 Dec 2002Kienzle Thomas C.Surgical drill for use with a computer assisted surgery system
US2003002334728 Sep 200130 Jan 2003Reizo KonnoAuthoring system and authoring method, and storage medium
US2003003287827 Aug 200213 Feb 2003The Board Of Trustees Of The Leland Stanford Junior UniversityMethod and apparatus for volumetric image navigation
US200300554106 Aug 200220 Mar 2003Intuitive Surgical, Inc.Performing cardiac surgery without cardioplegia
US2003006092725 Sep 200127 Mar 2003Intuitive Surgical, Inc.Removable infinite roll master grip handle and touch sensor for robotic surgery
US200301097806 Jun 200212 Jun 2003Inria RoquencourtMethods and apparatus for surgical planning
US2003011473014 Dec 200119 Jun 2003Hale Eric L.Interface for a variable direction of view endoscope
US2003016710331 Jan 20034 Sep 2003Qing TangRobot machining tool position and orientation calibration
US200302205415 Dec 200227 Nov 2003Intuitive Surgical, Inc.Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US2003022547930 May 20024 Dec 2003El-Houssaine WaledMethod and control device for avoiding collisions between cooperating robots
US200400243116 Mar 20035 Feb 2004Quaid Arthur E.System and method for haptic sculpting of physical objects
US200400342836 Mar 200319 Feb 2004Quaid Arthur E.System and method for interactive haptic positioning of a medical device
US2004003948519 Aug 200326 Feb 2004Intuitive Surgical, Inc.Camera referenced control in a minimally invasive surgical apparatus
US2004004671118 Jun 200311 Mar 2004Siemens AgUser-controlled linkage of information within an augmented reality system
US200400779402 Oct 200322 Apr 2004Kienzle Thomas C.Instrument guide for use with a tracking system
US2004010691616 Jul 20033 Jun 2004Z-Kat, Inc.Guidance system and method for surgical procedures with improved feedback
US2004018967523 Dec 200330 Sep 2004John PretloveAugmented reality system and method
US2004022518312 Dec 200311 Nov 2004Usgi MedicalApparatus and methods for forming and securing gastrointestinal tissue folds
US2004023873218 Oct 20022 Dec 2004Andrei StateMethods and systems for dynamic virtual convergence and head mountable display
US2004024314717 Dec 20032 Dec 2004Lipow Kenneth I.Surgical robot and robotic controller
US2004024950822 Apr 20049 Dec 2004Toyota Jidosha Kabushiki KaishaMethod and apparatus for limiting the movement of a robot, and a robot equipped with said apparatus
US2004025445413 Jun 200116 Dec 2004Kockro Ralf AlfonsGuide system and a probe therefor
US200402546799 Apr 200416 Dec 2004Kenichiro NagasakaRobot movement control system
US2005002215815 Jan 200427 Jan 2005Laurent LaunayMethod and device for imaging with reorientation of an object
US200500548959 Sep 200310 Mar 2005Hoeg Hans DavidMethod for using variable direction of view endoscopy in conjunction with image guided surgical systems
US2005005996021 May 200417 Mar 2005Johns Hopkins UniversityDevices, systems and methods for minimally invasive surgery of the throat and other portions of mammalian body
US2005009650229 Oct 20035 May 2005Khalili Theodore M.Robotic surgical device
US2005011364016 Nov 200426 May 2005Usgi Medical Inc.Endoluminal tool deployment system
US2005020338011 Feb 200515 Sep 2005Frank SauerSystem and method for augmented reality navigation in a medical intervention procedure
US2005022836530 Mar 200513 Oct 2005Intuitive Surgical, Inc.Method and apparatus for performing minimally invasive surgical procedures
US2005025111318 Jul 200510 Nov 2005Kienzle Thomas C IiiComputer assisted intramedullary rod surgery system with enhanced features
US2005026735927 May 20041 Dec 2005General Electric CompanySystem, method, and article of manufacture for guiding an end effector to a target position within a person
US2006005898811 Feb 200516 Mar 2006Defranoux Nadine AMethod and apparatus for computer modeling a joint
US2006014265721 Feb 200629 Jun 2006Mako Surgical CorporationHaptic guidance system and method
US20060149129 *29 Aug 20056 Jul 2006Watts H DCatheter with multiple visual elements
US2006016104527 Oct 200520 Jul 2006Immersion Medical Devices, Inc.System and method for controlling force applied to and manipulation of medical instruments
US2006017855927 Dec 200510 Aug 2006Intuitive Surgical Inc.Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US2006025893816 May 200516 Nov 2006Intuitive Surgical Inc.Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
US2006026177017 May 200623 Nov 2006Kosuke KishiMaster-slave manipulator system and this operation input devcies
US2007001333619 May 200518 Jan 2007Intuitive Surgical Inc.Software center and highly configurable robotic systems for surgery and other uses
US2007001617427 Jan 200618 Jan 2007Intuitive Surgical Inc.Robotic surgical instruments with a fluid flow control system for irrigation, aspiration, and blowing
US200700217386 Jun 200625 Jan 2007Intuitive Surgical Inc.Laparoscopic ultrasound robotic surgical system
US200700329063 Jul 20068 Feb 2007Sutherland Garnette RMicrosurgical robot system
US200700380801 Aug 200615 Feb 2007Intuitive Surgical Inc.Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US2007006087928 Aug 200615 Mar 2007Hansen Medical, Inc.Coaxial catheter system
US2007013580314 Sep 200614 Jun 2007Amir BelsonMethods and apparatus for performing transluminal and other procedures
US20070138992 *20 Dec 200621 Jun 2007Intuitive Surgical Inc.Medical robotic system with sliding mode control
US2007014296824 Aug 200621 Jun 2007Intuitive Surgical Inc.Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations
US2007014429827 Dec 200528 Jun 2007Intuitive Surgical Inc.Constraint based control in a minimally invasive surgical apparatus
US20070177009 *9 Feb 20072 Aug 2007Avantis Medical Systems, Inc.Endoscope assembly with a polarizing filter
US2007025545412 Apr 20071 Nov 2007Honda Motor Co., Ltd.Control Of Robots From Human Motion Descriptors
US200702654916 Dec 200615 Nov 2007Calypso Medical Technologies, Inc.Systems and methods for stabilizing a target location within a human body
US2007027065018 May 200722 Nov 2007Robert EnoMethods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US2007027068518 May 200722 Nov 2007Mako Surgical Corp.Method and apparatus for controlling a haptic device
US2007028397013 Jun 200713 Dec 2007Intuitive Surgical, Inc.Bracing of bundled medical devices for single port entry, robotically assisted medical procedures
US2007028788413 Jun 200713 Dec 2007Intuitive Surgical, Inc.Extendable suction surface for bracing medial devices during robotically assisted medical procedures
US2007028799213 Jun 200713 Dec 2007Intuitive Surgical, Inc.Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
US2007029636618 May 200727 Dec 2007Quaid Arthur EMethod and apparatus for controlling a haptic device
US2008000460329 Jun 20063 Jan 2008Intuitive Surgical Inc.Tool position and identification indicator displayed in a boundary area of a computer display screen
US2008003324019 Oct 20067 Feb 2008Intuitive Surgical Inc.Auxiliary image display and manipulation on a computer display in a medical robotic system
US2008006509913 Jun 200713 Mar 2008Intuitive Surgical, Inc.Side looking minimally invasive surgery instrument assembly
US2008006510513 Jun 200713 Mar 2008Intuitive Surgical, Inc.Minimally invasive surgical system
US2008006510913 Jun 200713 Mar 2008Intuitive Surgical, Inc.Preventing instrument/tissue collisions
US2008007129113 Jun 200720 Mar 2008Intuitive Surgical, Inc.Minimally invasive surgical system
US2008008199221 Sep 20073 Apr 2008Robert KagermeierMedical treatment system
US2008011811517 Nov 200622 May 2008General Electric CompanyMedical navigation system with tool and/or implant integration into fluoroscopic image projections and method of use
US2008014008717 May 200712 Jun 2008Hansen Medical Inc.Robotic instrument system
US200801618306 Feb 20083 Jul 2008Garnette Roy SutherlandMicrosurgical Robot System
US2008018898625 Oct 20057 Aug 2008University Of DaytonMethod and System to Provide Improved Accuracies in Multi-Jointed Robots Through Kinematic Robot Model Parameters Determination
US2008024314220 Feb 20082 Oct 2008Gildenberg Philip LVideotactic and audiotactic assisted surgical methods and procedures
US2008024750620 Dec 20079 Oct 2008Siemens AktiengesellschaftSystem for carrying out and monitoring minimally-invasive interventions
US2008028796330 Jun 200820 Nov 2008Rogers Theodore WMethods and apparatus to shape flexible entry guides for minimally invasive surgery
US20090005640 *27 Jun 20081 Jan 2009Jens FehreMethod and device for generating a complete image of an inner surface of a body cavity from multiple individual endoscopic images
US2009001253123 Jun 20088 Jan 2009Mako Surgical Corp.Haptic guidance system and method
US200900241422 Feb 200722 Jan 2009The European Atomic Energy Community (Euratom)Robotic surgical system for performing minimally invasive medical procedures
US2009003690211 Aug 20085 Feb 2009Intuitive Surgical, Inc.Interactive user interfaces for robotic minimally invasive surgical systems
US2009008863430 Sep 20072 Apr 2009Intuitive Surgical, Inc.Tool tracking systems and methods for image guided surgery
US200901057503 Oct 200823 Apr 2009Ethicon Endo-Surgery, Inc.Ergonomic surgical instruments
US2009019252331 Mar 200930 Jul 2009Intuitive Surgical, Inc.Synthetic representation of a surgical instrument
US2009019252431 Mar 200930 Jul 2009Intuitive Surgical, Inc.Synthetic representation of a surgical robot
US200902281456 Mar 200910 Sep 2009Perception Raisonnement Action En MedecineDynamic physical constraint for hard surface emulation
US2009024803628 Mar 20081 Oct 2009Intuitive Surgical, Inc.Controlling a robotic surgical tool with a display monitor
US2009025910510 Apr 200815 Oct 2009Miyano HiromichiMedical treatment system and suturing method
US2009032631823 Jun 200931 Dec 2009Intuitive Surgical, Inc.Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US2009032632227 Jun 200831 Dec 2009Intuitive Surgical, Inc.Medical robotic system with image referenced camera control using partitionable orientational and translational modes
US2009032655227 Jun 200831 Dec 2009Intuitive Surgical, Inc.Medical robotic system having entry guide controller with instrument tip velocity limiting
US2009032655327 Jun 200831 Dec 2009Intuitive Surgical, Inc.Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US2009032671121 May 200831 Dec 2009Chang Tien LMulti-arm robot system interference check via three dimensional automatic zones
US2010000450515 Sep 20097 Jan 2010Olympus Medical Systems Corp.Endoscope apparatus
US2010003619812 Feb 200711 Feb 2010Roberto TacchinoDevice for the manipulation of body tissue
US2010010635624 Oct 200829 Apr 2010The Gray Insurance CompanyControl and systems for autonomously driven vehicles
US2010016981522 Apr 20091 Jul 2010Intuitive Surgical, Inc.Visual force feedback in a minimally invasive surgical procedure
US201001982328 Apr 20105 Aug 2010Intuitive Surgical Operations, Inc.Minimally invasive surgical system
US201002282649 Mar 20099 Sep 2010David RobinsonAdaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US2010024965724 Mar 200930 Sep 2010Biomet Manufacturing Corp.Method and Apparatus for Aligning and Securing an Implant Relative to a Patient
US2010031796516 Jun 200916 Dec 2010Intuitive Surgical, Inc.Virtual measurement tool for minimally invasive surgery
US2010033185530 Jun 200930 Dec 2010Intuitive Surgical, Inc.Efficient Vision and Kinematic Data Fusion For Robotic Surgical Instruments and Other Applications
US2010033185614 Dec 200930 Dec 2010Hansen Medical Inc.Multiple flexible and steerable elongate instruments for minimally invasive operations
US201100403055 Nov 200917 Feb 2011Intuitive Surgical, Inc.Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US2011004040415 Aug 200917 Feb 2011Intuitive Surgical, Inc.Smooth control of an articulated instrument across areas with different work space conditions
US2011007167522 Sep 200924 Mar 2011Gm Global Technology Operations, Inc.Visual perception system and method for a humanoid robot
US2011010589810 Nov 20105 May 2011Intuitive Surgical Operations, Inc.Real-Time Generation of Three-Dimensional Ultrasound image using a Two-Dimensional Ultrasound Transducer in a Robotic System
US2011019619926 Jan 201111 Aug 2011Intuitive Surgical Operations, Inc.Method and system for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope
US2011020206812 Feb 201018 Aug 2011Intuitive Surgical Operations, Inc.Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US2011029085627 May 20111 Dec 2011Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instrument with force-feedback capabilities
US201103135733 Nov 200922 Dec 2011Schreiber GuenterMethod and device for command input in a controller of a manipulator
US201200593919 Nov 20118 Mar 2012Intuitive Surgical Operations, Inc.Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US2012005939211 Nov 20118 Mar 2012Intuitive Surgical Operations, Inc.Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US201201324509 Feb 201231 May 2012Ethicon Endo-Surgery, IncShiftable drive interface for robotically-controlled surgical tool
US2012015456429 Feb 201221 Jun 2012Intuitive Surgical Operations, Inc.Apparatus for automated panning and digital zooming in robotic surgical systems
US201302316807 Mar 20135 Sep 2013Intuitive Surgical Operations, Inc.Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US2013024537525 Feb 201319 Sep 2013The Johns Hopkins University c/o John Hopkins Technology TransferInteractive user interfaces for robotic minimally invasive surgical systems
US2013028976731 Dec 201231 Oct 2013Samsung Electronics Co., Ltd.Apparatus and method for controlling force to be used for motion of surgical robot
US2014005192221 Aug 201320 Feb 2014Intuitive Surgical, Inc.Real-time generation of three- dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US201400521502 Aug 201120 Feb 2014The Johns Hopkins UniversityMethod for presenting force sensor information using cooperative robot control and audio feedback
US2014005548915 Feb 201327 Feb 2014Intuitive Surgical Operations, Inc.Rendering tool information as graphic overlays on displayed images of tools
US2014013579211 Nov 201315 May 2014Intuitive Surgical Operations, Inc.Synthetic representation of a surgical instrument
US201402220213 Dec 20137 Aug 2014Intuitive Surgical Operations, Inc.Medical robotic system with coupled control modes
US2014023282415 Feb 201321 Aug 2014Intuitive Surgical Operations, Inc.Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US2015015063924 Nov 20144 Jun 2015Intuitive Surgical Operations, Inc.Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US2015018228730 Dec 20142 Jul 2015Intuitive Surgical Operations, Inc.Nonforce reflecting method for providing tool force information to a user of a telesurgical system
US2015029730029 Jun 201522 Oct 2015Intuitive Surgical Operations, Inc.Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US2015036662524 Jun 201524 Dec 2015Intuitive Surgical Operations, Inc.Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US2016004527224 Aug 201518 Feb 2016Intuitive Surgical Operations, Inc.Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
CN101160104A21 Feb 20069 Apr 2008马科外科公司Haptic guidance system and method
EP0514584A230 Aug 199125 Nov 1992Hewlett-Packard CompanyTransducer positioning system
EP0646358A114 Sep 19945 Apr 1995Pacesetter ABInstrument for laparoscopy
EP0732082B116 Feb 199618 Sep 2002Hitachi, Ltd.Remote surgery support system
EP0812662A124 Dec 199617 Dec 1997Fanuc LtdComposite sensor robot system
EP1125557A216 Feb 199622 Aug 2001Hitachi, Ltd.Remote surgery support system
EP1310844A18 Nov 200214 May 2003Fanuc LtdSimulation device
EP1424173A227 Nov 20032 Jun 2004Fanuc LtdDevice for graphically monitoring the operation state of a robot
JP2000300579A Title not available
JP2000500679A Title not available
JP2001000448A Title not available
JP2001061850A Title not available
JP2001104333A Title not available
JP2001202531A Title not available
JP2001287183A Title not available
JP2002103258A Title not available
JP2002287613A Title not available
JP2003053684A Title not available
JP2003300444A Title not available
JP2003339725A Title not available
JP2004105638A Title not available
JP2004223128A Title not available
JP2005110878A Title not available
JP2005303327A Title not available
JP2005334650A Title not available
JP2007029232A Title not available
JP2007508913A Title not available
JP2007531553A Title not available
JP2009006410A Title not available
JP2009012106A Title not available
JP2009525097A Title not available
JPH11309A Title not available
JPH0889506A Title not available
JPH01280449A Title not available
JPH04231034A Title not available
JPH07184923A Title not available
JPH07265321A Title not available
JPH08107875A Title not available
JPH08154321A Title not available
JPH08215211A Title not available
JPH08275958A Title not available
JPH08299363A Title not available
JPH10146341A Title not available
WO1995001757A15 Jul 199419 Jan 1995Cornelius BorstRobotic system for close inspection and remote treatment of moving parts
WO1995007055A16 Sep 199416 Mar 1995Deemed International S.A.Computer-assisted microsurgery equipment and methods for use with said equipment
WO1997029690A119 Feb 199721 Aug 1997Computer Motion, Inc.A method and apparatus for performing minimally invasive cardiac procedures
WO1997043942A120 May 199727 Nov 1997Intuitive Surgical, Inc.Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
WO1997043943A120 May 199727 Nov 1997Intuitive Surgical, Inc.Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity
WO2004014244A213 Aug 200319 Feb 2004Microbotics CorporationMicrosurgical robot system
WO2005037120A118 Sep 200428 Apr 2005Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.Device for the virtual observation of the position of at least one medical instrument introduced into a body
WO2005039391A221 Oct 20046 May 2005The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for intraoperative targetting
WO2005043319A221 Oct 200412 May 2005The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for intraoperative targeting
WO2006079108A124 Jan 200627 Jul 2006Intuitive Surgical, IncModular manipulator support for robotic surgery
WO2006091494A121 Feb 200631 Aug 2006Mako Surgical Corp.Haptic guidance system and method
WO2007030173A15 Jun 200615 Mar 2007Intuitive Surgical, Inc.Laparoscopic ultrasound robotic surgical system
WO2007047782A219 Oct 200626 Apr 2007Intuitive Surgical, IncAuxiliary image display and manipulation on a computer display in a medical robotic system
WO2007088206A22 Feb 20079 Aug 2007The European Atomic Energy Community (Euratom), Represented By The European CommissionMedical robotic system with manipulator arm of the cylindrical coordinate type
WO2007088208A12 Feb 20079 Aug 2007The European Atomic Energy Community (Euratom), Represented By The European CommissionRobotic surgical system for performing minimally invasive medical procedures
WO2007136768A218 May 200729 Nov 2007Mako Surgical Corp.Method and apparatus for controlling a haptic device
WO2007146987A213 Jun 200721 Dec 2007Intuitive Surgical, Inc.Minimally invasive surgical system
WO2008002830A222 Jun 20073 Jan 2008Intuitive Surgical, Inc.Surgical tool position and identification indicator displayed in a soundary area of a computer display screen
WO2008103383A120 Feb 200828 Aug 2008Gildenberg Philip LVideotactic and audiotactic assisted surgical methods and procedures
WO2009034477A216 Apr 200819 Mar 2009The Governors Of The University Of CalgaryFrame mapping and force feedback methods, devices and systems
WO2009037576A216 Apr 200826 Mar 2009The Governors Of The University Of CalgaryMethods, devices, and systems for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
WO2009044287A216 Apr 20089 Apr 2009The Governors Of The University Of CalgaryMethods, devices, and systems for automated movements involving medical robots
WO2009158164A14 Jun 200930 Dec 2009Intuitive Surgical, Inc.Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
WO2010039394A14 Sep 20098 Apr 2010Intuitive Surgical, Inc.Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
Non-Patent Citations
Reference
13D Slicer web site,http//www.slicer.org,2003.
2Abolmaesumi, Purang et al., "A User Interface for Robot-Assisted Diagnostic Ultrasound," IEEE Robotics and Automation Conference, 2001, pp. 1549-1554, vol. 2, IEEE.
3Abolmaesumi, Purang et al., "Image Guided Control of a Robot for Medical Ultrasound," IEEE Transactions on Robotics and Automation, 2002, pp. 11-23, vol. 18-Issue 1, IEEE.
4Adams, Ludwig et al., "Computer-Assisted Surgery," IEEE Computer Graphics & Applications, May 1990, pp. 43-52, vol. 10-Issue 3, IEEE Computer Society Press.
5Ahlering, Thomas. E. et al., "Robotic radical prostatectomy: a technique to reduce pT2 positive margins," Urology, 2004, pp. 1224-1228, vol. 64 Issue 6, Elsevier Inc.
6Alexander, Arthur D. III, "Impacts of Telemation on Modern Society," Symposium on Theory and Practice of Robots and Manipulators, Centre for Mechanical Sciences 1st CISM IFToMM Symposium, Sep. 5-8, 1974, pp. 121-136, vol. 2, Springer-Verlag.
7Arai, Tatsuo et al., "Bilateral control for manipulators with different configurations," IECON Inn Conference on Industrial Electronics Control and Instrumentation, Oct. 22-26, 1984, pp. 40-45, vol. 1.
8Arun, K.S. et al., "Least-Squares Fitting of Two 3-D Point Sets," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 9, No. 5, pp. 698-700, Sep. 1987.
9Askew, Scott R. et al., "Ground control testbed for space station freedom robot manipulators," IEEE Virtual Reality Annual International Symposium, 1993, pp. 69-75, IEEE.
10Azuma, Ronald T., "A Survey of Augmented Reality," Teleoperators and Virtual Environments, 1997, pp. 355-385, vol. 6-No. 4.
11Bajura, Michael et al., "Merging Virtual Objects with the Real World: Seeing Ultrasound Imagery within the Patient," Computer Graphics, Jul. 26, 1992, pp. 203-210, vol. 26, Issue 2, ACM Press.
12Banovac, Filip et al., "Liver Tumor Biopsy in a Respiring Phantom with the Assistance of a Novel Electromagnetic Navigation Device," 2002, pp. 200-207, Springer-Verlag.
13Bartels, Richard H. et al., "An Introduction to Splines for use in Computer Graphics and Geometric Modeling," 1987, 6 Pages total , Morgan kaufmann publishers, INC.
14Bartels, Richard H. et al., "Solution of the Matrix Equation AX+XB=C," Communications of the ACM, 1972, pp. 820-826, vol. 15-Issue 9, ACM Press.
15Baumann, Roger, "Haptic Interface for Virtual Reality Based Laparoscopic Surgery Training Environment," These No. 1734 Ecole Pholytechnique Federale de Lausanne, 1997, 104 Total Pages.
16Bejczy, Antal K. et al., "Controlling Remote Manipulators through Kinesthetic Coupling," Computers in Mechanical Engineering, 1983, pp. 48-60, vol. 1-Issue 1.
17Ben Gayed, M. et al., "An Advanced Control Micromanipulator for Surgical Applications," Systems Science, 1987, pp. 123-134, vol. 13.
18Berkelman, Peter J. et al., "A Compact Compliant Laparoscopic Endoscope Manipulator," IEEE International Conference on Robotics and Automation, 2002, pp. 1870-1875, vol. 2, IEEE.
19Berkelman, Peter J. et al., "A miniature Instrument Tip Force Sensor for Robot/Human Cooperative Micro surgical Manipulation with Enhanced Force Feedback," Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer-Verlag, 2000, pp. 897-906, vol. 1935.
20Berkelman, Peter J. et al., "A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation," IEEE Transactions on Robotics and Automation, 2000, pp. 917-921, vol. 19-Issue 5, IEEE.
21Berkelman, Peter J. et al., "Performance Evaluation of a Cooperative Manipulation Microsurgical Assistant Robot Applied to Stapedotomy," Medical Image Computing and Computer-Assisted Interventions, Lecture Notes in Computer Science, 2001, pp. 1426-1429, vol. 2208.
22Besl, Paul J. et al., "A Method for Registration of 3-D Shapes," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 14, Issue 2, pp. 239-256, Feb. 1992.
23Bettini , A. et al., "Vision Assisted Control for Manipulation Using Virtual Fixtures," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 29-Nov. 3, 2001, pp. 1171-1176, vol. 2.
24Bettini , A. et al., "Vision Assisted Control for Manipulation Using Virtual Fixtures: Experiments at Macro and Micro Scales," IEEE Conference on Robots and Automation (ICRA '02), May 11-15, 2002, pp. 3354-3361, vol. 4, IEEE.
25Bettini, Alessandro et al., "Vision Assisted Control for Manipulation Using Virtual Fixtures," IEEE Transactions on Robotics, 2004, pp. 953-966, vol. 20-Issue 6, IEEE.
26Birkett, Desmond H., "Three-Dimensional Video Imaging Systems," Chapter 1 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 7-11.
27Boctor, Emad et al., "A Novel Closed Form Solution for Ultrasound Calibration," IEEE International Symposium on Biomedical Imaging (ISBI), Arlington, VA, vol. 1, pp. 527-530, Apr. 15-18, 2004.
28Boctor, Emad, M. et al., "A dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: a prospective study," Proc of IEEE 2004 International Conference on Robotics & Automation, 2004, pp. 2517-2522, vol. 3, IEEE.
29Boctor, Emad, M. et al., "A Rapid calibration method for registration and 3D tracking of ultrasound images using spatial localizer," Ultrasonic Imaging and Signal Processing, 2003, pp. 521-532, vol. 5035, SPIE.
30Boctor, Emad, M. et al., "CISUS: An integrated 3D ultrasound system for IGT using a modular tracking API," Proceedings of the SPIE, 2004, pp. 247-256, vol. 5367, SPIE.
31Boctor, Emad, M. et al., "Development of a Robotically-Assisted 3-D Ultrasound System for Radiofrequency Ablation of Liver Tumors," 6th World Congress of the Hepato-Pancreato-Biliary Association, Abstract No. 167, 2004, pp. 46, vol. 6-Supplement 1, Taylor & Francis Health Science.
32Boctor, Emad, M. et al., "PC Based system for calibration, Reconstruction Processing and Visualization of 3D Ultrasound Data Based on a Magnetic-Field Position and Orientation Sensing System," Proceedings of the International Conference on Computational Science-Part II, Lecture Notes in Computer Science , 2001, pp. 13-22, vol. 2074, Springer.
33Boctor, Emad, M. et al., "Robot-assisted 3D strain imaging for monitoring thermal ablation of liver," Annual congress of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES),Emerging Technology Lunch Poster TP004, 2005, pp. 240-241.
34Boctor, Emad, M. et al., "Robotic Strain Imaging for Monitoring Thermal Ablation of Liver," Medical Image Computing and Computer-Assisted Intervention MICCAI, 2004, pp. 81-88, vol. 2, Springer-Verlag.
35Boctor, Emad, M. et al., "Robotically assisted intraoperative ultrasound with application to ablative therapy of liver cancer," Medical Imaging:Visualization, Image Guided Procedures, and Display, 2003, pp. 281-291, vol. 5029, SPIE.
36Boctor, Emad, M. et al., "Tracked 3D ultrasound in radio-frequency liver ablation," in Medical Imaging 2003:Ultrasonic Imaging and Signal Processing, 2003, pp. 174-182, vol. 5035, SPIE.
37Borovoi, A.V., "Stability of a manipulator with force feedback," Izv. AN SSSR Mekhanika Tverdogo Teal, 1990, pp. 37-45, vol. 25-Issue 1, Allerton Press, Inc.
38Boudet,Sylvie et al., "An Integrated Robotics and Medical Control Device to Quantify Atheromatous Plaques: Experiments on the Arteries of a Patient," Proc of IEE/RSH International Conference on Intelligent Robots and Systems, 1997, pp. 1533-1538, vol. 3.
39Brown, Myron M. et al., "Advances in Computational Stereo," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2003, pp. 993-1008, vol. 25 Issue, IEEE.
40Burdea, Grigore et al., "Dextrous Telerobotics with Force Feedback-an overview. Part 2: Control and Implementation," Robotica, 1991, pp. 291-298, vol. 9.
41Burschka, Darius et al., "Navigating Inner Space: 3-D Assistance for Minimally Invasive Surgery," Robotics and Autonomous Systems, 2005, pp. 5-26, vol. 52-Issue 1, Elsevier.
42Burschka, Darius et al., "Principle and Practice of Real-Time Visual Tracking for Navigation and Mapping," IEEE Workshop on Robotic Sensing: Robotics in the Automotive Industry, 2004, pp. 1-8, IEEE.
43Burschka, Darius et al., "Scale-Invariant Registration of Monocular Endoscopic Images to CT-Scans for Sinus Surgery," Med Image Anal, 2004, pp. 413-421, vol. 2, Springer-Verlag.
44Burschka, Darius et al., "Scale-Invariant Registration of Monocular Stereo Images to 3D Surface Models," IEEE Int. Conf. on Robots and Systems, 2004, pp. 2581-2586, vol. 3, IEEE.
45Bzostek, Andrew et al., "A Testbed System for Robotically Assisted Percutaneous Pattern Therapy," Medical Image Computing and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1999, pp. 1098-1107, vol. 1679, Springer.
46Bzostek, Andrew et al., "An automated system for precise percutaneous access of the renal collecting system," Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1997, pp. 299-308, vol. 1205, Springer-Verlag.
47Bzostek, Andrew, "Computer-Integrated needle therapy systems: Implementation and Analysis," Computer Science, 2005, 379 pages.
48Bzostek, Andrew, "Image Guided Percutaneous Pattern Placement in Soft Tissue," The Johns Hopkins University Dept. of Computer Science: Baltimore, 1997, pp. 2007-01-2007-22.
49Cadeddu, Jeffrey A. et al., "A Robotic System for Percutaneous Renal Access," The Journal of Urology, 1997, pp. 1589-1593, vol. 158-Issue 4.
50Cadeddu, Jeffrey et al., "A robotic system for percutaneous renal access incorporating a remote center of motion design," Journal of Endourolog, 1998, S237, vol. 12.
51Cannon, Jeremy W. et al., "Real-time three-dimensional ultrasound for guiding surgical tasks," Computer Aided Surgery, 2003, pp. 82-90, vol. 8-No. 2, John Wiley & Sons.
52Cao, Caroline L., et al., "Task and motion analysis in endoscopic surgery," Submitted for Fifth Annual Symposium on Haptic Interfaces for Virtual Environment and Teloperator Systems for the Winter Meeting of ASME, 1996, pp. 1-32.
53Carr, J., "Surface reconstruction in 3D medical imaging," PhD Thesis, University of Canterbury, Christchurch, New Zealand, 1996, 223 Pages.
54Cash, David M. et al., "Incorporation of a laser range scanner into an image-guided surgical system," The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 269-280, vol. 5029.
55Chang, Jun Keun et al., "Intravascular micro active catheter for minimal invasive surgery," 1st Annual International Conference on Microtechnologies in Medicine and Biology, 2000, pp. 243-246.
56Chen, Homer H. "A Screw Motion Approach to Uniqueness Analysis of Head-Eye Geometry," Computer Vision and Pattern Recognition, 1991, pp. 145-151, IEEE.
57Chinzei, Kiyoyuki et al., "MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study," in Proceedings of Third International Conference on Medical Imaging and Computer Assisted Surgery (MICCAI), 2000, pp. 921-930, vol. 1935, Springer-Verlag.
58Choti, Michael A. et al., "Trends in Long Term Survival Following Liver Resection for Hepatic Colorectal Metastases," Ana Surg, 2002, pp. 759-766, vol. 235-No. 6, Lippincott Williams & Wilkins.
59Choti, Michael A., "Hepatic Radiofrequency Ablation," Cancer Journal, 2000, pp. S291-S292, vol. 6-issue 4, Jones and Bartlett.
60Choti, Michael A., "Surgical Management of Hepatocellular Carcinoma: Resection and Ablation," Journal of Vascular and Interventional Radiology, 2002, pp. S197-S203, vol. 13-No. 9.
61Christensen, B. et al., "Model based sensor directed remediation of underground storage tanks," International Conf. on Robotics and Automation, Sacramento, CA, Apr. 1991, pp. 1377-1383, vol. 2. IEEE.
62Christoforou, E.G. et al., "Robotic Arm for Magnetic Resonance Imaging Guided Interventions," 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Feb. 20-22, 2006, pp. 911-916.
63Chung, Mathew et al., "Laparascopic Radiofrequency Ablation of Unresectable Hepatic Malignancies," Surg Endosc, 2001, pp. 1020-1026, vol. 15-No. 9, Springer-Verlag.
64Cleary, Kevin et al., "State of the Art in Surgical Robotics:Clinical Applications and Technology Challenges," Computer Aided Surgery, 2001 [retrieved on Feb. 24, 2002], pp. 1-26.
65Cleary, Kevin et al., "State of the art surgical robotics clinical applications and technology challenges," Computer Aided Surgery, 2001, pp. 312-328, vol. 6; Part 6, John Wiley & Sons.
66Cleary,K. et al., "Robotically-assisted spine nerve blocks," Radiology, 2001, 1 page, vol. 221-No. 618.
67Cohn, Michael C., "Medical Robotics," http://www-bsac.eecs.berkeley.edu/ , 1996, pp. 1-8 and 4.
68Colgate, Edward, J., "Power and Impedance Scaling in Bilateral Manipulation," IEEE International Conference on Robotics and Automation, Sacramento, California, Apr. 1991, pp. 2292-2297, vol. 3, IEEE.
69D'Angelica M., "Staging Laparoscopy for Potentially Respectable Noncolorectal," Ann Surg Oncol, 2002, pp. 204-209, vol. 9-No. 2, Lippincott Williams & Wilkins.
70Daniilidis, Konstantinos, Hand-Eye Calibration Using Dual Quaternions, Int. J. of Robotics Research, 2000, pp. 286-298, vol. 19-No. 3, Sage Publications, Inc.
71Davies, Brain L. et al., "A Robotic system for tkr surgery," Proceedings of 3rd Annual North American Program on Computer Assisted Orthopaedic Surgery (CAOS USA), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,published in Computer Aided Surgery, Jun. 17-19, 1999, p. 339, vol. 4-Iss. 6.
72Davies, S. C.et al., "Ultrasound quantitaion of respiratory organ motion in the upper abdomen," British Journal of Radiology, 1994, pp. 1096-1102, vol. 37-Iss. 803.
73De Cunha, D. et al., The MIDSTEP System for Ultrasound guided Remote Telesurgery, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, pp. 1266-1269, vol. 3-No. 29, IEEE.
74Debus, Thomas et al., "Multichannel Vibrotactile Display for Sensory Substitution During Teleoperation," Proc. SPIE Telemanipulator and Telepresence Technologies VIII, 2001, pp. 42-49, vol. 4570, SPIE.
75Degoulange, E. et al., "HIPPOCRATE: an intrinsically safe robot for medical applications," IEEE/RSH International Conference on Intelligent Biomedicine, 1998, pp. 959-964, vol. 2, IEEE.
76Delgorge, Cecile et al., "A Tele-Operated Mobile Ultrasound Scanner Using a Light-Weight Robo," IEEE Transactions on Information Technology in Biomedicine, 2005, pp. 50-58, vol. 9 No. 1, IEEE.
77Dewan, Maneesh et al., "Vision-Based Assistance for Ophthalmic Micro-Surgery," Proceedings of Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2004, pp. 49-57, vol. 2, Springer-Verlag.
78Dodds, Zachary et al., "A hierarchical architecture for vision-based robotic manipulation tasks," in Proceedings of the International Conference on Vision Systems, 1999, pp. 312-330, vol. 542, Springer-Verlag.
79Doggett, Stephen W., "Image Registered Real Time Intra-Operative Treatment Planning: Permanent Seed Brachytherapy," 2000, pp. 4.
80Dolan, J.M. et al., "A Robot in an Operating Room: A Bull in a China Shop," 1987, pp. 1096-1097, vol. 2.
81Elder, Matthew C. et al., "Specifying user interfaces for safety critical medical systems," Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Nov. 1995, pp. 148-155.
82Eldridge, B. et al., "A Remote Center of Motion Robotic Arm for Computer Assisted Surgery," Robotica, 1996, pp. 103-109, vol. 14 Issue 1.
83Ellsmere, James et al., "A navigation system for augmenting laparoscopic ultrasound," Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2003, pp. 184-191, Springer.
84Fattal, Lischinsk, "Variational Classification for Visualization of 3D Ultrasound Data," Proceedings of the conference on Visualization, 2001, pp. 403-410, IEEE Computer Society.
85Fenster, Aaron, et al., "3-D Ultrasound Imaging:A Review," IEEE Engineering and Medicine and Biology Magazine, Nov.-Dec. 1996, pp. 41-51, vol. 15-Issue 6, IEEE.
86Fenster, Aaron, et al., "Three-dimensional ultrasound imaging of the prostate," SPIE International Symposium on Medical Imaging,San Diego, California,Published in SPIE: Medical Physics, Feb. 20-26, 1999, pp. 2-11, vol. 3859, SPIE.
87Fichtinger, Gabor et al., "Robotically Assisted Percutaneous Local Therapy and Biopsy," 10th International Conference of Advance Robotics, 2001, pp. 133-151, IEEE.
88Fichtinger, Gabor et al., "Surgical CAD/CAM and its application for robotically assisted percutaneous procedures," 30th Applied Imagery Pattern Recognition Workshop (AIPR), 2001, pp. 3-8, IEEE.
89Fichtinger, Gabor et al., "System for Robotically Assisted Prostate Biopsy and Therapy With intraOperative CT Guidance," Journal of Academic Radiology, 2002, pp. 60-74, vol. 9 No. 1, Elsevier.
90Fichtinger, Gabor et al., "Transrectal prostate biopsy inside closed MRI scanner with remote actuation under real-time image guidance," Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2002, pp. 91-98, vol. 2488, Springer Verlag.
91Fisher, Scott S., "Virtual interface environment," IEEE/A1AA 7th Digital Avionics Systems Conference Ft. Worth Texas, 1986, pp. 346-350, IEEE.
92Frantz D.D et al., "Accuracy assessment protocols for electromagnetic tracking systems," Physics in Medicine and Biology, 2003, pp. 2241-2251, Issue 48.
93Fu, K.S. et al., "Robotics: control, sensing, vision, and intelligence," 1987, pp. 12-76 and 201-265, Ch. 2 & 5, McGraw-Hill Book Company.
94Fuchs, Henry et al., "Augmented Reality Visualization for Laparoscopic Surgery," Medical Image Computing and Computer-Assisted Intervention, 1998, pp. 934-943, vol. 1496, Springer-Verlag.
95Fukuda, Toshio et al., "A new method of master-slave type of teleoperation for a micro-manipulator system," IEEE Microrobots and Teleoperations Workshop, 1987, 5 pages, IEEE.
96Funda, Janez et al., "Comparison of two manipulator designs for laparoscopic surgery," SPIE International Symposium on Optical Tools for Manufacturing and Advanced Automation, 1994, pp. 172-183, vol. 2351, Telemanipulator and Telepresence Technologies.
97Funda, Janez et al., "Constrained Cartesian Motion Control for Teleoperated Surgical Robots," IEEE Transactions on Robotics and Automation, IEEE, Jun. 1996, vol. 12, No. 3, pp. 453-465.
98Funda, Janez et al., "Control and evaluation of a 7-axis surgical robot for laparoscopy," IEEE Int. Conf. on Robotics and Automation, 1995, pp. 1477-1484, vol. 2, IEEE.
99Funda, Janez et al., "Image-Guided Command and Control of a Surgical Robot," Proc. Medicine Meets Virtual Reality II, 1994, pp. 52-57.
100Funda, Janez et al., "Optimal Motion Control for Teleoperated Surgical Robots," Intl. Symp. on Optical Tools for Manuf. & Adv Autom,Telemanipulator Technology and Space Telerobotics, 1993, pp. 211-222, vol. 2057, SPIE.
101Funda, Janez, "An experimental user interface for an interactive surgical robot," In 1st International Symposium on Medical Robotics and Computer Assisted Surgery (MRCAS 94), Pittsburgh, 1994, pp. 196-201, 203.
102Furuta, Katsuhisa et al., "Master slave manipulator based on virtual internal model following control concept," IEEE Intl. Conference on Robotics and Automation, 1987, pp. 567-572, vol. 1, IEEE.
103Ganssle J.G.,, "A Guide to Debouncing", The Ganssle Group, Jun. 2008, 26 pages.
104Garrett, William F. et al., "Real-Time Incremental Visualization of Dynamic Ultrasound Volumes Using Parallel BSP Trees," IEEE Proceedings Visualization, 1996, pp. 235-240, 490, IEEE.
105Gee, Andrew et al., "Processing and visualizing three-dimensional ultrasound data," Journal of Radiology, 2004, pp. 186-193, vol. 77.
106Gelb, Arthur et al., "Applied Optimal Estimation," 1974, 4 Pages Total.
107Gennari, G. et al., "Probabilistic data association methods in visual tracking of groups," IEEE Conference on Computer Vision and Pattern Recognition, 2004, pp. I-790-1-797, vol. 1-issue. 27, IEEE.
108Gigot, Jean-Francois et al., "Laparoscopic Liver Resection for Malignant Liver Tumors Prclimary Results of a Multicenter European Study," Ann Surg, 2002, pp. 90-97, vol. 236-issue 1.
109Gonzales, Adriana Vilchis et al., "A System for Robotic Tele-echography," Medical Image Computing and Computer-Assisted Intervention, 2001, pp. 326-334, vol. 2208, Springer.
110Green, Philip, S. et al., "Mobile telepresence surgery," 2nd Annual Intl Symposium on Med. Robotics and Computer Assisted Surgery, Maryland Nov. 1995, pp. 97-103.
111Grimson, W. Eric et al., "Automated Registration for Enhanced Reality Visualization in Surgery," 1st International Symposium on Medical Robotic and Computer Assisted Surgery (MRCAS), Pittsburgh, 1994, pp. 82-89.
112Grimson, W.E.L., et al., "An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization," IEEE Transactions on Medical Imaging, vol. 15, No. 2, Apr. 1996, pp. 129-140.
113Hager Gregory D. et al., "Multiple Kernel Tracking with SSD," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004), 2004, pp. I-790-I-797, vol. 1-issue 27, IEEE.
114Hager, Gregory D. et al., "Efficient Region Tracking With Parametric Models of Geometry and Illumination," IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, pp. 1025-1039, vol. 20-issue. 10, IEEE.
115Hager, Gregory D. et al., "The XVision System: A Portable Substrate for Real Time Vision Applications," 1998, pp. 23-37, vol. 69-issue 1.
116Hager, Gregory D., "A Modular System for Robust Hand Eye Coordination Using Feedback from Stereo Vision," IEEE Transactions on Robotics and Automation, 1997, pp. 582-595, vol. 13-issue(4), IEEE.
117Hannaford, Blake et al., "Experimental and simulation studies of hard contact in force reflecting teleoperation," IEEE International Conference on Robotics and Automation Proceedings, 1988, pp. 584-589, vol. 1, IEEE.
118Hannaford, Blake et al., "Performance Evaluation of a Six-Axis Generalized Force-Reflecting Teleoperator," IEEE Transactions on Systems, Man, and Cybernetics, 1991, pp. 620-633, vol. 21-No. 3, IEEE.
119Harris, S.J. et al., "A robotic procedure for transurethral resection of the prostate," Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, 1995, pp. 264-271.
120Harris, S.J. et al., "Experiences with Robotic Systems for Knee Surgery," First Joint Conference of CVRMed and MRCAS. Mar. 19-22, 1997, Grenoble, France; Springer, 1997, pp. 757-766.
121Herline, Alan J. et al., "Image-Guided Surgery: Preliminary Feasibility Studies of Frameless Stereotactic Liver Surgery," Archives of Surgery, 1999, pp. 644-650, vol. 134-No. 6.
122Herline, Alan J. et al., "Surface Registration for Use in Interactive," Image-Guided Liver Surgery, Computer Aided Surgery, 2000, pp. 11-17, vol. 5-No. 2.
123Herman, Barry C., "On the Role of Three Dimensional Visualization for Surgical Applications in Interactive Human Machine Systems," Masters of Science Thesis in Computer Science, The Johns Hopkins University, Baltimore, 2005, 216 pages.
124Herman, Barry C., et al, "Telerobotic surgery creates opportunity for augmented reality surgery," Abstract No. T1F2, Telemedicine Journal and E-Health, vol. 11, Issue 2, p. 203, Apr. 2005.
125Herper Matthew, "Watch a $1.5 Million Surgical Robot Play a Board Game," Forbes. Apr. 12, 2011. 2 pages, Online [Available: http://www.forbes.com/sites/matthewherper/2011/04/12/watch-a-1-5-million-surgical-robot-play-a-board-game/#587224f011f5] Accessed Jun. 7, 2016.
126Hespanha J.P. et al., "What Tasks Can Be Performed with an Uncalibrated Stereo Vision System", International Journal of Computer Vision, 1999, pp. 65-85, vol. 35-issue. (1).
127Hill, John W., "Telepresence surgery demonstration system," Robotics and Automation, 1994, pp. 2302-2307, vol. 3, SRI International.
128Ho, S. C.et al., "Robot Assisted Knee Surgery," IEEE Engineering in Medicine and Biology Magazine, 1995, pp. 292-300, vol. 14-Iss. 3, IEEE.
129Hong, Jae-Sung et al., "A Motion Adaptable Needle Placement Instrument Based on Tumor Specific Ultrasonic Image Segmentation," Fifth International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI '02, Tokyo, Japan, Jul. 2002, pp. 122-129.
130Horn, Berthold K.P., "Closed-form solution of absolute orientation using unit quaternions," Journal of the Optical Society of America A, vol. 4, No. 4, pp. 629-642, Apr. 1987.
131Hunter, Ian W. et al., "A teleoperated microsurgical robot and associated virtual environment for eye surgery," Presence: Teleoperators and Virtual Environments, 1993, pp. 265-280, vol. 2-No. 4, MIT Press.
132Hunter, Ian W. et al., "Ophthalmic microsurgical robot and associated virtual environment," Comput. Biol. Med, 1995, vol. 25, Issue 2, pp. 173-182, Pergamon.
133Hurteau et al., "Laparoscopic surgery assisted by a robotic cameraman: Concept and Experimental results," IEEE International Conference on Robotics and Automation, May 8-13, 1994, pp. 2286-2289, vol. 3, IEEE.
134Hutchinson, Seth et al., "A Tutorial Visual Servo Control," IEEE Transactions on Robotics and Automation, 1996, pp. 651-670, vol. 12 issue.5, IEEE.
135IEEE Systems and Software Engineering-Recommended Practice for Architectural Description of Software-Intensive Systems, IEEE Std 1471-2000, 34 pages, First Edition, Jul. 15, 2007.
136Inoue, Masao; "Six-Axis bilateral control of an articulated slave manipulator using a Cartesian master manipulator," Advanced robotics, 1990, pp. 139-150, vol. 4-Issue 2, Robotic society of Japan.
137International Preliminary Report on Patentability for Application No. PCT/US09/56078, mailed on Sep. 3, 2010, 19 pages.
138International Search Report and Written Opinion for Application No. PCT/US2012/064379, mailed on Mar. 29, 2013, 12 pages.
139International Search Report and Written Opinion for Application No. PCT/US2012/064400, mailed on Mar. 27, 2013, 10 pages.
140Intuitive Surgical, Inc., "Intuitive Surgical daVinci API v5.0 Reference Manual," generated Jul. 17, 2006, 149 pages.
141Jackson, Bernie G. et al., "Force Feedback and Medical Simulation," Interactive Technology and the New Paradigm for Healthcare, Morgan et al. (Eds ), 1995, pp. 147-151, vol. 24, IOS Press and Ohms.
142Jain, Ameet Kumar et al., "Understanding Bone Responses in B-mode Ultrasound Images and Automatic Bone Surface Extraction using a BayesianProbabilistic Framework," SPIE Medical Imaging, 2004, pp. 131-142, vol. 5373.
143Johns Hopkins University and Intuitive Surgical, Inc., "System Requirements for the Surgical Assistant Workstation," Rev. 2, Jan. 29, 2007, 17 pages.
144Jones, Daniel B. et al., "Next generation 3D videosystems may improve laprascopic task performance," Interactive Technology and the New Paradigm for Healthcare, 1995, pp. 152-160, Ch 25.
145Joskowicz, Leo et al., "Computers in Imaging and Guided Surgery," Computing in Science and Engineering, 2001, pp. 65-72, vol. 3-Issue: 5, IEEE.
146Jurie, Frederic et al., "Hyperplane Approximation for Template Matching," IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI), 2002, pp. 996-1000, vol. 24-Issue 7, IEEE.
147Kane, Robert A., "Intraoperative Ultrasonography, History, Current State of the Art, and Future Directions," J Ultrasound Med, 2004, pp. 1407-1420, vol. 23.
148Kaplan, Irving, "Minimizing Rectal and Urinary Complications in Prostate Brachytherapy," Journal of Endourology, 2000, pp. 381-383.
149Kapoor, Ankur and Russell H. Taylor, "A constrained optimization approach to virtual fixtures for multi-handed tasks," 2008 International Conference on Robotics and Automation (ICRA 2008), May 19-23, 2008, Pasadena, California, pp. 3401-3406.
150Kapoor, Ankur et al., "Constrained Control for Surgical Assistant Robots," 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, Florida, May 15-19, 2006, pp. 231-236.
151Kapoor, Ankur et al., "Simple Biomanipulation Tasks with a Steady Hand Cooperative Manipulator," In Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Intervention-MICCAI,, Lecture Notes in Computer Science, 2003, vol. 1, Springer.
152Kapoor, Ankur et al., "Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DOF Robot," Proceedings, 12th International Conference on Advanced Robotics, 2005, pp. 452-459.
153Kapoor, Ankur, Motion Constrained Control of Robots for Dexterous Surgical Tasks, Ph.D. Dissertation, The Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, Sep. 2007, 351 pages.
154Kato H., et al. "Virtual Object Manipulation on a Table-Top AR Environment," Hiroshima City University, 2000, 9 pages.
155Kato H., et al., "The Effects of Spatial Cues in Augmented Reality Video Conferencing," Hiroshima City University, Aug. 2001, 4 pages.
156Kavoussi, Louis R., "Laparoscopic donor nephrectomy," Kidney International, 2000, pp. 2175-2186, vol. 57.
157Kazanzides, Peter et al., "A cooperatively-controlled image guided robot system for skull base surgery," Medicine Meets Virtual Reality 16 (MMVR 16) Conference, Jan. 30-Feb. 1, 2008, Long Beach, California, J.D. Westwood et al., eds., IOS Press, 2008, pp. 198-203.
158Kazanzides, Peter et al., "Force Sensing and Control for a Surgical Robot," Int. Conference on Robotics and Automation, May 1992, Nice, France; pp. 612-617, vol. 1, IEEE.
159Kazerooni, H. , "Human Extenders," ASME J. Dynamic Systems, Measurements and Control, 1993, pp. 281-290, vol. 115 No. 2(B).
160Kazerooni, H. et al., "The Dynamics and Control of a Haptic Interface Device," IEEE Transactions on Robotics and Automation, 1994, pp. 453-464, vol. 10-Issue 4, IEEE.
161Kazerooni, H., "Design and analysis of the statically balanced direct-drive robot manipulator," Robotics and Computer-Integrated Manufacturing, 1989, pp. 287-293, vol. 6, Issue 4.
162Kazerooni, H., "Human/Robot Interaction via the Transfer of Power and Information Signals Part I: Dynamics and Control Analysis," IEEE International Conference on Robotics and Automation, 1989, pp. 1632-1640, IEEE.
163Kilmer, R. D. et al., "Watchdog safety computer design and implementation," RI/SME Robots 8 Conference, Jun. 1984, pp. 101-117.
164Kim, Won S. et al., "Active compliance and damping in telemanipulator control," Jet Propulsion Laboratory New technology Report, 1991, pp. 1-14a, vol. 15-Issue 4, JPL & NASA Case No. NP0-1796917466, Item 40.
165Kitagawa, Masaya et al., "Effect of Sensory Substitution on Suture Manipulation Forces for Surgical Teleoperation," 12th Annual Medicine Meets Virtual Reality Conference, 2005, 8 pages.
166Koizumi, Naoshi et al., "Development of Three-Dimensional Endoscopic Ultrasound System with Optical Tracking," Medical Image Computing and Computer-Assisted Intervention-MICCAI '02, Tokyo, 2002, pp. 60-65, vol. 2488, Springer-Verlag.
167Koizumi, Norihiro et al., "Continuous Path Controller of Slave Manipulator in Remote Ultrasound Diagnostic System," Int. Conference on Robotics and Automation (ICRA 2002), 2002, pp. 3368-3373, vol. 4, IEEE.
168Komada, Satoshi et al., "Bilateral robot hand based on estimated force feedback," IEEE Proceedings IECON 87 Cambridge MA, Nov. 3-6, 1987, pp. 602-607, vol. 2, IEEE.
169Kon, Ryan et al., "An open-source ultrasound calibration toolkit," Medical Imaging Ultrasonic Imaging and Signal Processing, 2005, pp. 516-523, vol. 5750, SPIE.
170Korein James U. et al., "A Configurable System for Automation Programming and Control," IEEE Conf. on Robotics and Automation. San Francisco, 1986, pp. 1871-1877, vol. 3, IEEE.
171Kosugi, Yukio et al., "An articulated neurosurgical navigation system using MRI and CT Images," IEEE Transactions on Biomedical Engineering, 1988, pp. 147-152, vol. 35-Issue 2, IEEE.
172Kragic D. et al., "Human-Machine Collaborative Systems for Microsurgical Applications," International Symposium on Robotics Research, 2005, pp. 731-741, vol. 24-Issue 9, Sage Publications.
173Kruchten, Philippe B., "The 4+1 View Model of Architecture," IEEE Software, vol. 12, Issue 6, pp. 42-50, Nov. 1995.
174Krupa, A. et al., "Automatic 3-D Positioning of Surgical Instruments during Laparoscopic Surgery Using Automatic Visual Feedback," Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention-Part , Lecture Notes in Computer Science, 2002, pp. 9-16, vol. 2488, Springer Verlag.
175Kumar, Rajesh et al., "An Augmentation System for Fine Manipulation," Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2000, pp. 956-964, vol. 1935, Springer Verlang.
176Kumar, Rajesh et al., "Application of Task-Level Augmentation for Cooperative Fine Manipulation Tasks in Surgery," Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2001, pp. 1417-1418, vol. 2208, Springer Verlang.
177Kumar, Rajesh et al., "Experiments with a Steady Hand Robot in Constrained Compliant Motion and Path Following", 1999, pp. 92-97, IEEE.
178Kumar, Rajesh et al., "Preliminary Experiments in Cooperative Human/Robot Force Control for Robot Assisted Microsurgical Manipulation," Conference on Robotics and Automation, 2000, pp. 610-617, vol. 1, IEEE.
179Kumar, Rajesh et al., "Preliminary experiments in robot/human microinjection," IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 3186-3191, vol. 3, IEEE.
180Kumar, Rajesh, "An Augmented Steady Hand System for Precise Micromanipulation," 2001, 109 pages.
181Kwoh, Yik, San et al., "A Robot With Improved Absolute Positioning Accuracy for CT Guided Stereotactic Brain Surgery," IEEE Transactions on Biomedical Engineering, Feb. 1988, pp. 153-160, vol. 35-Issue 2, IEEE.
182Lacroute, Philippe et al., "The VolPack Volume Rendering Library," 2003, pp. 4.
183Lacroute, Philippe G., "Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation PhD Thesis," Computer Science, Stanford, California, 1995, 236 Pages.
184Lang, Samuel J., Xvision 2-A Framework for Dynamic Vision. Masters Thesis, Computer Science, Johns Hopkins University, Baltimore, 2001, pp. 1-49.
185Lange, Thomas et al., Augmenting Intraoperative 3D Ultrasound with Preoperative Models for Navigation in Liver Surgery, Medical Image Computing and Computer-Assisted Interventions, 2004, pp. 534-541, vol. 3217, Springer Verlag.
186Lau, William W. et al., "Stereo-Based Endoscopic Tracking of Cardiac Surface Deformation," Proceedings of Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, 2004, pp. 494-501, vol. 2, Springer Verlag.
187Lavonius, Maija I. et al., "Staging of Gastric Cancer: A Study with Spiral Computed Tomography,Ultrasonography, Laparoscopy, and Laparoscopic Ultrasonography," Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002, pp. 77-81, vol. 12-No. 2, Lippincott Williams & Wilkins, Inc.
188Lawson, Charles L. et al., "Linear least squares with linear inequality constraints Solving Least Squares Problems," 1974, pp. 158-173, Prentice Hall Inc.
189Lazarevic, Zoran, "Feasibility of a Stewart Platform with Fixed Actuators as a Platform for CABG Surgery Device," 1997, 45 pages, Master's Thesis Columbia University Department of Bioengineering.
190Lee Jr, Fred T. et al., "CT-monitored percutaneous cryoablation in a pig liver model," Radiology, 1999, pp. 687-692, vol. 211(3).
191Leven, Joshua et al. "DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability," Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, J. Duncan et al. Eds., Palm Spring, Springer Verlag, 2005, vol. 3749, pp. 811-818.
192Leven, Joshua, "A Telerobotic Surgical System With Integrated Robot-Assisted Laparoscopic Ultrasound Capability," Thesis for Master of Science in Engineering in Computer Science, The Johns Hopkins University, Baltimore, Maryland, May 2005, 63 pages.
193Levoy, Marc, "Display of Surfaces from Volume Data," IEEE Computer Graphics and Applications, 1988, pp. 29-37, vol. 8-Iss. 3, IEEE.
194Li, Ming and Russell H. Taylor, "Performance of surgical robots with automatically generated spatial virtual fixtures," IEEE International Conference on Robotics and Automation, Barcelona, Spain, Apr. 2005, pp. 217-222.
195Li, Ming and Russell H. Taylor, "Spatial Motion Constraints in Medical Robots Using Virtual Fixtures Generated by Anatomy," IEEE International Conference on Robotics and Automation, New Orleans, Apr. 2004, pp. 1270-1275.
196Li, Ming et al, "A Constrained Optimization Approach to Virtual Fixtures," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, Alberta, Canada, Aug. 2-6, 2005, pp. 1408-1413.
197Li, Ming et al., "Optimal Robot Control for 3D Virtual Fixture inConstrained ENT Surgery," Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Intervention-MICCAI, Lecture Notes in Computer Science, 2003, pp. 165-172, vol. I, Springer Verlag.
198Li, Ming et al., "Recognition of Operator Motions for Real-Time Assistance using Virtual Fixtures," IEEE, Haptics 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Mar. 22-23, 2003, pp. 125-131, IEEE.
199Li, Ming, "Intelligent Robotic Surgical Assistance for Sinus Surgery," Ph.D. Dissertation, Computer Science, Johns Hopkins University, Baltimore, 2005, 229 pages.
200Loser, Michael H. et al., "A New Robotic System for Visually Controlled Percutaneous Interventions under CT Fluoroscopy," Medical Image Computing and Computer-Assisted Interventions,Lecture Notes in Computer Science, 2000, pp. 887-896, vol. 1935, Springer Verlag.
201Loser, Michael H. et al., "Visual servoing for automatic and uncalibrated percutaneous procedures," SPIE Medical Imaging, 2000, pp. 270-281, vol. 3976, SPIE.
202Madhani, Akhil J., "Design of Teleoperated Surgical Instruments for Minimally Invasive Surgery," Feb. 1998, pp. 1-251.
203Maehara, S. et al., "Laparoscopy-Assisted Hepatectomy Using the Endoclose," Surg Endosc, 2002, pp. 1362-1365, vol. 16(9), Springer Verlag.
204Maier, Georg, E. et al., "A Dynamically Configurable General Purpose Automation Controller," Proceedings of IFAC/IFIP Symp. on Software for Computer Control, 1986, pp. 47-52, Pergamon Press.
205Mala, T. et al., "A Comparative Study of the Short-Term Outcome Following Open and Laparoscopic Liver Resection of Colorectal Metastases," Surg Endosc, 2002, pp. 1059-1063, vol. 16(7), Springer Verlag.
206Marayong, Panadda et al., "Spatial Motion Constraints: Theory and Demonstrations for Robot Guidance Using Virtual Fixtures," IEEE International Conference on Robotics and Automation Robotics and Automation, 2003, pp. 1954-1959, vol. 2, No. 14-19, IEEE.
207Marescaux, Jadques and Francesco Rubino, "Virtual Operative Fields for Surgical Simulation," Chapter 4 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 26-31.
208Masamune K., et al., "Development of a MRI Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery," Journal of Image Guided Surgery, 1995, vol. 1, pp. 242-248.
209Masamune Ken et al., "Development of CT-PAKY frame system-CT image guided needle puncturing manipulator and a single slice registration for urological surgery," Proc. 8th annual meeting of Japanese Society for Computer Aided Surgery (JSCAS), 1999, pp. 89-90.
210Masamune, Ken et al., "Development of a MRI Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery," Image Guid Surg, 1995, pp. 165-172.
211Masamune, Ken et al., "System for Robotically Assisted Percutaneous Procedures With Computed Tomography Guidance," Journal of Computer-Assisted Surgery, 2001, pp. 370-383, vol. 6-No. 6, Wiley-Liss, Inc.
212Masamune, Ken H. et al., "A Newly Developed Stereotactic Robot with Detachable Drive for Neurosurgery," 1st International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI,Cambridge, Massachusetts; Springer, Oct. 11-13, 1998, pp. 215-222, vol. 1496.
213Massie, Thomas H. et al., "The PHANTOM Haptic Interface: A Device for Probing Virtual Objects," Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 1994, 7 pages.
214Mayer, Hermann et al., "Skill Transfer and Learning by Demonstration in a Realistic Scenario of Laparoscopic Surgery," International Conference on Humanoids, 2003, 17 pages, IEEE.
215Mayer, Hermann et al., "The Endo [PA]R System for Minimally Invasive Robotic Surgery," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, pp. 3637-3642, vol. 4, IEEE.
216Megali, Giusepp et al., "A Computer-Assisted Robotic Ultrasound-Guided Biopsy System for Video-Assisted Surgery," Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2001, pp. 343-350, vol. 2208, Springer-Verlag.
217Menack, M. et al., "Staging of pancreatic and ampullary cancers for resectability using laparoscopy with laparoscopic ultrasound," Surg Endosc, 2001, pp. 1129-1134, vol. 15-No. 10, Springer-Verlag.
218Menon, Mani, "Vattikuti Institute prostatectomy, a technique of robotic radical prostatectomy for management of localized carcinoma of the prostate: experience of over 1100 cases," Urol Clin N Am, 2004, pp. 701-717, vol. 31.
219Merola, Stephen et al., "Comparison of Laparoscopic Colectomy With and Without the Aid of a Robotic Camera Holder," Surg Laparosc Endosc Percutan Tech, 2002, pp. 45-61, vol. 12-No. 1, Lippincott Williams & Wilkins, Inc.
220Migga, Michael I. et al., "Intraoperative Registration of the Liver for Image-Guided Surgery System," The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 350-359, vol. 5029.
221Mitsuishi, Mamoru et al., "A tele-micro-surgery system with co-located view and operation points and a rotational-force-feedback-free master manipulator," 2nd Annual Intl. Symposium on Medical robotics and Computer Assisted Surgery Baltimore Maryland, Nov. 4-7, 1995, pp. 111-118.
222Mitsuishi, Mamoru et al., "Remote Ultrasound Diagnostic System," Conf. on Robotics and Automation, 2001, pp. 1567-1574, vol. 2, IEEE.
223Mourgues, Fabienet al., "Flexible Calibrations of Actuated Stereoscopic Endoscope for Overlay in Robot Assisted Surgery," Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention-Part I, Lecture Notes in Computer Science, 2002, pp. 25-34, vol. 2488, Springer-Verlag.
224Muratore, Diane M. et al., "Beam Calibration Without a Phantom for Creating a 3D Free-hand Ultrasound System," Ultrasound in Medicine and Biology, 2001, pp. 1557-1566, vol. 27-No. 11, Elsevier.
225Nakakura, Eric K et al., "Hepatocellular Carcinoma: Current Management Recommendations," Advances on Oncology, 2000, pp. 12-18, vol. 16-No. 2.
226Neisius B. et al., "Robotic manipulator for endoscopic handling of surgical effectors and cameras," 1st Intl. Symposium on Medical Robotics and Computer Assisted Surgery, 1994, pp. 169-176, vol. 2.
227Nelson, Thomas R. et al., "Interactive Acquisition, Analysis, and Visualization of Sonographic Volume Data," International Journal of Imaging Systems and Technology, 1997, pp. 26-37, vol. 8, John Wiley & Sons, Inc.
228Nelson, Thomas, R. et al., "Three-dimensional ultrasound imaging," Ultrasound in Medicine & Biology, 1998, pp. 1243-1270, vol. 24-No. 9, Elsevier.
229NG, W.S. et al., "Robotic Surgery, A First-Hand Experience in Transurethral Resection of the Prostate," IEEE Engineering in Medicine and Biology, Mar. 1993, pp. 120-125, vol. 12-Issue 1, IEEE.
230Novotny Paul M. et al., "Tool Localization in 3D Ultrasound Images," Medical Image Computing and Computer-Assisted Intervention, 2003, pp. 969-970, vol. 2879, Springer.
231Office Action mailed Jan. 26, 2015 for Japanese Application No. 20130186992 filed Sep. 10, 2013, 9 pages.
232Office Action mailed Jan. 28, 2016 for Korean Application No. 10-2011-7006578 filed Mar. 22, 2011, 9 pages.
233Office Action mailed Jun. 12, 2015 for Japanese Application No. 20130186992 filed Sep. 10, 2013, 8 pages.
234Office Action mailed May 1, 2012 for Japanese Application No. 20090518470 filed Jun. 22, 2007, 7 pages.
235Office Action mailed Sep. 3, 2014 for Japanese Application No. JP20120503535 filed Mar. 26, 2010.
236Ohbuchi, Ryutarou et al., "Incremental Volume Reconstruction and Rendering for 3D Ultrasound Imaging," The International Society of Optical Engineering, 1992, pp. 312-323, vol. 1808, SPIE.
237Park, Shinsuk et al., "Virtual Fixtures for Robotic Cardiac Surgery," Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2001, pp. 1419-1420, vol. 2208, Springer-Verlag.
238Patriciu Alexandru et al., "Motion-based robotic instrument targeting under c-arm fluoroscopy," Medical Image Computing and Computer-Assisted Interventions, 2000, pp. 988-998, vol. 1935, Springer.
239Paul, Howard A. et al., "Development of a Surgical Robot for Cementless Total Hip Arthroplasty," Clinical Orthopaedics, Dec. 1992, pp. 57-66, vol. 285.
240PCT/US07/71850 International Search Report and Written Opinion of the International Searching Authority, mailed Feb. 13, 2009, 9 pages.
241PCT/US09/46234 International Search Report and Written Opinion of the International Searching Authority, mailed Sep. 9, 2009, 13 pages.
242PCT/US09/56078 International Search Report and Written Opinion of the International Searching Authority, mailed Jan. 20, 2010, 12 pages.
243PCT/US10/28886 International Search Report and Written Opinion of the International Searching Authority, mailed Jul. 6, 2010, 11 pages.
244PCT/US10/28897 International Search Report and Written Opinion of the International Searching Authority, mailed Jul. 19, 2010, 16 pages.
245PCT/US10/38246 International Search Report and Written Opinion of the International Searching Authority, mailed Sep. 14, 2010, 17 pages.
246PCT/US2011/036109 International Search Report and Written Opinion of the International Searching Authority, mailed Oct. 19, 2011, 16 pages.
247PCT/US2011/036109 Invitation to Pay Additional Fees and Partial International Search Report, mailed Aug. 18, 2011, 5 pages.
248Podnos, Yale, D. et al., "Laparoscopic Ultrasound with Radiofrequency Ablation in Cirrhotic Patients with Hepatocellular Carcinoma," Am Surg, 2001, pp. 1181-1184, vol. 67-No. 12.
249Pose-definition from Merriam Webster Dictionary, 4 pages, [online], [retrieved on Apr. 3, 2015]. Retrieved from the Internet: <URL: http://www.merriam-webster.com/dictonary/pose>.
250Posture-definition from Merriam Webster Dictionary, 4 pages, [online], [retrieved on Apr. 3, 2015]. Retrieved from the Internet: <URL: http://www.merriam-webster.com/dictonary/posture>.
251Poulose P. K et al., "Human vs Robotic Organ Retraction During Laparoscopic Nissen Fundoplication," Surgical Endoscopy, 1999, pp. 461-465, vol. 13, Springer-Verlag.
252Prager Richard et al., "Practical segmentation of 3D ultrasound," In Proceedings of Medical Image Understanding and Analysis, 1999, pp. 161-164.
253Prager Richard et al., "Rapid Calibration for 3D Freehand Ultrasound," Ultrasound in Medicine and Biology, 1998, pp. 855-869, vol. 24-No. 6, Elsevier.
254Prasad Srinivas K. et al., "A Modular 2-DOF Force-Sensing Instrument for Laparoscopic Surgery," Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Intervention-MICCAI,Lecture Notes in Computer Science, 2003, pp. 279-286, vol. I, Springer.
255Prasad, Srinivas K. et al., "A minimally invasive approach to pelvic osteolysis," 2002, in Proc. Computer-Assisted Orthopaedic Surgery (CAOS), pp. 349-350.
256Preising, B. et al., "A Literature Review: Robots in Medicine," IEEE Engineering in Medicine and Biology, 1991, pp. 13-22, 71, vol. 10-Issue 2, IEEE.
257Ramey, Nicholas A. et al., "Evaluation of Registration Techniques in a robotic approach to pelvic osteolysis," International Proceedings of Computer Assisted Orthopaedic Surgery (CAOS), 2004, pp. 26-27.
258Ramey, Nicholas A., "Stereo-Based Direct Surface Tracking with Deformable Parametric Models," 2003, 104 Pages Total.
259Rasmussen, Christopher et al., "Probabilistic data association methods for tracking complex visual objects," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, pp. 560-576, vol. 23, Issue 6, IEEE.
260Ratner, Lloyd E. et al, "Laparoscopic live donor nephrectomy removes disincentives to live donation," Transplantation, 1997, pp. 3402-3403, vol. 29-Issue 8, Elsevier.
261Ratner, Lloyd E. et al., "Laparoscopic live donor nephrectomy," Transplantation, 1995, pp. 1047-1049.
262Rau, Beate, M. eta al., "Is There Additional Information From Laparoscopic Ultrasound in Tumor Staging", Digestive Surgery, 2002, pp. 479-483, vol. 19-No. 6.
263Rockall, Timothy A., "The da Vinci Telerobotic Surgical System," Chapter 8 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 57-60.
264Rohling, Robert et al., "Three-dimensional spatial compounding of ultrasound images," Medical Image Analysis, 1996, pp. 177-193, vol. 1-No. 0.3, Oxford University Press.
265Rohling, Robert N. et al., "Radial basis function interpolation for 3-d ultrasound," CUED/F-INFENG/TR 327, Cambridge University, Jul. 1998, 28 Pages.
266Rosen, Jacob et al., "The BlueDRAGON-A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Viva," Proceedings of the 2002 IEEE International Conference on Robotics 8 Automation, 2002, pp. 1876-1881, IEEE.
267Rosenberg, Louis B., "Human interface hardware for virtual laparoscopic surgery," Proceedings of the Interactive Technology and the New Paradigm for Healthcare, 1995, pp. 322-325, Amsterdam: IOS Press.
268Rosenberg, Louis B., "Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation," IEEE Virtual Reality International Symposium, 1993, pp. 76-82, IEEE.
269Rothbaum Daniel L. et al., "Robot-assisted stapedotomy: micropick fenestration of the stapes footplate," Otolaryngology-Head and NeckSurgery, 2002, pp. 417-426, vol. 127.
270Rothbaum Daniel L. et al., "Task Performance in stapedotomy: Comparison between surgeons of different experience levels," Otolaryngology-Head and Neck Surgery, 2003, pp. 71-77, vol. 128-No. 1.
271Roy, Jaydeep, "Advances in the design, analysis and control of force controlled robots," Master's Thesis, Mechanical Engineering, Johns Hopkins University, Baltimore, 2001, 210 Pages.
272Sakas, Georgios et al., "Extracting surfaces from fuzzy 3D-Ultrasound data," Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, pp. 465-474.
273Salcudean, Septimiu E. et al., "A Robot System for Medical Ultrasound," 9th International Symposium of Robotics Research (ISRR'99), 1999, pp. 195-202.
274Santambrogio, R. et al., "Ultrasound-Guided Interventional Procedures of the Liver During Laparoscopy: Technical Considerations," Surg Endosc, 2002, pp. 349-354, Springer-Verlag.
275Sastry, Shankar et al., "Millirobotics for remote minamally invasive surgery," Proceedings of the Intl. Workshop on Some Critical Issues in Robotics, Singapore, Oct. 2-3, 1995, pp. 81-98.
276Sastry, Shankar, "MilliRobotics in Minimally Invasive Telesurgery," Internet, http://robotics.eecs.berkeley.edu, 1996, 8 pages.
277Sastry, Shankar, http://robotics.eecs.berkeley.edu, Nov. 1, 1995, Total 8 pages.
278Schenker, Paul S. et al., "Development of a Telemanipulator for Dexterity Enhanced Microsurgery," 2nd Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Nov. 4-7, Baltimore, Maryland, 1995, pp. 81-88.
279Schorr, Oliver et al., "Distributed Modular Computer-Integrated Surgical Robotic Systems: Architecture for Intelligent Object Distribution," Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2000, pp. 979-978, vol. 1935, Springer.
280Schreiner, Steve et al., "A system for percutaneous delivery of treatment with a fluoroscopically-guided robot," Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery,Lecture Notes in Computer Science, 1997, pp. 747-756, Springer-Verlag.
281Schweikard, Achim et al., "Motion Planning in Stereotaxic Radiosurgery," IEEE Transactions on Robotics and Automation, 1993, pp. 909-916, vol. 1, IEEE.
282Scott, D.J., "Accuracy and Effectiveness of Laparoscopic vs. Open Hepatic Radiofrequency Ablation," Surg Endosc, 2001, pp. 349-354, vol. 16-No. 2, Springer.
283Shahram, Payandeh, et al., "On Application of Virtual Fixtures as an Aid for Telemanipulation and Training," IEEE 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator systems, Mar. 24-25, 2002, pp. 18-23, IEEE.
284Simaan, Nabil et al., "A Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dextrous Surgical Tool Manipulation," IEEE International Conference on Robotics and Automation, 2004, pp. 351-357, IEEE.
285Simaan, Nabil et al., "High Dexterity Snake-Like Robotic Slaves for Minimally Invasive Telesurgery of the Upper Airway," MICCAI 2004-the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2004, pp. 17-24.
286Solomon, Stephen B. et al., "CT Guided Robotic Needle Biopsy: A Precise Sampling Method Minimizing Radiation Exposure to the Physician, Radiology," 2002, pp. 277-282, vol. 225.
287Solomon, Stephen B. et al., "Robotically Driven Interventions: A Method of Using CT Fluoroscopy without Radiation Exposure to the Physician," Radiology, 2002, pp. 277-282, vol. 225.
288Solus-3D web site: Last updated Jun. 24, 1999; downloaded Jul. 5, 2007.
289Sommer, Graham et al., "Liver tumors: utility of characterization at dual frequency US," Radiology, 1999, pp. 629-636, vol. 211-No. 3.
290Steele, Micah R. et al., "Shared control between human and machine: using a haptic steering wheel to aid in land vehicle guidance," Human Factors and Ergonomics Society 45th Annual Meeting , Minneapolis, Minnesota, 2001, pp. 1671-1675.
291Steen, Erik et al., "Volume Rendering of 3D Medical Ultrasound Data Using Direct Feature Mapping," IEEE Transactions on Medical Imaging, 1994, pp. 517-525, vol. 13-Iss. 3, IEEE.
292Stefansic, James D. et al., "Registration of Physical Space to Laparoscopic Image Space for Use in Minimally Invasive Hepatic Surgery," IEEE Transactions on Medical Imaging, 2000, pp. 1012-1023, vol. 19-No. 10, IEEE.
293Stetten, George D et al., "Overlaying Ultrasound Images on Direct Vision," Journal of Ultrasound in Medicine, 2001, pp. 235-240, vol. 20-No. 3.
294Stewart, Charles V. et al., "The Dual-Bootstrap Iterative Closest Point Algorithm With Application to Retinal Image Registration," IEEE Transactions on Medical Imaging, Nov. 2003, pp. 1379-1394, vol. 22-No. 11, IEEE.
295Stoainovici D., et al., "Robotic Telemanipulation for Percutaneous Renal Access," in 16th World Congress on Endourology, New York City, Sep. 3-6, 1998, Poster Session 17-5, p. S201.
296Stoianovici, Dan et al., "Robotic for Precise Percutaneous Needle Insertion," In Thirteenth Annual Meeting of the Society for Urology and Engineering. San Diego, May 1998, pp. 4.
297Stoianovici, Dan et al., "Robotic Telemanipulation for Percutaneous Renal Access," 16th World Congress on Endourology, 1998, pp. S201.
298Stoianovici, Dan, "A Modular Surgical Robotic System for Image Guided Percutaneous Procedures," Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 404-410, vol. 1496, Springer-Verlag.
299Stoll, Jeff, "Ultrasound-based servoing of manipulators for telesurgery," Telemanipulator and Telepresence Technologies VIII Conference, 2001, pp. 78-85, SPIE.
300Sublett, John W. et al. "Design and implementation of a digital teleultrasound system for real-time remote diagnosis," 8th IEEE Symposium on Computer-Based Medical Systems, IEEE Computer Society Press, Jun. 9-10, 1995, pp. 292-298.
301Suramo, I. et al., "Cranio-caudal movements of the liver, pancreas and kidneys in respiration," Acta Radiologica: Diagnosis, 1984, pp. 129-131, vol. 25, Radiological Societies.
302Susil, Robert, C. et al., "A Single Image Registration Method for CT Guided Interventions," 2nd International Symposium on Medical Image Computing and Computer-Assisted Interventions (MICCAI' 99),Lecture Notes in Computer Science, 1999, pp. 798-808, vol. 1679, Springer-Verlag.
303Szeliski, Richard, "Motion Estimation with Quadtree Splines," IEEE 5th International Conference on Computer Vision, 1995, pp. 757-763, vol. 18-Issue. 12, IEEE Computer Society Washington, DC, USA.
304Taubes, Gary et al., "Surgery in Cyberspace," Discover magazine, Dec. 1994, vol. 15, issue 12, pp. 85-92.
305Tavakoli, M., et al, A Force Reflective Master-Slave System for Minimally Invasive Surgery, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 3077-3082, vol. 4, IEEE.
306Taylor, Russell H. "An Image-directed Robotic System for Precise Orthopaedic Surgery," IEEE Transactions on Robotics mid Automation, 1994, pp. 261-275, vol. 10-No. 3, IEEE.
307Taylor, Russell H. "Medical Robotics and Computer-Integrated Surgery," Handbook of Industrial Robotics, Second Edition, 1999, pp. 1213-1230, Chapter 65, John Wiley & Sons.
308Taylor, Russell H. "Medical Robots," in Computer and Robotic Assisted Knee and Hip Surgery, 2004, pp. 54-59, Oxford Press.
309Taylor, Russell H. "The Planning and Execution of Straight Line Manipulator Trajectories," IBM Journal of Research and Development, 1979, pp. 424-436, vol. 23-Issue 4.
310Taylor, Russell H. And Christopher Hasser, "Development of a Surgical Assistant Workstation for Teleoperated Surgical Robots," NSF Proposal No. 0646678, Aug. 2006, 16 pages.
311Taylor, Russell H. and Dan Stoianovici, "Medical Robotic Systems in Computer-Integrated Surgery," Problems in General Surgery, by Lippincott Williams & Wilkins, Inc., Philadelphia, Pennsylvania. vol. 20, No. 2, pp. 1-9, 2003.
312Taylor, Russell H. and Peter Kazanzides, "Medical Robotics and Computer-Integrated Interventional Medicine," Chapter 18: Biomedical Information Technology, David Dagan Feng, Ed., Academic Press (Elsevier), 2008, pp. 393-416.
313Taylor, Russell H. et al., "A Computational Architecture for Programmable Automation Research," Conference on Intelligent Robots and Computer Vision, 1986, pp. 438-440, vol. 726, SPIE.
314Taylor, Russell H. et al., "A General Purpose Control Architecture for Programmable Automation Research," Proceedings of the Third International Symposium on Robotics, 1986, pp. 165-174, MIT Press.
315Taylor, Russell H. et al., "A Telerobotic Assistant for Laparoscopic Surgery," IEEE Engineering in Medicine and Biology, May/Jun. 1995, pp. 279-288, vol. 14, Issue 3, IEEE.
316Taylor, Russell H. et al., "A Telerobotic System for Augmentation of Endoscopic Surgery," in IEEE Conference on Engineering in Medicine and Biology, vol. 14, 1992, pp. 1054-1056, vol. 3, IEEE.
317Taylor, Russell H. et al., "An Image-directed Robotic System for Hip Replacement Surgery," J. Robotics Society of Japan, 1990, pp. 615-620, vol. 8-issue 5.
318Taylor, Russell H. et al., "Computer-Integrated Revision Total Hip Replacement Surgery: Concept and Preliminary Results," 1999, Medical image analysis, pp. 301-319, vol. 3-Issue 3, Oxford University Press.
319Taylor, Russell H. et al., "Computer-Integrated Surgery," 1996, 8 Pages, MIT Press.
320Taylor, Russell H. et al., "Medical Robotics and Computer-Integrated Surgery," Chapter 52 in Springer Handbook of Robotics, Springer, 2008, pp. 1199-1222.
321Taylor, Russell H. et al., "Medical Robotics in Computer-Integrated Surgery," IEEE Transactions on Robotics md Automation, 2003, pp. 765-781, vol. 19-No. 5, IEEE.
322Taylor, Russell H. et al., "Research Report: A Telerobotic Assistant for Laparoscopic Surgery," Accepted to IEEE EIMBS Magazine, Special Issue on "Robotics in Surgery," Dec. 1994, 24 pages.
323Taylor, Russell H., "A Perspective on Medical Robotics," Proceedings of the IEEE, vol. 94, No. 9, Sep. 2006, pp. 1652-1664.
324Taylor, Russell H., "Robotics in Orthopedic Surgery," In Computer Assisted Orthopaedic Surgery (CAOS), L.P. Nolte and R. Ganz, Editors. 1999, Hogrefe and Huber, 1999, pp. 35-41.
325Taylor, Russell H., "Ultrasound Assistant for a Laparoscopic Surgical Robot," NIH STTR Phase II Proposal R42-RR019159, revised May 2001, 54 pages.
326Taylor, Russell H., et al., "An overview of computer-integrated surgery at the IBM Thomas J. Watson Research Center," IBM J Research and Development, 1996, pp. 163-183, vol. 40, Issue 2, IBM Corp.
327Taylor, Russell H., et al., "Chapter 46: A Telerobotic Assistant for Laparoscopic Surgery," in Computer-Integrated Surgery, R. H. Taylor, et al., Editors, 1996, MIT Press. pp. 581-592.
328Taylor, Russell H., Videotape: "Computer Assisted Surgery at IBM T. J. Watson Research Center," 22 minutes 10 seconds, 1994 and 1995.
329Taylor, Russell, H et al., "A Steady-Hand Robotic System for Microsurgical Augmentation," International Journal of Robotics Research, 1999, pp. 1201-1210, vol. 18-No. 12, Springer-Verlag.
330Taylor, Russell, H et al., "AML A Manufacturing Language," The International Journal of Robotics Research, 1982, pp. 19-41, vol. 1-No. 3, SAGE Publications.
331Taylor, Russell, H et al., "The Architecture of an Integrated Robot System," First Int. Conf. on Advanced Robotics (ICAR)., 1983, pp. 389-398.
332Taylor, Russell, H. et al., "An Integrated Robot Systems Architecture," Proceedings of the IEEE, 1983, pp. 842-856, vol. 71-Issue 7, IEEE.
333Taylor, Russell, H. et al., "Redundant Consistency Checking in a Precise Surgical Robot," in 12th Annual Conference on Engineering in Medicine and Biology, 1990, pp. 1933-1935, vol. 12-No. 5, IEEE.
334Teistler, Michael et al., "Virtual Tomography: A New Approach to Efficient Human-Computer Interaction for Medical Imaging," Proc. of SPIE,, The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 512-519, vol. 5029.
335Tewari, Ashutosh et al., "Technique of da Vinci Robot-Assisted Anatomic Radical Prostatectomy," Urology, 2002, pp. 569-572,vol. 60-No. 4, Elsevier.
336Thring, M.W., Robots and Telechirs: Manipulators with Memory; Remote Manipulators; Machine Limbs for the Handicapped, 1983, pp. 9-11, 108-131, 194-195, 235-279; Ellis Horwood Limited, Chapter 5,7,8,9.
337Toon, John, "Virtual Reality for Eye Surgery," Georgia Tech Research News, 1993, 4 Pages.
338Toyama, Kentaro et al., "Incremental Focus of Attention for Robust Visual Tracking," International Journal of Computer Vision, 1999, pp. 45-63, vol. 35-No. 1, Kluwer Academic Publishers.
339Trevelyan, James P. et al., "Motion Control for a Sheep Shearing Robot," IEEE Robotics Research Conference, the 1st International Symposium, Carroll, NH, USA., 1983, pp. 175-190, in Robotics Research, MIT Press.
340Trivedi, Mohan M. et al., "Developing telerobotic systems using virtual reality concepts," 1993 IEEE/RSJ International Conference on Intelligent Robots and systems, 1993, pp. 352-359, vol. 1, IEEE.
341Troccaz, Jocelyne et al., "The use of localizers, robots, and synergistic devices in CAS," Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery,Lecture Notes in Computer Science, 1997, pp. 727-736, vol. 1205, Springer-Verlag.
342U.S. Appl. No. 11/583,963 Non-Final Office Action mailed Jul. 9, 2009, 40 pages.
343Uecker, Darrin R. et al., "A Speech-Directed Multi-Modal Man-Machine Interface for Robotically Enhanced Surgery," 1994, pp. 176-183.
344Umeyama, Shinji, "Least-Squares Estimation of Transformation Parameters between Two Point Patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 13, No. 4, pp. 376-380, Apr. 1991.
345Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages.
346Vibet, C., "Properties of Master Slave Robots," Motor-con, 1987, pp. 309-316.
347Vilchis, Adriana et al., "A New Robot Architecture for Tele-Echography," IEEE Trans. Robotics & Automation, pp. 922-926, 2003, vol. 19-No. 5, IEEE.
348Viswanathan, Anand et al., "Immediate Ultrasound Calibration with Three Poses and Minimal Image Processing," MICCAI, 2004, pp. 446-454, vol. 2, Springer-Verlag.
349Webster Robert J. et al "Nonholonomic Modeling of Needle Steering," The International Journal of Robotics Research, 2004, pp. 509-525, vol. 25-No. 5-6, SAGE Publications.
350Webster Robert J. et al., "Design Considerations for Robotic Needle Steering," International Conference on Robotics and Automation, 2005, pp. 3588-3594, IEEE.
351Wei, Guo-Quing et al., "Real-Time Visual Servoing for Laparoscopic Surgery," IEEE Engineering in Medicine and Biology Magazine, Jan./Feb. 1997, pp. 40-45, vol. 16-Issue 1, IEEE.
352Wei, Zhouping et al "Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation," Medical Physics, 2004, pp. 539-548, vol. 31-No. 3.
353Wengert, Christian, "Camera Calibration Toolbox for Matlab," 5 pages.
354Wilhelm, Dirk et al., "Electromagnetically Navigated Laparoscopic Ultrasound," Surg. Technol. Int, 2003, pp. 50-54, vol. 11.
355Wood Thomas F. et al., "Radiofrequency ablation of 231 Unresectable hepatic tumors:indications, limitations, and complications," Ann. Surg. Oncol, 2000, pp. 593-600, vol. 7, Lippincott Williams & Wilkins.
356Wu, Xiaohui et al., "A Framework for Calibration of Electromagnetic Surgical Navigation Systems," IEEE RSJ International Conference on Intelligent Robot Systems (IROS), 2003, pp. 547-552, vol. 1, IEEE.
357Xu, Sheng et al., "3D Motion Tracking of Pulmonary Lesions Using CT Fluoroscopy Images for Robotically Assisted Lung Biopsy," International Society of Optical Engineering, 2004, pp. 394-402, SPIE.
358Yamagata, Hitoshi, "Development of a New Display Method for Compound 3D Ultrasound Images: Fusion 3D Images From B-mode and 3D Doppler Images," 1999, pp. 43-46, vol. 70.
359Yao, Jianhua et al., "A C-arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot," Computer Aided Surgery, 2000, pp. 373-390, vol. 5-No. 6, Wiley-Liss, Inc.
360Yao, Jianhua et al., "Deformable registration between a statistical born density atlas and X-ray images," Second International Conference on Computer Assisted Orthopaedic Surgery, 2002, pp. 168-169.
361Yao, Jianhua, et al., "A Progressive Cut Refinement Scheme for Revision Total Hip Replacement Surgery Using C-arm Fluoroscopy," Proceedings of the 2nd International Conference on Medical Image and Computer-Assisted Intervention (MICCAI'99), Springer-Verlag, 1999, pp. 1010-1019, vol. 1679.
362Zacherl, Johannes et al., "Current value of intraoperative sonography during surgery for hepatic neoplasms," World J Surg, 2002, pp. 550-554, vol. 26-No. 5.
363Zhang, Lunwei et al., "FBG Sensor Devices for Spatial Shape Detection of Intelligent Colonoscope," IEEE International Conference on Robotics and Automation, Apr. 2004, New Orleans, Louisiana, pp. 835-840.
364Zhang, Xiaoli and Shahram Payandeh, "Application of Visual Tracking for Robotic-Assisted Laparoscopic Surgery," Journal of Robotic Systems, vol. 19, No. 7, pp. 315-328, 2002.
365Zhang, Zhengyou, "A Flexible New Technique for Camera Calibration," 1998, pp. 1-21.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US962952024 Aug 201525 Apr 2017Intuitive Surgical Operations, Inc.Method and system for moving an articulated instrument back towards an entry guide while automatically reconfiguring the articulated instrument for retraction into the entry guide
US971756324 Jun 20151 Aug 2017Intuitive Surgical Operations, Inc.Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US971819029 Jun 20061 Aug 2017Intuitive Surgical Operations, Inc.Tool position and identification indicator displayed in a boundary area of a computer display screen
US978890911 Nov 201317 Oct 2017Intuitive Surgical Operations, IncSynthetic representation of a surgical instrument
US978960831 Mar 200917 Oct 2017Intuitive Surgical Operations, Inc.Synthetic representation of a surgical robot
US9789610 *2 Sep 201517 Oct 2017X Development LlcSafe path planning for collaborative robots
US980169017 May 201731 Oct 2017Intuitive Surgical Operations, Inc.Synthetic representation of a surgical instrument
US980831020 Dec 20107 Nov 2017Gynesonics, Inc.Method and device for uterine fibroid treatment
US9815198 *23 Jul 201514 Nov 2017X Development LlcSystem and method for determining a work offset
US20170021500 *23 Jul 201526 Jan 2017Google Inc.System And Method For Determining A Work Offset