US9436280B2 - Simulation of three-dimensional touch sensation using haptics - Google Patents

Simulation of three-dimensional touch sensation using haptics Download PDF

Info

Publication number
US9436280B2
US9436280B2 US12/683,669 US68366910A US9436280B2 US 9436280 B2 US9436280 B2 US 9436280B2 US 68366910 A US68366910 A US 68366910A US 9436280 B2 US9436280 B2 US 9436280B2
Authority
US
United States
Prior art keywords
haptic actuators
haptic
movement
actuators
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/683,669
Other versions
US20110163946A1 (en
Inventor
Robert S. TARTZ
Bennett M. KING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US12/683,669 priority Critical patent/US9436280B2/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KING, BENNETT M., TARTZ, ROBERT S.
Priority to JP2012548179A priority patent/JP2013516708A/en
Priority to EP11700222A priority patent/EP2521957A1/en
Priority to TW100100712A priority patent/TW201203007A/en
Priority to CN201180005286.7A priority patent/CN102696002B/en
Priority to KR1020127020423A priority patent/KR101556970B1/en
Priority to PCT/US2011/020571 priority patent/WO2011085242A1/en
Publication of US20110163946A1 publication Critical patent/US20110163946A1/en
Priority to JP2014247427A priority patent/JP2015111420A/en
Publication of US9436280B2 publication Critical patent/US9436280B2/en
Application granted granted Critical
Priority to JP2017132819A priority patent/JP2017215977A/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators

Definitions

  • the following description relates generally to haptics and, more particularly, to an apparatus and a method for simulating a three-dimensional (3D) touch sensation using haptics.
  • Haptic actuators are readily available on most handheld devices and typically render haptic feedback in response to a touch event on a touch-enabled display, as a notification, or as a gaming effect on haptic-enabled games.
  • virtual 3D graphical user interfaces and games exist on handhelds, there is currently no known method of simulating a 3D touch sensation such that the user experiences a haptic response in the x, y, and z planes that correspond to a graphical 3D object moving in the same virtual planes.
  • a handheld device with a virtual 3D user interface (or virtual 3D game) could benefit by enhancing the realism and sensation of three dimensions by creating the illusion of depth using haptic actuators.
  • an apparatus in an aspect of the disclosure, includes a processing system, a display coupled to the processing system, and a plurality of haptic actuators coupled to the processing system.
  • the processing system is configured to control the haptic actuators to simulate movement in a particular direction corresponding to movement in the particular direction in a visual depiction in the display.
  • a method of an apparatus includes providing a visual depiction in a display and controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
  • an apparatus includes means for providing a visual depiction in a display, and means for controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
  • a computer program product includes a computer-readable medium.
  • the computer-readable medium includes code for providing a visual depiction in a display and for controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
  • an apparatus in an aspect of the disclosure, includes a processing system, a display coupled to the processing system, and a plurality of haptic actuators coupled to the processing system.
  • the processing system is configured to provide a visual depiction in the display, and to control the haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
  • FIG. 1 is a conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
  • FIG. 2 is a conceptual diagram illustrating a user equipment (UE) with a plurality of haptic actuators.
  • FIG. 3 is another conceptual diagram illustrating a UE with a plurality of haptic actuators.
  • FIG. 4 is another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
  • FIG. 5 is yet another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
  • FIG. 6 is a flow chart of an exemplary method.
  • FIG. 7 is a modular diagram of an exemplary apparatus.
  • Examples of apparatuses suitable for incorporating various aspects of the invention include, but are not limited to, a UE capable of operating in a wireless network.
  • a UE may be referred to as a mobile phone, user terminal, a mobile station, a mobile device, a subscriber station, a wireless device, a terminal, an access terminal, a node, a handheld device, or some other suitable terminology.
  • the various concepts described throughout this disclosure are intended to apply to all suitable apparatuses regardless of their specific nomenclature.
  • FIG. 1 is a conceptual block diagram illustrating a hardware configuration for an apparatus.
  • the apparatus 100 includes a processor 104 , machine-readable media (memory) 108 coupled to the processor 104 , a plurality of haptic actuators 106 coupled to the processor 104 , and a display 114 coupled to the processor 104 .
  • the processor 104 and the machine-readable media 108 may together be referred to as a processing system 110 .
  • the processing system 110 may include the processor 104 without the machine-readable media 108 for certain processor 104 configurations.
  • the processing system 110 may include one or more processors.
  • the one or more processors may be implemented with any combination of general-purpose microprocessors, microcontrollers, a Digital Signal Processors (DSP), Field Programmable Gate Arrays (FPGA), Programmable Logic Devices (PLD), controllers, state machines, gated logic, discrete hardware components, or any other suitable entities that can perform calculations or other manipulations of information.
  • DSP Digital Signal Processors
  • FPGA Field Programmable Gate Arrays
  • PLD Programmable Logic Devices
  • controllers state machines, gated logic, discrete hardware components, or any other suitable entities that can perform calculations or other manipulations of information.
  • the processing system 110 may also include the machine-readable media 108 for storing software.
  • Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the one or more processors, cause the processing system 110 to perform the various functions described below, as well as other protocol processing functions.
  • the machine-readable media 108 may include storage integrated into one or more of the processors.
  • the machine-readable media 108 may also include storage external to the one or more processor, such as a Random Access Memory (RAM), a flash memory, a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), an Erasable PROM (EPROM), registers, a hard disk, a removable disk, a CD-ROM, a DVD, or any other suitable storage device.
  • the machine-readable media 108 may include a transmission line or a carrier wave that encodes a data signal.
  • the haptic actuators 106 provide feedback to a user of the UE 100 through a user's cutaneous sense or kinesthetic sense.
  • the haptic actuators 106 may provide vibration, texture, temperature, or other touch feedback to a user through a user's cutaneous sense.
  • the haptic actuators 106 may be electroactive polymer actuators, piezoelectric actuators, electrostatic surface actuators, Peltier elements, or other actuators/devices for providing vibration, texture, or temperature feedback. Alternatively or in addition, the haptic actuators 106 may provide a force feedback to a user through a user's kinesthetic sense.
  • each of the haptic actuators 106 may include a mass that may be moved in one of two directions with a particular acceleration or velocity.
  • the moving mass provides feedback of a force to a user by causing the UE 100 to move in a particular direction corresponding to the direction of the force.
  • a user may then sense through muscle movement the direction and amplitude of the force.
  • FIG. 2 is a conceptual diagram illustrating a UE 100 with a plurality of haptic actuators 106 x , 106 y , 106 z .
  • the UE 100 may include at least two of the haptic actuators 106 x , 106 y , 106 z in order to provide feedback in at least two dimensions.
  • the haptic actuator 106 x is oriented in the x direction
  • the haptic actuator 106 y is oriented in the y direction
  • the haptic actuator 106 z is oriented in the z direction.
  • the haptic actuators 106 x , 106 y , 106 z each provide a force feedback.
  • the haptic actuators oriented in the x, y, and z directions allow for a combined force feedback to be provided in any direction by controlling the haptic actuators simultaneously.
  • the haptic actuators may provide force feedback and each may include a mass that can be moved in a particular direction with a particular velocity or acceleration.
  • the haptic actuators 106 x , 106 y , 106 z may be controlled to provide a force feedback in any combination of the x, y, and z directions by simultaneously moving a mass associated with each of the haptic actuators 106 x , 106 y , 106 z.
  • FIG. 3 is a conceptual diagram illustrating a UE 200 with a plurality of haptic actuators 206 x , 206 y , 206 z .
  • the haptic actuators are layered in the x, y, and z directions, with haptic actuators 206 x layered in the x direction, haptic actuators 206 y layered in the y direction, and haptic actuators 206 z layered in the z direction.
  • the haptic actuators can be activated and deactivated sequentially in the particular direction.
  • a particular direction may also be indicated by activating the haptic actuators concurrently and modifying an amplitude of each of the haptic actuators with increasing or decreasing amplitude in the particular direction.
  • the amplitude of the top-most actuator experienced as a vibration, texture, temperature, or another touch sensation
  • the amplitude of the top-most actuator could be varied such that the haptic response is greatest when a virtual 3D object appears closest to the virtual front of the display (i.e., appears closest to the user).
  • the amplitude of the top-most haptic actuator could gradually attenuate and the middle or bottom-most haptic actuator(s) could gradually amplify, thus creating the illusion of haptic depth as the 3D object appears to move away from the front and toward the middle or back of the display.
  • the amplitude and timing of actuation for all the actuators may be synchronized for the best illusion of haptic depth as the virtual 3D object appears to move from the front to the back of the display. Timing delays between activation/deactivation and/or synchronized amplitude adjustments can simulate the time it takes for a 3D object to move from the virtual front to the virtual back of the display. For example, a virtual 3D object could be “pushed” to the virtual back causing only the back-most actuator to actuate when the virtual 3D object arrives at the virtual back, thus simulating the haptic experience of a virtual bump against the back wall.
  • the UE 100 includes haptic actuators for indicating movement in each of the x, y, and z directions, therefore allowing for the haptic actuators to simulate movement in any combination of the x, y, and z directions.
  • the haptic actuators may be excited in series with fluctuating amplitude to create the illusion of motion and depth in three planes that correspond to a moving 3D object. That is, the haptic actuators 206 x , 206 y , 206 z may be utilized concurrently to provide combined feedback, such as for example, to indicate movement from a top, right, and front corner of the UE 200 to a bottom, left, and back corner of the UE 200 .
  • Such a change in the amplitude coupled with a direction of the vibratory feedback could indicate, for example, a small snow ball rolling down a hill and increasing in mass as it acquires additional snow.
  • FIG. 4 is another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
  • the UE 100 may further include one or more orientation sensors 112 coupled to the processor 104 .
  • the orientation sensors 112 may include a gyroscope. Alternatively or in addition, the orientation sensors 112 may include level sensors and a compass. Furthermore, the orientation sensors 112 may include an inclinometer for measuring the tilt, elevation, or inclination of the UE 100 with respect to gravity.
  • the orientation sensors 112 provide information to the processor 104 on the particular orientation of the UE 100 .
  • the processor 104 may use the orientation information to determine how to control the haptic actuators 106 . That is, the processor 104 may be configured to control the haptic actuators 106 to provide feedback corresponding to the orientation of the UE 100 or to modify a feedback provided corresponding to the display based on the orientation of the UE 100 .
  • the force feedback may be modified depending on the orientation of the UE 100 .
  • the processor 104 may be configured to control the haptic actuators 106 to provide a particular force feedback in coordination with the display, and may be further configured to modify the provided force feedback based on the orientation of the UE 100 provided by the orientation sensors 112 .
  • the processor 104 may be configured to provide a force feedback with a particular direction, velocity, and/or acceleration in coordination with a 3D display.
  • the processor 104 may be configured to adjust the provided force feedback by changing the direction, velocity, and/or acceleration of the force feedback based on the particular orientation of the UE 100 .
  • Such a configuration could be useful to indicate a particular direction to follow on a path without requiring that the UE 100 be held in a particular orientation.
  • a force feedback may be provided to a user to indicate a forward direction while the UE 100 is held in any orientation in the user's pocket.
  • FIG. 5 is yet another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
  • the UE 100 may further include additional sensors 116 such as one or more cameras, heat sensors, touch sensors, and/or proximity sensors coupled to the processor 104 .
  • the additional sensors 116 sense the environment and relay information to the processor 104 .
  • the processor 104 may control or modify the control of the haptic actuators 106 corresponding to the provided sensed information from the additional sensors 116 .
  • the additional sensors 116 may determine how the UE 100 is being carried, whether in the right hand, left hand, or the pocket, and on which side the user closest, and control the haptic actuators 106 to provide feedback in the direction of the user.
  • the processor 104 may provide haptic feedback in coordination with a depiction in the display 114 and modify the direction of the feedback depending on whether the UE 100 is held in the left hand or right hand, such as how a mouse can be converted between left hand activation and right hand activation.
  • FIG. 6 is a flow chart 500 of an exemplary method.
  • the method includes providing a visual depiction in a display ( 502 ).
  • the method includes controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction ( 504 ).
  • the haptic actuators are layered in a first direction.
  • the controlling in step 504 comprises synchronizing the haptic actuators by sequentially activating and deactivating each of the haptic actuators in the first direction in order to simulate the movement in the first direction in the visual depiction.
  • the controlling in step 504 comprises synchronizing the haptic actuators by changing an amplitude of a haptic output of each of the haptic actuators in an order in which the haptic actuators are layered in the first direction in order to simulate the movement in the first direction in the visual depiction.
  • a first set of the haptic actuators simulates movement in a first direction
  • a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction.
  • the controlling in step 504 comprises controlling the first set and the second set of the haptic actuators concurrently to simulate a two-dimensional (2D) movement in a particular direction in the visual depiction.
  • the particular direction is a combination of at least one of the first direction and the second direction.
  • a third set of haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and to the second direction.
  • the controlling in step 504 comprises controlling the third set of the haptic actuators concurrently with the first set and the second set of the haptic actuators to simulate a 3D movement in the particular direction in the visual depiction.
  • the particular direction is a combination of at least one of the first direction, the second direction, and the third direction.
  • the first set, the second set, and the third set of the haptic actuators each include at least two layered haptic actuators.
  • the haptic actuators provide at least one of a vibration, a force, a texture, or a temperature feedback.
  • FIG. 7 is a modular diagram 600 of an exemplary apparatus.
  • the exemplary apparatus may be UE 100 or UE 200 .
  • the exemplary apparatus includes a module 602 that provides a visual depiction in a display.
  • the exemplary apparatus further includes a module 604 that controls a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
  • the module 602 and the module 604 is the processing system 110 .
  • a display is coupled to the processing system.
  • a plurality of haptic actuators are coupled to the processing system.
  • the processing system is configured to control the haptic actuators to simulate movement in a particular direction corresponding to movement in the particular direction in a visual depiction in the display.
  • a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction.
  • the processing system is configured to control the first set and the second set of the haptic actuators to simulate 2D movement in any combination of the first direction and the second direction. For example, if the first direction is the x direction and the second direction is they direction, then the haptic actuators can simulate 2D movement in any direction in the xy plane.
  • a third set of the haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and the second direction.
  • the first, second, and third sets of haptic actuators may each include only one haptic actuator, such as shown in FIG. 2 related to haptic actuators that provide force feedback.
  • the first, second, and third sets of haptic actuators may each include a plurality of layered haptic actuators, such as shown in FIG. 3 that provide vibration, texture, temperature, or other touch feedback.
  • the processing system is configured to control the first set, the second set, and the third set of the haptic actuators to simulate 3D movement in any combination of the first direction, the second direction, and the third direction.
  • the haptic actuators are layered in each of the first direction, the second direction, and the third direction.
  • Each of the first set, the second set, and the third set of the haptic actuators include at least two haptic actuators.
  • the processing system is configured to synchronize an actuation and an amplitude of each of the haptic actuators in order to simulate the movement in the particular direction in the visual depiction in the display.
  • the haptic actuators provide at least one of a vibration, a force, a texture, or a temperature feedback.
  • the exemplary apparatus further includes at least one orientation sensor coupled to the processing system.
  • the processing system is further configured to control the haptic actuators corresponding to information provided by the at least one orientation sensor in order to indicate the particular direction.
  • an apparatus (UE 100 or UE 200 ) includes means for providing a visual depiction in a display and means for controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
  • the aforementioned means is the processing system 110 configured to perform the function identified in each of the aforementioned means.
  • the aforementioned means in the processor 104 configured to perform the function identified in each of the aforementioned means.

Abstract

An apparatus includes a processing system, a display, and a plurality of haptic actuators. The display and the haptic actuators are coupled to the processing system. The processing system is configured to control the haptic actuators to simulate movement in a particular direction corresponding to movement in the particular direction in a visual depiction in the display.

Description

BACKGROUND
1. Field
The following description relates generally to haptics and, more particularly, to an apparatus and a method for simulating a three-dimensional (3D) touch sensation using haptics.
2. Background
Haptic actuators are readily available on most handheld devices and typically render haptic feedback in response to a touch event on a touch-enabled display, as a notification, or as a gaming effect on haptic-enabled games. Although virtual 3D graphical user interfaces and games exist on handhelds, there is currently no known method of simulating a 3D touch sensation such that the user experiences a haptic response in the x, y, and z planes that correspond to a graphical 3D object moving in the same virtual planes. A handheld device with a virtual 3D user interface (or virtual 3D game) could benefit by enhancing the realism and sensation of three dimensions by creating the illusion of depth using haptic actuators. As such, there is a need in the art for an apparatus and a method for simulating a 3D touch sensation using haptics.
SUMMARY
In an aspect of the disclosure, an apparatus includes a processing system, a display coupled to the processing system, and a plurality of haptic actuators coupled to the processing system. The processing system is configured to control the haptic actuators to simulate movement in a particular direction corresponding to movement in the particular direction in a visual depiction in the display.
In an aspect of the disclosure, a method of an apparatus includes providing a visual depiction in a display and controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
In an aspect of the disclosure, an apparatus includes means for providing a visual depiction in a display, and means for controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
In an aspect of the disclosure, a computer program product includes a computer-readable medium. The computer-readable medium includes code for providing a visual depiction in a display and for controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
In an aspect of the disclosure, an apparatus includes a processing system, a display coupled to the processing system, and a plurality of haptic actuators coupled to the processing system. The processing system is configured to provide a visual depiction in the display, and to control the haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
FIG. 2 is a conceptual diagram illustrating a user equipment (UE) with a plurality of haptic actuators.
FIG. 3 is another conceptual diagram illustrating a UE with a plurality of haptic actuators.
FIG. 4 is another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
FIG. 5 is yet another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus.
FIG. 6 is a flow chart of an exemplary method.
FIG. 7 is a modular diagram of an exemplary apparatus.
DETAILED DESCRIPTION
Various aspects of the novel systems, apparatus and methods are described more fully hereinafter with reference to the accompanying drawings. The teachings disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that that the scope of disclosure is intended to cover any aspect of the novel systems, apparatus and methods disclosed herein, whether implemented independently of or combined with any other aspect of the invention. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the invention is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the invention set forth herein. It should be understood that any aspect disclosed herein may be embodied by one or more elements of a claim.
Examples of apparatuses suitable for incorporating various aspects of the invention include, but are not limited to, a UE capable of operating in a wireless network. A UE may be referred to as a mobile phone, user terminal, a mobile station, a mobile device, a subscriber station, a wireless device, a terminal, an access terminal, a node, a handheld device, or some other suitable terminology. The various concepts described throughout this disclosure are intended to apply to all suitable apparatuses regardless of their specific nomenclature.
Various aspects of an apparatus will now be presented with reference to FIG. 1. FIG. 1 is a conceptual block diagram illustrating a hardware configuration for an apparatus. The apparatus 100 includes a processor 104, machine-readable media (memory) 108 coupled to the processor 104, a plurality of haptic actuators 106 coupled to the processor 104, and a display 114 coupled to the processor 104. The processor 104 and the machine-readable media 108 may together be referred to as a processing system 110. However, the processing system 110 may include the processor 104 without the machine-readable media 108 for certain processor 104 configurations.
The processing system 110 may include one or more processors. The one or more processors may be implemented with any combination of general-purpose microprocessors, microcontrollers, a Digital Signal Processors (DSP), Field Programmable Gate Arrays (FPGA), Programmable Logic Devices (PLD), controllers, state machines, gated logic, discrete hardware components, or any other suitable entities that can perform calculations or other manipulations of information.
The processing system 110 may also include the machine-readable media 108 for storing software. Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the one or more processors, cause the processing system 110 to perform the various functions described below, as well as other protocol processing functions.
The machine-readable media 108 may include storage integrated into one or more of the processors. The machine-readable media 108 may also include storage external to the one or more processor, such as a Random Access Memory (RAM), a flash memory, a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), an Erasable PROM (EPROM), registers, a hard disk, a removable disk, a CD-ROM, a DVD, or any other suitable storage device. In addition, the machine-readable media 108 may include a transmission line or a carrier wave that encodes a data signal. Those skilled in the art will recognize how best to implement the described functionality for the processing system.
The haptic actuators 106 provide feedback to a user of the UE 100 through a user's cutaneous sense or kinesthetic sense. The haptic actuators 106 may provide vibration, texture, temperature, or other touch feedback to a user through a user's cutaneous sense. The haptic actuators 106 may be electroactive polymer actuators, piezoelectric actuators, electrostatic surface actuators, Peltier elements, or other actuators/devices for providing vibration, texture, or temperature feedback. Alternatively or in addition, the haptic actuators 106 may provide a force feedback to a user through a user's kinesthetic sense. To provide force feedback, each of the haptic actuators 106 may include a mass that may be moved in one of two directions with a particular acceleration or velocity. The moving mass provides feedback of a force to a user by causing the UE 100 to move in a particular direction corresponding to the direction of the force. A user may then sense through muscle movement the direction and amplitude of the force.
FIG. 2 is a conceptual diagram illustrating a UE 100 with a plurality of haptic actuators 106 x, 106 y, 106 z. The UE 100 may include at least two of the haptic actuators 106 x, 106 y, 106 z in order to provide feedback in at least two dimensions. The haptic actuator 106 x is oriented in the x direction, the haptic actuator 106 y is oriented in the y direction, and the haptic actuator 106 z is oriented in the z direction. The haptic actuators 106 x, 106 y, 106 z each provide a force feedback. The haptic actuators oriented in the x, y, and z directions allow for a combined force feedback to be provided in any direction by controlling the haptic actuators simultaneously. As mentioned supra, the haptic actuators may provide force feedback and each may include a mass that can be moved in a particular direction with a particular velocity or acceleration. In such a configuration, the haptic actuators 106 x, 106 y, 106 z may be controlled to provide a force feedback in any combination of the x, y, and z directions by simultaneously moving a mass associated with each of the haptic actuators 106 x, 106 y, 106 z.
FIG. 3 is a conceptual diagram illustrating a UE 200 with a plurality of haptic actuators 206 x, 206 y, 206 z. As shown in FIG. 3, the haptic actuators are layered in the x, y, and z directions, with haptic actuators 206 x layered in the x direction, haptic actuators 206 y layered in the y direction, and haptic actuators 206 z layered in the z direction. To indicate a particular direction, the haptic actuators can be activated and deactivated sequentially in the particular direction. A particular direction may also be indicated by activating the haptic actuators concurrently and modifying an amplitude of each of the haptic actuators with increasing or decreasing amplitude in the particular direction. For example, with respect to the haptic actuators 206 z, the amplitude of the top-most actuator (experienced as a vibration, texture, temperature, or another touch sensation) could be varied such that the haptic response is greatest when a virtual 3D object appears closest to the virtual front of the display (i.e., appears closest to the user). As the virtual 3D object appears to move away from the user in the virtual z-direction, the amplitude of the top-most haptic actuator could gradually attenuate and the middle or bottom-most haptic actuator(s) could gradually amplify, thus creating the illusion of haptic depth as the 3D object appears to move away from the front and toward the middle or back of the display. The amplitude and timing of actuation for all the actuators may be synchronized for the best illusion of haptic depth as the virtual 3D object appears to move from the front to the back of the display. Timing delays between activation/deactivation and/or synchronized amplitude adjustments can simulate the time it takes for a 3D object to move from the virtual front to the virtual back of the display. For example, a virtual 3D object could be “pushed” to the virtual back causing only the back-most actuator to actuate when the virtual 3D object arrives at the virtual back, thus simulating the haptic experience of a virtual bump against the back wall.
As shown in FIG. 3, the UE 100 includes haptic actuators for indicating movement in each of the x, y, and z directions, therefore allowing for the haptic actuators to simulate movement in any combination of the x, y, and z directions. In such a configuration, the haptic actuators may be excited in series with fluctuating amplitude to create the illusion of motion and depth in three planes that correspond to a moving 3D object. That is, the haptic actuators 206 x, 206 y, 206 z may be utilized concurrently to provide combined feedback, such as for example, to indicate movement from a top, right, and front corner of the UE 200 to a bottom, left, and back corner of the UE 200. Such a change in the amplitude coupled with a direction of the vibratory feedback could indicate, for example, a small snow ball rolling down a hill and increasing in mass as it acquires additional snow.
FIG. 4 is another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus. The UE 100 may further include one or more orientation sensors 112 coupled to the processor 104. The orientation sensors 112 may include a gyroscope. Alternatively or in addition, the orientation sensors 112 may include level sensors and a compass. Furthermore, the orientation sensors 112 may include an inclinometer for measuring the tilt, elevation, or inclination of the UE 100 with respect to gravity. The orientation sensors 112 provide information to the processor 104 on the particular orientation of the UE 100. The processor 104 may use the orientation information to determine how to control the haptic actuators 106. That is, the processor 104 may be configured to control the haptic actuators 106 to provide feedback corresponding to the orientation of the UE 100 or to modify a feedback provided corresponding to the display based on the orientation of the UE 100.
When the haptic actuators provide force feedback, the force feedback may be modified depending on the orientation of the UE 100. For example, the processor 104 may be configured to control the haptic actuators 106 to provide a particular force feedback in coordination with the display, and may be further configured to modify the provided force feedback based on the orientation of the UE 100 provided by the orientation sensors 112. As such, the processor 104 may be configured to provide a force feedback with a particular direction, velocity, and/or acceleration in coordination with a 3D display. In addition, the processor 104 may be configured to adjust the provided force feedback by changing the direction, velocity, and/or acceleration of the force feedback based on the particular orientation of the UE 100. Such a configuration could be useful to indicate a particular direction to follow on a path without requiring that the UE 100 be held in a particular orientation. For example, a force feedback may be provided to a user to indicate a forward direction while the UE 100 is held in any orientation in the user's pocket.
FIG. 5 is yet another conceptual block diagram illustrating a hardware configuration for an exemplary apparatus. The UE 100 may further include additional sensors 116 such as one or more cameras, heat sensors, touch sensors, and/or proximity sensors coupled to the processor 104. The additional sensors 116 sense the environment and relay information to the processor 104. The processor 104 may control or modify the control of the haptic actuators 106 corresponding to the provided sensed information from the additional sensors 116. For example, the additional sensors 116 may determine how the UE 100 is being carried, whether in the right hand, left hand, or the pocket, and on which side the user closest, and control the haptic actuators 106 to provide feedback in the direction of the user. In another example, the processor 104 may provide haptic feedback in coordination with a depiction in the display 114 and modify the direction of the feedback depending on whether the UE 100 is held in the left hand or right hand, such as how a mouse can be converted between left hand activation and right hand activation.
FIG. 6 is a flow chart 500 of an exemplary method. The method includes providing a visual depiction in a display (502). In addition, the method includes controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction (504). In one configuration, the haptic actuators are layered in a first direction. In one configuration, the controlling in step 504 comprises synchronizing the haptic actuators by sequentially activating and deactivating each of the haptic actuators in the first direction in order to simulate the movement in the first direction in the visual depiction. In one configuration, the controlling in step 504 comprises synchronizing the haptic actuators by changing an amplitude of a haptic output of each of the haptic actuators in an order in which the haptic actuators are layered in the first direction in order to simulate the movement in the first direction in the visual depiction. In one configuration, a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction. Furthermore, the controlling in step 504 comprises controlling the first set and the second set of the haptic actuators concurrently to simulate a two-dimensional (2D) movement in a particular direction in the visual depiction. The particular direction is a combination of at least one of the first direction and the second direction.
In another configuration, a third set of haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and to the second direction. In addition, the controlling in step 504 comprises controlling the third set of the haptic actuators concurrently with the first set and the second set of the haptic actuators to simulate a 3D movement in the particular direction in the visual depiction. The particular direction is a combination of at least one of the first direction, the second direction, and the third direction.
In one configuration, the first set, the second set, and the third set of the haptic actuators each include at least two layered haptic actuators. In another configuration, the haptic actuators provide at least one of a vibration, a force, a texture, or a temperature feedback.
FIG. 7 is a modular diagram 600 of an exemplary apparatus. The exemplary apparatus may be UE 100 or UE 200. The exemplary apparatus includes a module 602 that provides a visual depiction in a display. The exemplary apparatus further includes a module 604 that controls a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction. The module 602 and the module 604 is the processing system 110. A display is coupled to the processing system. In addition, a plurality of haptic actuators are coupled to the processing system. The processing system is configured to control the haptic actuators to simulate movement in a particular direction corresponding to movement in the particular direction in a visual depiction in the display.
In one configuration, a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction. The processing system is configured to control the first set and the second set of the haptic actuators to simulate 2D movement in any combination of the first direction and the second direction. For example, if the first direction is the x direction and the second direction is they direction, then the haptic actuators can simulate 2D movement in any direction in the xy plane.
In one configuration, a third set of the haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and the second direction. The first, second, and third sets of haptic actuators may each include only one haptic actuator, such as shown in FIG. 2 related to haptic actuators that provide force feedback. Alternatively, the first, second, and third sets of haptic actuators may each include a plurality of layered haptic actuators, such as shown in FIG. 3 that provide vibration, texture, temperature, or other touch feedback. The processing system is configured to control the first set, the second set, and the third set of the haptic actuators to simulate 3D movement in any combination of the first direction, the second direction, and the third direction.
In one configuration, the haptic actuators are layered in each of the first direction, the second direction, and the third direction. Each of the first set, the second set, and the third set of the haptic actuators include at least two haptic actuators. In one configuration, the processing system is configured to synchronize an actuation and an amplitude of each of the haptic actuators in order to simulate the movement in the particular direction in the visual depiction in the display. In one configuration, the haptic actuators provide at least one of a vibration, a force, a texture, or a temperature feedback.
In one configuration, the exemplary apparatus further includes at least one orientation sensor coupled to the processing system. In such a configuration, the processing system is further configured to control the haptic actuators corresponding to information provided by the at least one orientation sensor in order to indicate the particular direction.
In one configuration, an apparatus (UE 100 or UE 200) includes means for providing a visual depiction in a display and means for controlling a plurality of haptic actuators corresponding to the visual depiction in order to simulate a movement in the visual depiction. The aforementioned means is the processing system 110 configured to perform the function identified in each of the aforementioned means. Specifically, the aforementioned means in the processor 104 configured to perform the function identified in each of the aforementioned means.
The previous description is provided to enable any person skilled in the art to fully understand the full scope of the disclosure. Modifications to the various configurations disclosed herein will be readily apparent to those skilled in the art. Thus, the claims are not intended to be limited to the various aspects of the disclosure described herein, but is to be accorded the full scope consistent with the language of claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims (38)

The invention claimed is:
1. An apparatus that is a handheld device, comprising:
a housing;
a processing system in the housing;
a display associated with the housing and coupled to the processing system;
a plurality of haptic actuators associated with the housing and coupled to the processing system, wherein at least one of the haptic actuators is capable of providing a temperature feedback; and
an environmental sensor configured to provide signals to the processing system indicative of a location of the handheld device relative to the user,
wherein the processing system is configured to control a movement of an object in a particular direction in the display, to control the haptic actuators in coordination with the movement of the object in the display to thereby provide a haptic feedback in the particular direction, and to modify the particular direction based on signals from the environmental sensor so that haptic feedback comprising temperature feedback is provided in the modified direction based on the location of the handheld device relative to the user.
2. The apparatus of claim 1, wherein a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction, wherein the processing system is configured to control the first set and the second set of the haptic actuators to simulate two-dimensional movement in any combination of the first direction and the second direction.
3. The apparatus of claim 2, wherein a third set of the haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and the second direction, wherein the processing system is configured to control the first set, the second set, and the third set of the haptic actuators to simulate three-dimensional movement in any combination of the first direction, the second direction, and the third direction.
4. The apparatus of claim 3, wherein the haptic actuators are layered in each of the first direction, the second direction, and the third direction, wherein each of the first set, the second set, and the third set of the haptic actuators comprise at least two haptic actuators.
5. The apparatus of claim 1, wherein:
the housing comprises a front side and a back side opposite the front side;
the display is associated with the front side and comprises a virtual front and a virtual back;
the plurality of haptic actuators are in a layered arrangement between the front side and the back side; and
the processing system is configured to control a movement of the object from the virtual front of the display to the virtual back of the display and to synchronize an actuation and an amplitude of each of the haptic actuators in coordination with the movement of the object from the virtual front of the display to the virtual back of the display such that the amplitude of the actuator closest to the front side is greater than the amplitude of the actuator closest to the back side when the object is at the virtual front of the display, and the amplitude of the actuator closest to the front side attenuates while the amplitude of the actuator closest to the back side amplifies as the object moves away from the virtual front of the display toward the virtual back of the display.
6. The apparatus of claim 1, wherein the haptic actuators provide at least one of a vibration, a force, or a texture feedback.
7. A method performed by a handheld device, comprising:
providing a visual depiction of an object in a display associated with a housing of the handheld device;
providing signals indicative of a location of the handheld device relative to the user; and controlling a movement of the object in a particular direction in the display, controlling a plurality of haptic actuators associated with the housing in coordination with the movement of the object in the display to thereby provide a haptic feedback in the particular direction, and modifying the particular direction based on signals from the environmental sensor so that haptic feedback comprising temperature feedback is provided in the modified direction based on the location of the handheld device relative to the user, wherein at least one of the haptic actuators is capable of providing a temperature feedback.
8. The method of claim 7, wherein the haptic actuators are layered in a first direction.
9. The method of claim 8, wherein the controlling comprises synchronizing the haptic actuators by sequentially activating and deactivating each of the haptic actuators in the first direction in order to simulate the movement in the first direction in the visual depiction.
10. The method of claim 8, wherein the controlling comprises synchronizing the haptic actuators by changing an amplitude of a haptic output of each of the haptic actuators in an order in which the haptic actuators are layered in the first direction in order to simulate the movement in the first direction in the visual depiction.
11. The method of claim 7, wherein a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction, wherein the controlling comprises controlling the first set and the second set of the haptic actuators concurrently to simulate a two-dimensional movement in a particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction and the second direction.
12. The method of claim 11, wherein a third set of haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and to the second direction, wherein the controlling further comprises controlling the third set of the haptic actuators concurrently with the first set and the second set of the haptic actuators to simulate a three-dimensional movement in the particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction, the second direction, and the third direction.
13. The method of claim 12, wherein the first set, the second set, and the third set of the haptic actuators each include at least two layered haptic actuators.
14. The method of claim 7, wherein the haptic actuators provide at least one of a vibration, a force, or a texture feedback.
15. An apparatus that is a handheld device, comprising:
means for providing a visual depiction of an object in a display associated with a housing of the handheld device;
means for providing signals indicative of a location of the handheld device relative to the user; and
means for controlling a movement of the object in a particular direction in the display, controlling a plurality of haptic actuators associated with the housing in coordination with the movement of the object in the display to thereby provide a haptic feedback in the particular direction, and modifying the particular direction based on signals from the environmental sensor so that haptic feedback comprising temperature feedback is provided in the modified direction based on the location of the handheld device relative to the user, wherein at least one of the haptic actuators is capable of providing a temperature feedback.
16. The apparatus of claim 15, wherein the haptic actuators are layered in a first direction.
17. The apparatus of claim 16, wherein the means for controlling synchronizes the haptic actuators by sequentially activating and deactivating each of the haptic actuators in the first direction in order to simulate the movement in the first direction in the visual depiction.
18. The apparatus of claim 16, wherein the means for controlling synchronizes the haptic actuators by changing an amplitude of a haptic output of each of the haptic actuators in an order in which the haptic actuators are layered in the first direction in order to simulate the movement in the first direction in the visual depiction.
19. The apparatus of claim 15, wherein a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction, wherein the means for controlling controls the first set and the second set of the haptic actuators concurrently to simulate a two-dimensional movement in a particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction and the second direction.
20. The apparatus of claim 19, wherein a third set of haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and to the second direction, wherein the means for controlling controls the third set of the haptic actuators concurrently with the first set and the second set of the haptic actuators to simulate a three-dimensional movement in the particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction, the second direction, and the third direction.
21. The apparatus of claim 20, wherein the first set, the second set, and the third set of the haptic actuators each include at least two layered haptic actuators.
22. The apparatus of claim 15, wherein the haptic actuators provide at least one of a vibration, a force, or a texture feedback.
23. A non-transitory computer program product for a handheld device, comprising:
a computer-readable medium comprising code for:
providing a visual depiction of an object in a display associated with a housing of the handheld device; and
controlling a movement of the object in a particular direction in the display, controlling a plurality of haptic actuators associated with the housing in coordination with the movement of the object in the display to thereby provide a haptic feedback in the particular direction, and modifying the particular direction based on signals indicative of a location of the handheld device relative to the user provided by an environmental sensor so that haptic feedback comprising temperature feedback is provided in the modified direction based on the location of the handheld device relative to the user, wherein at least one of the haptic actuators is capable of providing a temperature feedback.
24. The computer program product of claim 23, wherein the haptic actuators are layered in a first direction.
25. The computer program product of claim 24, wherein the code for controlling synchronizes the haptic actuators by sequentially activating and deactivating each of the haptic actuators in the first direction in order to simulate the movement in the first direction in the visual depiction.
26. The computer program product of claim 24, wherein the code for controlling synchronizes the haptic actuators by changing an amplitude of a haptic output of each of the haptic actuators in an order in which the haptic actuators are layered in the first direction in order to simulate the movement in the first direction in the visual depiction.
27. The computer program product of claim 23, wherein a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction, wherein the code for controlling controls the first set and the second set of the haptic actuators concurrently to simulate a two-dimensional movement in a particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction and the second direction.
28. The computer program product of claim 27, wherein a third set of haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and to the second direction, wherein the code for controlling controls the third set of the haptic actuators concurrently with the first set and the second set of the haptic actuators to simulate a three-dimensional movement in the particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction, the second direction, and the third direction.
29. The computer program product of claim 28, wherein the first set, the second set, and the third set of the haptic actuators each include at least two layered haptic actuators.
30. The computer program product of claim 23, wherein the haptic actuators provide at least one of a vibration, a force, or a texture feedback.
31. An apparatus that is a handheld device, comprising:
a housing;
a processing system in the housing;
a display associated with the housing and coupled to the processing system;
a plurality of haptic actuators associated with the housing and coupled to the processing system, wherein at least one of the haptic actuators is capable of providing a temperature feedback; and
an environmental sensor configured to provide signals to the processing system indicative of a location of the handheld device relative to the user,
wherein the processing system configured to:
provide a visual depiction of an object in the display;
control a movement of an object in a particular direction in the display, control the haptic actuators in coordination with the movement of the object in the display thereby provide a haptic feedback in the particular direction, and to modify the particular direction based on signals from the environmental sensor so that haptic feedback comprising temperature feedback is provided in the modified direction based on the location of the handheld device relative to the user.
32. The apparatus of claim 31, wherein the haptic actuators are layered in a first direction.
33. The apparatus of claim 32, wherein to control the haptic actuators, the processing system is configured to synchronize the haptic actuators by sequentially activating and deactivating each of the haptic actuators in the first direction in order to simulate the movement in the first direction in the visual depiction.
34. The apparatus of claim 32, wherein to control the haptic actuators, the processing system is configured to synchronize the haptic actuators by changing an amplitude of a haptic output of each of the haptic actuators in an order in which the haptic actuators are layered in the first direction in order to simulate the movement in the first direction in the visual depiction.
35. The apparatus of claim 31, wherein a first set of the haptic actuators simulates movement in a first direction and a second set of the haptic actuators simulates movement in a second direction approximately perpendicular to the first direction, wherein to control the haptic actuators, the processing system is configured to control the first set and the second set of the haptic actuators concurrently to simulate a two-dimensional movement in a particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction and the second direction.
36. The apparatus of claim 35, wherein a third set of haptic actuators simulates movement in a third direction approximately perpendicular to the first direction and to the second direction, wherein to control the haptic actuators, the processing system is further configured to control the third set of the haptic actuators concurrently with the first set and the second set of the haptic actuators to simulate a three-dimensional movement in the particular direction in the visual depiction, the particular direction being a direction comprising a combination of at least one of the first direction, the second direction, and the third direction.
37. The apparatus of claim 36, wherein the first set, the second set, and the third set of the haptic actuators each include at least two layered haptic actuators.
38. The apparatus of claim 31, wherein the haptic actuators provide at least one of a vibration, a force, or a texture feedback.
US12/683,669 2010-01-07 2010-01-07 Simulation of three-dimensional touch sensation using haptics Active 2031-06-28 US9436280B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/683,669 US9436280B2 (en) 2010-01-07 2010-01-07 Simulation of three-dimensional touch sensation using haptics
PCT/US2011/020571 WO2011085242A1 (en) 2010-01-07 2011-01-07 Simulation of three dimensional motion using haptic actuators
EP11700222A EP2521957A1 (en) 2010-01-07 2011-01-07 Simulation of three dimensional motion using haptic actuators
TW100100712A TW201203007A (en) 2010-01-07 2011-01-07 Simulation of three-dimensional touch sensation using haptics
CN201180005286.7A CN102696002B (en) 2010-01-07 2011-01-07 Use the three-dimensional motion simulation of tactile actuator
KR1020127020423A KR101556970B1 (en) 2010-01-07 2011-01-07 Simulation of three dimensional motion using haptic actuators
JP2012548179A JP2013516708A (en) 2010-01-07 2011-01-07 Three-dimensional motion simulation using haptic actuators
JP2014247427A JP2015111420A (en) 2010-01-07 2014-12-05 Simulation of three-dimensional movement using haptic actuators
JP2017132819A JP2017215977A (en) 2010-01-07 2017-07-06 Simulation of three-dimensional movement using haptic actuators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/683,669 US9436280B2 (en) 2010-01-07 2010-01-07 Simulation of three-dimensional touch sensation using haptics

Publications (2)

Publication Number Publication Date
US20110163946A1 US20110163946A1 (en) 2011-07-07
US9436280B2 true US9436280B2 (en) 2016-09-06

Family

ID=43769709

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/683,669 Active 2031-06-28 US9436280B2 (en) 2010-01-07 2010-01-07 Simulation of three-dimensional touch sensation using haptics

Country Status (7)

Country Link
US (1) US9436280B2 (en)
EP (1) EP2521957A1 (en)
JP (3) JP2013516708A (en)
KR (1) KR101556970B1 (en)
CN (1) CN102696002B (en)
TW (1) TW201203007A (en)
WO (1) WO2011085242A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829981B1 (en) 2016-05-26 2017-11-28 Apple Inc. Haptic output device
US9886090B2 (en) 2014-07-08 2018-02-06 Apple Inc. Haptic notifications utilizing haptic input devices
US10254840B2 (en) 2015-07-21 2019-04-09 Apple Inc. Guidance device for the sensory impaired
US10261585B2 (en) 2014-03-27 2019-04-16 Apple Inc. Adjusting the level of acoustic and haptic output in haptic devices
US10372214B1 (en) 2016-09-07 2019-08-06 Apple Inc. Adaptable user-selectable input area in an electronic device
US10437359B1 (en) 2017-02-28 2019-10-08 Apple Inc. Stylus with external magnetic influence
US10556252B2 (en) 2017-09-20 2020-02-11 Apple Inc. Electronic device having a tuned resonance haptic actuation system
US10585480B1 (en) 2016-05-10 2020-03-10 Apple Inc. Electronic device with an input device having a haptic engine
US10606356B2 (en) 2014-03-21 2020-03-31 Immersion Corporation Systems and methods for haptically-enabled curved devices
US10613678B1 (en) 2018-09-17 2020-04-07 Apple Inc. Input device with haptic feedback
US10649529B1 (en) 2016-06-28 2020-05-12 Apple Inc. Modification of user-perceived feedback of an input device using acoustic or haptic output
US10768738B1 (en) 2017-09-27 2020-09-08 Apple Inc. Electronic device having a haptic actuator with magnetic augmentation
US10768747B2 (en) 2017-08-31 2020-09-08 Apple Inc. Haptic realignment cues for touch-input displays
US10772394B1 (en) 2016-03-08 2020-09-15 Apple Inc. Tactile output for wearable device
US10775889B1 (en) 2017-07-21 2020-09-15 Apple Inc. Enclosure with locally-flexible regions
US10845878B1 (en) 2016-07-25 2020-11-24 Apple Inc. Input device with tactile feedback
US10936071B2 (en) 2018-08-30 2021-03-02 Apple Inc. Wearable electronic device with haptic rotatable input
US10942571B2 (en) 2018-06-29 2021-03-09 Apple Inc. Laptop computing device with discrete haptic regions
US10966007B1 (en) 2018-09-25 2021-03-30 Apple Inc. Haptic output system
US10963055B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Vibration device and control system for presenting corrected vibration data
US10963054B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Information processing system, vibration control method and program
US10969867B2 (en) 2016-12-15 2021-04-06 Sony Interactive Entertainment Inc. Information processing system, controller device, controller device control method and program
US10981053B2 (en) 2017-04-18 2021-04-20 Sony Interactive Entertainment Inc. Vibration control apparatus
US11013990B2 (en) 2017-04-19 2021-05-25 Sony Interactive Entertainment Inc. Vibration control apparatus
US11024135B1 (en) 2020-06-17 2021-06-01 Apple Inc. Portable electronic device having a haptic button assembly
US11054932B2 (en) 2017-09-06 2021-07-06 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US11145172B2 (en) 2017-04-18 2021-10-12 Sony Interactive Entertainment Inc. Vibration control apparatus
US11198059B2 (en) 2017-08-29 2021-12-14 Sony Interactive Entertainment Inc. Vibration control apparatus, vibration control method, and program
US11458389B2 (en) 2017-04-26 2022-10-04 Sony Interactive Entertainment Inc. Vibration control apparatus
US11738261B2 (en) 2017-08-24 2023-08-29 Sony Interactive Entertainment Inc. Vibration control apparatus
US11779836B2 (en) 2017-08-24 2023-10-10 Sony Interactive Entertainment Inc. Vibration control apparatus

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9436280B2 (en) * 2010-01-07 2016-09-06 Qualcomm Incorporated Simulation of three-dimensional touch sensation using haptics
EP3306449B1 (en) 2011-03-04 2022-03-09 Apple Inc. Linear vibrator providing localized and generalized haptic feedback
US20120274545A1 (en) * 2011-04-28 2012-11-01 Research In Motion Limited Portable electronic device and method of controlling same
US9218727B2 (en) 2011-05-12 2015-12-22 Apple Inc. Vibration in portable devices
WO2012160833A1 (en) * 2011-05-26 2012-11-29 パナソニック株式会社 Electronic device, and method for editing composite images
JP5811597B2 (en) 2011-05-31 2015-11-11 ソニー株式会社 Pointing system, pointing device, and pointing control method
US9710061B2 (en) 2011-06-17 2017-07-18 Apple Inc. Haptic feedback device
JP5694883B2 (en) * 2011-08-23 2015-04-01 京セラ株式会社 Display device
KR102010206B1 (en) 2011-09-06 2019-08-12 임머숀 코퍼레이션 Haptic output device and method of generating a haptic effect in a haptic output device
EP2570888A1 (en) 2011-09-19 2013-03-20 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Haptic feedback
TW201317831A (en) * 2011-10-24 2013-05-01 Chief Land Electronic Co Ltd Method of generating 3D haptic feedback and an associated handheld electronic device
JP5767148B2 (en) * 2012-03-28 2015-08-19 Kddi株式会社 User interface device capable of imparting tactile vibration according to depth and height of tactile object image, tactile vibration imparting method, and program
CN104272365B (en) * 2012-04-13 2016-12-07 汤姆逊许可公司 Use the method that many local force feedback provides 6 degree of freedom movement effects of the overall situation
CN103838412B (en) * 2012-11-27 2017-11-07 联想(北京)有限公司 The method and electronic equipment of feedback are provided
US9098984B2 (en) * 2013-03-14 2015-08-04 Immersion Corporation Haptic effects broadcasting during a group event
US20160034035A1 (en) * 2013-03-21 2016-02-04 Sony Corporation Acceleration sense presentation apparatus, acceleration sense presentation method, and acceleration sense presentation system
US20140292668A1 (en) * 2013-04-01 2014-10-02 Lenovo (Singapore) Pte. Ltd. Touch input device haptic feedback
CN105144052B (en) * 2013-04-26 2019-02-15 意美森公司 For flexible display by dynamic stiffness and active deformation haptic output devices
US10037081B2 (en) * 2013-08-12 2018-07-31 Immersion Corporation Systems and methods for haptic fiddling
CN104423558A (en) * 2013-09-06 2015-03-18 英业达科技有限公司 Keyboard module
US9207764B2 (en) * 2013-09-18 2015-12-08 Immersion Corporation Orientation adjustable multi-channel haptic device
US9639158B2 (en) * 2013-11-26 2017-05-02 Immersion Corporation Systems and methods for generating friction and vibrotactile effects
US9396629B1 (en) 2014-02-21 2016-07-19 Apple Inc. Haptic modules with independently controllable vertical and horizontal mass movements
WO2015149043A1 (en) 2014-03-28 2015-10-01 Dorin Panescu Quantitative three-dimensional imaging and printing of surgical implants
EP3125808B1 (en) 2014-03-28 2023-01-04 Intuitive Surgical Operations, Inc. Quantitative three-dimensional visualization of instruments in a field of view
JP6609616B2 (en) 2014-03-28 2019-11-20 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Quantitative 3D imaging of surgical scenes from a multiport perspective
EP3125809B1 (en) * 2014-03-28 2020-09-09 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
WO2015149040A1 (en) 2014-03-28 2015-10-01 Dorin Panescu Quantitative three-dimensional imaging of surgical scenes
US10133351B2 (en) * 2014-05-21 2018-11-20 Apple Inc. Providing haptic output based on a determined orientation of an electronic device
CN104035561B (en) * 2014-06-11 2018-03-23 京东方科技集团股份有限公司 Haptic feedback system, method and touch display unit
US20150379168A1 (en) * 2014-06-27 2015-12-31 Amazon Technologies, Inc. Techniques for simulating kinesthetic interactions
US9645646B2 (en) * 2014-09-04 2017-05-09 Intel Corporation Three dimensional contextual feedback wristband device
US9912364B2 (en) * 2015-06-25 2018-03-06 International Business Machines Corporation Mobile application interaction guide via tactile feedback
KR102462941B1 (en) 2016-01-26 2022-11-03 삼성디스플레이 주식회사 Display device
KR101790895B1 (en) 2016-06-14 2017-10-26 주식회사 씨케이머티리얼즈랩 A multi-directional driving module
US10401962B2 (en) 2016-06-21 2019-09-03 Immersion Corporation Haptically enabled overlay for a pressure sensitive surface
KR102263593B1 (en) 2017-02-08 2021-06-10 현대자동차주식회사 Vehicle, and control method for the same
WO2019043787A1 (en) * 2017-08-29 2019-03-07 株式会社ソニー・インタラクティブエンタテインメント Vibration control device
EP3708647B1 (en) 2017-11-08 2022-12-28 Kaneka Corporation Inspection device
JP7087367B2 (en) * 2017-12-08 2022-06-21 富士フイルムビジネスイノベーション株式会社 Information processing equipment, programs and control methods
CN109966735B (en) * 2019-03-02 2023-05-30 黄鑫 Touch simulation game handle system and touch simulation method
JP2022105939A (en) * 2021-01-05 2022-07-15 菱洋エレクトロ株式会社 Input device capable of providing three-dimensional tactile information

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05282095A (en) 1992-03-31 1993-10-29 Pioneer Electron Corp Three-dimensional coordinate input device
CN1166125A (en) 1994-10-01 1997-11-26 A·雷蒙公司 Plastic fasteners sewable on textile materials
JPH1133937A (en) 1997-07-18 1999-02-09 Yaskawa Electric Corp Force tactile sense display method
JP2001022267A (en) 1999-07-02 2001-01-26 Nippon Hoso Kyokai <Nhk> Tactile sensation information transmission apparatus
JP2002333823A (en) 2001-05-07 2002-11-22 Ricoh Co Ltd Working personnel educating device and working environment system
US20030146898A1 (en) 2002-02-07 2003-08-07 Gifu University Touch sense interface and method for controlling touch sense interface
JP2003300188A (en) 2002-02-07 2003-10-21 Gifu Univ Tactile interface and its control method
JP2004205962A (en) 2002-12-26 2004-07-22 Dainippon Printing Co Ltd Calligraphic training support system, computer, program, and recording medium
CN1983125A (en) 2000-09-28 2007-06-20 伊默逊股份有限公司 Directional tactile feedback for haptic feedback interface devices
US20070146312A1 (en) * 2005-12-22 2007-06-28 Industrial Technology Research Institute Interactive control system
US20090088220A1 (en) 2007-10-01 2009-04-02 Sony Ericsson Mobile Communications Ab Cellular terminals and other electronic devices and methods using electroactive polymer transducer indicators
US20090106655A1 (en) * 2006-10-04 2009-04-23 Immersion Corporation Haptic Effects With Proximity Sensing
KR20090064968A (en) 2007-12-17 2009-06-22 한국전자통신연구원 Apparatus and method for interfacing hand haptic
US20090217187A1 (en) * 2005-02-12 2009-08-27 Next Device Ltd User Interfaces
WO2009112971A2 (en) 2008-03-10 2009-09-17 Koninklijke Philips Electronics N.V. Video processing
US7592901B2 (en) * 2004-08-25 2009-09-22 Alps Electric Co., Ltd. Input device
US20090280860A1 (en) * 2008-05-12 2009-11-12 Sony Ericsson Mobile Communications Ab Mobile phone with directional force feedback and method
US20100017759A1 (en) * 2008-07-15 2010-01-21 Immersion Corporation Systems and Methods For Physics-Based Tactile Messaging
US20100037167A1 (en) * 2008-08-08 2010-02-11 Lg Electronics Inc. Mobile terminal with touch screen and method of processing data using the same
KR20100072219A (en) 2007-09-28 2010-06-30 임머숀 코퍼레이션 Multi-touch device having dynamichaptic effects

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864145A4 (en) * 1995-11-30 1998-12-16 Virtual Technologies Inc Tactile feedback man-machine interface device
JP4345534B2 (en) * 2004-03-17 2009-10-14 ソニー株式会社 Input device with tactile function, information input method, and electronic device
JP4617893B2 (en) * 2005-01-18 2011-01-26 ソニー株式会社 Vibration transmission structure, input / output device with tactile function, and electronic equipment
JP2006215738A (en) * 2005-02-02 2006-08-17 Sony Corp Vibration transmitting structure, input device with tactile function and electronic equipment
JP2007011460A (en) * 2005-06-28 2007-01-18 Gifu Prefecture Method for simulating displacement of object, device for simulating displacement of object, and inner force sense presentation device
JP2008097060A (en) * 2006-10-05 2008-04-24 Toshiba Matsushita Display Technology Co Ltd Display device
JP4930100B2 (en) * 2007-02-27 2012-05-09 ソニー株式会社 Force / tactile display, force / tactile display control method, and computer program
JP4645678B2 (en) * 2008-05-08 2011-03-09 ソニー株式会社 Information input / output device, information input / output method, and computer program
US9436280B2 (en) * 2010-01-07 2016-09-06 Qualcomm Incorporated Simulation of three-dimensional touch sensation using haptics

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512919A (en) 1992-03-31 1996-04-30 Pioneer Electronic Corporation Three-dimensional coordinates input apparatus
JPH05282095A (en) 1992-03-31 1993-10-29 Pioneer Electron Corp Three-dimensional coordinate input device
CN1166125A (en) 1994-10-01 1997-11-26 A·雷蒙公司 Plastic fasteners sewable on textile materials
JPH1133937A (en) 1997-07-18 1999-02-09 Yaskawa Electric Corp Force tactile sense display method
JP2001022267A (en) 1999-07-02 2001-01-26 Nippon Hoso Kyokai <Nhk> Tactile sensation information transmission apparatus
CN1983125A (en) 2000-09-28 2007-06-20 伊默逊股份有限公司 Directional tactile feedback for haptic feedback interface devices
JP2002333823A (en) 2001-05-07 2002-11-22 Ricoh Co Ltd Working personnel educating device and working environment system
US20030146898A1 (en) 2002-02-07 2003-08-07 Gifu University Touch sense interface and method for controlling touch sense interface
JP2003300188A (en) 2002-02-07 2003-10-21 Gifu Univ Tactile interface and its control method
JP2004205962A (en) 2002-12-26 2004-07-22 Dainippon Printing Co Ltd Calligraphic training support system, computer, program, and recording medium
US7592901B2 (en) * 2004-08-25 2009-09-22 Alps Electric Co., Ltd. Input device
US20090217187A1 (en) * 2005-02-12 2009-08-27 Next Device Ltd User Interfaces
US20070146312A1 (en) * 2005-12-22 2007-06-28 Industrial Technology Research Institute Interactive control system
US20090106655A1 (en) * 2006-10-04 2009-04-23 Immersion Corporation Haptic Effects With Proximity Sensing
KR20100072219A (en) 2007-09-28 2010-06-30 임머숀 코퍼레이션 Multi-touch device having dynamichaptic effects
US20130314354A1 (en) 2007-09-28 2013-11-28 Immersion Corporation Multi-touch device having dynamic haptic effects
US20090088220A1 (en) 2007-10-01 2009-04-02 Sony Ericsson Mobile Communications Ab Cellular terminals and other electronic devices and methods using electroactive polymer transducer indicators
KR20090064968A (en) 2007-12-17 2009-06-22 한국전자통신연구원 Apparatus and method for interfacing hand haptic
WO2009112971A2 (en) 2008-03-10 2009-09-17 Koninklijke Philips Electronics N.V. Video processing
US20090280860A1 (en) * 2008-05-12 2009-11-12 Sony Ericsson Mobile Communications Ab Mobile phone with directional force feedback and method
US20100017759A1 (en) * 2008-07-15 2010-01-21 Immersion Corporation Systems and Methods For Physics-Based Tactile Messaging
US20100037167A1 (en) * 2008-08-08 2010-02-11 Lg Electronics Inc. Mobile terminal with touch screen and method of processing data using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Source-Independent Virutal Motion Chair", IBM Technical Disclosure Bulletin, International Business Machines Corp. (Thornwood), US, vol. 39, No. 7, Jul. 1, 1996, p. 161/162, XP000627962, ISSN: 0018-8689 the whole document.
International Search Report and Written Opinion-PCT/US2011/020571-ISA/EPO-Apr. 7, 2011.
Taiwan Search Report-TW100100712-TIPO-Aug. 30, 2013.

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606356B2 (en) 2014-03-21 2020-03-31 Immersion Corporation Systems and methods for haptically-enabled curved devices
US10261585B2 (en) 2014-03-27 2019-04-16 Apple Inc. Adjusting the level of acoustic and haptic output in haptic devices
US9886090B2 (en) 2014-07-08 2018-02-06 Apple Inc. Haptic notifications utilizing haptic input devices
US10664058B2 (en) 2015-07-21 2020-05-26 Apple Inc. Guidance device for the sensory impaired
US10254840B2 (en) 2015-07-21 2019-04-09 Apple Inc. Guidance device for the sensory impaired
US10772394B1 (en) 2016-03-08 2020-09-15 Apple Inc. Tactile output for wearable device
US11762470B2 (en) 2016-05-10 2023-09-19 Apple Inc. Electronic device with an input device having a haptic engine
US10890978B2 (en) 2016-05-10 2021-01-12 Apple Inc. Electronic device with an input device having a haptic engine
US10585480B1 (en) 2016-05-10 2020-03-10 Apple Inc. Electronic device with an input device having a haptic engine
US9829981B1 (en) 2016-05-26 2017-11-28 Apple Inc. Haptic output device
US10649529B1 (en) 2016-06-28 2020-05-12 Apple Inc. Modification of user-perceived feedback of an input device using acoustic or haptic output
US10845878B1 (en) 2016-07-25 2020-11-24 Apple Inc. Input device with tactile feedback
US10372214B1 (en) 2016-09-07 2019-08-06 Apple Inc. Adaptable user-selectable input area in an electronic device
US10969867B2 (en) 2016-12-15 2021-04-06 Sony Interactive Entertainment Inc. Information processing system, controller device, controller device control method and program
US10963054B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Information processing system, vibration control method and program
US10963055B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Vibration device and control system for presenting corrected vibration data
US10437359B1 (en) 2017-02-28 2019-10-08 Apple Inc. Stylus with external magnetic influence
US11145172B2 (en) 2017-04-18 2021-10-12 Sony Interactive Entertainment Inc. Vibration control apparatus
US10981053B2 (en) 2017-04-18 2021-04-20 Sony Interactive Entertainment Inc. Vibration control apparatus
US11013990B2 (en) 2017-04-19 2021-05-25 Sony Interactive Entertainment Inc. Vibration control apparatus
US11458389B2 (en) 2017-04-26 2022-10-04 Sony Interactive Entertainment Inc. Vibration control apparatus
US11487362B1 (en) 2017-07-21 2022-11-01 Apple Inc. Enclosure with locally-flexible regions
US10775889B1 (en) 2017-07-21 2020-09-15 Apple Inc. Enclosure with locally-flexible regions
US11779836B2 (en) 2017-08-24 2023-10-10 Sony Interactive Entertainment Inc. Vibration control apparatus
US11738261B2 (en) 2017-08-24 2023-08-29 Sony Interactive Entertainment Inc. Vibration control apparatus
US11198059B2 (en) 2017-08-29 2021-12-14 Sony Interactive Entertainment Inc. Vibration control apparatus, vibration control method, and program
US10768747B2 (en) 2017-08-31 2020-09-08 Apple Inc. Haptic realignment cues for touch-input displays
US11054932B2 (en) 2017-09-06 2021-07-06 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US11460946B2 (en) 2017-09-06 2022-10-04 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
US10556252B2 (en) 2017-09-20 2020-02-11 Apple Inc. Electronic device having a tuned resonance haptic actuation system
US10768738B1 (en) 2017-09-27 2020-09-08 Apple Inc. Electronic device having a haptic actuator with magnetic augmentation
US10942571B2 (en) 2018-06-29 2021-03-09 Apple Inc. Laptop computing device with discrete haptic regions
US10936071B2 (en) 2018-08-30 2021-03-02 Apple Inc. Wearable electronic device with haptic rotatable input
US10613678B1 (en) 2018-09-17 2020-04-07 Apple Inc. Input device with haptic feedback
US10966007B1 (en) 2018-09-25 2021-03-30 Apple Inc. Haptic output system
US11805345B2 (en) 2018-09-25 2023-10-31 Apple Inc. Haptic output system
US11024135B1 (en) 2020-06-17 2021-06-01 Apple Inc. Portable electronic device having a haptic button assembly
US11756392B2 (en) 2020-06-17 2023-09-12 Apple Inc. Portable electronic device having a haptic button assembly

Also Published As

Publication number Publication date
TW201203007A (en) 2012-01-16
JP2015111420A (en) 2015-06-18
JP2013516708A (en) 2013-05-13
CN102696002A (en) 2012-09-26
CN102696002B (en) 2016-06-29
WO2011085242A1 (en) 2011-07-14
JP2017215977A (en) 2017-12-07
KR101556970B1 (en) 2015-10-02
KR20120112720A (en) 2012-10-11
US20110163946A1 (en) 2011-07-07
EP2521957A1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US9436280B2 (en) Simulation of three-dimensional touch sensation using haptics
US20200023272A1 (en) Haptic surround functionality
JP6368329B2 (en) System and method for providing tactile stimulation based on position
US9952820B2 (en) Augmented reality representations across multiple devices
EP2713241B1 (en) Generating Haptic Effects for Dynamic Events
EP3040807B1 (en) Virtual sensor in a virtual environment
KR101617980B1 (en) Gesture input with multiple views, displays and physics
EP2486469B1 (en) Method and system for implementing a touchless user interface
JP2018183608A (en) Systems and methods for haptic remote control gaming
US20190163271A1 (en) Systems and methods for providing haptic feedback according to tilt-based inputs
KR20160065902A (en) Augmented reality apparatus, method and program
CN102099766A (en) Systems and methods for shifting haptic feedback function between passive and active modes
US20170185151A1 (en) Haptic feedback for non-touch surface interaction
KR20180094799A (en) Automatic localized haptics generation system
US10747325B2 (en) Systems and methods for long-range interactions for virtual reality
JP2012252398A5 (en)
KR20190017010A (en) Multi-modal haptic effect
WO2020181071A1 (en) Systems and methods for a user interaction proxy
KR20160002259A (en) Simulation apparatus for virtual experience

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TARTZ, ROBERT S.;KING, BENNETT M.;REEL/FRAME:023930/0869

Effective date: 20100127

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8