US9402685B2 - Optical energy-based methods and apparatus for tissue sealing - Google Patents

Optical energy-based methods and apparatus for tissue sealing Download PDF

Info

Publication number
US9402685B2
US9402685B2 US14/811,563 US201514811563A US9402685B2 US 9402685 B2 US9402685 B2 US 9402685B2 US 201514811563 A US201514811563 A US 201514811563A US 9402685 B2 US9402685 B2 US 9402685B2
Authority
US
United States
Prior art keywords
light
tissue
vascular tissue
energy
based instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/811,563
Other versions
US20150327931A1 (en
Inventor
Boris Chernov
Igoris Misuchenko
Georgy Martsinovskiy
Mikhail Verbitsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US14/811,563 priority Critical patent/US9402685B2/en
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VERBITSKY, MIKHAIL, MARTSINOVSKIY, GEORGY, MISUCHENKO, IGORIS
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHERNOV, BORIS
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Publication of US20150327931A1 publication Critical patent/US20150327931A1/en
Priority to US15/224,955 priority patent/US10925662B2/en
Application granted granted Critical
Publication of US9402685B2 publication Critical patent/US9402685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0072Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0075Phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00845Frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00869Phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00886Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2065Multiwave; Wavelength mixing, e.g. using four or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2266Optical elements at the distal end of probe tips with a lens, e.g. ball tipped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2272Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2294Optical elements at the distal end of probe tips with a diffraction grating

Definitions

  • the present disclosure is directed to tissue sealing and, in particular, to systems and methods for tissue sealing employing optical energy.
  • electrosurgical systems include an electrosurgical generator for producing high frequency electrical energy (e.g., radio frequency (RF) or microwave (MW) energy) and an electrosurgical instrument for applying the electrical energy to tissue.
  • RF radio frequency
  • MW microwave
  • a surgeon may use the electrosurgical instrument to cut, coagulate, desiccate, and seal tissue.
  • existing energy-based devices require direct physical contact between the tissue and the electrodes, ultrasound transducers, or sound-conducting portions of the surgical instrument to transmit energy to the tissue.
  • a significant amount of energy is lost to the environment and to that portion of the instrument in contact with the heated tissue, while only a small amount of energy is used to actually heat tissue.
  • tissue may attach to that portion of the energy-based instrument that is in contact with the tissue.
  • existing energy-based instruments may obstruct the surgeon's view of the target tissue or the operating site.
  • existing energy-based instruments typically include a large generator and a significant amount of wiring.
  • electromagnetic energy-based systems and methods may cause stray currents, flashovers (e.g., an electric arc between the instrument and the tissue), short circuits in the conducting environment, and/or electromagnetic interference with other tissues and devices.
  • laser-based surgical instruments such as laser scalpels
  • laser scalpels that use laser radiation to cut and coagulate tissue.
  • One disadvantage of laser scalpels is that they cannot seal relatively large vessels because laser scalpels cannot bring together opposite walls of the vessels.
  • Rodney A. White, et al. “Large vessel sealing with the argon laser,” Lasers in Surgery and Medicine 7, pages 229-235 (1987)
  • the edges of damaged vessels are first approached to each other and then sealed by exposing them to laser radiation.
  • tissue ablation procedures there are also devices that use light to perform tissue ablation procedures.
  • tissue is placed between transparent holders through which the light is introduced to the tissue.
  • the absorption of light by the tissue causes heating, charring, and ablation of the tissue.
  • the tissue can be illuminated with propagating waves or evanescent waves resulting from total external reflection. See, e.g., Cox, et al., “New method for exposing mammalian cells to intense laser radiation using the evanescent fields created in optical waveguides,” Med. Phys. 5:274-279 (1978).
  • U.S. Pat. No. 7,452,355 describes simultaneously using multiple wavelengths of light radiation so that the radiation of one of the wavelengths modifies the blood and creates in the blood centers of high absorption of the radiation of other wavelengths, which can penetrate deeper into the tissue and completely seal the vessel.
  • optical methods and systems described above may not provide high quality vascular tissue sealing, especially for relatively large vessels.
  • the surgical systems and methods according to embodiments of the present disclosure provide efficient sealing of vascular tissue including large vessels and mitigate the disadvantages of existing methods and devices, which are based on RF current, ultrasound, or optical radiation.
  • the present disclosure features a method of sealing vascular tissue.
  • the method includes deforming vascular tissue to cause different layers of the vascular tissue to contact each other and illuminating at least one portion of the vascular tissue with light having at least one portion of the light's spectrum overlapping with an absorption spectrum of the vascular tissue.
  • the light may include at least a first light wave having a first wavelength and a second light wave having a second, different wavelength.
  • the first light wave may change the optical parameters of the vascular tissue or a component of blood within the vascular tissue to increase the absorption of the second light wave by the vascular tissue or the component of blood within the vascular tissue.
  • the method further includes forming the light into at least one light beam. In other embodiments, the method further includes forming the light into at least two light beams that propagate at different angles with respect to the deformed vascular tissue.
  • the light may be configured to penetrate the vascular tissue through a surface of the vascular tissue while maintaining the original integrity of the surface of the vascular tissue. In other embodiments, the light may be configured to penetrate the vascular tissue through a cut in the vascular tissue formed prior to or during sealing of the vascular tissue.
  • illuminating the at least one portion of the vascular tissue with light includes illuminating the at least one portion of the vascular tissue with light all at one time. In other embodiments, illuminating the at least one portion of the vascular tissue with light includes forming the light into at least one light spot and scanning the at least one light spot over the at least one portion of the vascular tissue.
  • the method may further include monitoring at least one parameter of the vascular tissue and controlling at least one parameter of the light based on the at least one parameter of the vascular tissue.
  • the at least one parameter of the light may include one or more of intensity, frequency, polarization, phase, pulse width, pulse frequency, duty cycle, repetition rate, wave shape, duration of illumination, total exposure of tissue to the light, or the spectra of the light.
  • the at least one parameter of the vascular tissue may include one or more of the electrical impedance of a volume of the vascular tissue, the optical transparency of the vascular tissue, the degree of optical anisotropy of the vascular tissue, or the polarization-dependent optical loss in the vascular tissue.
  • the method may further include sensing the temperature of the vascular tissue and controlling at least one parameter of the light based on the temperature of the vascular tissue.
  • deforming the vascular tissue includes stretching the vascular tissue along a longitudinal axis of a vessel within the vascular tissue. In other embodiments, deforming the vascular tissue includes compressing the vascular tissue.
  • the present disclosure features an energy-based instrument for sealing vascular tissue.
  • the energy-based instrument includes a deforming member for deforming vascular tissue and an optical system for illuminating a portion of the vascular tissue with light to seal the vascular tissue.
  • the optical system includes a light source for generating light, a light distribution element for distributing the light over the portion of the vascular tissue, and a light guide for guiding the light from the light source to the light distribution element.
  • the deforming member of the energy-based instrument may include at least a first deforming member and a second deforming member for moving in opposite directions and for deforming vascular tissue placed between the first deforming member and the second deforming member. At least one of the first deforming member and the second deforming member may include optical reflective material for reflecting the light and for causing the light to pass through the vascular tissue at least twice. Also, at least one portion of at least one of the first deforming member and the second deforming member may be transparent to the light.
  • a portion of at least one of the first deforming member and the second deforming member does not contact the portion of the deformed vascular tissue that is illuminated with the light.
  • the light distribution element may be optically coupled to at least one of the first deforming member and the second deforming member.
  • the energy-based instrument may further include a sensor for sensing at least one parameter of the vascular tissue and a controller for controlling at least one parameter of the light generated by the light source based on the at least one parameter of the vascular tissue sensed by the sensor.
  • the at least one parameter of the light may include one or more of intensity, frequency, polarization, phase, pulse width, pulse frequency, duty cycle, repetition rate, wave shape, duration of illumination, total exposure of tissue to the light, or the spectra of the light.
  • the light source of the energy-based instrument may include at least one light emitting diode or at least one laser.
  • the at least one laser may generate light having different wavelengths.
  • the at least one laser may be a tunable laser that is tuned to generate light of a desired wavelength.
  • the light distribution element of the energy-based instrument may be configured to create conditions of frustrated total internal reflection.
  • the light distribution element may include at least one lens, at least one prism, at least one waveguide structure, or at least one periodic optical structure.
  • the at least one periodic optical structure may be a diffraction grating, such as a Bragg diffraction grating.
  • the light guide includes at least one waveguide structure, such as an optical fiber.
  • the present disclosure features an energy-based instrument for cutting and sealing vascular tissue.
  • the energy-based instrument includes a deforming member for deforming vascular tissue to cause different layers of the vascular tissue to contact each other and a cutting member for cutting the vascular tissue and illuminating at least one portion of the vascular tissue with light to seal at least one cut surface of the vascular tissue.
  • the deforming member may include a first deforming member and a second deforming member configured to move in opposite directions and to deform vascular tissue placed between the first deforming member and the second deforming member.
  • the cutting member may be a movable cutting member and at least one of the first deforming member and the second deforming member may include a recess to guide the moveable cutting member to cut the vascular tissue.
  • the energy-based instrument may further include a light source for generating light.
  • the cutting member may include an optical beam former coupled to the light source.
  • the optical beam former may form the light into a light beam to cut the vascular tissue.
  • the cutting member includes a cutting edge that mechanically cuts the vascular tissue.
  • the cutting member may include an optical waveguide for guiding light through at least one side of the cutting member and illuminating the vascular tissue with the light to seal the at least one cut surface of the vascular tissue.
  • the optical waveguide may be configured to create conditions of frustrated total internal reflection on at least one side of the optical waveguide.
  • the optical waveguide may include a light distribution element for distributing light on at least one cut surface of the vascular tissue through at least one side of the optical waveguide.
  • the light distribution element may include at least one periodic optical structure.
  • the present disclosure features a method of cutting vascular tissue.
  • the method includes deforming vascular tissue to cause different layers of the vascular tissue to contact each other, cutting the deformed vascular tissue, and illuminating the deformed vascular tissue with light to seal at least one cut surface of the vascular tissue.
  • the method may further include generating light sufficient to cut the deformed vascular tissue, forming the light into a light beam, and applying the light beam to the vascular tissue to cut the deformed vascular tissue.
  • cutting the deformed vascular tissue includes applying mechanical force to a cutting member to cut the deformed vascular tissue.
  • cutting the deformed vascular tissue includes cutting the deformed vascular tissue with a cutting member and illuminating the deformed vascular tissue with light includes forming a light beam within a cutting member and illuminating the deformed vascular tissue with the light beam through at least one side of the cutting member.
  • the step of illuminating the deformed vascular tissue with light may include creating conditions of frustrated total internal reflection on at least one side of an optical waveguide within the cutting member.
  • deforming the vascular tissue includes stretching the vascular tissue along a longitudinal axis of a vessel within the vascular tissue. In other embodiments, deforming the vascular tissue includes compressing the vascular tissue.
  • FIG. 1 is a block diagram of an optical sealing system according to embodiments of the present disclosure
  • FIG. 2 is an illustration of a method of sealing vascular tissue according to embodiments of the present disclosure
  • FIG. 3 is a cross-sectional side view of a portion of an instruments used to seal vascular tissue according to some embodiments of the present disclosure
  • FIG. 4 is a cross-sectional side view of a portion of an instrument used to seal vascular tissue according to other embodiments of the present disclosure
  • FIG. 5 is a cross-sectional front view of the instrument of FIG. 4 ;
  • FIG. 6 is a perspective view of a cutting member according to yet other embodiments of the present disclosure.
  • FIG. 7 is a cross-sectional front view of the cutting member of FIG. 6 in an instrument used to seal and cut vascular tissue according to certain embodiments of the present disclosure.
  • FIG. 8 is a flow diagram of a method of sealing vascular tissue according to some embodiments of the present disclosure.
  • vascular tissue e.g., vessels
  • RF radio frequency
  • drawbacks may include stray currents, flashover, short circuits, the need for electrical insulation, and interference with other tissues, organs, and medical devices.
  • Using light to heat and seal vascular tissue avoids these drawbacks while also maintaining the integrity of the tissue.
  • the term “light” as used in the present disclosure refers to electromagnetic radiation in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum.
  • tissue sealing is accomplished by deforming the vascular tissue to provide direct contact between different layers of the vascular tissue and illuminating the vascular tissue with light. Absorption of the light by the tissue causes the heating of the vascular tissue followed by the melting or denaturizing of the collagen and elastin in the vascular tissue. Deforming the vascular tissue through mechanical impact facilitates the release and mixture of collagen and elastin from the vascular tissue. When the light is removed from the vascular tissue, the melted collagen and elastin reform to create a permanent vascular tissue seal.
  • FIG. 1 is a block diagram of a vascular tissue sealing system 100 according to embodiments of the present disclosure.
  • the system 100 includes a light source 120 , a light guide 110 , a light distribution element 111 , and a deforming member 121 , which operate together to form a high-quality tissue seal.
  • the deforming member 121 applies a force 102 to deform the vascular tissue 101 and bring different layers of the vascular tissue 101 into direct physical contact with each other.
  • the light source 120 generates light 103 and provides it to the light distribution element 111 via the light guide 110 .
  • the light distribution element 111 which may be incorporated into the deforming member 121 , forms the light 103 into a light beam 104 and illuminates the vascular tissue 101 with the light beam 104 .
  • the light beam 104 heats the deformed vascular tissue 101 to create a tissue seal.
  • the vascular tissue sealing system 100 also includes a control system that incorporates feedback to control the tissue sealing process.
  • the control system may use the feedback to optimize the tissue sealing process, e.g., to determine optimal exposure, to minimize thermal damage, and to reduce energy consumption.
  • the control system may use the feedback to adjust amplitude-time characteristics of the light 103 (e.g., amplitude, number of pulses, pulse duration, and pulse repetition rate) to obtain a desired tissue seal quality and to avoid tissue charring or destruction.
  • the feedback may include on one or more optical, electrical, or other parameter of the vascular tissue.
  • the feedback may include electrical impedance, optical transparency, optical polarization-dependent loss, or temperature of the vascular tissue.
  • the feedback may also include one or more parameters of the electrical, optical, and mechanical subsystems of the vascular tissue sealing system 100 .
  • the feedback may include the gap distance between opposing sealing surfaces of the jaw members 306 , 307 (as shown in FIGS. 3 and 4 ) and the pressure applied to the vascular tissue 101 . These parameters should be accurately controlled to assure a consistent and reliable seal.
  • the control system of the vascular tissue sealing system 100 may include sensors 112 , an analog-to-digital converter (ADC) 113 , a controller 114 , a user interface 116 , and a power supply 118 .
  • the sensors 112 sense one or more optical, electrical, or other parameters of the vascular tissue 101 and transmit sensor information in the form of analog sensor signals to the ADC 113 .
  • the sensors 112 may sense optical parameters of the tissue 101 including the optical transparency of the tissue 101 , the degree of reflection from the tissue 101 , the optical loss resulting from absorption and/or scattering by the tissue 101 (e.g., the optical polarization-dependent losses in the tissue 101 ), the degree of anisotropy of the optical parameters, or any combination of these optical parameters as disclosed in commonly-owned U.S. patent application Ser. No. 13/108,129, entitled “System and Method for Energy-Based Sealing of Tissue with Optical Feedback,” the entire contents of which are incorporated by reference herein.
  • the sensors 112 may include an optical sensor system as disclosed in commonly-owned U.S. patent application Ser. No.
  • the sensors 112 may also sense one or more parameters of the light beam 104 .
  • the ADC 113 converts the analog sensor signals to digital sensor data and transmits the digital sensor data to the controller 114 .
  • the controller 114 processes the digital sensor data and regulates one or more parameters of the light 103 by transmitting appropriate control signals to the light source 120 .
  • the ADC 113 is incorporated into the controller 114 and the sensors 112 transmit the analog sensor signals to the controller 114 via a wireless communications link.
  • the user interface 116 which may be local to or remote from the controller 114 , is coupled to the controller 114 via a communications link to allow the user to control various parameters of the light beam 104 applied to the vascular tissue 101 during a sealing procedure.
  • the user may manually set one or more parameters of the light 103 and/or the light beam 104 and the controller 114 may regulate and/or control these parameters.
  • the one or more parameters of the light 103 and/or the light beam 104 may include intensity, frequency, polarization, phase, pulse width, pulse frequency, duty cycle, repetition rate, wave shape, duration of illumination, total exposure of tissue to the light beam 104 , or the spectra of the light 103 and/or the light beam 104 .
  • the intensity of the light 103 and/or the light beam 104 may include total intensity and/or spatial distribution of intensity over the illuminated tissue.
  • a user may enter data into the user interface 116 such as the type of instrument, the type of surgical procedure, and/or the tissue type.
  • the controller 114 is also coupled to the power supply 118 (e.g., a DC power supply) via a communications link to enable the controller 114 to control and monitor the power supplied by the power supply 118 to the light source 120 .
  • the controller 114 may receive feedback signals from the power supply 118 , may generate control signals based on the feedback signals, and may transmit these control signals to the power supply 118 .
  • the control signals may control the magnitude of the voltage and current output from the power supply 118 .
  • the control signals may also be converted to analog signals by a digital-to-analog converter (DAC) (not shown) before they are applied to the power supply 118 .
  • DAC digital-to-analog converter
  • the controller 114 may include at least one microprocessor capable of executing software instructions for processing data received from the user interface 116 and the sensors 112 and for outputting appropriate control signals to the light source 120 and/or the power supply 118 .
  • the software instructions executed by the at least one microprocessor may be stored in an internal memory of the controller 114 , an internal or external memory bank accessible by the controller 114 , and/or an external memory, e.g., an external hard drive, floppy diskette, or CD-ROM.
  • the system 100 may be implemented as a single surgical device, such as a portable surgical device, or a surgical device broken up into separate components.
  • the system 100 may include two components: (1) a controller console, which may include the ADC 113 , controller 114 , user interface 116 , and power supply 118 , and (2) an instrument, which may include the light source 120 , light guide 110 , deforming member 121 , and sensors 112 .
  • FIG. 2 is an illustration 200 showing a method of sealing vascular tissue 101 in accordance with embodiments of the present disclosure.
  • the method involves deforming the vascular tissue 101 and exposing at least a portion of the deformed tissue to a light beam 104 .
  • Deforming the vascular tissue 101 brings different layers of the vascular tissue 101 , including opposite walls of a vessel 205 , into direct contact with each other.
  • deforming the vascular tissue 101 partially destroys layers of the vascular tissue 101 to facilitate extraction of collagen and elastin from the interlayer space.
  • deforming the vascular tissue 101 displaces blood or other biological fluids and reduces the volume of vascular tissue to be sealed.
  • the vascular tissue 101 may be deformed by compressing the vascular tissue 101 , e.g., by applying mechanical force to opposite sides of the vascular tissue 101 as indicated by the arrows 202 .
  • the vascular tissue 101 may be deformed by extending or stretching the vascular tissue 101 in a direction perpendicular to an axis 206 , which is perpendicular to the surface of the vascular tissue 101 .
  • the vascular tissue 101 may be deformed by pulling a first portion of the vascular tissue 101 in a first direction 203 a while pulling a second portion of the vascular tissue 101 in a second direction 203 b (i.e., in the opposite direction).
  • the vascular tissue 101 may also be deformed by twisting the vascular tissue 101 or by applying pressure at different locations on the vascular tissue 101 .
  • the light beam 104 illuminates the vascular tissue 101 at an incidence angle ⁇ 208 with respect to the axis 206 .
  • the light beam 104 includes at least one spectral component that is within the range of the absorption spectra of the tissue so that the light beam 104 can heat and seal the vascular tissue 101 .
  • the incidence angle ⁇ 208 of the light beam 104 may be variable to allow for adjustment of the light penetration depth and other optical parameters. For example, increasing the angle ⁇ 208 of the light beam 104 decreases the amount of light energy absorbed by the vascular tissue 101 .
  • the system 100 of FIG. 1 may include a light distribution element 111 configured to adjust the angle ⁇ 208 of the light beam 104 in response to appropriate control signals from the controller 114 .
  • the light distribution element 111 and the deforming member 121 of FIG. 1 are configured to create conditions of frustrated total internal reflection.
  • the refractive index of the ambient medium 209 e.g., air
  • the light distribution element 111 directs the light beam 104 at an angle with respect to an axis normal to the surface of the deforming member 121 .
  • the angle may be selected to create total internal reflection within the deforming member 121 . In other words, the angle is selected to cause the entire light beam 104 to reflect off of the boundary between the deforming member 121 and the ambient medium 209 .
  • the light beam 104 may be spatially distributed in a manner that provides an appropriate distribution of absorbed light energy in the tissue to be sealed.
  • the entire target tissue volume may be exposed to light all at once or it may be scanned with a light spot or multiple light spots. In the case of scanning, less light power may be needed and the parameters of the light may be adjusted to the local parameters of the vascular tissue 101 , thus reducing thermal damage.
  • Spatially localized exposure may also be used to provide a sealing mode similar to spot welding. In this case, the tissue is sealed locally in a number of discrete spots.
  • the light beam 104 may have several different wavelengths.
  • the wavelengths can be selected so that light at one of the wavelengths is absorbed by hemoglobin or other blood components, which causes the hemoglobin or other blood components to absorb light at other wavelengths, which have low absorption by tissue in its initial state prior to illumination.
  • tissue containing fat and blood vessels may be exposed to green light and near-infrared (IR) light.
  • Fat has a low absorption of green light
  • blood vessels have a high absorption of green light and thus heat up when illuminated by green light.
  • the heating of the blood vessels by the green light causes the coagulation of hemoglobin and creates an absorption center for near IR radiation. As the coagulated hemoglobin absorbs the near IR radiation, it increases in temperature and heats the blood vessels.
  • the light may also include at least two light beams that illuminate the vascular tissue at different angles.
  • a second light beam 204 may illuminate the vascular tissue 101 at an angle ⁇ 207 with respect to the axis 206 .
  • an apparatus or instrument for vascular tissue sealing includes both components that deform vascular tissue and components that expose the vascular tissue to light.
  • the instrument includes at least two members by which force is applied to the vascular tissue to grip, hold, and deform the vascular tissue (e.g., blood vessels or bile ducts) to bring different layers of the vascular tissue into contact with each other.
  • FIG. 3 shows an embodiment of an instrument having two jaw members 306 , 307 (i.e., two deforming members).
  • the jaw members 306 , 307 are configured to move with respect to each other (e.g., the upper jaw member 306 may move while the lower jaw member 207 remains stationary) and to directly contact the vascular tissue 101 .
  • the jaw members 306 , 307 can grasp, hold, and compress the vascular tissue 101 to bring different layers of the vascular tissue 101 into direct contact with each other, to partially destroy layers of the vascular tissue 101 , and to stop the flow of fluid in a vessel (e.g., the vessel 205 of FIG. 2 ).
  • the bottom jaw member 307 is made of a material that is at least partly transparent to the light beam 104 to allow the light beam 104 to pass through a portion of the jaw member 307 to the vascular tissue 101 .
  • the top jaw member 306 may also be made of a transparent material that is at least partly transparent to the light beam 104 to allow the light beam 104 to pass through the top jaw member 306 to the eyes of a surgeon. As a result, the surgeon can view the vascular tissue 101 and the vessels 205 grasped between jaw members 306 , 307 . This enables the surgeon to more accurately and easily position the jaw members 306 , 307 and to control the sealing process and ultimately the quality of the tissue seal.
  • the jaw members 306 , 307 make direct contact with the vascular tissue 101 .
  • the tissue may adhere to the inside surface of the jaw members 306 , 307 .
  • the jaw members 306 , 307 may include an optically-transparent coating with low adhesion to tissue, such as optically-transparent collagen.
  • the light source 120 may include one or more lasers, e.g., a semiconductor laser or a fiber laser.
  • the spectrum of the laser radiation may contain one or more spectral components that lie within the absorption range of the vascular tissue 101 .
  • the light guide 110 delivers the light 103 generated by the light source 120 to a light distribution element 111 .
  • the light guide 110 may include an optical waveguide such as an optical fiber or a bundle of optical fibers.
  • the light distribution element 111 receives the light 103 from the light guide 110 and forms the light 103 into a light beam 104 .
  • the light distribution element 111 may include a prism or an appropriate waveguide structure.
  • the light distribution element 111 may also include a spatially periodic optical structure such as an amplitude-phase grating or a long-period fiber Bragg grating.
  • the wavelength of the light 103 emitted from the light source 120 may be tuned to vary the diffraction pattern created by the spatially-periodic optical structure of the light distribution system 111 .
  • the wavelength of the light 103 may be tuned to vary the direction of propagation of the diffracted light (i.e., the light beam 104 ) to adjust the light penetration depth and the amount of light energy transmitted to the vascular tissue 101 . In this way, the heating of the vascular tissue 101 may be controlled.
  • reflective components may be used to cause the light beam 104 to pass through the tissue being sealed multiple times.
  • the outer surface of the upper jaw member 306 may include a reflective coating 308 and the outer surface of the lower jaw member 307 may include a reflective coating 309 .
  • the light beam 104 emitted from the spatially periodic optical structure of the light distribution system 111 may pass through the vascular tissue 101 , reflect off of the reflective coating 308 , pass again through the vascular tissue 101 , reflect off of the reflective coating 309 , pass again through the vascular tissue 101 , and so forth.
  • the reflective coatings 308 , 309 may be made of a spectrally selective material that reflects the light used to seal the vessel (e.g., near IR light), but transmits visible light.
  • the jaw members 306 , 307 may be made of material with low thermal conductivity because, unlike RF-based sealing methods and instruments, the systems, instruments, and methods according to embodiments of the present disclosure do not require electrically conductive electrodes, which typically have high thermal conductivity. When metal electrodes with high thermal conductivity come into physical contact with vascular tissue, a significant amount of heat is lost through the body of the instrument. Because the jaw members 306 , 307 are not heated by the light, the jaw member material can be selected to have low adhesion to the vascular tissue or a transparent lubricant may be applied to the inner surfaces of the jaw members 306 , 307 to prevent the vascular tissue 101 from adhering to the jaw members 306 , 307 .
  • FIGS. 4 and 5 show cross-sectional side and front views of an instrument for sealing vascular tissue.
  • the jaw members 306 , 307 deform the vascular tissue 101 by extending or stretching the vascular tissue 101 along the length-wise axis of the vascular tissue 101 rather than compressing the vascular tissue 101 , to intensify the release of elastin and collagen.
  • the upper jaw member 306 includes two sides that define a cavity 315 and are shaped to mate with the rounded upper portion of the lower jaw member 307 .
  • the lower jaw member 307 includes an aperture 320 through which a light beam 104 passes from the light distribution element 311 to the cavity 315 .
  • the two sides of the upper jaw member 306 stretch or extend the vascular tissue 101 that is to be illuminated by the light beam 104 across the upper portion of the lower jaw member 307 by pulling the surrounding tissue in opposite directions 203 a , 203 b . Consequently, the different layers of vascular tissue 101 (e.g., the opposite walls of the vessel 205 of FIG. 2 ) are made thinner and are brought into contact with each other.
  • the instrument includes a light distribution element 111 disposed in the lower jaw member 307 a predetermined distance from the vascular tissue 101 .
  • the light distribution element 111 forms a light beam 104 and illuminates the vascular tissue 101 through the aperture 320 .
  • the light distribution element 111 may include optical fibers, lenses, and/or prisms optically coupled to a light source (e.g., the light source 120 of FIG. 3 ) via a light guide (e.g., the light guide 110 of FIG. 3 ).
  • the optical fibers may contain a grating structure to distribute the light beam 104 out of the side of the optical fibers along a predetermined length of the optical fibers.
  • the propagation direction and the wavelength of the light 104 are selected to provide the desired tissue penetration depth by the light beam 104 . Since neither the light distribution element 111 nor the jaw members 306 , 307 have direct physical contact with that portion of the tissue that is illuminated by the light beam 104 , the sealed vascular tissue never adheres to any portion of the instrument. In this manner, the jaw members 306 , 307 and the light distribution element 111 avoid contamination by the sealed vascular tissue 101 .
  • FIG. 6 shows a cutting member 600 of an instrument for vascular tissue sealing that includes a waveguide having three layers 601 - 603 , a light distribution element 604 , and a cutting edge 605 .
  • the light distribution element 604 receives light 103 , forms a light beam 104 , and illuminates the cut surfaces of the layers of vascular tissue 101 with the light beam 104 through the sides of the cutting member 600 .
  • the cutting member 600 allows a user to simultaneously cut vascular tissue 101 using the cutting edge 605 and seal vascular tissue 101 using the light beam 104 .
  • layers 601 , 603 form the walls of the waveguide and layer 602 is the medium through which the light 103 propagates.
  • the cutting member's waveguide is optically coupled to the light source 120 , which generates the light 103 .
  • the cutting member 600 may itself include a light source (e.g., semiconductor lasers) that generates the light 103 .
  • the waveguide 601 - 603 directs the light 103 generated by the light source to the light distribution element 604 in a direction 611 parallel to the x-axis 611 .
  • the light distribution element 604 directs and distributes the light beam 104 through the side of the cutting edge 605 across the layers of vascular tissue 101 that are cut by the cutting edge 605 . In this manner, the cutting member 600 can more completely and uniformly illuminate the layers of the vascular tissue 101 with the light beam 104 .
  • the light source 120 may generate light 103 having multiple light rays that impinge on all or a portion of the light distribution element 604 .
  • the light distribution element 604 in turn, would form the light 103 into a light beam that spans not only the length of the light distribution element 604 (i.e., the dimension of the light distribution element 604 along the x-axis 611 ), but also at least a portion of the height of the light distribution element 604 (i.e., the dimension of the light distribution element 604 along the z-axis 613 ).
  • the light source 120 may generate light 103 having multiple light rays that impinge on the entire area (i.e., length times width) of the light distribution element 604 , in which case the light distribution element 604 would form a light beam having a cross section defined by the area of the light distribution element 604 .
  • the cutting member 600 may use optical energy to cut the tissue 101 .
  • the cutting member 600 includes an optical cutting element 610 that forms the light 103 or light from a separate light source into a light beam 615 that can cut the tissue 101 .
  • the light distribution element 604 is a spatial periodic optical structure such as a grating structure.
  • the spatial periodic optical structure diffracts the light so that it penetrates the layers of cut vascular tissue 101 at a predetermined angle.
  • the light distribution element 604 includes other reflective or refractive materials configured to redirect and distribute the light 104 across the cut layers of the vascular tissue 101 .
  • the reflective or refractive materials may be configured to create conditions of frustrated total internal reflection at the outer surfaces of the waveguide's outer layers 601 , 603 .
  • the light beam 104 passes energy from the cutting member 600 across the ambient medium (i.e., air) to the vascular tissue 101 when the outer surfaces of the cutting member 600 are near enough to the vascular tissue 101 .
  • FIG. 7 shows a front cross-sectional view of the cutting member 600 of FIG. 6 that is incorporated into a surgical instrument having jaw members 706 , 707 for grasping, compressing, and holding the vascular tissue 101 .
  • the jaw members 706 , 707 include recesses 716 , 717 extending along the length (i.e., along the x-axis 611 ) of the jaw members 706 , 707 to guide the movement of the cutting member 600 along the x-axis 611 .
  • the jaw members 706 , 707 grasp, compress, and hold the vascular tissue 101 . While the jaw members 706 , 707 hold the vascular tissue 101 , the cutting member 600 is moved along the x-axis 611 to cut the vascular tissue 101 .
  • the light distribution element 604 directs and distributes a light beam 104 across the surfaces of the cut vascular tissue 101 .
  • the light distribution element 604 may distribute light 103 along both a portion of the length of the cutting member 600 as shown in FIG. 6 (i.e., along the length of the light distribution element 604 ) and a portion of the height of the cutting member 600 as shown in FIGS. 6 and 7 (i.e., along the height of the light distribution element 604 as shown in FIG. 6 ).
  • the light distribution element 604 may distribute the light 104 so that it illuminates a cross-sectional area of cut tissue.
  • FIG. 8 is a flow diagram of a method or process of sealing vascular tissue by scanning the vascular tissue with a light spot according to some embodiments of the present disclosure.
  • vascular tissue is deformed in step 802 so that different layers of the vascular tissue physically contact each other.
  • a light spot is formed, and, in step 805 , the light spot is scanned over at least one portion of the vascular tissue.
  • at least one tissue parameter is monitored in step 806 .
  • the tissue temperature may be monitored.
  • at least one parameter of the light spot is controlled 808 based on the at least one tissue parameter monitored in step 806 .
  • the intensity of the light spot may be varied based on the monitored tissue temperature.
  • the process ends in step 809 .
  • controller 114 of FIG. 1 may include circuitry and other hardware, rather than, or in combination with, programmable instructions executed by a microprocessor for processing the sensed information and determining the control signals to transmit to the power supply 118 and/or the light source 120 .

Abstract

Optical energy-based methods and apparatus for sealing vascular tissue involves deforming vascular tissue to bring different layers of the vascular tissue into contact each other and illuminating the vascular tissue with a light beam having at least one portion of its spectrum overlapping with the absorption spectrum of the vascular tissue. The apparatus may include two deforming members configured to deform the vascular tissue placed between the deforming members. The apparatus may also include an optical system that has a light source configured to generate light, a light distribution element configured to distribute the light across the vascular tissue, and a light guide configured to guide the light from the light source to the light distribution element. The apparatus may further include a cutting member configured to cut the vascular tissue and to illuminate the vascular tissue with light to seal at least one cut surface of the vascular tissue.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation application of U.S. patent application Ser. No. 13/108,177, filed on May 16, 2011, the entire contents of which are incorporated by reference herein.
BACKGROUND
1. Technical Field
The present disclosure is directed to tissue sealing and, in particular, to systems and methods for tissue sealing employing optical energy.
2. Background of Related Art
Existing energy-based surgical systems and methods use electrical energy or ultrasound energy to heat tissue (see, e.g., U.S. Pat. Nos. 7,384,420 and 7,255,697, and U.S. Patent Application Publication Nos. 2008/0147106 and 2009/0036912). For example, electrosurgical systems include an electrosurgical generator for producing high frequency electrical energy (e.g., radio frequency (RF) or microwave (MW) energy) and an electrosurgical instrument for applying the electrical energy to tissue. A surgeon may use the electrosurgical instrument to cut, coagulate, desiccate, and seal tissue.
Existing energy-based surgical methods and systems, however, may have several disadvantages that limit their performance and effectiveness. First, they may limit the surgeon's ability to control and localize energy in tissue. As a result, the energy thermally damages tissue adjacent to the target tissue. Also, energy is lost because an excessive volume of tissue is heated (i.e., both the target tissue and the adjacent tissue are heated).
Second, existing energy-based devices require direct physical contact between the tissue and the electrodes, ultrasound transducers, or sound-conducting portions of the surgical instrument to transmit energy to the tissue. As a result, a significant amount of energy is lost to the environment and to that portion of the instrument in contact with the heated tissue, while only a small amount of energy is used to actually heat tissue. Also, tissue may attach to that portion of the energy-based instrument that is in contact with the tissue.
Third, existing energy-based instruments may obstruct the surgeon's view of the target tissue or the operating site. Fourth, existing energy-based instruments typically include a large generator and a significant amount of wiring.
Lastly, electromagnetic energy-based systems and methods (e.g., RF- and MW-energy-based systems and methods) may cause stray currents, flashovers (e.g., an electric arc between the instrument and the tissue), short circuits in the conducting environment, and/or electromagnetic interference with other tissues and devices.
There are a number of laser-based surgical instruments, such as laser scalpels, that use laser radiation to cut and coagulate tissue. One disadvantage of laser scalpels is that they cannot seal relatively large vessels because laser scalpels cannot bring together opposite walls of the vessels. For example, in the article, Rodney A. White, et al., “Large vessel sealing with the argon laser,” Lasers in Surgery and Medicine 7, pages 229-235 (1987), the edges of damaged vessels are first approached to each other and then sealed by exposing them to laser radiation.
There are also devices that use light to perform tissue ablation procedures. For example, as described in U.S. Pat. No. 4,266,547, tissue is placed between transparent holders through which the light is introduced to the tissue. The absorption of light by the tissue causes heating, charring, and ablation of the tissue. In optical ablation, the tissue can be illuminated with propagating waves or evanescent waves resulting from total external reflection. See, e.g., Cox, et al., “New method for exposing mammalian cells to intense laser radiation using the evanescent fields created in optical waveguides,” Med. Phys. 5:274-279 (1978).
There are also instruments for coagulating blood vessels through the skin without deforming or damaging the tissue. For example, U.S. Pat. No. 7,452,355 describes simultaneously using multiple wavelengths of light radiation so that the radiation of one of the wavelengths modifies the blood and creates in the blood centers of high absorption of the radiation of other wavelengths, which can penetrate deeper into the tissue and completely seal the vessel.
The optical methods and systems described above, however, may not provide high quality vascular tissue sealing, especially for relatively large vessels.
SUMMARY
The surgical systems and methods according to embodiments of the present disclosure provide efficient sealing of vascular tissue including large vessels and mitigate the disadvantages of existing methods and devices, which are based on RF current, ultrasound, or optical radiation.
In one aspect, the present disclosure features a method of sealing vascular tissue. The method includes deforming vascular tissue to cause different layers of the vascular tissue to contact each other and illuminating at least one portion of the vascular tissue with light having at least one portion of the light's spectrum overlapping with an absorption spectrum of the vascular tissue. The light may include at least a first light wave having a first wavelength and a second light wave having a second, different wavelength. The first light wave may change the optical parameters of the vascular tissue or a component of blood within the vascular tissue to increase the absorption of the second light wave by the vascular tissue or the component of blood within the vascular tissue.
In some embodiments, the method further includes forming the light into at least one light beam. In other embodiments, the method further includes forming the light into at least two light beams that propagate at different angles with respect to the deformed vascular tissue.
In some embodiments, the light may be configured to penetrate the vascular tissue through a surface of the vascular tissue while maintaining the original integrity of the surface of the vascular tissue. In other embodiments, the light may be configured to penetrate the vascular tissue through a cut in the vascular tissue formed prior to or during sealing of the vascular tissue.
In some embodiments, illuminating the at least one portion of the vascular tissue with light includes illuminating the at least one portion of the vascular tissue with light all at one time. In other embodiments, illuminating the at least one portion of the vascular tissue with light includes forming the light into at least one light spot and scanning the at least one light spot over the at least one portion of the vascular tissue.
The method may further include monitoring at least one parameter of the vascular tissue and controlling at least one parameter of the light based on the at least one parameter of the vascular tissue. The at least one parameter of the light may include one or more of intensity, frequency, polarization, phase, pulse width, pulse frequency, duty cycle, repetition rate, wave shape, duration of illumination, total exposure of tissue to the light, or the spectra of the light. Also, the at least one parameter of the vascular tissue may include one or more of the electrical impedance of a volume of the vascular tissue, the optical transparency of the vascular tissue, the degree of optical anisotropy of the vascular tissue, or the polarization-dependent optical loss in the vascular tissue. In some embodiments, the method may further include sensing the temperature of the vascular tissue and controlling at least one parameter of the light based on the temperature of the vascular tissue.
In some embodiments, deforming the vascular tissue includes stretching the vascular tissue along a longitudinal axis of a vessel within the vascular tissue. In other embodiments, deforming the vascular tissue includes compressing the vascular tissue.
In another aspect, the present disclosure features an energy-based instrument for sealing vascular tissue. The energy-based instrument includes a deforming member for deforming vascular tissue and an optical system for illuminating a portion of the vascular tissue with light to seal the vascular tissue. The optical system includes a light source for generating light, a light distribution element for distributing the light over the portion of the vascular tissue, and a light guide for guiding the light from the light source to the light distribution element.
The deforming member of the energy-based instrument may include at least a first deforming member and a second deforming member for moving in opposite directions and for deforming vascular tissue placed between the first deforming member and the second deforming member. At least one of the first deforming member and the second deforming member may include optical reflective material for reflecting the light and for causing the light to pass through the vascular tissue at least twice. Also, at least one portion of at least one of the first deforming member and the second deforming member may be transparent to the light.
In some embodiments, a portion of at least one of the first deforming member and the second deforming member does not contact the portion of the deformed vascular tissue that is illuminated with the light. The light distribution element may be optically coupled to at least one of the first deforming member and the second deforming member.
The energy-based instrument may further include a sensor for sensing at least one parameter of the vascular tissue and a controller for controlling at least one parameter of the light generated by the light source based on the at least one parameter of the vascular tissue sensed by the sensor. The at least one parameter of the light may include one or more of intensity, frequency, polarization, phase, pulse width, pulse frequency, duty cycle, repetition rate, wave shape, duration of illumination, total exposure of tissue to the light, or the spectra of the light.
The light source of the energy-based instrument may include at least one light emitting diode or at least one laser. The at least one laser may generate light having different wavelengths. Also, the at least one laser may be a tunable laser that is tuned to generate light of a desired wavelength.
The light distribution element of the energy-based instrument may be configured to create conditions of frustrated total internal reflection. The light distribution element may include at least one lens, at least one prism, at least one waveguide structure, or at least one periodic optical structure. The at least one periodic optical structure may be a diffraction grating, such as a Bragg diffraction grating. In some embodiments, the light guide includes at least one waveguide structure, such as an optical fiber.
In yet another aspect, the present disclosure features an energy-based instrument for cutting and sealing vascular tissue. The energy-based instrument includes a deforming member for deforming vascular tissue to cause different layers of the vascular tissue to contact each other and a cutting member for cutting the vascular tissue and illuminating at least one portion of the vascular tissue with light to seal at least one cut surface of the vascular tissue.
The deforming member may include a first deforming member and a second deforming member configured to move in opposite directions and to deform vascular tissue placed between the first deforming member and the second deforming member. The cutting member may be a movable cutting member and at least one of the first deforming member and the second deforming member may include a recess to guide the moveable cutting member to cut the vascular tissue.
The energy-based instrument may further include a light source for generating light. The cutting member may include an optical beam former coupled to the light source. The optical beam former may form the light into a light beam to cut the vascular tissue. In other embodiments, the cutting member includes a cutting edge that mechanically cuts the vascular tissue.
The cutting member may include an optical waveguide for guiding light through at least one side of the cutting member and illuminating the vascular tissue with the light to seal the at least one cut surface of the vascular tissue. The optical waveguide may be configured to create conditions of frustrated total internal reflection on at least one side of the optical waveguide.
The optical waveguide may include a light distribution element for distributing light on at least one cut surface of the vascular tissue through at least one side of the optical waveguide. The light distribution element may include at least one periodic optical structure.
In yet another aspect, the present disclosure features a method of cutting vascular tissue. The method includes deforming vascular tissue to cause different layers of the vascular tissue to contact each other, cutting the deformed vascular tissue, and illuminating the deformed vascular tissue with light to seal at least one cut surface of the vascular tissue.
The method may further include generating light sufficient to cut the deformed vascular tissue, forming the light into a light beam, and applying the light beam to the vascular tissue to cut the deformed vascular tissue.
In some embodiments, cutting the deformed vascular tissue includes applying mechanical force to a cutting member to cut the deformed vascular tissue. In other embodiments, cutting the deformed vascular tissue includes cutting the deformed vascular tissue with a cutting member and illuminating the deformed vascular tissue with light includes forming a light beam within a cutting member and illuminating the deformed vascular tissue with the light beam through at least one side of the cutting member. The step of illuminating the deformed vascular tissue with light may include creating conditions of frustrated total internal reflection on at least one side of an optical waveguide within the cutting member.
In some embodiments, deforming the vascular tissue includes stretching the vascular tissue along a longitudinal axis of a vessel within the vascular tissue. In other embodiments, deforming the vascular tissue includes compressing the vascular tissue.
BRIEF DESCRIPTION OF THE DRAWINGS
Various embodiments will be described herein below with reference to the drawings wherein:
FIG. 1 is a block diagram of an optical sealing system according to embodiments of the present disclosure;
FIG. 2 is an illustration of a method of sealing vascular tissue according to embodiments of the present disclosure;
FIG. 3 is a cross-sectional side view of a portion of an instruments used to seal vascular tissue according to some embodiments of the present disclosure;
FIG. 4 is a cross-sectional side view of a portion of an instrument used to seal vascular tissue according to other embodiments of the present disclosure;
FIG. 5 is a cross-sectional front view of the instrument of FIG. 4;
FIG. 6 is a perspective view of a cutting member according to yet other embodiments of the present disclosure;
FIG. 7 is a cross-sectional front view of the cutting member of FIG. 6 in an instrument used to seal and cut vascular tissue according to certain embodiments of the present disclosure; and
FIG. 8 is a flow diagram of a method of sealing vascular tissue according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
As described above, existing methods of heating and sealing vascular tissue (e.g., vessels) using electromagnetic radiation in the radio frequency (RF) range may have some drawbacks. These drawbacks may include stray currents, flashover, short circuits, the need for electrical insulation, and interference with other tissues, organs, and medical devices. Using light to heat and seal vascular tissue avoids these drawbacks while also maintaining the integrity of the tissue. The term “light” as used in the present disclosure refers to electromagnetic radiation in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum.
According to embodiments of the present disclosure, tissue sealing is accomplished by deforming the vascular tissue to provide direct contact between different layers of the vascular tissue and illuminating the vascular tissue with light. Absorption of the light by the tissue causes the heating of the vascular tissue followed by the melting or denaturizing of the collagen and elastin in the vascular tissue. Deforming the vascular tissue through mechanical impact facilitates the release and mixture of collagen and elastin from the vascular tissue. When the light is removed from the vascular tissue, the melted collagen and elastin reform to create a permanent vascular tissue seal.
FIG. 1 is a block diagram of a vascular tissue sealing system 100 according to embodiments of the present disclosure. The system 100 includes a light source 120, a light guide 110, a light distribution element 111, and a deforming member 121, which operate together to form a high-quality tissue seal. The deforming member 121 applies a force 102 to deform the vascular tissue 101 and bring different layers of the vascular tissue 101 into direct physical contact with each other. Then, the light source 120 generates light 103 and provides it to the light distribution element 111 via the light guide 110. The light distribution element 111, which may be incorporated into the deforming member 121, forms the light 103 into a light beam 104 and illuminates the vascular tissue 101 with the light beam 104. The light beam 104 heats the deformed vascular tissue 101 to create a tissue seal.
The vascular tissue sealing system 100 also includes a control system that incorporates feedback to control the tissue sealing process. The control system may use the feedback to optimize the tissue sealing process, e.g., to determine optimal exposure, to minimize thermal damage, and to reduce energy consumption. For example, the control system may use the feedback to adjust amplitude-time characteristics of the light 103 (e.g., amplitude, number of pulses, pulse duration, and pulse repetition rate) to obtain a desired tissue seal quality and to avoid tissue charring or destruction.
The feedback may include on one or more optical, electrical, or other parameter of the vascular tissue. For example, the feedback may include electrical impedance, optical transparency, optical polarization-dependent loss, or temperature of the vascular tissue. The feedback may also include one or more parameters of the electrical, optical, and mechanical subsystems of the vascular tissue sealing system 100. For example, the feedback may include the gap distance between opposing sealing surfaces of the jaw members 306, 307 (as shown in FIGS. 3 and 4) and the pressure applied to the vascular tissue 101. These parameters should be accurately controlled to assure a consistent and reliable seal.
The control system of the vascular tissue sealing system 100 may include sensors 112, an analog-to-digital converter (ADC) 113, a controller 114, a user interface 116, and a power supply 118. The sensors 112 sense one or more optical, electrical, or other parameters of the vascular tissue 101 and transmit sensor information in the form of analog sensor signals to the ADC 113. For example, the sensors 112 may sense optical parameters of the tissue 101 including the optical transparency of the tissue 101, the degree of reflection from the tissue 101, the optical loss resulting from absorption and/or scattering by the tissue 101 (e.g., the optical polarization-dependent losses in the tissue 101), the degree of anisotropy of the optical parameters, or any combination of these optical parameters as disclosed in commonly-owned U.S. patent application Ser. No. 13/108,129, entitled “System and Method for Energy-Based Sealing of Tissue with Optical Feedback,” the entire contents of which are incorporated by reference herein. In some embodiments, the sensors 112 may include an optical sensor system as disclosed in commonly-owned U.S. patent application Ser. No. 12/757,340, entitled “Optical Hydrology Arrays and System and Method for Monitoring Water Displacement During Treatment of Patient Tissue,” the entire contents of which are incorporated by reference herein. The sensors 112 may also sense one or more parameters of the light beam 104.
The ADC 113 converts the analog sensor signals to digital sensor data and transmits the digital sensor data to the controller 114. The controller 114 processes the digital sensor data and regulates one or more parameters of the light 103 by transmitting appropriate control signals to the light source 120. In some embodiments, the ADC 113 is incorporated into the controller 114 and the sensors 112 transmit the analog sensor signals to the controller 114 via a wireless communications link.
The user interface 116, which may be local to or remote from the controller 114, is coupled to the controller 114 via a communications link to allow the user to control various parameters of the light beam 104 applied to the vascular tissue 101 during a sealing procedure. The user may manually set one or more parameters of the light 103 and/or the light beam 104 and the controller 114 may regulate and/or control these parameters. The one or more parameters of the light 103 and/or the light beam 104 may include intensity, frequency, polarization, phase, pulse width, pulse frequency, duty cycle, repetition rate, wave shape, duration of illumination, total exposure of tissue to the light beam 104, or the spectra of the light 103 and/or the light beam 104. The intensity of the light 103 and/or the light beam 104 may include total intensity and/or spatial distribution of intensity over the illuminated tissue. A user may enter data into the user interface 116 such as the type of instrument, the type of surgical procedure, and/or the tissue type.
The controller 114 is also coupled to the power supply 118 (e.g., a DC power supply) via a communications link to enable the controller 114 to control and monitor the power supplied by the power supply 118 to the light source 120. The controller 114 may receive feedback signals from the power supply 118, may generate control signals based on the feedback signals, and may transmit these control signals to the power supply 118. The control signals may control the magnitude of the voltage and current output from the power supply 118. The control signals may also be converted to analog signals by a digital-to-analog converter (DAC) (not shown) before they are applied to the power supply 118.
The controller 114 may include at least one microprocessor capable of executing software instructions for processing data received from the user interface 116 and the sensors 112 and for outputting appropriate control signals to the light source 120 and/or the power supply 118. The software instructions executed by the at least one microprocessor may be stored in an internal memory of the controller 114, an internal or external memory bank accessible by the controller 114, and/or an external memory, e.g., an external hard drive, floppy diskette, or CD-ROM.
The system 100 may be implemented as a single surgical device, such as a portable surgical device, or a surgical device broken up into separate components. For example, the system 100 may include two components: (1) a controller console, which may include the ADC 113, controller 114, user interface 116, and power supply 118, and (2) an instrument, which may include the light source 120, light guide 110, deforming member 121, and sensors 112.
FIG. 2 is an illustration 200 showing a method of sealing vascular tissue 101 in accordance with embodiments of the present disclosure. The method involves deforming the vascular tissue 101 and exposing at least a portion of the deformed tissue to a light beam 104. Deforming the vascular tissue 101 brings different layers of the vascular tissue 101, including opposite walls of a vessel 205, into direct contact with each other. Also, deforming the vascular tissue 101 partially destroys layers of the vascular tissue 101 to facilitate extraction of collagen and elastin from the interlayer space. Finally, deforming the vascular tissue 101 displaces blood or other biological fluids and reduces the volume of vascular tissue to be sealed.
The vascular tissue 101 may be deformed by compressing the vascular tissue 101, e.g., by applying mechanical force to opposite sides of the vascular tissue 101 as indicated by the arrows 202. Alternatively or in addition to compressing the vascular tissue 101, the vascular tissue 101 may be deformed by extending or stretching the vascular tissue 101 in a direction perpendicular to an axis 206, which is perpendicular to the surface of the vascular tissue 101. For example, the vascular tissue 101 may be deformed by pulling a first portion of the vascular tissue 101 in a first direction 203 a while pulling a second portion of the vascular tissue 101 in a second direction 203 b (i.e., in the opposite direction). The vascular tissue 101 may also be deformed by twisting the vascular tissue 101 or by applying pressure at different locations on the vascular tissue 101.
As illustrated in FIG. 2, the light beam 104 illuminates the vascular tissue 101 at an incidence angle θ 208 with respect to the axis 206. The light beam 104 includes at least one spectral component that is within the range of the absorption spectra of the tissue so that the light beam 104 can heat and seal the vascular tissue 101. The incidence angle θ 208 of the light beam 104 may be variable to allow for adjustment of the light penetration depth and other optical parameters. For example, increasing the angle θ 208 of the light beam 104 decreases the amount of light energy absorbed by the vascular tissue 101. To vary the angle θ 208 of the light beam 104, the system 100 of FIG. 1 may include a light distribution element 111 configured to adjust the angle θ 208 of the light beam 104 in response to appropriate control signals from the controller 114.
In some embodiments, the light distribution element 111 and the deforming member 121 of FIG. 1 are configured to create conditions of frustrated total internal reflection. To create these conditions, the refractive index of the ambient medium 209 (e.g., air) is selected to be less than the refractive index of the vascular tissue 101. Also, the light distribution element 111 directs the light beam 104 at an angle with respect to an axis normal to the surface of the deforming member 121. The angle may be selected to create total internal reflection within the deforming member 121. In other words, the angle is selected to cause the entire light beam 104 to reflect off of the boundary between the deforming member 121 and the ambient medium 209. When the deforming member 121 gets close enough to the vascular tissue 101, there is a transition to frustrated total internal reflection in which the light beam 104 passes energy from the deforming member 121 across the ambient medium 209 to the vascular tissue 101. This configuration may reduce the light penetration depth and thus increase the localization of induced heating of the vascular tissue 101.
The light beam 104 may be spatially distributed in a manner that provides an appropriate distribution of absorbed light energy in the tissue to be sealed. The entire target tissue volume may be exposed to light all at once or it may be scanned with a light spot or multiple light spots. In the case of scanning, less light power may be needed and the parameters of the light may be adjusted to the local parameters of the vascular tissue 101, thus reducing thermal damage. Spatially localized exposure may also be used to provide a sealing mode similar to spot welding. In this case, the tissue is sealed locally in a number of discrete spots.
To more efficiently heat the vascular tissue 191, the light beam 104 may have several different wavelengths. The wavelengths can be selected so that light at one of the wavelengths is absorbed by hemoglobin or other blood components, which causes the hemoglobin or other blood components to absorb light at other wavelengths, which have low absorption by tissue in its initial state prior to illumination.
The use of different wavelengths of light also enables selective heating of different tissues. For example, tissue containing fat and blood vessels may be exposed to green light and near-infrared (IR) light. Fat has a low absorption of green light, whereas blood vessels have a high absorption of green light and thus heat up when illuminated by green light. The heating of the blood vessels by the green light causes the coagulation of hemoglobin and creates an absorption center for near IR radiation. As the coagulated hemoglobin absorbs the near IR radiation, it increases in temperature and heats the blood vessels.
The light may also include at least two light beams that illuminate the vascular tissue at different angles. For example, as shown in FIG. 2, a second light beam 204 may illuminate the vascular tissue 101 at an angle φ 207 with respect to the axis 206.
As described above, an apparatus or instrument for vascular tissue sealing according to embodiments of the present disclosure includes both components that deform vascular tissue and components that expose the vascular tissue to light. In some embodiments, the instrument includes at least two members by which force is applied to the vascular tissue to grip, hold, and deform the vascular tissue (e.g., blood vessels or bile ducts) to bring different layers of the vascular tissue into contact with each other.
FIG. 3 shows an embodiment of an instrument having two jaw members 306, 307 (i.e., two deforming members). The jaw members 306, 307 are configured to move with respect to each other (e.g., the upper jaw member 306 may move while the lower jaw member 207 remains stationary) and to directly contact the vascular tissue 101. The jaw members 306, 307 can grasp, hold, and compress the vascular tissue 101 to bring different layers of the vascular tissue 101 into direct contact with each other, to partially destroy layers of the vascular tissue 101, and to stop the flow of fluid in a vessel (e.g., the vessel 205 of FIG. 2).
The bottom jaw member 307 is made of a material that is at least partly transparent to the light beam 104 to allow the light beam 104 to pass through a portion of the jaw member 307 to the vascular tissue 101. The top jaw member 306 may also be made of a transparent material that is at least partly transparent to the light beam 104 to allow the light beam 104 to pass through the top jaw member 306 to the eyes of a surgeon. As a result, the surgeon can view the vascular tissue 101 and the vessels 205 grasped between jaw members 306, 307. This enables the surgeon to more accurately and easily position the jaw members 306, 307 and to control the sealing process and ultimately the quality of the tissue seal.
As shown in FIG. 3, the jaw members 306, 307 make direct contact with the vascular tissue 101. In some instances, the tissue may adhere to the inside surface of the jaw members 306, 307. To prevent this, the jaw members 306, 307 may include an optically-transparent coating with low adhesion to tissue, such as optically-transparent collagen.
The light source 120 may include one or more lasers, e.g., a semiconductor laser or a fiber laser. The spectrum of the laser radiation may contain one or more spectral components that lie within the absorption range of the vascular tissue 101. The light guide 110 delivers the light 103 generated by the light source 120 to a light distribution element 111. The light guide 110 may include an optical waveguide such as an optical fiber or a bundle of optical fibers.
The light distribution element 111 receives the light 103 from the light guide 110 and forms the light 103 into a light beam 104. To form the light beam 104, the light distribution element 111 may include a prism or an appropriate waveguide structure. The light distribution element 111 may also include a spatially periodic optical structure such as an amplitude-phase grating or a long-period fiber Bragg grating.
The wavelength of the light 103 emitted from the light source 120 may be tuned to vary the diffraction pattern created by the spatially-periodic optical structure of the light distribution system 111. For example, the wavelength of the light 103 may be tuned to vary the direction of propagation of the diffracted light (i.e., the light beam 104) to adjust the light penetration depth and the amount of light energy transmitted to the vascular tissue 101. In this way, the heating of the vascular tissue 101 may be controlled.
To increase the efficient use of light energy, reflective components may be used to cause the light beam 104 to pass through the tissue being sealed multiple times. For example, as shown in FIG. 3, the outer surface of the upper jaw member 306 may include a reflective coating 308 and the outer surface of the lower jaw member 307 may include a reflective coating 309. In this embodiment, the light beam 104 emitted from the spatially periodic optical structure of the light distribution system 111 may pass through the vascular tissue 101, reflect off of the reflective coating 308, pass again through the vascular tissue 101, reflect off of the reflective coating 309, pass again through the vascular tissue 101, and so forth. To allow a surgeon to see the vascular tissue 101 through the transparent jaw members 306, 307, the reflective coatings 308, 309 may be made of a spectrally selective material that reflects the light used to seal the vessel (e.g., near IR light), but transmits visible light.
The jaw members 306, 307 may be made of material with low thermal conductivity because, unlike RF-based sealing methods and instruments, the systems, instruments, and methods according to embodiments of the present disclosure do not require electrically conductive electrodes, which typically have high thermal conductivity. When metal electrodes with high thermal conductivity come into physical contact with vascular tissue, a significant amount of heat is lost through the body of the instrument. Because the jaw members 306, 307 are not heated by the light, the jaw member material can be selected to have low adhesion to the vascular tissue or a transparent lubricant may be applied to the inner surfaces of the jaw members 306, 307 to prevent the vascular tissue 101 from adhering to the jaw members 306, 307.
FIGS. 4 and 5 show cross-sectional side and front views of an instrument for sealing vascular tissue. In this embodiment, the jaw members 306, 307 deform the vascular tissue 101 by extending or stretching the vascular tissue 101 along the length-wise axis of the vascular tissue 101 rather than compressing the vascular tissue 101, to intensify the release of elastin and collagen. The upper jaw member 306 includes two sides that define a cavity 315 and are shaped to mate with the rounded upper portion of the lower jaw member 307. The lower jaw member 307 includes an aperture 320 through which a light beam 104 passes from the light distribution element 311 to the cavity 315.
As the jaw members 306, 307 are brought together to deform the vascular tissue 101, the two sides of the upper jaw member 306 stretch or extend the vascular tissue 101 that is to be illuminated by the light beam 104 across the upper portion of the lower jaw member 307 by pulling the surrounding tissue in opposite directions 203 a, 203 b. Consequently, the different layers of vascular tissue 101 (e.g., the opposite walls of the vessel 205 of FIG. 2) are made thinner and are brought into contact with each other.
The advantage of this embodiment is that there is no direct physical contact between the jaw members 306, 307 and that portion of the vascular tissue 101 that is illuminated by the light beam 104. Similar to FIG. 3, the instrument includes a light distribution element 111 disposed in the lower jaw member 307 a predetermined distance from the vascular tissue 101. The light distribution element 111 forms a light beam 104 and illuminates the vascular tissue 101 through the aperture 320. The light distribution element 111 may include optical fibers, lenses, and/or prisms optically coupled to a light source (e.g., the light source 120 of FIG. 3) via a light guide (e.g., the light guide 110 of FIG. 3). The optical fibers may contain a grating structure to distribute the light beam 104 out of the side of the optical fibers along a predetermined length of the optical fibers.
The propagation direction and the wavelength of the light 104 are selected to provide the desired tissue penetration depth by the light beam 104. Since neither the light distribution element 111 nor the jaw members 306, 307 have direct physical contact with that portion of the tissue that is illuminated by the light beam 104, the sealed vascular tissue never adheres to any portion of the instrument. In this manner, the jaw members 306, 307 and the light distribution element 111 avoid contamination by the sealed vascular tissue 101.
FIG. 6 shows a cutting member 600 of an instrument for vascular tissue sealing that includes a waveguide having three layers 601-603, a light distribution element 604, and a cutting edge 605. As the cutting edge 605 cuts through vascular tissue 101, the light distribution element 604 receives light 103, forms a light beam 104, and illuminates the cut surfaces of the layers of vascular tissue 101 with the light beam 104 through the sides of the cutting member 600. Accordingly, the cutting member 600 allows a user to simultaneously cut vascular tissue 101 using the cutting edge 605 and seal vascular tissue 101 using the light beam 104.
As shown in FIG. 6, layers 601, 603 form the walls of the waveguide and layer 602 is the medium through which the light 103 propagates. The cutting member's waveguide is optically coupled to the light source 120, which generates the light 103. In some embodiments, the cutting member 600 may itself include a light source (e.g., semiconductor lasers) that generates the light 103. The waveguide 601-603 directs the light 103 generated by the light source to the light distribution element 604 in a direction 611 parallel to the x-axis 611. The light distribution element 604, in turn, directs and distributes the light beam 104 through the side of the cutting edge 605 across the layers of vascular tissue 101 that are cut by the cutting edge 605. In this manner, the cutting member 600 can more completely and uniformly illuminate the layers of the vascular tissue 101 with the light beam 104.
The light source 120 may generate light 103 having multiple light rays that impinge on all or a portion of the light distribution element 604. The light distribution element 604, in turn, would form the light 103 into a light beam that spans not only the length of the light distribution element 604 (i.e., the dimension of the light distribution element 604 along the x-axis 611), but also at least a portion of the height of the light distribution element 604 (i.e., the dimension of the light distribution element 604 along the z-axis 613). For example, the light source 120 may generate light 103 having multiple light rays that impinge on the entire area (i.e., length times width) of the light distribution element 604, in which case the light distribution element 604 would form a light beam having a cross section defined by the area of the light distribution element 604.
Alternatively, or in combination with the cutting edge 605, the cutting member 600 may use optical energy to cut the tissue 101. For example, the cutting member 600 includes an optical cutting element 610 that forms the light 103 or light from a separate light source into a light beam 615 that can cut the tissue 101.
As also shown in FIG. 6, the light distribution element 604 is a spatial periodic optical structure such as a grating structure. The spatial periodic optical structure diffracts the light so that it penetrates the layers of cut vascular tissue 101 at a predetermined angle. In other embodiments, instead of a spatial periodic optical structure, the light distribution element 604 includes other reflective or refractive materials configured to redirect and distribute the light 104 across the cut layers of the vascular tissue 101. For example, the reflective or refractive materials may be configured to create conditions of frustrated total internal reflection at the outer surfaces of the waveguide's outer layers 601, 603. In this configuration, the light beam 104 passes energy from the cutting member 600 across the ambient medium (i.e., air) to the vascular tissue 101 when the outer surfaces of the cutting member 600 are near enough to the vascular tissue 101.
FIG. 7 shows a front cross-sectional view of the cutting member 600 of FIG. 6 that is incorporated into a surgical instrument having jaw members 706, 707 for grasping, compressing, and holding the vascular tissue 101. The jaw members 706, 707 include recesses 716, 717 extending along the length (i.e., along the x-axis 611) of the jaw members 706, 707 to guide the movement of the cutting member 600 along the x-axis 611.
At the start of a tissue sealing procedure, the jaw members 706, 707 grasp, compress, and hold the vascular tissue 101. While the jaw members 706, 707 hold the vascular tissue 101, the cutting member 600 is moved along the x-axis 611 to cut the vascular tissue 101. At the same time, the light distribution element 604 directs and distributes a light beam 104 across the surfaces of the cut vascular tissue 101. As described above, the light distribution element 604 may distribute light 103 along both a portion of the length of the cutting member 600 as shown in FIG. 6 (i.e., along the length of the light distribution element 604) and a portion of the height of the cutting member 600 as shown in FIGS. 6 and 7 (i.e., along the height of the light distribution element 604 as shown in FIG. 6). In other words, the light distribution element 604 may distribute the light 104 so that it illuminates a cross-sectional area of cut tissue.
FIG. 8 is a flow diagram of a method or process of sealing vascular tissue by scanning the vascular tissue with a light spot according to some embodiments of the present disclosure. After starting in 801, vascular tissue is deformed in step 802 so that different layers of the vascular tissue physically contact each other. In step 804, a light spot is formed, and, in step 805, the light spot is scanned over at least one portion of the vascular tissue. While the light spot is scanned over the vascular tissue, at least one tissue parameter is monitored in step 806. For example, the tissue temperature may be monitored. Then, at least one parameter of the light spot is controlled 808 based on the at least one tissue parameter monitored in step 806. For example, the intensity of the light spot may be varied based on the monitored tissue temperature. Finally, the process ends in step 809.
Although this disclosure has been described with respect to particular embodiments, it will be readily apparent to those having ordinary skill in the art to which it appertains that changes and modifications may be made thereto without departing from the spirit or scope of the disclosure. For example, the controller 114 of FIG. 1 may include circuitry and other hardware, rather than, or in combination with, programmable instructions executed by a microprocessor for processing the sensed information and determining the control signals to transmit to the power supply 118 and/or the light source 120.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosures be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments.

Claims (17)

What is claimed is:
1. An energy-based instrument for sealing tissue, comprising:
an end effector assembly including first and second jaw members pivotably coupled about a pivot, at least one of the first and second jaw members being pivotable relative to the other about the pivot from a first position wherein the first and second jaw members are disposed in spaced relation relative to one another to at least a second position wherein the first and second jaw members cooperate to deform tissue; and
an optical system configured to illuminate a portion of tissue with light to seal tissue, the optical system comprising:
a light source configured to generate light;
a light distribution element configured to distribute the light over the portion of tissue;
a light guide configured to guide the light from the light source to the light distribution element; and
an optical reflective material,
wherein the light distribution element is disposed in the first jaw member,
wherein the second jaw member includes the optical reflective material, which is configured to reflect light that has passed through tissue so that the light passes through tissue a second time, and
wherein the optical reflective material is a spectrally selective material which transmits visible light.
2. The energy-based instrument of claim 1, wherein the second jaw member is transparent to the light.
3. The energy-based instrument of claim 1, further comprising:
a sensor configured to sense at least one parameter of the tissue; and
a controller configured to control at least one parameter of the light generated by the light source based on the at least one parameter of the tissue sensed by the sensor.
4. The energy-based instrument of claim 3, wherein the at least one parameter of the light is one or more of intensity, frequency, polarization, phase, pulse width, pulse frequency, duty cycle, repetition rate, wave shape, duration of illumination, total exposure of tissue to the light, or the spectra of the light.
5. The energy-based instrument of claim 1, wherein the light source includes at least one light emitting diode or at least one laser.
6. The energy-based instrument of claim 5, wherein the at least one laser generates light having different wavelengths.
7. The energy-based instrument of claim 5, wherein the at least one laser is a tunable laser that is tuned to generate light of a desired wavelength.
8. The energy-based instrument of claim 1, wherein the light distribution element is configured to create conditions of frustrated total internal reflection.
9. The energy-based instrument of claim 1, wherein the light distribution element includes at least one lens or at least one prism.
10. The energy-based instrument of claim 1, wherein the light distribution element includes at least one periodic optical structure.
11. The energy-based instrument of claim 10, wherein the at least one periodic optical structure is a diffraction grating.
12. The energy-based instrument of claim 11, wherein the diffraction grating is a Bragg diffraction grating.
13. The energy-based instrument of claim 1, wherein the light distribution element includes at least one waveguide structure.
14. The energy-based instrument of claim 1, wherein the light guide includes at least one waveguide structure.
15. The energy-based instrument of claim 14, wherein the at least one waveguide structure is an optical fiber.
16. The energy-based instrument of claim 1, wherein at least one of the first and second jaw members is coated with an optically-transparent coating with low adhesion to tissue.
17. The energy-based instrument of claim 16, wherein the optically-transparent coating is an optically-transparent collagen.
US14/811,563 2011-05-16 2015-07-28 Optical energy-based methods and apparatus for tissue sealing Active US9402685B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/811,563 US9402685B2 (en) 2011-05-16 2015-07-28 Optical energy-based methods and apparatus for tissue sealing
US15/224,955 US10925662B2 (en) 2011-05-16 2016-08-01 Optical energy-based methods and apparatus for tissue sealing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/108,177 US9113933B2 (en) 2011-05-16 2011-05-16 Optical energy-based methods and apparatus for tissue sealing
US14/811,563 US9402685B2 (en) 2011-05-16 2015-07-28 Optical energy-based methods and apparatus for tissue sealing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/108,177 Continuation US9113933B2 (en) 2011-05-16 2011-05-16 Optical energy-based methods and apparatus for tissue sealing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/224,955 Continuation US10925662B2 (en) 2011-05-16 2016-08-01 Optical energy-based methods and apparatus for tissue sealing

Publications (2)

Publication Number Publication Date
US20150327931A1 US20150327931A1 (en) 2015-11-19
US9402685B2 true US9402685B2 (en) 2016-08-02

Family

ID=47175487

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/108,177 Active 2033-01-05 US9113933B2 (en) 2011-05-16 2011-05-16 Optical energy-based methods and apparatus for tissue sealing
US14/811,563 Active US9402685B2 (en) 2011-05-16 2015-07-28 Optical energy-based methods and apparatus for tissue sealing
US15/224,955 Active 2033-08-06 US10925662B2 (en) 2011-05-16 2016-08-01 Optical energy-based methods and apparatus for tissue sealing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/108,177 Active 2033-01-05 US9113933B2 (en) 2011-05-16 2011-05-16 Optical energy-based methods and apparatus for tissue sealing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/224,955 Active 2033-08-06 US10925662B2 (en) 2011-05-16 2016-08-01 Optical energy-based methods and apparatus for tissue sealing

Country Status (1)

Country Link
US (3) US9113933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10925662B2 (en) 2011-05-16 2021-02-23 Covidien Lp Optical energy-based methods and apparatus for tissue sealing

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7473253B2 (en) 2001-04-06 2009-01-06 Covidien Ag Vessel sealer and divider with non-conductive stop members
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8939972B2 (en) 2011-05-06 2015-01-27 Covidien Lp Surgical forceps
US8685009B2 (en) 2011-05-16 2014-04-01 Covidien Lp Thread-like knife for tissue cutting
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US8745840B2 (en) 2011-07-11 2014-06-10 Covidien Lp Surgical forceps and method of manufacturing thereof
US9039732B2 (en) 2011-07-11 2015-05-26 Covidien Lp Surgical forceps
US8852186B2 (en) 2011-08-09 2014-10-07 Covidien Lp Microwave sensing for tissue sealing
US8845636B2 (en) 2011-09-16 2014-09-30 Covidien Lp Seal plate with insulation displacement connection
US8864795B2 (en) 2011-10-03 2014-10-21 Covidien Lp Surgical forceps
US8968309B2 (en) 2011-11-10 2015-03-03 Covidien Lp Surgical forceps
US8968310B2 (en) 2011-11-30 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade lockout mechanism
US9113897B2 (en) 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
US8968360B2 (en) 2012-01-25 2015-03-03 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US8747434B2 (en) 2012-02-20 2014-06-10 Covidien Lp Knife deployment mechanisms for surgical forceps
US8961514B2 (en) * 2012-03-06 2015-02-24 Covidien Lp Articulating surgical apparatus
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
US9265569B2 (en) 2012-03-29 2016-02-23 Covidien Lp Method of manufacturing an electrosurgical forceps
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US8968311B2 (en) 2012-05-01 2015-03-03 Covidien Lp Surgical instrument with stamped double-flag jaws and actuation mechanism
US9039731B2 (en) 2012-05-08 2015-05-26 Covidien Lp Surgical forceps including blade safety mechanism
US9375258B2 (en) 2012-05-08 2016-06-28 Covidien Lp Surgical forceps
US10368945B2 (en) 2012-07-17 2019-08-06 Covidien Lp Surgical instrument for energy-based tissue treatment
US9113904B2 (en) 2012-07-19 2015-08-25 Covidien Lp Surgical instrument with fiber bragg grating
US9265573B2 (en) 2012-07-19 2016-02-23 Covidien Lp Ablation needle including fiber Bragg grating
US9161812B2 (en) 2012-07-19 2015-10-20 Covidien Lp Finger-mountable ablation device
US9023039B2 (en) 2012-07-19 2015-05-05 Covidien Lp Electrosurgical device including an optical sensor
US10231782B2 (en) 2012-09-06 2019-03-19 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US10226297B2 (en) 2012-09-06 2019-03-12 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US9265566B2 (en) 2012-10-16 2016-02-23 Covidien Lp Surgical instrument
KR20160044483A (en) * 2013-07-17 2016-04-25 아시메트릭 메디칼 리미티드 Vessel sealing and cutting devices, methods and systems
WO2015017995A1 (en) 2013-08-07 2015-02-12 Covidien Lp Bipolar surgical instrument with tissue stop
KR102134566B1 (en) 2013-08-07 2020-07-17 코비디엔 엘피 Bipolar surgical instrument
USD788302S1 (en) 2013-10-01 2017-05-30 Covidien Lp Knife for endoscopic electrosurgical forceps
US10039592B2 (en) 2014-09-17 2018-08-07 Covidien Lp Deployment mechanisms for surgical instruments
US9918785B2 (en) 2014-09-17 2018-03-20 Covidien Lp Deployment mechanisms for surgical instruments
US9877777B2 (en) 2014-09-17 2018-01-30 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US9987076B2 (en) 2014-09-17 2018-06-05 Covidien Lp Multi-function surgical instruments
US10080605B2 (en) 2014-09-17 2018-09-25 Covidien Lp Deployment mechanisms for surgical instruments
US10172612B2 (en) 2015-01-21 2019-01-08 Covidien Lp Surgical instruments with force applier and methods of use
US10722293B2 (en) 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
USD844139S1 (en) 2015-07-17 2019-03-26 Covidien Lp Monopolar assembly of a multi-function surgical instrument
USD844138S1 (en) 2015-07-17 2019-03-26 Covidien Lp Handle assembly of a multi-function surgical instrument
WO2017031712A1 (en) 2015-08-26 2017-03-02 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10426543B2 (en) 2016-01-23 2019-10-01 Covidien Lp Knife trigger for vessel sealer
US10537381B2 (en) 2016-02-26 2020-01-21 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US10631887B2 (en) 2016-08-15 2020-04-28 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US10813695B2 (en) 2017-01-27 2020-10-27 Covidien Lp Reflectors for optical-based vessel sealing
US11172980B2 (en) 2017-05-12 2021-11-16 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US10973567B2 (en) 2017-05-12 2021-04-13 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
USD843574S1 (en) 2017-06-08 2019-03-19 Covidien Lp Knife for open vessel sealer
USD854684S1 (en) 2017-06-08 2019-07-23 Covidien Lp Open vessel sealer with mechanical cutter
USD854149S1 (en) 2017-06-08 2019-07-16 Covidien Lp End effector for open vessel sealer
WO2019032984A2 (en) 2017-08-11 2019-02-14 Intuitive Surgical Operations, Inc. Medical apparatus with optical sensing, and related devices and methods
US11154348B2 (en) 2017-08-29 2021-10-26 Covidien Lp Surgical instruments and methods of assembling surgical instruments
US11241275B2 (en) 2018-03-21 2022-02-08 Covidien Lp Energy-based surgical instrument having multiple operational configurations
US11123132B2 (en) 2018-04-09 2021-09-21 Covidien Lp Multi-function surgical instruments and assemblies therefor
US10828756B2 (en) 2018-04-24 2020-11-10 Covidien Lp Disassembly methods facilitating reprocessing of multi-function surgical instruments
US10780544B2 (en) 2018-04-24 2020-09-22 Covidien Lp Systems and methods facilitating reprocessing of surgical instruments
US11471211B2 (en) 2018-10-12 2022-10-18 Covidien Lp Electrosurgical forceps
US11376062B2 (en) 2018-10-12 2022-07-05 Covidien Lp Electrosurgical forceps
US11350982B2 (en) 2018-12-05 2022-06-07 Covidien Lp Electrosurgical forceps
US11523861B2 (en) 2019-03-22 2022-12-13 Covidien Lp Methods for manufacturing a jaw assembly for an electrosurgical forceps
US11622804B2 (en) 2020-03-16 2023-04-11 Covidien Lp Forceps with linear trigger mechanism
US11660109B2 (en) 2020-09-08 2023-05-30 Covidien Lp Cutting elements for surgical instruments such as for use in robotic surgical systems
US11925406B2 (en) 2020-09-14 2024-03-12 Covidien Lp End effector assemblies for surgical instruments

Citations (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU401367A1 (en) 1971-10-05 1973-10-12 Тернопольский государственный медицинский институт BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT
DE2415263A1 (en) 1974-03-29 1975-10-02 Aesculap Werke Ag Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE2514501A1 (en) 1975-04-03 1976-10-21 Karl Storz Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece
DE2627679A1 (en) 1975-06-26 1977-01-13 Marcel Lamidey HEMATISTIC HIGH FREQUENCY EXTRACTOR FORCEPS
USD249549S (en) 1976-10-22 1978-09-19 Aspen Laboratories, Inc. Electrosurgical handle
US4126136A (en) 1976-02-09 1978-11-21 Research Corporation Photocoagulating scalpel system
US4266547A (en) 1977-05-16 1981-05-12 Olympus Optical Co., Ltd. Laser knife
USD263020S (en) 1980-01-22 1982-02-16 Rau Iii David M Retractable knife
JPS61501068A (en) 1984-01-30 1986-05-29 ハルコフスキイ ナウチノ−イススレドワテルスキイ インスチチユ−ト オブスチエイ イ ネオトロジノイ ヒルルギイ bipolar electrosurgical instrument
DE3423356C2 (en) 1984-06-25 1986-06-26 Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen Electrosurgical high frequency cutting instrument
DE3612646A1 (en) 1985-04-16 1987-04-30 Ellman International Electrosurgical handle piece for blades, needles and forceps
DE8712328U1 (en) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
USD295893S (en) 1985-09-25 1988-05-24 Acme United Corporation Disposable surgical clamp
USD295894S (en) 1985-09-26 1988-05-24 Acme United Corporation Disposable surgical scissors
USD298353S (en) 1986-05-06 1988-11-01 Vitalmetrics, Inc. Handle for surgical instrument
USD299413S (en) 1985-07-17 1989-01-17 The Stanley Works Folding pocket saw handle
US4854320A (en) 1983-10-06 1989-08-08 Laser Surgery Software, Inc. Laser healing method and apparatus
US5071417A (en) 1990-06-15 1991-12-10 Rare Earth Medical Lasers, Inc. Laser fusion of biological materials
EP0480293A1 (en) 1990-10-11 1992-04-15 LaserSurge, Inc. Clamp for approximating tissue sections
US5147356A (en) 1991-04-16 1992-09-15 Microsurge, Inc. Surgical instrument
JPH055106Y2 (en) 1986-02-28 1993-02-09
JPH0540112Y2 (en) 1987-03-03 1993-10-12
USD343453S (en) 1993-05-05 1994-01-18 Laparomed Corporation Handle for laparoscopic surgical instrument
JPH06502328A (en) 1990-10-17 1994-03-17 ボストン サイエンティフィック コーポレイション Surgical instruments and methods
JPH06121797A (en) 1992-02-27 1994-05-06 United States Surgical Corp Equipment and method for performing intracutaneous stapling of body tissue
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
USD349341S (en) 1992-10-28 1994-08-02 Microsurge, Inc. Endoscopic grasper
US5334191A (en) 1992-05-21 1994-08-02 Dix Phillip Poppas Laser tissue welding control system
US5336221A (en) 1992-10-14 1994-08-09 Premier Laser Systems, Inc. Method and apparatus for applying thermal energy to tissue using a clamp
US5342358A (en) 1993-01-12 1994-08-30 S.L.T. Japan Co., Ltd. Apparatus for operation by laser energy
JPH06285078A (en) 1993-04-05 1994-10-11 Olympus Optical Co Ltd Forceps
JPH06343644A (en) 1993-05-04 1994-12-20 Gyrus Medical Ltd Surgical peritoneoscope equipment
JPH06511401A (en) 1991-06-07 1994-12-22 バイタル メディカル プロダクツ コーポレイション Bipolar electrosurgical endoscopic instrument and its method of use
USD354564S (en) 1993-06-25 1995-01-17 Richard-Allan Medical Industries, Inc. Surgical clip applier
DE4303882C2 (en) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Combination instrument for separation and coagulation for minimally invasive surgery
USD358887S (en) 1993-12-02 1995-05-30 Cobot Medical Corporation Combined cutting and coagulating forceps
DE4403252A1 (en) 1994-02-03 1995-08-10 Michael Hauser Instrument shaft for min. invasive surgery
JPH07265328A (en) 1993-11-01 1995-10-17 Gyrus Medical Ltd Electrode assembly for electric surgery device and electric surgery device using it
US5470331A (en) 1990-01-22 1995-11-28 S.L.T. Japan Co., Ltd. Laser light irradiation apparatus for medical treatment
JPH0856955A (en) 1994-06-29 1996-03-05 Gyrus Medical Ltd Electric surgical apparatus
DE19515914C1 (en) 1995-05-02 1996-07-25 Aesculap Ag Tong or scissor-shaped surgical instrument
DE19506363A1 (en) 1995-02-24 1996-08-29 Frost Lore Geb Haupt Non-invasive thermometry in organs under hyperthermia and coagulation conditions
JPH08252263A (en) 1994-12-21 1996-10-01 Gyrus Medical Ltd Electronic surgical incision apparatus and electronic surgical incision device using said apparatus
DE29616210U1 (en) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handle for surgical instruments
JPH08317934A (en) 1995-04-12 1996-12-03 Ethicon Endo Surgery Inc Hemostatic device for electric surgery with adaptable electrode
JPH0910223A (en) 1995-06-23 1997-01-14 Gyrus Medical Ltd Generator and system for electric operation
DE19608716C1 (en) 1996-03-06 1997-04-17 Aesculap Ag Bipolar surgical holding instrument
JPH09122138A (en) 1995-10-20 1997-05-13 Ethicon Endo Surgery Inc Apparatus for operation
US5662643A (en) 1994-09-28 1997-09-02 Abiomed R & D, Inc. Laser welding system
USD384413S (en) 1994-10-07 1997-09-30 United States Surgical Corporation Endoscopic suturing instrument
JPH1024051A (en) 1995-09-20 1998-01-27 Olympus Optical Co Ltd Coagulation forceps with separating function
DE19751106A1 (en) 1996-11-27 1998-05-28 Eastman Kodak Co Laser printer with array of laser diodes
US5762609A (en) 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
JPH10155798A (en) 1996-12-04 1998-06-16 Asahi Optical Co Ltd Hot biopsy clamp for endoscope
US5769791A (en) 1992-09-14 1998-06-23 Sextant Medical Corporation Tissue interrogating device and methods
USH1745H (en) 1995-09-29 1998-08-04 Paraschac; Joseph F. Electrosurgical clamping device with insulation limited bipolar electrode
USD402028S (en) 1997-10-10 1998-12-01 Invasatec, Inc. Hand controller for medical system
JPH1147150A (en) 1997-08-06 1999-02-23 Olympus Optical Co Ltd Endoscopic surgery appliance
JPH1170124A (en) 1997-05-14 1999-03-16 Ethicon Endo Surgery Inc Improved electrosurgical hemostatic apparatus having anvil
USD408018S (en) 1996-03-12 1999-04-13 Mcnaughton Patrick J Switch guard
DE19751108A1 (en) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Electrosurgical operation tool, especially for diathermy
JPH11169381A (en) 1997-12-15 1999-06-29 Olympus Optical Co Ltd High frequency treating device
JPH11192238A (en) 1997-10-10 1999-07-21 Ethicon Endo Surgery Inc Ultrasonic forceps coagulation device improved of pivot-attaching of forceps arm
JPH11244298A (en) 1997-12-19 1999-09-14 Gyrus Medical Ltd Electric surgical instrument
USD416089S (en) 1996-04-08 1999-11-02 Richard-Allan Medical Industries, Inc. Endoscopic linear stapling and dividing surgical instrument
US6039729A (en) 1997-08-08 2000-03-21 Cynosure, Inc. Portable cautery system
JP2000102545A (en) 1997-06-18 2000-04-11 Eggers & Associates Inc Electric tweezers for surgery
USD424694S (en) 1998-10-23 2000-05-09 Sherwood Services Ag Forceps
USD425201S (en) 1998-10-23 2000-05-16 Sherwood Services Ag Disposable electrode assembly
US6063085A (en) 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
WO2000036986A1 (en) 1998-12-18 2000-06-29 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
US6086586A (en) 1998-09-14 2000-07-11 Enable Medical Corporation Bipolar tissue grasping apparatus and tissue welding method
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
JP2000342599A (en) 1999-05-21 2000-12-12 Gyrus Medical Ltd Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation
JP2000350732A (en) 1999-05-21 2000-12-19 Gyrus Medical Ltd Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery
JP2001008944A (en) 1999-05-28 2001-01-16 Gyrus Medical Ltd Electric surgical signal generator and electric surgical system
JP2001029356A (en) 1999-06-11 2001-02-06 Gyrus Medical Ltd Electric and surgical signal generator
WO2001015614A1 (en) 1999-08-27 2001-03-08 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
US6208466B1 (en) 1998-11-25 2001-03-27 3M Innovative Properties Company Multilayer reflector with selective transmission
JP2001128990A (en) 1999-05-28 2001-05-15 Gyrus Medical Ltd Electro surgical instrument and electrosurgical tool converter
US6248117B1 (en) 1999-04-16 2001-06-19 Vital Access Corp Anastomosis apparatus for use in intraluminally directed vascular anastomosis
JP2001190564A (en) 2000-01-12 2001-07-17 Olympus Optical Co Ltd Medical treatment instrument
WO2001054604A1 (en) 2000-01-25 2001-08-02 Aesculap Ag & Co. Kg Bipolar gripping device
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
USD453923S1 (en) 2000-11-16 2002-02-26 Carling Technologies, Inc. Electrical rocker switch guard
USD454951S1 (en) 2001-02-27 2002-03-26 Visionary Biomedical, Inc. Steerable catheter
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
DE10045375C2 (en) 2000-09-14 2002-10-24 Aesculap Ag & Co Kg Medical instrument
USD465281S1 (en) 1999-09-21 2002-11-05 Karl Storz Gmbh & Co. Kg Endoscopic medical instrument
USD466209S1 (en) 2001-02-27 2002-11-26 Visionary Biomedical, Inc. Steerable catheter
EP1159926A3 (en) 2000-06-03 2003-03-19 Aesculap Ag Scissor- or forceps-like surgical instrument
US6569173B1 (en) 1999-12-14 2003-05-27 Integrated Vascular Interventional Technologies, L.C. Compression plate anastomosis apparatus
US6623494B1 (en) 1999-04-16 2003-09-23 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Methods and systems for intraluminally directed vascular anastomosis
JP2004517668A (en) 2000-10-20 2004-06-17 オーナックス・メディカル・インコーポレーテッド Surgical suturing instrument and method of use
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
JP2004528869A (en) 2001-01-26 2004-09-24 エシコン・エンド−サージェリィ・インコーポレイテッド Electrosurgical instruments for coagulation and cutting
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
USD502994S1 (en) 2003-05-21 2005-03-15 Blake, Iii Joseph W Repeating multi-clip applier
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
US20050234437A1 (en) 1999-07-14 2005-10-20 Cardiofocus, Inc. Deflectable sheath catheters with out-of-plane bent tip
US20050261568A1 (en) 2001-09-04 2005-11-24 Bioluminate, Inc. Multisensor probe for tissue identification
WO2005110264A2 (en) 2004-05-14 2005-11-24 Erbe Elektromedizin Gmbh Electrosurgical instrument
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
USD533274S1 (en) 2004-10-12 2006-12-05 Allegiance Corporation Handle for surgical suction-irrigation device
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD538932S1 (en) 2005-06-30 2007-03-20 Medical Action Industries Inc. Surgical needle holder
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD541611S1 (en) 2006-01-26 2007-05-01 Robert Bosch Gmbh Cordless screwdriver
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD545432S1 (en) 2003-08-08 2007-06-26 Olympus Corporation Distal portion of hemostatic forceps for endoscope
USD547154S1 (en) 2006-09-08 2007-07-24 Winsource Industries Limited Rotary driving tool
US20070179484A1 (en) 2006-01-30 2007-08-02 Sharon Sade Temperature Controlled Multi-Wavelength Laser Welding And Heating System
DE202007009165U1 (en) 2007-06-29 2007-08-30 Kls Martin Gmbh + Co. Kg Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator
DE202007009317U1 (en) 2007-06-26 2007-08-30 Aesculap Ag & Co. Kg Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit
DE202007016233U1 (en) 2007-11-20 2008-01-31 Aesculap Ag & Co. Kg Surgical forceps
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
US20080077200A1 (en) 2006-09-21 2008-03-27 Aculight Corporation Apparatus and method for stimulation of nerves and automated control of surgical instruments
USD567943S1 (en) 2004-10-08 2008-04-29 Sherwood Services Ag Over-ratchet safety for a vessel sealing instrument
USD575401S1 (en) 2007-06-12 2008-08-19 Tyco Healthcare Group Lp Vessel sealer
USD575395S1 (en) 2007-02-15 2008-08-19 Tyco Healthcare Group Lp Hemostat style elongated dissecting and dividing instrument
US20080221409A1 (en) 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc System and method for controlling tissue treatment
US7452355B2 (en) 2000-09-12 2008-11-18 Vladimir Valentinovich Khomchenko Method of laser coagulation of blood vessels
USD582038S1 (en) 2004-10-13 2008-12-02 Medtronic, Inc. Transurethral needle ablation device
DE19738457B4 (en) 1997-09-03 2009-01-02 Celon Ag Medical Instruments Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current
DE102008018406B3 (en) 2008-04-10 2009-07-23 Bowa-Electronic Gmbh & Co. Kg Electrosurgical device
US20090287194A1 (en) 2006-04-06 2009-11-19 Yissum Research Development Company Of The Hebrew University Of Jerusalem Device for irradiating an internal body surface
US20100049187A1 (en) 2008-08-21 2010-02-25 Carlton John D Electrosurgical Instrument Including a Sensor
USD617901S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector chamfered tip
USD617903S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector pointed tip
USD617902S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut top jaw
USD617900S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut bottom jaw
US20100160904A1 (en) 2008-11-24 2010-06-24 Gradiant Research, Llc Photothermal treatment of soft tissues
USD618798S1 (en) 2009-05-13 2010-06-29 Tyco Healthcare Group Lp Vessel sealing jaw seal plate
USD621503S1 (en) 2009-04-28 2010-08-10 Tyco Healthcare Group Ip Pistol grip laparoscopic sealing and dissection device
US20100217258A1 (en) 2007-06-29 2010-08-26 Tyco Healthcare Group ,LP Method and system for monitoring tissue during an electrosurgical procedure
USD627462S1 (en) 2009-09-09 2010-11-16 Tyco Healthcare Group Lp Knife channel of a jaw device
USD628290S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle
USD628289S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle
USD630324S1 (en) 2009-08-05 2011-01-04 Tyco Healthcare Group Lp Dissecting surgical jaw
US20110251605A1 (en) * 2010-04-09 2011-10-13 Tyco Healthcare Group Lp Optical Hydrology Arrays and System and Method for Monitoring Water Displacement During Treatment of Patient Tissue

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067798A1 (en) * 2001-02-26 2002-09-06 Ntero Surgical, Inc. System and method for reducing post-surgical complications
US20040006340A1 (en) * 2002-07-02 2004-01-08 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting, desiccating and sealing tissue
US7762960B2 (en) * 2005-05-13 2010-07-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
CN201299462Y (en) 2008-10-28 2009-09-02 宋洪海 Multi-layer metal composite pot
US20110071523A1 (en) * 2009-09-23 2011-03-24 Tyco Healthcare Group Lp Vessel Sealer with Self-Aligning Jaws
US9113933B2 (en) 2011-05-16 2015-08-25 Covidien Lp Optical energy-based methods and apparatus for tissue sealing

Patent Citations (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU401367A1 (en) 1971-10-05 1973-10-12 Тернопольский государственный медицинский институт BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT
DE2415263A1 (en) 1974-03-29 1975-10-02 Aesculap Werke Ag Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE2514501A1 (en) 1975-04-03 1976-10-21 Karl Storz Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece
DE2627679A1 (en) 1975-06-26 1977-01-13 Marcel Lamidey HEMATISTIC HIGH FREQUENCY EXTRACTOR FORCEPS
US4126136A (en) 1976-02-09 1978-11-21 Research Corporation Photocoagulating scalpel system
USD249549S (en) 1976-10-22 1978-09-19 Aspen Laboratories, Inc. Electrosurgical handle
US4266547A (en) 1977-05-16 1981-05-12 Olympus Optical Co., Ltd. Laser knife
USD263020S (en) 1980-01-22 1982-02-16 Rau Iii David M Retractable knife
US4854320A (en) 1983-10-06 1989-08-08 Laser Surgery Software, Inc. Laser healing method and apparatus
JPS61501068A (en) 1984-01-30 1986-05-29 ハルコフスキイ ナウチノ−イススレドワテルスキイ インスチチユ−ト オブスチエイ イ ネオトロジノイ ヒルルギイ bipolar electrosurgical instrument
DE3423356C2 (en) 1984-06-25 1986-06-26 Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen Electrosurgical high frequency cutting instrument
DE3612646A1 (en) 1985-04-16 1987-04-30 Ellman International Electrosurgical handle piece for blades, needles and forceps
USD299413S (en) 1985-07-17 1989-01-17 The Stanley Works Folding pocket saw handle
USD295893S (en) 1985-09-25 1988-05-24 Acme United Corporation Disposable surgical clamp
USD295894S (en) 1985-09-26 1988-05-24 Acme United Corporation Disposable surgical scissors
JPH055106Y2 (en) 1986-02-28 1993-02-09
USD298353S (en) 1986-05-06 1988-11-01 Vitalmetrics, Inc. Handle for surgical instrument
JPH0540112Y2 (en) 1987-03-03 1993-10-12
DE8712328U1 (en) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
US5470331A (en) 1990-01-22 1995-11-28 S.L.T. Japan Co., Ltd. Laser light irradiation apparatus for medical treatment
US5071417A (en) 1990-06-15 1991-12-10 Rare Earth Medical Lasers, Inc. Laser fusion of biological materials
EP0480293A1 (en) 1990-10-11 1992-04-15 LaserSurge, Inc. Clamp for approximating tissue sections
JPH06502328A (en) 1990-10-17 1994-03-17 ボストン サイエンティフィック コーポレイション Surgical instruments and methods
US5147356A (en) 1991-04-16 1992-09-15 Microsurge, Inc. Surgical instrument
JPH06511401A (en) 1991-06-07 1994-12-22 バイタル メディカル プロダクツ コーポレイション Bipolar electrosurgical endoscopic instrument and its method of use
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
JPH06121797A (en) 1992-02-27 1994-05-06 United States Surgical Corp Equipment and method for performing intracutaneous stapling of body tissue
US6063085A (en) 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5334191A (en) 1992-05-21 1994-08-02 Dix Phillip Poppas Laser tissue welding control system
US5409481A (en) 1992-05-21 1995-04-25 Laserscope Laser tissue welding control system
US5769791A (en) 1992-09-14 1998-06-23 Sextant Medical Corporation Tissue interrogating device and methods
US5762609A (en) 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
US5336221A (en) 1992-10-14 1994-08-09 Premier Laser Systems, Inc. Method and apparatus for applying thermal energy to tissue using a clamp
USD349341S (en) 1992-10-28 1994-08-02 Microsurge, Inc. Endoscopic grasper
US5342358A (en) 1993-01-12 1994-08-30 S.L.T. Japan Co., Ltd. Apparatus for operation by laser energy
DE4303882C2 (en) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Combination instrument for separation and coagulation for minimally invasive surgery
JPH06285078A (en) 1993-04-05 1994-10-11 Olympus Optical Co Ltd Forceps
JPH06343644A (en) 1993-05-04 1994-12-20 Gyrus Medical Ltd Surgical peritoneoscope equipment
USD343453S (en) 1993-05-05 1994-01-18 Laparomed Corporation Handle for laparoscopic surgical instrument
USD354564S (en) 1993-06-25 1995-01-17 Richard-Allan Medical Industries, Inc. Surgical clip applier
JPH07265328A (en) 1993-11-01 1995-10-17 Gyrus Medical Ltd Electrode assembly for electric surgery device and electric surgery device using it
USD358887S (en) 1993-12-02 1995-05-30 Cobot Medical Corporation Combined cutting and coagulating forceps
DE4403252A1 (en) 1994-02-03 1995-08-10 Michael Hauser Instrument shaft for min. invasive surgery
JPH0856955A (en) 1994-06-29 1996-03-05 Gyrus Medical Ltd Electric surgical apparatus
US5662643A (en) 1994-09-28 1997-09-02 Abiomed R & D, Inc. Laser welding system
USD384413S (en) 1994-10-07 1997-09-30 United States Surgical Corporation Endoscopic suturing instrument
JPH08252263A (en) 1994-12-21 1996-10-01 Gyrus Medical Ltd Electronic surgical incision apparatus and electronic surgical incision device using said apparatus
DE19506363A1 (en) 1995-02-24 1996-08-29 Frost Lore Geb Haupt Non-invasive thermometry in organs under hyperthermia and coagulation conditions
JPH08317934A (en) 1995-04-12 1996-12-03 Ethicon Endo Surgery Inc Hemostatic device for electric surgery with adaptable electrode
DE19515914C1 (en) 1995-05-02 1996-07-25 Aesculap Ag Tong or scissor-shaped surgical instrument
JPH0910223A (en) 1995-06-23 1997-01-14 Gyrus Medical Ltd Generator and system for electric operation
JPH1024051A (en) 1995-09-20 1998-01-27 Olympus Optical Co Ltd Coagulation forceps with separating function
USH1745H (en) 1995-09-29 1998-08-04 Paraschac; Joseph F. Electrosurgical clamping device with insulation limited bipolar electrode
JPH09122138A (en) 1995-10-20 1997-05-13 Ethicon Endo Surgery Inc Apparatus for operation
DE19608716C1 (en) 1996-03-06 1997-04-17 Aesculap Ag Bipolar surgical holding instrument
USD408018S (en) 1996-03-12 1999-04-13 Mcnaughton Patrick J Switch guard
USD416089S (en) 1996-04-08 1999-11-02 Richard-Allan Medical Industries, Inc. Endoscopic linear stapling and dividing surgical instrument
DE29616210U1 (en) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handle for surgical instruments
DE19751106A1 (en) 1996-11-27 1998-05-28 Eastman Kodak Co Laser printer with array of laser diodes
JPH10155798A (en) 1996-12-04 1998-06-16 Asahi Optical Co Ltd Hot biopsy clamp for endoscope
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
JPH1170124A (en) 1997-05-14 1999-03-16 Ethicon Endo Surgery Inc Improved electrosurgical hemostatic apparatus having anvil
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
JP2000102545A (en) 1997-06-18 2000-04-11 Eggers & Associates Inc Electric tweezers for surgery
JPH1147150A (en) 1997-08-06 1999-02-23 Olympus Optical Co Ltd Endoscopic surgery appliance
US6039729A (en) 1997-08-08 2000-03-21 Cynosure, Inc. Portable cautery system
DE19738457B4 (en) 1997-09-03 2009-01-02 Celon Ag Medical Instruments Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current
USD402028S (en) 1997-10-10 1998-12-01 Invasatec, Inc. Hand controller for medical system
JPH11192238A (en) 1997-10-10 1999-07-21 Ethicon Endo Surgery Inc Ultrasonic forceps coagulation device improved of pivot-attaching of forceps arm
DE19751108A1 (en) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Electrosurgical operation tool, especially for diathermy
JPH11169381A (en) 1997-12-15 1999-06-29 Olympus Optical Co Ltd High frequency treating device
JPH11244298A (en) 1997-12-19 1999-09-14 Gyrus Medical Ltd Electric surgical instrument
US6086586A (en) 1998-09-14 2000-07-11 Enable Medical Corporation Bipolar tissue grasping apparatus and tissue welding method
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
USD425201S (en) 1998-10-23 2000-05-16 Sherwood Services Ag Disposable electrode assembly
USD424694S (en) 1998-10-23 2000-05-09 Sherwood Services Ag Forceps
US6208466B1 (en) 1998-11-25 2001-03-27 3M Innovative Properties Company Multilayer reflector with selective transmission
WO2000036986A1 (en) 1998-12-18 2000-06-29 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
US6623494B1 (en) 1999-04-16 2003-09-23 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Methods and systems for intraluminally directed vascular anastomosis
US6248117B1 (en) 1999-04-16 2001-06-19 Vital Access Corp Anastomosis apparatus for use in intraluminally directed vascular anastomosis
JP2000342599A (en) 1999-05-21 2000-12-12 Gyrus Medical Ltd Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation
JP2000350732A (en) 1999-05-21 2000-12-19 Gyrus Medical Ltd Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery
JP2001008944A (en) 1999-05-28 2001-01-16 Gyrus Medical Ltd Electric surgical signal generator and electric surgical system
JP2001128990A (en) 1999-05-28 2001-05-15 Gyrus Medical Ltd Electro surgical instrument and electrosurgical tool converter
JP2001029356A (en) 1999-06-11 2001-02-06 Gyrus Medical Ltd Electric and surgical signal generator
US20050234437A1 (en) 1999-07-14 2005-10-20 Cardiofocus, Inc. Deflectable sheath catheters with out-of-plane bent tip
WO2001015614A1 (en) 1999-08-27 2001-03-08 Karl Storz Gmbh & Co. Kg Bipolar medical instrument
USD465281S1 (en) 1999-09-21 2002-11-05 Karl Storz Gmbh & Co. Kg Endoscopic medical instrument
US6569173B1 (en) 1999-12-14 2003-05-27 Integrated Vascular Interventional Technologies, L.C. Compression plate anastomosis apparatus
JP2001190564A (en) 2000-01-12 2001-07-17 Olympus Optical Co Ltd Medical treatment instrument
WO2001054604A1 (en) 2000-01-25 2001-08-02 Aesculap Ag & Co. Kg Bipolar gripping device
EP1159926A3 (en) 2000-06-03 2003-03-19 Aesculap Ag Scissor- or forceps-like surgical instrument
US7452355B2 (en) 2000-09-12 2008-11-18 Vladimir Valentinovich Khomchenko Method of laser coagulation of blood vessels
DE10045375C2 (en) 2000-09-14 2002-10-24 Aesculap Ag & Co Kg Medical instrument
JP2004517668A (en) 2000-10-20 2004-06-17 オーナックス・メディカル・インコーポレーテッド Surgical suturing instrument and method of use
USD453923S1 (en) 2000-11-16 2002-02-26 Carling Technologies, Inc. Electrical rocker switch guard
JP2004528869A (en) 2001-01-26 2004-09-24 エシコン・エンド−サージェリィ・インコーポレイテッド Electrosurgical instruments for coagulation and cutting
USD466209S1 (en) 2001-02-27 2002-11-26 Visionary Biomedical, Inc. Steerable catheter
USD454951S1 (en) 2001-02-27 2002-03-26 Visionary Biomedical, Inc. Steerable catheter
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
US20050261568A1 (en) 2001-09-04 2005-11-24 Bioluminate, Inc. Multisensor probe for tissue identification
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD502994S1 (en) 2003-05-21 2005-03-15 Blake, Iii Joseph W Repeating multi-clip applier
USD545432S1 (en) 2003-08-08 2007-06-26 Olympus Corporation Distal portion of hemostatic forceps for endoscope
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
WO2005110264A2 (en) 2004-05-14 2005-11-24 Erbe Elektromedizin Gmbh Electrosurgical instrument
DE102004026179B4 (en) 2004-05-14 2009-01-22 Erbe Elektromedizin Gmbh Electrosurgical instrument
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
USD567943S1 (en) 2004-10-08 2008-04-29 Sherwood Services Ag Over-ratchet safety for a vessel sealing instrument
USD533274S1 (en) 2004-10-12 2006-12-05 Allegiance Corporation Handle for surgical suction-irrigation device
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
USD582038S1 (en) 2004-10-13 2008-12-02 Medtronic, Inc. Transurethral needle ablation device
USD538932S1 (en) 2005-06-30 2007-03-20 Medical Action Industries Inc. Surgical needle holder
USD541611S1 (en) 2006-01-26 2007-05-01 Robert Bosch Gmbh Cordless screwdriver
US20070179484A1 (en) 2006-01-30 2007-08-02 Sharon Sade Temperature Controlled Multi-Wavelength Laser Welding And Heating System
US20090287194A1 (en) 2006-04-06 2009-11-19 Yissum Research Development Company Of The Hebrew University Of Jerusalem Device for irradiating an internal body surface
USD547154S1 (en) 2006-09-08 2007-07-24 Winsource Industries Limited Rotary driving tool
US20080077200A1 (en) 2006-09-21 2008-03-27 Aculight Corporation Apparatus and method for stimulation of nerves and automated control of surgical instruments
USD575395S1 (en) 2007-02-15 2008-08-19 Tyco Healthcare Group Lp Hemostat style elongated dissecting and dividing instrument
US20080221409A1 (en) 2007-03-09 2008-09-11 Nellcor Puritan Bennett Llc System and method for controlling tissue treatment
USD575401S1 (en) 2007-06-12 2008-08-19 Tyco Healthcare Group Lp Vessel sealer
DE202007009317U1 (en) 2007-06-26 2007-08-30 Aesculap Ag & Co. Kg Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit
DE202007009165U1 (en) 2007-06-29 2007-08-30 Kls Martin Gmbh + Co. Kg Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator
US20100217258A1 (en) 2007-06-29 2010-08-26 Tyco Healthcare Group ,LP Method and system for monitoring tissue during an electrosurgical procedure
DE202007016233U1 (en) 2007-11-20 2008-01-31 Aesculap Ag & Co. Kg Surgical forceps
DE102008018406B3 (en) 2008-04-10 2009-07-23 Bowa-Electronic Gmbh & Co. Kg Electrosurgical device
US20100049187A1 (en) 2008-08-21 2010-02-25 Carlton John D Electrosurgical Instrument Including a Sensor
US20100160904A1 (en) 2008-11-24 2010-06-24 Gradiant Research, Llc Photothermal treatment of soft tissues
USD621503S1 (en) 2009-04-28 2010-08-10 Tyco Healthcare Group Ip Pistol grip laparoscopic sealing and dissection device
USD617903S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector pointed tip
USD617902S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut top jaw
USD617900S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut bottom jaw
USD618798S1 (en) 2009-05-13 2010-06-29 Tyco Healthcare Group Lp Vessel sealing jaw seal plate
USD617901S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector chamfered tip
USD630324S1 (en) 2009-08-05 2011-01-04 Tyco Healthcare Group Lp Dissecting surgical jaw
USD627462S1 (en) 2009-09-09 2010-11-16 Tyco Healthcare Group Lp Knife channel of a jaw device
USD628290S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle
USD628289S1 (en) 2009-11-30 2010-11-30 Tyco Healthcare Group Lp Surgical instrument handle
US20110251605A1 (en) * 2010-04-09 2011-10-13 Tyco Healthcare Group Lp Optical Hydrology Arrays and System and Method for Monitoring Water Displacement During Treatment of Patient Tissue

Non-Patent Citations (268)

* Cited by examiner, † Cited by third party
Title
"Electrosurgery: A Historical Overview" Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
"Reducing Needlestick Injuries in the Operating Room" Sales/Product Literature 2001.
Barbara Levy, "Use of a New Vessel Ligation Device During Vaginal Hysterectomy" FIGO 2000, Washington, D.C.
Benaron et al., "Optical Time-Of-Flight and Absorbance Imaging of Biologic Media", Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Bergdahl et al. "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Burdette et al. "In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies", IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carbonell et al., "Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003.
Carus et al., "Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery" Innovations That Work, Jun. 2002.
Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure" Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Craig Johnson, "Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy" Innovations That Work, Mar. 2000.
Crawford et al. "Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery" Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Crouch et al. "A Velocity-Dependent Model for Needle Insertion in Soft Tissue" MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
Dulemba et al. "Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy" Sales/Product Literature; Jan. 2004.
E. David Crawford "Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery" Sales/Product Literature 2000.
E. David Crawford "Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex" Sales/Product Literature 2000.
Heniford et al. "Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer" Oct. 1999.
Heniford et al. "Initial Results with an Electrothermal Bipolar Vessel Sealer" Surgical Endoscopy (2000) 15:799-801.
Herman et al., "Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report"; Innovations That Work, Feb. 2002.
In'l Search Report EP 09 005575.7 dated Sep. 9, 2009.
In'l Search Report EP 09 152267.2 dated Jun. 15, 2009.
International Search Report PCT/US2012/038104, dated Jul. 10, 2012.
International Search Report PCT/US2012/038112, dated Jul. 16, 2012.
International Search Report PCT/US2012/038126, dated Jul. 16, 2012.
Int'l Search Report E 04709033.7 dated Dec. 8, 2010.
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005.
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005.
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005.
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005.
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007.
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008.
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009.
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005.
Int'l Search Report EP 05013894 dated Feb. 3, 2006.
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005.
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006.
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005.
Int'l Search Report EP 05019429.9 dated May 6, 2008.
Int'l Search Report EP 05020532 dated Jan. 10, 2006.
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006.
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006.
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006.
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006.
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006.
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007.
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006.
Int'l Search Report EP 06005185.1 dated May 10, 2006.
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006.
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009.
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006.
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006.
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007.
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007.
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007.
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007.
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007.
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010.
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007.
Int'l Search Report EP 07 014016 dated Jan. 28, 2008.
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008.
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008.
Int'l Search Report EP 07 016911 dated May 28, 2010.
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008.
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008.
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008.
Int'l Search Report EP 07 021647.8 dated May 2, 2008.
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008.
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008.
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008.
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008.
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009.
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009.
Int'l Search Report EP 09 003677.3 dated May 4, 2009.
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009.
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009.
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009.
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009.
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010.
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009.
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009.
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009.
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009.
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009.
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009.
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009.
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009.
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010.
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010.
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009.
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010.
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011.
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010.
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010.
Int'l Search Report EP 10 160870,1 dated Aug. 9, 2010.
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010.
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010.
Int'l Search Report EP 10 169647.4 dated Oct. 29, 2010.
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010.
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010.
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011.
Int'l Search Report EP 10 181575.1 dated Apr. 5, 2011.
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011.
Int'l Search Report EP 10 182022.3 dated Mar. 11, 2011.
Int'l Search Report EP 10 185386.9 dated Jan. 10, 2011.
Int'l Search Report EP 10 185405.7 dated Jan. 5, 2011.
Int'l Search Report EP 10 189206.5 dated Mar. 17, 2011.
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011.
Int'l Search Report EP 11 151509.4 dated Jun. 6, 2011.
Int'l Search Report EP 11 152220.7 dated May 19, 2011.
Int'l Search Report EP 11 152360.1 dated Jun. 6, 2011.
Int'l Search Report EP 11 161117.4 dated Jun. 30, 2011.
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000.
Int'l Search Report EP 98957771 dated Aug. 9, 2001.
Int'l Search Report EP 98957773 dated Aug. 1, 2001.
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002.
Int'l Search Report Extended-EP 07 009029.5 dated Jul. 20, 2007.
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001.
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001.
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001.
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002.
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002.
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003.
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003.
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003.
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003.
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005.
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004.
Int'l Search Report PCT/US04/15311 dated Jan. 12, 2005.
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008.
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008.
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008.
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008.
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009.
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999.
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999.
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999.
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000.
Int'l Search Report-extended-EP 05021937.7 dated Mar. 15, 2006.
Jarrett et al., "Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy" Sales/Product Literature 2000.
Johnson et al. "Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy" Sales/Product Literature; Jan. 2004.
Johnson et al. "Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy" American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Joseph Ortenberg "LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002.
Kennedy et al. "High-burst-strength, feedback-controlled bipolar vessel sealing" Surgical Endoscopy (1998) 12: 876-878.
Koyle et al., "Laparoscopic Palomo Varicocele Ligation in Children and Adolescents" Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
Levy et al. "Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy" Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
Levy et al. "Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy" Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Levy et al., "Update on Hysterectomy-New Technologies and Techniques" OBG Management, Feb. 2003.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
McLellan et al. "Vessel Sealing for Hemostasis During Gynecologic Surgery" Sales/Product Literature 1999.
McLellan et al. "Vessel Sealing for Hemostasis During Pelvic Surgery" Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
Michael Choti, "Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument" ; Innovations That Work, Jun. 2003.
Muller et al., "Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System" Innovations That Work, Sep. 1999.
Olsson et al. "Radical Cystectomy in Females" Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. "Randomized clinical trial of Ligasure versus open haemorrhoidectomy" British Journal of Surgery 2002, 89, 154-157.
Paul G. Horgan, "A Novel Technique for Parenchymal Division During Hepatectomy" The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Peterson et al. "Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing" Surgical Technology International (2001).
Rothenberg et al. "Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children" Int'l Pediatric Endosurgery Group (IPEG) 2000.
Sampayan et al, "Multilayer Ultra-High Gradient Insulator Technology" Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Sayfan et al. "Sutureless Closed Hemorrhoidectomy: A New Technique" Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Sengupta et al., "Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery" ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Sigel et al. "The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation" Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Strasberg et al. "A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery" Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Strasberg et al., "Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery" Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Tinkcler L.F., "Combined Diathermy and Suction Forceps" , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998 Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
U.S. Appl. No. 12/692,414, filed Jan. 22, 2010, Peter M. Mueller.
U.S. Appl. No. 12/696,592, filed Jan. 29, 2010, Jennifer S. Harper.
U.S. Appl. No. 12/696,857, filed Jan. 29, 2010, Edward M. Chojin.
U.S. Appl. No. 12/700,856, filed Feb. 5, 2010, James E. Krapohl.
U.S. Appl. No. 12/719,407, filed Mar. 8, 2010, Arlen J. Reschke.
U.S. Appl. No. 12/728,994, filed Mar. 22, 2010, Edward M. Chojin.
U.S. Appl. No. 12/748,028, filed Mar. 26, 2010, Jessica E.C. Olson.
U.S. Appl. No. 12/757,340, filed Apr. 9, 2010, Carine Hoarau.
U.S. Appl. No. 12/758,524, filed Apr. 12, 2010, Duane E. Kerr.
U.S. Appl. No. 12/759,551, filed Apr. 13, 2010, Glenn A. Horner.
U.S. Appl. No. 12/769,444, filed Apr. 28, 2010, Glenn A. Norner.
U.S. Appl. No. 12/770,369, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/770,380, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/770,387, filed Apr. 29, 2010 Glenn A. Homer.
U.S. Appl. No. 12/773,526, filed May 4, 2010, Duane E. Kerr.
U.S. Appl. No. 12/773,644, filed May 4, 2010, Thomas J. Gerhardt.
U.S. Appl. No. 12/786,589, filed May 25, 2010, Duane E. Kerr.
U.S. Appl. No. 12/791,112, filed Jun. 1, 2010, David M. Garrison.
U.S. Appl. No. 12/792,001, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,008, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,019, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,038, filed Jun. 2, 2010, Glenn A. Homer.
U.S. Appl. No. 12/792,051, filed Jun. 2, 2010, David M. Garrison.
U.S. Appl. No. 12/792,068, filed Jun. 2, 2010, Glenn A. Homer.
U.S. Appl. No. 12/792,097, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,262, filed Jun. 2, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/792,299, filed Jun. 2, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/792,330, filed Jun. 2, 2010, David M. Garrison.
U.S. Appl. No. 12/821,253, filed Jun. 23, 2010, Edward M. Chojin.
U.S. Appl. No. 12/822,024, filed Jun. 23, 2010, Peter M. Mueller.
U.S. Appl. No. 12/832,772, filed Jul. 8, 2010, Gary M. Couture.
U.S. Appl. No. 12/843,384, filed Jul. 26, 2010, David M. Garrison.
U.S. Appl. No. 12/845,203, filed Jul. 28, 2010, Gary M. Couture.
U.S. Appl. No. 12/853,896, filed Aug. 10, 2010, William H. Nau, Jr.
U.S. Appl. No. 12/859,896, filed Aug. 20, 2010, Peter M. Mueller.
U.S. Appl. No. 12/861,198, filed Aug. 23, 2010, James A. Gilbert.
U.S. Appl. No. 12/861,209, filed Aug. 23, 2010, William H. Nau, Jr.
U.S. Appl. No. 12/876,668, filed Sep. 7, 2010, Sara E. Anderson.
U.S. Appl. No. 12/876,680, filed Sep. 7, 2010, Peter M. Mueller.
U.S. Appl. No. 12/876,705, filed Sep. 7, 2010, Kristin D. Johnson.
U.S. Appl. No. 12/876,731, filed Sep. 7, 2010, Kristin D. Johnson.
U.S. Appl. No. 12/877,199, filed Sep. 8, 2010, Arlen J. Reschke.
U.S. Appl. No. 12/877,482, filed Sep. 8, 2010, Gary M. Couture.
U.S. Appl. No. 12/895,020, filed Sep. 30, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/896,100, filed Oct. 1, 2010, Ryan Artale.
U.S. Appl. No. 12/897,346, filed Oct. 4, 2010, Ryan Artale.
U.S. Appl. No. 12/906,672, filed Oct. 18, 2010, Kathy E. Rooks.
U.S. Appl. No. 12/915,809, filed Oct. 29, 2010, Thomas J. Gerhardt, Jr.
U.S. Appl. No. 12/947,352, filed Nov. 16, 2010, Jason L. Craig.
U.S. Appl. No. 12/947,420, filed Nov. 16, 2010, Jason L. Craig.
U.S. Appl. No. 12/948,081, filed Nov. 17, 2010, Boris Chernov.
U.S. Appl. No. 12/948,144, filed Nov. 17, 2010, Boris Chernov.
U.S. Appl. No. 12/950,505, filed Nov. 19, 2010, David M. Garrison.
U.S. Appl. No. 12/955,010, filed Nov. 29, 2010, Paul R. Romero.
U.S. Appl. No. 12/955,042, filed Nov. 29, 2010, Steven C. Rupp.
U.S. Appl. No. 12/981,771, filed Dec. 30, 2010, James D. Allen, IV.
U.S. Appl. No. 12/981,787, filed Dec. 30, 2010, John R. Twomey.
U.S. Appl. No. 13/006,538, filed Jan. 14, 2011, John W. Twomey.
U.S. Appl. No. 13/029,390, filed Feb. 17, 2011, Michael C. Moses.
U.S. Appl. No. 13/030,231, filed Feb. 18, 2011, Jeffrey M. Roy.
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011 Glenn A. Homer.
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld.
U.S. Appl. No. 13/075,847, filed Mar. 30, 2011, Gary M. Couture.
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison.
U.S. Appl. No. 13/083,962, filed Apr. 11, 2011, Michael C. Moses.
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart.
U.S. Appl. No. 13/089,779, filed Apr. 19, 2011, Yevgeniy Fedotov.
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend.
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey.
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada.
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey.
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin.
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison.
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey.
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell.
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead.
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov.
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims.
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings.
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey.
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV.
W. Scott Helton, "LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery"; Sales/Product Literature 1999.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10925662B2 (en) 2011-05-16 2021-02-23 Covidien Lp Optical energy-based methods and apparatus for tissue sealing

Also Published As

Publication number Publication date
US20150327931A1 (en) 2015-11-19
US9113933B2 (en) 2015-08-25
US20160354148A1 (en) 2016-12-08
US10925662B2 (en) 2021-02-23
US20120296324A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
US10925662B2 (en) Optical energy-based methods and apparatus for tissue sealing
US9456870B2 (en) Optical energy-based methods and apparatus for tissue sealing
US9113934B2 (en) Optical energy-based methods and apparatus for tissue sealing
US11786304B2 (en) Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US11793569B2 (en) Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US11819270B2 (en) Light energy sealing, cutting and sensing surgical device
EP3034027B1 (en) Apparatus for optical tissue sealing
US7643883B2 (en) Device and method for treating skin
US10765883B2 (en) Vaginal tightening and treatment of wrinkles

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO HEALTHCARE GROUP LP, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MISUCHENKO, IGORIS;MARTSINOVSKIY, GEORGY;VERBITSKY, MIKHAIL;SIGNING DATES FROM 20110420 TO 20110511;REEL/FRAME:036199/0435

Owner name: TYCO HEALTHCARE GROUP LP, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHERNOV, BORIS;REEL/FRAME:036199/0480

Effective date: 20110506

AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:036443/0882

Effective date: 20120928

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8