US9270719B2 - Device connection proxy through cloud to optimize network messages - Google Patents

Device connection proxy through cloud to optimize network messages Download PDF

Info

Publication number
US9270719B2
US9270719B2 US14/043,438 US201314043438A US9270719B2 US 9270719 B2 US9270719 B2 US 9270719B2 US 201314043438 A US201314043438 A US 201314043438A US 9270719 B2 US9270719 B2 US 9270719B2
Authority
US
United States
Prior art keywords
network
computing device
proxy server
game
remote servers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/043,438
Other versions
US20140095660A1 (en
Inventor
Michael A. Chan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Razer Asia Pacific Pte Ltd
Original Assignee
NextBit Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/043,438 priority Critical patent/US9270719B2/en
Application filed by NextBit Systems Inc filed Critical NextBit Systems Inc
Priority to US14/167,952 priority patent/US8762491B2/en
Assigned to NEXTBIT SYSTEMS INC. reassignment NEXTBIT SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAN, Michael A.
Publication of US20140095660A1 publication Critical patent/US20140095660A1/en
Priority to US14/267,748 priority patent/US9026665B2/en
Assigned to PINNACLE VENTURES, L.L.C., AS AGENT reassignment PINNACLE VENTURES, L.L.C., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEXTBIT SYSTEMS INC.
Publication of US9270719B2 publication Critical patent/US9270719B2/en
Application granted granted Critical
Assigned to NEXTBIT SYSTEMS INC. reassignment NEXTBIT SYSTEMS INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME IN THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED ON REEL 032490 FRAME 0463. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: CHAN, Michael A.
Assigned to NEXTBIT SYSTEMS INC. reassignment NEXTBIT SYSTEMS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PINNACLE VENTURES, L.L.C., AS AGENT
Assigned to RAZER (ASIA-PACIFIC) PTE. LTD. reassignment RAZER (ASIA-PACIFIC) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEXTBIT SYSTEMS INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/11File system administration, e.g. details of archiving or snapshots
    • G06F16/122File system administration, e.g. details of archiving or snapshots using management policies
    • G06F16/125File system administration, e.g. details of archiving or snapshots using management policies characterised by the use of retention policies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/174Redundancy elimination performed by the file system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/93Document management systems
    • G06F17/3007
    • G06F17/30085
    • G06F17/30091
    • G06F17/3015
    • G06F17/30194
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/61Installation
    • G06F8/62Uninstallation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/61Installation
    • G06F8/63Image based installation; Cloning; Build to order
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping
    • G06F9/4406Loading of operating system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping
    • G06F9/4416Network booting; Remote initial program loading [RIPL]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5038Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the execution order of a plurality of tasks, e.g. taking priority or time dependency constraints into consideration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • H04L65/4069
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • H04L67/2823
    • H04L67/2842
    • H04L67/40
    • H04L67/42
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/55Push-based network services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3226Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • G06F16/273Asynchronous replication or reconciliation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • G06F16/275Synchronous replication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • G06F16/278Data partitioning, e.g. horizontal or vertical partitioning
    • G06F17/30011
    • G06F17/30286
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/10Details of telephonic subscriber devices including a GPS signal receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • Y02B60/188
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • At least one embodiment of the present invention pertains to mobile devices, and more particularly, to mobile devices using a cloud-based connection proxy server to optimize network messages.
  • a remote server e.g. an information publisher
  • a user can adjust the preference and the subscriptions regarding the push and pull messaging transactions.
  • the Apple Push Notification Service is a push service.
  • the Apple Push Notification Service forwards notifications from remote servers of applications to the Apple devices through a constantly open Internet Protocol (IP) connection.
  • IP Internet Protocol
  • notifications can include badges, sounds or test alerts.
  • Developers of applications can take advantage of the push service by using application programming interface (API) calls provided by Apple, Inc.
  • API application programming interface
  • the size of each notification message is usually restricted to a predetermined size, e.g. 256 bytes.
  • Cloud-to-Device Messaging (C2DM) is a push service that allows remote servers to send messages to mobile applications on computing devices. Remote servers can use this service to notify mobile applications to contact the server and fetch updated data.
  • a computing device receives, requests for network connections with remote servers from multiple computer applications running on the computing device.
  • the computing device further establishes a cloud network connection with a cloud proxy server.
  • the cloud proxy server initiates and maintains proxy network connections with the remote servers.
  • the cloud proxy server can delay at least one network message of the network messages received from the remote servers such that the cloud proxy server sends the network messages to the computing device continuously in a batch.
  • the computing device receives the network messages in a batch to conserve battery consumption.
  • the computing device includes a networking component, a battery, a processor and a memory.
  • the network component is capable of switching between states including a high power consumption state and a low power conservation state.
  • the battery is configured to provide power to the networking component and other components of the device.
  • the processor is configured to run computer applications and an operating system of the computing device.
  • the memory stores instructions of the operating system which, when executed by the processor, cause the operating system to perform a process.
  • the process receives, from the computer applications, requests for network connections with remote servers.
  • the process establishes a cloud network connection with a cloud proxy server.
  • the cloud proxy server is configured to maintain proxy network connections with the remote servers.
  • the process receives, from the cloud proxy server, network messages in a batch for the computer applications though the cloud network connection.
  • the network messages are generated by the remote servers.
  • the cloud proxy server delays at least one network message of the network messages in order to aggregate the network messages in the batch.
  • the proxy server includes a processor, a network component, a device connection module, a server connection module, and a message aggregation module.
  • the networking component is configured for network communications with computing devices and remote servers.
  • the device connection module includes instructions which, when executed by the processor, establish a device network connection with a computing device.
  • the server connection module includes instructions which, when executed by the processor, establish a server network connection with a remote server in response to a request of connecting the remote server from the computing device.
  • the message aggregation module includes instructions which, when executed by the processor, aggregates network messages for the computing device received from multiple remote servers in a batch before sending the batch to the computing device.
  • FIG. 1 illustrates an example system for computing devices connected to a cloud proxy service.
  • FIG. 2 illustrates an example of a computing device that can communicate with a cloud proxy server.
  • FIG. 3 illustrates an example operating system of a computing device for redirecting network communications.
  • FIG. 4 illustrates an example of a proxy server can batch network communications.
  • FIG. 5 illustrates an example of game systems connected to a cloud-based proxy server.
  • FIG. 6 illustrates an example of social media devices connected to a proxy server.
  • FIG. 7 illustrates an example of a process for optimizing network connections using cloud proxy connections.
  • FIG. 8 is a high-level block diagram showing an example of the architecture of a computer, which may represent any computing device or server described herein.
  • FIG. 1 illustrates an example system for computing devices connected to a cloud proxy service.
  • the system includes a cloud proxy service 110 configured to handle communications between the computing devices and remote servers.
  • the cloud proxy service 110 can be a server cluster having computer nodes interconnected with each other by a network.
  • the server cluster can communicate with remote servers via the Internet.
  • the cloud proxy service 110 contains storage nodes 112 .
  • Each of the storage nodes 112 contains one or more processors 114 and storage devices 116 .
  • the storage devices can include optical disk storage, RAM, ROM, EEPROM, flash memory, phase change memory, magnetic cassettes, magnetic tapes, magnetic disk storage or any other computer storage medium which can be used to store the desired information.
  • a cloud data interface 120 can also be included to receive data from and send data to computing devices.
  • the cloud data interface 120 can include network communication hardware and network connection logic to receive the information from computing devices.
  • the network can be a local area network (LAN), wide area network (WAN) or the Internet.
  • the cloud data interface 120 may include a queuing mechanism to organize data update received from or sent to the computing devices 130 and 140 .
  • the computing devices 130 and 140 can each communicate with remote servers via the cloud proxy service 110 .
  • an application running on computing device 130 or 140 sends a message to a remote server
  • the device 130 or 140 sends the message to the cloud proxy service 110 instead.
  • the cloud proxy service 110 maintains the network connection with the remote server and relays the message to the remote server.
  • the remote server sends a message to the application
  • the message reaches the cloud proxy service 110 via the established network connection.
  • the cloud proxy service 110 determines the appropriate computing device to receive the message and relays the message to the computing device.
  • FIG. 1 illustrates two computing devices 130 and 140
  • a person having ordinary skill in the art will readily understand that the technology disclosed herein can be applied to a single computing device or more than two computing devices connected to the cloud proxy service 110 .
  • a computing device 130 includes an operating system 132 to manage the hardware resources of the computing device 130 and provides services for running computer applications 134 (e.g., mobile applications running on mobile devices).
  • the computer applications 134 stored in the computing device 130 require the operating system 132 to properly run on the device 130 .
  • the computing device 130 includes at least one local storage device 138 to store the computer applications and user data.
  • the computing device 130 or 140 can be a desktop computer, a laptop computer, a tablet computer, an automobile computer, a game console, a smart phone, a personal digital assistant, or other computing devices capable of running computer applications, as contemplated by a person having ordinary skill in the art.
  • the computer applications 134 stored in the computing device 130 can include applications for general productivity and information retrieval, including email, calendar, contacts, and stock market and weather information.
  • the computer applications 134 can also include applications in other categories, such as mobile games, factory automation, GPS and location-based services, banking, order-tracking, ticket purchases or any other categories as contemplated by a person having ordinary skill in the art.
  • the operating system 132 of the computing device 130 includes a socket redirection module 136 to redirect network messages.
  • the computer applications 134 generate and maintain network connections directed to various remote servers, e.g. remote servers 182 and 184 .
  • the socket redirection module 136 routes all of the network messages for these connections of the computer applications 134 to the cloud proxy service 110 .
  • the cloud proxy service is responsible for opening and maintaining network connections with the remote servers 182 and 184 .
  • the cloud proxy service can connect to the remote servers 182 and 184 via a network 170 .
  • the network 170 can be, for example, the Internet, a metropolitan area network (MAN), a wide area network (WAN), a LAN, or any other type of network or combination of networks.
  • the cloud proxy server 110 receives networking messages (e.g. push or pull notifications) from the remote servers. Instead of sending the messages to the applications running on the computing device, the cloud proxy server 110 can batch the incoming networking messages and optimize the wireless power consumption of the computing device by delaying networking messages and sending them to the computing devices in batches. This can lead to more efficient power usage of the computing device.
  • networking messages e.g. push or pull notifications
  • the computer applications 134 running on the same computing device 130 need not communicate with each other to coordinate their network connections with remote servers.
  • the cloud proxy 110 efficiently maintains the network connections with remote servers for the applications 134 and controls the timing of sending messages back to the applications 134 .
  • FIG. 2 illustrates an example of a computing device that can communicate with a cloud proxy server, according to one embodiment.
  • the computing device 200 can include a networking component 210 , a battery 220 , a processor 230 and a memory 240 .
  • the memory 240 can store instructions of an operating system 250 of the computing device 200 .
  • the memory 240 can further store instructions of one or more computer applications 260 designed to run on the computing device 200 .
  • the networking component 210 can be capable of switching between states including a high power consumption state and a low power conservation state.
  • the network component 210 can be, e.g. a WiFi networking adapter, a cellular phone networking adapter, or a combination thereof.
  • the battery 220 is configured to provide power to the networking component and other components of the computing device 200 .
  • the computing device may further include a power adapter to be connected to a power source to provide power for the computing device 200 , in addition to the power provided the battery 220 .
  • the processor 230 is configured to run computer applications 260 and the operating system 250 of the computing device 200 .
  • the memory 240 stores instructions of the operating system 250 which, when executed by the processor 230 , cause the operating system 250 to perform processes for realizing certain functionalities of the computing device 200 .
  • the process of the operating system 250 can receive, from the computer applications 260 , requests for network connections with remote servers (e.g., remote servers 182 and 184 in FIG. 1 ).
  • the process of the operating system 250 can further establish a cloud network connection (via, e.g., the network component 210 ) with a cloud proxy server (e.g., cloud proxy service 110 in FIG. 1 ).
  • the computer applications 260 do not need to be aware of the cloud proxy server.
  • the computer applications 260 can perform and communicate with the remote servers as if the computer application were directly connected to the remote servers.
  • the operating system 250 running behind the computer applications 260 is responsible to relay network messages to and from the cloud proxy server.
  • the cloud proxy server can be configured to maintain proxy network connections with the remote servers.
  • the process of the operating system 250 can further receive, from the cloud proxy server (via, e.g., the network component 210 ), network messages in a batch for the computer applications 260 though the cloud network connection.
  • the network messages are generated by the remote servers and can include, e.g., push notifications.
  • the cloud proxy server delays at least one network message of the network messages in order to aggregate the network messages in the batch.
  • the network messages can include other types of data.
  • the computer applications can include one or more instances of network browsers.
  • the network browsers generate requests (e.g. HTTP GET) for Internet data from remote Hypertext Transfer Protocol (HTTP) servers.
  • HTTP Hypertext Transfer Protocol
  • the computing device lets the cloud proxy server work as a proxy and establish TCP connections with the HTTP servers.
  • the computing device receives network messages including the HTTP data from the cloud proxy server.
  • the HTTP GET requests from different instances of browsers will be satisfied by batched HTTP data replayed and aggregated by the cloud proxy server. In this way, the battery power and the network connections of computing device are optimized and utilized in a more efficient way.
  • the network component 210 switches to the high power consumption state when the computing device 200 receives the network messages from the cloud proxy server.
  • the network messages can be aggregated in the batch such that the network component 210 of the computing device 200 remains at the high power consumption state to receive the network messages for as little time as possible. In this way, the computing device 200 can consume as little power as possible for receiving the network messages. As a result, the battery life of the computing device 200 is extended.
  • FIG. 3 illustrates an example operating system of a computing device for redirecting network communications, according to one embodiment.
  • the operating system 300 includes a kernel 304 .
  • the kernel 304 provides interfaces to hardware of the electronic device for the computer applications running on top of the kernel 304 , and supervises and controls the computer applications.
  • the kernel 304 isolates the computer applications from the hardware.
  • the kernel 304 may include one or more intervening sources that can affect execution of a computer application.
  • the kernel 304 includes a network I/O module 306 , a file I/O module 308 , multi-threading module 310 , user input 314 , system interrupts 316 , and shared memory access 318 .
  • a socket redirection module 330 runs on top of the kernel 304 .
  • the socket redirection module 330 is responsible for directing the network communications (also referred to as socket communications) of the computer applications to the cloud proxy server.
  • the socket redirection module 330 is configured to redirect the requests from the computer applications for network connections with the remote server to the cloud proxy server. So instead of connecting directly with the remote servers as requested by the computer applications, the computing device connects with the cloud proxy server using the socket redirection module 330 .
  • the socket redirection module 330 is responsible for network communications with the cloud proxy server; while the computer applications running on the computing device are not necessarily aware of the existence of the cloud proxy server.
  • the operating system 300 can further include a message modification module 340 configured to modify the network messages received from the cloud proxy server before the network messages are fed to the computer applications.
  • the message modification module 340 modifies the received network messages to network messages as if they were directly sent from the remote servers. For instance, the message modification module 340 may change source socket addresses of the received network messages from a socket address of the cloud proxy server to socket addresses of the remote servers. Then the modified network messages are fed to the corresponding computer applications (e.g., depending on port numbers). Since the computer applications receive the modified network messages with target socket addresses pointing to the remote servers, the computer applications can process and treat these modified network messages as if they are directly sent from the remote servers, without any intermediate proxies.
  • the operating system 300 may provide a socket handle controlled by the socket redirection module 330 .
  • the socket handle may be a modified version of a normal handle.
  • the socket redirection module 330 is controlling the socket handle to redirect network connection transactions to the cloud proxy server.
  • the computer application or the developer of the computer application does not need to be aware of the socket redirection module 330 .
  • the socket redirection module 330 of the operating system 300 takes over and instead redirects the network connection to the cloud proxy server.
  • the developers of the computer applications do not need to design the computer application with two network modes (e.g. WiFi mode and cellular data mode) in mind.
  • the computing device is connected to the cloud proxy server.
  • the cloud proxy server is handling the network communication between the computing device and the outside remote servers.
  • the computer applications can be designed to perform as if the computing device is connected to a WiFi network all the time.
  • the operating system of the computing device and the cloud proxy server is handling and optimizing the network communications without the intervention of the computer applications.
  • FIG. 4 illustrates an example of a proxy server that can batch network communications, according to one embodiment.
  • the proxy server 400 can be, e.g., a dedicated standalone server, or implemented in a cloud computing service.
  • the proxy server includes a network component 410 , a processor 420 , and a memory component 430 .
  • the memory 430 can include instructions for a device connection module 440 , a server connection module 450 , and a message aggregation module 460 .
  • the networking component is 410 configured for network communications with computing devices and remote servers, as shown in, e.g., FIG. 1 .
  • the proxy server can include multiple network components for network communications with different computing devices and remote servers.
  • the device connection module 440 includes instructions which, when executed by the processor 420 , establishes a device network connection with a computing device.
  • the server connection module 450 includes instructions which, when executed by the processor 420 , establishes a server network connection with a remote server in response to a request to connect the remote server from the computing device.
  • the request can be generated by a computer application running at the computing device.
  • the server connection module 450 can maintain multiple server network connections with multiple remote servers as a proxy of one or more computer applications of the computing devices.
  • the message aggregation module 460 includes instructions which, when executed by the processor 420 , aggregates network messages for the computing device received from multiple remote servers in a batch before sending the batch to the computing device. During the aggregating process, the message aggregation module 460 can identify network messages for one computing device among received network messages for different computing devices connected to the proxy server 400 . The message aggregation module 460 can further delay at least one of the network messages for the computing device such that the network messages for the computing device can be sent in a batch.
  • the message aggregation module 460 can aggregate network message received in a time period into a single batch.
  • the time length of the time period can be determined by factors including a battery life of the computing device, a current battery level of the computing device, a usage pattern of the computing device, a workload of the computing device, or a frequency of receiving network messages for the computing device. For instance, the time length for batching can be increased when the current battery level of the computing device is low or the current workload of the computing device is high. The time length for batching can be decreased if the frequency of receiving network messages for the computing device is higher than certain value. If the computing device is not used frequently according to the usage pattern, the time length for batching may be increased.
  • the message aggregation module 460 can also aggregate network messages generated by the computer applications for the remote servers.
  • the message aggregation module 460 can receive the message from the computing device and delay some of the messages so that the messages can be sent out to the remote servers in one or more batches.
  • FIG. 5 illustrates an example of game systems connected to a cloud-based proxy server.
  • a proxy server 500 may provide a cloud-based game messaging service to multiple game systems 511 , 512 and 513 over a network 520 .
  • the network 520 can be, e.g., the Internet.
  • game devices 511 , 512 and 513 may include, but are not limited to, a mobile phone, a smartphone, a personal digital assistant (PDA), a tablet, a mobile game console, a laptop computer, a desktop computer, or any other devices having communication capability.
  • PDA personal digital assistant
  • proxy server 500 relays all network communications of game systems to remote game servers, e.g., servers 582 and 584 .
  • the proxy server 500 serves as a proxy for all messages from and to the game systems 511 , 512 and 513 .
  • the operating system of the game system 512 forwards the request to the proxy server 500 , instead of the remote game server 582 .
  • the proxy server then establishes a network connection with the remote game server 582 .
  • the remote game server 582 may send some game messages or game data for the game system 512 to the proxy server 500 .
  • the proxy server 500 in turn relays the game messages or data to the game system 512 in batches.
  • proxy server 500 may determine the time interval for sending the messages in batches to the game systems. The determination can be made based on, e.g., the work load of the game systems, the battery levels of the game systems or the game event about to happen in the game systems. For instance, the proxy server 500 may identify that in game system 512 , a predetermined game event of entering a new stage is about to happen.
  • Examples of the predetermined game event may include, but are not limited to, starting a game by a player of the game, entering a new stage in the game by the player, entering a new place in the game by the player, completing a mission in the game by the player, obtaining a game item by the player, meeting another character in the game by the player, talking with another character in the game by the player, occurrence of a scene change in the game, any other pre-defined game-related events or milestones, or even suspension of the game at a point intended to avoid disrupting the high quality experience for the user.
  • the proxy server 500 can send the messages from the remote game server 582 in a batch to the proxy system 512 when it determines that the game event is going to happen soon.
  • FIG. 5 illustrates all devices as game systems, a person having ordinary skill in the art can readily understand that other types of devices can be included.
  • game systems 511 , 512 and 513 can be replaced with, e.g., tablets, smart phones or laptop computers.
  • FIG. 6 illustrates an example of social media devices connected to a proxy server.
  • a proxy server 600 may provide a proxy service to multiple computing devices 611 , 612 and 613 over a network 620 .
  • devices 611 , 612 and 613 may include, but are not limited to, a mobile phone, a smartphone, a personal digital assistant (PDA), a tablet, a mobile game console, a laptop computer, a desktop computer, or any other devices having communication capability.
  • PDA personal digital assistant
  • proxy server 600 relays all social media communications of devices to remote servers, e.g., servers 682 and 684 .
  • the proxy server 600 serves as a proxy for all social media messages from and to the devices 611 , 612 and 613 .
  • a social media application running on a device 612 requests to establish a network connection with remote social media server 682
  • the operating system of the system 612 forwards the request to the proxy server 600 , instead of the remote game server 682 .
  • the proxy server then establishes a network connection with the remote social media server 682 .
  • the remote social media server 682 may send some social messages for the device 612 to the proxy server 600 .
  • the proxy server 600 in turn relays the social messages to the device 612 in batches.
  • proxy server 600 may determine the time interval for sending the messages in batches to the devices 611 - 613 . The determination can be made based on, e.g., the work load of the devices, the battery levels of the game systems.
  • FIG. 7 illustrates an example of a process 700 for optimizing network connections using cloud proxy connections.
  • the process 700 starts at step 710 , where a computing device receives requests for network connections with remote servers from multiple computer applications running on the computing device.
  • the requests for networking connections can, e.g., include requests for establishing network socket connections between the computing device and the remote servers.
  • the computing device establishes a cloud network connection with a cloud proxy server.
  • the cloud network connection is used to receive messages for the multiple computer applications from the remote servers relayed by the cloud proxy server.
  • the cloud proxy server is separate from the remote servers.
  • the cloud proxy server can serve as a proxy between the computer applications running on the computing device and remote servers.
  • the cloud proxy server initiates and maintains proxy network connections with the remote servers.
  • the cloud network connection can be, e.g., a Transmission Control Protocol (TCP) socket connection between the computing device and the cloud proxy server.
  • the proxy network connections can be, e.g., Transmission Control Protocol (TCP) socket connections between the cloud proxy server and the remote servers.
  • the cloud proxy server receives network messages that are generated by the remote servers. These network messages are for the computer applications at the computing device.
  • the cloud proxy server delays at least one network message of the network messages such that the cloud proxy server can send the network messages to the computing device in a batch.
  • the cloud proxy server sends the batched network messages to the computing device in a batch.
  • the cloud proxy server batches the network messages to reduce power consumption of the computing device.
  • the computing device receives network messages in a batch for the computer applications through the cloud network connection with the cloud proxy server.
  • the computing device can stay at a high power consumption state for a time period shorter than an overall time period for which the computing device would stay at the high power consumption if the network messages were sent individually without batching. Since the operating system of the computing device is responsible for communicating with the cloud proxy server and relays the messages to the computer applications, the computer applications receive the network messages from the cloud proxy server as if the network messages are received directly from the remote servers.
  • FIG. 8 is a high-level block diagram showing an example of the architecture of a computer 800 , which may represent any computing device or server described herein.
  • the computer 800 includes one or more processors 810 and memory 820 coupled to an interconnect 830 .
  • the interconnect 830 shown in FIG. 8 is an abstraction that represents any one or more separate physical buses, point to point connections, or both connected by appropriate bridges, adapters, or controllers.
  • the interconnect 830 may include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (I2C) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also called “Firewire”.
  • PCI Peripheral Component Interconnect
  • ISA industry standard architecture
  • SCSI small computer system interface
  • USB universal serial bus
  • I2C IIC
  • IEEE Institute of Electrical and Electronics Engineers
  • the processor(s) 810 is/are the central processing unit (CPU) of the computer 800 and, thus, control the overall operation of the computer 800 . In certain embodiments, the processor(s) 810 accomplish this by executing software or firmware stored in memory 820 .
  • the processor(s) 810 may be, or may include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), trusted platform modules (TPMs), or the like, or a combination of such devices.
  • the memory 820 is or includes the main memory of the computer 800 .
  • the memory 820 represents any form of random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such devices.
  • the memory 820 may contain a code 870 containing instructions according to the technology disclosed herein.
  • the network adapter 840 provides the computer 800 with the ability to communicate with remote devices, over a network and may be, for example, an Ethernet adapter or Fibre Channel adapter.
  • the network adapter 840 may also provide the computer 800 with the ability to communicate with other computers.
  • the storage adapter 850 allows the computer 800 to access a persistent storage, and may be, for example, a Fibre Channel adapter or SCSI adapter.
  • the code 870 stored in memory 820 may be implemented as software and/or firmware to program the processor(s) 810 to carry out actions described above.
  • such software or firmware may be initially provided to the computer 800 by downloading it from a remote system through the computer 800 (e.g., via network adapter 840 ).
  • programmable circuitry e.g., one or more microprocessors
  • Special-purpose hardwired circuitry may be in the form of, for example, one or more application-specific integrated circuits (ASICs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
  • ASICs application-specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field-programmable gate arrays
  • Machine-readable storage medium includes any mechanism that can store information in a form accessible by a machine (a machine may be, for example, a computer, network device, cellular phone, personal digital assistant (PDA), manufacturing tool, any device with one or more processors, etc.).
  • a machine-accessible storage medium includes recordable/non-recordable media (e.g., read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), etc.
  • logic can include, for example, programmable circuitry programmed with specific software and/or firmware, special-purpose hardwired circuitry, or a combination thereof.

Abstract

Technology is disclosed herein for optimizing network connections using proxy connections. According to at least one embodiment, a computing device receives requests for network connections with remote servers from multiple computer applications running on the computing device. The computing device further establishes a network connection with a proxy server. The proxy server initiates and maintains proxy network connections with the remote servers. The proxy server can delay at least one network message of the network messages received from the remote servers such that the proxy server sends the network messages to the computing device in a batch. The proxy server batches the network messages such that the computing device stays at a high power consumption state for a time period shorter than an overall time period for which the computing device would stay at the high power consumption if the network messages were sent individually without batching.

Description

PRIORITY CLAIM
This application claims to the benefit of U.S. Provisional Patent Application No. 61/708,794, entitled “CLOUD COMPUTING INTEGRATED OPERATING SYSTEM”, which was filed on Oct. 2, 2012, which is incorporated by reference herein in its entirety.
FIELD OF THE INVENTION
At least one embodiment of the present invention pertains to mobile devices, and more particularly, to mobile devices using a cloud-based connection proxy server to optimize network messages.
BACKGROUND
There are many applications running on computing devices, e.g., mobile phones, tablet computers, laptop computers, etc., that can receive push notifications and messages from remote servers. Instead of a pull messaging transaction that is initiated by a receiving application, a remote server (e.g. an information publisher) initiates a push messaging transaction. Through a setting interface provided by an application or an operating system of a computing device, a user can adjust the preference and the subscriptions regarding the push and pull messaging transactions.
For instance, the Apple Push Notification Service is a push service. The Apple Push Notification Service forwards notifications from remote servers of applications to the Apple devices through a constantly open Internet Protocol (IP) connection. Such notifications can include badges, sounds or test alerts. Developers of applications can take advantage of the push service by using application programming interface (API) calls provided by Apple, Inc. The size of each notification message is usually restricted to a predetermined size, e.g. 256 bytes. Cloud-to-Device Messaging (C2DM) is a push service that allows remote servers to send messages to mobile applications on computing devices. Remote servers can use this service to notify mobile applications to contact the server and fetch updated data.
These message push services can create serious drains on the batteries of the computing devices, particularly for computing devices maintaining wireless network connections (e.g. WiFi or cellular networks). Every time a new message notification is pushed to a computing device, the computing device switches from a low power conservation state to a higher power consuming state for a period of time. Once entering the higher power consuming state, the computing device has to remain in the state for at least a fixed time period before the device can return to a low power conservation state. When push notifications reach the computing device at different points in time, the computing device needs to enter the higher power consuming state numerous times (and overall for a long period of time) to receive and process the push notifications, resulting in draining the battery of the computing device.
SUMMARY
Technology introduced here provides a mechanism to optimize network connections using cloud proxy connections. According to at least one embodiment, a computing device receives, requests for network connections with remote servers from multiple computer applications running on the computing device. The computing device further establishes a cloud network connection with a cloud proxy server. The cloud proxy server initiates and maintains proxy network connections with the remote servers. The cloud proxy server can delay at least one network message of the network messages received from the remote servers such that the cloud proxy server sends the network messages to the computing device continuously in a batch. The computing device receives the network messages in a batch to conserve battery consumption.
In accordance with the techniques introduced here, therefore, a computing device is provided. The computing device includes a networking component, a battery, a processor and a memory. The network component is capable of switching between states including a high power consumption state and a low power conservation state. The battery is configured to provide power to the networking component and other components of the device. The processor is configured to run computer applications and an operating system of the computing device. The memory stores instructions of the operating system which, when executed by the processor, cause the operating system to perform a process. The process receives, from the computer applications, requests for network connections with remote servers. The process establishes a cloud network connection with a cloud proxy server. The cloud proxy server is configured to maintain proxy network connections with the remote servers. The process receives, from the cloud proxy server, network messages in a batch for the computer applications though the cloud network connection. The network messages are generated by the remote servers. The cloud proxy server delays at least one network message of the network messages in order to aggregate the network messages in the batch.
In accordance with the techniques introduced here, therefore, a proxy server for optimizing network connections is provided. The proxy server includes a processor, a network component, a device connection module, a server connection module, and a message aggregation module. The networking component is configured for network communications with computing devices and remote servers. The device connection module includes instructions which, when executed by the processor, establish a device network connection with a computing device. The server connection module includes instructions which, when executed by the processor, establish a server network connection with a remote server in response to a request of connecting the remote server from the computing device. The message aggregation module includes instructions which, when executed by the processor, aggregates network messages for the computing device received from multiple remote servers in a batch before sending the batch to the computing device.
Other aspects of the technology introduced here will be apparent from the accompanying figures and from the detailed description which follows.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other objects, features and characteristics of the present invention will become more apparent to those skilled in the art from a study of the following detailed description in conjunction with the appended claims and drawings, all of which form a part of this specification. In the drawings:
FIG. 1 illustrates an example system for computing devices connected to a cloud proxy service.
FIG. 2 illustrates an example of a computing device that can communicate with a cloud proxy server.
FIG. 3 illustrates an example operating system of a computing device for redirecting network communications.
FIG. 4 illustrates an example of a proxy server can batch network communications.
FIG. 5 illustrates an example of game systems connected to a cloud-based proxy server.
FIG. 6 illustrates an example of social media devices connected to a proxy server.
FIG. 7 illustrates an example of a process for optimizing network connections using cloud proxy connections.
FIG. 8 is a high-level block diagram showing an example of the architecture of a computer, which may represent any computing device or server described herein.
DETAILED DESCRIPTION
References in this specification to “an embodiment,” “one embodiment,” or the like, mean that the particular feature, structure, or characteristic being described is included in at least one embodiment of the present invention. Occurrences of such phrases in this specification do not all necessarily refer to the same embodiment, however.
FIG. 1 illustrates an example system for computing devices connected to a cloud proxy service. The system includes a cloud proxy service 110 configured to handle communications between the computing devices and remote servers. In one embodiment, the cloud proxy service 110 can be a server cluster having computer nodes interconnected with each other by a network. The server cluster can communicate with remote servers via the Internet. The cloud proxy service 110 contains storage nodes 112. Each of the storage nodes 112 contains one or more processors 114 and storage devices 116. The storage devices can include optical disk storage, RAM, ROM, EEPROM, flash memory, phase change memory, magnetic cassettes, magnetic tapes, magnetic disk storage or any other computer storage medium which can be used to store the desired information.
A cloud data interface 120 can also be included to receive data from and send data to computing devices. The cloud data interface 120 can include network communication hardware and network connection logic to receive the information from computing devices. The network can be a local area network (LAN), wide area network (WAN) or the Internet. The cloud data interface 120 may include a queuing mechanism to organize data update received from or sent to the computing devices 130 and 140.
The computing devices 130 and 140 can each communicate with remote servers via the cloud proxy service 110. When an application running on computing device 130 or 140 sends a message to a remote server, the device 130 or 140 sends the message to the cloud proxy service 110 instead. The cloud proxy service 110 maintains the network connection with the remote server and relays the message to the remote server. When the remote server sends a message to the application, the message reaches the cloud proxy service 110 via the established network connection. The cloud proxy service 110 determines the appropriate computing device to receive the message and relays the message to the computing device.
Although FIG. 1 illustrates two computing devices 130 and 140, a person having ordinary skill in the art will readily understand that the technology disclosed herein can be applied to a single computing device or more than two computing devices connected to the cloud proxy service 110.
A computing device 130 includes an operating system 132 to manage the hardware resources of the computing device 130 and provides services for running computer applications 134 (e.g., mobile applications running on mobile devices). The computer applications 134 stored in the computing device 130 require the operating system 132 to properly run on the device 130. The computing device 130 includes at least one local storage device 138 to store the computer applications and user data. The computing device 130 or 140 can be a desktop computer, a laptop computer, a tablet computer, an automobile computer, a game console, a smart phone, a personal digital assistant, or other computing devices capable of running computer applications, as contemplated by a person having ordinary skill in the art.
The computer applications 134 stored in the computing device 130 can include applications for general productivity and information retrieval, including email, calendar, contacts, and stock market and weather information. The computer applications 134 can also include applications in other categories, such as mobile games, factory automation, GPS and location-based services, banking, order-tracking, ticket purchases or any other categories as contemplated by a person having ordinary skill in the art.
The operating system 132 of the computing device 130 includes a socket redirection module 136 to redirect network messages. The computer applications 134 generate and maintain network connections directed to various remote servers, e.g. remote servers 182 and 184. Instead of directly opening and maintaining the network connections with these remote servers, the socket redirection module 136 routes all of the network messages for these connections of the computer applications 134 to the cloud proxy service 110. The cloud proxy service is responsible for opening and maintaining network connections with the remote servers 182 and 184.
All or some of the network connections of the computing device 130 are proxied through the cloud proxy service 110. The network connections can include Transmission Control Protocol (TCP) connections, User Datagram Protocol (UDP) connections, or other types of network connections based on other protocols. When there are multiple computer applications 134 that need network connections to multiple remote servers, the computing device 130 only needs to maintain one network connections with the cloud proxy service 110. The cloud proxy service 110 will in turn maintain multiple connections with the remote servers on behalf of the computer applications 134.
The cloud proxy service can connect to the remote servers 182 and 184 via a network 170. The network 170 can be, for example, the Internet, a metropolitan area network (MAN), a wide area network (WAN), a LAN, or any other type of network or combination of networks.
The cloud proxy server 110 receives networking messages (e.g. push or pull notifications) from the remote servers. Instead of sending the messages to the applications running on the computing device, the cloud proxy server 110 can batch the incoming networking messages and optimize the wireless power consumption of the computing device by delaying networking messages and sending them to the computing devices in batches. This can lead to more efficient power usage of the computing device.
The computer applications 134 running on the same computing device 130 need not communicate with each other to coordinate their network connections with remote servers. The cloud proxy 110 efficiently maintains the network connections with remote servers for the applications 134 and controls the timing of sending messages back to the applications 134.
FIG. 2 illustrates an example of a computing device that can communicate with a cloud proxy server, according to one embodiment. The computing device 200 can include a networking component 210, a battery 220, a processor 230 and a memory 240. The memory 240 can store instructions of an operating system 250 of the computing device 200. The memory 240 can further store instructions of one or more computer applications 260 designed to run on the computing device 200.
The networking component 210 can be capable of switching between states including a high power consumption state and a low power conservation state. The network component 210 can be, e.g. a WiFi networking adapter, a cellular phone networking adapter, or a combination thereof. The battery 220 is configured to provide power to the networking component and other components of the computing device 200. The computing device may further include a power adapter to be connected to a power source to provide power for the computing device 200, in addition to the power provided the battery 220.
The processor 230 is configured to run computer applications 260 and the operating system 250 of the computing device 200. The memory 240 stores instructions of the operating system 250 which, when executed by the processor 230, cause the operating system 250 to perform processes for realizing certain functionalities of the computing device 200.
For instance, the process of the operating system 250 can receive, from the computer applications 260, requests for network connections with remote servers (e.g., remote servers 182 and 184 in FIG. 1). The process of the operating system 250 can further establish a cloud network connection (via, e.g., the network component 210) with a cloud proxy server (e.g., cloud proxy service 110 in FIG. 1). The computer applications 260 do not need to be aware of the cloud proxy server. The computer applications 260 can perform and communicate with the remote servers as if the computer application were directly connected to the remote servers. The operating system 250 running behind the computer applications 260 is responsible to relay network messages to and from the cloud proxy server.
The cloud proxy server can be configured to maintain proxy network connections with the remote servers. The process of the operating system 250 can further receive, from the cloud proxy server (via, e.g., the network component 210), network messages in a batch for the computer applications 260 though the cloud network connection. The network messages are generated by the remote servers and can include, e.g., push notifications. The cloud proxy server delays at least one network message of the network messages in order to aggregate the network messages in the batch.
In various embodiments, the network messages can include other types of data. For instance, the computer applications can include one or more instances of network browsers. The network browsers generate requests (e.g. HTTP GET) for Internet data from remote Hypertext Transfer Protocol (HTTP) servers. Instead of establishing TCP connections directly with the remote HTTP servers, the computing device lets the cloud proxy server work as a proxy and establish TCP connections with the HTTP servers. The computing device receives network messages including the HTTP data from the cloud proxy server. The HTTP GET requests from different instances of browsers will be satisfied by batched HTTP data replayed and aggregated by the cloud proxy server. In this way, the battery power and the network connections of computing device are optimized and utilized in a more efficient way.
The network component 210 switches to the high power consumption state when the computing device 200 receives the network messages from the cloud proxy server. The network messages can be aggregated in the batch such that the network component 210 of the computing device 200 remains at the high power consumption state to receive the network messages for as little time as possible. In this way, the computing device 200 can consume as little power as possible for receiving the network messages. As a result, the battery life of the computing device 200 is extended.
FIG. 3 illustrates an example operating system of a computing device for redirecting network communications, according to one embodiment. The operating system 300 includes a kernel 304. The kernel 304 provides interfaces to hardware of the electronic device for the computer applications running on top of the kernel 304, and supervises and controls the computer applications. The kernel 304 isolates the computer applications from the hardware. The kernel 304 may include one or more intervening sources that can affect execution of a computer application. In one embodiment, the kernel 304 includes a network I/O module 306, a file I/O module 308, multi-threading module 310, user input 314, system interrupts 316, and shared memory access 318.
A socket redirection module 330 runs on top of the kernel 304. The socket redirection module 330 is responsible for directing the network communications (also referred to as socket communications) of the computer applications to the cloud proxy server. The socket redirection module 330 is configured to redirect the requests from the computer applications for network connections with the remote server to the cloud proxy server. So instead of connecting directly with the remote servers as requested by the computer applications, the computing device connects with the cloud proxy server using the socket redirection module 330. The socket redirection module 330 is responsible for network communications with the cloud proxy server; while the computer applications running on the computing device are not necessarily aware of the existence of the cloud proxy server.
In some embodiments, the operating system 300 can further include a message modification module 340 configured to modify the network messages received from the cloud proxy server before the network messages are fed to the computer applications. The message modification module 340 modifies the received network messages to network messages as if they were directly sent from the remote servers. For instance, the message modification module 340 may change source socket addresses of the received network messages from a socket address of the cloud proxy server to socket addresses of the remote servers. Then the modified network messages are fed to the corresponding computer applications (e.g., depending on port numbers). Since the computer applications receive the modified network messages with target socket addresses pointing to the remote servers, the computer applications can process and treat these modified network messages as if they are directly sent from the remote servers, without any intermediate proxies.
In some alternative embodiments, the operating system 300 may provide a socket handle controlled by the socket redirection module 330. The socket handle may be a modified version of a normal handle. When applications running on top of the operating system 300 call the socket handle, the socket redirection module 330 is controlling the socket handle to redirect network connection transactions to the cloud proxy server. The computer application or the developer of the computer application does not need to be aware of the socket redirection module 330. When the computer application calls the socket handle to open a connection with the remote servers, the socket redirection module 330 of the operating system 300 takes over and instead redirects the network connection to the cloud proxy server.
The developers of the computer applications do not need to design the computer application with two network modes (e.g. WiFi mode and cellular data mode) in mind. The computing device is connected to the cloud proxy server. The cloud proxy server is handling the network communication between the computing device and the outside remote servers. The computer applications can be designed to perform as if the computing device is connected to a WiFi network all the time. The operating system of the computing device and the cloud proxy server is handling and optimizing the network communications without the intervention of the computer applications.
FIG. 4 illustrates an example of a proxy server that can batch network communications, according to one embodiment. The proxy server 400 can be, e.g., a dedicated standalone server, or implemented in a cloud computing service. The proxy server includes a network component 410, a processor 420, and a memory component 430. The memory 430 can include instructions for a device connection module 440, a server connection module 450, and a message aggregation module 460. The networking component is 410 configured for network communications with computing devices and remote servers, as shown in, e.g., FIG. 1. In some embodiments, the proxy server can include multiple network components for network communications with different computing devices and remote servers.
The device connection module 440 includes instructions which, when executed by the processor 420, establishes a device network connection with a computing device. The server connection module 450 includes instructions which, when executed by the processor 420, establishes a server network connection with a remote server in response to a request to connect the remote server from the computing device. The request can be generated by a computer application running at the computing device. The server connection module 450 can maintain multiple server network connections with multiple remote servers as a proxy of one or more computer applications of the computing devices.
The message aggregation module 460 includes instructions which, when executed by the processor 420, aggregates network messages for the computing device received from multiple remote servers in a batch before sending the batch to the computing device. During the aggregating process, the message aggregation module 460 can identify network messages for one computing device among received network messages for different computing devices connected to the proxy server 400. The message aggregation module 460 can further delay at least one of the network messages for the computing device such that the network messages for the computing device can be sent in a batch.
The message aggregation module 460 can aggregate network message received in a time period into a single batch. The time length of the time period can be determined by factors including a battery life of the computing device, a current battery level of the computing device, a usage pattern of the computing device, a workload of the computing device, or a frequency of receiving network messages for the computing device. For instance, the time length for batching can be increased when the current battery level of the computing device is low or the current workload of the computing device is high. The time length for batching can be decreased if the frequency of receiving network messages for the computing device is higher than certain value. If the computing device is not used frequently according to the usage pattern, the time length for batching may be increased.
The message aggregation module 460 can also aggregate network messages generated by the computer applications for the remote servers. The message aggregation module 460 can receive the message from the computing device and delay some of the messages so that the messages can be sent out to the remote servers in one or more batches.
The technology disclosed herein can be applied to various computing devices including, e.g., game systems or devices capable of running game applications. For instance, FIG. 5 illustrates an example of game systems connected to a cloud-based proxy server. As depicted in FIG. 5, a proxy server 500 may provide a cloud-based game messaging service to multiple game systems 511, 512 and 513 over a network 520. The network 520 can be, e.g., the Internet. Examples of game devices 511, 512 and 513 may include, but are not limited to, a mobile phone, a smartphone, a personal digital assistant (PDA), a tablet, a mobile game console, a laptop computer, a desktop computer, or any other devices having communication capability.
In some embodiments, proxy server 500 relays all network communications of game systems to remote game servers, e.g., servers 582 and 584. The proxy server 500 serves as a proxy for all messages from and to the game systems 511, 512 and 513.
For instance, when an application running on a game system 512 requests to establish a network connection with remote game server 582, the operating system of the game system 512 forwards the request to the proxy server 500, instead of the remote game server 582. The proxy server then establishes a network connection with the remote game server 582. The remote game server 582 may send some game messages or game data for the game system 512 to the proxy server 500. The proxy server 500 in turn relays the game messages or data to the game system 512 in batches.
In some embodiments, proxy server 500 may determine the time interval for sending the messages in batches to the game systems. The determination can be made based on, e.g., the work load of the game systems, the battery levels of the game systems or the game event about to happen in the game systems. For instance, the proxy server 500 may identify that in game system 512, a predetermined game event of entering a new stage is about to happen. Examples of the predetermined game event may include, but are not limited to, starting a game by a player of the game, entering a new stage in the game by the player, entering a new place in the game by the player, completing a mission in the game by the player, obtaining a game item by the player, meeting another character in the game by the player, talking with another character in the game by the player, occurrence of a scene change in the game, any other pre-defined game-related events or milestones, or even suspension of the game at a point intended to avoid disrupting the high quality experience for the user. The proxy server 500 can send the messages from the remote game server 582 in a batch to the proxy system 512 when it determines that the game event is going to happen soon.
Although FIG. 5 illustrates all devices as game systems, a person having ordinary skill in the art can readily understand that other types of devices can be included. For example, game systems 511, 512 and 513 can be replaced with, e.g., tablets, smart phones or laptop computers.
Similarly, the technology disclosed herein can also be applied to devices for social network messaging. For instance, FIG. 6 illustrates an example of social media devices connected to a proxy server. As depicted in FIG. 6, a proxy server 600 may provide a proxy service to multiple computing devices 611, 612 and 613 over a network 620. Examples of devices 611, 612 and 613 may include, but are not limited to, a mobile phone, a smartphone, a personal digital assistant (PDA), a tablet, a mobile game console, a laptop computer, a desktop computer, or any other devices having communication capability.
In some embodiments, proxy server 600 relays all social media communications of devices to remote servers, e.g., servers 682 and 684. The proxy server 600 serves as a proxy for all social media messages from and to the devices 611, 612 and 613.
For instance, when a social media application running on a device 612 requests to establish a network connection with remote social media server 682, the operating system of the system 612 forwards the request to the proxy server 600, instead of the remote game server 682. The proxy server then establishes a network connection with the remote social media server 682. The remote social media server 682 may send some social messages for the device 612 to the proxy server 600. The proxy server 600 in turn relays the social messages to the device 612 in batches.
In some embodiments, proxy server 600 may determine the time interval for sending the messages in batches to the devices 611-613. The determination can be made based on, e.g., the work load of the devices, the battery levels of the game systems.
FIG. 7 illustrates an example of a process 700 for optimizing network connections using cloud proxy connections. The process 700 starts at step 710, where a computing device receives requests for network connections with remote servers from multiple computer applications running on the computing device. The requests for networking connections can, e.g., include requests for establishing network socket connections between the computing device and the remote servers.
At step 720, the computing device establishes a cloud network connection with a cloud proxy server. The cloud network connection is used to receive messages for the multiple computer applications from the remote servers relayed by the cloud proxy server. The cloud proxy server is separate from the remote servers. The cloud proxy server can serve as a proxy between the computer applications running on the computing device and remote servers. At step 730, the cloud proxy server initiates and maintains proxy network connections with the remote servers. In various embodiments, the cloud network connection can be, e.g., a Transmission Control Protocol (TCP) socket connection between the computing device and the cloud proxy server. The proxy network connections can be, e.g., Transmission Control Protocol (TCP) socket connections between the cloud proxy server and the remote servers.
At step 740, the cloud proxy server receives network messages that are generated by the remote servers. These network messages are for the computer applications at the computing device.
At step 750, the cloud proxy server delays at least one network message of the network messages such that the cloud proxy server can send the network messages to the computing device in a batch. At step 760, the cloud proxy server sends the batched network messages to the computing device in a batch. The cloud proxy server batches the network messages to reduce power consumption of the computing device.
At step 770, the computing device receives network messages in a batch for the computer applications through the cloud network connection with the cloud proxy server. By receiving the network messages in a batch, the computing device can stay at a high power consumption state for a time period shorter than an overall time period for which the computing device would stay at the high power consumption if the network messages were sent individually without batching. Since the operating system of the computing device is responsible for communicating with the cloud proxy server and relays the messages to the computer applications, the computer applications receive the network messages from the cloud proxy server as if the network messages are received directly from the remote servers.
Those skilled in the art will appreciate that the logic illustrated in FIG. 7 and described above, and in each of the flow diagrams discussed below if any, may be altered in a variety of ways. For example, the order of the logic may be rearranged, substeps may be performed in parallel, illustrated logic may be omitted, other logic may be included, etc.
FIG. 8 is a high-level block diagram showing an example of the architecture of a computer 800, which may represent any computing device or server described herein. The computer 800 includes one or more processors 810 and memory 820 coupled to an interconnect 830. The interconnect 830 shown in FIG. 8 is an abstraction that represents any one or more separate physical buses, point to point connections, or both connected by appropriate bridges, adapters, or controllers. The interconnect 830, therefore, may include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (I2C) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also called “Firewire”.
The processor(s) 810 is/are the central processing unit (CPU) of the computer 800 and, thus, control the overall operation of the computer 800. In certain embodiments, the processor(s) 810 accomplish this by executing software or firmware stored in memory 820. The processor(s) 810 may be, or may include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), trusted platform modules (TPMs), or the like, or a combination of such devices.
The memory 820 is or includes the main memory of the computer 800. The memory 820 represents any form of random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such devices. In use, the memory 820 may contain a code 870 containing instructions according to the technology disclosed herein.
Also connected to the processor(s) 810 through the interconnect 830 are a network adapter 840 and a storage adapter 850. The network adapter 840 provides the computer 800 with the ability to communicate with remote devices, over a network and may be, for example, an Ethernet adapter or Fibre Channel adapter. The network adapter 840 may also provide the computer 800 with the ability to communicate with other computers. The storage adapter 850 allows the computer 800 to access a persistent storage, and may be, for example, a Fibre Channel adapter or SCSI adapter.
The code 870 stored in memory 820 may be implemented as software and/or firmware to program the processor(s) 810 to carry out actions described above. In certain embodiments, such software or firmware may be initially provided to the computer 800 by downloading it from a remote system through the computer 800 (e.g., via network adapter 840).
The techniques introduced herein can be implemented by, for example, programmable circuitry (e.g., one or more microprocessors) programmed with software and/or firmware, or entirely in special-purpose hardwired circuitry, or in a combination of such forms. Special-purpose hardwired circuitry may be in the form of, for example, one or more application-specific integrated circuits (ASICs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
Software or firmware for use in implementing the techniques introduced here may be stored on a machine-readable storage medium and may be executed by one or more general-purpose or special-purpose programmable microprocessors. A “machine-readable storage medium”, as the term is used herein, includes any mechanism that can store information in a form accessible by a machine (a machine may be, for example, a computer, network device, cellular phone, personal digital assistant (PDA), manufacturing tool, any device with one or more processors, etc.). For example, a machine-accessible storage medium includes recordable/non-recordable media (e.g., read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), etc.
The term “logic”, as used herein, can include, for example, programmable circuitry programmed with specific software and/or firmware, special-purpose hardwired circuitry, or a combination thereof.
In addition to the above mentioned examples, various other modifications and alterations of the invention may be made without departing from the invention. Accordingly, the above disclosure is not to be considered as limiting and the appended claims are to be interpreted as encompassing the true spirit and the entire scope of the invention.

Claims (22)

What is claimed is:
1. A method for optimizing network connections using proxy connections, comprising:
receiving, at a computing device, requests for network connections with remote servers from multiple computer applications running on the computing device, wherein a gaming application is one of the multiple computer applications, wherein the gaming application utilizes gaming content available through one or more remote servers, the gaming content enabling a user of the computing device to play a game associated with the gaming application on the computing device;
establishing, by the computing device, a network connection with a proxy server separate from the remote servers, wherein the proxy server is configured to maintain proxy network connections with the remote servers; and
receiving, at the computing device, network messages in a batch for the computer applications through the network connection with the proxy server, wherein the network messages are generated by the remote servers, wherein the gaming content for enabling the user of the computing device to play the game is received as one or more network messages;
wherein the proxy server batches the network messages such that the computing device stays at a high power consumption state for a time period shorter than an overall time period for which the computing device would stay at the high power consumption if the network messages were sent individually without batching;
wherein the network messages are aggregated in the batch by delaying at least one network message of the network messages,
wherein the proxy server aggregates network messages received in a time period into a single batch, a time length of the time period being determined based on one or more game events of the game, wherein a given game event includes a starting of a given game by the user, a entering of a new stage in the given game by the user, a entering of a new place in the given game by the user, a completing of a mission in the given game by the user, an obtaining of a game item in the given game by the user, a meeting of another character in the given game by the user, a talking with another character in the given game by the user, an occurrence of a scene change in the given game, any predefined game-related events, any predefined game-related milestones, or a suspension of the given game at a point of play intended to avoid disrupting an experience for the user.
2. The method of claim 1, wherein the requests for networking connections include requests for establishing network socket connections between the computing device and the remote servers.
3. The method of claim 1, wherein the network connection with the proxy server is configured to receive messages for the multiple computer applications from the remote servers.
4. The method of claim 1, wherein the proxy server serves as a proxy between the computer applications running on the computing device and remote servers.
5. The method of claim 1, wherein the network connection with the proxy server is a Transmission Control Protocol (TCP) socket connection between the computing device and the proxy server, and the proxy network connections are Transmission Control Protocol (TCP) socket connections between the proxy server and the remote servers.
6. The method of claim 1, wherein the computer applications receive the network messages from the proxy server as if the network messages are received directly from the remote servers.
7. The method of claim 1, wherein the proxy server is a cloud-based proxy server.
8. A computing device comprising:
a networking component capable of switching between states including a high power consumption state and a low power conservation state;
a battery configured to provide power to the networking component;
a processor configured to run computer applications and an operating system of the computing device; and
a memory component storing instructions of the operating system which, when executed by the processor, cause the operating system to perform a process including:
receiving, from the computer applications, requests for network connections with remote servers, wherein a gaming application is one of the computer applications, wherein the gaming application utilizes gaming content available through one or more remote servers, the gaming content enabling a user of the computing device to play a game associated with the gaming application on the computing device;
establishing a network connection with a proxy server, wherein the proxy server is configured to maintain proxy network connections with the remote servers; and
receiving, from the proxy server, network messages in a batch for the computer applications though the network connection with the proxy server, wherein the network messages are generated by the remote servers, wherein the gaming content for enabling the user of the computing device to play the game is received as one or more network messages;
wherein the proxy server batches the network messages such that the networking component stays at the high power consumption state for a time period shorter than an overall time period for which the networking component would stay at the high power consumption if the network messages were sent individually without batching,
wherein the network messages are aggregated in the batch by delaying at least one network message of the network messages,
wherein the proxy server aggregates network messages received in a time period into a single batch, a time length of the time period being determined based on one or more game events of a game, wherein a given game event includes a starting of a given game by the user, a entering of a new stage in the given game by the user, a entering of a new place in the given game by the user, a completing of a mission in the given game by the user, an obtaining of a game item in the given game by the user, a meeting of another character in the given game by the user, a talking with another character in the given game by the user, an occurrence of a scene change in the given game, any predefined game-related events, any predefined game-related milestones, or a suspension of the given game at a point of play intended to avoid disrupting an experience for the user.
9. The computing device of claim 8, wherein the process further includes:
switching the network component to the high power consumption state when the computing device receives the network messages from the proxy server.
10. The computing device of claim 8, wherein the network messages are aggregated in the batch such that the computing device consumes as little power as possible to receive the network messages.
11. The computing device of claim 8, wherein the operating system of the computing device includes a socket redirection module configured to redirect the requests from the computer applications for network connections with the remote server to the proxy server.
12. The computing device of claim 11, wherein the socket redirection module is responsible for network communications with the proxy server, and the computer applications running on the computing device are not aware of the existence of the proxy server.
13. The computing device of claim 8, wherein the computer applications are performing and receiving network messages as if the computing device were maintaining network connections directly with the remote servers.
14. The computer device of claim 8, wherein the network messages include push notifications generated by the remote servers.
15. The computing device of claim 8, wherein the operating system of the computing device includes a message modification module configured to modify the network messages received from the proxy server before the network messages are fed to the computer applications, to network messages as if they were directly sent from the remote servers.
16. The computing device of claim 15, wherein the message modification module changes source socket addresses of the network messages from a socket address of the proxy server to socket addresses of the remote servers.
17. A non-transitory computer readable storage medium storing computer executable instructions for optimizing network connections, comprising:
instructions for receiving requests for network connections with remote servers from multiple computer applications running on the computing device, wherein a gaming application is one of the multiple computer applications, wherein the gaming application utilizes gaming content available through one or more remote servers, the gaming content enabling a user of the computing device to play a game associated with the gaming application on the computing device;
instructions for establishing a network connection with a proxy server separate from the remote servers, wherein the proxy server is configured to maintain proxy network connections with the remote servers; and
instructions for receiving the network messages in a batch for the computer applications through the network connection with the proxy server, wherein the network messages are generated by the remote servers, wherein the gaming content for enabling the user of the computing device to play the game is received as one or more network messages;
wherein the proxy server batches the network messages such that the computing device stays at a high power consumption state for a time period shorter than an overall time period for which the computing device would stay at the high power consumption if the network messages were sent individually without batching,
wherein the network messages are aggregated in the batch by delaying at least one network message of the network messages,
wherein the proxy server aggregates network messages received in a time period into a single batch, a time length of the time period being determined based on one or more game events of a game, wherein the game is one of the multiple computer applications, wherein a given game event includes a starting of a given game by the user, a entering of a new stage in the given game by the user, a entering of a new place in the given game by the user, a completing of a mission in the given game by the user, an obtaining of a game item in the given game by the user, a meeting of another character in the given game by the user, a talking with another character in the given game by the user, an occurrence of a scene change in the given game, any predefined game-related events, any predefined game-related milestones, or a suspension of the given game at a point of play intended to avoid disrupting an experience for the user.
18. The non-transitory computer readable storage medium of claim 17, wherein the requests for networking connections include requests for establishing network socket connections between the computing device and the remote servers.
19. The non-transitory computer readable storage medium of claim 17, wherein the network connection with the proxy server is configured to receive messages for the multiple computer applications from the remote servers.
20. The non-transitory computer readable storage medium of claim 17, wherein the proxy server serves as a proxy between the computer applications running on the computing device and remote servers.
21. The non-transitory computer readable storage medium of claim 17, wherein the network connection with the proxy server is a Transmission Control Protocol (TCP) socket connection between the computing device and the proxy server, and the proxy network connections are Transmission Control Protocol (TCP) socket connections between the proxy server and the remote servers.
22. The non-transitory computer readable storage medium of claim 17, wherein the computer applications receive the network messages from the proxy server as if the network messages are received directly from the remote servers.
US14/043,438 2012-10-02 2013-10-01 Device connection proxy through cloud to optimize network messages Active US9270719B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/043,438 US9270719B2 (en) 2012-10-02 2013-10-01 Device connection proxy through cloud to optimize network messages
US14/167,952 US8762491B2 (en) 2012-10-02 2014-01-29 Optimization of gaming application execution using proxy connection
US14/267,748 US9026665B2 (en) 2012-10-02 2014-05-01 Optimization of gaming application execution using proxy connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261708794P 2012-10-02 2012-10-02
US14/043,438 US9270719B2 (en) 2012-10-02 2013-10-01 Device connection proxy through cloud to optimize network messages

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/167,952 Continuation-In-Part US8762491B2 (en) 2012-10-02 2014-01-29 Optimization of gaming application execution using proxy connection
US14/267,748 Continuation-In-Part US9026665B2 (en) 2012-10-02 2014-05-01 Optimization of gaming application execution using proxy connection

Publications (2)

Publication Number Publication Date
US20140095660A1 US20140095660A1 (en) 2014-04-03
US9270719B2 true US9270719B2 (en) 2016-02-23

Family

ID=50386182

Family Applications (22)

Application Number Title Priority Date Filing Date
US13/772,163 Active 2033-04-24 US9106721B2 (en) 2012-10-02 2013-02-20 Application state synchronization across multiple devices
US13/865,515 Active 2033-10-31 US9374407B2 (en) 2012-10-02 2013-04-18 Mobile device application streaming
US14/042,452 Active 2034-09-12 US9678735B2 (en) 2012-10-02 2013-09-30 Data caching among interconnected devices
US14/042,508 Active US10346481B2 (en) 2012-10-02 2013-09-30 Customizing operating system based on detected carrier
US14/042,507 Active 2035-02-18 US10671634B2 (en) 2012-10-02 2013-09-30 Adjusting push notifications based on location proximity
US14/042,567 Active 2034-12-01 US10540368B2 (en) 2012-10-02 2013-09-30 System and method for resolving synchronization conflicts
US14/043,126 Active 2035-01-23 US9462022B2 (en) 2012-10-02 2013-10-01 Mobile application migration to cloud computing platform
US14/043,438 Active US9270719B2 (en) 2012-10-02 2013-10-01 Device connection proxy through cloud to optimize network messages
US14/043,082 Active 2036-05-20 US10042623B2 (en) 2012-10-02 2013-10-01 Cloud based file system surpassing device storage limits
US14/043,693 Active 2033-11-28 US10311108B2 (en) 2012-10-02 2013-10-01 Cloud-based file prefetching on electronic devices
US14/044,049 Active 2034-08-15 US9509737B2 (en) 2012-10-02 2013-10-02 Client side encryption with recovery method
US14/044,498 Abandoned US20140095457A1 (en) 2012-10-02 2013-10-02 Regulating data storage based on popularity
US14/044,046 Active 2034-09-28 US9537918B2 (en) 2012-10-02 2013-10-02 File sharing with client side encryption
US14/044,605 Active 2034-08-15 US9276980B2 (en) 2012-10-02 2013-10-02 Data synchronization based on file system activities
US14/157,310 Active US8806478B2 (en) 2012-10-02 2014-01-16 Customizing operating system based on detected carrier
US14/157,260 Active US9531775B2 (en) 2012-10-02 2014-01-16 Mobile application migration to cloud computing platform
US14/157,197 Active US9398063B2 (en) 2012-10-02 2014-01-16 Customizing distribution of an operating system based on detected network carrier by retrieving differences between the distributed operating system and an operating system currently installed on a computing device
US14/171,679 Active US8762456B1 (en) 2012-10-02 2014-02-03 Generating prefetching profiles for prefetching data in a cloud based file system
US14/180,021 Active US9811329B2 (en) 2012-10-02 2014-02-13 Cloud based file system surpassing device storage limits
US14/228,190 Active US9380093B2 (en) 2012-10-02 2014-03-27 Mobile device application streaming
US15/607,764 Active US10083177B2 (en) 2012-10-02 2017-05-30 Data caching among interconnected devices
US16/299,597 Abandoned US20190213219A1 (en) 2012-10-02 2019-03-12 Regulating data storage based on copy quantity

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US13/772,163 Active 2033-04-24 US9106721B2 (en) 2012-10-02 2013-02-20 Application state synchronization across multiple devices
US13/865,515 Active 2033-10-31 US9374407B2 (en) 2012-10-02 2013-04-18 Mobile device application streaming
US14/042,452 Active 2034-09-12 US9678735B2 (en) 2012-10-02 2013-09-30 Data caching among interconnected devices
US14/042,508 Active US10346481B2 (en) 2012-10-02 2013-09-30 Customizing operating system based on detected carrier
US14/042,507 Active 2035-02-18 US10671634B2 (en) 2012-10-02 2013-09-30 Adjusting push notifications based on location proximity
US14/042,567 Active 2034-12-01 US10540368B2 (en) 2012-10-02 2013-09-30 System and method for resolving synchronization conflicts
US14/043,126 Active 2035-01-23 US9462022B2 (en) 2012-10-02 2013-10-01 Mobile application migration to cloud computing platform

Family Applications After (14)

Application Number Title Priority Date Filing Date
US14/043,082 Active 2036-05-20 US10042623B2 (en) 2012-10-02 2013-10-01 Cloud based file system surpassing device storage limits
US14/043,693 Active 2033-11-28 US10311108B2 (en) 2012-10-02 2013-10-01 Cloud-based file prefetching on electronic devices
US14/044,049 Active 2034-08-15 US9509737B2 (en) 2012-10-02 2013-10-02 Client side encryption with recovery method
US14/044,498 Abandoned US20140095457A1 (en) 2012-10-02 2013-10-02 Regulating data storage based on popularity
US14/044,046 Active 2034-09-28 US9537918B2 (en) 2012-10-02 2013-10-02 File sharing with client side encryption
US14/044,605 Active 2034-08-15 US9276980B2 (en) 2012-10-02 2013-10-02 Data synchronization based on file system activities
US14/157,310 Active US8806478B2 (en) 2012-10-02 2014-01-16 Customizing operating system based on detected carrier
US14/157,260 Active US9531775B2 (en) 2012-10-02 2014-01-16 Mobile application migration to cloud computing platform
US14/157,197 Active US9398063B2 (en) 2012-10-02 2014-01-16 Customizing distribution of an operating system based on detected network carrier by retrieving differences between the distributed operating system and an operating system currently installed on a computing device
US14/171,679 Active US8762456B1 (en) 2012-10-02 2014-02-03 Generating prefetching profiles for prefetching data in a cloud based file system
US14/180,021 Active US9811329B2 (en) 2012-10-02 2014-02-13 Cloud based file system surpassing device storage limits
US14/228,190 Active US9380093B2 (en) 2012-10-02 2014-03-27 Mobile device application streaming
US15/607,764 Active US10083177B2 (en) 2012-10-02 2017-05-30 Data caching among interconnected devices
US16/299,597 Abandoned US20190213219A1 (en) 2012-10-02 2019-03-12 Regulating data storage based on copy quantity

Country Status (2)

Country Link
US (22) US9106721B2 (en)
WO (6) WO2014055450A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10992634B2 (en) * 2018-04-06 2021-04-27 Samsung Sds Co., Ltd. Message server and message processing apparatus for relaying application service message
US11522832B2 (en) 2018-11-29 2022-12-06 Target Brands, Inc. Secure internet gateway

Families Citing this family (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739381B2 (en) * 1998-03-11 2010-06-15 Commvault Systems, Inc. System and method for providing encryption in storage operations in a storage network, such as for use by application service providers that provide data storage services
US8370542B2 (en) 2002-09-16 2013-02-05 Commvault Systems, Inc. Combined stream auxiliary copy system and method
WO2006053019A2 (en) 2004-11-08 2006-05-18 Sharpcast, Inc. Method and apparatus for a file sharing and synchronization system
WO2013015835A1 (en) 2011-07-22 2013-01-31 Seven Networks, Inc. Mobile application traffic optimization
EP2599280A2 (en) 2010-07-26 2013-06-05 Seven Networks, Inc. Mobile application traffic optimization
US9344335B2 (en) 2011-09-09 2016-05-17 Microsoft Technology Licensing, Llc Network communication and cost awareness
US9116893B2 (en) 2011-10-21 2015-08-25 Qualcomm Incorporated Network connected media gateway for communication networks
US9148381B2 (en) 2011-10-21 2015-09-29 Qualcomm Incorporated Cloud computing enhanced gateway for communication networks
US10834820B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system cable
US9600434B1 (en) 2011-12-30 2017-03-21 Bedrock Automation Platforms, Inc. Switch fabric having a serial communications interface and a parallel communications interface
IN2014MN01516A (en) * 2012-01-09 2015-05-01 Qualcomm Inc
US10057318B1 (en) 2012-08-10 2018-08-21 Dropbox, Inc. System, method, and computer program for enabling a user to access and edit via a virtual drive objects synchronized to a plurality of synchronization clients
WO2014036636A1 (en) * 2012-09-10 2014-03-13 Teknision Inc. Method and system for transferable customized contextual user interfaces
US9747000B2 (en) 2012-10-02 2017-08-29 Razer (Asia-Pacific) Pte. Ltd. Launching applications on an electronic device
US10057726B2 (en) 2012-10-02 2018-08-21 Razer (Asia-Pacific) Pte. Ltd. Managing user data on an electronic device
US9654556B2 (en) 2012-10-02 2017-05-16 Razer (Asia-Pacific) Pte. Ltd. Managing applications on an electronic device
US9106721B2 (en) * 2012-10-02 2015-08-11 Nextbit Systems Application state synchronization across multiple devices
US20140179354A1 (en) * 2012-12-21 2014-06-26 Ian David Robert Fisher Determining contact opportunities
US9009469B2 (en) * 2013-01-15 2015-04-14 Sap Se Systems and methods for securing data in a cloud computing environment using in-memory techniques and secret key encryption
US20140229438A1 (en) * 2013-02-12 2014-08-14 Dropbox, Inc. Multiple platform data storage and synchronization
US9519490B2 (en) * 2013-03-07 2016-12-13 Microsoft Technology Licensing, Llc Adaptive data synchronization
US9524489B2 (en) * 2013-03-14 2016-12-20 Samsung Electronics Co., Ltd. Computing system with task transfer mechanism and method of operation thereof
US9779063B1 (en) * 2013-03-15 2017-10-03 Not Invented Here LLC Document processor program having document-type dependent interface
WO2014172386A2 (en) * 2013-04-15 2014-10-23 Seven Networks, Inc. Temporary or partial offloading of mobile applicaton functions to a cloud-based environment
FR3006528B1 (en) * 2013-05-29 2015-06-26 Univ Pau Et Des Pays De L Adour SYSTEM AND METHOD FOR COMMUNICATION SUPERVISION BETWEEN APPLICATION COMPONENTS
US9998536B2 (en) * 2013-05-29 2018-06-12 Microsoft Technology Licensing, Llc Metered network synchronization
FR3006527B1 (en) * 2013-05-29 2015-06-26 Univ Pau Et Des Pays De L Adour MIGRATION OF APPLICATION COMPONENTS
US9742750B2 (en) * 2013-06-12 2017-08-22 Microsoft Technology Licensing, Llc Roaming internet-accessible application state across trusted and untrusted platforms
JP6248448B2 (en) * 2013-07-24 2017-12-20 株式会社リコー Information processing apparatus and data storage control method thereof
US9749408B2 (en) * 2013-07-30 2017-08-29 Dropbox, Inc. Techniques for managing unsynchronized content items at unlinked devices
US8718445B1 (en) 2013-09-03 2014-05-06 Penthera Partners, Inc. Commercials on mobile devices
DK2858318T3 (en) * 2013-09-09 2018-02-12 Nex Services North America Llc Corp Trust Center Process and apparatus for order entry in an electronic trading system
US20150088957A1 (en) * 2013-09-25 2015-03-26 Sony Corporation System and methods for managing applications in multiple devices
US9244916B2 (en) * 2013-10-01 2016-01-26 Penthera Partners, Inc. Downloading media objects
US20150100389A1 (en) * 2013-10-03 2015-04-09 Xerox Corporation Systems and methods for tracking user-uptime for managed print services in managed office devices
US9981191B2 (en) * 2013-10-08 2018-05-29 Google Llc Native gameplay experience across platforms
US9588983B2 (en) 2013-10-17 2017-03-07 Microsoft Technology Licensing, Llc Data classification for adaptive synchronization
KR102114109B1 (en) * 2013-10-17 2020-05-22 에스케이하이닉스 주식회사 Data storage device
JP6197597B2 (en) * 2013-11-15 2017-09-20 富士通株式会社 Information processing system, control program for information processing apparatus, and control method for information processing system
US20150143103A1 (en) * 2013-11-18 2015-05-21 Life of Two Messaging and networking keepsakes
CN103634789A (en) * 2013-12-17 2014-03-12 北京网秦天下科技有限公司 Mobile terminal and method
US10496148B2 (en) * 2013-12-24 2019-12-03 Intel Corporation Context-based indoor power management
WO2015100430A1 (en) 2013-12-24 2015-07-02 Digimarc Corporation Methods and system for cue detection from audio input, low-power data processing and related arrangements
USD759686S1 (en) * 2014-01-03 2016-06-21 Synology Incorporated Portion of a display screen with icon
US9521141B2 (en) * 2014-02-12 2016-12-13 Bank Of America Corporation Caller validation
US10298678B2 (en) 2014-02-17 2019-05-21 International Business Machines Corporation Omnichannel approach to application sharing across different devices
US11809451B2 (en) 2014-02-19 2023-11-07 Snowflake Inc. Caching systems and methods
US10545917B2 (en) 2014-02-19 2020-01-28 Snowflake Inc. Multi-range and runtime pruning
GB2523350A (en) * 2014-02-21 2015-08-26 Ibm Implementing single sign-on in a transaction processing system
US9760710B2 (en) * 2014-02-28 2017-09-12 Sap Se Password recovering for mobile applications
US9325654B2 (en) 2014-02-28 2016-04-26 Aol Inc. Systems and methods for optimizing message notification timing based on electronic content consumption associated with a geographic location
US9672208B2 (en) * 2014-02-28 2017-06-06 Bose Corporation Automatic selection of language for voice interface
US9584968B2 (en) 2014-05-21 2017-02-28 Aol Inc. Systems and methods for deploying dynamic geo-fences based on content consumption levels in a geographic location
US10375198B2 (en) * 2014-05-22 2019-08-06 Facebook, Inc. Daily counts and usage probabilities for a user of an online service
US20160119142A1 (en) * 2014-05-23 2016-04-28 Michael Theodore Lester Encryption, Decryption, and Triggered Delivery of Files
EP2950507A1 (en) * 2014-05-28 2015-12-02 Fujitsu Limited Method and system for storing distributed graph data
US10171370B1 (en) * 2014-05-30 2019-01-01 Amazon Technologies, Inc. Distribution operating system
US11477602B2 (en) 2014-06-10 2022-10-18 Verizon Patent And Licensing Inc. Systems and methods for optimizing and refining message notification timing
EP3158429A4 (en) 2014-06-17 2017-04-26 Telefonaktiebolaget LM Ericsson (publ) Network node, electronic device and methods for benefitting from a service provided by a cloud
JP6372187B2 (en) * 2014-06-23 2018-08-15 富士通株式会社 History information management method, history information management apparatus, and history information management program
KR101879619B1 (en) * 2014-06-24 2018-07-19 구글 엘엘씨 Storing content items
CN105242983B (en) * 2014-06-26 2018-06-01 杭州海康威视系统技术有限公司 A kind of date storage method and a kind of data storage management service device
US9979796B1 (en) 2014-07-16 2018-05-22 Tensera Networks Ltd. Efficient pre-fetching notifications
US11095743B2 (en) 2014-07-16 2021-08-17 Tensera Networks Ltd. Optimized content-delivery network (CDN) for the wireless last mile
KR102260177B1 (en) * 2014-07-16 2021-06-04 텐세라 네트워크스 리미티드 Efficient content delivery over wireless networks using guaranteed prefetching at selected times-of-day
US11113345B2 (en) * 2014-07-17 2021-09-07 Bigtincan Holdings Limited Method and system for providing contextual electronic content
WO2016018098A1 (en) * 2014-07-31 2016-02-04 Samsung Electronics Co., Ltd. Mobile device and method of executing application based on particular zone
KR20160016579A (en) * 2014-07-31 2016-02-15 삼성전자주식회사 Mobile device and method for executing an application based on a specific zone
US20160048548A1 (en) * 2014-08-13 2016-02-18 Microsoft Corporation Population of graph nodes
GB2529246A (en) 2014-08-15 2016-02-17 Ibm Method for securing integrity and consistency of a cloud storage service with efficient client operations
CA2960774A1 (en) * 2014-09-11 2016-03-17 Systemic Management Science Corporation Information object system
US9853812B2 (en) * 2014-09-17 2017-12-26 Microsoft Technology Licensing, Llc Secure key management for roaming protected content
WO2016044833A1 (en) * 2014-09-19 2016-03-24 Hugenberg Iii Paul B Real-time network data management system and method
US9692848B2 (en) 2014-09-24 2017-06-27 Zixcorp Systems, Inc. Preemptive loading of protected data for streaming mobile devices
US9621650B2 (en) * 2014-09-30 2017-04-11 Google Inc Mobile application state identifier framework
US9891696B2 (en) * 2014-10-03 2018-02-13 Google Llc Intelligent device wakeup
TWI569618B (en) * 2014-10-31 2017-02-01 黃能富 Communication method of hiding privacy and system thereof
US11068136B1 (en) * 2014-11-11 2021-07-20 Amazon Technologies, Inc. Application fulfillment platform with automated license management mechanisms
CN104516945A (en) * 2014-11-18 2015-04-15 国家电网公司 Hadoop distributed file system metadata storage method based on relational data base
US9912625B2 (en) 2014-11-18 2018-03-06 Commvault Systems, Inc. Storage and management of mail attachments
US9612765B2 (en) 2014-11-19 2017-04-04 International Business Machines Corporation Context aware dynamic composition of migration plans to cloud
CN105704181A (en) 2014-11-26 2016-06-22 国际商业机器公司 Method and device used for managing task in mobile equipment
TWI533216B (en) * 2014-12-11 2016-05-11 佳世達科技股份有限公司 Operating system updating method
US9652471B1 (en) 2014-12-15 2017-05-16 Amazon Technologies, Inc. Intelligent file system with transparent storage tiering
US9430272B2 (en) 2014-12-17 2016-08-30 Microsoft Technology Licensing, Llc Efficiently providing virtual machine reference points
US9692837B2 (en) 2015-01-09 2017-06-27 Facebook, Inc. Federated application services
US9547555B2 (en) * 2015-01-12 2017-01-17 Microsoft Technology Licensing, Llc Change tracking using redundancy in logical time
US9904481B2 (en) 2015-01-23 2018-02-27 Commvault Systems, Inc. Scalable auxiliary copy processing in a storage management system using media agent resources
US9898213B2 (en) 2015-01-23 2018-02-20 Commvault Systems, Inc. Scalable auxiliary copy processing using media agent resources
US10389830B2 (en) * 2015-02-13 2019-08-20 International Business Machines Corporation Device delegation of push notification distribution
US9743238B2 (en) 2015-02-13 2017-08-22 Qualcomm Incorporated Proximity based device usage
US10075447B2 (en) * 2015-03-04 2018-09-11 Neone, Inc. Secure distributed device-to-device network
CN104683594B (en) * 2015-03-16 2017-05-17 诚迈科技(南京)股份有限公司 SIM card-oriented method for loading mobile phone operating system
US10127234B1 (en) 2015-03-27 2018-11-13 Amazon Technologies, Inc. Proactive optimizations at multi-tier file systems
US9984088B1 (en) 2015-03-31 2018-05-29 Maginatics Llc User driven data pre-fetch
US9922201B2 (en) 2015-04-01 2018-03-20 Dropbox, Inc. Nested namespaces for selective content sharing
US10963430B2 (en) * 2015-04-01 2021-03-30 Dropbox, Inc. Shared workspaces with selective content item synchronization
US9965369B2 (en) 2015-04-28 2018-05-08 Viasat, Inc. Self-organized storage nodes for distributed delivery network
CN106332556B (en) * 2015-04-30 2021-11-19 华为技术有限公司 Method and terminal for transmitting cloud files and cloud server
US9948703B2 (en) 2015-05-14 2018-04-17 Twilio, Inc. System and method for signaling through data storage
US10389794B2 (en) 2015-05-21 2019-08-20 International Business Machines Corporation Managing redundancy among application bundles
US9888057B2 (en) 2015-05-21 2018-02-06 International Business Machines Corporation Application bundle management across mixed file system types
US10530660B2 (en) * 2015-05-21 2020-01-07 International Business Machines Corporation Application bundle preloading
US9965262B2 (en) 2015-05-21 2018-05-08 International Business Machines Corporation Application bundle pulling
US10152516B2 (en) 2015-05-21 2018-12-11 International Business Machines Corporation Managing staleness latency among application bundles
US10389850B2 (en) 2015-05-21 2019-08-20 International Business Machines Corporation Managing redundancy among application bundles
CN114356651A (en) 2015-05-27 2022-04-15 谷歌有限责任公司 System and method for automatic cloud-based full data backup and restore on mobile devices
US9648098B2 (en) * 2015-05-28 2017-05-09 Microsoft Technology Licensing, Llc Predictive peer determination for peer-to-peer digital content download
US11283604B2 (en) 2015-05-29 2022-03-22 Microsoft Technology Licensing, Llc Sharing encrypted data with enhanced security by removing unencrypted metadata
US10165040B2 (en) 2015-06-05 2018-12-25 Apple Inc. Small disk support for large cloud-based storage systems
US20210286617A1 (en) * 2015-08-11 2021-09-16 Arnon Harish Methods circuits devices systems and functionally associated machine executable code for recommendation & distribution of digital content
US20170052773A1 (en) * 2015-08-17 2017-02-23 Google Inc. Application installs using remote applications
US10028225B2 (en) 2015-08-26 2018-07-17 International Business Machines Corporation Efficient usage of internet services on mobile devices
US10587721B2 (en) 2015-08-28 2020-03-10 Qualcomm Incorporated Small cell edge computing platform
US9781246B2 (en) 2015-08-28 2017-10-03 Qualcomm Incorporated Augmenting reality using a small cell
US10303345B2 (en) * 2015-08-28 2019-05-28 Google Llc Transferring notifications between devices
US9936042B2 (en) 2015-08-28 2018-04-03 Qualcomm Incorporated Local retrieving and caching of content to small cells
WO2017058208A1 (en) * 2015-09-30 2017-04-06 Hewlett Packard Enterprise Development Lp Multi-threaded application persistence
CN105306554B (en) * 2015-09-30 2018-10-23 北京恒华伟业科技股份有限公司 A kind of method of data synchronization and local server
US9602950B1 (en) 2015-10-08 2017-03-21 International Business Machines Corporation Context-based data storage management between devices and cloud platforms
US10691718B2 (en) 2015-10-29 2020-06-23 Dropbox, Inc. Synchronization protocol for multi-premises hosting of digital content items
US9697269B2 (en) 2015-10-29 2017-07-04 Dropbox, Inc. Content item block replication protocol for multi-premises hosting of digital content items
US10353926B2 (en) 2015-11-17 2019-07-16 Microsoft Technology Licensing, Llc Unified activity service
US9755979B2 (en) 2015-11-19 2017-09-05 Viasat, Inc. Enhancing capacity of a direct communication link
US10735493B2 (en) * 2015-11-23 2020-08-04 International Business Machines Corporation System, method and program product for managing mobile device operation
WO2017108067A1 (en) * 2015-12-21 2017-06-29 Gorillabox Gmbh I. G. Method for playing back applications from a cloud, telecommunication network for streaming and for replaying applications (apps) via a specific telecommunication system, and use of a telecommunication network for streaming and replaying applications (apps)
US20170208125A1 (en) * 2016-01-19 2017-07-20 Hope Bay Technologies, Inc Method and apparatus for data prefetch in cloud based storage system
US9537952B1 (en) 2016-01-29 2017-01-03 Dropbox, Inc. Apparent cloud access for hosted content items
US10944839B2 (en) * 2016-02-25 2021-03-09 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Conveying potential communication methods for a user of a computing system network
US20170249192A1 (en) * 2016-02-26 2017-08-31 Microsoft Technology Licensing, Llc Downloading visual assets
US10666642B2 (en) * 2016-02-26 2020-05-26 Ca, Inc. System and method for service assisted mobile pairing of password-less computer login
US10025625B2 (en) 2016-03-31 2018-07-17 Microsoft Technology Licensing, Llc Batched tasks
US10812452B2 (en) 2016-04-01 2020-10-20 Egnyte, Inc. Methods for improving performance and security in a cloud computing system
US10681182B1 (en) * 2016-04-06 2020-06-09 Uipco, Llc Multi-device work flow management method and system for managing work flow data collection for users across a diverse set of devices and processes by unifying the work process to be data and device agnostic
US11599561B2 (en) * 2016-04-29 2023-03-07 Hewlett Packard Enterprise Development Lp Data stream analytics
DE102016005419A1 (en) 2016-05-02 2017-11-02 Giesecke+Devrient Mobile Security Gmbh Procedure for initial startup of a non-fully personalized secure element
US10051142B1 (en) 2016-05-20 2018-08-14 Google Llc Adaptive display of image capacity for a camera
WO2017211421A1 (en) * 2016-06-09 2017-12-14 Huawei Technologies Co., Ltd. Multi-tiered, cloud based, file system for devices with unstable network connection
US10416982B1 (en) * 2016-06-30 2019-09-17 EMC IP Holding Company LLC Automated analysis system and method
US10437780B2 (en) 2016-07-14 2019-10-08 Snowflake Inc. Data pruning based on metadata
CN108353339A (en) * 2016-08-21 2018-07-31 华为技术有限公司 The method and apparatus of networking between a kind of equipment
KR101715888B1 (en) * 2016-08-25 2017-03-13 (주)넥스케이드 Multi reel game machine to regulate betting
US10642784B2 (en) 2016-09-15 2020-05-05 International Business Machines Corporation Reducing read operations and branches in file system policy checks
US9894578B1 (en) 2016-10-25 2018-02-13 International Business Machines Corporation Mobile telephone network abstraction
US10547682B2 (en) * 2016-11-10 2020-01-28 Adobe Inc. Dynamically scaling application components using microservices
WO2018103061A1 (en) 2016-12-09 2018-06-14 Intel Corporation Technologies for cross-device shared web resource cache
US10446115B2 (en) 2017-01-03 2019-10-15 Microsoft Technology Licensing, Llc Crowd-sourced brightness for a display
US11153164B2 (en) 2017-01-04 2021-10-19 International Business Machines Corporation Live, in-line hardware component upgrades in disaggregated systems
US10534598B2 (en) * 2017-01-04 2020-01-14 International Business Machines Corporation Rolling upgrades in disaggregated systems
US10891342B2 (en) 2017-01-12 2021-01-12 Google Llc Content data determination, transmission and storage for local devices
CN106649885A (en) * 2017-01-13 2017-05-10 深圳爱拼信息科技有限公司 Professional category and standard professional name matching method and system
WO2018133228A1 (en) 2017-01-22 2018-07-26 华为技术有限公司 Method for managing application snippet and terminal device
CN108235758A (en) * 2017-01-22 2018-06-29 华为技术有限公司 A kind of method and terminal device for managing application fragment
US10264054B2 (en) * 2017-02-10 2019-04-16 International Business Machines Corporation Predictive device to device file transfer system for local cloud storage files
US10387383B2 (en) * 2017-02-15 2019-08-20 Google Llc Systems and methods for providing access to a data file stored at a data storage system
US10248355B2 (en) 2017-02-22 2019-04-02 International Business Machines Corporation Data migration for applications on a mobile device
FR3063361B1 (en) * 2017-02-24 2019-04-19 Moore METHOD, EQUIPMENT AND SYSTEM FOR MANAGING THE FILE SYSTEM
US10754685B2 (en) 2017-03-03 2020-08-25 Microsoft Technology Licensing Llc Cross-device task registration and resumption
US10554427B2 (en) 2017-03-08 2020-02-04 International Business Machines Corporation Resuming a context on a group of electronic devices
US10761750B2 (en) * 2017-03-09 2020-09-01 Netapp Inc. Selectively storing data into allocation areas using streams
US10671245B2 (en) 2017-03-29 2020-06-02 Microsoft Technology Licensing, Llc Collection and control of user activity set data and activity set user interface
US10732796B2 (en) 2017-03-29 2020-08-04 Microsoft Technology Licensing, Llc Control of displayed activity information using navigational mnemonics
US11010261B2 (en) 2017-03-31 2021-05-18 Commvault Systems, Inc. Dynamically allocating streams during restoration of data
US10853220B2 (en) 2017-04-12 2020-12-01 Microsoft Technology Licensing, Llc Determining user engagement with software applications
US10693748B2 (en) * 2017-04-12 2020-06-23 Microsoft Technology Licensing, Llc Activity feed service
US11249671B2 (en) * 2017-04-28 2022-02-15 Netapp, Inc. Methods for improved data replication across hybrid cloud volumes using data tagging and devices thereof
CN107153699B (en) * 2017-05-09 2020-10-02 北京恒华伟业科技股份有限公司 Method and device for dynamically expanding cluster server
CN107239411B (en) * 2017-06-06 2020-12-08 上汽通用汽车有限公司 Memory management method and system for vehicle-mounted controller
US10737180B1 (en) * 2017-06-08 2020-08-11 Securus Technologies, Inc. Collaborative gaming
CN107203433A (en) * 2017-06-13 2017-09-26 微梦创科网络科技(中国)有限公司 The multiple inter-program data synchronous method and device of a kind of shared drive
US10726117B2 (en) 2017-06-28 2020-07-28 Motorola Solutions, Inc. Method to recover data from a locked device for upload to a service
DE102017006950A1 (en) * 2017-07-21 2019-01-24 Giesecke+Devrient Mobile Security Gmbh Maintaining a network connection
US20190036720A1 (en) * 2017-07-31 2019-01-31 Lenovo (Singapore) Pte. Ltd. Method and device to select an electronic device based on delivery attributes
US11580088B2 (en) 2017-08-11 2023-02-14 Microsoft Technology Licensing, Llc Creation, management, and transfer of interaction representation sets
US11005900B2 (en) 2017-09-18 2021-05-11 Microsoft Technology Licensing, Llc Notifications to all devices to update state
US10785179B2 (en) 2017-09-19 2020-09-22 International Business Machines Corporation Alert modification based on content of a notification
US10796228B2 (en) 2017-09-29 2020-10-06 Oracle International Corporation Machine-learning-based processing of de-obfuscated data for data enrichment
US11321614B2 (en) 2017-09-29 2022-05-03 Oracle International Corporation Directed trajectories through communication decision tree using iterative artificial intelligence
CN107590030A (en) * 2017-09-29 2018-01-16 郑州云海信息技术有限公司 A kind of method, apparatus and system of data recording on tape backup
US10326726B1 (en) 2017-12-01 2019-06-18 International Business Machines Corporation Alert modification based on social media activity
GB2569398B (en) * 2017-12-18 2022-03-02 V Auth Ltd Authentication method and device
US20210126986A1 (en) * 2018-01-08 2021-04-29 Here Global B.V. Distributed processing system and method for the provision of location based services
CN108667891B (en) * 2018-03-05 2020-11-06 集思谱(北京)科技有限公司 Independent unit combined multimedia information spreading method and system
GB2572545B (en) * 2018-03-27 2021-01-20 Openwave Mobility Inc Data replication
US10353863B1 (en) * 2018-04-11 2019-07-16 Capital One Services, Llc Utilizing machine learning to determine data storage pruning parameters
US11334596B2 (en) 2018-04-27 2022-05-17 Dropbox, Inc. Selectively identifying and recommending digital content items for synchronization
EP3794802A4 (en) 2018-06-06 2021-05-19 Huawei Technologies Co., Ltd. System and method for controlling management operations and shared memory space for multi-tenant cache service in cloud computing
CN110881184B (en) * 2018-09-05 2021-05-18 华为技术有限公司 Communication method and device
CN109218317A (en) * 2018-09-22 2019-01-15 肖金保 A kind of network social intercourse system based on cloud storage
CN109275031B (en) * 2018-09-25 2021-09-28 有米科技股份有限公司 Video popularity evaluation method and device and electronic equipment
EP3881489A4 (en) 2018-11-15 2022-06-08 Airside Mobile, Inc. Methods and apparatus for encrypting, storing, and/or sharing sensitive data
CN109587252A (en) * 2018-12-10 2019-04-05 上海闻泰电子科技有限公司 Loading method, device, electronic equipment and the storage medium of operator parameter
US11140142B2 (en) * 2019-01-24 2021-10-05 Salesforce.Com, Inc. Method and system for authentication
US10958517B2 (en) 2019-02-15 2021-03-23 At&T Intellectual Property I, L.P. Conflict-free change deployment
CN109962920B (en) * 2019-03-29 2022-02-08 北京奇艺世纪科技有限公司 Method, device and system for determining split page number
US11611430B2 (en) * 2019-04-15 2023-03-21 Axell Corporation Arithmetic apparatus, arithmetic system and arithmetic method
US11307878B2 (en) 2019-05-10 2022-04-19 Microsoft Technology Licensing, Llc Per user index for virtual desktop
US11153315B2 (en) * 2019-05-30 2021-10-19 Bank Of America Corporation Controlling access to secure information resources using rotational datasets and dynamically configurable data containers
US11334404B2 (en) * 2019-05-31 2022-05-17 Apple Inc. Techniques for managing access to file systems
US11321354B2 (en) * 2019-10-01 2022-05-03 Huawei Technologies Co., Ltd. System, computing node and method for processing write requests
US11290531B2 (en) 2019-12-04 2022-03-29 Dropbox, Inc. Immediate cloud content item creation from local file system interface
CN111125038B (en) * 2019-12-31 2023-04-07 成都驰通数码系统有限公司 Intelligent data synchronization method and system based on cloud storage
US10917401B1 (en) * 2020-03-24 2021-02-09 Imperva, Inc. Data leakage prevention over application programming interface
US11223681B2 (en) * 2020-04-10 2022-01-11 Netapp, Inc. Updating no sync technique for ensuring continuous storage service in event of degraded cluster state
US20210342290A1 (en) * 2020-04-30 2021-11-04 International Business Machines Corporation Technique selection for file system utilization prediction
CN111711656A (en) * 2020-05-15 2020-09-25 山东省计算中心(国家超级计算济南中心) Network edge storage device with safety function
US11681661B2 (en) * 2020-11-27 2023-06-20 Vmware, Inc. Hybrid synchronization using a shadow component
CN112600924B (en) * 2020-12-15 2022-02-22 四川长虹电器股份有限公司 IoT terminal data storage system, method, computer device and storage medium
CN112468519B (en) * 2021-01-28 2021-05-11 深圳乐播科技有限公司 Television decoding capability detection method and device, computer equipment and readable storage medium
EP4348924A1 (en) * 2021-05-25 2024-04-10 Visa International Service Association Multi-party computation for many computers
CN114866502B (en) * 2022-05-17 2023-04-07 四川虹美智能科技有限公司 Method for pushing intelligent household appliance message

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075994A (en) 1998-05-29 2000-06-13 Lucent Technologies, Inc. Method and apparatus for dynamically determining the optimal communication message bundle size for a communication system
US20090063193A1 (en) * 2007-08-31 2009-03-05 Mike Barton Dashboard diagnostics for wireless patient communicator
US20090143056A1 (en) 2007-11-30 2009-06-04 Microsoft Corporation Modifying mobile device operation using proximity relationships
US20100113159A1 (en) * 2008-11-06 2010-05-06 International Business Machines Corporation Method and apparatus for partitioning virtual worlds using prioritized topic spaces in virtual world systems
US7865089B2 (en) 2006-05-18 2011-01-04 Xerox Corporation Soft failure detection in a network of devices
US20120131184A1 (en) 2010-11-22 2012-05-24 Michael Luna Aligning data transfer to optimize connections established for transmission over a wireless network
US20130073389A1 (en) 2011-09-15 2013-03-21 Stephan HEATH System and method for providing sports and sporting events related social/geo/promo link promotional data sets for end user display of interactive ad links, promotions and sale of products, goods, gambling and/or services integrated with 3d spatial geomapping, company and local information for selected worldwide locations and social networking
US20130110637A1 (en) 2011-11-02 2013-05-02 Ross Bott Strategically timed delivery of advertisements or electronic coupons to a mobile device in a mobile network
US20130212420A1 (en) * 2012-02-09 2013-08-15 Rockwell Automation Technologies, Inc. Time-stamping of industrial cloud data for synchronization
US20130238686A1 (en) 2011-10-18 2013-09-12 Hugh O'Donoghue Method and apparatus for generating, using, or updating an enriched user profile
US20130297704A1 (en) 2012-05-01 2013-11-07 Motorola Mobility, Inc. Methods for coordinating communications between a plurality of communication devices of a user
US20130304559A1 (en) 2012-05-09 2013-11-14 Cashstar, Inc. Systems, methods and devices for conducting transactions with portable electronic devices using virtual points
US20140018033A1 (en) 2012-07-13 2014-01-16 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US20140025524A1 (en) 2011-12-14 2014-01-23 Cfph, Llc Examples of delivery and/or referral services that may use mobile enhancements and/or auction mechanisms
US20140031126A1 (en) 2012-07-24 2014-01-30 Binh Nguyen Optimized power consumption in a gaming device
US20140047331A1 (en) 2012-08-12 2014-02-13 Apple Inc. Detecting and transmitting a redeemable document

Family Cites Families (426)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446901A (en) 1993-06-30 1995-08-29 Digital Equipment Corporation Fault tolerant distributed garbage collection system and method for collecting network objects
US5799147A (en) * 1994-10-19 1998-08-25 Shannon; John P. Computer recovery backup method
US6282712B1 (en) 1995-03-10 2001-08-28 Microsoft Corporation Automatic software installation on heterogeneous networked computer systems
US5925100A (en) 1996-03-21 1999-07-20 Sybase, Inc. Client/server system with methods for prefetching and managing semantic objects based on object-based prefetch primitive present in client's executing application
US6292941B1 (en) 1996-04-30 2001-09-18 Sun Microsystems, Inc. Operating system installation
US6944819B2 (en) 1997-01-10 2005-09-13 Eastman-Kodak Company Computer method and apparatus for previewing files outside of an application program
US5918016A (en) 1997-06-10 1999-06-29 Texas Instruments Incorporated System with program for automating protocol assignments when newly connected to varing computer network configurations
US6094531A (en) 1997-08-25 2000-07-25 Hewlett-Packard Company Method and apparatus for automatically installing operating systems machines
US6085226A (en) 1998-01-15 2000-07-04 Microsoft Corporation Method and apparatus for utility-directed prefetching of web pages into local cache using continual computation and user models
US6412021B1 (en) 1998-02-26 2002-06-25 Sun Microsystems, Inc. Method and apparatus for performing user notification
US6202206B1 (en) 1998-05-14 2001-03-13 International Business Machines Corporation Simultaneous installation and configuration of programs and components into a network of server and client computers
US6385641B1 (en) 1998-06-05 2002-05-07 The Regents Of The University Of California Adaptive prefetching for computer network and web browsing with a graphic user interface
US6108703A (en) * 1998-07-14 2000-08-22 Massachusetts Institute Of Technology Global hosting system
JP2000115153A (en) * 1998-09-30 2000-04-21 Fujitsu Ltd Security method and security device
US6304913B1 (en) * 1998-11-09 2001-10-16 Telefonaktiebolaget L M Ericsson (Publ) Internet system and method for selecting a closest server from a plurality of alternative servers
WO2000033192A1 (en) 1998-11-25 2000-06-08 Sun Microsystems, Inc. A method for enabling comprehensive profiling of garbage-collected memory systems
US6338115B1 (en) 1999-02-16 2002-01-08 International Business Machines Corporation Advanced read cache management
US6286080B1 (en) 1999-02-16 2001-09-04 International Business Machines Corporation Advanced read cache emulation
US6898427B1 (en) 1999-12-29 2005-05-24 Bellsouth Intellectual Property Corporation Method of coupling portable communications device to first network by way of second network
US7668938B1 (en) 2000-01-14 2010-02-23 Microsoft Corporation Method and system for dynamically purposing a computing device
US8620286B2 (en) 2004-02-27 2013-12-31 Synchronoss Technologies, Inc. Method and system for promoting and transferring licensed content and applications
US6694336B1 (en) 2000-01-25 2004-02-17 Fusionone, Inc. Data transfer and synchronization system
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
JP2002011250A (en) 2000-04-25 2002-01-15 Nintendo Co Ltd Game system and portable game machine
US6823508B1 (en) 2000-04-27 2004-11-23 Microsoft Corporation Automatic computer program customization based on a user information store
US7174454B2 (en) 2002-11-19 2007-02-06 America Online, Inc. System and method for establishing historical usage-based hardware trust
US6990513B2 (en) 2000-06-22 2006-01-24 Microsoft Corporation Distributed computing services platform
JP3674471B2 (en) 2000-07-25 2005-07-20 日本電気株式会社 Content transfer method, network system, and machine-readable recording medium recording program
US7191239B2 (en) 2000-08-02 2007-03-13 Ipass Inc. Method and system to customize and update a network connection application for distribution to multiple end-users
US6981005B1 (en) 2000-08-24 2005-12-27 Microsoft Corporation Partial migration of an object to another storage location in a computer system
US7062567B2 (en) 2000-11-06 2006-06-13 Endeavors Technology, Inc. Intelligent network streaming and execution system for conventionally coded applications
US20020083183A1 (en) 2000-11-06 2002-06-27 Sanjay Pujare Conventionally coded application conversion system for streamed delivery and execution
US6918113B2 (en) 2000-11-06 2005-07-12 Endeavors Technology, Inc. Client installation and execution system for streamed applications
US6959320B2 (en) 2000-11-06 2005-10-25 Endeavors Technology, Inc. Client-side performance optimization system for streamed applications
US7043524B2 (en) 2000-11-06 2006-05-09 Omnishift Technologies, Inc. Network caching system for streamed applications
US6811486B1 (en) * 2000-12-20 2004-11-02 Sierra Design Group Method and apparatus for enhancing game play through savable game play state
US20020103996A1 (en) 2001-01-31 2002-08-01 Levasseur Joshua T. Method and system for installing an operating system
US20020133537A1 (en) 2001-03-12 2002-09-19 Whizz Technology Ltd. Server cluster and server-side cooperative caching method for use with same
US20020184403A1 (en) * 2001-04-06 2002-12-05 Dahlin Michael D. Methods for near-optimal bandwidth-constrained placement in a wide-area network
US6966837B1 (en) 2001-05-10 2005-11-22 Best Robert M Linked portable and video game systems
JP2002344484A (en) 2001-05-21 2002-11-29 Nec Corp Method and system for restoring connection of network
US7490045B1 (en) 2001-06-04 2009-02-10 Palmsource, Inc. Automatic collection and updating of application usage
JP2002369255A (en) 2001-06-08 2002-12-20 Sony Corp Method of radio communication, radio communication system and radio transmitter
US6721870B1 (en) 2001-06-12 2004-04-13 Emc Corporation Prefetch algorithm for short sequences
US7222359B2 (en) 2001-07-27 2007-05-22 Check Point Software Technologies, Inc. System methodology for automatic local network discovery and firewall reconfiguration for mobile computing devices
US8107937B2 (en) 2001-07-31 2012-01-31 Nokia Corporation System and method for automatic provisioning detection and notification
US7139811B2 (en) * 2001-08-01 2006-11-21 Actona Technologies Ltd. Double-proxy remote data access system
US7685126B2 (en) 2001-08-03 2010-03-23 Isilon Systems, Inc. System and methods for providing a distributed file system utilizing metadata to track information about data stored throughout the system
US7260672B2 (en) 2001-09-07 2007-08-21 Intel Corporation Using data stored in a destructive-read memory
US20030061604A1 (en) * 2001-09-21 2003-03-27 General Instrument Corporation Software-code configurable digital appliance
JP2003116162A (en) 2001-10-05 2003-04-18 Toshiba Corp Mobile communication terminal and system selection method
US7496645B2 (en) 2001-10-18 2009-02-24 Hewlett-Packard Development Company, L.P. Deployment of business logic software and data content onto network servers
JP4113354B2 (en) * 2001-12-25 2008-07-09 三菱電機株式会社 Wide area distributed system
US20030154116A1 (en) 2002-01-04 2003-08-14 Lofton Jeffrey C. System and method for scheduling events on an internet based calendar
US20040205633A1 (en) 2002-01-11 2004-10-14 International Business Machines Corporation Previewing file or document content
US7257584B2 (en) * 2002-03-18 2007-08-14 Surgient, Inc. Server file management
US7325017B2 (en) * 2003-09-24 2008-01-29 Swsoft Holdings, Ltd. Method of implementation of data storage quota
US6941179B2 (en) 2002-04-04 2005-09-06 Matsushita Electric Industrial Co., Ltd. Device control system, network constructed by the system, and program executed on device constructing the system
US7127463B2 (en) 2002-04-18 2006-10-24 International Business Machines Corporation Optimization of database network traffic based upon data-use analysis
JP2003316650A (en) * 2002-04-18 2003-11-07 Internatl Business Mach Corp <Ibm> Computer system, portable information equipment, security switching method and program
US7369750B2 (en) 2002-04-24 2008-05-06 Microsoft Corporation Managing record events
JP2003323363A (en) 2002-04-30 2003-11-14 Fujitsu Ltd Environment setting unit, environment setting program and information processor
US6950660B1 (en) 2002-05-10 2005-09-27 Qualcomm, Incorporated Provisioning a mobile device in a wireless communication system
WO2003102823A1 (en) * 2002-05-31 2003-12-11 Fujitsu It Holdings, Inc. Method and system for intelligent storage management
US7016909B2 (en) 2002-06-04 2006-03-21 Microsoft Corporation Method and system for expansion of recurring calendar events
US7228354B2 (en) * 2002-06-28 2007-06-05 International Business Machines Corporation Method for improving performance in a computer storage system by regulating resource requests from clients
US7124110B1 (en) * 2002-07-15 2006-10-17 Trading Technologies International Inc. Method and apparatus for message flow and transaction queue management
JP3495032B1 (en) 2002-07-24 2004-02-09 コナミ株式会社 Game progress management device, game server device, terminal device, game progress management method, and game progress management program
US7130866B2 (en) 2002-07-30 2006-10-31 Koninklijke Philips Electronics N.V. Controlling the growth of a feature frequency profile by deleting selected frequency counts of features of events
CA2495639C (en) 2002-08-16 2011-03-08 Research In Motion Limited System and method for triggering a provisioning event
US7046989B2 (en) 2002-09-12 2006-05-16 Broadcom Corporation Controlling and enhancing handoff between wireless access points
CN1709007B (en) 2002-10-30 2010-05-26 捷讯研究有限公司 Methods and device for selecting a communication network
US7156733B2 (en) 2002-12-20 2007-01-02 Electronics Arts Inc. Using shared files in a game console or computer for cross-game state sharing
US20040203381A1 (en) 2002-12-31 2004-10-14 Cahn Janet E. Method and apparatus for data transfer
US7848935B2 (en) 2003-01-31 2010-12-07 I.M.D. Soft Ltd. Medical information event manager
US7260602B2 (en) 2003-03-31 2007-08-21 Microsoft Corporation System and method of network content location for roaming clients
WO2004092963A1 (en) 2003-04-11 2004-10-28 Fujitsu Limited Information providing method, information providing program, information displaying program, information providing device, and information displaying device
US7376717B2 (en) 2003-04-17 2008-05-20 Lenovo (Singapore) Pte Ltd. Method and apparatus for automatically configuring a computer for different local area networks
US7124272B1 (en) 2003-04-18 2006-10-17 Symantec Corporation File usage history log for improved placement of files in differential rate memory according to frequency of utilizations and volatility of allocation space
US7155465B2 (en) 2003-04-18 2006-12-26 Lee Howard F Method and apparatus for automatically archiving a file system
US20040233930A1 (en) 2003-05-19 2004-11-25 Modular Computing & Communications Corporation Apparatus and method for mobile personal computing and communications
US7346344B2 (en) 2003-05-30 2008-03-18 Aol Llc, A Delaware Limited Liability Company Identity-based wireless device configuration
US7167705B2 (en) 2003-06-27 2007-01-23 Oracle International Corporation Roaming across different access mechanisms and network technologies
US7305230B2 (en) 2003-07-01 2007-12-04 Nokia Corporation System, apparatus, and method for providing a mobile server
US8850174B1 (en) 2003-07-02 2014-09-30 Pmc-Sierra Us, Inc. Method for dedicated netboot
US7331038B1 (en) 2003-07-02 2008-02-12 Amazon.Com, Inc. Predictive prefetching to improve parallelization of document generation subtasks
ATE345531T1 (en) 2003-09-19 2006-12-15 Harman Becker Automotive Sys A METHOD FOR DATA TRANSFER AND A DATA TRANSFER INTERFACE
US7617250B2 (en) 2003-09-22 2009-11-10 Hewlett-Packard Development Company, L.P. Semantic file system
US8312102B2 (en) 2003-11-10 2012-11-13 Sap Ag Techniques for previewing content package files through a portal
US20050114474A1 (en) 2003-11-20 2005-05-26 International Business Machines Corporation Automatic configuration of the network devices via connection to specific switch ports
US20050147130A1 (en) * 2003-12-23 2005-07-07 Intel Corporation Priority based synchronization of data in a personal area network
US20050144615A1 (en) 2003-12-29 2005-06-30 Shu-Chuan Chen Modularized custom-developed software package producing method and system
WO2005076649A1 (en) 2004-02-10 2005-08-18 Forward Information Technologies Sa Method and system for seamless handover of mobile devices in heterogenous networks
US7774461B2 (en) 2004-02-18 2010-08-10 Fortinet, Inc. Mechanism for determining a congestion metric for a path in a network
US7555568B2 (en) 2004-02-28 2009-06-30 Huang Evan S Method and apparatus for operating a host computer from a portable apparatus
JP4900760B2 (en) 2004-03-31 2012-03-21 株式会社日立製作所 OS image deployment machine and method
US7379551B2 (en) * 2004-04-02 2008-05-27 Microsoft Corporation Method and system for recovering password protected private data via a communication network without exposing the private data
US8606891B2 (en) 2004-09-10 2013-12-10 Freestyle Technology Pty Ltd Client processor device for building application files from file fragments for different versions of an application
US20060030408A1 (en) * 2004-07-19 2006-02-09 Nokia Corporation Game play with mobile communications device synchronization
JP4281658B2 (en) * 2004-09-24 2009-06-17 日本電気株式会社 File access service system, switching device, quota management method and program
US20060075075A1 (en) * 2004-10-01 2006-04-06 Malinen Jouni I Method and system to contextually initiate synchronization services on mobile terminals in an enterprise environment
US7533230B2 (en) 2004-10-13 2009-05-12 Hewlett-Packard Developmetn Company, L.P. Transparent migration of files among various types of storage volumes based on file access properties
US20060095705A1 (en) * 2004-10-30 2006-05-04 James Wichelman Systems and methods for data storage management
WO2006060670A2 (en) 2004-12-02 2006-06-08 Storage Dna, Inc. Managing disk storage media
US7810089B2 (en) 2004-12-30 2010-10-05 Citrix Systems, Inc. Systems and methods for automatic installation and execution of a client-side acceleration program
TWI475862B (en) 2005-02-04 2015-03-01 高通公司 Secure bootstrapping for wireless communications
WO2006082592A1 (en) 2005-02-04 2006-08-10 Hewlett-Packard Development Company, L.P. Data processing system and method
US20060178166A1 (en) 2005-02-09 2006-08-10 Pacusma Company Limited Configurable integrated circuit card
US7698704B2 (en) 2005-02-17 2010-04-13 International Business Machines Corporation Method for installing operating system on remote storage: flash deploy and install zone
US20060195839A1 (en) 2005-02-28 2006-08-31 Microsoft Corporation Computer system for deploying software on multiple computers
US7817983B2 (en) 2005-03-14 2010-10-19 Qualcomm Incorporated Method and apparatus for monitoring usage patterns of a wireless device
US7702329B1 (en) * 2005-03-16 2010-04-20 Sprint Spectrum L.P. Temporarily overriding a preferred roaming list (PRL) in a multi-mode device, in favor of a wireless local area network (WLAN) access point
US7757227B2 (en) 2005-03-18 2010-07-13 Microsoft Corporation Dynamic multilingual resource support for applications
US7774457B1 (en) 2005-03-25 2010-08-10 Hewlett-Packard Development Company, L.P. Resource evaluation for a batch job and an interactive session concurrently executed in a grid computing environment
CA2601736C (en) 2005-04-18 2012-04-10 Research In Motion Limited Method and system for centralized user notification and application execution control
US7515909B2 (en) * 2005-04-21 2009-04-07 Qualcomm Incorporated Wireless handoffs between multiple networks
US7376823B2 (en) 2005-04-28 2008-05-20 International Business Machines Corporation Method and system for automatic detection, inventory, and operating system deployment on network boot capable computers
TWI275937B (en) * 2005-05-18 2007-03-11 Rdc Semiconductor Co Ltd Large file storage management method and system
US8352935B2 (en) 2005-05-19 2013-01-08 Novell, Inc. System for creating a customized software distribution based on user requirements
US20060264197A1 (en) 2005-05-23 2006-11-23 Sony Ericsson Mobile Communications Ab Mobile device battery warning for data downloads
US20060277271A1 (en) 2005-06-07 2006-12-07 Yahoo! Inc. Prefetching content based on a mobile user profile
US8589140B1 (en) 2005-06-10 2013-11-19 Wapp Tech Corp. System and method for emulating and profiling a frame-based application playing on a mobile device
AU2005100653A4 (en) 2005-08-12 2005-09-15 Agent Mobile Pty Ltd Mobile Device-Based End-User Filter
US7865570B2 (en) 2005-08-30 2011-01-04 Illinois Institute Of Technology Memory server
JP4667175B2 (en) 2005-08-31 2011-04-06 キヤノン株式会社 Information processing apparatus, information processing apparatus control method, computer program, and computer-readable storage medium
US9426230B2 (en) 2005-09-08 2016-08-23 Deere & Company System and method for anticipatory downloading of data
TW200715108A (en) 2005-10-04 2007-04-16 Carry Computer Eng Co Ltd Storage apparatus and method with function of showing use history
FR2891931B1 (en) * 2005-10-10 2008-02-22 Wavecom Sa RADIO COMMUNICATION DEVICE COMPRISING AT LEAST ONE RADIOCOMMUNICATION MODULE AND A SIM CARD, RADIO COMMUNICATION MODULE AND SIM CARD THEREOF
US20070130217A1 (en) * 2005-10-13 2007-06-07 Unwired Software, Inc. Many to many data synchronization
JP4865299B2 (en) 2005-11-02 2012-02-01 キヤノン株式会社 Information processing apparatus, information processing method, and program thereof
JP2007141102A (en) 2005-11-21 2007-06-07 Internatl Business Mach Corp <Ibm> Program for installing software, storage medium and device
JP2007148545A (en) * 2005-11-24 2007-06-14 Brother Ind Ltd Information delivery system, information delivery method, node device and node processing program
US7606937B2 (en) * 2005-12-02 2009-10-20 Microsoft Corporation Next site for distributed service connections
JP2009527062A (en) * 2006-02-14 2009-07-23 ヨッタヨッタ インコーポレイテッド System and method for achieving ultra-high data availability and geographic disaster tolerance
US8122174B2 (en) * 2006-03-31 2012-02-21 Research In Motion Limited System and method for provisioning a remote resource for an electronic device
GB0606639D0 (en) * 2006-04-01 2006-05-10 Ibm Non-disruptive file system element reconfiguration on disk expansion
US8019811B1 (en) 2006-04-06 2011-09-13 Versata Development Group, Inc. Application state server-side cache for a state-based client-server application
US8214469B2 (en) 2006-04-06 2012-07-03 Qwest Communications International Inc. Multiple use of common perspectives
JP4900784B2 (en) * 2006-04-13 2012-03-21 株式会社日立製作所 Storage system and storage system data migration method
US7685255B2 (en) 2006-04-24 2010-03-23 Blue Coat Systems, Inc. System and method for prefetching uncacheable embedded objects
US8010105B2 (en) 2006-05-19 2011-08-30 Research In Motion Limited System and method for facilitating accelerated network selection using a weighted network list
US7792792B2 (en) 2006-05-22 2010-09-07 Microsoft Corporation Synchronizing structured web site contents
US20070288247A1 (en) * 2006-06-11 2007-12-13 Michael Mackay Digital life server
US20080059631A1 (en) * 2006-07-07 2008-03-06 Voddler, Inc. Push-Pull Based Content Delivery System
US9052826B2 (en) 2006-07-28 2015-06-09 Condusiv Technologies Corporation Selecting storage locations for storing data based on storage location attributes and data usage statistics
US20080031447A1 (en) * 2006-08-04 2008-02-07 Frank Geshwind Systems and methods for aggregation of access to network products and services
US20080055311A1 (en) 2006-08-31 2008-03-06 Ati Technologies Inc. Portable device with run-time based rendering quality control and method thereof
US7451225B1 (en) * 2006-09-12 2008-11-11 Emc Corporation Configuring a cache prefetch policy in a computer system employing object addressable storage
CN101535992A (en) 2006-09-17 2009-09-16 诺基亚公司 Adaptable caching architecture and data transfer for portable devices
US7676630B2 (en) 2006-10-05 2010-03-09 Sun Microsystems, Inc. Method and apparatus for using a determined file access pattern to perform caching in a file system
US10104432B2 (en) 2006-12-01 2018-10-16 Time Warner Cable Enterprises Llc Methods and apparatus for software provisioning of a network device
US20130166580A1 (en) 2006-12-13 2013-06-27 Quickplay Media Inc. Media Processor
US7827358B2 (en) * 2007-01-07 2010-11-02 Apple Inc. Memory management methods and systems
USD611494S1 (en) 2007-01-15 2010-03-09 Microsoft Corporation Icon for a portion of a display screen
US9015342B2 (en) * 2007-01-22 2015-04-21 Xerox Corporation Two-level structured overlay design for cluster management in a peer-to-peer network
US8706687B2 (en) 2007-01-24 2014-04-22 Hewlett-Packard Development Company, L.P. Log driven storage controller with network persistent memory
US7603526B2 (en) 2007-01-29 2009-10-13 International Business Machines Corporation Systems and methods for providing dynamic memory pre-fetch
US20080201705A1 (en) 2007-02-15 2008-08-21 Sun Microsystems, Inc. Apparatus and method for generating a software dependency map
US20080220878A1 (en) 2007-02-23 2008-09-11 Oliver Michaelis Method and Apparatus to Create or Join Gaming Sessions Based on Proximity
US7584294B2 (en) * 2007-03-12 2009-09-01 Citrix Systems, Inc. Systems and methods for prefetching objects for caching using QOS
US9171006B2 (en) 2007-04-06 2015-10-27 Alcatel Lucent Mobile station with expanded storage space and method of retrieving files by the mobile station
US7882304B2 (en) 2007-04-27 2011-02-01 Netapp, Inc. System and method for efficient updates of sequential block storage
US20080293464A1 (en) 2007-05-21 2008-11-27 World Golf Tour, Inc. Electronic game utilizing photographs
GB2449923B (en) 2007-06-09 2011-09-28 King's College London Inter-working of networks
EP2163075A2 (en) 2007-06-19 2010-03-17 Qualcomm Incorporated Methods and apparatus for dataset synchronization in a wireless environment
US8006241B2 (en) 2007-06-20 2011-08-23 International Business Machines Corporation Automatic software installation and cleanup
JP4359855B2 (en) 2007-07-09 2009-11-11 Smc株式会社 Solenoid valve drive circuit and solenoid valve
US8171135B2 (en) 2007-07-12 2012-05-01 Viasat, Inc. Accumulator for prefetch abort
US9451450B2 (en) * 2007-09-01 2016-09-20 Apple Inc. Postponed carrier configuration
US20090063690A1 (en) 2007-09-05 2009-03-05 Motorola, Inc. Continuing an application session using a different device from one that originally initiated the application session while preserving session while preserving session state and data
US8140062B1 (en) 2007-09-12 2012-03-20 Oceans' Edge, Inc. Mobile device monitoring and control system
US7783666B1 (en) 2007-09-26 2010-08-24 Netapp, Inc. Controlling access to storage resources by using access pattern based quotas
US20090150511A1 (en) 2007-11-08 2009-06-11 Rna Networks, Inc. Network with distributed shared memory
US9946722B2 (en) 2007-11-30 2018-04-17 Red Hat, Inc. Generating file usage information
US20090168994A1 (en) * 2007-12-26 2009-07-02 Heuss Michael R Method for providing stronger encryption using conventional ciphers
US8825815B2 (en) * 2008-01-08 2014-09-02 Amdocs Software Systems Limited System and method for client synchronization for a communication device
US8005956B2 (en) 2008-01-22 2011-08-23 Raytheon Company System for allocating resources in a distributed computing system
US20090204966A1 (en) 2008-02-12 2009-08-13 Johnson Conrad J Utility for tasks to follow a user from device to device
US8365164B1 (en) 2008-02-21 2013-01-29 T-APP Ltd. Portable software applications
US20090233590A1 (en) * 2008-03-13 2009-09-17 Nokia Corporation Methods and devices for controlling receivers
US8239662B1 (en) 2008-03-20 2012-08-07 Google Inc. Network based operating system across devices
US8019863B2 (en) 2008-03-28 2011-09-13 Ianywhere Solutions, Inc. Synchronizing events between mobile devices and servers
US20090300169A1 (en) 2008-06-03 2009-12-03 Microsoft Corporation Synchronization throttling based on user activity
US8572602B1 (en) 2008-06-05 2013-10-29 Appcelerator, Inc. System and method for synchronization of a web application to a cloud provider
US8635335B2 (en) 2009-01-28 2014-01-21 Headwater Partners I Llc System and method for wireless network offloading
GB0811422D0 (en) 2008-06-20 2008-07-30 Symbian Software Ltd Efficient caching
US7917494B2 (en) 2008-07-11 2011-03-29 Adobe Software Trading Company Limited System and method for a log-based data storage
US20100036858A1 (en) 2008-08-06 2010-02-11 Microsoft Corporation Meta file system - transparently managing storage using multiple file systems
US8635219B2 (en) 2008-08-27 2014-01-21 International Business Machines Corporation Automated browser history sorting based upon location
US8060697B1 (en) 2008-09-18 2011-11-15 Sprint Communications Company L.P. Dynamically allocated secondary browser cache
US7636764B1 (en) * 2008-09-29 2009-12-22 Gene Fein Cloud resource usage in data forwarding storage
US8245012B2 (en) 2008-10-16 2012-08-14 International Business Machines Corporation Adaptively preventing out of memory conditions
US8161218B2 (en) 2008-10-23 2012-04-17 Sony Ericsson Mobile Communications Ab Network adapter, method, and computer program product
US8214608B2 (en) 2008-11-04 2012-07-03 Gridiron Systems, Inc. Behavioral monitoring of storage access patterns
US8478798B2 (en) 2008-11-10 2013-07-02 Google Inc. Filesystem access for web applications and native code modules
US8239538B2 (en) 2008-11-21 2012-08-07 Samsung Electronics Co., Ltd. Execution allocation cost assessment for computing systems and environments including elastic computing systems and environments
US9014736B2 (en) 2008-11-24 2015-04-21 Plantronics, Inc. Portable network device for the discovery of nearby devices and services
US8615581B2 (en) * 2008-12-19 2013-12-24 Openpeak Inc. System for managing devices and method of operation of same
US8157653B2 (en) 2009-01-08 2012-04-17 Sony Computer Entertainment America Inc. Automatic player information generation for interactive entertainment
US8523663B2 (en) 2009-01-19 2013-09-03 Wms Gaming, Inc Transporting and using wagering game data
US8566362B2 (en) 2009-01-23 2013-10-22 Nasuni Corporation Method and system for versioned file system using structured data representations
US8185097B2 (en) * 2009-02-27 2012-05-22 Research In Motion Limited System and method for locking and branding a mobile communication device to a network
JP5627187B2 (en) 2009-03-13 2014-11-19 新日鉄住金ソリューションズ株式会社 Information processing apparatus, information processing method, and program
US20100235833A1 (en) 2009-03-13 2010-09-16 Liquid Computing Corporation Methods and systems for providing secure image mobility
USD646695S1 (en) 2009-03-18 2011-10-11 Gn Netcom A/S Computer display with a set of icons
US9055085B2 (en) * 2009-03-31 2015-06-09 Comcast Cable Communications, Llc Dynamic generation of media content assets for a content delivery network
US20100257403A1 (en) 2009-04-03 2010-10-07 Microsoft Corporation Restoration of a system from a set of full and partial delta system snapshots across a distributed system
US8156173B2 (en) * 2009-04-06 2012-04-10 Novell, Inc. Synchronizing machines in groups
WO2010124190A2 (en) 2009-04-24 2010-10-28 Skullcandy, Inc. Wireless synchronization mechanism
US9582222B2 (en) * 2009-04-30 2017-02-28 Western Digital Technologies, Inc. Pre-cache similarity-based delta compression for use in a data storage system
US8341619B2 (en) 2009-05-13 2012-12-25 Oracle International Corporation Simplifying installation of software modules on heterogeneous remote systems
US8990306B2 (en) 2009-05-28 2015-03-24 International Business Machines Corporation Pre-fetching items in a virtual universe based on avatar communications
US8549106B2 (en) 2009-06-15 2013-10-01 Microsoft Corporation Leveraging remote server pools for client applications
US8250040B2 (en) * 2009-06-15 2012-08-21 Microsoft Corporation Storage or removal actions based on priority
US9025535B2 (en) 2009-06-16 2015-05-05 Verizon Patent And Licensing Inc. Application-based biasing of frequency bands
KR101626117B1 (en) 2009-06-22 2016-05-31 삼성전자주식회사 Client, brokerage sever and method for providing cloud storage
US8112066B2 (en) 2009-06-22 2012-02-07 Mourad Ben Ayed System for NFC authentication based on BLUETOOTH proximity
US8219562B1 (en) * 2009-06-29 2012-07-10 Facebook, Inc. Efficient storage and retrieval for large number of data objects
US8612439B2 (en) 2009-06-30 2013-12-17 Commvault Systems, Inc. Performing data storage operations in a cloud storage environment, including searching, encryption and indexing
US8560465B2 (en) 2009-07-02 2013-10-15 Samsung Electronics Co., Ltd Execution allocation cost assessment for computing systems and environments including elastic computing systems and environments
WO2011003463A1 (en) * 2009-07-10 2011-01-13 Tomtom International B.V. Data storage system and method
US8521809B2 (en) * 2009-07-31 2013-08-27 Z2Live, Inc. Mobile device notification controls system and method
US9210040B2 (en) 2009-09-03 2015-12-08 C3Dna Apparatus and methods for cognitive containters to optimize managed computations and computing resources
US20110072090A1 (en) 2009-09-23 2011-03-24 Lisa Seacat Deluca Method and system for navigating email
JP5444995B2 (en) 2009-09-25 2014-03-19 沖電気工業株式会社 Session sharing system, method and program, and user terminal
US8290920B2 (en) 2009-09-30 2012-10-16 Zynga Inc. System and method for remote updates
US20110076941A1 (en) 2009-09-30 2011-03-31 Ebay Inc. Near field communication and network data/product transfer
US8516471B2 (en) 2009-10-06 2013-08-20 International Business Machines Corporation Detecting impact of operating system upgrades
US8443059B2 (en) 2009-10-08 2013-05-14 F-Secure Oyj Configuring a client application
US8620879B2 (en) 2009-10-13 2013-12-31 Google Inc. Cloud based file storage service
KR101263217B1 (en) 2009-10-15 2013-05-10 한국전자통신연구원 Mobile terminal for providing mobile cloud service and operating method of the same
CN101692239B (en) 2009-10-19 2012-10-03 浙江大学 Method for distributing metadata of distributed type file system
US8805787B2 (en) 2009-10-30 2014-08-12 Verizon Patent And Licensing Inc. Network architecture for content backup, restoring, and sharing
WO2011054376A1 (en) * 2009-11-03 2011-05-12 Telecom Italia S.P.A. Improved caching of digital contents in p2p networks
US9668230B2 (en) 2009-11-10 2017-05-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Security integration between a wireless and a wired network using a wireless gateway proxy
US8308570B2 (en) 2009-11-18 2012-11-13 Sony Computer Entertainment America Inc. Synchronizing mission progress in peer-to-peer cooperative games
US8326294B2 (en) 2009-11-19 2012-12-04 Qualcomm Incorporated Devices and methods for wireless system acquisition
US20110126168A1 (en) 2009-11-25 2011-05-26 Crowdsource Technologies Ltd. Cloud plarform for managing software as a service (saas) resources
US20120084348A1 (en) 2009-12-30 2012-04-05 Wei-Yeh Lee Facilitation of user management of unsolicited server operations
US20120078727A1 (en) 2009-12-30 2012-03-29 Wei-Yeh Lee Facilitation of user management of unsolicited server operations via modification thereof
US20120084349A1 (en) 2009-12-30 2012-04-05 Wei-Yeh Lee User interface for user management and control of unsolicited server operations
US20120084151A1 (en) 2009-12-30 2012-04-05 Kozak Frank J Facilitation of user management of unsolicited server operations and extensions thereto
US20110161294A1 (en) * 2009-12-30 2011-06-30 Sun Microsystems, Inc. Method for determining whether to dynamically replicate data
US8745397B2 (en) 2010-01-04 2014-06-03 Microsoft Corporation Monitoring federation for cloud based services and applications
US8972690B2 (en) 2010-01-05 2015-03-03 Deric Horn Methods and apparatuses for usage based allocation block size tuning
US20110185354A1 (en) 2010-01-26 2011-07-28 Emdigo Inc. Mobile Application Delivery Management System
US8577292B2 (en) 2010-02-03 2013-11-05 Google Inc. Bump validation
US20110196925A1 (en) * 2010-02-11 2011-08-11 Martin Hans Methods and apparatus for providing presence service for contact management representation
US8555187B2 (en) 2010-02-16 2013-10-08 Google Inc. Server-based data sharing in computer applications using a clipboard
US8386425B1 (en) * 2010-02-19 2013-02-26 Netapp, Inc. Out of order delivery for data and metadata mirroring in a cluster storage system
US8315977B2 (en) 2010-02-22 2012-11-20 Netflix, Inc. Data synchronization between a data center environment and a cloud computing environment
US8527549B2 (en) 2010-02-22 2013-09-03 Sookasa Inc. Cloud based operating and virtual file system
US8555017B2 (en) 2010-02-22 2013-10-08 Red Hat, Inc. In-place physical to virtual (P2V) migration of an existing operating system during installation of a new operating system
US8370672B2 (en) * 2010-02-26 2013-02-05 Microsoft Corporation Reducing power consumption of distributed storage systems
US20110219105A1 (en) 2010-03-04 2011-09-08 Panasonic Corporation System and method for application session continuity
US8495129B2 (en) 2010-03-16 2013-07-23 Microsoft Corporation Energy-aware code offload for mobile devices
US20110237234A1 (en) 2010-03-23 2011-09-29 Fujitsu Limited System and methods for remote maintenance in an electronic network with multiple clients
US8504400B2 (en) 2010-03-24 2013-08-06 International Business Machines Corporation Dynamically optimized distributed cloud computing-based business process management (BPM) system
US8813065B2 (en) * 2010-04-26 2014-08-19 Vmware, Inc. Microcloud platform delivery system
US9852150B2 (en) 2010-05-03 2017-12-26 Panzura, Inc. Avoiding client timeouts in a distributed filesystem
US9811532B2 (en) * 2010-05-03 2017-11-07 Panzura, Inc. Executing a cloud command for a distributed filesystem
US8788628B1 (en) 2011-11-14 2014-07-22 Panzura, Inc. Pre-fetching data for a distributed filesystem
US8224246B2 (en) 2010-05-10 2012-07-17 Nokia Corporation Device to device connection setup using near-field communication
JP2011244354A (en) 2010-05-20 2011-12-01 Canon Inc Job history information auditing system, information processing apparatus, printer, and auditing method
US9183560B2 (en) 2010-05-28 2015-11-10 Daniel H. Abelow Reality alternate
US8874129B2 (en) 2010-06-10 2014-10-28 Qualcomm Incorporated Pre-fetching information based on gesture and/or location
EP2642689B1 (en) 2010-07-02 2020-09-02 Vodafone IP Licensing limited Charging in telecommunication networks
WO2012006638A1 (en) 2010-07-09 2012-01-12 State Street Corporation Systems and methods for private cloud computing
US9814977B2 (en) 2010-07-13 2017-11-14 Sony Interactive Entertainment Inc. Supplemental video content on a mobile device
US8930562B2 (en) 2010-07-20 2015-01-06 Qualcomm Incorporated Arranging sub-track fragments for streaming video data
US8738729B2 (en) 2010-07-21 2014-05-27 Apple Inc. Virtual access module distribution apparatus and methods
US8913056B2 (en) 2010-08-04 2014-12-16 Apple Inc. Three dimensional user interface effects on a display by using properties of motion
KR20120014318A (en) 2010-08-09 2012-02-17 주식회사 팬택 Apparatus and method for sharing application between portable terminal
US8660989B2 (en) * 2010-08-27 2014-02-25 Sap Ag Generic framework for application specific data exchange
US8984216B2 (en) * 2010-09-09 2015-03-17 Fusion-Io, Llc Apparatus, system, and method for managing lifetime of a storage device
US8843616B2 (en) 2010-09-10 2014-09-23 Intel Corporation Personal cloud computing with session migration
US8512843B2 (en) 2010-09-17 2013-08-20 Richard B. Villata Composite matrix and gel padding and method of manufacturing
US8606948B2 (en) 2010-09-24 2013-12-10 Amazon Technologies, Inc. Cloud-based device interaction
US20120079095A1 (en) 2010-09-24 2012-03-29 Amazon Technologies, Inc. Cloud-based device synchronization
US8660996B2 (en) * 2010-09-29 2014-02-25 Red Hat, Inc. Monitoring files in cloud-based networks
US8483617B2 (en) 2010-09-30 2013-07-09 Broadcom Corporation Portable computing device with high-speed data communication
US20150195340A1 (en) 2010-09-30 2015-07-09 Google Inc. Determining if an Application is Cached
US9277260B2 (en) 2010-10-01 2016-03-01 Mobitv, Inc. Media convergence platform
US8645529B2 (en) 2010-10-06 2014-02-04 Infosys Limited Automated service level management of applications in cloud computing environment
US9015281B2 (en) * 2010-10-08 2015-04-21 Brian Lee Moffat Private data sharing system
US9729658B2 (en) 2010-10-12 2017-08-08 Chris Trahan System for managing web-based content data and applications
US8473577B2 (en) 2010-10-13 2013-06-25 Google Inc. Continuous application execution between multiple devices
US20120108206A1 (en) 2010-10-28 2012-05-03 Haggerty David T Methods and apparatus for access control client assisted roaming
US8555067B2 (en) * 2010-10-28 2013-10-08 Apple Inc. Methods and apparatus for delivering electronic identification components over a wireless network
US9703539B2 (en) 2010-10-29 2017-07-11 Microsoft Technology Licensing, Llc Viral application distribution
KR101694984B1 (en) 2010-12-08 2017-01-11 한국전자통신연구원 Method of parity updates in asymmetric clustering filesystem
US8886128B2 (en) 2010-12-10 2014-11-11 Verizon Patent And Licensing Inc. Method and system for providing proximity-relationship group creation
US8539163B1 (en) 2010-12-17 2013-09-17 Amazon Technologies, Inc. Speculative reads
US8874747B2 (en) 2010-12-27 2014-10-28 Nokia Corporation Method and apparatus for load balancing in multi-level distributed computations
US8200868B1 (en) 2010-12-30 2012-06-12 Google Inc. Peripheral device detection with short-range communication
US20120179909A1 (en) * 2011-01-06 2012-07-12 Pitney Bowes Inc. Systems and methods for providing individual electronic document secure storage, retrieval and use
US8826260B2 (en) 2011-01-11 2014-09-02 Intuit Inc. Customization of mobile-application delivery
US8886742B2 (en) * 2011-01-28 2014-11-11 Level 3 Communications, Llc Content delivery network with deep caching infrastructure
US8478858B2 (en) * 2011-02-01 2013-07-02 Limelight Networks, Inc. Policy management for content storage in content delivery networks
US8521813B2 (en) * 2011-02-01 2013-08-27 Limelight Networks, Inc. Content replication workflow in content delivery networks
US20120203932A1 (en) 2011-02-08 2012-08-09 Microsoft Corporation Multi-master media metadata synchronization
US8789086B2 (en) 2011-02-11 2014-07-22 Sony Corporation Method and apparatus for content playback using multiple IPTV devices
CN102638484A (en) * 2011-02-15 2012-08-15 鸿富锦精密工业(深圳)有限公司 Cloud access system and method for displaying data object according to community network
US8458130B2 (en) * 2011-03-03 2013-06-04 Microsoft Corporation Indexing for limited search server availability
CN106407766A (en) * 2011-03-07 2017-02-15 安全第公司 Secure file sharing method and system
US8510267B2 (en) * 2011-03-08 2013-08-13 Rackspace Us, Inc. Synchronization of structured information repositories
US8732406B1 (en) 2011-03-15 2014-05-20 Netapp, Inc. Mechanism for determining read-ahead length in a storage system
US9275162B2 (en) * 2011-03-22 2016-03-01 Blackberry Limited Pre-caching web content for a mobile device
USD683737S1 (en) 2011-03-23 2013-06-04 Htc Corporation Display screen with graphical user interface
US8850016B1 (en) 2011-03-23 2014-09-30 Sprint Spectrum L.P. Provisionable-services clearinghouse for authorizing and tracking a mobile device's access to multiple types of services and multiple service providers
US8832003B1 (en) 2011-03-25 2014-09-09 Google Inc. Provision of computer resources based on location history
US8831352B2 (en) 2011-04-04 2014-09-09 Microsoft Corporation Event determination from photos
US8559910B2 (en) 2011-04-05 2013-10-15 General Motors Llc. OTA initiation method for telematics system in 2G GSM/3G WCDMA network
US8914412B2 (en) 2011-04-07 2014-12-16 Symantec Corporation Determining file ownership of active and inactive files based on file access history
US9100188B2 (en) 2011-04-18 2015-08-04 Bank Of America Corporation Hardware-based root of trust for cloud environments
US9582678B2 (en) * 2011-04-19 2017-02-28 Invenia As Method for secure storing of a data file via a computer communication network
EP2702500B1 (en) 2011-04-27 2017-07-19 Seven Networks, LLC Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US9072972B2 (en) 2011-04-28 2015-07-07 Numecent Holdings Ltd Application distribution network
US8594845B1 (en) 2011-05-06 2013-11-26 Google Inc. Methods and systems for robotic proactive informational retrieval from ambient context
US8812601B2 (en) 2011-05-09 2014-08-19 Google Inc. Transferring application state across devices with checkpoints
US8171137B1 (en) 2011-05-09 2012-05-01 Google Inc. Transferring application state across devices
GB201107978D0 (en) 2011-05-13 2011-06-29 Antix Labs Ltd Method of distibuting a multi-user software application
JP6082387B2 (en) * 2011-05-14 2017-02-15 ビットカーサ インコーポレイテッド Cloud file system with server-side non-replication of user-ignorant encrypted files
KR20120128357A (en) * 2011-05-17 2012-11-27 삼성전자주식회사 Method and apparatus for splitting of media file
US9037797B2 (en) 2011-05-24 2015-05-19 International Business Machines Corporation Intelligent caching
US8868859B2 (en) 2011-06-03 2014-10-21 Apple Inc. Methods and apparatus for multi-source restore
US20120311820A1 (en) 2011-06-09 2012-12-13 Po-Han Chang Knob and process of manufacturing same
USD672366S1 (en) 2011-06-10 2012-12-11 Apple Inc. Display screen or portion thereof with icon
JP5866812B2 (en) * 2011-06-15 2016-02-24 ブラザー工業株式会社 Wireless communication device
GB2491889A (en) 2011-06-17 2012-12-19 Sony Corp Trial period cellular network connection with identity modules of multiple devices loaded with multiple identities from a shared pool
TW201301118A (en) 2011-06-30 2013-01-01 Gcca Inc Cloud-based communication device and smart mobile device using cloud-based communication device
US20130008611A1 (en) 2011-07-05 2013-01-10 Rob Marcus Multi-Piece Sealing Sleeve
US8423511B1 (en) 2011-07-07 2013-04-16 Symantec Corporation Systems and methods for securing data on mobile devices
US9240984B2 (en) 2011-07-25 2016-01-19 Qterics, Inc. Configuring an electronic device based on a transaction
US9384297B2 (en) 2011-07-28 2016-07-05 Hewlett Packard Enterprise Development Lp Systems and methods of accelerating delivery of remote content
US8849759B2 (en) 2012-01-13 2014-09-30 Nexenta Systems, Inc. Unified local storage supporting file and cloud object access
WO2013026048A2 (en) 2011-08-18 2013-02-21 Utherverse Digital, Inc. Systems and methods of virtual world interaction
AU2012307044B2 (en) 2011-09-07 2017-02-02 Imagine Communications Corp. System and methods for developing component-based computing applications
US20130067168A1 (en) 2011-09-09 2013-03-14 Microsoft Corporation Caching for a file system
US8456972B2 (en) 2011-09-12 2013-06-04 Microsoft Corporation Efficient access to storage devices with usage bitmaps
SG188688A1 (en) * 2011-09-26 2013-04-30 Itwin Pte Ltd Method and system for remote access to data stored on a host system
JP6086689B2 (en) 2011-09-28 2017-03-01 京セラ株式会社 Apparatus and program
WO2013049611A1 (en) * 2011-09-30 2013-04-04 Google Inc. Cloud storage of game state
US9274812B2 (en) 2011-10-06 2016-03-01 Hand Held Products, Inc. Method of configuring mobile computing device
KR20130039213A (en) 2011-10-11 2013-04-19 한국전자통신연구원 System and method of providing with a virtual machine using device cloud
US8515902B2 (en) 2011-10-14 2013-08-20 Box, Inc. Automatic and semi-automatic tagging features of work items in a shared workspace for metadata tracking in a cloud-based content management system with selective or optional user contribution
US20140282636A1 (en) * 2011-10-24 2014-09-18 National Ict Australia Limited Mobile Content Delivery System with Recommendation-Based Pre-Fetching
US9374427B2 (en) * 2011-11-01 2016-06-21 Rahul Shekher Geographical location based cloud storage
CA2756102A1 (en) 2011-11-01 2012-01-03 Cit Global Mobile Division Method and system for localizing an application on a computing device
USD730383S1 (en) 2011-11-01 2015-05-26 Htc Corporation Display screen with an animated graphical user interface
US20130117806A1 (en) 2011-11-09 2013-05-09 Microsoft Corporation Network based provisioning
US9804928B2 (en) * 2011-11-14 2017-10-31 Panzura, Inc. Restoring an archived file in a distributed filesystem
US9805054B2 (en) * 2011-11-14 2017-10-31 Panzura, Inc. Managing a global namespace for a distributed filesystem
USD682874S1 (en) 2011-11-18 2013-05-21 Microsoft Corporation Display screen with animated graphical user interface
CN103136472B (en) 2011-11-29 2016-08-31 腾讯科技(深圳)有限公司 A kind of anti-application program steals method and the mobile device of privacy
US8769210B2 (en) 2011-12-12 2014-07-01 International Business Machines Corporation Dynamic prioritization of cache access
US9195572B2 (en) 2011-12-16 2015-11-24 Sap Se Systems and methods for identifying user interface (UI) elements
US9148397B2 (en) 2011-12-19 2015-09-29 Facebook, Inc. Messaging object generation for synchronous conversation threads
US9374690B2 (en) 2011-12-19 2016-06-21 Facebook, Inc. Generating conversation threads for a unified messaging system
US9274780B1 (en) 2011-12-21 2016-03-01 Amazon Technologies, Inc. Distribution of applications with a saved state
US8214905B1 (en) * 2011-12-21 2012-07-03 Kaspersky Lab Zao System and method for dynamically allocating computing resources for processing security information
US9098344B2 (en) 2011-12-27 2015-08-04 Microsoft Technology Licensing, Llc Cloud-edge topologies
KR20130077417A (en) 2011-12-29 2013-07-09 삼성전자주식회사 System and method for providing user interface base on location information
USD710878S1 (en) 2012-01-06 2014-08-12 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
USD732549S1 (en) 2012-01-06 2015-06-23 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
GB2498531A (en) 2012-01-18 2013-07-24 Renesas Mobile Corp Network access using credentials stored on a virtual SIM
US9357017B2 (en) 2012-01-25 2016-05-31 Qualcomm Incorporated Method and apparatus for automatic service discovery and connectivity
US20140357277A1 (en) 2012-01-26 2014-12-04 Telefonaktiebolaget L M Ericsson (Publ) Method and node for increasing radio capacity in isolated area
KR101463323B1 (en) 2012-02-14 2014-11-19 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 Player matching in a game system
US10031737B2 (en) 2012-02-16 2018-07-24 Microsoft Technology Licensing, Llc Downloading and distribution of applications and updates to multiple devices
KR101383529B1 (en) 2012-02-29 2014-04-08 주식회사 팬택 Mobile terminal device for application sharing and method for sharing application in mobile terminal device
US9014027B2 (en) 2012-02-29 2015-04-21 Cisco Technology, Inc. Multi-interface adaptive bit rate session management
US20140358858A1 (en) * 2012-03-15 2014-12-04 Peter Thomas Camble Determining A Schedule For A Job To Replicate An Object Stored On A Storage Appliance
US20140007329A1 (en) * 2012-03-22 2014-01-09 Clinton P. Dosio Toe Shield Glove (TSG)
TWI507891B (en) 2012-03-23 2015-11-11 Egis Technology Inc Electronic device, cloud storage system for managing cloud storage spaces, method and computer program product thereof
US8666938B1 (en) 2012-03-28 2014-03-04 Vmware, Inc. Installed application cloning and failover to virtual server
US8515904B1 (en) * 2012-03-29 2013-08-20 Emc Corporation Providing file sytem quota support for a file system having separated data and metadata
US8583920B1 (en) 2012-04-25 2013-11-12 Citrix Systems, Inc. Secure administration of virtual machines
US8959118B2 (en) * 2012-04-30 2015-02-17 Hewlett-Packard Development Company, L. P. File system management and balancing
US8494576B1 (en) 2012-05-03 2013-07-23 Sprint Communications Company L.P. Near field communication authentication and validation to access corporate data
US8769003B2 (en) 2012-05-09 2014-07-01 Qualcomm Innovation Center, Inc. Method for proximity determination between mobile peers while maintaining privacy
CA148539S (en) 2012-05-15 2014-03-27 Fujitsu Ltd Handheld electronic device with graphical user interface
US8850162B2 (en) 2012-05-22 2014-09-30 Apple Inc. Macroscalar vector prefetch with streaming access detection
CN102693305B (en) 2012-05-24 2016-01-13 惠州Tcl移动通信有限公司 A kind of fileinfo method for previewing and system
US20130326501A1 (en) 2012-05-29 2013-12-05 Sung-Jen Hsiang Cloud system having flexible applications
US20140006538A1 (en) 2012-06-28 2014-01-02 Bytemobile, Inc. Intelligent Client-Side Caching On Mobile Devices
EP2680207A1 (en) 2012-06-29 2014-01-01 Orange Secured cloud data storage, distribution and restoration among multiple devices of a user
US9426229B2 (en) * 2012-06-29 2016-08-23 Nokia Technologies Oy Apparatus and method for selection of a device for content sharing operations
US20140006973A1 (en) 2012-06-29 2014-01-02 JadeLynx Pty Ltd. On-line Collaboration Systems and Methods
US10095803B2 (en) * 2012-07-31 2018-10-09 Apple Inc. Delivering content to electronic devices using local caching servers
US9600206B2 (en) * 2012-08-01 2017-03-21 Microsoft Technology Licensing, Llc Request ordering support when switching virtual disk replication logs
US20140040239A1 (en) 2012-08-03 2014-02-06 Cbs, Interactive, Inc. Live event information management system
WO2014028672A1 (en) * 2012-08-14 2014-02-20 Inmobly, Inc. System and method for efficient use of network bandwidth
US9721036B2 (en) 2012-08-14 2017-08-01 Microsoft Technology Licensing, Llc Cooperative web browsing using multiple devices
US8745267B2 (en) 2012-08-19 2014-06-03 Box, Inc. Enhancement of upload and/or download performance based on client and/or server feedback information
US8756620B2 (en) 2012-08-20 2014-06-17 United Video Properties, Inc. Systems and methods for tracking content sources from which media assets have previously been viewed
USD689505S1 (en) 2012-08-22 2013-09-10 Nike, Inc. Display screen with animated graphical user interface
US8805406B1 (en) 2012-08-23 2014-08-12 Symantec Corporation Usage of geo-tagging information from media files to determine gaps in location information for mobile devices
US9101834B2 (en) 2012-09-05 2015-08-11 Zynga Inc. Methods and systems for generating tailored game challenges
WO2014036717A1 (en) 2012-09-07 2014-03-13 运软网络科技(上海)有限公司 Virtual resource object component
US8539567B1 (en) * 2012-09-22 2013-09-17 Nest Labs, Inc. Multi-tiered authentication methods for facilitating communications amongst smart home devices and cloud-based servers
US8875127B2 (en) * 2012-10-02 2014-10-28 Nextbit Systems Inc. Operating system customization
US9106721B2 (en) * 2012-10-02 2015-08-11 Nextbit Systems Application state synchronization across multiple devices
US9038060B2 (en) * 2012-10-02 2015-05-19 Nextbit Systems Inc. Automatically installing operating system specific to a detected network
US8764555B2 (en) 2012-10-02 2014-07-01 Nextbit Systems Inc. Video game application state synchronization across multiple devices
US9747000B2 (en) 2012-10-02 2017-08-29 Razer (Asia-Pacific) Pte. Ltd. Launching applications on an electronic device
US10684838B2 (en) 2012-10-02 2020-06-16 Razer (Asia-Pacific) Pte. Ltd. Dynamic application deployment
US10057726B2 (en) 2012-10-02 2018-08-21 Razer (Asia-Pacific) Pte. Ltd. Managing user data on an electronic device
US10430047B2 (en) 2012-10-02 2019-10-01 Razer (Asia-Pacific) Pte. Ltd. Managing content on an electronic device
US9654556B2 (en) 2012-10-02 2017-05-16 Razer (Asia-Pacific) Pte. Ltd. Managing applications on an electronic device
US9776078B2 (en) 2012-10-02 2017-10-03 Razer (Asia-Pacific) Pte. Ltd. Application state backup and restoration across multiple devices
US10200464B2 (en) 2012-10-02 2019-02-05 Razer (Asia-Pacific) Pte. Ltd. In-app application casting
US9998911B2 (en) 2012-10-02 2018-06-12 Razer (Asia-Pacific) Pte. Ltd. Transferring information to a mobile device
CN103716174A (en) 2012-10-09 2014-04-09 鸿富锦精密工业(深圳)有限公司 Test log acquisition system and method for the same
US9712402B2 (en) 2012-10-10 2017-07-18 Alcatel Lucent Method and apparatus for automated deployment of geographically distributed applications within a cloud
US9936335B2 (en) 2012-12-13 2018-04-03 Microsoft Technology Licensing, Llc Mobile computing device application sharing
USD731537S1 (en) 2013-01-05 2015-06-09 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US9094801B2 (en) * 2013-01-15 2015-07-28 Verizon Patent And Licensing Inc. Method and system for enabling multicast distribution of mobile device update data
US9569294B2 (en) 2013-01-30 2017-02-14 Dell Products L.P. Information handling system physical component inventory to aid operational management through near field communication device interaction
CA2872137A1 (en) 2013-02-06 2014-08-14 Square Enix Holdings Co., Ltd. Game system, game apparatus, a method of controlling the same, a program, and a storage medium
USD726753S1 (en) 2013-02-22 2015-04-14 Livongo Health, Inc. Glucometer with a pedometer check screen graphical user interface
KR102155708B1 (en) 2013-02-26 2020-09-14 삼성전자 주식회사 Portable terminal and method for operating multi-application thereof
USD736822S1 (en) 2013-05-29 2015-08-18 Microsoft Corporation Display screen with icon group and display screen with icon set
USD737852S1 (en) 2013-08-27 2015-09-01 W.W. Grainger, Inc. Display screen or portion thereof with graphical user interface for entering an order quantity
KR102231105B1 (en) 2013-09-05 2021-03-24 삼성전자주식회사 control device and method for controlling the same
US9612826B2 (en) 2014-07-31 2017-04-04 Facebook, Inc. Attributing authorship to segments of source code

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075994A (en) 1998-05-29 2000-06-13 Lucent Technologies, Inc. Method and apparatus for dynamically determining the optimal communication message bundle size for a communication system
US7865089B2 (en) 2006-05-18 2011-01-04 Xerox Corporation Soft failure detection in a network of devices
US20090063193A1 (en) * 2007-08-31 2009-03-05 Mike Barton Dashboard diagnostics for wireless patient communicator
US20090143056A1 (en) 2007-11-30 2009-06-04 Microsoft Corporation Modifying mobile device operation using proximity relationships
US20100113159A1 (en) * 2008-11-06 2010-05-06 International Business Machines Corporation Method and apparatus for partitioning virtual worlds using prioritized topic spaces in virtual world systems
US20120131184A1 (en) 2010-11-22 2012-05-24 Michael Luna Aligning data transfer to optimize connections established for transmission over a wireless network
US20130073389A1 (en) 2011-09-15 2013-03-21 Stephan HEATH System and method for providing sports and sporting events related social/geo/promo link promotional data sets for end user display of interactive ad links, promotions and sale of products, goods, gambling and/or services integrated with 3d spatial geomapping, company and local information for selected worldwide locations and social networking
US20130238686A1 (en) 2011-10-18 2013-09-12 Hugh O'Donoghue Method and apparatus for generating, using, or updating an enriched user profile
US20130110637A1 (en) 2011-11-02 2013-05-02 Ross Bott Strategically timed delivery of advertisements or electronic coupons to a mobile device in a mobile network
US20140025524A1 (en) 2011-12-14 2014-01-23 Cfph, Llc Examples of delivery and/or referral services that may use mobile enhancements and/or auction mechanisms
US20130212420A1 (en) * 2012-02-09 2013-08-15 Rockwell Automation Technologies, Inc. Time-stamping of industrial cloud data for synchronization
US20130297704A1 (en) 2012-05-01 2013-11-07 Motorola Mobility, Inc. Methods for coordinating communications between a plurality of communication devices of a user
US20130304559A1 (en) 2012-05-09 2013-11-14 Cashstar, Inc. Systems, methods and devices for conducting transactions with portable electronic devices using virtual points
US20140018033A1 (en) 2012-07-13 2014-01-16 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US20140031126A1 (en) 2012-07-24 2014-01-30 Binh Nguyen Optimized power consumption in a gaming device
US20140047331A1 (en) 2012-08-12 2014-02-13 Apple Inc. Detecting and transmitting a redeemable document

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Co-Pending U.S. Appl. No. 14/042,507 by Chan, M.A. et al., filed Sep. 30, 2013.
Co-Pending U.S. Appl. No. 14/167,952 by Chan, M.A., filed Jan. 19, 2014.
Co-Pending U.S. Appl. No. 14/197,121 by Chan, M.A. et al., filed Mar. 4, 2013.
Co-Pending U.S. Appl. No. 14/267,748 by Chan, M.A., filed May 1, 2014.
Non-Final Office Action mailed Oct. 8, 2015, for U.S. Appl. No. 14/042,507, of Chan, M.A., et al., filed Sep. 30, 2013.
Non-Final Office Action mailed Sep. 2, 2014 for U.S. Appl. No. 14/267,748 by Chan, M.A. et al., filed May 1, 2014.
Notice of Allowance mailed Jun. 23, 2014 for U.S. Appl. No. 14/197,121 by Chan, M.A. et al., filed Mar. 4, 2013.
Notice of Allowance mailed Mar. 19, 2015, for U.S. Appl. No. 14/267,748 by Chan, M.A., filed May 1, 2014.
Notice of Allowance mailed May 2, 2014, U.S. Appl. No. 14/167,952 by Chan, M.A., filed Jan. 19, 2014.
Xu, Z-W., et al., "The Batch Patching Algorithm Using Dynamic Cache of Proxy for Streaming Media," Proceedings of 2005 International Conference on Machine Learning and Cybernetics, vol. 9, pp. 5532-5537 (Aug. 18-21, 2005).
Yeh, L-Y., et al., "A Batch-Authenticated and Key Agreement Framework for P2P-Based Online Social Networks," IEEE Transactions on Vehicular Technology, vol. 61, No. 4, pp. 1907-1924 (May 2012).
Yu, Z. and Ji, H., "A proxy agent cooperation framework," 2010 International Conference on Computer Application and System Modeling (ICCASM), vol. 9, pp. V9-578-V9-581 (Oct. 22-24, 2010).

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10992634B2 (en) * 2018-04-06 2021-04-27 Samsung Sds Co., Ltd. Message server and message processing apparatus for relaying application service message
US11522832B2 (en) 2018-11-29 2022-12-06 Target Brands, Inc. Secure internet gateway

Also Published As

Publication number Publication date
US20140095705A1 (en) 2014-04-03
US9398063B2 (en) 2016-07-19
US20140095646A1 (en) 2014-04-03
WO2014055450A1 (en) 2014-04-10
US20140095624A1 (en) 2014-04-03
US20140095457A1 (en) 2014-04-03
US10042623B2 (en) 2018-08-07
US8762456B1 (en) 2014-06-24
US9106721B2 (en) 2015-08-11
WO2014055601A1 (en) 2014-04-10
US20140136830A1 (en) 2014-05-15
US20140156793A1 (en) 2014-06-05
WO2014055446A1 (en) 2014-04-10
US9462022B2 (en) 2016-10-04
US20140095591A1 (en) 2014-04-03
US20140095734A1 (en) 2014-04-03
US10346481B2 (en) 2019-07-09
US9374407B2 (en) 2016-06-21
WO2014055607A1 (en) 2014-04-10
US20140101451A1 (en) 2014-04-10
US20140108335A1 (en) 2014-04-17
US20140101103A1 (en) 2014-04-10
US10540368B2 (en) 2020-01-21
US20140095667A1 (en) 2014-04-03
WO2014055448A1 (en) 2014-04-10
US9678735B2 (en) 2017-06-13
US20140095881A1 (en) 2014-04-03
US10671634B2 (en) 2020-06-02
US20140101237A1 (en) 2014-04-10
US20140095617A1 (en) 2014-04-03
US20140095660A1 (en) 2014-04-03
US10083177B2 (en) 2018-09-25
US9537918B2 (en) 2017-01-03
US8806478B2 (en) 2014-08-12
US9509737B2 (en) 2016-11-29
WO2014055613A1 (en) 2014-04-10
US20140164453A1 (en) 2014-06-12
US20140136662A1 (en) 2014-05-15
US9531775B2 (en) 2016-12-27
US9276980B2 (en) 2016-03-01
US20170262442A1 (en) 2017-09-14
US10311108B2 (en) 2019-06-04
US9811329B2 (en) 2017-11-07
US9380093B2 (en) 2016-06-28
US20190213219A1 (en) 2019-07-11
US20140215025A1 (en) 2014-07-31
US20140137102A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
US9270719B2 (en) Device connection proxy through cloud to optimize network messages
US9026665B2 (en) Optimization of gaming application execution using proxy connection
US8793397B2 (en) Pushing notifications based on location proximity
US9143550B2 (en) Graceful degradation of websocket connections to nonpersistent HTTP-based communications
KR102245247B1 (en) GPU remote communication using triggered actions
US11005947B2 (en) Network information processing
US8725800B1 (en) Mobile photo application migration to cloud computing platform
US20180039519A1 (en) Systems and methods for managing processing load
US9021120B2 (en) Optimized video streaming using cloud computing platform
US8762491B2 (en) Optimization of gaming application execution using proxy connection
US20190230164A1 (en) Simulating parallel mock rest services with single server
CN114205762A (en) Short message flow control method, equipment and storage medium
US11463549B2 (en) Facilitating inter-proxy communication via an existing protocol
CN114756312B (en) System and method for remote assisted optimization of local services
US10616317B2 (en) Method and system for affinity load balancing
US20200076938A1 (en) Method and system for managing accessory application of accessory device by companion device
US20160099997A1 (en) Method and system for managing application data in a communication device
US11258862B2 (en) Intelligent persistent mobile device management
WO2017142773A1 (en) User presence prediction driven device management
US10795721B2 (en) Transferring tasks from failing devices using IoT
CN114095907A (en) Bluetooth connection control method, device and equipment
US11405981B1 (en) Routing server communications through a nearby mobile device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEXTBIT SYSTEMS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHAN, MICHAEL A.;REEL/FRAME:032496/0463

Effective date: 20131023

AS Assignment

Owner name: PINNACLE VENTURES, L.L.C., AS AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:NEXTBIT SYSTEMS INC.;REEL/FRAME:037184/0762

Effective date: 20151201

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: NEXTBIT SYSTEMS INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME IN THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED ON REEL 032490 FRAME 0463. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:CHAN, MICHAEL A.;REEL/FRAME:041033/0053

Effective date: 20131023

AS Assignment

Owner name: NEXTBIT SYSTEMS INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PINNACLE VENTURES, L.L.C., AS AGENT;REEL/FRAME:041519/0146

Effective date: 20170126

AS Assignment

Owner name: RAZER (ASIA-PACIFIC) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEXTBIT SYSTEMS INC.;REEL/FRAME:041980/0254

Effective date: 20170126

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8