US9255215B2 - Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products - Google Patents

Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products Download PDF

Info

Publication number
US9255215B2
US9255215B2 US13/378,587 US201113378587A US9255215B2 US 9255215 B2 US9255215 B2 US 9255215B2 US 201113378587 A US201113378587 A US 201113378587A US 9255215 B2 US9255215 B2 US 9255215B2
Authority
US
United States
Prior art keywords
fibers
sizing composition
wool
parts
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/378,587
Other versions
US20120263934A1 (en
Inventor
Boris Jaffrennou
Edouard Obert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44247036&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US9255215(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Assigned to SAINT-GOBAIN ISOVER reassignment SAINT-GOBAIN ISOVER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAFFRENNOU, BORIS, OBERT, EDOUARD
Publication of US20120263934A1 publication Critical patent/US20120263934A1/en
Priority to US15/016,857 priority Critical patent/US9938184B2/en
Application granted granted Critical
Publication of US9255215B2 publication Critical patent/US9255215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • E04B1/7662Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • the present invention relates to the field of products based on fibers, in particular mineral fibers, bonded by a formaldehyde-free binder.
  • the invention relates to thermal and/or acoustic insulating products in which the fibers are in the form of mineral wool, in particular of glass or of rock.
  • the manufacture of insulating products based on mineral wool generally comprises a stage of manufacture of the wool itself, which can be carried out by various processes, for example according to the known technique of fiberizing by internal or external centrifugation.
  • Internal centrifugation consists in introducing the molten material (generally glass or a rock) into a centrifugal device comprising a multitude of small orifices, the material being projected toward the peripheral wall of the device under the action of the centrifugal force and escaping therefrom in the form of filaments.
  • the filaments are drawn and carried toward a receiving member by a gas stream having a high temperature and a high speed, in order to form a web of fibers (or mineral wool).
  • External centrifugation consists, for its part, in pouring out the molten material at the external peripheral surface of rotating members, known as rotors, from where said material is ejected under the action of the centrifugal force.
  • Means for drawing by gas stream and for collecting on a receiving member are also provided.
  • a sizing composition comprising a thermosetting resin is applied to the fibers, on the route between the outlet of the centrifugal device and the receiving member.
  • the web of fibers coated with the size is subjected to a heat treatment, at a temperature generally of greater than 100° C., in order to bring about the polycondensation of the resin and to thus obtain a thermal and/or acoustic insulating product having specific properties, in particular dimensional stability, tensile strength, thickness recovery after compression and homogeneous color.
  • the sizing composition to be projected onto the mineral wool is generally provided in the form of an aqueous solution including the thermosetting resin and additives, such as a catalyst for the crosslinking of the resin, an adhesion-promoting silane, a dust-preventing mineral oil, and the like.
  • the sizing composition is generally applied to the fibers by spraying.
  • the properties of the sizing composition depend largely on the characteristics of the resin. From the viewpoint of the application, it is necessary for the sizing composition to exhibit good sprayability and to be able to be deposited at the surface of the fibers in order to efficiently bind them.
  • the resin has to be stable for a given period of time before being used to form the sizing composition, which composition is generally prepared at the time of use by mixing the resin and the additives mentioned above.
  • the resin At the regulatory level, it is necessary for the resin to be regarded as non-polluting, that is to say for it to comprise—and for it to generate during the sizing stage or subsequently—as little as possible in the way of compounds which may be harmful to human health or to the environment.
  • thermosetting resins most commonly used are phenolic resins belonging to the family of the resols. In addition to their good crosslinkability under the abovementioned thermal conditions, these resins are soluble in water, have a good affinity for mineral fibers, in particular glass fibers, and are relatively inexpensive.
  • resols are obtained by condensation of phenol and formaldehyde, in the presence of a basic catalyst, in a formaldehyde/phenol molar ratio of greater than 1, so as to promote the reaction between the phenol and the formaldehyde and to reduce the level of residual phenol in the resin.
  • the condensation reaction between the phenol and the formaldehyde is carried out while limiting the degree of condensation of the monomers, in order to avoid the formation of long, relatively water-insoluble, chains which reduce the dilutability. Consequently, the resin comprises a certain proportion of unreacted monomer, in particular formaldehyde, the presence of which is undesirable because of its known harmful effects.
  • resol-based resins are generally treated with urea, which reacts with the free formaldehyde by trapping it in the form of nonvolatile urea-formaldehyde condensates.
  • urea reacts with the free formaldehyde by trapping it in the form of nonvolatile urea-formaldehyde condensates.
  • the presence of urea in the resin brings a certain economic advantage as a result of its low cost because it is possible to introduce it in a relatively large amount without affecting the operating qualities of the resin, in particular without harming the mechanical properties of the final product, which significantly lowers the total cost of the resin.
  • the urea-formaldehyde condensates are not stable; they decompose with restoration of the formaldehyde and urea, in its turn at least partially decomposed to give ammonia, which are released into the atmosphere of the factory.
  • a first solution is based on the use of a carboxylic acid polymer, in particular an acrylic acid polymer.
  • the size comprises a polycarboxylic polymer, a ⁇ -hydroxyamide and an at least trifunctional monomeric carboxylic acid.
  • compositions which comprise a polycarboxylic polymer, a polyol and a catalyst, this catalyst being able to be a phosphorus-comprising compound (U.S. Pat. No. 5,318,990, U.S. Pat. No. 5,661,213, U.S. Pat. No. 6,331,350, US 2003/0008978), a fluoroborate (U.S. Pat. No. 5,977,232) or else a cyanamide, a dicyanamide or a cyanoguanidine (U.S. Pat. No. 5,932,689).
  • the sizing compositions based on a polycarboxylic polymer and on a polyol can additionally comprise a cationic, amphoteric or nonionic surfactant (US 2002/0188055), a coupling agent of silane type (US 2004/0002567) or a dextrin as cobinder (US 2005/0215153).
  • a cationic, amphoteric or nonionic surfactant US 2002/0188055
  • a coupling agent of silane type US 2004/0002567
  • a dextrin as cobinder US 2005/0215153
  • compositions comprising an alkanolamine including at least two hydroxyl groups and a polycarboxylic polymer (U.S. Pat. No. 6,071,994, U.S. Pat. No. 6,099,773, U.S. Pat. No. 6,146,746) in combination with a copolymer (U.S. Pat. No. 6,299,936).
  • a second solution in which resols are replaced is based on the combination of a saccharide and a polycarboxylic acid.
  • the sizing composition comprises a monosaccharide and/or a polysaccharide and an organic polycarboxylic acid with a molar mass of less than 1000.
  • a formaldehyde-free aqueous sizing composition which comprises a Maillard reaction product, in particular combining a reducing sugar, a carboxylic acid and ammonia (WO 2007/014236), is also known.
  • the proposal is made to substitute, for the carboxylic acid, an acid precursor derived from an inorganic salt, in particular an ammonium salt, which exhibits the additional advantage of being able to replace all or part of the ammonia.
  • An aim of the present invention is to provide a sizing composition for fibers, in particular mineral fibers, more particularly of glass or of rock, which overcomes the abovementioned disadvantages.
  • a subject matter of the invention is thus a sizing composition capable of crosslinking to form a binder, which includes at least one non-reducing sugar and at least one inorganic acid ammonium salt, to the process for the manufacture of thermal and/or acoustic insulating products and to the products which result therefrom.
  • the sizing composition in accordance with the invention comprises:
  • FIG. 1 shows a curve of variation in the modulus of elasticity E′ (in MPa) as a function of the temperature (in ° C.).
  • non-reducing sugar should be understood in the conventional sense, namely that it relates to a sugar composed of several saccharide units, the carbon 1 of which carrying the hemiacetal OH group is the participant in a bond.
  • the non-reducing sugar in accordance with the present invention is a non-reducing oligosaccharide including at most 10 saccharide units.
  • disaccharides such as trehalose, isotrehaloses, sucrose and isosucroses
  • trisaccharides such as melezitose, gentianose, raffinose, erlose and umbelliferose
  • tetrasaccharides such as stachyose
  • pentasaccharides such as verbascose.
  • sucrose and trehalose Preference is given to sucrose and trehalose and better still to sucrose.
  • the inorganic acid ammonium salt reacts with the non-reducing sugar under the effect of the heat to form a polymeric network constituting the final binder.
  • the polymeric network thus formed makes it possible to establish bonds between the mineral fibers, in particular at the junction points of the fibers in mineral wool, which confers, on the final product, a certain “elasticity” capable of providing good thickness recovery after the product has been unpacked.
  • the inorganic acid ammonium salt is chosen from ammonium sulfates, in particular ammonium hydrogensulfate NH 4 HSO 4 and ammonium sulfate (NH 4 ) 2 SO 4 , ammonium phosphates, in particular monoammonium phosphate NH 4 H 2 PO 4 , diammonium phosphate (NH 4 ) 2 HPO 4 and ammonium phosphate (NH 4 ) 3 PO 4 , ammonium nitrates and ammonium carbonates, in particular ammonium bicarbonate NH 4 HCO 3 and ammonium carbonate (NH 4 ) 2 CO 3 .
  • the inorganic acid ammonium salt is preferably chosen from sulfates and phosphates, advantageously sulfates.
  • the inorganic acid ammonium salt represents from 1 to 30% by weight of the total weight of the mixture composed of the non-reducing sugar and the inorganic acid ammonium salt, preferably from 3 to 20% and advantageously from 5 to 15%.
  • the sizing composition does not comprise any organic polycarboxylic acid with a molar mass of less than 1000, and is generally totally devoid of organic polycarboxylic acid.
  • the sizing composition can comprise, in addition to the compounds mentioned, the conventional additives below in the following proportions, calculated on the basis of 100 parts by weight of non-reducing sugar and of inorganic acid ammonium salt:
  • the silane is an agent for coupling between the fibers and the binder, and also acts as antiaging agent;
  • the oils are dust-preventing and hydrophobic agents;
  • the glycerol acts as plasticizer and makes it possible to prevent pregelling of the sizing composition;
  • the silicone is a hydrophobic agent having the role of reducing the absorption of water by the insulating product;
  • the “extender” is an organic or inorganic filler, soluble or dispersible in the sizing composition, which makes it possible in particular to reduce the cost of the sizing composition.
  • the sizing composition exhibits a pH which varies according to the nature of the inorganic acid ammonium salt used, generally from 6 to 9, advantageously from 7 to 8.
  • the sizing composition according to the invention is intended to be applied to fibers which can be mineral or organic, or else to a mixture of mineral and organic fibers.
  • the mineral fibers can be glass fibers, in particular of E, C, R or AR (alkali-resistant) glass, or rock fibers, in particular basalt (or wollastonite).
  • These fibers can also be fibers including more than 96% by weight of silica and ceramic fibers based on at least one oxide, nitride or carbide of metal or semimetal, or on a mixture of these compounds, in particular on at least one oxide, nitride or carbide of aluminum, zirconium, titanium, boron or yttrium.
  • the organic fibers can be synthetic fibers or natural fibers.
  • an olefin such as polyethylene and polypropylene
  • a polyalkylene terephthalate such as polyethylene terephthalate
  • a polyester such as polyethylene terephthalate
  • Mention may be made, as examples of natural fibers, of plant fibers, in particular fibers of wood, cellulose, cotton, coconut, sisal, hemp or flax, and animal fibers, in particular wool.
  • the sizing composition is more particularly used as sizing composition for thermal and/or acoustic insulating products based on mineral wool.
  • the sizing composition is applied to the mineral fibers at the outlet of the fiber-forming device and before they are collected on the receiving member in the form of a web of fibers which is subsequently treated at a temperature which makes possible the crosslinking of the size and the formation of an infusible binder.
  • the crosslinking of the size according to the invention takes place at a temperature of the order of from 100 to 200° C., generally at a temperature comparable to that of a conventional formaldehyde-phenol resin, in particular of greater than or equal to 110° C., preferably of less than or equal to 170° C.
  • the products based on fibers sized using the composition in particular the acoustic and/or thermal insulating products obtained from these sized fibers, also constitute a subject matter of the present invention.
  • These products are generally provided in the form of a mat, a felt, panels, blocks, shells or other molded shapes based on mineral wool, of glass or of rock.
  • the sizing composition can also be used to manufacture coated or impregnated fabrics and veils (also known as “nonwovens”), in particular based on mineral fibers, such as glass or rock fibers.
  • Veils of mineral fibers are used in particular as surface coating for thermal and/or acoustic insulating products based on mineral wool or on a foam.
  • Another subject matter of the invention is a process for the manufacture of a thermal and/or acoustic insulating product based on mineral wool or of a veil of mineral fibers, according to which the mineral wool or the mineral fibers is/are manufactured, a composition according to the invention is applied to said wool or said fibers and said wool or said fibers is/are treated at a temperature which makes possible the crosslinking of the size and the formation of an infusible binder, for example under the thermal conditions described above.
  • the size can be applied by any appropriate means, for example by projection, spraying, atomization, coating or impregnation.
  • breaking stress is measured after manufacturing (initial) and after the sample has been treated under accelerated aging conditions in water at 80° C. for 10 minutes. The result is expressed by the percentage of retention, which is equal to: (breaking stress after treatment/initial breaking stress) ⁇ 100.
  • the sample is positioned between two cylindrical mandrels of a test machine, one of which is movable and is moved at a constant rate.
  • the breaking force F (in newtons) of the sample is measured and the tensile strength TS, defined by the ratio of the breaking force F to the weight of the sample, is calculated.
  • the tensile strength is measured after manufacture (initial tensile strength) and after accelerated aging in an autoclave at a temperature of 105° C. under 100% relative humidity for 15 minutes (TS 15 ).
  • compositions comprise the constituents appearing in table 1, expressed as parts by weight.
  • the sizing compositions are prepared by successively introducing, into a vessel containing water, the non-reducing or reducing sugar and the inorganic acid ammonium salt with stirring until the constituents have completely dissolved.
  • the sizing compositions of examples 1 and 4 exhibit a greater crosslinking rate than comparative examples 7 and 8 respectively.
  • Examples 1 to 6 exhibit low viscosity and contact angle values, comparable to comparative examples 7 and 8, which makes possible good application to mineral fibers, in particular by spraying.
  • compositions comprise the constituents appearing in table 2, expressed as parts by weight.
  • the sizing compositions are prepared under the conditions set out for the first series.
  • a veil of glass fibers (Whatman GF/A, 50 g/m 2 ; sold by Whatman) is immersed in the sizing composition (13% of solid matter) for 2 minutes and then the excess size is removed by suction. The veil is subsequently treated in an oven at 200° C. for 135 seconds. In the end, the veil comprises 45% by weight of crosslinked binder. The values of the tensile strength and of the percentage of retention are given in table 2.
  • a veil of glass fibers (Whatman GF/A, 50 g/m 2 ; sold by Whatman) is immersed in the sizing composition (13% of solid matter) for 2 minutes and then the excess size is removed by suction. The veil is subsequently treated in an oven at 200° C. for 5 minutes. In the end, the veil comprises 45% by weight of crosslinked binder.
  • the veil is immersed in water at 60° C. for 3 hours and is then dried in an oven at 60° C. for 1 hour.
  • the portion of water-insoluble crosslinked binder remaining on the veil (as %) is measured by weighing before and after immersion in the water. The results appear in table 2,
  • the proportion of binder remaining on the filter after treatment in the water is greater in the examples according to the invention (3, 2, 9 and 10, and 6, 5, 15 and 16) than in the respective comparative examples (11 to 14 and 17 to 20).
  • Tests 1 and 2 demonstrate that the sizing composition according to the invention has the capability of efficiently binding the fibers of a veil under conditions of accelerated aging in a humid environment.
  • the application of the sizing composition is not limited to veils and can be extended to the other fibrous products mentioned above, in particular to fabrics and to products where the fibers are provided in the form of mineral wool for applications as thermal and/or acoustic insulating products.
  • Glass wool is manufactured on a pilot scale line by the internal centrifugation technique in which the molten glass composition is converted into fibers by means of a tool, referred to as centrifuging disk, comprising a basket forming a chamber for receiving the molten composition and a peripheral band pierced by a multitude of orifices: the disk is rotated about its vertically positioned axis of symmetry, the composition is ejected through the orifices under the effect of the centrifugal force and the material escaping from the orifices is drawn into fibers with the assistance of a drawing gas stream.
  • a tool referred to as centrifuging disk
  • a size spraying ring is positioned beneath the fiberizing disk so as to uniformly distribute the sizing composition over the glass wool which has just been formed.
  • the mineral wool thus sized, is collected on a belt conveyor with a width of 2.4 m equipped with internal extraction boxes which hold the mineral wool in the form of a web at the surface of the conveyor.
  • the web passes continuously through an oven maintained at 270° C., where the constituents of the size polymerize to form a binder.
  • the final insulating product has a nominal density of 17.5 kg/m 3 .
  • the insulating products exhibit the following properties:
  • the insulating product according to example 21 exhibits a higher initial tensile strength than that of comparative example 22.
  • the tensile strength after aging of example 21 is also greater, the loss in tensile strength being 4% instead of 10% for comparative example 22.
  • the insulating product according to example 21 has an initial thickness which is slightly enhanced with respect to comparative example 22.
  • Example 1 2 3 4 5 6 (Comp.) (Comp.) Sizing composition Sucrose 85 90 95 85 90 95 — — Glucose — — — — — — 85 85 Ammonium sulfate 15 10 5 — — — 15 — Diammonium phosphate — — — 15 10 5 — 15 Properties Crosslinking start temp.

Abstract

A formaldehyde-free sizing composition for products based on fibers, in particular mineral fibers, such as fibers of glass or of rock, includes at least one non-reducing sugar, and at least one inorganic acid ammonium salt, preferably chosen from ammonium sulfates, phosphates, nitrates and carbonates. Another subject matter of the present invention is the products thus obtained, in particular thermal and/or acoustic insulators based on mineral wool and veils of nonwoven mineral fibers, and their process of manufacture.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This is the U.S. National Stage of PCT/FR2011/052802, filed Nov. 29, 2011, which in turn claims priority to French Patent Application No. 1059898, filed Nov. 30, 2010, the entire contents of all applications are incorporated herein by reference in their entireties.
FIELD
The present invention relates to the field of products based on fibers, in particular mineral fibers, bonded by a formaldehyde-free binder.
More particularly, the invention relates to thermal and/or acoustic insulating products in which the fibers are in the form of mineral wool, in particular of glass or of rock.
BACKGROUND
The manufacture of insulating products based on mineral wool generally comprises a stage of manufacture of the wool itself, which can be carried out by various processes, for example according to the known technique of fiberizing by internal or external centrifugation.
Internal centrifugation consists in introducing the molten material (generally glass or a rock) into a centrifugal device comprising a multitude of small orifices, the material being projected toward the peripheral wall of the device under the action of the centrifugal force and escaping therefrom in the form of filaments. On leaving the centrifugal device, the filaments are drawn and carried toward a receiving member by a gas stream having a high temperature and a high speed, in order to form a web of fibers (or mineral wool).
External centrifugation consists, for its part, in pouring out the molten material at the external peripheral surface of rotating members, known as rotors, from where said material is ejected under the action of the centrifugal force. Means for drawing by gas stream and for collecting on a receiving member are also provided.
In order to provide for the assembly of the fibers together and to make it possible for the web to have cohesion, a sizing composition comprising a thermosetting resin is applied to the fibers, on the route between the outlet of the centrifugal device and the receiving member. The web of fibers coated with the size is subjected to a heat treatment, at a temperature generally of greater than 100° C., in order to bring about the polycondensation of the resin and to thus obtain a thermal and/or acoustic insulating product having specific properties, in particular dimensional stability, tensile strength, thickness recovery after compression and homogeneous color.
The sizing composition to be projected onto the mineral wool is generally provided in the form of an aqueous solution including the thermosetting resin and additives, such as a catalyst for the crosslinking of the resin, an adhesion-promoting silane, a dust-preventing mineral oil, and the like. The sizing composition is generally applied to the fibers by spraying.
The properties of the sizing composition depend largely on the characteristics of the resin. From the viewpoint of the application, it is necessary for the sizing composition to exhibit good sprayability and to be able to be deposited at the surface of the fibers in order to efficiently bind them.
The resin has to be stable for a given period of time before being used to form the sizing composition, which composition is generally prepared at the time of use by mixing the resin and the additives mentioned above.
At the regulatory level, it is necessary for the resin to be regarded as non-polluting, that is to say for it to comprise—and for it to generate during the sizing stage or subsequently—as little as possible in the way of compounds which may be harmful to human health or to the environment.
The thermosetting resins most commonly used are phenolic resins belonging to the family of the resols. In addition to their good crosslinkability under the abovementioned thermal conditions, these resins are soluble in water, have a good affinity for mineral fibers, in particular glass fibers, and are relatively inexpensive.
These resols are obtained by condensation of phenol and formaldehyde, in the presence of a basic catalyst, in a formaldehyde/phenol molar ratio of greater than 1, so as to promote the reaction between the phenol and the formaldehyde and to reduce the level of residual phenol in the resin. The condensation reaction between the phenol and the formaldehyde is carried out while limiting the degree of condensation of the monomers, in order to avoid the formation of long, relatively water-insoluble, chains which reduce the dilutability. Consequently, the resin comprises a certain proportion of unreacted monomer, in particular formaldehyde, the presence of which is undesirable because of its known harmful effects.
For this reason, resol-based resins are generally treated with urea, which reacts with the free formaldehyde by trapping it in the form of nonvolatile urea-formaldehyde condensates. The presence of urea in the resin in addition brings a certain economic advantage as a result of its low cost because it is possible to introduce it in a relatively large amount without affecting the operating qualities of the resin, in particular without harming the mechanical properties of the final product, which significantly lowers the total cost of the resin.
Nevertheless, it has been observed that, under the temperature conditions to which the web is subjected in order to obtain crosslinking of the resin, the urea-formaldehyde condensates are not stable; they decompose with restoration of the formaldehyde and urea, in its turn at least partially decomposed to give ammonia, which are released into the atmosphere of the factory.
Regulations with regard to environmental protection, which are becoming more restrictive, are forcing manufacturers of insulating products to look for solutions which make it possible to further lower the levels of undesirable emissions, in particular of formaldehyde.
Solutions in which resols are replaced in sizing compositions are known.
A first solution is based on the use of a carboxylic acid polymer, in particular an acrylic acid polymer.
In U.S. Pat. No. 5,340,868, the size comprises a polycarboxylic polymer, a β-hydroxyamide and an at least trifunctional monomeric carboxylic acid.
Other sizing compositions have been provided which comprise a polycarboxylic polymer, a polyol and a catalyst, this catalyst being able to be a phosphorus-comprising compound (U.S. Pat. No. 5,318,990, U.S. Pat. No. 5,661,213, U.S. Pat. No. 6,331,350, US 2003/0008978), a fluoroborate (U.S. Pat. No. 5,977,232) or else a cyanamide, a dicyanamide or a cyanoguanidine (U.S. Pat. No. 5,932,689).
The sizing compositions based on a polycarboxylic polymer and on a polyol can additionally comprise a cationic, amphoteric or nonionic surfactant (US 2002/0188055), a coupling agent of silane type (US 2004/0002567) or a dextrin as cobinder (US 2005/0215153).
A description has also been given of sizing compositions comprising an alkanolamine including at least two hydroxyl groups and a polycarboxylic polymer (U.S. Pat. No. 6,071,994, U.S. Pat. No. 6,099,773, U.S. Pat. No. 6,146,746) in combination with a copolymer (U.S. Pat. No. 6,299,936).
A second solution in which resols are replaced is based on the combination of a saccharide and a polycarboxylic acid.
In U.S. Pat. No. 5,895,804, a description is given of an adhesive composition based on heat-crosslinkable polysaccharides which can be used as size for mineral wool. The combination includes a polycarboxylic polymer having at least two carboxylic acid functional groups and a molecular weight at least equal to 1000, and a polysaccharide having a molecular weight at least equal to 10 000.
In WO 2009/080938, the sizing composition comprises a monosaccharide and/or a polysaccharide and an organic polycarboxylic acid with a molar mass of less than 1000.
A formaldehyde-free aqueous sizing composition which comprises a Maillard reaction product, in particular combining a reducing sugar, a carboxylic acid and ammonia (WO 2007/014236), is also known. In WO 2009/019232 and WO 2009/019235, the proposal is made to substitute, for the carboxylic acid, an acid precursor derived from an inorganic salt, in particular an ammonium salt, which exhibits the additional advantage of being able to replace all or part of the ammonia.
SUMMARY
There exists a need for formaldehyde-free sizing compositions which make it possible to manufacture products based on fibers, in particular mineral fibers, exhibiting good resistance to aging, in particular in a humid environment.
An aim of the present invention is to provide a sizing composition for fibers, in particular mineral fibers, more particularly of glass or of rock, which overcomes the abovementioned disadvantages.
A subject matter of the invention is thus a sizing composition capable of crosslinking to form a binder, which includes at least one non-reducing sugar and at least one inorganic acid ammonium salt, to the process for the manufacture of thermal and/or acoustic insulating products and to the products which result therefrom.
The sizing composition in accordance with the invention comprises:
    • at least one non-reducing sugar, and
    • at least one inorganic acid ammonium salt.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 shows a curve of variation in the modulus of elasticity E′ (in MPa) as a function of the temperature (in ° C.).
DETAILED DESCRIPTION
The expression “non-reducing sugar” should be understood in the conventional sense, namely that it relates to a sugar composed of several saccharide units, the carbon 1 of which carrying the hemiacetal OH group is the participant in a bond.
The non-reducing sugar in accordance with the present invention is a non-reducing oligosaccharide including at most 10 saccharide units.
Mention may be made, as examples of such non-reducing sugars, of disaccharides, such as trehalose, isotrehaloses, sucrose and isosucroses, trisaccharides, such as melezitose, gentianose, raffinose, erlose and umbelliferose, tetrasaccharides, such as stachyose, and pentasaccharides, such as verbascose.
Preference is given to sucrose and trehalose and better still to sucrose.
The inorganic acid ammonium salt reacts with the non-reducing sugar under the effect of the heat to form a polymeric network constituting the final binder. The polymeric network thus formed makes it possible to establish bonds between the mineral fibers, in particular at the junction points of the fibers in mineral wool, which confers, on the final product, a certain “elasticity” capable of providing good thickness recovery after the product has been unpacked.
The inorganic acid ammonium salt is chosen from ammonium sulfates, in particular ammonium hydrogensulfate NH4HSO4 and ammonium sulfate (NH4)2SO4, ammonium phosphates, in particular monoammonium phosphate NH4H2PO4, diammonium phosphate (NH4)2HPO4 and ammonium phosphate (NH4)3PO4, ammonium nitrates and ammonium carbonates, in particular ammonium bicarbonate NH4HCO3 and ammonium carbonate (NH4)2CO3.
The inorganic acid ammonium salt is preferably chosen from sulfates and phosphates, advantageously sulfates.
In the sizing composition, the inorganic acid ammonium salt represents from 1 to 30% by weight of the total weight of the mixture composed of the non-reducing sugar and the inorganic acid ammonium salt, preferably from 3 to 20% and advantageously from 5 to 15%.
The sizing composition does not comprise any organic polycarboxylic acid with a molar mass of less than 1000, and is generally totally devoid of organic polycarboxylic acid.
The sizing composition can comprise, in addition to the compounds mentioned, the conventional additives below in the following proportions, calculated on the basis of 100 parts by weight of non-reducing sugar and of inorganic acid ammonium salt:
    • from 0 to 2 parts of silane, in particular an aminosilane,
    • from 0 to 20 parts of oil, preferably from 4 to 15 parts,
    • from 0 to 20 parts of glycerol, preferably from 0 to 10 parts,
    • from 0 to 5 parts of a silicone,
    • from 0 to 30 parts of an “extender”.
The role of the additives is known and is briefly restated: the silane is an agent for coupling between the fibers and the binder, and also acts as antiaging agent; the oils are dust-preventing and hydrophobic agents; the glycerol acts as plasticizer and makes it possible to prevent pregelling of the sizing composition; the silicone is a hydrophobic agent having the role of reducing the absorption of water by the insulating product; the “extender” is an organic or inorganic filler, soluble or dispersible in the sizing composition, which makes it possible in particular to reduce the cost of the sizing composition.
The sizing composition exhibits a pH which varies according to the nature of the inorganic acid ammonium salt used, generally from 6 to 9, advantageously from 7 to 8.
The sizing composition according to the invention is intended to be applied to fibers which can be mineral or organic, or else to a mixture of mineral and organic fibers.
As already indicated, the mineral fibers can be glass fibers, in particular of E, C, R or AR (alkali-resistant) glass, or rock fibers, in particular basalt (or wollastonite). These fibers can also be fibers including more than 96% by weight of silica and ceramic fibers based on at least one oxide, nitride or carbide of metal or semimetal, or on a mixture of these compounds, in particular on at least one oxide, nitride or carbide of aluminum, zirconium, titanium, boron or yttrium.
The organic fibers can be synthetic fibers or natural fibers.
Mention may be made, as examples of synthetic fibers, of fibers based on an olefin, such as polyethylene and polypropylene, on a polyalkylene terephthalate, such as polyethylene terephthalate, or on a polyester.
Mention may be made, as examples of natural fibers, of plant fibers, in particular fibers of wood, cellulose, cotton, coconut, sisal, hemp or flax, and animal fibers, in particular wool.
As already mentioned, the sizing composition is more particularly used as sizing composition for thermal and/or acoustic insulating products based on mineral wool.
Conventionally, the sizing composition is applied to the mineral fibers at the outlet of the fiber-forming device and before they are collected on the receiving member in the form of a web of fibers which is subsequently treated at a temperature which makes possible the crosslinking of the size and the formation of an infusible binder. The crosslinking of the size according to the invention takes place at a temperature of the order of from 100 to 200° C., generally at a temperature comparable to that of a conventional formaldehyde-phenol resin, in particular of greater than or equal to 110° C., preferably of less than or equal to 170° C.
The products based on fibers sized using the composition, in particular the acoustic and/or thermal insulating products obtained from these sized fibers, also constitute a subject matter of the present invention.
These products are generally provided in the form of a mat, a felt, panels, blocks, shells or other molded shapes based on mineral wool, of glass or of rock.
The sizing composition can also be used to manufacture coated or impregnated fabrics and veils (also known as “nonwovens”), in particular based on mineral fibers, such as glass or rock fibers.
Veils of mineral fibers are used in particular as surface coating for thermal and/or acoustic insulating products based on mineral wool or on a foam.
Another subject matter of the invention is a process for the manufacture of a thermal and/or acoustic insulating product based on mineral wool or of a veil of mineral fibers, according to which the mineral wool or the mineral fibers is/are manufactured, a composition according to the invention is applied to said wool or said fibers and said wool or said fibers is/are treated at a temperature which makes possible the crosslinking of the size and the formation of an infusible binder, for example under the thermal conditions described above.
The size can be applied by any appropriate means, for example by projection, spraying, atomization, coating or impregnation.
The following examples make it possible to illustrate the invention without, however, limiting it.
In these examples, the following are measured:
    • the crosslinking start temperature (TC) and the crosslinking rate (R) by the Dynamic Mechanical Analysis (DMA) method, which makes it possible to characterize the viscoelastic behavior of a polymeric material. The procedure is as follows: a sample of Whatman paper is impregnated with the sizing composition (content of organic solids of the order of 40%) and is then fixed horizontally between two jaws. An oscillating component equipped with a device for measuring the stress as a function of the strain applied is positioned on the upper face of the sample. The device makes it possible to calculate the modulus of elasticity E′. The sample is heated to a temperature varying from 20 to 250° C. at the rate of 4° C./min. The curve of variation in the modulus of elasticity E′ (in MPa) as a function of the temperature (in ° C.) is plotted from the measurements, the general appearance of the curve being given in FIG. 1. The temperature value, in ° C., for the start of crosslinking (TC) and the slope corresponding to the crosslinking rate, in MPa/° C., are determined on the curve.
    • the viscosity, expressed in mPa·s, using a rheometer of plate/plate rotational type with shearing of 100 s−1 at 25° C. The sample has a solids content of 30% by weight.
    • the contact angle of the sizing composition, comprising 30% by weight of solids, on a glass substrate.
    • the breaking stress of a veil sample of 5 cm×21 cm attached at one end to a tensile testing device and subjected to a continuous elongation of 40 mm/minute. The breaking stress is expressed in N/5 cm.
The breaking stress is measured after manufacturing (initial) and after the sample has been treated under accelerated aging conditions in water at 80° C. for 10 minutes. The result is expressed by the percentage of retention, which is equal to:
(breaking stress after treatment/initial breaking stress)×100.
    • the tensile strength according to the standard ASTM C 686-71T on a sample cut out by stamping from the insulating product. The sample has the shape of a torus with a length of 122 mm, a width of 46 mm, a radius of curvature of the cut-out of the outer edge equal to 38 mm and a radius of curvature of the cut-out of the inner edge equal to 12.5 mm.
The sample is positioned between two cylindrical mandrels of a test machine, one of which is movable and is moved at a constant rate. The breaking force F (in newtons) of the sample is measured and the tensile strength TS, defined by the ratio of the breaking force F to the weight of the sample, is calculated.
The tensile strength is measured after manufacture (initial tensile strength) and after accelerated aging in an autoclave at a temperature of 105° C. under 100% relative humidity for 15 minutes (TS 15).
    • the initial thickness of the insulating product and the thickness after compressing for 1 hour and 24 hours with a degree of compression (defined as being the ratio of the nominal thickness to the thickness under compression) equal to 4.8/1. The thickness measurements make it possible to evaluate the good dimensional behavior of the product.
    • the thermal conductivity coefficient λ according to the standard EN 13162, expressed in W/(m×° K.).
Examples 1 to 20
a) A first series of sizing compositions is prepared, which compositions comprise the constituents appearing in table 1, expressed as parts by weight.
The sizing compositions are prepared by successively introducing, into a vessel containing water, the non-reducing or reducing sugar and the inorganic acid ammonium salt with stirring until the constituents have completely dissolved.
The sizing compositions of examples 1 and 4 exhibit a greater crosslinking rate than comparative examples 7 and 8 respectively.
Examples 1 to 6 exhibit low viscosity and contact angle values, comparable to comparative examples 7 and 8, which makes possible good application to mineral fibers, in particular by spraying.
b) A second series of sizing compositions is prepared, which compositions comprise the constituents appearing in table 2, expressed as parts by weight.
The sizing compositions are prepared under the conditions set out for the first series.
Test 1
A veil of glass fibers (Whatman GF/A, 50 g/m2; sold by Whatman) is immersed in the sizing composition (13% of solid matter) for 2 minutes and then the excess size is removed by suction. The veil is subsequently treated in an oven at 200° C. for 135 seconds. In the end, the veil comprises 45% by weight of crosslinked binder. The values of the tensile strength and of the percentage of retention are given in table 2.
Test 2
A veil of glass fibers (Whatman GF/A, 50 g/m2; sold by Whatman) is immersed in the sizing composition (13% of solid matter) for 2 minutes and then the excess size is removed by suction. The veil is subsequently treated in an oven at 200° C. for 5 minutes. In the end, the veil comprises 45% by weight of crosslinked binder.
The veil is immersed in water at 60° C. for 3 hours and is then dried in an oven at 60° C. for 1 hour. The portion of water-insoluble crosslinked binder remaining on the veil (as %) is measured by weighing before and after immersion in the water. The results appear in table 2,
Examples 3, 2 and 9, on the one hand, and 6 and 5, on the other hand, have a higher initial tensile strength than the corresponding comparative examples 11 to 14, and 17 and 18.
Examples 3, 2, 9 and 10, comprising ammonium sulfate, have a higher percentage of retention than comparative examples 11 to 14. Examples 15 and 16, comprising a higher proportion of diammonium sulfate, have a greater wet aging strength than comparative examples 19 and 20.
The proportion of binder remaining on the filter after treatment in the water is greater in the examples according to the invention (3, 2, 9 and 10, and 6, 5, 15 and 16) than in the respective comparative examples (11 to 14 and 17 to 20).
Tests 1 and 2 demonstrate that the sizing composition according to the invention has the capability of efficiently binding the fibers of a veil under conditions of accelerated aging in a humid environment. The application of the sizing composition is not limited to veils and can be extended to the other fibrous products mentioned above, in particular to fabrics and to products where the fibers are provided in the form of mineral wool for applications as thermal and/or acoustic insulating products.
Examples 21 and 22
These examples illustrate the manufacture of insulating products on an industrial scale line.
Use is made of the sizing compositions of examples 1 and 7 (comparative), to which the following additives are added, per 100 parts by weight of sugar and ammonium sulfate: 1 part of γ-aminopropyltriethoxysilane and 8 parts of a mineral oil. These sizing compositions constitute examples 21 and 22 (comparative) respectively.
Glass wool is manufactured on a pilot scale line by the internal centrifugation technique in which the molten glass composition is converted into fibers by means of a tool, referred to as centrifuging disk, comprising a basket forming a chamber for receiving the molten composition and a peripheral band pierced by a multitude of orifices: the disk is rotated about its vertically positioned axis of symmetry, the composition is ejected through the orifices under the effect of the centrifugal force and the material escaping from the orifices is drawn into fibers with the assistance of a drawing gas stream.
Conventionally, a size spraying ring is positioned beneath the fiberizing disk so as to uniformly distribute the sizing composition over the glass wool which has just been formed.
The mineral wool, thus sized, is collected on a belt conveyor with a width of 2.4 m equipped with internal extraction boxes which hold the mineral wool in the form of a web at the surface of the conveyor. The web passes continuously through an oven maintained at 270° C., where the constituents of the size polymerize to form a binder. The final insulating product has a nominal density of 17.5 kg/m3.
The insulating products exhibit the following properties:
Ex. 21 Ex. 22 (comp.)
Tensile strength (N)
initial 4.5 4.2
after aging (TS 15) 4.3 3.8
loss (%) 4 10
Thickness (mm)
after 1 hour 106 102
after 24 hours 104 100
Loss on ignition (%) 6.0 6.0
λ (W/(m × K)) 0.035 0.035
The insulating product according to example 21 exhibits a higher initial tensile strength than that of comparative example 22. The tensile strength after aging of example 21 is also greater, the loss in tensile strength being 4% instead of 10% for comparative example 22.
In addition, the insulating product according to example 21 has an initial thickness which is slightly enhanced with respect to comparative example 22.
TABLE 1
7 8
Example 1 2 3 4 5 6 (Comp.) (Comp.)
Sizing composition
Sucrose 85 90 95 85 90 95
Glucose 85 85
Ammonium sulfate 15 10 5 15
Diammonium phosphate 15 10 5 15
Properties
Crosslinking start temp. Tc (° C.) 137 141 146 144 149 158 140 132
Rate (R) (MPa/° C.) 86.7 64.2 58.8 49.3 51.7 30.6 54.5 26.7
Viscosity (mPa · s) 5.4 5.5 5.4 5.4 5.5 5.5 5.4 5.4
Contact angle (°) 17 18 20 17 18 17 19 18
pH(1) 7.2 7.2 7.3 8.0 7.9 7.8 7.5 7.1
(1)solids content: 30%
TABLE 2
11 12 13 14
Example 3 2 9 10 (Comp.) (Comp.) (Comp.) (Comp.)
Binder composition
Sucrose 95 90 83 77
Glucose 95 90 83 77
Ammonium sulfate 5 10 17 23 5 10 17 23
Diammonium phosphate
Properties
Tensile strength (N/cm)
initial 104 120 130 109 100 96 111 115
% retention 22 46 65 66 9 30 52 61
Insoluble portion (%) 81.5 85.9 83.9 81.9 76.2 75.3 76.0 79.9
17 18 19 20
Example 6 5 15 16 (Comp.) (Comp.) (Comp.) (Comp.)
Binder composition
Sucrose 95 90 83 77
Glucose 95 90 83 77
Ammonium sulfate
Diammonium phosphate 5 10 17 23 5 10 17 23
Properties
Tensile strength (N/cm)
initial 83 120 99 120 65 99 118 131
% retention 11 53 86 68 10 53 58 53
Insoluble portion (%) 87.6 97.9 95.3 93.7 86.7 91.6 91.9 85.6

Claims (7)

What is claimed is:
1. An aqueous formaldehyde-free sizing composition for mineral wool consisting of:
sucrose,
ammonium sulfate,
wherein the ammonium sulfate represents from 3 to 20% by weight of the mixture of sucrose and ammonium sulfate; and
one or more additives below in the following proportions, calculated on the basis of 100 parts by weight of non-reducing sugar and of inorganic acid ammonium salt:
from 0 to 2 parts of silane,
from 4 to 15 parts of mineral oil,
from 0 to 20 parts of glycerol,
from 0 to 5 parts of a silicone,
from 0 to 30 parts of an extender.
2. An acoustic and/or thermal insulating product based on mineral wool sized using the sizing composition as claimed in claim 1.
3. The product as claimed in claim 2, wherein the mineral wool is glass wool or rock wool.
4. A process for the manufacture of an acoustic and/or thermal insulating product, according to which a mineral wool is manufactured, the process comprising
applying a sizing composition to said wool; and
treating said wool at a temperature which makes possible the crosslinking of the size and the formation of an infusible binder, wherein the sizing composition as claimed in claim 1 is used.
5. The composition as claimed in claim 1, wherein the ammonium sulfate represents from 5 to 15% by weight of the mixture composed of sucrose and ammonium sulfate.
6. The composition as claimed in claim 1, wherein the one or more additives comprise
from 0 to 10 parts of glycerol.
7. The product as claimed in claim 3, wherein the glass wool is made of E, C, R or AR (alkali-resistant) glass, and the rock wool is made of basalt fibers including more than 96% by weight of silica.
US13/378,587 2010-11-30 2011-11-29 Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products Active US9255215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/016,857 US9938184B2 (en) 2010-11-30 2016-02-05 Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1059898 2010-11-30
FR1059898A FR2968008B1 (en) 2010-11-30 2010-11-30 SIZING COMPOSITION FOR FIBERS, ESPECIALLY MINERAL, COMPRISING NON-REDUCING SUGAR AND AMMONIUM SALT OF INORGANIC ACID, AND RESULTING PRODUCTS
PCT/FR2011/052802 WO2012072938A1 (en) 2010-11-30 2011-11-29 Sizing composition for fibers, in particular inorganic fibers, including a non-reducing sugar and an inorganic-acid ammonium salt, and resulting materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/052802 A-371-Of-International WO2012072938A1 (en) 2010-11-30 2011-11-29 Sizing composition for fibers, in particular inorganic fibers, including a non-reducing sugar and an inorganic-acid ammonium salt, and resulting materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/016,857 Continuation US9938184B2 (en) 2010-11-30 2016-02-05 Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products

Publications (2)

Publication Number Publication Date
US20120263934A1 US20120263934A1 (en) 2012-10-18
US9255215B2 true US9255215B2 (en) 2016-02-09

Family

ID=44247036

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/378,587 Active US9255215B2 (en) 2010-11-30 2011-11-29 Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products
US15/016,857 Active US9938184B2 (en) 2010-11-30 2016-02-05 Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/016,857 Active US9938184B2 (en) 2010-11-30 2016-02-05 Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products

Country Status (18)

Country Link
US (2) US9255215B2 (en)
EP (2) EP3415476B1 (en)
JP (1) JP5931901B2 (en)
CN (1) CN103328401A (en)
BR (1) BR112013013258B1 (en)
CA (1) CA2820661C (en)
CL (1) CL2013001521A1 (en)
DK (2) DK3415476T3 (en)
ES (2) ES2694400T3 (en)
FR (1) FR2968008B1 (en)
HR (2) HRP20221143T1 (en)
LT (1) LT3415476T (en)
PL (2) PL3415476T3 (en)
PT (1) PT2646386T (en)
RU (1) RU2594408C2 (en)
SI (2) SI3415476T1 (en)
TR (1) TR201816357T4 (en)
WO (1) WO2012072938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160264454A1 (en) * 2010-11-30 2016-09-15 Saint-Gobain Isover Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019816B1 (en) * 2014-04-10 2021-04-02 Saint Gobain Isover COMPOSITE INCLUDING A MINERAL WOOL INCLUDING A SUGAR
FR3019815B1 (en) 2014-04-15 2016-05-06 Saint Gobain Isover SIZING COMPOSITION BASED ON NON-REDUCING SACCHARIDE AND HYDROGEN SACCHARIDE, AND INSULATING PRODUCTS OBTAINED.
JP6328545B2 (en) * 2014-12-02 2018-05-23 信越石英株式会社 Quartz glass fiber sizing agent, quartz glass yarn, quartz glass cloth, and method for producing quartz glass cloth
DK3156381T3 (en) 2015-10-12 2018-10-08 Saint Gobain Ecophon Ab Process for making granules
JP6680583B2 (en) * 2016-03-16 2020-04-15 群栄化学工業株式会社 Thermosetting binder composition and inorganic fiber product using the same
CN116733120A (en) * 2016-05-13 2023-09-12 洛科威国际有限公司 Method for providing isolation to structure
JP6062099B1 (en) * 2016-09-30 2017-01-18 ニチアス株式会社 Binder composition, molded body, and method for producing molded body
WO2018155292A1 (en) * 2017-02-24 2018-08-30 パナソニックIpマネジメント株式会社 Adhesive for thermocompression molding, wooden board and method for producing same
JP6580626B2 (en) 2017-05-29 2019-09-25 ヘンケルジャパン株式会社 Water-based adhesive composition
FR3068033B1 (en) 2017-06-23 2019-08-02 Saint-Gobain Isover PROCESS FOR PRODUCING A MINERAL FIBER INSULATION PRODUCT
FR3069536B1 (en) 2017-07-31 2020-07-17 Saint-Gobain Isover PROCESS FOR MANUFACTURING MINERAL WOOL
FR3069464B1 (en) 2017-07-31 2019-08-09 Saint-Gobain Isover MINERAL WOOL MANUFACTURING PLANT AND DEVICE FOR PROJECTING A SIZING COMPOSITION EQUIPPED WITH SUCH A PLANT
FR3074797B1 (en) 2017-12-13 2019-12-20 Saint-Gobain Isover PROCESS FOR MANUFACTURING MINERAL WOOL
EP4174044A1 (en) 2021-10-28 2023-05-03 Saint-Gobain Weber France A process for making a binder for a mortar
EP4174045A1 (en) 2021-10-28 2023-05-03 Saint-Gobain Weber France Binder and mortar compositions

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875073A (en) * 1955-05-23 1959-02-24 Corn Prod Refining Co Core binder and process of making cores
US3664855A (en) * 1969-12-16 1972-05-23 Owens Corning Fiberglass Corp Size for fibers and glass fibers coated therewith
US5318990A (en) 1993-06-21 1994-06-07 Owens-Corning Fiberglas Technology Inc. Fibrous glass binders
US5340868A (en) 1993-06-21 1994-08-23 Owens-Corning Fiberglass Technology Inc. Fibrous glass binders
US5661213A (en) 1992-08-06 1997-08-26 Rohm And Haas Company Curable aqueous composition and use as fiberglass nonwoven binder
US5895804A (en) 1997-10-27 1999-04-20 National Starch And Chemical Investment Holding Corporation Thermosetting polysaccharides
US5932689A (en) 1997-04-25 1999-08-03 Rohm And Haas Company Formaldhyde-free compositions for nonwovens
US5977232A (en) 1997-08-01 1999-11-02 Rohm And Haas Company Formaldehyde-free, accelerated cure, aqueous composition for bonding glass fiber heat-resistant nonwovens
US6071994A (en) 1996-02-21 2000-06-06 Basf Aktiengesellschaft Formaldehyde-free aqueous binders
US6099773A (en) 1996-02-21 2000-08-08 Basf Aktiengesellschaft Formaldehyde-free binder for mouldings
US6146746A (en) 1996-02-21 2000-11-14 Basf Aktiengesellschaft Formaldehyde-free coating composition for shaped articles
US6299936B1 (en) 1997-08-19 2001-10-09 Basf Aktiengesellschaft Aqueous compositions
US6331350B1 (en) 1998-10-02 2001-12-18 Johns Manville International, Inc. Polycarboxy/polyol fiberglass binder of low pH
US20020188055A1 (en) 2001-05-31 2002-12-12 Liang Chen Surfactant-containing insulation binder
US20030008978A1 (en) 2001-03-21 2003-01-09 Liang Chen Low odor insulation binder from phosphite terminated polyacrylic acid
US20040002567A1 (en) 2002-06-27 2004-01-01 Liang Chen Odor free molding media having a polycarboxylic acid binder
US20050215153A1 (en) 2004-03-23 2005-09-29 Cossement Marc R Dextrin binder composition for heat resistant non-wovens
WO2007014236A2 (en) 2005-07-26 2007-02-01 Knauf Insulation Gmbh Binders and materials made therewith
WO2009019232A1 (en) 2007-08-03 2009-02-12 Knauf Insulation Limited Mineral wool insulation
WO2009080938A2 (en) 2007-12-05 2009-07-02 Saint-Gobain Isover Mineral wool sizing composition comprising a monosaccharide and/or a polysaccharide and an organic polycarboxylic acid, and insulating products obtained
US20100031619A1 (en) * 2008-08-07 2010-02-11 Grove Iii Dale Addison Filter media including silicone and/or wax additive(s)
US20100222463A1 (en) * 2009-02-27 2010-09-02 Jean Marie Brady Rapid cure carbohydrate composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB979991A (en) 1960-01-14 1965-01-06 Polygram Casting Co Ltd Improvements in or relating to thermosetting compositions based on carbohydrates
US4183997A (en) * 1974-02-22 1980-01-15 John Jansky Bonding of solid lignocellulosic material
EP0044614A3 (en) * 1980-06-27 1982-05-19 TBA Industrial Products Limited Improvements in and relating to glass fabrics
US4524164A (en) * 1983-12-02 1985-06-18 Chemical Process Corporation Thermosetting adhesive resins
RU2240336C1 (en) * 2003-06-17 2004-11-20 Общество с ограниченной ответственностью "НИРА" Glue composition
JP2005171466A (en) * 2003-12-10 2005-06-30 Fuso Kogyo Kk Lightweight heat insulating material formed by using artificial mineral fiber and method for manufacturing the same
CA2458159A1 (en) * 2004-01-22 2005-07-22 The State Of Oregon Acting By And Through The State Board Of Higher Educ Ation On Behalf Of Oregon State University Formaldehyde-free adhesives and lignocellulosic composites made from the adhesives
FR2929953B1 (en) * 2008-04-11 2011-02-11 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL FIBERS AND RESULTING PRODUCTS
FR2968008B1 (en) * 2010-11-30 2014-01-31 Saint Gobain Isover SIZING COMPOSITION FOR FIBERS, ESPECIALLY MINERAL, COMPRISING NON-REDUCING SUGAR AND AMMONIUM SALT OF INORGANIC ACID, AND RESULTING PRODUCTS

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875073A (en) * 1955-05-23 1959-02-24 Corn Prod Refining Co Core binder and process of making cores
US3664855A (en) * 1969-12-16 1972-05-23 Owens Corning Fiberglass Corp Size for fibers and glass fibers coated therewith
US5661213A (en) 1992-08-06 1997-08-26 Rohm And Haas Company Curable aqueous composition and use as fiberglass nonwoven binder
US5318990A (en) 1993-06-21 1994-06-07 Owens-Corning Fiberglas Technology Inc. Fibrous glass binders
US5340868A (en) 1993-06-21 1994-08-23 Owens-Corning Fiberglass Technology Inc. Fibrous glass binders
US6071994A (en) 1996-02-21 2000-06-06 Basf Aktiengesellschaft Formaldehyde-free aqueous binders
US6099773A (en) 1996-02-21 2000-08-08 Basf Aktiengesellschaft Formaldehyde-free binder for mouldings
US6146746A (en) 1996-02-21 2000-11-14 Basf Aktiengesellschaft Formaldehyde-free coating composition for shaped articles
US5932689A (en) 1997-04-25 1999-08-03 Rohm And Haas Company Formaldhyde-free compositions for nonwovens
US5977232A (en) 1997-08-01 1999-11-02 Rohm And Haas Company Formaldehyde-free, accelerated cure, aqueous composition for bonding glass fiber heat-resistant nonwovens
US6299936B1 (en) 1997-08-19 2001-10-09 Basf Aktiengesellschaft Aqueous compositions
US5895804A (en) 1997-10-27 1999-04-20 National Starch And Chemical Investment Holding Corporation Thermosetting polysaccharides
US6331350B1 (en) 1998-10-02 2001-12-18 Johns Manville International, Inc. Polycarboxy/polyol fiberglass binder of low pH
US20030008978A1 (en) 2001-03-21 2003-01-09 Liang Chen Low odor insulation binder from phosphite terminated polyacrylic acid
US20020188055A1 (en) 2001-05-31 2002-12-12 Liang Chen Surfactant-containing insulation binder
US20040002567A1 (en) 2002-06-27 2004-01-01 Liang Chen Odor free molding media having a polycarboxylic acid binder
US20050215153A1 (en) 2004-03-23 2005-09-29 Cossement Marc R Dextrin binder composition for heat resistant non-wovens
WO2007014236A2 (en) 2005-07-26 2007-02-01 Knauf Insulation Gmbh Binders and materials made therewith
WO2009019232A1 (en) 2007-08-03 2009-02-12 Knauf Insulation Limited Mineral wool insulation
WO2009019235A1 (en) 2007-08-03 2009-02-12 Knauf Insulation Limited Binders
WO2009080938A2 (en) 2007-12-05 2009-07-02 Saint-Gobain Isover Mineral wool sizing composition comprising a monosaccharide and/or a polysaccharide and an organic polycarboxylic acid, and insulating products obtained
US20100031619A1 (en) * 2008-08-07 2010-02-11 Grove Iii Dale Addison Filter media including silicone and/or wax additive(s)
US20100222463A1 (en) * 2009-02-27 2010-09-02 Jean Marie Brady Rapid cure carbohydrate composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160264454A1 (en) * 2010-11-30 2016-09-15 Saint-Gobain Isover Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products
US9938184B2 (en) * 2010-11-30 2018-04-10 Saint-Gobain Isover Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products

Also Published As

Publication number Publication date
FR2968008A1 (en) 2012-06-01
CA2820661A1 (en) 2012-06-07
EP3415476B1 (en) 2022-09-07
PL3415476T3 (en) 2022-10-31
HRP20181982T1 (en) 2019-01-25
US20160264454A1 (en) 2016-09-15
PL2646386T3 (en) 2019-02-28
FR2968008B1 (en) 2014-01-31
HRP20221143T1 (en) 2022-11-25
CN103328401A (en) 2013-09-25
BR112013013258B1 (en) 2020-10-06
EP2646386B1 (en) 2018-09-12
PT2646386T (en) 2018-12-04
WO2012072938A1 (en) 2012-06-07
US9938184B2 (en) 2018-04-10
US20120263934A1 (en) 2012-10-18
RU2594408C2 (en) 2016-08-20
RU2013129828A (en) 2015-01-10
EP2646386A1 (en) 2013-10-09
CL2013001521A1 (en) 2014-06-06
CA2820661C (en) 2019-07-16
JP5931901B2 (en) 2016-06-08
DK2646386T3 (en) 2019-01-02
JP2014500916A (en) 2014-01-16
SI3415476T1 (en) 2022-11-30
ES2694400T3 (en) 2018-12-20
TR201816357T4 (en) 2018-11-21
SI2646386T1 (en) 2018-12-31
LT3415476T (en) 2022-10-10
ES2928284T3 (en) 2022-11-16
BR112013013258A2 (en) 2016-09-13
EP3415476A1 (en) 2018-12-19
DK3415476T3 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
US9938184B2 (en) Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products
KR101666601B1 (en) Sizing composition for mineral wool based on hydrogenated sugar and insulating products obtained
US10233115B2 (en) Formaldehyde-free sizing composition for fibres, in particular mineral fibres, and resulting products
US9630877B2 (en) Sizing composition for fibers, in particular mineral fibers, based on humic and/or fulvic acid, and resulting insulating products
US10774466B2 (en) Sizing composition based on a non-reducing saccharide and a hydrogenated saccharide, and insulating products obtained
EA025355B1 (en) Sizing composition for mineral wool based on maltitol and insulating products obtained
US8597532B2 (en) Sizing composition for mineral wool comprising a reducing sugar and an inorganic acid metal salt, and insulating products obtained
US20140120348A1 (en) Formaldehyde-free sizing composition for fibres, in particular mineral fibres, and resulting products
US8591643B2 (en) Sizing composition for mineral wool comprising a non-reducing sugar and an inorganic acid metal salt, and insulating products obtained
US20190359521A1 (en) Sizing composition for mineral wool based on a hydrogenated sugar and insulating products obtained
NZ619432B2 (en) Formaldehyde-free sizing composition for fibres, in particular mineral fibres, and resulting products.

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAINT-GOBAIN ISOVER, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAFFRENNOU, BORIS;OBERT, EDOUARD;SIGNING DATES FROM 20111202 TO 20111212;REEL/FRAME:027394/0873

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8