US8881478B2 - Ratcheting take-up device - Google Patents

Ratcheting take-up device Download PDF

Info

Publication number
US8881478B2
US8881478B2 US13/531,159 US201213531159A US8881478B2 US 8881478 B2 US8881478 B2 US 8881478B2 US 201213531159 A US201213531159 A US 201213531159A US 8881478 B2 US8881478 B2 US 8881478B2
Authority
US
United States
Prior art keywords
take
bore
edge
outer bore
inches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/531,159
Other versions
US20130340366A1 (en
Inventor
Daniel M. Gray
Lisa M. McGurty
Bryan David Wert
Thomas Maxwell Strawn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Simpson Strong Tie Co Inc
Original Assignee
Simpson Strong Tie Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Simpson Strong Tie Co Inc filed Critical Simpson Strong Tie Co Inc
Priority to US13/531,159 priority Critical patent/US8881478B2/en
Publication of US20130340366A1 publication Critical patent/US20130340366A1/en
Assigned to SIMPSON STRONG-TIE COMPANY, INC. reassignment SIMPSON STRONG-TIE COMPANY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCGURTY, LISA M.
Assigned to SIMPSON STRONG-TIE COMPANY, INC. reassignment SIMPSON STRONG-TIE COMPANY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STRAWN, THOMAS MAXWELL, WERT, BRYAN DAVID, GRAY, DANIEL M.
Application granted granted Critical
Publication of US8881478B2 publication Critical patent/US8881478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/268Connection to foundations
    • E04B2001/2684Connection to foundations with metal connectors
    • E04B2001/2688Connection to foundations with metal connectors self adjusting, e.g. for compensation of shrinkage
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/35Extraordinary methods of construction, e.g. lift-slab, jack-block
    • E04B2001/3583Extraordinary methods of construction, e.g. lift-slab, jack-block using permanent tensioning means, e.g. cables or rods, to assemble or rigidify structures (not pre- or poststressing concrete), e.g. by tying them around the structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32541Rotatable members resiliently biased to one position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/55Member ends joined by inserted section
    • Y10T403/551Externally bridged

Definitions

  • the present invention relates generally to building construction and reinforcement, and specifically to a continuity system that resists tension from wind uplift forces or overturning forces from wind or seismic events while compensating for the downward settling of buildings caused by shrinkage of wooden members. Most specifically, the present invention relates to a ratcheting take-up device that reduces slack due to wood shrinkage and building settling in a holdown system of continuous rods, eases installation and compensates for imperfectly aligned rods.
  • a continuity system is a secondary support system that ties walls or other building elements together and resists lateral overturning forces or uplift forces from events such as earthquakes or strong winds. Earthquake and wind forces produce overturning and uplift loads in the building, which load the building elements in overturning or uplift with respect to the building foundation.
  • a continuity system resists such movements of the building elements.
  • a continuity system generally comprises a plurality of interconnected vertically-oriented elements, typically metal rods and bearing plates, or holdowns, that provide a discrete structural mechanism or load path framework for the transfer of loads through the building from the structural elements that are intended to resist such forces, such as roof or floor diaphragms and shearwalls, to the continuity system, and then to the foundation. For example, the presence of a continuity system enables wall panels to resist overturning and/or moments that might damage or destroy the wall.
  • the '314 patent describes a system in which at least one tie rod is connected to the foundation through a simple threaded coupler and a foundation anchor.
  • the tie rod system can be used in a single-story structure, it is particularly suited to multistory structures, as illustrated in the '314 patent.
  • a series of anchor elements is used to couple multiple tie rods in a line from the foundation to the top plate of the top story of the structure.
  • the anchor elements of the '314 patent in addition to coupling tie rods together, are used to secure the tie rods at each level of the structure to eliminate initial slack in the system.
  • the principal shortcoming of the system of the '314 patent is the lack of a means of compensating for slack that builds up in the system as the wood structural members shrink over time. As slack builds up in the system, the system's capacity to resist uplift is correspondingly reduced.
  • the prior art includes a number of technical solutions to the problem of increasing slack in continuity systems.
  • Simpson Strong-Tie Company's Anchor Tiedown System uses the TUD and ATUD take-up devices, as well as the CTUD coupling take-up device.
  • the CTUD coupling take-up device is the subject of U.S. Pat. No. 7,905,066, granted to Steven E. Pryor et al. All three devices are driven by a torsion spring.
  • the TUD and ATUD are slipped over the tie rod between a horizontally disposed member and a nut threaded onto the tie rod, and they expand to fill the space as it expands enlarges.
  • the CTUD threads onto and couples the vertically-aligned ends of two tie rods, drawing the two together to maintain tight connections between the wood and steel elements as the wood structural members shrink over time.
  • the ratcheting take-up device of the present invention eases installation of continuity systems, compensates for tie rods that are not perfectly perpendicular to the top and bottom plates, and takes up slack in the continuity system after installation.
  • the take-up device of the present invention has a plurality of insert segments with concavities that form an inner bore.
  • the insert segments are contained within a housing that has an outer bore.
  • the lower portion of the outer bore in the housing narrows.
  • the lower portions of the insert segments and the lower portion of outer bore contained by the housing have frusto-spherical bearing surfaces.
  • the insert segments are formed and arranged so that they grasp and hold a tie rod received in the housing when a wind uplift or a shear wall overturning force is applied to the wall of which the take-up device is a part.
  • the tie rod When a wind uplift or a shear wall overturning force is applied to the wall, the tie rod is placed in tension from an anchoring, reactive force pulling on the tension rod from below the housing while the structural member that is part of the wall to which the take-up device is attached pushes upwardly on the housing of the take-up device.
  • the tie rod, the insert segments and the housing are formed such that when the tie rod moves downwardly with respect to the housing, the insert segments will be pulled downwardly in the housing as well.
  • the tension on the tie rod combined with the narrowing in the lower portion of the outer bore of the housing causes a constriction of the insert segments about the tie rod forcing them to grasp and hold the tie rod, preventing any further downward movement of the tie rod with respect to the housing and thus to the building component to which the housing is attached.
  • An important advantage of the take-up device of the present invention is that its frusto-spherical bearing surfaces allow it to anchor imperfectly aligned tie rods by swinging about a central pivot on the vertical axis of the device in any direction without a reduction in the bearing surfaces or the strength of the anchorage.
  • the lower portions of the insert segments collectively have the geometry of a spherical segment—a spherical cap with the top truncated, or a spherical frustum.
  • the first frusto-spherical bearing surface is the outward-facing, lower surfaces of the insert segments taken together.
  • the second frusto-spherical bearing surface is the inward-facing lower portion of the outer bore of the housing.
  • the insert segments are inserted in the outer bore of the housing.
  • the frusto-spherical sections of each, solid in the segments and hollow in the outer bore, are closely matched. Because the lower bearing surfaces of the insert segments are able to rotate or swing to be in contact with a matching surface in the lower portion of the outer bore of the device housing, there is little or no reduction in the net bearing interface when the rod received by the nut segments is out of alignment with the vertical axis of the housing.
  • a further advantage of the present invention is that the housing and insert segments are shaped and arranged to allow a tie rod to be quickly inserted through the inner bore formed by the insert segments by pushing the tie rod up through the bore.
  • the upward movement of the tie rod forces the insert segments apart from a constricted position—the constriction preferably caused by the downward force of gravity and possibly by a compression member placed above the insert segments, combined with the narrowing in the lower portion of the outer bore of the housing—to the width of the tie rod.
  • the interface between the surfaces of the tie rod and the insert segments creates a ratcheting action as the tie rod is pushed up and the insert segments move up and out laterally, allowing the tie rod to be inserted as far as needed into the housing for installation.
  • the relative movement of the tie rod and the housing is similar to movement during installation.
  • the relative upward movement of the rod with respect to the housing pushes the insert segments up and out laterally, and gravity and any relative downward movement of the tension rod as well as the usual tension that is placed on the rod once it is installed pulls the insert segments downwardly and inwardly in combination with the narrowing of the outer bore of the housing and thus against the rod, holding it with respect to the housing.
  • a further object of the present invention is to provide insert segments that are made with flat tops and bottom edges and in the preferred embodiment are compressed by a member with a flat surface so that it allows tie rods to be inserted with a minimal risk of jamming the take-up device because the insert segments are held in place by a flat, hard washer above, which interface with flat surfaces at the tops of the insert segments to stabilize them as they expand away from and constrict towards the central vertical axis of the device.
  • Another object of the present invention is to provide the housing with a small ledge which interfaces with the bottom edges of the insert segments to stabilize them as they expand away from and constrict towards the central vertical axis of the device.
  • FIG. 1 is a perspective view of the take-up device of the present invention.
  • FIG. 2 is an exploded perspective view of the take-up device of the present invention.
  • FIG. 3 a perspective view of a connection made with the take-up device of the present invention, showing the take-up device installed on the top plate of a stud wall.
  • FIG. 4 is a perspective view of a connection made with the take-up device of the present invention, showing two take-up devices of the present invention, each installed on a different level of the same structure.
  • FIG. 5 is a top plan view of the housing of the take-up device of the present invention.
  • FIG. 6 is a cross-sectional elevation view of the housing of the take-up device of the present invention taken along view line 6 - 6 in FIG. 5 .
  • FIG. 7 is a top plan view of the upper and lower hard washers of the compression member of the take-up device of the present invention.
  • FIG. 8 is a cross-sectional elevation view of the hard washers of the take-up device of the present invention taken along view line 8 - 8 in FIG. 7 .
  • FIG. 9 is a top plan view of the soft washer of the take-up device of the present invention.
  • FIG. 10 is a cross-sectional elevation view of the soft washer of the take-up device of the present invention taken along view line 10 - 10 in FIG. 9 .
  • FIG. 11 is a top plan view of the insert segments of the take-up device of the present invention.
  • FIG. 12 is a cross-sectional elevation view of the insert segments of the take-up device of the present invention taken along view line 12 - 12 in FIG. 11 .
  • FIG. 13 is a top plan view of the take-up device of the present invention.
  • FIG. 14 is a cross-sectional elevation view of the take-up device of the present invention taken along view line 14 - 14 in FIG. 13 .
  • FIG. 15A is a cutaway elevation view of a connection made with the take-up device of the present invention, showing a threaded rod perfectly centered within and parallel to the inner bore.
  • FIG. 15B is a cutaway elevation view of a connection made with the take-up device of the present invention, showing a threaded rod imperfectly centered within and not parallel to the inner bore, with the insert segments rotated to accommodate the angle of the threaded rod.
  • FIG. 16 is a cutaway cross-sectional elevation view of the interface between the insert segments and the outer bore of the take-up device housing of the present invention.
  • FIG. 17 is a perspective view of an insert segment of the take-up device of the present invention.
  • FIG. 18 is a perspective view of an insert segment of the take-up device of the present invention.
  • the insert segment shown in FIG. 18 has smaller inner bore than the similar insert segment shown in FIG. 17 .
  • FIG. 19 is a top plan view of the take-up device of the present invention.
  • the take-up device shown in FIG. 19 has a smaller inner bore than the similar take-up device shown in FIG. 13 .
  • FIG. 20 is a cross-sectional elevation view of the take-up device of the present invention taken along view line 20 - 20 in FIG. 19 ; the take-up device shown in FIG. 20 has a smaller inner bore than the similar take-up device shown in FIG. 14 .
  • the take-up device 1 of the current invention is described in a single, most common, orientation (except as noted otherwise) in which a top faces up and a bottom faces down.
  • the take-up device 1 can, nevertheless, be installed in essentially any orientation, so that a top can face down or to the side and a bottom can face up or to the side.
  • the take-up device 1 of the present invention preferably has four insert segments 2 arranged sectionally around an inner bore 16 . Greater or lesser numbers of insert segments 2 are possible, but four is preferred.
  • the insert segments 2 are designed to grasp a preferably vertical tie rod or threaded bolt 24 .
  • vertical tie rod 24 is a least threaded where it is grasped by insert segments 2 .
  • Vertical tie rod 24 can be wholly threaded, partially threaded, or unthreaded, although if is unthreaded it is preferable to have a grooved surface that can mate with similar grooves on the insert segments 2 for achieving design load values, although alternate methods of the grasping of the insert segments 2 of the tie rod 24 are encompassed within the invention.
  • the insert segments 2 preferably surround the tie rod or threaded bolt 24 , but with gaps between the insert segments 2 .
  • each insert segment 2 has a substantially planar top surface 3 .
  • the top surface 3 need not be planar, but it is generally advantageous to maximize the area of the top surface 3 because the top surface 3 is where the insert segments 2 are pushed down by compression member 46 which helps to prevent the insert segments 2 from rotating too far out of their upright orientation when the tie rod 24 pushes them upwardly and outwardly during shrinkage of the building or installation of the tie rod 24 , and thus the insert segments 2 are properly positioned to grasp the tie rod 24 as firmly as possible when the tie rod 24 is in tension again.
  • the top surface 3 of each insert segment 2 preferably has a concave inner bore-defining edge 4 that has a first end 5 and a second end 5 .
  • the inner bore-defining edge 4 is preferably an arc 4 .
  • a substantially straight first side edge 6 connects the first end 5 of the concave inner bore-defining edge 4 to the first end 8 of a convex outer bore edge 7 .
  • a substantially straight second side edge 6 connects the second end 5 of the concave inner bore-defining edge 4 to a second end 8 of the convex outer bore edge 7 .
  • the first and second substantially straight side edges 6 of the top surface 3 are preferably orthogonal to each other.
  • the outer bore edge 7 is preferably a nearly 90-degree arc 7 except where the arc 7 is interrupted by a tab 9 that projects from the convex outer bore edge 7 .
  • the tab 9 has a slightly curved outer edge 10 with first and second ends 11 that are connected to the arc 7 by first and second substantially straight side edges 12 , respectively.
  • the tab 9 is preferably formed as an integral part of the insert segment 2 , rather than as a separate part attached to the insert segment 2 .
  • the distance between opposite outer edges 10 of the tabs 9 of opposed segments 2 is preferably 1.375 inches.
  • each insert segment 2 preferably has first and second substantially planar sides 13 perpendicular to the top surface 3 .
  • the first substantially planar sides 13 extend downward from the first and second edges 6 of the top surface 3 .
  • the first and second substantially planar sides 13 are preferably orthogonal to each other.
  • Each insert segment 2 preferably has a rough, threaded, concave inner bore-defining surface 14 that extends downward from the concave inner bore-defining edge 4 and connects the first and second substantially planar sides 13 .
  • each bore-defining surface 14 is primarily a section of a rough, threaded, right circular cylindrical surface 15 that defines the inner bore 16 . As shown in FIGS.
  • each insert segment 2 preferably has an outer bore-interfacing surface 17 that extends downward from the arc 7 of the outer bore edge 7 .
  • the outer bore-interfacing surface 17 and the inner bore 16 preferably has a surface roughness of 125-250 micro-inches (3.2-6.3 ⁇ m).
  • each tab 9 has a substantially planar outer surface 18 that descends from the outer edge 10 .
  • Each tab 9 preferably has first and second substantially planar side surfaces 19 that descend from the first and second side edges 12 , respectively, of the tab 9 .
  • each tab 9 has a substantially planar bottom surface 20 opposite the top surface 103 of the tab 9 .
  • each tab 9 is 0.250 inches wide from the first side edge 12 to the second side edge 12 , and each tab 9 is preferably 0.120 inches thick from the top surface 103 to the bottom surface 20 .
  • the general shape of the lower portion of the outer bore-interfacing surfaces 17 of the insert segments 2 is collectively that of a spherical segment—a spherical cap with the top truncated or a spherical frustum.
  • a radius of 0.5 inches is preferred.
  • the insert segments 2 generally have the form of an inverted dome with the inverted apex cut off parallel to the base. If there are four insert segments 2 , each is approximately one quarter of the spherical frustum and the spherical frustum is vertically quartered, and the quarters preferably spaced slightly apart.
  • Two segments 2 side-by-side have the general shape of an inverted semi-dome.
  • the outer bore-interfacing surfaces 17 preferably taper from the top surfaces 3 of the insert segments 2 to bottom edges 21 of the insert segments 2 , reducing the cross-section of each insert segment 2 from the top surface 3 to the bottom edge 21 .
  • the general shape of the upper portion 104 of the outer bore-interfacing surface 17 of the insert segments 2 is collectively that of a cylinder with tabs 9 splayed circumferentially.
  • the lower portion 105 the outer bore-interfacing surface 17 of the insert segments 2 curves inward.
  • each tab 9 joins the tapering outer bore-interfacing surface 17 of its insert segment 2 at a tab juncture 25 that has a radius of 0.020 inches.
  • the insert segments 2 together preferably form an inverted dome with a central vertical through-bore.
  • the rough, preferably threaded, inner bore-defining surface 14 of each insert segment 2 extends from a top end 22 to a bottom end 23 , where the inner bore 16 flares outward with a substantially annular widening taper surface 36 , or chamfer 36 , on each insert segment 2 that meets the bottom edge 21 of each insert segment.
  • These flared, or beveled, bottom portions 36 of the inner bore 16 are where the tie rod or threaded bolt 24 is inserted; the flared portions 36 ease insertion of the tie rod or threaded bolt 24 .
  • Each substantially planar widening taper surface 36 is preferably oriented at 45 degrees to the top surfaces 3 of the insert segments 4 and at 45 degrees to the central axis 100 of the take-up device 1 , with the acceptable range being up to 15 degrees more or less.
  • each taper surface 36 is a surface section of a conical frustum.
  • the flared bottom portions 36 widen the inner bore 16 to a maximum width of 0.545 inches across.
  • the bottom edge 21 is preferably not a true edge, but is instead a very narrow annular surface 21 , a flat base 21 that helps to stabilize the insert segments 2 . As shown in FIG.
  • the bottom edge 21 of each insert segment is preferably 0.0085 inches across parallel to the top surface 3 : the maximum width across the lowest part of the insert segments 2 collectively is 0.562 inches from edge 21 to edge 21 of opposed segments 2 when the insert segments 2 are resting on the ledge 45 of the outer bore 27 ; the height of the insert segments 2 , measured from the top surface 3 to the bottom edge 21 , is preferably 0.539 inches.
  • the height of the insert segments 2 is sufficient to grasp enough of the tie rod or threaded bolt 24 for a secure connection 110 by connecting to multiple turns of the threaded bolt 24 .
  • the insert segments 2 are held apart by the tie rod or threaded bolt 24 , so that adjacent sides 13 of the insert segments 2 do not interface but are instead held 0.062 inches apart.
  • the inventors have engineered and developed two preferred sizes of the take-up device 1 of the present invention.
  • the inventors contemplate developing additional sizes for larger sizes of tie rods 24 and will adjust dimensions to maximize the performance of the take-up device with the different tie rods 24 .
  • the two sizes differ only in the dimension of the right circular cylindrical surfaces 15 that define the inner bore 16 , which in a first embodiment is sized to accept a 3 ⁇ 8-16 UNC threaded rod 24 (best shown in FIG. 20 ) and in a second embodiment is sized to accept a 1 ⁇ 2-13 UNC threaded rod 24 (best shown in FIG. 14 ).
  • the maximum diameter of the rough, threaded, concave inner bore-defining surface 14 (made up of the right circular cylindrical surfaces 15 ) of the inner bore 16 is 0.342 inches when the threaded rod is 3 ⁇ 8-16 UNC.
  • the maximum diameter of the rough, threaded, concave inner bore-defining surface 14 (made up of the right circular cylindrical surfaces 15 ) of the inner bore 16 is 0.459 inches.
  • the insert segments 2 fit into an outer bore 27 in a housing 26 that holds the segments 2 in the correct sectional arrangement to form the inner bore 16 .
  • the housing 26 is preferably a seamless, unitary member 26 with a vertical body 28 that is preferably cylindrical and contains the outer bore 27 and a horizontal plate 29 below the vertical body 28 .
  • the horizontal plate 29 has a top face 101 and a bottom face 102 .
  • the horizontal plate 29 is shaped generally as an elongated rhombus with two relatively closely spaced corners 30 and two relatively distantly spaced corners 31 .
  • the two relatively closely spaced corners 30 and two relatively distantly spaced corners 31 are preferably rounded.
  • the two closely spaced opposing corners 30 do not extend beyond the cylindrical body 28 and match the curvature of the cylindrical body 28 where the plate 29 and cylindrical body 28 coincide.
  • the two distantly spaced opposing corners 31 are spaced away from the cylindrical body 28 .
  • the plate 29 has a fastener opening 32 between each distantly spaced 31 corner and the cylindrical body 28 .
  • each of the fastener openings 32 has a diameter of 0.171 inches.
  • the fastener openings 32 are preferably spaced 1.886 inches apart on center.
  • the center of the outer bore 27 is 0.943 inches from the centers of the fastener openings 32 .
  • the cylindrical vertical body 28 preferably has an outer diameter of 1.283 inches.
  • the vertical body 28 has a top edge 33 .
  • the outer bore 27 within the vertical body 28 has a diameter at the top edge 33 of 1.123 inches. Therefore, the vertical body 28 has a wall 34 that is preferably 0.16 inches thick at the top edge 33 .
  • the cylindrical vertical body 28 is 1.209 inches in diameter from the middle of the wall 34 across to the middle of wall 34 opposite.
  • the top edge 33 is preferably flat except where it is notched with a number of indentations or slots 35 that match the tabs 9 on the insert segments 2 .
  • Each tab 9 preferably fits in an indentation 35 and preferably extends outside the vertical body 28 , and the interlock prevents the insert segments 2 from rotating around the central axis 100 .
  • the interface between the tabs 9 and the indentations 35 also helps to stabilize the insert segments 2 , helping to keep them level especially when a threaded rod 24 is inserted into the inner bore 16 .
  • the threaded rod 24 is preferably pushed in without rotation and the insert segments 2 react by moving apart and together, ratcheting when the threaded inner bore 16 interfaces with a threaded bolt 24 .
  • the compression member 46 allows the insert segments 2 to move up within the housing 26 , and the upwardly-widening outer bore 27 allows the insert segments 2 to move apart. This allows the threaded bolt 24 to be inserted into the inner bore 16 , and as the threaded bolt 24 and the threaded portion of inner surfaces 14 of the insert segments 2 slide against each other, the segments 2 are moved up and outwardly and down and inwardly repeatedly, the inward motion urged by the compression member 46 and the narrowing outer bore 27 in the housing 2 .
  • the threaded bolt 24 can only be inserted in one direction because when it is pulled down, the downwardly-narrowing outer bore 27 forces the insert segments 2 against the threaded rod 24 so that the threaded bolt 24 and the threaded portion of inner surfaces 14 of the insert segments 2 interlock as if the threaded bolt 24 had been screwed into a conventional solid nut.
  • the housing 26 has a lateral horizontal axis 37 that passes through centers of the two fastener openings 32 and the center of the outer bore 27 , which is preferably also the center of the cylindrical body 28 , the housing 26 and the inner bore 16 .
  • the housing 26 also has a medial horizontal axis 38 that also passes through the center of the outer bore 27 and is orthogonal to the lateral horizontal axis 37 .
  • the indentations 35 are preferably centered on first and second diagonal horizontal axes 39 that are 45 degrees off of the lateral horizontal axis 37 and the medial horizontal axis 38 .
  • each indentation 35 is preferably 0.281 inches wide along the circumference of the top edge 33 of the cylindrical body 28 .
  • each indentation 35 is 0.454 inches deep from the top edge 33 of the cylindrical body 28 .
  • the outer bore 27 preferably descends at right angles to the flat surface of the top edge 33 .
  • the outer bore 27 descends 0.045 inches to a groove 40 that runs parallel to the top edge 33 .
  • the groove 40 is 0.062 inches tall and has cross-section that is U-shaped in cross-section, with an internal radius of 0.031 inches.
  • the outer bore 27 preferably descends another 0.324 inches straight down, creating an upper vertical portion 41 that descends a total of 0.431 inches straight down from the top edge 33 ; the groove 40 is within that upper vertical portion 41 .
  • the outer bore 27 preferably tapers inward at an angle of 65 degrees relative to the bottom face 102 of the horizontal plate 29 , creating a middle inward-angled portion 42 .
  • the middle inward-angled portion 42 transitions to a lower inward-curved portion 43 that preferably has a radius of 0.510 inches in a vertical plane. This closely matches the 0.5-inch radius, also in a vertical plane, of lower portion 105 of the outer bore-interfacing surfaces 17 of the insert segments 2 .
  • the lower inward-curved portion 43 reduces the taper angle from 65 degrees.
  • the middle inward-angled portion 42 and the lower inward-curved portion 43 together reduce the diameter of the outer bore 27 , and their collective depth is preferably 0.419 inches, so that with the upper vertical portion 41 the collective depth is preferably 0.85 inches.
  • the outer bore 27 has a bottom portion 44 that is flared and preferably has a depth of 0.091 inches and that slightly increases the diameter of the outer bore 27 from a minimum of 0.545 inches at the bottom face 102 of the horizontal plate 29 to 0.558 inches. The slight widening of the bottom flared portion 44 eases insertion of the threaded rod 24 .
  • a horizontal, or flat, ledge 45 that is 0.0115 inches wide and orthogonal to the central axis 100 of the housing 26 .
  • the diameter of the outer bore 27 is 0.568 inches at the bottom of the lower inward-curved portion 43 and is 0.545 inches at the top of the bottom flared portion 44 .
  • This horizontal ledge 45 helps to keep the insert segments 2 level when a threaded rod 24 is inserted into the ratcheting take-up device 1 to create the basic connection 110 .
  • the preferred total height of the outer bore is 0.941 inches.
  • the compression member 46 preferably comprises a lower hard washer 47 , a middle soft washer 48 and an upper hard washer 47 .
  • the middle soft washer 48 is preferably made from a resilient material like rubber that, when compressed, stores energy and expands when compression forces are released.
  • the middle soft washer 48 is made from soft quick-recovery super-resilient polyurethane foam, which has a firmness at 25 percent deflection, of 4-8 psi, a tensile strength of 40 psi, a stretch limit of 100 percent, and a density of 15 pounds per cubic foot.
  • the middle soft washer 48 functions like a standard metal compression spring and a spring could be used, but the washer 48 is preferred.
  • the middle soft washer 48 preferably a 0.235-inch thick ring with an outer diameter of 1 inch and an inner diameter of 0.567 inches.
  • the inner diameters of the compression member 46 limit how far the insert segments 2 can tilt or rotate.
  • the upper and lower hard washers 47 are preferably made from steel.
  • each has an inner edge 50 , an outer edge 51 , an upper surface 52 and a lower surface 53 .
  • the inner edge 50 and the outer edge 51 are both generally circular.
  • the inner edge preferably has a pair of inclusions 52 , each with a preferred radius of 0.063 inches that evenly divide the remainder into two arcs 53 with a diameter of 0.562 inches.
  • the outer edge 51 has four pairs of inclusions 54 , each with a preferred radius of 0.063 inches.
  • Each pair of inclusions 54 preferably is 90 degrees apart around the circumference of the outer edge 51 .
  • between the inclusions 54 of each pair is a small arc 55 that is preferably 0.254 inches wide.
  • These four small arcs 55 preferably each have a diameter of 1.187 inches.
  • between each pair of inclusions 54 is a large arc 56 with a diameter of 1.108 inches.
  • the preferred total of eight inclusions 54 in the outer edge 51 bound an inner area with a circumference 57 with a diameter of 1.068 inches.
  • the upper and lower hard washers 47 are preferably 0.047 inches thick.
  • the small arcs 55 which project slightly from the rest of the outer edges 51 of the upper and lower hard washers 47 , and are therefore on slight projections 49 that are inserted in the indentations 35 in the wall 34 of the cylindrical body 28 of the housing 26 of the take-up device 1 .
  • the lower hard washer 47 is stabilized by the interfaces between the small arcs 55 and the indentations 35 .
  • the upper hard washer 47 is rotated so small arcs 55 slide into the groove 40 in the wall 34 of the cylindrical body 28 of the housing 26 of the take-up device 1 . This locks the upper hard washer 47 in place.
  • the upper hard washer 47 holds the middle soft washer 48 and the lower hard washer 47 in place, and this whole compression member 46 holds the insert segments 2 down within the outer bore 27 of the take-up device 1 .
  • the middle soft washer 48 compresses and, because it is resilient, the middle soft washer 48 pushes the insert segments 2 down when the upper hard washer 47 is locked in place.
  • the whole compression member 46 functions as a spring tailored for the best performance in this device 1 and connection 110 .
  • the insert segments 2 clamp together on the tie rod or threaded bolt 24 .
  • the matching curvatures of the bore-interfacing surfaces 17 of the insert segments 2 and the inward-curved portions 43 of the outer bore 27 allow the insert segments 2 to rotate or swing on a horizontal axis generally orthogonal to, and intersecting with, the tie rod or threaded bolt 24 without diminishing the interface area. This allows the take-up device 1 to compensate for imperfect alignment of the tie rod or threaded bolt 24 without diminishing the strength of the connection 110 .
  • the insert segments 2 can tilt, or rotate, in any direction.
  • the segments 2 need only rotate a maximum of two degrees from the central axis 100 , but the ability to do this without diminishing the interface with the outer bore 27 and the strength of the connection 110 is substantially advantageous since tie rods or threaded bolts 24 are rarely, if ever, aligned perfectly.
  • an anchor bolt 118 is embedded in a concrete foundation 112 .
  • the anchor bolt 118 passes through the horizontal bottom plate 113 of a wall 111 , in this case the mudsill 113 , and it attached to a coupler 117 that bears down on a holdown 116 that is mounted on one of the vertical wall studs 114 .
  • the coupler 117 joins the anchor bolt 118 to an in-line threaded rod 24 that runs parallel to the wall stud 114 and up through the double top plate 115 , where it is secured to the top plate 115 by a take-up device 1 of the present invention that is fastened to the top plate 115 with a bearing plate 120 sandwiched between the bottom face 102 of the take-up device 1 and the top plate 115 .
  • take-up devices 1 of the present invention can be placed at every level of a multistory structure.
  • a first take-up device 1 is shown fastened to the bottom plate 113 of an upper floor and a second take-up device 2 is attached to the top plate 115 directly above.
  • the present invention is a take-up device 1 that has a housing 26 and a plurality of insert segments 2 .
  • the housing 26 has an outer bore 27 and the outer bore 27 has a lower inward-curved portion 43 that is frusto-spherical.
  • the insert segments 2 each has an outer bore-interfacing surface 17 that interfaces with the inward-curved portion 43 of the outer bore 27 of the housing 26 .
  • the outer bore-interfacing surfaces 17 of the plurality of insert segments 2 are at least in part collectively frusto-spherical.
  • Each insert segment 2 has a concave inner bore-defining surface 14 and the plurality of concave inner bore-defining surfaces 14 define an inner bore 16 .
  • the outer bore 27 of the housing 26 has a ledge 45
  • the insert segments 2 each have a bottom edge 21
  • the bottoms edges 21 of the insert segments 2 interface with the ledge 45 in the outer bore 27 , stabilizing the insert segments 2 .
  • the take-up device 1 preferably has four insert segments 2 .
  • Each insert segment 2 preferably has a substantially planar top surface 3 .
  • the top surface 3 preferably has a concave inner bore-defining edge 4 with first and second ends 5 , a convex outer bore edge 7 with first and second ends 8 , a first substantially straight side edge 6 that connects the first end 5 of the inner bore-defining edge 4 to the first end 8 of the outer bore edge 7 , and a second substantially straight side edge 6 that connects the second end 5 of the inner bore-defining edge 4 to the second end 8 of the outer bore edge 7 .
  • Each segment 2 preferably also has a tab 9 on the convex outer bore edge 7 , an inner bore-defining surface 14 that descends from the inner bore-defining edge 4 , and an outer bore-interfacing surface 17 that descends from the outer bore-defining edge 7 and tapers a bottom edge 21 .
  • the inner bore 12 of the take-up device 1 is threaded.
  • the housing 26 preferably also has a horizontal plate 29 and a vertical body 28 that surmounts the horizontal plate 29 and the outer bore 27 of the housing 26 is contained within the vertical body 28 .
  • the vertical body 28 is cylindrical and has an outer wall 34 with a top edge 33 , a plurality of indentations 35 extend down from the top edge 33 of the wall 34 , and a tab 9 of an insert segment 2 interfaces with each of the indentations 35 in the wall 34 of the cylindrical vertical body 28 .
  • the insert segments 2 are preferably retained within the outer bore 27 by a compression member 46 .
  • the compression member 46 has an upper hard washer 47 , and a resilient lower soft washer 48 that pushes the insert segments 2 downward in the outer bore 27 and is restrained from upward movement by the upper hard washer 47 .
  • the compression member 46 preferably also has a lower hard washer 47 that is between the resilient lower soft washer 48 and the insert segments 2 .
  • the upper and lower hard washers 47 each have an outer edge 51 with a plurality of projections 49 .
  • the outer bore 27 preferably has a groove 40 connected to the indentations 35 in wall 34 of the cylindrical body 28 .
  • the projections 49 of the upper hard washer 47 project into the groove 40 in the outer bore 27 , restraining the compression member 46 .
  • the projections 49 of the lower hard washer 47 preferably project into the indentations 35 in wall 34 of the cylindrical body 28 , stabilizing the compression member 46 .
  • the take-up device 1 is part of a connection 110 that has a first structural member 115 to which the take-up device 1 is fastened, and a tie rod 24 with a top end 124 at least partially held within the inner bore 16 of the take-up device 1 by a plurality of the insert segments 2 .
  • the first structural member 115 preferably is a top plate 115 in an at least partially wood frame wall 111 , and a bearing plate 120 is disposed between the first structural member 115 and the take-up device 1 .
  • the tie rod 24 is secured to a foundation 112 below the wood frame wall 111 .
  • the outer bore 27 of the take-up device 1 preferably has a central vertical axis 100 .
  • the insert segments 2 that hold the tie rod 24 are canted so the inner bore 16 is parallel to the tie rod 24 where the tie rod 24 is held by the insert segments 2 but the inner bore is not parallel to the central vertical axis 100 of the outer bore 27 .
  • connection 110 is formed by inserting the top end 124 of the tie rod 24 into the inner bore 16 of the take-up device and fastening the take-up device 1 to the first structural member 115 .
  • the take-up device 1 is preferably fastened to the first structural member 115 with a plurality of screws or nails 119 . Screws provide a stronger connection than nails, but nails are less expensive and can still often provide the necessary strength for the connection.

Abstract

A ratcheting take-up device that compensates for imperfect alignment in a tie rod continuity system in the frame of a building wall. The upper ends of the tie rods are tightly clamped within the take-up device by domed segments inserted in a bowl-shaped housing. The segments are also forced together by a compression member in the housing. The domed shape of the segments and the bowl shape of the housing cooperate so that the segments can rotate in any direction to accommodate tie rods that are not perfectly vertical, without a corresponding loss of strength in the connection.

Description

BACKGROUND OF THE INVENTION
The present invention relates generally to building construction and reinforcement, and specifically to a continuity system that resists tension from wind uplift forces or overturning forces from wind or seismic events while compensating for the downward settling of buildings caused by shrinkage of wooden members. Most specifically, the present invention relates to a ratcheting take-up device that reduces slack due to wood shrinkage and building settling in a holdown system of continuous rods, eases installation and compensates for imperfectly aligned rods.
A continuity system is a secondary support system that ties walls or other building elements together and resists lateral overturning forces or uplift forces from events such as earthquakes or strong winds. Earthquake and wind forces produce overturning and uplift loads in the building, which load the building elements in overturning or uplift with respect to the building foundation. A continuity system resists such movements of the building elements. A continuity system generally comprises a plurality of interconnected vertically-oriented elements, typically metal rods and bearing plates, or holdowns, that provide a discrete structural mechanism or load path framework for the transfer of loads through the building from the structural elements that are intended to resist such forces, such as roof or floor diaphragms and shearwalls, to the continuity system, and then to the foundation. For example, the presence of a continuity system enables wall panels to resist overturning and/or moments that might damage or destroy the wall.
A known continuity system is described in U.S. Pat. No. 4,875,314 (“the '314 patent”), the entire disclosure of which is hereby incorporated herein by reference. The '314 patent describes a system in which at least one tie rod is connected to the foundation through a simple threaded coupler and a foundation anchor. Although the tie rod system can be used in a single-story structure, it is particularly suited to multistory structures, as illustrated in the '314 patent. In a multistory structure, a series of anchor elements is used to couple multiple tie rods in a line from the foundation to the top plate of the top story of the structure. The anchor elements of the '314 patent, in addition to coupling tie rods together, are used to secure the tie rods at each level of the structure to eliminate initial slack in the system. The principal shortcoming of the system of the '314 patent is the lack of a means of compensating for slack that builds up in the system as the wood structural members shrink over time. As slack builds up in the system, the system's capacity to resist uplift is correspondingly reduced.
The prior art includes a number of technical solutions to the problem of increasing slack in continuity systems. Simpson Strong-Tie Company's Anchor Tiedown System uses the TUD and ATUD take-up devices, as well as the CTUD coupling take-up device. The CTUD coupling take-up device is the subject of U.S. Pat. No. 7,905,066, granted to Steven E. Pryor et al. All three devices are driven by a torsion spring. The TUD and ATUD are slipped over the tie rod between a horizontally disposed member and a nut threaded onto the tie rod, and they expand to fill the space as it expands enlarges. The CTUD threads onto and couples the vertically-aligned ends of two tie rods, drawing the two together to maintain tight connections between the wood and steel elements as the wood structural members shrink over time.
Similar continuity systems with ratcheting take-up devices are described in U.S. Pat. No. 6,007,284 the entire disclosure of which is hereby incorporated herein by reference, and U.S. Pat. No. 7,744,322, the entire disclosure of which is also hereby incorporated herein by reference. These devices, while similar in both basic form and function to the present invention, lack inventive features of the present invention.
The ratcheting take-up device of the present invention eases installation of continuity systems, compensates for tie rods that are not perfectly perpendicular to the top and bottom plates, and takes up slack in the continuity system after installation.
SUMMARY OF THE INVENTION
The take-up device of the present invention has a plurality of insert segments with concavities that form an inner bore. The insert segments are contained within a housing that has an outer bore. The lower portion of the outer bore in the housing narrows. The lower portions of the insert segments and the lower portion of outer bore contained by the housing have frusto-spherical bearing surfaces. The insert segments are formed and arranged so that they grasp and hold a tie rod received in the housing when a wind uplift or a shear wall overturning force is applied to the wall of which the take-up device is a part. When a wind uplift or a shear wall overturning force is applied to the wall, the tie rod is placed in tension from an anchoring, reactive force pulling on the tension rod from below the housing while the structural member that is part of the wall to which the take-up device is attached pushes upwardly on the housing of the take-up device. The tie rod, the insert segments and the housing are formed such that when the tie rod moves downwardly with respect to the housing, the insert segments will be pulled downwardly in the housing as well. The tension on the tie rod combined with the narrowing in the lower portion of the outer bore of the housing causes a constriction of the insert segments about the tie rod forcing them to grasp and hold the tie rod, preventing any further downward movement of the tie rod with respect to the housing and thus to the building component to which the housing is attached.
An important advantage of the take-up device of the present invention is that its frusto-spherical bearing surfaces allow it to anchor imperfectly aligned tie rods by swinging about a central pivot on the vertical axis of the device in any direction without a reduction in the bearing surfaces or the strength of the anchorage. The lower portions of the insert segments collectively have the geometry of a spherical segment—a spherical cap with the top truncated, or a spherical frustum. The first frusto-spherical bearing surface is the outward-facing, lower surfaces of the insert segments taken together. The second frusto-spherical bearing surface is the inward-facing lower portion of the outer bore of the housing. The insert segments are inserted in the outer bore of the housing. The frusto-spherical sections of each, solid in the segments and hollow in the outer bore, are closely matched. Because the lower bearing surfaces of the insert segments are able to rotate or swing to be in contact with a matching surface in the lower portion of the outer bore of the device housing, there is little or no reduction in the net bearing interface when the rod received by the nut segments is out of alignment with the vertical axis of the housing.
A further advantage of the present invention is that the housing and insert segments are shaped and arranged to allow a tie rod to be quickly inserted through the inner bore formed by the insert segments by pushing the tie rod up through the bore. When a tie rod is first inserted up into the housing, the upward movement of the tie rod forces the insert segments apart from a constricted position—the constriction preferably caused by the downward force of gravity and possibly by a compression member placed above the insert segments, combined with the narrowing in the lower portion of the outer bore of the housing—to the width of the tie rod. The interface between the surfaces of the tie rod and the insert segments creates a ratcheting action as the tie rod is pushed up and the insert segments move up and out laterally, allowing the tie rod to be inserted as far as needed into the housing for installation. When the building shrinks, the relative movement of the tie rod and the housing is similar to movement during installation. The relative upward movement of the rod with respect to the housing pushes the insert segments up and out laterally, and gravity and any relative downward movement of the tension rod as well as the usual tension that is placed on the rod once it is installed pulls the insert segments downwardly and inwardly in combination with the narrowing of the outer bore of the housing and thus against the rod, holding it with respect to the housing.
A further object of the present invention is to provide insert segments that are made with flat tops and bottom edges and in the preferred embodiment are compressed by a member with a flat surface so that it allows tie rods to be inserted with a minimal risk of jamming the take-up device because the insert segments are held in place by a flat, hard washer above, which interface with flat surfaces at the tops of the insert segments to stabilize them as they expand away from and constrict towards the central vertical axis of the device. Another object of the present invention is to provide the housing with a small ledge which interfaces with the bottom edges of the insert segments to stabilize them as they expand away from and constrict towards the central vertical axis of the device.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of the take-up device of the present invention.
FIG. 2 is an exploded perspective view of the take-up device of the present invention.
FIG. 3 a perspective view of a connection made with the take-up device of the present invention, showing the take-up device installed on the top plate of a stud wall.
FIG. 4 is a perspective view of a connection made with the take-up device of the present invention, showing two take-up devices of the present invention, each installed on a different level of the same structure.
FIG. 5 is a top plan view of the housing of the take-up device of the present invention.
FIG. 6 is a cross-sectional elevation view of the housing of the take-up device of the present invention taken along view line 6-6 in FIG. 5.
FIG. 7 is a top plan view of the upper and lower hard washers of the compression member of the take-up device of the present invention.
FIG. 8 is a cross-sectional elevation view of the hard washers of the take-up device of the present invention taken along view line 8-8 in FIG. 7.
FIG. 9 is a top plan view of the soft washer of the take-up device of the present invention.
FIG. 10 is a cross-sectional elevation view of the soft washer of the take-up device of the present invention taken along view line 10-10 in FIG. 9.
FIG. 11 is a top plan view of the insert segments of the take-up device of the present invention.
FIG. 12 is a cross-sectional elevation view of the insert segments of the take-up device of the present invention taken along view line 12-12 in FIG. 11.
FIG. 13 is a top plan view of the take-up device of the present invention.
FIG. 14 is a cross-sectional elevation view of the take-up device of the present invention taken along view line 14-14 in FIG. 13.
FIG. 15A is a cutaway elevation view of a connection made with the take-up device of the present invention, showing a threaded rod perfectly centered within and parallel to the inner bore.
FIG. 15B is a cutaway elevation view of a connection made with the take-up device of the present invention, showing a threaded rod imperfectly centered within and not parallel to the inner bore, with the insert segments rotated to accommodate the angle of the threaded rod.
FIG. 16 is a cutaway cross-sectional elevation view of the interface between the insert segments and the outer bore of the take-up device housing of the present invention.
FIG. 17 is a perspective view of an insert segment of the take-up device of the present invention.
FIG. 18 is a perspective view of an insert segment of the take-up device of the present invention; the insert segment shown in FIG. 18 has smaller inner bore than the similar insert segment shown in FIG. 17.
FIG. 19 is a top plan view of the take-up device of the present invention; the take-up device shown in FIG. 19 has a smaller inner bore than the similar take-up device shown in FIG. 13.
FIG. 20 is a cross-sectional elevation view of the take-up device of the present invention taken along view line 20-20 in FIG. 19; the take-up device shown in FIG. 20 has a smaller inner bore than the similar take-up device shown in FIG. 14.
DETAILED DESCRIPTION
For clarity and convenience, the take-up device 1 of the current invention is described in a single, most common, orientation (except as noted otherwise) in which a top faces up and a bottom faces down. The take-up device 1 can, nevertheless, be installed in essentially any orientation, so that a top can face down or to the side and a bottom can face up or to the side.
As best shown in FIGS. 2 and 11, the take-up device 1 of the present invention preferably has four insert segments 2 arranged sectionally around an inner bore 16. Greater or lesser numbers of insert segments 2 are possible, but four is preferred. The insert segments 2 are designed to grasp a preferably vertical tie rod or threaded bolt 24. Preferably, vertical tie rod 24 is a least threaded where it is grasped by insert segments 2. Vertical tie rod 24 can be wholly threaded, partially threaded, or unthreaded, although if is unthreaded it is preferable to have a grooved surface that can mate with similar grooves on the insert segments 2 for achieving design load values, although alternate methods of the grasping of the insert segments 2 of the tie rod 24 are encompassed within the invention. The insert segments 2 preferably surround the tie rod or threaded bolt 24, but with gaps between the insert segments 2. Preferably, each insert segment 2 has a substantially planar top surface 3.
The top surface 3 need not be planar, but it is generally advantageous to maximize the area of the top surface 3 because the top surface 3 is where the insert segments 2 are pushed down by compression member 46 which helps to prevent the insert segments 2 from rotating too far out of their upright orientation when the tie rod 24 pushes them upwardly and outwardly during shrinkage of the building or installation of the tie rod 24, and thus the insert segments 2 are properly positioned to grasp the tie rod 24 as firmly as possible when the tie rod 24 is in tension again. The top surface 3 of each insert segment 2 preferably has a concave inner bore-defining edge 4 that has a first end 5 and a second end 5. The inner bore-defining edge 4 is preferably an arc 4. Preferably, a substantially straight first side edge 6 connects the first end 5 of the concave inner bore-defining edge 4 to the first end 8 of a convex outer bore edge 7. Preferably, a substantially straight second side edge 6 connects the second end 5 of the concave inner bore-defining edge 4 to a second end 8 of the convex outer bore edge 7. The first and second substantially straight side edges 6 of the top surface 3 are preferably orthogonal to each other. The outer bore edge 7 is preferably a nearly 90-degree arc 7 except where the arc 7 is interrupted by a tab 9 that projects from the convex outer bore edge 7. Preferably, the tab 9 has a slightly curved outer edge 10 with first and second ends 11 that are connected to the arc 7 by first and second substantially straight side edges 12, respectively. The tab 9 is preferably formed as an integral part of the insert segment 2, rather than as a separate part attached to the insert segment 2.
In the currently preferred embodiments of the invention optimized to grasp a ⅜″ or ½″ diameter threaded rod, in which there are four insert segments 2, as shown in FIGS. 11 and 14, the distance between opposite outer edges 10 of the tabs 9 of opposed segments 2 is preferably 1.375 inches.
As best shown in FIGS. 12, 17 and 18, each insert segment 2 preferably has first and second substantially planar sides 13 perpendicular to the top surface 3. Preferably, the first substantially planar sides 13 extend downward from the first and second edges 6 of the top surface 3. The first and second substantially planar sides 13 are preferably orthogonal to each other. Each insert segment 2 preferably has a rough, threaded, concave inner bore-defining surface 14 that extends downward from the concave inner bore-defining edge 4 and connects the first and second substantially planar sides 13. Preferably, each bore-defining surface 14 is primarily a section of a rough, threaded, right circular cylindrical surface 15 that defines the inner bore 16. As shown in FIGS. 12 and 18, each insert segment 2 preferably has an outer bore-interfacing surface 17 that extends downward from the arc 7 of the outer bore edge 7. In the currently preferred embodiments of the invention the outer bore-interfacing surface 17 and the inner bore 16 preferably has a surface roughness of 125-250 micro-inches (3.2-6.3 μm).
As best shown in FIGS. 2 and 11, a portion 103 of the substantially planar top surface 3 of each insert segment 2 preferably extends radially outward away from the inner bore 16 to form the top surface 103 of each tab 9, bounded by the outer edge 10 and the two sides edges 12 of each tab 9. Preferably, each tab has a substantially planar outer surface 18 that descends from the outer edge 10. Each tab 9 preferably has first and second substantially planar side surfaces 19 that descend from the first and second side edges 12, respectively, of the tab 9. Preferably, each tab 9 has a substantially planar bottom surface 20 opposite the top surface 103 of the tab 9. In the currently preferred embodiments of the present invention, each tab 9 is 0.250 inches wide from the first side edge 12 to the second side edge 12, and each tab 9 is preferably 0.120 inches thick from the top surface 103 to the bottom surface 20.
As best shown in FIGS. 2, 12, 17 and 18, preferably the general shape of the lower portion of the outer bore-interfacing surfaces 17 of the insert segments 2 is collectively that of a spherical segment—a spherical cap with the top truncated or a spherical frustum. In the currently preferred embodiments of the present invention a radius of 0.5 inches is preferred. The insert segments 2 generally have the form of an inverted dome with the inverted apex cut off parallel to the base. If there are four insert segments 2, each is approximately one quarter of the spherical frustum and the spherical frustum is vertically quartered, and the quarters preferably spaced slightly apart. Two segments 2 side-by-side have the general shape of an inverted semi-dome. The outer bore-interfacing surfaces 17 preferably taper from the top surfaces 3 of the insert segments 2 to bottom edges 21 of the insert segments 2, reducing the cross-section of each insert segment 2 from the top surface 3 to the bottom edge 21. Preferably, the general shape of the upper portion 104 of the outer bore-interfacing surface 17 of the insert segments 2 is collectively that of a cylinder with tabs 9 splayed circumferentially. The lower portion 105 the outer bore-interfacing surface 17 of the insert segments 2 curves inward. In the currently preferred embodiments of the present invention, the substantially planar bottom surface 20 of each tab 9 joins the tapering outer bore-interfacing surface 17 of its insert segment 2 at a tab juncture 25 that has a radius of 0.020 inches. The insert segments 2 together preferably form an inverted dome with a central vertical through-bore.
As best shown in FIGS. 12, 14 and 20, the rough, preferably threaded, inner bore-defining surface 14 of each insert segment 2 extends from a top end 22 to a bottom end 23, where the inner bore 16 flares outward with a substantially annular widening taper surface 36, or chamfer 36, on each insert segment 2 that meets the bottom edge 21 of each insert segment. These flared, or beveled, bottom portions 36 of the inner bore 16 are where the tie rod or threaded bolt 24 is inserted; the flared portions 36 ease insertion of the tie rod or threaded bolt 24. Each substantially planar widening taper surface 36 is preferably oriented at 45 degrees to the top surfaces 3 of the insert segments 4 and at 45 degrees to the central axis 100 of the take-up device 1, with the acceptable range being up to 15 degrees more or less. Preferably, each taper surface 36 is a surface section of a conical frustum. In the currently preferred embodiments of the present invention, the flared bottom portions 36 widen the inner bore 16 to a maximum width of 0.545 inches across. In the currently preferred embodiments of the present invention, the bottom edge 21 is preferably not a true edge, but is instead a very narrow annular surface 21, a flat base 21 that helps to stabilize the insert segments 2. As shown in FIG. 16, in the currently preferred embodiments of the present invention, the bottom edge 21 of each insert segment is preferably 0.0085 inches across parallel to the top surface 3: the maximum width across the lowest part of the insert segments 2 collectively is 0.562 inches from edge 21 to edge 21 of opposed segments 2 when the insert segments 2 are resting on the ledge 45 of the outer bore 27; the height of the insert segments 2, measured from the top surface 3 to the bottom edge 21, is preferably 0.539 inches. The height of the insert segments 2 is sufficient to grasp enough of the tie rod or threaded bolt 24 for a secure connection 110 by connecting to multiple turns of the threaded bolt 24. In the currently preferred embodiments of the present invention, the insert segments 2 are held apart by the tie rod or threaded bolt 24, so that adjacent sides 13 of the insert segments 2 do not interface but are instead held 0.062 inches apart.
Currently, the inventors have engineered and developed two preferred sizes of the take-up device 1 of the present invention. The inventors contemplate developing additional sizes for larger sizes of tie rods 24 and will adjust dimensions to maximize the performance of the take-up device with the different tie rods 24. Currently, the two sizes differ only in the dimension of the right circular cylindrical surfaces 15 that define the inner bore 16, which in a first embodiment is sized to accept a ⅜-16 UNC threaded rod 24 (best shown in FIG. 20) and in a second embodiment is sized to accept a ½-13 UNC threaded rod 24 (best shown in FIG. 14). With the preferable spacing of 0.062 inches between the insert segments 2, the maximum diameter of the rough, threaded, concave inner bore-defining surface 14 (made up of the right circular cylindrical surfaces 15) of the inner bore 16 is 0.342 inches when the threaded rod is ⅜-16 UNC. When the threaded rod 24 is ½-13 UNC, the maximum diameter of the rough, threaded, concave inner bore-defining surface 14 (made up of the right circular cylindrical surfaces 15) of the inner bore 16 is 0.459 inches.
As best shown in FIGS. 13, 14, 19 and 20, the insert segments 2 fit into an outer bore 27 in a housing 26 that holds the segments 2 in the correct sectional arrangement to form the inner bore 16. The housing 26 is preferably a seamless, unitary member 26 with a vertical body 28 that is preferably cylindrical and contains the outer bore 27 and a horizontal plate 29 below the vertical body 28. The horizontal plate 29 has a top face 101 and a bottom face 102. Preferably, the horizontal plate 29 is shaped generally as an elongated rhombus with two relatively closely spaced corners 30 and two relatively distantly spaced corners 31. The two relatively closely spaced corners 30 and two relatively distantly spaced corners 31 are preferably rounded. The two closely spaced opposing corners 30 do not extend beyond the cylindrical body 28 and match the curvature of the cylindrical body 28 where the plate 29 and cylindrical body 28 coincide. The two distantly spaced opposing corners 31 are spaced away from the cylindrical body 28. The plate 29 has a fastener opening 32 between each distantly spaced 31 corner and the cylindrical body 28. In the currently preferred embodiments of the present invention, each of the fastener openings 32 has a diameter of 0.171 inches. The fastener openings 32 are preferably spaced 1.886 inches apart on center. The center of the outer bore 27 is 0.943 inches from the centers of the fastener openings 32.
Also, in the currently preferred embodiments of the present invention, the cylindrical vertical body 28 preferably has an outer diameter of 1.283 inches. The vertical body 28 has a top edge 33. The outer bore 27 within the vertical body 28 has a diameter at the top edge 33 of 1.123 inches. Therefore, the vertical body 28 has a wall 34 that is preferably 0.16 inches thick at the top edge 33. The cylindrical vertical body 28 is 1.209 inches in diameter from the middle of the wall 34 across to the middle of wall 34 opposite. The top edge 33 is preferably flat except where it is notched with a number of indentations or slots 35 that match the tabs 9 on the insert segments 2. Each tab 9 preferably fits in an indentation 35 and preferably extends outside the vertical body 28, and the interlock prevents the insert segments 2 from rotating around the central axis 100. The interface between the tabs 9 and the indentations 35 also helps to stabilize the insert segments 2, helping to keep them level especially when a threaded rod 24 is inserted into the inner bore 16. Rather than being screwed into the inner bore 16, the threaded rod 24 is preferably pushed in without rotation and the insert segments 2 react by moving apart and together, ratcheting when the threaded inner bore 16 interfaces with a threaded bolt 24. The compression member 46 allows the insert segments 2 to move up within the housing 26, and the upwardly-widening outer bore 27 allows the insert segments 2 to move apart. This allows the threaded bolt 24 to be inserted into the inner bore 16, and as the threaded bolt 24 and the threaded portion of inner surfaces 14 of the insert segments 2 slide against each other, the segments 2 are moved up and outwardly and down and inwardly repeatedly, the inward motion urged by the compression member 46 and the narrowing outer bore 27 in the housing 2. The threaded bolt 24 can only be inserted in one direction because when it is pulled down, the downwardly-narrowing outer bore 27 forces the insert segments 2 against the threaded rod 24 so that the threaded bolt 24 and the threaded portion of inner surfaces 14 of the insert segments 2 interlock as if the threaded bolt 24 had been screwed into a conventional solid nut.
As shown in FIG. 5, preferably the housing 26 has a lateral horizontal axis 37 that passes through centers of the two fastener openings 32 and the center of the outer bore 27, which is preferably also the center of the cylindrical body 28, the housing 26 and the inner bore 16. Preferably, the housing 26 also has a medial horizontal axis 38 that also passes through the center of the outer bore 27 and is orthogonal to the lateral horizontal axis 37. The indentations 35 are preferably centered on first and second diagonal horizontal axes 39 that are 45 degrees off of the lateral horizontal axis 37 and the medial horizontal axis 38. In the currently preferred embodiments of the present invention, each indentation 35 is preferably 0.281 inches wide along the circumference of the top edge 33 of the cylindrical body 28. Preferably, each indentation 35 is 0.454 inches deep from the top edge 33 of the cylindrical body 28.
As best shown in FIGS. 2, 6 and 16, in the currently preferred embodiments, the outer bore 27 preferably descends at right angles to the flat surface of the top edge 33. The outer bore 27 descends 0.045 inches to a groove 40 that runs parallel to the top edge 33. The groove 40 is 0.062 inches tall and has cross-section that is U-shaped in cross-section, with an internal radius of 0.031 inches. The outer bore 27 preferably descends another 0.324 inches straight down, creating an upper vertical portion 41 that descends a total of 0.431 inches straight down from the top edge 33; the groove 40 is within that upper vertical portion 41. At a depth of 0.431 inches, the outer bore 27 preferably tapers inward at an angle of 65 degrees relative to the bottom face 102 of the horizontal plate 29, creating a middle inward-angled portion 42. The middle inward-angled portion 42 transitions to a lower inward-curved portion 43 that preferably has a radius of 0.510 inches in a vertical plane. This closely matches the 0.5-inch radius, also in a vertical plane, of lower portion 105 of the outer bore-interfacing surfaces 17 of the insert segments 2. The lower inward-curved portion 43 reduces the taper angle from 65 degrees. The middle inward-angled portion 42 and the lower inward-curved portion 43 together reduce the diameter of the outer bore 27, and their collective depth is preferably 0.419 inches, so that with the upper vertical portion 41 the collective depth is preferably 0.85 inches. Below the lower inward-curved portion 43 the outer bore 27 has a bottom portion 44 that is flared and preferably has a depth of 0.091 inches and that slightly increases the diameter of the outer bore 27 from a minimum of 0.545 inches at the bottom face 102 of the horizontal plate 29 to 0.558 inches. The slight widening of the bottom flared portion 44 eases insertion of the threaded rod 24. Between the inward-curved portion 43 and the bottom flared portion 44 is a horizontal, or flat, ledge 45 that is 0.0115 inches wide and orthogonal to the central axis 100 of the housing 26. The diameter of the outer bore 27 is 0.568 inches at the bottom of the lower inward-curved portion 43 and is 0.545 inches at the top of the bottom flared portion 44. This horizontal ledge 45 helps to keep the insert segments 2 level when a threaded rod 24 is inserted into the ratcheting take-up device 1 to create the basic connection 110. The preferred total height of the outer bore is 0.941 inches.
As best shown in FIGS. 7-10, preferably the insert segments 2 are retained within the outer bore 27 by a compression member 46. The compression member 46 preferably comprises a lower hard washer 47, a middle soft washer 48 and an upper hard washer 47. The middle soft washer 48 is preferably made from a resilient material like rubber that, when compressed, stores energy and expands when compression forces are released. Preferably, the middle soft washer 48 is made from soft quick-recovery super-resilient polyurethane foam, which has a firmness at 25 percent deflection, of 4-8 psi, a tensile strength of 40 psi, a stretch limit of 100 percent, and a density of 15 pounds per cubic foot. The middle soft washer 48 functions like a standard metal compression spring and a spring could be used, but the washer 48 is preferred. In the currently preferred embodiments of the present invention, the middle soft washer 48 preferably a 0.235-inch thick ring with an outer diameter of 1 inch and an inner diameter of 0.567 inches. The inner diameters of the compression member 46 limit how far the insert segments 2 can tilt or rotate. The upper and lower hard washers 47 are preferably made from steel. Preferably, each has an inner edge 50, an outer edge 51, an upper surface 52 and a lower surface 53. Preferably, the inner edge 50 and the outer edge 51 are both generally circular. The inner edge preferably has a pair of inclusions 52, each with a preferred radius of 0.063 inches that evenly divide the remainder into two arcs 53 with a diameter of 0.562 inches. Preferably, the outer edge 51 has four pairs of inclusions 54, each with a preferred radius of 0.063 inches. Each pair of inclusions 54 preferably is 90 degrees apart around the circumference of the outer edge 51. Preferably, between the inclusions 54 of each pair is a small arc 55 that is preferably 0.254 inches wide. These four small arcs 55 preferably each have a diameter of 1.187 inches. Preferably, between each pair of inclusions 54 is a large arc 56 with a diameter of 1.108 inches. The preferred total of eight inclusions 54 in the outer edge 51 bound an inner area with a circumference 57 with a diameter of 1.068 inches. The upper and lower hard washers 47 are preferably 0.047 inches thick. Preferably, the small arcs 55, which project slightly from the rest of the outer edges 51 of the upper and lower hard washers 47, and are therefore on slight projections 49 that are inserted in the indentations 35 in the wall 34 of the cylindrical body 28 of the housing 26 of the take-up device 1. The lower hard washer 47 is stabilized by the interfaces between the small arcs 55 and the indentations 35. The upper hard washer 47 is rotated so small arcs 55 slide into the groove 40 in the wall 34 of the cylindrical body 28 of the housing 26 of the take-up device 1. This locks the upper hard washer 47 in place. The upper hard washer 47 holds the middle soft washer 48 and the lower hard washer 47 in place, and this whole compression member 46 holds the insert segments 2 down within the outer bore 27 of the take-up device 1. When the insert segments 2 push up, the middle soft washer 48 compresses and, because it is resilient, the middle soft washer 48 pushes the insert segments 2 down when the upper hard washer 47 is locked in place. The whole compression member 46 functions as a spring tailored for the best performance in this device 1 and connection 110. The interface between the outer bore-interfacing surfaces 17 of the insert segments 2 and the inward-angled and inward- curved portions 42 and 43 of the outer bore 27 forces the insert segments 2 together. The insert segments 2 clamp together on the tie rod or threaded bolt 24. The matching curvatures of the bore-interfacing surfaces 17 of the insert segments 2 and the inward-curved portions 43 of the outer bore 27 allow the insert segments 2 to rotate or swing on a horizontal axis generally orthogonal to, and intersecting with, the tie rod or threaded bolt 24 without diminishing the interface area. This allows the take-up device 1 to compensate for imperfect alignment of the tie rod or threaded bolt 24 without diminishing the strength of the connection 110. The insert segments 2 can tilt, or rotate, in any direction. Generally, the segments 2 need only rotate a maximum of two degrees from the central axis 100, but the ability to do this without diminishing the interface with the outer bore 27 and the strength of the connection 110 is substantially advantageous since tie rods or threaded bolts 24 are rarely, if ever, aligned perfectly.
As shown in FIG. 3, an anchor bolt 118 is embedded in a concrete foundation 112. The anchor bolt 118 passes through the horizontal bottom plate 113 of a wall 111, in this case the mudsill 113, and it attached to a coupler 117 that bears down on a holdown 116 that is mounted on one of the vertical wall studs 114. The coupler 117 joins the anchor bolt 118 to an in-line threaded rod 24 that runs parallel to the wall stud 114 and up through the double top plate 115, where it is secured to the top plate 115 by a take-up device 1 of the present invention that is fastened to the top plate 115 with a bearing plate 120 sandwiched between the bottom face 102 of the take-up device 1 and the top plate 115.
As shown in FIG. 4, take-up devices 1 of the present invention can be placed at every level of a multistory structure. In FIG. 4, a first take-up device 1 is shown fastened to the bottom plate 113 of an upper floor and a second take-up device 2 is attached to the top plate 115 directly above.
In its simplest form, the present invention is a take-up device 1 that has a housing 26 and a plurality of insert segments 2. The housing 26 has an outer bore 27 and the outer bore 27 has a lower inward-curved portion 43 that is frusto-spherical. The insert segments 2 each has an outer bore-interfacing surface 17 that interfaces with the inward-curved portion 43 of the outer bore 27 of the housing 26. The outer bore-interfacing surfaces 17 of the plurality of insert segments 2 are at least in part collectively frusto-spherical. Each insert segment 2 has a concave inner bore-defining surface 14 and the plurality of concave inner bore-defining surfaces 14 define an inner bore 16. Preferably, the outer bore 27 of the housing 26 has a ledge 45, the insert segments 2 each have a bottom edge 21, and the bottoms edges 21 of the insert segments 2 interface with the ledge 45 in the outer bore 27, stabilizing the insert segments 2. The take-up device 1 preferably has four insert segments 2. Each insert segment 2 preferably has a substantially planar top surface 3. The top surface 3 preferably has a concave inner bore-defining edge 4 with first and second ends 5, a convex outer bore edge 7 with first and second ends 8, a first substantially straight side edge 6 that connects the first end 5 of the inner bore-defining edge 4 to the first end 8 of the outer bore edge 7, and a second substantially straight side edge 6 that connects the second end 5 of the inner bore-defining edge 4 to the second end 8 of the outer bore edge 7. Each segment 2 preferably also has a tab 9 on the convex outer bore edge 7, an inner bore-defining surface 14 that descends from the inner bore-defining edge 4, and an outer bore-interfacing surface 17 that descends from the outer bore-defining edge 7 and tapers a bottom edge 21. Preferably, the inner bore 12 of the take-up device 1 is threaded.
The housing 26 preferably also has a horizontal plate 29 and a vertical body 28 that surmounts the horizontal plate 29 and the outer bore 27 of the housing 26 is contained within the vertical body 28. Preferably, the vertical body 28 is cylindrical and has an outer wall 34 with a top edge 33, a plurality of indentations 35 extend down from the top edge 33 of the wall 34, and a tab 9 of an insert segment 2 interfaces with each of the indentations 35 in the wall 34 of the cylindrical vertical body 28. The insert segments 2 are preferably retained within the outer bore 27 by a compression member 46. Preferably, the compression member 46 has an upper hard washer 47, and a resilient lower soft washer 48 that pushes the insert segments 2 downward in the outer bore 27 and is restrained from upward movement by the upper hard washer 47. The compression member 46 preferably also has a lower hard washer 47 that is between the resilient lower soft washer 48 and the insert segments 2. Preferably, the upper and lower hard washers 47 each have an outer edge 51 with a plurality of projections 49. The outer bore 27 preferably has a groove 40 connected to the indentations 35 in wall 34 of the cylindrical body 28. Preferably, the projections 49 of the upper hard washer 47 project into the groove 40 in the outer bore 27, restraining the compression member 46. The projections 49 of the lower hard washer 47 preferably project into the indentations 35 in wall 34 of the cylindrical body 28, stabilizing the compression member 46.
Preferably, the take-up device 1 is part of a connection 110 that has a first structural member 115 to which the take-up device 1 is fastened, and a tie rod 24 with a top end 124 at least partially held within the inner bore 16 of the take-up device 1 by a plurality of the insert segments 2. The first structural member 115 preferably is a top plate 115 in an at least partially wood frame wall 111, and a bearing plate 120 is disposed between the first structural member 115 and the take-up device 1. Preferably, the tie rod 24 is secured to a foundation 112 below the wood frame wall 111.
The outer bore 27 of the take-up device 1 preferably has a central vertical axis 100. Preferably, when the tie rod 24 is not parallel to the central vertical axis 100 of the outer bore 27, the insert segments 2 that hold the tie rod 24 are canted so the inner bore 16 is parallel to the tie rod 24 where the tie rod 24 is held by the insert segments 2 but the inner bore is not parallel to the central vertical axis 100 of the outer bore 27.
Preferably, the connection 110 is formed by inserting the top end 124 of the tie rod 24 into the inner bore 16 of the take-up device and fastening the take-up device 1 to the first structural member 115. The take-up device 1 is preferably fastened to the first structural member 115 with a plurality of screws or nails 119. Screws provide a stronger connection than nails, but nails are less expensive and can still often provide the necessary strength for the connection.
For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.

Claims (41)

We claim:
1. A take-up device (1) in a connection, the take-up device comprising:
a. a housing (26) with an outer bore (27) the outer bore (27) having a lower inward-curved portion (43) that is frusto-spherical;
b. a plurality of insert segments (2) primarily disposed in the outer bore (27) and primarily contained securely within the housing (26), each of which has an outer bore-interfacing surface (17) that interfaces with the inward-curved portion (43) of the outer bore (27) of the housing (26), wherein:
i. the outer bore-interfacing surfaces (17) of the plurality of insert segments (2) collectively form a segmented frusto-spherical surface where the outer bore-interfacing surfaces (17) interface with the outer bore (27);
ii. each insert segment (2) has a concave inner bore-defining surface (14) and the plurality of concave inner bore-defining surfaces (14) form a generally tubular inner bore (16);
c. wherein the take-up device is fastened to a first structural member (115); and
d. a tie rod (24) is at least partially held within the inner bore (16) of the take-up device (1) by a plurality of the insert segments (2), the tie rod (24) having a top end (124) that can pass through the housing (26).
2. The take-up device (1) of claim 1 wherein:
a. the outer bore (27) of the housing (26) has a ledge (45) proximate the most constricted part of the inward-curved portion (43);
b. the insert segments (2) each have a top surface (3) and a bottom edge (21) opposite the top surface;
c. the bottoms edges (21) of the insert segments (2) interface with the ledge (45) in the outer bore (27), stabilizing the insert segments (2).
3. The take-up device (1) of claim 2 wherein the bottom edge (21) of the insert segments (2) has a flat section (121) that interfaces with the ledge (45) in the outer bore (27).
4. The take-up device (1) of claim 3 wherein:
a. the flat section (121) of each bottom edge (21) of the insert segments (2) is 0.0085 inches wide;
b. the ledge (45) in the outer bore (27) is 0.0115 inches wide; and
c. each insert segment (2) is 0.539 inches tall from the top surface (3) to the bottom edge (21).
5. The take-up device (1) of claim 1 having four insert segments (2), each insert segment (2) having:
a. a substantially planar top surface (3) with:
i. a concave inner bore-defining edge (4) with first and second ends (5);
ii. a convex outer bore edge (7) with first and second ends (8);
iii. a first substantially straight side edge (6) that connects the first end (5) of the inner bore-defining edge (4) to the first end (8) of the outer bore edge (7); and
iv. a second substantially straight side edge (6) that connects the second end (5) of the inner bore-defining edge (4) to the second end (8) of the outer bore edge (7);
b. a tab (9) on the convex outer bore edge (7), wherein:
i. the inner bore-defining surface (14) descends from the inner bore-defining edge (4); and
ii. the outer bore-interfacing surface (17) descends from the outer bore-defining edge (7) and tapers to a bottom edge (21).
6. The take-up device (1) of claim 5 wherein the inner bore (16) is threaded.
7. The take-up device (1) of claim 5 wherein:
a. the take-up device (1) has a central axis (100);
b. each of the tabs (9) on the convex outer bore edges (7) of the insert segments (2) has a outer edge (10), two sides edges (12), a top surface (103) and a bottom surface (20);
c. the outer edges (10) of the tabs (9) on opposed insert segments (2) are 1.375 inches apart;
d. the two side edges (12) of each tab (9) are 0.25 inches apart;
e. the top surface (103) and the bottom surface (20) of each tab (9) are 0.12 inches apart;
f. the outer bore-interfacing surfaces (17) of the insert segments (2) have a radius of 0.5 inches;
g. the bottom surface (20) of each tab (9) joins the outer bore-interfacing surface (17) of each tab (9) at a tab juncture (25) that has a radius of 0.02 inches;
h. each concave inner-bore defining surface (14) of each insert segment (2) has a bottom end (23) with a chamfer (36) that is between 30 and 60 degrees relative to the central axis (100) of the take-up device; and
i. the chamfer (36) widens the inner bore (16) to a maximum width o 0.545 inches.
8. The take-up device (1) of claim 1 wherein:
a. the housing (26) additionally comprises a vertical body (28); and
b. the outer bore (27) of the housing (26) is contained within the vertical body (28).
9. The take-up device (1) of claim 8 wherein:
a. the housing (26) additionally comprises a horizontal plate (29) surmounted by the vertical body (28).
10. The take-up device (1) of claim 8 wherein:
a. the vertical body (28) has an outer wall (34) with a top edge (33);
b. a plurality of indentations (35) extend down from the top edge (33) of the wall (34); and
c. a tab (9) of an insert segment (2) interfaces with each of the indentations (35) in the wall (34) of the cylindrical body (28).
11. The take-up device (1) of claim 10 wherein:
a. the vertical body (28) of the housing (26) has an outer diameter of 1.282 inches at the top edge (33) of the outer wall (34) of the vertical body (28);
b. the outer bore (27) of the housing (26) has a diameter of 1.209 inches at the top edge (33) of the outer wall (34) of the vertical body (28); and
c. each indentation (35) in the outer wall (34) is 0.454 inches deep.
12. The take-up device (1) of claim 1 wherein the insert segments (2) are retained within the outer bore (27) by a compression member (46).
13. The take-up device (1) of claim 12 wherein the compression member comprises:
a. an upper hard washer (47) and;
b. a resilient spring (48) that pushes the insert segments (2) into the outer bore (27) and is restrained from upward movement by the upper hard washer (47).
14. The take-up device (1) of claim 13 wherein the resilient spring (48) is a soft washer (48).
15. The take-up device (1) of claim 14 wherein:
a. the compression member (46) additionally comprises a lower hard washer (47) that is between the resilient lower soft washer (48) and the insert segments (2).
16. The take-up device (1) of claim 15 wherein:
a. the vertical body (28) has an outer wall (34) with a top edge (33);
b. a plurality of indentations (35) extend down from the top edge (33) of the wall (34);
c. the upper hard washer (47) has an outer edge (51) with a plurality of projections (49);
d. the outer bore (27) has a groove (40) connected to the indentations (35) in wall (34) of the vertical body (28); and
e. the projections (49) of the upper hard washer (47) project into the groove (40) in the outer bore (27), restraining the compression member (46).
17. The take-up device (1) of claim 16 wherein:
a. the lower hard washer (47) has an outer edge (51) with a plurality of projections (49); and
b. the projections (49) of the lower hard washer (47) project into the indentations (35) in wall (34) of the vertical body (28), stabilizing the compression member (46).
18. The take-up device (1) of claim 17 wherein:
a. the groove (40) in the outer bore (27) is 0.062 inches tall, 0.045 inches below the top edge (33) of the outer wall (34), and has a U-shaped cross section with an internal radius of 0.031 inches;
b. the outer bore (27) is 0.941 inches in height, and the outer bore (27) has an upper vertical portion (41) that descends 0.431 inches from the top edge (33), a middle inward-angled portion (42) that descends from the upper vertical portion (41), a lower inward-curved portion (43) with a radius of 0.510 inches that descends from the middle inward-angled portion (42), and a flared bottom portion (44) with a depth of 0.091 inches that descends from the lower inward-curved portion (43).
19. The take-up device (1) of claim 17 wherein:
a. the upper hard washer (47) has a an inner edge (50) with a pair of substantially semicircular inclusions (52), each with a radius of 0.063 inches, and a pair of arcs (53) between the inclusions (52), both arcs (53) having a diameter of 0.562 inches;
b. the outer edge (51) of the upper hard washer (47) has four pairs of substantially semicircular inclusions (54), each with a radius of 0.063 inches, four small arcs (55), each on a projection (49) bounded by a pair of inclusions (54) and with a diameter of 1.187 inches, and four large arcs (56) between each pair of inclusions (54) that each has a diameter of 1.108 inches; and
c. the upper hard washer (47) is 0.047 inches thick.
20. The connection (110) of claim 1 wherein:
a. the first structural member (115) is a top plate (115) in an at least partially wood frame wall (111), and the take-up device (1) rests on a bearing plate (120) attached to the top plate (115) with the same fasteners (119) as the take-up device (1).
21. The connection (110) of claim 20 wherein:
a. the tie rod (24) is secured to a foundation (112) below the wood frame wall (111).
22. The connection (110) of claim 1 wherein:
a. the outer bore (27) of the take-up device (1) has a central vertical axis (100);
b. the tie rod (24) is not parallel to the central vertical axis (100) of the outer bore (27); and
c. the insert segments (2) that hold the tie rod (24) are canted so the inner bore (16) is parallel to the tie rod (24) where the tie rod (24) is held by the insert segments (2) but the inner bore is not parallel to the central vertical axis (100) of the outer bore (27).
23. A method of forming the connection (110) of claim 1 comprising the steps of:
a. inserting the top end (124) of the tie rod (24) into the inner bore (16) of the take-up device; and
b. fastening the take-up device (1) to the first structural member (115).
24. The method of claim 23 additionally comprising the steps of:
a. inserting the tie rod (24) through a bottom portion (44) of the outer bore (27) in the housing (26).
25. The method of claim 24 additionally comprising the steps of:
a. inserting the tie rod (24) through the first structural member (115).
26. The method of claim 25 wherein:
a. the take-up device (1) is fastened to the first structural member (115) with a plurality of screws (119).
27. A take-up device (1) in a connection, the take-up device comprising:
a. a housing (26) with an outer bore (27) the outer bore (27) having a lower inward-curved portion (43) that is frusto-spherical;
b. a plurality of insert segments (2) primarily disposed in the outer bore (27) and primarily contained securely within the housing (26), each of which has an outer bore-interfacing surface (17) that interfaces with the inward-curved portion (43) of the outer bore (27) of the housing (26), wherein:
i. the outer bore-interfacing surfaces (17) of the plurality of insert segments (2) collectively form a segmented frusto-spherical surface that interfaces with at least a portion of the lower inward-curved portion (43) of the outer bore (27) of the housing (26);
ii. each insert segment (2) has a concave inner bore-defining surface (14) and the plurality of concave inner bore-defining surfaces (14) form a generally tubular inner bore (16);
c. wherein the take-up device is fastened to a first structural member (115); and
d. a tie rod (24) is at least partially held within the inner bore (16) of the take-up device (1) by a plurality of the insert segments (2), the tie rod (24) having a top end (124) that can pass through the housing (26).
28. The take-up device (1) of claim 27 wherein:
a. the outer bore (27) of the housing (26) has a ledge (45) proximate the most constricted part of the inward-curved portion (43);
b. the insert segments (2) each have a top surface (3) and a bottom edge (21) opposite the top surface; and
c. the bottoms edges (21) of the insert segments (2) interface with the ledge (45) in the outer bore (27), stabilizing the insert segments (2).
29. The take-up device (1) of claim 28 wherein the bottom edge (21) of the insert segments (2) has a flat section (121) that interfaces with the ledge (45) in the outer bore (27).
30. The take-up device (1) of claim 27 having four insert segments (2), each insert segment (2) having:
a. a substantially planar top surface (3) with:
i. a concave inner bore-defining edge (4) with first and second ends (5);
ii. a convex outer bore edge (7) with first and second ends (8);
iii. a first substantially straight side edge (6) that connects the first end (5) of the inner bore-defining edge (4) to the first end (8) of the outer bore edge (7); and
iv. a second substantially straight side edge (6) that connects the second end (5) of the inner bore-defining edge (4) to the second end (8) of the outer bore edge (7);
b. a tab (9) on the convex outer bore edge (7), wherein:
i. the inner bore-defining surface (14) descends from the inner bore-defining edge (4); and
ii. the outer bore-interfacing surface (17) descends from the outer bore-defining edge (7) and tapers to a bottom edge (21).
31. The take-up device (1) of claim 30 wherein the inner bore (16) is threaded.
32. The take-up device (1) of claim 27 wherein:
a. the housing (26) additionally comprises a vertical body (28); and
b. the outer bore (27) of the housing (26) is contained within the vertical body (28).
33. The take-up device (1) of claim 32 wherein:
a. the housing (26) additionally comprises a horizontal plate (29) surmounted by the vertical body (28).
34. The take-up device (1) of claim 32 wherein:
a. the vertical body (28) has an outer wall (34) with a top edge (33);
b. a plurality of indentations (35) extend down from the top edge (33) of the wall (34); and
c. a tab (9) of an insert segment (2) interfaces with each of the indentations (35) in the wall (34) of the cylindrical body (28).
35. The take-up device (1) of claim 27 wherein the insert segments (2) are retained within the outer bore (27) by a compression member (46).
36. The take-up device (1) of claim 35 wherein the compression member comprises:
a. an upper hard washer (47) and;
b. a resilient spring (48) that pushes the insert segments (2) into the outer bore (27) and is restrained from upward movement by the upper hard washer (47).
37. The take-up device (1) of claim 36 wherein the resilient spring (48) is a soft washer (48).
38. The take-up device (1) of claim 37 wherein:
a. the compression member (46) additionally comprises a lower hard washer (47) that is between the resilient lower soft washer (48) and the insert segments (2).
39. The take-up device (1) of claim 38 wherein:
a. the vertical body (28) has an outer wall (34) with a top edge (33);
b. a plurality of indentations (35) extend down from the top edge (33) of the wall (34);
c. the upper hard washer (47) has an outer edge (51) with a plurality of projections (49);
d. the outer bore (27) has a groove (40) connected to the indentations (35) in wall (34) of the vertical body (28); and
e. the projections (49) of the upper hard washer (47) project into the groove (40) in the outer bore (27), restraining the compression member (46).
40. The take-up device (1) of claim 39 wherein:
a. the lower hard washer (47) has an outer edge (51) with a plurality of projections (49); and
b. the projections (49) of the lower hard washer (47) project into the indentations (35) in wall (34) of the vertical body (28), stabilizing the compression member (46).
41. The connection (110) of claim 27 wherein:
a. the outer bore (27) of the take-up device (1) has a central vertical axis (100);
b. the tie rod (24) is not parallel to the central vertical axis (100) of the outer bore (27); and
c. the insert segments (2) that hold the tie rod (24) are canted so the inner bore (16) is parallel to the tie rod (24) where the tie rod (24) is held by the insert segments (2) but the inner bore is not parallel to the central vertical axis (100) of the outer bore (27).
US13/531,159 2012-06-22 2012-06-22 Ratcheting take-up device Active US8881478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/531,159 US8881478B2 (en) 2012-06-22 2012-06-22 Ratcheting take-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/531,159 US8881478B2 (en) 2012-06-22 2012-06-22 Ratcheting take-up device

Publications (2)

Publication Number Publication Date
US20130340366A1 US20130340366A1 (en) 2013-12-26
US8881478B2 true US8881478B2 (en) 2014-11-11

Family

ID=49773229

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/531,159 Active US8881478B2 (en) 2012-06-22 2012-06-22 Ratcheting take-up device

Country Status (1)

Country Link
US (1) US8881478B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208834A1 (en) * 2008-10-30 2016-07-21 Erico International Corporation Quick-Threaded Rod Locking Device and Method
US9938714B2 (en) 2016-03-24 2018-04-10 Omg, Inc. Hinged building shrinkage compensation device
US10745913B2 (en) 2016-03-24 2020-08-18 Omg, Inc. Building shrinkage compensation device with rotating gears
US20210080034A1 (en) * 2019-09-12 2021-03-18 Kuan-Lung Lin Embedded fire-resistant device
US20210108666A1 (en) * 2019-10-15 2021-04-15 Stemco Products, Inc. Torque-Limiting Nut
US20210179201A1 (en) * 2017-10-31 2021-06-17 Mitsubishi Fuso Truck And Bus Corporation Resin bracket
US20210214943A1 (en) * 2020-01-15 2021-07-15 HB&G Building Products, Inc. Column anchoring system for wind uplift resistance
US20210222426A1 (en) * 2020-01-17 2021-07-22 Simpson Strong-Tie Company Inc. Fire Stop Installation at Top Plate of Tie Down System
US11193295B1 (en) 2019-08-16 2021-12-07 Richard Proctor Shrinkage compensating device for seismic restraint
USRE48981E1 (en) 2014-01-14 2022-03-22 Simpson Strong-Tie Company Inc. Thrust nut
US11448254B2 (en) * 2018-05-31 2022-09-20 The Boeing Company Retained self-aligning washer and nut assembly and method for fabrication by additive manufacturing
US20220341461A1 (en) * 2021-04-23 2022-10-27 Caterpillar Inc. Retention device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222251B2 (en) * 2011-03-18 2015-12-29 Thomas M. Espinosa Concrete anchor coupling assembly and anchor rod holder
US9394706B2 (en) * 2013-10-08 2016-07-19 Simpson Strong-Tie Company, Inc. Concrete anchor
US10337185B2 (en) * 2015-09-15 2019-07-02 Cetres Holdings, Llc Hold down system with distributed loading for building walls
US11105110B2 (en) * 2018-12-31 2021-08-31 Katerra Inc. Closed shear wall hold down system
US10760324B2 (en) * 2019-01-10 2020-09-01 Schlage Lock Company Llc Masonry anchor
US10883263B1 (en) * 2020-09-04 2021-01-05 Keiko Tsuru Reinforcing structure for wooden building
US11629501B1 (en) * 2022-05-18 2023-04-18 Prefabricated Design Systems, LLC Modular construction connection mechanism

Citations (269)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US179994A (en) 1876-07-18 Improvement in nut-locks
US487721A (en) 1892-12-13 Adjustable connection for machinery
US518165A (en) 1894-04-10 Nut-lock
US560554A (en) 1896-05-19 Nut-lock
US573452A (en) 1896-12-22 Means for rigidly connecting parts of buildings with each other and with the foundations
US581551A (en) 1897-04-27 Nut-lock
US582424A (en) 1897-05-11 Nut-lock
US601249A (en) 1898-03-29 Nut-lock
US807021A (en) 1905-06-13 1905-12-12 Elijah Falk Foundation for band-saw frames.
US856868A (en) 1905-09-25 1907-06-11 Louis Heffner Ratchet-bolt.
US1005227A (en) 1910-12-27 1911-10-10 Daniel Palmer Jones Device for gripping fastening, or locking purposes.
US1344417A (en) 1919-05-28 1920-06-22 Luther D Lovekin Expansible washer
US1347687A (en) 1920-07-27 Pistomt-rod journal-bearing
US1374713A (en) 1919-05-14 1921-04-12 Wyoming Shovel Works Reinforcing or stay bolt for tool-handles
US1435028A (en) 1922-11-07 Jointed rod
US1539348A (en) 1924-10-27 1925-05-26 Leo J Botscheller Lock washer
US1589307A (en) 1925-08-28 1926-06-15 Henry M Svebilius Releasable nut for clamps or the like
US1737543A (en) 1925-08-06 1929-11-26 Frederick Schaefer Locking device for stuffing-box nuts
US1746978A (en) 1928-11-17 1930-02-11 Carl J Winkler Adapter for bearings
US1867296A (en) 1929-11-14 1932-07-12 Leonidas D Woodruff Air line coupling
GB383460A (en) 1931-12-23 1932-11-17 Guy Philip Robinson Improvements in or relating to binding posts for loose leaf binders and the like
US1953354A (en) 1927-06-27 1934-04-03 Holland-Letz Ludwig Automatic take-up for antifriction bearings
US1966780A (en) 1929-11-18 1934-07-17 Wyrick Engineering Company Automatic compensator for wear and lost motion
US2021051A (en) 1932-11-26 1935-11-12 Desbrueres Edmond Pierre Safety screw
US2066541A (en) 1936-04-14 1937-01-05 Richmond Screw Anchor Co Inc Clamp threaded connection
US2103601A (en) 1936-08-11 1937-12-28 William H Stigall Withdrawable sucker rod assembly
US2261537A (en) 1940-12-06 1941-11-04 Zamarra Emil Quick-adjusting device
US2264480A (en) 1938-02-28 1941-12-02 Frank M Owen Gripping device
US2294745A (en) 1940-12-03 1942-09-01 Goetz John Jack
GB558302A (en) 1942-07-22 1943-12-30 Albert Charles Hollis Screw fastening
US2367480A (en) 1939-08-14 1945-01-16 Beswick Robert Eardley Nut for quick attachment
US2405889A (en) 1943-11-16 1946-08-13 Saco Lowell Shops Spindle adjusting device
GB590430A (en) 1945-04-14 1947-07-17 Robert Eardley Beswick Improvements in or relating to quick action nuts
US2449846A (en) 1946-06-15 1948-09-21 David M Gilman Lock bolt or nut
US2576579A (en) * 1951-03-16 1951-11-27 John J Murphy Cone grip lock nut
US2587560A (en) 1945-05-25 1952-02-26 Widmer Rene Spring actuated lock nut
US2649625A (en) 1948-08-18 1953-08-25 Eugene A Johnson Tornado proof building
US2650844A (en) 1950-03-27 1953-09-01 John J Shemorry Auxiliary steering arm stabilizer spring
US2685812A (en) 1951-03-22 1954-08-10 George A Dmitroff Constant torque nut
US2689987A (en) 1952-02-04 1954-09-28 Joseph J Berger Coupling device for building structures
US2690682A (en) 1953-01-22 1954-10-05 Collins Radio Co Antibacklash control shaft
US2896496A (en) 1958-01-31 1959-07-28 Jansen Gerhart Clamp nut apparatus
US3021794A (en) 1959-11-12 1962-02-20 Floris B Knox Oil well pumping rod shock absorber
US3088784A (en) * 1961-11-24 1963-05-07 James O Melton Bearing assembly for connecting two relatively moving members
FR1332745A (en) 1962-06-09 1963-07-19 quick and lockable split nuts and screw lock
US3104645A (en) 1961-03-22 1963-09-24 Harrison Henry Bolt stress indicator
US3115804A (en) 1959-11-16 1963-12-31 Wisconsin Alumni Res Found Snap bolt having resiliently flexible shank portion
US3118681A (en) 1963-05-09 1964-01-21 Thor Power Tool Co Sealing ring with assembly means
US3151652A (en) * 1958-02-26 1964-10-06 Victor F Zahodiakin Fastening devices
US3153333A (en) 1963-02-11 1964-10-20 Chisholm Alpin Band tightened by spring-urged gear means
US3157215A (en) 1961-01-10 1964-11-17 Victor F Zahodiakin Quick-locking fastener with prevailing torque
US3161174A (en) 1963-08-06 1964-12-15 Harrison Henry Mine roof bolt tension indicator
US3174386A (en) 1962-12-18 1965-03-23 Douglas Aircraft Co Inc Indicating washer
US3187621A (en) 1962-12-14 1965-06-08 Cooper & Turner Ltd Fastener assembly and pre-load indicating washer therefor
US3219373A (en) 1963-03-25 1965-11-23 Wayne N Sutliff Rod coupler
US3285120A (en) 1965-04-30 1966-11-15 Tauno F Kartiala Preload bolt joint
US3306154A (en) 1965-10-23 1967-02-28 Mcculloch Corp Compressive load limit indicators
US3325175A (en) 1965-02-05 1967-06-13 Dodge Mfg Corp Shaft seal with multiple lips
US3352341A (en) 1965-10-20 1967-11-14 Eva N Schertz Fast-action nut assembly
GB1099472A (en) 1965-03-11 1968-01-17 Timber Res And Dev Ass Joints between timber structural members
US3378891A (en) 1966-01-18 1968-04-23 Norco Inc Cable enlargement clasp
US3429092A (en) 1966-05-26 1969-02-25 Dyna Structures Structural frames and methods and means therefor
US3440334A (en) 1967-02-02 1969-04-22 John H Blomstrand Connector with helically wound spring and external means for releasing the spring to cause gripping of wires
US3469492A (en) 1967-07-11 1969-09-30 Standard Pressed Steel Co Pre-load indicator
US3476010A (en) 1967-09-26 1969-11-04 Teledyne Inc Fixed screw joint system
US3479897A (en) 1967-08-16 1969-11-25 Saginaw Products Corp Variably preloaded ball nut and screw assembly
JPS461521Y1 (en) 1965-09-03 1971-01-20
US3613201A (en) * 1970-01-20 1971-10-19 Trw Inc Stamped ball joint assembly and method of making same
US3695139A (en) 1970-03-02 1972-10-03 Wilson S Howe Quick connect coupler
US3724151A (en) 1971-01-18 1973-04-03 Kaywood Prod Corp Mobile home anchor
US3728933A (en) 1971-03-11 1973-04-24 Mac Lean Fogg Lock Nut Co Means and method for controlling tension in a threaded member
US3764157A (en) 1972-01-12 1973-10-09 Blanc E Le Rough terrain pack vehicle
US3782061A (en) 1972-03-23 1974-01-01 A Minutoli Concrete building construction with improved post tensioning means
US3797336A (en) 1970-03-02 1974-03-19 W Howe Quick connect nut
US3844137A (en) 1973-07-16 1974-10-29 Cyclo Index Corp Flexible coupling
US3861814A (en) 1973-09-07 1975-01-21 Sidney L Fisher Coupler for line members
GB1384511A (en) 1968-01-30 1975-02-19 Dahl N C Nut and method of forming same
US3870332A (en) 1973-09-18 1975-03-11 Edward M Eaton Coupling improvements
US3878757A (en) 1973-04-02 1975-04-22 Jr William V Puklus Automatic locking sliding nut
US3948141A (en) 1974-08-20 1976-04-06 Katsumi Shinjo Load indicating washer
US4000681A (en) 1975-05-12 1977-01-04 Eaton Corporation Mine bolt tension indicator
US4011397A (en) 1974-03-25 1977-03-08 Bouche Raymond R Vibration damper for high voltage cables
US4020734A (en) 1975-11-26 1977-05-03 Star Expansion Industries Corporation Tension indicator for fastener means
US4037516A (en) 1975-10-24 1977-07-26 Hart Mark M Safety device and method
US4047463A (en) 1976-07-23 1977-09-13 Eaton Corporation Tension indicator
US4055875A (en) 1976-05-24 1977-11-01 General Dynamics Corporation Cable gripping device
US4083393A (en) 1976-07-16 1978-04-11 Mitsuchi Corporation Nut
US4146951A (en) 1976-06-22 1979-04-03 Howlett Machine Works Method and apparatus for tensioning concrete reinforcing tendons
US4149446A (en) 1977-12-01 1979-04-17 Bethlehem Steel Corporation Load indicator washer
US4157876A (en) * 1976-11-15 1979-06-12 Digiulio Mario Lockable articulated joint
US4172606A (en) 1977-10-03 1979-10-30 Howe Wilson S Fluid conduit connector
SU706586A1 (en) 1978-01-30 1979-12-30 Научно-Исследовательский И Конструкторский Институт Испытательных Машин, Приборов И Средств Измерения Масс Expansion device
SU796498A1 (en) 1978-05-10 1981-01-15 Конструкторско-Технологическоебюро Авторемонтного Производстварпо "Росавторемпром" Composite washer for part threaded connection
US4249426A (en) 1978-07-17 1981-02-10 Kerk Motion Products, Inc. Anti-backlash nut having longitudinal flexural members with ramps thereon and means to apply an axial pre-load force to said ramps
US4271654A (en) 1977-02-07 1981-06-09 Otto Jungbluth Three-dimensional structures of frame beams and multiple joints
US4286482A (en) 1977-05-04 1981-09-01 Bwz Berg-Und Industrietechnik Gmbh Device for positioning anchorage means
US4363164A (en) 1980-04-09 1982-12-14 Mitsuchi Corporation Device for removing dump nut from bolt
US4378187A (en) 1979-09-24 1983-03-29 Fullerton Robert L Quick-acting nut assembly
US4403561A (en) 1981-11-23 1983-09-13 The Singer Company Presser bar spring-connection
US4433879A (en) 1981-04-02 1984-02-28 Morris James C Adjustable extension-cam shim
US4479747A (en) 1983-04-21 1984-10-30 Microdot Inc. Preloaded locknut
USRE31713E (en) 1980-09-22 1984-10-30 Anti-backlash nut assembly
US4509724A (en) 1982-05-15 1985-04-09 Mitsuchi Corporation Pantagraph type jack
US4604014A (en) 1984-07-12 1986-08-05 Illinois Tool Works Inc. Pallet fastener
US4665672A (en) 1985-03-20 1987-05-19 Simpson Strong-Tie Company, Inc. One piece, non-welded holdown
US4684284A (en) 1986-06-12 1987-08-04 Pneumo Abex Corporation Anti-rotation lock assembly
US4701065A (en) 1984-12-11 1987-10-20 Orosa Jose S Knockdown furnitures and the structural components therefor
US4703711A (en) 1985-01-25 1987-11-03 The Clay Cross Company Limited Load-indicating devices
US4708555A (en) 1985-12-19 1987-11-24 Terry Sydney L Locking fastener
US4720223A (en) 1985-05-07 1988-01-19 Rexnord Inc. Controlled preload, self-retracting captive fastener assembly
US4729703A (en) 1985-11-29 1988-03-08 Kabushiki Kaisha Suiken Technology Double nut
US4761860A (en) 1987-03-27 1988-08-09 American Cord & Webbing Co., Inc. Two part grommet with interengaging projections
GB2201216A (en) 1987-02-21 1988-08-24 Ronald Ivor Heal Locking of screw threaded fasteners
US4801231A (en) 1987-04-10 1989-01-31 Aec-Able Engineering Company, Inc. Self-driven nut and joinders incorporating it
US4812096A (en) 1987-12-11 1989-03-14 Peterson Peter O Self-tightening nut
US4823528A (en) 1987-02-03 1989-04-25 Garland Faw Log wall and corner joint for log building structures
US4848454A (en) 1987-12-01 1989-07-18 Spears Harry L Downhole tool for use with a ball and seat traveling valve for a fluid pump
US4850777A (en) * 1986-06-23 1989-07-25 Lawrence Ventura A Quick-action fasteners
US4875314A (en) * 1987-01-06 1989-10-24 Boilen Kenneth T Connection system for preventing uplift of shear walls
US4887948A (en) 1987-11-03 1989-12-19 Establissements Caillau Deformable washer, particularly for predetermining the minimum force needed for tightening a nut or a screw
US4896985A (en) 1989-05-01 1990-01-30 Simpson Strong-Tie Company, Inc. Snugging connection and method
US4909012A (en) 1988-09-28 1990-03-20 Thompson Jr Ransom S Method of using compression fastener for joining structural members
US4919122A (en) 1986-02-02 1990-04-24 Siegmar Kohlenbrenner Element structure and process for assembling same
US4922771A (en) 1989-08-14 1990-05-08 Campbell Delmer E Brake adjusting tool
US4936843A (en) 1989-02-16 1990-06-26 Ace Orthopedic Manufacturing Kirschner wire clamp and tensioner
US4954032A (en) 1989-11-13 1990-09-04 Windfred M. Berg, Inc. Anti-backlash nut
US4974888A (en) * 1988-07-25 1990-12-04 The Vendo Company Fastening apparatus
US4979857A (en) 1989-02-22 1990-12-25 Wing George S Extended counterbore nut
US5015133A (en) 1990-04-16 1991-05-14 Arena Frank R Universal nut
US5015132A (en) 1990-05-15 1991-05-14 J & M Turner Inc. Direct tension indicator washer
US5048243A (en) 1988-03-11 1991-09-17 Ward John D Earthquake restraint mechanism
US5056764A (en) 1988-02-22 1991-10-15 Kabushiki Kaisha Tamiya Mokei Shock absorber for use in toys
US5081811A (en) 1989-09-07 1992-01-21 Housei Ttekou Co., Ltd. Self-locking nut mechanism
US5090855A (en) 1990-03-19 1992-02-25 Terry Sydney L Locking fastener assembly
US5100275A (en) 1987-05-20 1992-03-31 Schirrmacher Wendell E Quick locking fasteners
US5118237A (en) 1991-09-13 1992-06-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Quick application/release nut with engagement indicator
US5168681A (en) 1990-08-20 1992-12-08 Horsel Plc Prestressed wood floor system
US5180268A (en) 1992-06-12 1993-01-19 Richardson Arthur B Expansion washer
US5197176A (en) 1991-05-01 1993-03-30 Reese David M Seat belt guide useful in securing a child safety restraint
US5199835A (en) 1991-06-13 1993-04-06 Turner Arthur M Bolt tension indicator
US5207543A (en) 1991-06-28 1993-05-04 Deutsche Aerospace Airbus Gmbh Connecting device with a nut and bolt to prevent loosening and losing the nut
GB2262583A (en) 1991-12-18 1993-06-23 Jordan Valchev Georgiev Shock absorbing device
US5228250A (en) 1992-08-03 1993-07-20 Kesselman David A Tamper proof anchor bolt assembly
US5249404A (en) 1992-05-11 1993-10-05 Simpson Strong-Tie Company, Inc. Holdown connection
US5254016A (en) 1992-06-17 1993-10-19 Compaq Computer Corporation Interconnect device mounting apparatus for printed circuit boards
US5265326A (en) 1991-11-20 1993-11-30 Scribner Herbert H Wire insertion hand tool for the insertion of wires, or similar strand-like material, within a wire containing duct
US5308184A (en) 1989-01-27 1994-05-03 Techniport S.A. Method and apparatus for mechanically joining concrete-reinforcing rods
US5316319A (en) 1992-09-22 1994-05-31 Rm Engineered Products, Inc. Liveload assembly for maintaining torque on bolts
US5324150A (en) 1991-11-06 1994-06-28 Fullerton Robert L Quick acting nut or coupling assembly
US5340258A (en) 1991-11-22 1994-08-23 Werner Simon Variable-length distancing unit
US5340252A (en) * 1993-06-01 1994-08-23 The United States Of America As Represented By The United States National Aeronautics And Space Administration Quick connect fastener
US5347771A (en) 1991-06-20 1994-09-20 Kajima Corporation High damping device for seismic response controlled structure
US5364214A (en) 1993-04-28 1994-11-15 Scott Fazekas Self adjusting construction tie-down
US5365715A (en) 1993-11-09 1994-11-22 Steinmetz James W Rod tying apparatus
US5370483A (en) 1993-06-24 1994-12-06 J & M Turner, Inc. Direct tension indicator washer
US5378100A (en) 1993-04-16 1995-01-03 Fullerton; Robert L. Method and apparatus for rapidly engaging and disengaging threaded coupling members
US5379563A (en) 1993-09-13 1995-01-10 Eastman Chemical Company Anchoring assembly
US5384993A (en) 1993-11-15 1995-01-31 Phillips; Belton R. Tie down for building structures
US5386748A (en) 1993-07-29 1995-02-07 Kilgore; Gary H. Oil filter cup
US5398475A (en) 1992-06-25 1995-03-21 Mero-Raumstruktor Joint-adapter for doubly curved lattice girders, in particular single-layer types
US5411347A (en) 1992-01-24 1995-05-02 Erico International Corporation High dynamic strength reinforcing bar splice and method of making
US5427488A (en) 1991-11-06 1995-06-27 Fullerton; Robert L. Quick acting nut or coupling assembly
US5468105A (en) * 1993-06-11 1995-11-21 Iwamoto; Minekazu Ceiling insert
US5505026A (en) 1994-02-22 1996-04-09 Intilla; Fausto Aseismatic load-supporting structure for elevated constructions
US5522688A (en) 1994-10-17 1996-06-04 Reh; Carter K. Automatic space take-up device for tie down bolts
US5531054A (en) 1992-11-20 1996-07-02 Ramirez; Jose G. Reinforced wooden wall
US5535561A (en) 1994-08-30 1996-07-16 Schuyler; Peter W. Cable hold down and bracing system
US5558481A (en) 1994-01-28 1996-09-24 Park; Joon Self-locking quick disengagement nut for clamps and the like
US5570549A (en) 1994-07-15 1996-11-05 Lung; Jimmy R. Building anchoring system
US5575129A (en) 1993-10-30 1996-11-19 Home Co., Ltd. Connector for truss structure
US5582496A (en) 1995-02-24 1996-12-10 Top Lock Technology Top lock jam nut apparatus and method
US5606839A (en) 1992-06-03 1997-03-04 Baumann; Hanns U. Energy dissipating connector
US5632129A (en) 1994-07-14 1997-05-27 Kawatetsu Kenzai Kabushiki Kaisha Joint device for joining pretensioned brace member to connector nodes in space truss structure
US5664389A (en) 1996-07-22 1997-09-09 Williams; Merlin Ray Method and apparatus for building construction
US5678375A (en) 1992-07-07 1997-10-21 Juola; Tuomo Framework of a building
US5704572A (en) 1995-10-06 1998-01-06 Illinois Tool Works Inc. Method and apparatus for fastening
US5718090A (en) 1996-06-24 1998-02-17 Wei-Hwang; Lin Prestressed concrete tensioning system
US5722645A (en) 1995-06-16 1998-03-03 Dr. Ing. H. C. F. Porsche Ag Arrangement for influencing coil spring travel
US5729952A (en) 1995-12-11 1998-03-24 Dahl; Kjell L. Mechanical rebar couplers
US5743670A (en) 1995-10-02 1998-04-28 Ader; Thompson G. Structural fastener
US5769581A (en) 1997-02-21 1998-06-23 Applied Bolting Technology Products, Inc. Direct tension indicating washers
US5782048A (en) 1992-11-20 1998-07-21 Ramirez; Jose G. Reinforced building structure and method of constructing the same
US5809719A (en) 1995-08-21 1998-09-22 Ashton; Roger Wall Manually adjustable structural load transferring device
US5813181A (en) 1995-08-21 1998-09-29 Ashton; Roger Wall Continuity tie
US5815999A (en) 1997-11-21 1998-10-06 Williams; Merlin Ray Method and apparatus for strengthening frame buildings
US5816762A (en) 1996-07-09 1998-10-06 Illinois Tool Works Inc. Stud clip having different insertion/withdrawal forces
US5819484A (en) 1995-07-28 1998-10-13 Kar; Ramapada Building structure with friction based supplementary damping in its bracing system for dissipating seismic energy
US5829531A (en) 1996-01-31 1998-11-03 Smith International, Inc. Mechanical set anchor with slips pocket
US5839321A (en) 1997-05-16 1998-11-24 Ball Screw & Actuators Co. Backlash compensating assembly
US5885034A (en) 1994-06-09 1999-03-23 Industrial Rollformers Pty. Ltd. Washer for use in mining
WO1999024724A1 (en) 1997-11-11 1999-05-20 Hamid Hakakzadeh Zanjani Self-tightening nut for use with wooden members
US5906361A (en) 1997-07-15 1999-05-25 Carranza; Luis Muller Conical disc spring column
US5967691A (en) 1997-12-02 1999-10-19 Dayton Superior Corporation Quick connect rebar splice
US5979130A (en) 1996-10-10 1999-11-09 Simpson Strong-Tie Company, Inc. Connector with concave seat
US5987828A (en) 1997-12-12 1999-11-23 Hardy Industries, Inc. Self-adjusting tie down
US5988965A (en) 1997-06-25 1999-11-23 Mcdonnell Douglas Corporation Locking fastener
US6007284A (en) * 1998-04-07 1999-12-28 Taneichi; Kaoru Nut and connector
US6019556A (en) 1998-12-23 2000-02-01 University Of South Florida Locking fastener assembly
US6026618A (en) 1997-10-29 2000-02-22 Reginald A. J. Locke Masonry reinforcement system
US6062784A (en) 1997-09-17 2000-05-16 Hilti Aktiengesellschaft Spreading anchor
US6068250A (en) 1996-09-23 2000-05-30 Proteus Engineering Inc. Composite multi-wave compression spring
US6073642A (en) 1998-11-10 2000-06-13 Huang; Jung-Chang Connector assembly for an upright shaft of a beach umbrella
US6120723A (en) 1994-08-29 2000-09-19 Butler; Michael G. Foundation footing construction method, particularly as serve to efficiently precisely emplace wall anchors
US6135687A (en) 1999-07-02 2000-10-24 Simpson Strong-Tie Co., Inc. Direct tension indicator for embedded anchor members
US6139113A (en) 1996-07-08 2000-10-31 Seliga; Lynne M. Vehicle rim assembly
US6151850A (en) 1999-04-26 2000-11-28 Sorkin; Felix L. Intermediate anchorage system utilizing splice chuck
US6158188A (en) 1999-09-13 2000-12-12 Mga Construction Hardware & Steel Fabricating Ltd. Holdowns
US6161339A (en) 1998-08-26 2000-12-19 Hurri-Bolt Inc. Structural tie-down apparatus
US6161350A (en) 1996-11-04 2000-12-19 Espinosa; Thomas M. Fastener assembly serving as a product, or combined with other components as a product allows automatic controlled movements in one direction and prevents movements in the opposite direction when forces are applied
US6168455B1 (en) 1999-08-30 2001-01-02 Rally Manufacturing, Inc. Coaxial cable connector
US6167785B1 (en) 1998-07-28 2001-01-02 Vern Penner Tool for turning fasteners in confined spaces
US6176051B1 (en) 1999-04-26 2001-01-23 Felix L. Sorkin Splice chuck for use in a post-tension anchor system
US6192647B1 (en) 1999-04-15 2001-02-27 Kjell L. Dahl High strength grouted pipe coupler
US6195949B1 (en) * 1997-09-24 2001-03-06 Peter William Schuyler Hold down device and method
CA2313735A1 (en) 1999-09-24 2001-03-24 Alfred Commins Shrinkage compensator for building tiedowns
US20010002529A1 (en) 1997-11-21 2001-06-07 Charles R. Cypher Building wall for resisting lateral forces
US20010002524A1 (en) 1996-11-04 2001-06-07 Espinosa Thomas M. Fastener assembly serving as a product, or combined with other components as a product, allows automatic controlled movements in one direction and prevents movements in the opposite direction when forces are applied
US6244806B1 (en) 1997-12-09 2001-06-12 T. Kato Co., Ltd. Locking washer and locking apparatus using the same
US6250041B1 (en) 1997-09-15 2001-06-26 Bhp Steel (Jla) Pty Ltd. Hold down bracket
US6256960B1 (en) 1999-04-12 2001-07-10 Frank J. Babcock Modular building construction and components thereof
US6257813B1 (en) 1998-07-06 2001-07-10 Kazuaki Tanimura Screw clamping device with automatic clamping means
US6279877B1 (en) 2000-02-02 2001-08-28 William Davis Electric wire fishing implement
US6282994B1 (en) 2000-04-04 2001-09-04 Chiao Wei Socket
US20010037611A1 (en) 1998-10-05 2001-11-08 Cornett Robert M. Anchor for a structural tie-down apparatus
US6327829B1 (en) 1997-06-27 2001-12-11 Kaieitechno Co., Ltd. Connecting structure for concrete block and connector used therefor
US6327831B1 (en) 1998-01-09 2001-12-11 William F. Leek Loadbearing wall holdown
US20020020137A1 (en) 2000-08-08 2002-02-21 Commins Alfred D. Balanced, multi-stud hold-down
US6361260B1 (en) 2000-11-03 2002-03-26 Wendell E. Schirrmacher Quick locking fastener
US6389767B1 (en) 2000-01-06 2002-05-21 Zone Four, Llc Shear wall construction
US20020066246A1 (en) 2000-12-03 2002-06-06 Leek William F. Automatic take-up device with internal spring
US6406240B1 (en) 2000-03-09 2002-06-18 Richard M. Potter Fast acting nut assembly or coupling
US20020092383A1 (en) 2000-02-28 2002-07-18 Fumiyoshi Nezigane Tool for tightening a bolt
US20020094231A1 (en) 2001-01-08 2002-07-18 David Lee Connecting device for connecting a mirror support and a mirror body
US20020114664A1 (en) 2001-02-21 2002-08-22 Gregel John J. Reinforcing bar connection and method
US6513290B2 (en) 2000-12-03 2003-02-04 Simpson Strong-Tie Company, Inc. Concentric holdown
US20030230032A1 (en) * 2002-06-13 2003-12-18 George Shahnazarian Take-up devices for use in building structure
US6679024B2 (en) 2002-02-26 2004-01-20 Kjell L. Dahl High strength grouted pipe coupler
US6688071B1 (en) 1999-06-22 2004-02-10 Connector Vinkeveen B.V. Concrete structure comprising anchor rods and anchor rod
US6745649B1 (en) 2003-05-05 2004-06-08 Hui-Chen Liao Socket for a wrench
US6773198B2 (en) 2000-01-29 2004-08-10 Robert Copping Fixture
US6773002B2 (en) 2002-01-28 2004-08-10 Barnes Group Inc. Compression spring rod
US6860693B2 (en) 2003-02-14 2005-03-01 Dell Products L.P. Rapid fastening screw apparatus and method
US6880433B1 (en) 2000-08-16 2005-04-19 Kashiraishi Inc. Tightening force imparting device
US20050097843A1 (en) 2003-11-07 2005-05-12 Giesel Ronald D. Releasable coupling device for use with reinforcing tendons and method of using the same
US20050108986A1 (en) 2003-10-07 2005-05-26 Cloyd Kenneth M. Load-resisting truss segments for buildings
US20050284057A1 (en) 2000-04-25 2005-12-29 Commins Alfred D Continuous hold-down system
US20060000318A1 (en) 2004-06-30 2006-01-05 Chih-Ching Hsieh Anti-rolling socket
WO2006055905A1 (en) 2004-11-19 2006-05-26 Ronald Smith Thread clamping device and methods of use
US20060133912A1 (en) 2003-06-23 2006-06-22 Commins Alfred D Circumferentially balanced, take-up device
US20060222454A1 (en) * 2003-12-22 2006-10-05 Federal-Mogul World Wide, Inc. Forged Knurled Socket Housing
US7316533B2 (en) 2002-12-02 2008-01-08 Kashiraishi Inc. Fastener for exerting tightening torque to fastening member screwed into mounting base
WO2008016543A2 (en) 2006-07-29 2008-02-07 Ronald Smith Thread clamping device with improved locking distance
US20080060296A1 (en) 2006-09-12 2008-03-13 Espinosa Thomas M Building having a hold down system
US20080099968A1 (en) 2006-10-27 2008-05-01 Answer Products, Inc. Adjustable and progressive coil spring system for two wheeled vehicles
WO2008105045A1 (en) 2007-02-26 2008-09-04 Kaoru Taneichi Nut
US7422404B2 (en) * 2000-11-02 2008-09-09 Nhk Spring Co., Ltd. Facilitated tightening device
WO2008124578A2 (en) 2007-04-06 2008-10-16 Simpson Strong-Tie Company, Inc. Automatic take-up device and in-line coupler
US20080292391A1 (en) * 2004-04-21 2008-11-27 Spence Dale A Method and apparatus for clearance adjusting cover plate closure
US7744322B2 (en) * 2005-09-29 2010-06-29 Kaoru Taneichi Nut
US7752824B2 (en) * 2005-03-14 2010-07-13 Mitek Holdings, Inc. Shrinkage-compensating continuity system
JP2010196355A (en) 2009-02-25 2010-09-09 Kaoru Taneichi Member for wooden house
US20110182697A1 (en) * 2010-01-25 2011-07-28 Smith Ronald A Multi-rod thread clamping device
WO2011111087A1 (en) 2010-03-08 2011-09-15 Taneichi Kaoru Force applying device
US8051615B2 (en) * 2007-05-16 2011-11-08 Actuant Corporation Cable anchor
JP2012047244A (en) 2010-08-26 2012-03-08 Kaoru Taneichi Nut
US20120134764A1 (en) * 2007-05-11 2012-05-31 Smith Ronald A Thread clamping device
US8281528B2 (en) * 2010-03-30 2012-10-09 Pointblank Design Inc. Apparatus for securing wall members for log homes
JP2013064415A (en) 2011-09-15 2013-04-11 Kaoru Taneichi Nut and fastening member
US8646339B2 (en) * 2011-02-07 2014-02-11 Ronald A. Smith Thread clamping device including internal sensing and reporting

Patent Citations (308)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347687A (en) 1920-07-27 Pistomt-rod journal-bearing
US487721A (en) 1892-12-13 Adjustable connection for machinery
US518165A (en) 1894-04-10 Nut-lock
US560554A (en) 1896-05-19 Nut-lock
US573452A (en) 1896-12-22 Means for rigidly connecting parts of buildings with each other and with the foundations
US581551A (en) 1897-04-27 Nut-lock
US582424A (en) 1897-05-11 Nut-lock
US601249A (en) 1898-03-29 Nut-lock
US179994A (en) 1876-07-18 Improvement in nut-locks
US1435028A (en) 1922-11-07 Jointed rod
US807021A (en) 1905-06-13 1905-12-12 Elijah Falk Foundation for band-saw frames.
US856868A (en) 1905-09-25 1907-06-11 Louis Heffner Ratchet-bolt.
US1005227A (en) 1910-12-27 1911-10-10 Daniel Palmer Jones Device for gripping fastening, or locking purposes.
US1374713A (en) 1919-05-14 1921-04-12 Wyoming Shovel Works Reinforcing or stay bolt for tool-handles
US1344417A (en) 1919-05-28 1920-06-22 Luther D Lovekin Expansible washer
US1539348A (en) 1924-10-27 1925-05-26 Leo J Botscheller Lock washer
US1737543A (en) 1925-08-06 1929-11-26 Frederick Schaefer Locking device for stuffing-box nuts
US1589307A (en) 1925-08-28 1926-06-15 Henry M Svebilius Releasable nut for clamps or the like
US1953354A (en) 1927-06-27 1934-04-03 Holland-Letz Ludwig Automatic take-up for antifriction bearings
US1746978A (en) 1928-11-17 1930-02-11 Carl J Winkler Adapter for bearings
US1867296A (en) 1929-11-14 1932-07-12 Leonidas D Woodruff Air line coupling
US1966780A (en) 1929-11-18 1934-07-17 Wyrick Engineering Company Automatic compensator for wear and lost motion
GB383460A (en) 1931-12-23 1932-11-17 Guy Philip Robinson Improvements in or relating to binding posts for loose leaf binders and the like
US2021051A (en) 1932-11-26 1935-11-12 Desbrueres Edmond Pierre Safety screw
US2066541A (en) 1936-04-14 1937-01-05 Richmond Screw Anchor Co Inc Clamp threaded connection
US2103601A (en) 1936-08-11 1937-12-28 William H Stigall Withdrawable sucker rod assembly
US2264480A (en) 1938-02-28 1941-12-02 Frank M Owen Gripping device
US2367480A (en) 1939-08-14 1945-01-16 Beswick Robert Eardley Nut for quick attachment
US2294745A (en) 1940-12-03 1942-09-01 Goetz John Jack
US2261537A (en) 1940-12-06 1941-11-04 Zamarra Emil Quick-adjusting device
GB558302A (en) 1942-07-22 1943-12-30 Albert Charles Hollis Screw fastening
US2405889A (en) 1943-11-16 1946-08-13 Saco Lowell Shops Spindle adjusting device
GB590430A (en) 1945-04-14 1947-07-17 Robert Eardley Beswick Improvements in or relating to quick action nuts
US2587560A (en) 1945-05-25 1952-02-26 Widmer Rene Spring actuated lock nut
US2449846A (en) 1946-06-15 1948-09-21 David M Gilman Lock bolt or nut
US2649625A (en) 1948-08-18 1953-08-25 Eugene A Johnson Tornado proof building
US2650844A (en) 1950-03-27 1953-09-01 John J Shemorry Auxiliary steering arm stabilizer spring
US2576579A (en) * 1951-03-16 1951-11-27 John J Murphy Cone grip lock nut
US2685812A (en) 1951-03-22 1954-08-10 George A Dmitroff Constant torque nut
US2689987A (en) 1952-02-04 1954-09-28 Joseph J Berger Coupling device for building structures
US2690682A (en) 1953-01-22 1954-10-05 Collins Radio Co Antibacklash control shaft
US2896496A (en) 1958-01-31 1959-07-28 Jansen Gerhart Clamp nut apparatus
US3151652A (en) * 1958-02-26 1964-10-06 Victor F Zahodiakin Fastening devices
US3021794A (en) 1959-11-12 1962-02-20 Floris B Knox Oil well pumping rod shock absorber
US3115804A (en) 1959-11-16 1963-12-31 Wisconsin Alumni Res Found Snap bolt having resiliently flexible shank portion
US3157215A (en) 1961-01-10 1964-11-17 Victor F Zahodiakin Quick-locking fastener with prevailing torque
US3104645A (en) 1961-03-22 1963-09-24 Harrison Henry Bolt stress indicator
US3088784A (en) * 1961-11-24 1963-05-07 James O Melton Bearing assembly for connecting two relatively moving members
FR1332745A (en) 1962-06-09 1963-07-19 quick and lockable split nuts and screw lock
US3187621A (en) 1962-12-14 1965-06-08 Cooper & Turner Ltd Fastener assembly and pre-load indicating washer therefor
US3174386A (en) 1962-12-18 1965-03-23 Douglas Aircraft Co Inc Indicating washer
US3153333A (en) 1963-02-11 1964-10-20 Chisholm Alpin Band tightened by spring-urged gear means
US3219373A (en) 1963-03-25 1965-11-23 Wayne N Sutliff Rod coupler
US3118681A (en) 1963-05-09 1964-01-21 Thor Power Tool Co Sealing ring with assembly means
US3161174A (en) 1963-08-06 1964-12-15 Harrison Henry Mine roof bolt tension indicator
US3325175A (en) 1965-02-05 1967-06-13 Dodge Mfg Corp Shaft seal with multiple lips
GB1099472A (en) 1965-03-11 1968-01-17 Timber Res And Dev Ass Joints between timber structural members
US3285120A (en) 1965-04-30 1966-11-15 Tauno F Kartiala Preload bolt joint
JPS461521Y1 (en) 1965-09-03 1971-01-20
US3352341A (en) 1965-10-20 1967-11-14 Eva N Schertz Fast-action nut assembly
US3306154A (en) 1965-10-23 1967-02-28 Mcculloch Corp Compressive load limit indicators
US3378891A (en) 1966-01-18 1968-04-23 Norco Inc Cable enlargement clasp
US3429092A (en) 1966-05-26 1969-02-25 Dyna Structures Structural frames and methods and means therefor
US3440334A (en) 1967-02-02 1969-04-22 John H Blomstrand Connector with helically wound spring and external means for releasing the spring to cause gripping of wires
US3469492A (en) 1967-07-11 1969-09-30 Standard Pressed Steel Co Pre-load indicator
US3479897A (en) 1967-08-16 1969-11-25 Saginaw Products Corp Variably preloaded ball nut and screw assembly
US3476010A (en) 1967-09-26 1969-11-04 Teledyne Inc Fixed screw joint system
GB1384511A (en) 1968-01-30 1975-02-19 Dahl N C Nut and method of forming same
US3613201A (en) * 1970-01-20 1971-10-19 Trw Inc Stamped ball joint assembly and method of making same
US3797336A (en) 1970-03-02 1974-03-19 W Howe Quick connect nut
US3695139A (en) 1970-03-02 1972-10-03 Wilson S Howe Quick connect coupler
US3724151A (en) 1971-01-18 1973-04-03 Kaywood Prod Corp Mobile home anchor
US3728933A (en) 1971-03-11 1973-04-24 Mac Lean Fogg Lock Nut Co Means and method for controlling tension in a threaded member
US3764157A (en) 1972-01-12 1973-10-09 Blanc E Le Rough terrain pack vehicle
US3782061A (en) 1972-03-23 1974-01-01 A Minutoli Concrete building construction with improved post tensioning means
US3878757A (en) 1973-04-02 1975-04-22 Jr William V Puklus Automatic locking sliding nut
US3844137A (en) 1973-07-16 1974-10-29 Cyclo Index Corp Flexible coupling
US3861814A (en) 1973-09-07 1975-01-21 Sidney L Fisher Coupler for line members
US3870332A (en) 1973-09-18 1975-03-11 Edward M Eaton Coupling improvements
US4011397A (en) 1974-03-25 1977-03-08 Bouche Raymond R Vibration damper for high voltage cables
US3948141A (en) 1974-08-20 1976-04-06 Katsumi Shinjo Load indicating washer
US4000681A (en) 1975-05-12 1977-01-04 Eaton Corporation Mine bolt tension indicator
US4037516A (en) 1975-10-24 1977-07-26 Hart Mark M Safety device and method
US4020734A (en) 1975-11-26 1977-05-03 Star Expansion Industries Corporation Tension indicator for fastener means
US4055875A (en) 1976-05-24 1977-11-01 General Dynamics Corporation Cable gripping device
US4146951A (en) 1976-06-22 1979-04-03 Howlett Machine Works Method and apparatus for tensioning concrete reinforcing tendons
US4083393A (en) 1976-07-16 1978-04-11 Mitsuchi Corporation Nut
US4047463A (en) 1976-07-23 1977-09-13 Eaton Corporation Tension indicator
US4157876A (en) * 1976-11-15 1979-06-12 Digiulio Mario Lockable articulated joint
US4271654A (en) 1977-02-07 1981-06-09 Otto Jungbluth Three-dimensional structures of frame beams and multiple joints
US4286482A (en) 1977-05-04 1981-09-01 Bwz Berg-Und Industrietechnik Gmbh Device for positioning anchorage means
US4172606A (en) 1977-10-03 1979-10-30 Howe Wilson S Fluid conduit connector
US4149446A (en) 1977-12-01 1979-04-17 Bethlehem Steel Corporation Load indicator washer
SU706586A1 (en) 1978-01-30 1979-12-30 Научно-Исследовательский И Конструкторский Институт Испытательных Машин, Приборов И Средств Измерения Масс Expansion device
SU796498A1 (en) 1978-05-10 1981-01-15 Конструкторско-Технологическоебюро Авторемонтного Производстварпо "Росавторемпром" Composite washer for part threaded connection
US4249426A (en) 1978-07-17 1981-02-10 Kerk Motion Products, Inc. Anti-backlash nut having longitudinal flexural members with ramps thereon and means to apply an axial pre-load force to said ramps
US4378187A (en) 1979-09-24 1983-03-29 Fullerton Robert L Quick-acting nut assembly
US4363164A (en) 1980-04-09 1982-12-14 Mitsuchi Corporation Device for removing dump nut from bolt
USRE31713E (en) 1980-09-22 1984-10-30 Anti-backlash nut assembly
US4433879A (en) 1981-04-02 1984-02-28 Morris James C Adjustable extension-cam shim
US4403561A (en) 1981-11-23 1983-09-13 The Singer Company Presser bar spring-connection
US4509724A (en) 1982-05-15 1985-04-09 Mitsuchi Corporation Pantagraph type jack
US4479747A (en) 1983-04-21 1984-10-30 Microdot Inc. Preloaded locknut
US4604014A (en) 1984-07-12 1986-08-05 Illinois Tool Works Inc. Pallet fastener
US4701065A (en) 1984-12-11 1987-10-20 Orosa Jose S Knockdown furnitures and the structural components therefor
US4703711A (en) 1985-01-25 1987-11-03 The Clay Cross Company Limited Load-indicating devices
US4665672A (en) 1985-03-20 1987-05-19 Simpson Strong-Tie Company, Inc. One piece, non-welded holdown
US4720223A (en) 1985-05-07 1988-01-19 Rexnord Inc. Controlled preload, self-retracting captive fastener assembly
US4729703A (en) 1985-11-29 1988-03-08 Kabushiki Kaisha Suiken Technology Double nut
US4708555A (en) 1985-12-19 1987-11-24 Terry Sydney L Locking fastener
US4919122A (en) 1986-02-02 1990-04-24 Siegmar Kohlenbrenner Element structure and process for assembling same
US4684284A (en) 1986-06-12 1987-08-04 Pneumo Abex Corporation Anti-rotation lock assembly
US4850777A (en) * 1986-06-23 1989-07-25 Lawrence Ventura A Quick-action fasteners
US4875314A (en) * 1987-01-06 1989-10-24 Boilen Kenneth T Connection system for preventing uplift of shear walls
US4823528A (en) 1987-02-03 1989-04-25 Garland Faw Log wall and corner joint for log building structures
GB2201216A (en) 1987-02-21 1988-08-24 Ronald Ivor Heal Locking of screw threaded fasteners
US4761860A (en) 1987-03-27 1988-08-09 American Cord & Webbing Co., Inc. Two part grommet with interengaging projections
US4801231A (en) 1987-04-10 1989-01-31 Aec-Able Engineering Company, Inc. Self-driven nut and joinders incorporating it
US5100275A (en) 1987-05-20 1992-03-31 Schirrmacher Wendell E Quick locking fasteners
US4887948A (en) 1987-11-03 1989-12-19 Establissements Caillau Deformable washer, particularly for predetermining the minimum force needed for tightening a nut or a screw
US4848454A (en) 1987-12-01 1989-07-18 Spears Harry L Downhole tool for use with a ball and seat traveling valve for a fluid pump
US4812096A (en) 1987-12-11 1989-03-14 Peterson Peter O Self-tightening nut
US5056764A (en) 1988-02-22 1991-10-15 Kabushiki Kaisha Tamiya Mokei Shock absorber for use in toys
US5048243A (en) 1988-03-11 1991-09-17 Ward John D Earthquake restraint mechanism
EP0352542B1 (en) 1988-07-25 1995-11-02 The Vendo Company Fastening apparatus
US4974888A (en) * 1988-07-25 1990-12-04 The Vendo Company Fastening apparatus
US4909012A (en) 1988-09-28 1990-03-20 Thompson Jr Ransom S Method of using compression fastener for joining structural members
US5308184A (en) 1989-01-27 1994-05-03 Techniport S.A. Method and apparatus for mechanically joining concrete-reinforcing rods
US4936843A (en) 1989-02-16 1990-06-26 Ace Orthopedic Manufacturing Kirschner wire clamp and tensioner
US4979857A (en) 1989-02-22 1990-12-25 Wing George S Extended counterbore nut
US4896985A (en) 1989-05-01 1990-01-30 Simpson Strong-Tie Company, Inc. Snugging connection and method
US4922771A (en) 1989-08-14 1990-05-08 Campbell Delmer E Brake adjusting tool
US5081811A (en) 1989-09-07 1992-01-21 Housei Ttekou Co., Ltd. Self-locking nut mechanism
US4954032A (en) 1989-11-13 1990-09-04 Windfred M. Berg, Inc. Anti-backlash nut
US5090855A (en) 1990-03-19 1992-02-25 Terry Sydney L Locking fastener assembly
US5015133A (en) 1990-04-16 1991-05-14 Arena Frank R Universal nut
US5015132A (en) 1990-05-15 1991-05-14 J & M Turner Inc. Direct tension indicator washer
US5168681A (en) 1990-08-20 1992-12-08 Horsel Plc Prestressed wood floor system
US5197176A (en) 1991-05-01 1993-03-30 Reese David M Seat belt guide useful in securing a child safety restraint
US5199835A (en) 1991-06-13 1993-04-06 Turner Arthur M Bolt tension indicator
US5347771A (en) 1991-06-20 1994-09-20 Kajima Corporation High damping device for seismic response controlled structure
US5207543A (en) 1991-06-28 1993-05-04 Deutsche Aerospace Airbus Gmbh Connecting device with a nut and bolt to prevent loosening and losing the nut
US5118237A (en) 1991-09-13 1992-06-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Quick application/release nut with engagement indicator
US5324150A (en) 1991-11-06 1994-06-28 Fullerton Robert L Quick acting nut or coupling assembly
US5427488A (en) 1991-11-06 1995-06-27 Fullerton; Robert L. Quick acting nut or coupling assembly
US5265326A (en) 1991-11-20 1993-11-30 Scribner Herbert H Wire insertion hand tool for the insertion of wires, or similar strand-like material, within a wire containing duct
US5340258A (en) 1991-11-22 1994-08-23 Werner Simon Variable-length distancing unit
GB2262583A (en) 1991-12-18 1993-06-23 Jordan Valchev Georgiev Shock absorbing device
US5411347A (en) 1992-01-24 1995-05-02 Erico International Corporation High dynamic strength reinforcing bar splice and method of making
US5249404A (en) 1992-05-11 1993-10-05 Simpson Strong-Tie Company, Inc. Holdown connection
US5606839A (en) 1992-06-03 1997-03-04 Baumann; Hanns U. Energy dissipating connector
US5180268A (en) 1992-06-12 1993-01-19 Richardson Arthur B Expansion washer
US5254016A (en) 1992-06-17 1993-10-19 Compaq Computer Corporation Interconnect device mounting apparatus for printed circuit boards
US5398475A (en) 1992-06-25 1995-03-21 Mero-Raumstruktor Joint-adapter for doubly curved lattice girders, in particular single-layer types
US5678375A (en) 1992-07-07 1997-10-21 Juola; Tuomo Framework of a building
US5228250A (en) 1992-08-03 1993-07-20 Kesselman David A Tamper proof anchor bolt assembly
US5316319A (en) 1992-09-22 1994-05-31 Rm Engineered Products, Inc. Liveload assembly for maintaining torque on bolts
US5782048A (en) 1992-11-20 1998-07-21 Ramirez; Jose G. Reinforced building structure and method of constructing the same
US5531054A (en) 1992-11-20 1996-07-02 Ramirez; Jose G. Reinforced wooden wall
US5733084A (en) 1993-04-16 1998-03-31 Fullerton; Robert L. Method and apparatus for rapidly engaging and disengaging threaded coupling members
US5378100A (en) 1993-04-16 1995-01-03 Fullerton; Robert L. Method and apparatus for rapidly engaging and disengaging threaded coupling members
US5364214A (en) 1993-04-28 1994-11-15 Scott Fazekas Self adjusting construction tie-down
US5540530A (en) 1993-04-28 1996-07-30 Simpson Strong-Tie Company, Inc. Self adjusting construction tie-down
US5340252A (en) * 1993-06-01 1994-08-23 The United States Of America As Represented By The United States National Aeronautics And Space Administration Quick connect fastener
US5468105A (en) * 1993-06-11 1995-11-21 Iwamoto; Minekazu Ceiling insert
US5370483A (en) 1993-06-24 1994-12-06 J & M Turner, Inc. Direct tension indicator washer
US5487632A (en) 1993-06-24 1996-01-30 J & M Turner, Inc. Direct tension indicator washer
US5386748A (en) 1993-07-29 1995-02-07 Kilgore; Gary H. Oil filter cup
US5379563A (en) 1993-09-13 1995-01-10 Eastman Chemical Company Anchoring assembly
US5575129A (en) 1993-10-30 1996-11-19 Home Co., Ltd. Connector for truss structure
US5365715A (en) 1993-11-09 1994-11-22 Steinmetz James W Rod tying apparatus
US5384993A (en) 1993-11-15 1995-01-31 Phillips; Belton R. Tie down for building structures
US5558481A (en) 1994-01-28 1996-09-24 Park; Joon Self-locking quick disengagement nut for clamps and the like
US5505026A (en) 1994-02-22 1996-04-09 Intilla; Fausto Aseismatic load-supporting structure for elevated constructions
US5885034A (en) 1994-06-09 1999-03-23 Industrial Rollformers Pty. Ltd. Washer for use in mining
US5632129A (en) 1994-07-14 1997-05-27 Kawatetsu Kenzai Kabushiki Kaisha Joint device for joining pretensioned brace member to connector nodes in space truss structure
US5570549A (en) 1994-07-15 1996-11-05 Lung; Jimmy R. Building anchoring system
US6120723A (en) 1994-08-29 2000-09-19 Butler; Michael G. Foundation footing construction method, particularly as serve to efficiently precisely emplace wall anchors
US5535561A (en) 1994-08-30 1996-07-16 Schuyler; Peter W. Cable hold down and bracing system
US5522688A (en) 1994-10-17 1996-06-04 Reh; Carter K. Automatic space take-up device for tie down bolts
US5582496A (en) 1995-02-24 1996-12-10 Top Lock Technology Top lock jam nut apparatus and method
US5722645A (en) 1995-06-16 1998-03-03 Dr. Ing. H. C. F. Porsche Ag Arrangement for influencing coil spring travel
US5819484A (en) 1995-07-28 1998-10-13 Kar; Ramapada Building structure with friction based supplementary damping in its bracing system for dissipating seismic energy
US6546678B1 (en) 1995-08-21 2003-04-15 Zone Four Llc Manually adjustable structural load transferring device
US6425220B1 (en) 1995-08-21 2002-07-30 Zone Four, Llc Continuity tie
US5992126A (en) 1995-08-21 1999-11-30 Ashton; Roger W. Manually adjustable structural load transferring device
US5809719A (en) 1995-08-21 1998-09-22 Ashton; Roger Wall Manually adjustable structural load transferring device
US5813181A (en) 1995-08-21 1998-09-29 Ashton; Roger Wall Continuity tie
US5921042A (en) 1995-08-21 1999-07-13 Zone Four Continuity tie
US6155019A (en) 1995-08-21 2000-12-05 Zone Four, Llc Manually adjustable structural load transferring device
US6112486A (en) 1995-08-21 2000-09-05 Ashton; Roger Wall Continuity tie
US5743670A (en) 1995-10-02 1998-04-28 Ader; Thompson G. Structural fastener
US5704572A (en) 1995-10-06 1998-01-06 Illinois Tool Works Inc. Method and apparatus for fastening
US5729952A (en) 1995-12-11 1998-03-24 Dahl; Kjell L. Mechanical rebar couplers
US5829531A (en) 1996-01-31 1998-11-03 Smith International, Inc. Mechanical set anchor with slips pocket
US5718090A (en) 1996-06-24 1998-02-17 Wei-Hwang; Lin Prestressed concrete tensioning system
US6139113A (en) 1996-07-08 2000-10-31 Seliga; Lynne M. Vehicle rim assembly
US5816762A (en) 1996-07-09 1998-10-06 Illinois Tool Works Inc. Stud clip having different insertion/withdrawal forces
US5664389A (en) 1996-07-22 1997-09-09 Williams; Merlin Ray Method and apparatus for building construction
US6068250A (en) 1996-09-23 2000-05-30 Proteus Engineering Inc. Composite multi-wave compression spring
US5979130A (en) 1996-10-10 1999-11-09 Simpson Strong-Tie Company, Inc. Connector with concave seat
US6161350A (en) 1996-11-04 2000-12-19 Espinosa; Thomas M. Fastener assembly serving as a product, or combined with other components as a product allows automatic controlled movements in one direction and prevents movements in the opposite direction when forces are applied
US6688058B2 (en) 1996-11-04 2004-02-10 Thomas M. Espinosa Fastener assembly serving as a product, or combined with other components as a product, allows automatic controlled movements in one direction and prevents movements in the opposite direction when forces are applied
US6494654B2 (en) 1996-11-04 2002-12-17 Thomas M. Espinosa Tie down building, system tie down, and method
US20010002524A1 (en) 1996-11-04 2001-06-07 Espinosa Thomas M. Fastener assembly serving as a product, or combined with other components as a product, allows automatic controlled movements in one direction and prevents movements in the opposite direction when forces are applied
US5931618A (en) 1997-02-21 1999-08-03 Applied Bolting Technology Products, Inc. Direct tension indicating washers
US5769581A (en) 1997-02-21 1998-06-23 Applied Bolting Technology Products, Inc. Direct tension indicating washers
US5839321A (en) 1997-05-16 1998-11-24 Ball Screw & Actuators Co. Backlash compensating assembly
US5988965A (en) 1997-06-25 1999-11-23 Mcdonnell Douglas Corporation Locking fastener
US6327829B1 (en) 1997-06-27 2001-12-11 Kaieitechno Co., Ltd. Connecting structure for concrete block and connector used therefor
US5906361A (en) 1997-07-15 1999-05-25 Carranza; Luis Muller Conical disc spring column
US6250041B1 (en) 1997-09-15 2001-06-26 Bhp Steel (Jla) Pty Ltd. Hold down bracket
US6062784A (en) 1997-09-17 2000-05-16 Hilti Aktiengesellschaft Spreading anchor
US6195949B1 (en) * 1997-09-24 2001-03-06 Peter William Schuyler Hold down device and method
US6026618A (en) 1997-10-29 2000-02-22 Reginald A. J. Locke Masonry reinforcement system
WO1999024724A1 (en) 1997-11-11 1999-05-20 Hamid Hakakzadeh Zanjani Self-tightening nut for use with wooden members
US20010002529A1 (en) 1997-11-21 2001-06-07 Charles R. Cypher Building wall for resisting lateral forces
US5815999A (en) 1997-11-21 1998-10-06 Williams; Merlin Ray Method and apparatus for strengthening frame buildings
US6099196A (en) 1997-12-02 2000-08-08 Dayton Superior Corporation Taper lock rebar splice joint
US5967691A (en) 1997-12-02 1999-10-19 Dayton Superior Corporation Quick connect rebar splice
US6244806B1 (en) 1997-12-09 2001-06-12 T. Kato Co., Ltd. Locking washer and locking apparatus using the same
US5987828A (en) 1997-12-12 1999-11-23 Hardy Industries, Inc. Self-adjusting tie down
US6327831B1 (en) 1998-01-09 2001-12-11 William F. Leek Loadbearing wall holdown
US6007284A (en) * 1998-04-07 1999-12-28 Taneichi; Kaoru Nut and connector
US6257813B1 (en) 1998-07-06 2001-07-10 Kazuaki Tanimura Screw clamping device with automatic clamping means
US6167785B1 (en) 1998-07-28 2001-01-02 Vern Penner Tool for turning fasteners in confined spaces
US6161339A (en) 1998-08-26 2000-12-19 Hurri-Bolt Inc. Structural tie-down apparatus
US6367205B2 (en) 1998-10-05 2002-04-09 Hurri-Bolt, Inc. Anchor for a structural tie-down apparatus
US20010037611A1 (en) 1998-10-05 2001-11-08 Cornett Robert M. Anchor for a structural tie-down apparatus
US6073642A (en) 1998-11-10 2000-06-13 Huang; Jung-Chang Connector assembly for an upright shaft of a beach umbrella
US6019556A (en) 1998-12-23 2000-02-01 University Of South Florida Locking fastener assembly
US6256960B1 (en) 1999-04-12 2001-07-10 Frank J. Babcock Modular building construction and components thereof
US6192647B1 (en) 1999-04-15 2001-02-27 Kjell L. Dahl High strength grouted pipe coupler
US6151850A (en) 1999-04-26 2000-11-28 Sorkin; Felix L. Intermediate anchorage system utilizing splice chuck
US6176051B1 (en) 1999-04-26 2001-01-23 Felix L. Sorkin Splice chuck for use in a post-tension anchor system
US6688071B1 (en) 1999-06-22 2004-02-10 Connector Vinkeveen B.V. Concrete structure comprising anchor rods and anchor rod
US6135687A (en) 1999-07-02 2000-10-24 Simpson Strong-Tie Co., Inc. Direct tension indicator for embedded anchor members
US6168455B1 (en) 1999-08-30 2001-01-02 Rally Manufacturing, Inc. Coaxial cable connector
US6158188A (en) 1999-09-13 2000-12-12 Mga Construction Hardware & Steel Fabricating Ltd. Holdowns
US7037060B2 (en) 1999-09-24 2006-05-02 Alfred Commins Shrinkage compensator for building tiedowns
US6390747B1 (en) 1999-09-24 2002-05-21 Alfred Commins Shrinkage compensator for building tiedowns
US6585469B2 (en) 1999-09-24 2003-07-01 Alfred Commins Shrinkage compensator for building tiedowns
CA2313735A1 (en) 1999-09-24 2001-03-24 Alfred Commins Shrinkage compensator for building tiedowns
US6564519B2 (en) 2000-01-06 2003-05-20 Zone Four, Llc Shear wall construction
US7171789B2 (en) 2000-01-06 2007-02-06 Zone Four, Llc Shear wall construction
US6389767B1 (en) 2000-01-06 2002-05-21 Zone Four, Llc Shear wall construction
US6826882B2 (en) 2000-01-06 2004-12-07 Zone Four, Llc Shear wall construction
US20070137125A1 (en) 2000-01-06 2007-06-21 Zone Four, A Division Of Trussed, Inc. Shear wall construction
US6773198B2 (en) 2000-01-29 2004-08-10 Robert Copping Fixture
US6279877B1 (en) 2000-02-02 2001-08-28 William Davis Electric wire fishing implement
US20020092383A1 (en) 2000-02-28 2002-07-18 Fumiyoshi Nezigane Tool for tightening a bolt
US6406240B1 (en) 2000-03-09 2002-06-18 Richard M. Potter Fast acting nut assembly or coupling
US6282994B1 (en) 2000-04-04 2001-09-04 Chiao Wei Socket
US20050284057A1 (en) 2000-04-25 2005-12-29 Commins Alfred D Continuous hold-down system
US20020020137A1 (en) 2000-08-08 2002-02-21 Commins Alfred D. Balanced, multi-stud hold-down
US7287355B2 (en) 2000-08-08 2007-10-30 Commins Alfred D Balanced, multi-stud hold-down
US6625945B2 (en) 2000-08-08 2003-09-30 Alfred D. Commins Balanced, multi-stud hold-down
US7007432B2 (en) 2000-08-08 2006-03-07 Commins Alfred D Balanced, multi-stud hold-down
US6880433B1 (en) 2000-08-16 2005-04-19 Kashiraishi Inc. Tightening force imparting device
US7422404B2 (en) * 2000-11-02 2008-09-09 Nhk Spring Co., Ltd. Facilitated tightening device
US6361260B1 (en) 2000-11-03 2002-03-26 Wendell E. Schirrmacher Quick locking fastener
CA2364582C (en) 2000-12-03 2010-02-16 Simpson Strong-Tie Co., Inc. Automatic take-up device with internal spring
US6513290B2 (en) 2000-12-03 2003-02-04 Simpson Strong-Tie Company, Inc. Concentric holdown
US20050034391A1 (en) 2000-12-03 2005-02-17 Leek William F. Automatic take-up device with internal spring
US20020066246A1 (en) 2000-12-03 2002-06-06 Leek William F. Automatic take-up device with internal spring
US7516582B2 (en) 2000-12-03 2009-04-14 Simpson Strong-Tie Company Inc. Automatic take-up device with internal spring
US20020094231A1 (en) 2001-01-08 2002-07-18 David Lee Connecting device for connecting a mirror support and a mirror body
US20020114664A1 (en) 2001-02-21 2002-08-22 Gregel John J. Reinforcing bar connection and method
US6925773B2 (en) 2001-02-21 2005-08-09 Erico International Corporation Reinforcing bar connection and method
US7467787B2 (en) 2002-01-28 2008-12-23 Barnes Group Inc. Compression spring rod
US6773002B2 (en) 2002-01-28 2004-08-10 Barnes Group Inc. Compression spring rod
US6679024B2 (en) 2002-02-26 2004-01-20 Kjell L. Dahl High strength grouted pipe coupler
US20030230032A1 (en) * 2002-06-13 2003-12-18 George Shahnazarian Take-up devices for use in building structure
US7316533B2 (en) 2002-12-02 2008-01-08 Kashiraishi Inc. Fastener for exerting tightening torque to fastening member screwed into mounting base
US6860693B2 (en) 2003-02-14 2005-03-01 Dell Products L.P. Rapid fastening screw apparatus and method
US6745649B1 (en) 2003-05-05 2004-06-08 Hui-Chen Liao Socket for a wrench
US20060133912A1 (en) 2003-06-23 2006-06-22 Commins Alfred D Circumferentially balanced, take-up device
US7150132B2 (en) 2003-08-12 2006-12-19 Commins Alfred D Continuous hold-down system
US20050108986A1 (en) 2003-10-07 2005-05-26 Cloyd Kenneth M. Load-resisting truss segments for buildings
US20050097843A1 (en) 2003-11-07 2005-05-12 Giesel Ronald D. Releasable coupling device for use with reinforcing tendons and method of using the same
US20060222454A1 (en) * 2003-12-22 2006-10-05 Federal-Mogul World Wide, Inc. Forged Knurled Socket Housing
US7802940B2 (en) * 2003-12-22 2010-09-28 Federal-Mogul World Wide, Inc Forged knurled socket housing
US20080292391A1 (en) * 2004-04-21 2008-11-27 Spence Dale A Method and apparatus for clearance adjusting cover plate closure
US20060000318A1 (en) 2004-06-30 2006-01-05 Chih-Ching Hsieh Anti-rolling socket
US8257004B2 (en) * 2004-11-19 2012-09-04 Smith Ronald A Thread clamping device and methods of use
US20070286702A1 (en) * 2004-11-19 2007-12-13 Smith Ronald A Thread Clamping Device And Methods Of Use
WO2006055905A1 (en) 2004-11-19 2006-05-26 Ronald Smith Thread clamping device and methods of use
US7752824B2 (en) * 2005-03-14 2010-07-13 Mitek Holdings, Inc. Shrinkage-compensating continuity system
US7744322B2 (en) * 2005-09-29 2010-06-29 Kaoru Taneichi Nut
WO2008016543A2 (en) 2006-07-29 2008-02-07 Ronald Smith Thread clamping device with improved locking distance
US8534974B2 (en) * 2006-07-29 2013-09-17 Ronald A. Smith Thread clamping device with improved locking distance
US20080060296A1 (en) 2006-09-12 2008-03-13 Espinosa Thomas M Building having a hold down system
US20080060297A1 (en) 2006-09-12 2008-03-13 Espinosa Thomas M Hold down system
US20080099968A1 (en) 2006-10-27 2008-05-01 Answer Products, Inc. Adjustable and progressive coil spring system for two wheeled vehicles
WO2008105045A1 (en) 2007-02-26 2008-09-04 Kaoru Taneichi Nut
US7905066B2 (en) * 2007-04-06 2011-03-15 Simpson Strong-Tie Co., Inc. Automatic take-up device and in-line coupler
WO2008124578A2 (en) 2007-04-06 2008-10-16 Simpson Strong-Tie Company, Inc. Automatic take-up device and in-line coupler
US8708629B2 (en) 2007-05-11 2014-04-29 Ronald A. Smith Thread clamping device
US20120134764A1 (en) * 2007-05-11 2012-05-31 Smith Ronald A Thread clamping device
US8276334B2 (en) * 2007-05-16 2012-10-02 Actuant Corporation Cable anchor
US8051615B2 (en) * 2007-05-16 2011-11-08 Actuant Corporation Cable anchor
JP2010196355A (en) 2009-02-25 2010-09-09 Kaoru Taneichi Member for wooden house
US20110182697A1 (en) * 2010-01-25 2011-07-28 Smith Ronald A Multi-rod thread clamping device
WO2011111087A1 (en) 2010-03-08 2011-09-15 Taneichi Kaoru Force applying device
US8281528B2 (en) * 2010-03-30 2012-10-09 Pointblank Design Inc. Apparatus for securing wall members for log homes
JP2012047244A (en) 2010-08-26 2012-03-08 Kaoru Taneichi Nut
US8646339B2 (en) * 2011-02-07 2014-02-11 Ronald A. Smith Thread clamping device including internal sensing and reporting
JP2013064415A (en) 2011-09-15 2013-04-11 Kaoru Taneichi Nut and fastening member

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
"Acceptance Criteria for Shrinkage Compensating Devices: AC316," Evaluation Report, ICC Evaluation Service, Inc., USA, p. 1-5, Nov. 2005. (5 pages).
"AT Auto Take-Up, "Zone Four Innovative Engineered Solutions, 2 pages, Friday Harbor, WA, USA, 2001.
"ATS-Components," Simpson Strong-Tie Co., Inc., Pleasanton, CA, USA, 2 pages, Submitted Jun. 28, 2010.
"Auto Take-Up," Zone Four Engineered Seismic Solutions, Commins Mfg., Inc., 4 pages, USA, 2000.
"Device Keeps Shear Walls Tight," p. 49, May 18, 2000.
"Expansion Jack Washer," Anchor Tie Down Systems, Inc., one page, USA, 1999.
"Holdowns", Simpson Strong-Tie Catalog: Connectors for Wood Construction, Catalog C87H-1, cover page and p. 8, Simpson Strong-Tie Company, Inc., 1987, USA. (2 pages).
"LocTite, Automatic Self-Locking Nuts," LocTite, 6 pages, USA, Oct. 1992.
"Seismic Solutions Structural Tie Downs", Quake-Tie: The Superior Hold-Down Solution Brochure, Seismic Solutions, Inc., Glen Ellen, CA, 9 pages, Jan. 1998.
"Strong-Tie Rod System", Simpson Strong-Tie Catalog C-HW02, back page and p. 21, Simpson Strong-Tie Company, Inc., Nov. 2002, USA.
"The Impasse Devise," Inquest Engineering, one page, USA, 1997.
"Thru-Bolt Log Fastening System," Heritage Log Homes, one page, 1999.
Alfred D. Commins, Automatic take Up Device, Aug. 15, 1996, US (7 pages).
Alfred D. Commins, Automatic take Up Device, Dec. 20, 1995, US (3 pages).
Alfred D. Commins, Automatic take Up Device, Feb. 10, 1997, US (5 pages).
Alfred D. Commins, Automatic take Up Device, Mar. 6, 1996 and Jan. 25, 1996, US (5 pages).
Alfred D. Commins, Automatic take Up Device, Mar. 6, 1996, US (3 pages).
Anchor Tiedown Systems, Inc., "Expansion Jack Washer," Anchor Tiedown System, Inc. Brochure (Mill Valley, CA and Burien, WA), consist of one page, printed one side, 1999.
Arthur B. Richardson, Declaration of Arthur B. Richardson, executed Dec. 21, 2002, 89 pages.
Commins Design LLC, "Acceptance Criteria for Shrinkage Compensating Devices and Similar Devices, "Proposed ICBO Take-UP, Devices Acceptance Criteria, Draft 1, Dec. 9, 1999, Commins Design LLC (Friday Harbor, WA), total of 3 pages, (Nov. 2, 1999 and Dec. 9, 1999).
Commins Design LLC, "AT Auto Take-Up," Shearwall Shrinkage Compensator Solves the Loose Shearwall Problem, Commins Design LLC (Friday Harbor, WA), total of 1 page, (Jan. 3, 2000).
Commins Design LLC, "Commins Design LLC, " Our Solution to Wood Shrinkage Solves Shearwall Problems, Commins Design LLC, (Friday Harbor, WA), total of 2 pages, (Jan. 2000).
Commins Design LLC, "ICBO Evaluation Service Inc. Evaluation Report, ER-XXXX Dec. 10, 1999, "Proposed, 1.0 Subject Commins Design AT Automatic Take-Up Shrinkage Compensating Devices, Commins Design LLC (Friday Harbor, WA), total of 5 pages, (Dec. 10, 1999).
Commins, Alfred D., US Provision Patent Application, U.S. Appl. No. 60/156,042, titled "Shrinkage Compensator for Building Tiedowns," total of 31 pages, Sep. 24, 1999.
Earthbound Seismic Holdown System Using The "Impasse Device", Evaluation Report, ER-5378, ICBO Evaluation Service, Inc. (USA), p. 1-6, Nov. 1, 1997.
ESR-2190-Cinch Nut Shrinkage Compensation Device: Models CN6, CN7, CN8 and CN10, ICC Evaluation Service, Inc., 4 pages, Oct. 1, 2006, USA.
Inquest Engineering, Manufacturers of the Earthbound System, Redefining the State of the Art in Seismic Holdown Technology, Submitted Jun. 28, 2010, 4 pages, USA.
McGraw-Hill Book Company, Inc. "Product Engineering Design Manual" edited by Douglas C. Greenwood, (New York), copyright 1959, (Title and copyright page, pp. 90-97, 316-329), 24 pages.
Probolt, "Structural Tie Down System." Product data sheet, installation instructions, and SBCCI Report No. 9916. 1999 Probolt, Orlando, Florida. (18 pages).
US 5,961,265, 10/1999, Tosiyuki (withdrawn).

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208834A1 (en) * 2008-10-30 2016-07-21 Erico International Corporation Quick-Threaded Rod Locking Device and Method
US9915277B2 (en) * 2008-10-30 2018-03-13 Erico International Corporation Quick-threaded rod locking device and method
US10578137B2 (en) 2008-10-30 2020-03-03 Erico International Corporation Quick-threaded rod locking device and method
US11572905B2 (en) 2008-10-30 2023-02-07 Erico International Corporation Quick-threaded rod locking device and method
US11773884B2 (en) 2008-10-30 2023-10-03 Erico International Corporation Quick-threaded rod locking device and method
US11047409B2 (en) 2008-10-30 2021-06-29 Erico International Corporation Quick-threaded rod locking device and method
USRE48981E1 (en) 2014-01-14 2022-03-22 Simpson Strong-Tie Company Inc. Thrust nut
US9938714B2 (en) 2016-03-24 2018-04-10 Omg, Inc. Hinged building shrinkage compensation device
US10151107B2 (en) 2016-03-24 2018-12-11 Omg, Inc. Hinged building shrinkage compensation device
US10745913B2 (en) 2016-03-24 2020-08-18 Omg, Inc. Building shrinkage compensation device with rotating gears
US20210179201A1 (en) * 2017-10-31 2021-06-17 Mitsubishi Fuso Truck And Bus Corporation Resin bracket
US11448254B2 (en) * 2018-05-31 2022-09-20 The Boeing Company Retained self-aligning washer and nut assembly and method for fabrication by additive manufacturing
US11193295B1 (en) 2019-08-16 2021-12-07 Richard Proctor Shrinkage compensating device for seismic restraint
US11761561B2 (en) * 2019-09-12 2023-09-19 Kuan-Lung Embedded fire-resistant device
US20210080034A1 (en) * 2019-09-12 2021-03-18 Kuan-Lung Lin Embedded fire-resistant device
US11898587B2 (en) * 2019-10-15 2024-02-13 Stemco Products, Inc. Torque-limiting nut
US20210108666A1 (en) * 2019-10-15 2021-04-15 Stemco Products, Inc. Torque-Limiting Nut
US20210214943A1 (en) * 2020-01-15 2021-07-15 HB&G Building Products, Inc. Column anchoring system for wind uplift resistance
US20210222426A1 (en) * 2020-01-17 2021-07-22 Simpson Strong-Tie Company Inc. Fire Stop Installation at Top Plate of Tie Down System
US20220341461A1 (en) * 2021-04-23 2022-10-27 Caterpillar Inc. Retention device

Also Published As

Publication number Publication date
US20130340366A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
US8881478B2 (en) Ratcheting take-up device
US11753813B2 (en) Hold down system with distributed loading for building walls
US11578492B2 (en) Concrete anchor
US5570549A (en) Building anchoring system
US6951078B2 (en) Fastener assembly serving as a product, or combined with other components as a product, allows automatic controlled movements in one direction and prevents movements in the opposite direction when forces are applied
US7296386B2 (en) Concentric holdown connection
KR101955523B1 (en) Support assembly for prefabricated water tank
US20050055897A1 (en) Continuously threaded hold-down system
US20090173019A1 (en) Rotating concentric holdown
US20040165942A1 (en) Shear wall holdowns and wall anchor connectors
US11512491B2 (en) Hollow post anchoring systems for decking and related methods
US10370844B2 (en) Securing assembly
US8578664B2 (en) Roof to post adjustable hold down device
CA2822151C (en) Ratcheting take-up device
AU2013209379B2 (en) Ratcheting take-up device
US20210222426A1 (en) Fire Stop Installation at Top Plate of Tie Down System
US11408189B2 (en) Base extension for guardrail system
KR102427958B1 (en) Cable-reinforced membrane structure resistant to wind loads
JP2024006503A (en) Foundation reinforcing metal fitting
JP2017101414A (en) Fitting structure of tension rod
JPH0925739A (en) Base isolation device for building

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIMPSON STRONG-TIE COMPANY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRAY, DANIEL M.;WERT, BRYAN DAVID;STRAWN, THOMAS MAXWELL;SIGNING DATES FROM 20131027 TO 20131029;REEL/FRAME:032486/0985

Owner name: SIMPSON STRONG-TIE COMPANY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCGURTY, LISA M.;REEL/FRAME:032486/0627

Effective date: 20140317

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8