US8867475B2 - CDMA mobile communication system and communication method - Google Patents

CDMA mobile communication system and communication method Download PDF

Info

Publication number
US8867475B2
US8867475B2 US13/785,051 US201313785051A US8867475B2 US 8867475 B2 US8867475 B2 US 8867475B2 US 201313785051 A US201313785051 A US 201313785051A US 8867475 B2 US8867475 B2 US 8867475B2
Authority
US
United States
Prior art keywords
reservation
packet
channel
reply
packets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/785,051
Other versions
US20130182684A1 (en
Inventor
Hironari Masui
Yasuo Ohgoshi
Takashi Yano
Nobukazu Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIPA Frohwitter Intellectual Property AG
Original Assignee
FIPA Frohwitter Intellectual Property AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIPA Frohwitter Intellectual Property AG filed Critical FIPA Frohwitter Intellectual Property AG
Priority to US13/785,051 priority Critical patent/US8867475B2/en
Publication of US20130182684A1 publication Critical patent/US20130182684A1/en
Application granted granted Critical
Publication of US8867475B2 publication Critical patent/US8867475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • H04B7/2637Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA] for logical channel control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present invention relates to a mobile communication system and a communication method, and more particularly, to a reservation based mobile communication system, mobile terminal equipment, and communication method to which code division multiple access (CDMA) is applied.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • each of mobile terminals having a request for data transmission reserves a traffic channel to a base station through a reservation packet.
  • the base station after scheduling traffic channels and transmission timing (time slots) to be assigned to these mobile terminals, notifies each of the mobile terminals of transmission timing to be used on an assigned traffic channel through a reply packet.
  • collision of packets on the traffic channel can be basically avoided.
  • JP-A-6-311160 corresponding to U.S. patent application Ser. No. 08/230,773 (hereinafter called “prior art publication 2”) has proposed such a communication system based on a time division multiple access scheme.
  • prior art publication 3 does not provide any useful information for solving the problem of a degraded throughput in the reservation based access control.
  • radio channels include a plurality of traffic channels used for transmitting upward data packets directed from mobile terminals to a base station and for transmitting downward data packets directed from the base station to the mobile terminals, a reservation channel used for transmitting reservation packets each indicative of a traffic channel assignment request from a mobile terminal to the base station, and a reply channel used for transmitting reply packets each indicative of a traffic channel through which data is transmitted and received from the base station to a mobile terminal, wherein the reservation, reply and traffic channels are applied with spread-spectrum in accordance with a CDMA scheme.
  • the mobile communication system is characterized in that a mobile terminal having a request for data transmission transmits a reservation packet onto the reservation channel at arbitrary timing, the base station specifies a traffic channel and a time slot to be used by the requesting mobile terminal by a reply packet transmitted through the reply channel, and each mobile terminal transmits and receives a data packet in the time slot on the traffic channel, both specified by the reply packet.
  • each of the reservation, reply and traffic channels is assigned a unique spreading code, for example, pseudonoise (PN).
  • PN pseudonoise
  • the reservation channel is assigned a spreading code shorter than those assigned to other reply and traffic channels.
  • the base station relies on a matched filter to identify a plurality of reservation packet signals having time-overlapped portions, transmitted from a plurality of mobile terminals, and to perform a receiving process on bit signals corresponding to each packet.
  • the base station upon receiving a reservation packet from a mobile terminal, assigns a time slot on a traffic channel in accordance with a schedule control, and notifies each mobile terminal of the assignment result through a reply packet.
  • the base station periodically transmits a busy tone signal indicative of a traffic situation, such that each mobile terminal having a request for data transmission performs a reservation packet transmission control in accordance with the busy tone signal.
  • the radio channels may be provided with a plurality of reply channels so as to specify a reply channel for each mobile terminal to receive the busy tone signal therethrough.
  • time slots are defined in the traffic channels such that each mobile terminal transmits and receives data in a particular time slot specified by the base station.
  • the reservation channel is not provided with time slots, so that each mobile terminal having a request for data transmission transmits a reservation packet at arbitrary timing, thus facilitating the operation of transmitting the reservation packet in each mobile terminal.
  • each mobile terminal performs a spectrum spreading or multiplies the reservation packet by a spreading code to generate a spread-spectrum reservation packet, where the spreading code has a period shorter than that applied to a data packet transmitted through a traffic channel, while the base station receives reservation packets using a matched filter.
  • the matched filter can identify received packets, provided that there is a timing deviation over one chip or more on the spreading code between the respective packets. Therefore, even if a plurality of mobile terminals generate reservation packets individually at arbitrary timing, a reception disabled condition caused by collision of these packets will occur with an extremely low possibility.
  • FIG. 1 illustrates an exemplary configuration of a mobile communication network to which the present invention is applied
  • FIG. 2A is a diagram for explaining a protocol for a call set up process in a radio communication system according to the present invention
  • FIG. 2B is a diagram for explaining a protocol for information transmission in the radio communication system according to the present invention.
  • FIG. 3 is a diagram for explaining a channel access control in a conventional radio communication system
  • FIG. 4 is a diagram for explaining a channel access control in a radio communication system according to the present invention applying a CDMA scheme
  • FIG. 5A illustrates a format for a reservation packet
  • FIG. 5B illustrates a format for a reply packet
  • FIG. 5C illustrates a format for an information transmission packet
  • FIG. 6 is a block diagram illustrating the configuration of a base station
  • FIG. 7 is a block diagram illustrating the configuration of a CDMA transceiver 50 in the base station
  • FIG. 8A is a block diagram illustrating the configuration of a matched filter 70 ;
  • FIG. 8B is a diagram for explaining how the matched filter processes received reservation packets
  • FIG. 9 is a block diagram illustrating the configuration of a packet separation circuit 80 ;
  • FIG. 10 is a block diagram illustrating the configuration of a packet controller 90 in the base station
  • FIG. 11 is a block diagram illustrating the configuration of a mobile terminal
  • FIG. 12 is a block diagram illustrating the configuration of a CDMA transceiver 110 in the mobile terminal
  • FIG. 13 is a block diagram illustrating the configuration of a packet controller 130 in the mobile terminal.
  • FIGS. 14A and 14B are diagrams for explaining a busy tone control.
  • FIG. 1 illustrates an exemplary configuration of a mobile communication network to which the present invention is applied.
  • the illustrated mobile communication network comprises a public network 1 accommodating stationary terminals such as a telephone 3 or the like; and a mobile communication network 2 connected to the public network 1 and accommodating a plurality of base stations 4 ( 4 a , 4 b , . . . ), wherein each base station 4 communicates with mobile terminals (radio terminals) 5 ( 5 a , 5 b , . . . ) located in its service area (cell) through radio channels 6 .
  • radio terminals 5 5 a , 5 b , . . .
  • a CDMA packet transmission is applied because of its suitability to communications of multi-media information in which data, sound and image signals are mixed.
  • FIG. 2A shows a protocol for a call set up process in the radio communication system according to the present invention.
  • the call set up process includes two different sequences of operations: one is a sequence of operations for initially allocating local ID's (local addresses) to mobile terminals in a service area, and the other is a sequence of operations for allocating a link number to each mobile terminal for communicating with another destination terminal.
  • the local ID is an address number having a reduced length than that of a unique address previously assigned to each mobile terminal. The use of this local ID results in reducing the length of a packet.
  • the link number also has a similar effect to the local ID.
  • a procedure of the call set up process is common to the above-mentioned sequences of operations for allocating the local ID's and for allocating the link numbers.
  • the procedure comprises the steps of transmitting a control packet (reservation packet) 10 a for call set up from a terminal to a base station through a reservation channel 7 ; transmitting a control packet (reply packet) 11 a from the base station to the terminal through a reply channel 8 ; and transmitting a call set up data packet 12 a from the base station to the terminal through a traffic channel.
  • Address information indicative of a source is set in the control packet 10 a .
  • the address of a terminal required to receive the data packet 12 a and a time slot on the traffic channel 9 in which the data packet 12 a is to be received are specified by the control packet 11 a , such that the terminal specified by this control packet 11 a receives the call set up data packet 12 a including location registration information (local ID number) or link information (link number) transmitted by the base station in the specified time slot on the traffic channel 9 .
  • control packet 11 a has a sufficient length, the location registration information or the link information may be transmitted through the control packet 11 a , instead of utilizing the call set up data packet 12 a.
  • the reservation channel 7 , reply channel 8 , and traffic channels 9 are distinguished by PN codes which are applied to spread-spectrum.
  • a plurality of traffic channels 9 can be formed by providing a plurality of PN codes for transmitting data packets.
  • the base station is provided, for example, with a management table for indicating a slot using situation on each traffic channel such that the base station schedules a slot for transmitting the data packet 12 a so as to minimize a waiting time of the terminal by referring to this management table.
  • FIG. 2B shows a protocol for transmitting user information (hereinafter simply called the “data”).
  • a terminal (transmitting terminal) having a request for data transmission utilizes a PN code for the reservation channel 7 to transmit a control packet (reservation packet) 10 b for requesting the assignment of a slot in which a data packet is to be transmitted.
  • the base station in response to this request, utilizes a PN code for the response channel 8 to transmit a control packet (reply packet) 8 b to the request transmitting terminal, thereby specifying a traffic channel 9 i and a time slot to be used by the request transmitting terminal.
  • the request transmitting terminal upon receiving the reply packet 11 b , sends the data packet 12 b at the timing of a specified time slot on the traffic channel 9 i.
  • the data packet 12 b is once received by the base station.
  • the base station confirms a destination address of the data packet, and utilizes the PN code for the reply channel 8 to transmit a control packet 13 for specifying a destination terminal (receiving terminal) as well as a traffic channel 9 j and a time slot with which the receiving terminal is to receive the data packet 12 b , when the receiving terminal is a mobile terminal located in the service area of the base station.
  • the base station sends the received data packet 12 b from the request transmitting terminal as a data packet 14 in the specified time slot.
  • the receiving terminal receives the data packet 14 transferred from the base station in the specified time slot on the traffic channel 9 j specified by the control packet 13 .
  • the base station provides each mobile terminal with reference timing in data packet transmission/reception operations using a pilot signal transmitted through a pilot channel in parallel with the transmission of the data packet 14 . Since each mobile terminal can receive the data packet 14 and the pilot signal transmitted from the base station with the same delay time, the mobile terminal can readily accomplish synchronization acquisition, when receiving the data packet 14 , by determining the timing of a receiving time slot based on the pilot signal.
  • FIG. 3 shows a reservation based access control in a conventional FDMA radio communication system.
  • the reservation based access control is a control method in which a reservation packet is sent prior to the transmission of a data packet, and the data packet is transmitted after the reservation is established.
  • the reservation channel 7 and the reply channel 8 are provided in addition to the traffic channels 9 .
  • the channels may be divided in accordance with the time division multiple access (refer to the prior art 2) other than the frequency division multiple access (refer to the prior art 1) shown in FIG. 3 .
  • the abscissa represents the time axis 21 .
  • the base station schedules time slots on the traffic channels, and transmits a reply packet indicative of a reservation result to the radio terminal through the reply channel 8 .
  • the reservation packets may collide with each other and collapse, as indicated by 22 a , 22 b in FIG. 3 , with the result that the base station cannot receive the reservation packets.
  • Each radio terminal determines that its reservation packet would have collided with any other reservation packet on the reservation channel if a reply packet destined thereto has not been returned in a predetermined time period after the radio terminal had sent the reservation packet. In this event, the radio terminal again transmits the reservation packet (indicated by 23 a , 23 b ).
  • the throughput in a radio communication system employing the conventional reservation based access control is limited depending on the collision of reservation packets as described above.
  • FIG. 4 shows an access control in a reservation based CDMA radio communication system according to the present invention.
  • the present invention applies CDMA packet transmission to a reservation channel to allow a plurality of radio terminals to transmit reservation packets individually at arbitrary timing.
  • FIG. 4 represents a situation in which the transmitting terminals 25 have transmitted reservation packets partially overlapped on the time axis 21 .
  • the spread-spectrum is applied by replacing each symbol (bit “ 1 ” and “ 0 ”) in transmitted data with a spreading code (orthogonal code or PN code) composed of a plurality of chips having unique patterns.
  • a spreading code orthogonal code or PN code
  • PN orthogonal code
  • a plurality of transmitting terminals modulate transmission data using the same PN (pseudonoise) sequence, and transmit the spread-spectrum data at the same carrier frequency.
  • the receiving side can individually identify each of transmitted data.
  • each radio terminal having a request for data transmission transmits a reservation packet at arbitrary timing on the reservation channel, and sends a data packet in a time slot on a traffic channel, both specified by a reply packet received through the reply channel.
  • the data packet is transmitted in units of time slot in principle.
  • the data is divided into a plurality of data packets, and a time slot is reserved for each data packet.
  • a plurality of time slots may be reserved by a single reservation packet such that a base station, in response to the reservation packet, assigns a plurality of continuous or intermittent time slots to a transmitting terminal by a single reply packet or a plurality of reply packets generated for respective time slots.
  • the mobile terminals While the present invention allows the mobile terminals to transmit reservation packets at arbitrary timing, the mobile terminals must transmit and receive a reply packet and a data packet in synchronism with a time slot having a previously defined constant length.
  • the reply channel 8 and the respective traffic channels 9 are divided into time slots respectively having a fixed length, and a pilot signal is used to match the timing, thus facilitating fast synchronization of spreading codes between each radio terminal and a base station.
  • the base station spreads the pilot signal (reference signal) with a spreading code (PN sequence) having a suitable period, and continuously transmits the spread-spectrum pilot signal on a common channel (pilot channel).
  • PN sequence spreading code
  • Each radio terminal generates a synchronization signal based on the pilot channel despread from the spread-spectrum pilot signal with a PN sequence unique to the pilot channel, and sets a time slot in synchronism with the base station on the reply channel and on each traffic channel.
  • the pilot signal is intended for the synchronization of the spreading codes, the pilot signal may include any contents.
  • the reply channel for example, may be utilized instead of using the dedicated pilot channel.
  • FIGS. 5A-5C illustrate formats for the packets used in the mobile communication system according to the present invention.
  • the reservation packet is composed of a preamble 31 a for synchronization acquisition; a type of reservation 432 b indicative of the type of the packet (identification code for identifying a location registration packet, a link securing packet, or a traffic channel reserving packet); a source address 33 (using a local ID if the location has been registered); a destination address 34 (using a link number if a link has been secured); a number 35 of reservation desired transmission packets (time slots); and a CRC (Cyclic Redundancy Check) code 36 a serving as an error detection code, arranged in this order from the beginning.
  • the number 35 of transmission packets is not required in the call set up process for location registration or link securing.
  • the reply packet is composed of a source address 34 ; a type of reply 32 b indicative of the type of the packet (for identifying a location registration packet, a link securing packet, an upward direction information transmitting packet or a downward direction information transmitting packet); a PN type 37 indicative of a spreading code of a traffic channel to be sued; timing information 38 indicative of assigned transmission timing (time slot); and a CRC code 36 b , arranged in this order from the beginning.
  • the reply packet does not require a preamble. This is because each radio terminal can acquire each reply packet by receiving the pilot signal and establishing the synchronization of each time slot on the reply channel based on the pilot signal, as described above.
  • the data packet for transmitting information is composed of a preamble 31 b ; a type of packet (for identifying a location registration packet, a link securing packet, an upward information transmitting packet, or a downward information transmitting packet) 32 c ; a source address 33 (using a local ID if the location has been registered); a destination address 34 (using a link number if a link has been secured); data 39 (a PN code for the information transmitting channel or the reply channel, transmission or reception timing, and transmission information); and a CRC code 36 c , arranged in this order from the beginning.
  • the reply channel and the traffic channel for transmitting information are respectively divided into packets, it is desirable that the sizes of respective packets be unified to a fixed length even if the types of packets are different.
  • dummy bits may be inserted in a front portion of each packet so as to adjust the beginning position of respective fields subsequent thereto.
  • the preamble 31 b may be omitted as is the case of the reply packet.
  • FIG. 6 illustrates a schematic configuration of the base station 4 .
  • the base station 4 comprises an antenna 41 ; a CDMA transceiver 50 ; a packet controller 90 ; a BSC interface 42 connected to a controller (BSC 43 ) intervening between the base station 4 and the mobile communication network 2 .
  • FIG. 7 illustrates in detail the configuration of the CDMA transceiver 50 in the base station.
  • the CDMA transceiver 50 comprises receiving radio module 52 and a transmitting radio module 53 for modulating and demodulating a baseband signal as well as for transmitting and receiving signals at radio frequencies.
  • a control packet (reply packet) signal transmitted from a base station to a radio terminal is inputted to an encoder 58 a through a reply channel signal line 45 a , and is subjected to encoding for error correction using, for example, a convolutional code or the like.
  • the encoded reply packet signal is multiplied by an orthogonal code for the reply channel outputted from an orthogonal code generator 59 in a multiplier 56 a to generate a spread-spectrum reply packet signal which is then inputted to an adder 60 .
  • data packet signals outputted to a plurality of signal lines 45 b respectively corresponding to traffic channels are encoded in the encoder 58 b , and multiplied by orthogonal codes corresponding to respective traffic channels in a multiplier 56 b to generate spread-spectrum data packet signals which are then supplied to the adder 60 .
  • a pilot signal outputted to a signal line 45 c is likewise encoded in an encoder 58 c , multiplied by an orthogonal code unique to the pilot channel in a multiplier 56 c to generate a spread-spectrum pilot signal which is then supplied to the adder 60 .
  • the output of the adder 60 is multiplied by a PN code (long code) unique to each base station outputted from a PN generator 57 a in a multiplier 56 to generate a spread-spectrum signal which is subsequently supplied to the transmitting radio module 53 .
  • PN code long code
  • a received signal processed by the receiving radio module 52 is inputted to a matched filter 70 a for the reservation channel and to a plurality of matched filters 70 b - 70 b ′ respectively corresponding to traffic channels.
  • the matched filter 70 a despreads the received signal with a PN code unique to the reservation channel.
  • the despread signal is separated into a plurality of bit data trains 89 each for a corresponding reservation packet in a packet separation circuit 80 .
  • the outputs of the matched filter can be used as despread results without further processing, thus realizing fast synchronization.
  • a decoding process accompanied by error correction, for example, such as Viterbi decoding or the like in a decoder 55 a , and subsequently supplied to the packet controller 90 .
  • the matched filters 70 b - 70 b ′ are provided for acquiring the initial synchronization of PN sequences of received signal son the respective traffic channels.
  • each of the PN generators 57 b , 57 b ′ generates a PN sequence for each channel in synchronism with the acquired PN sequence.
  • the received signal is multiplied by PN sequences corresponding to respective channels generated by the PN generators 57 , 57 b in multipliers 56 , 56 ′ to be despread.
  • the despread signals are accumulated for every one symbol length in accumulators 54 , 54 ′.
  • the accumulated results are decoded by decoders 55 , 55 ′ and subsequently supplied to the packet controller 90 as data packet signals for the respective traffic channels.
  • FIG. 8A illustrates the principle of the matched filter 70 a .
  • the matched filter 70 is composed of a plurality of cascaded delay elements 71 each having a delay time T equal to a chip width of a PN sequence; a plurality of taps arranged on the input side of the delay element at the first stage and on the output side of the respective delay elements; and a plurality of coefficient multipliers 72 , one in each tap.
  • the matched filter 70 a is configured such that received signals inputted at every chip time propagate from one tap to the next in the delay time T.
  • the delay time of each delay element 71 is equal to the chip width of a PN sequence for the reservation channel, and the number of taps is equal to the number of chips included in one period of the PN sequence, such that a one-period portion of the PN sequence simultaneously appears at the plurality of taps at the time the top chip of an inputted signal reaches the rightmost tap. Therefore, respective chip values (“1” or “ ⁇ 1”) of the PN sequence a 1 - an for the reservation channel are previously set in the respective coefficient multipliers 72 as coefficients, and a total sum of the results of multiplications of respective tap outputs by the respective coefficients is calculated by an accumulator 73 .
  • the accumulation result is outputted as a correlation value between the received signal and the PN sequence for the reservation channel, the synchronization is acquired at the time the correlation value changing for every chip time presents a peak value. Also, the output value of the accumulator 73 at this time indicates a demodulated value generated by despeading the received signal.
  • the number of taps of the matched filter 70 a is made equal to a spreading code length so that the output 79 a of the matched filter 70 a contains information (symbol code) of a one-bit portion of the reservation packet. Also, a short code type PN sequence having a less number of chips is applied as a spreading code for the reservation channel to reduce the number of taps required to the matched filter, thus facilitating the synchronization acquisition.
  • FIG. 8B illustrates an output signal of the matched filter 70 a which is generated when two reservation packets A, B are partially overlapped on the time axis.
  • the output signal 79 a of the matched filter 70 a includes a plurality of positive peak values (indicative of a code bit “ 1 ”) and a plurality of negative peak values (indicative of a code bit “0”) generated by the accumulator 70 a .
  • Peak values equal to or more than a predetermined threshold are detected from the output of the matched filter 70 a and grouped into groups of signals appearing at a time interval matching with the PN sequence period from the respective start points at which the first peak values are detected (synchronization acquisition time), thereby making it possible to identify a bit data train 78 belonging to the reservation packet A and a bit data train 76 belonging to the reservation packet B.
  • the peak value 76 - 1 appearing first is defined as the start point, and signal values (“1” or “ ⁇ 1”) 76 - 2 , 76 - 3 , 76 - 4 , . . . subsequently appearing at a time interval equal to the PN period 75 are extracted from the output of the matched filter 70 a to reproduce the bit data train 76 constituting the reservation packet A.
  • a peak value 77 - 1 appearing asynchronously with the bit data train 76 is defined as the start point, and signal values (“1” or “ ⁇ 1”) 77 - 2 , 77 - 3 , 77 - 4 , . . .
  • bit signals for each packet can be identified as long as a phase deviation over one chip or more exists between the respective packets.
  • FIG. 9 illustrates an exemplary configuration of the packet separation circuit 80 .
  • the output signal 79 a of the matched filter 70 a is inputted to an absolute value circuit (ABS) 81 , the output of which is compared with a predetermined threshold outputted from a threshold circuit 82 by a comparator 83 a .
  • ABS absolute value circuit
  • the output of the comparator 82 is turned ON (“1” state) and inputted to an AND circuit 84 a .
  • the AND circuit 84 a is also supplied, as other input signals, with inverted signals which are initially OFF (“0” state), the AND circuit 84 is opened by the ON output from the comparator 83 a , whereby its output signal is turned ON (“1” state).
  • the ON output from the AND circuit 84 A is inputted to AND circuits 84 b and 84 d.
  • the AND circuit 84 b is also supplied at the other input terminal thereof with an inverted version of an output signal from a timer 85 a .
  • the output of the timer 85 a is in OFF state (“0” state), so that the output of the AND circuit 84 b is also turned ON at the time the output of the AND circuit 84 a is turned ON.
  • the ON output of the AND circuit 84 b is inputted to a timing register 86 a as an enable signal, whereby the timing register 86 a is set at a value recorded on a counter 87 which performs a counting operation at an interval equal to the chip period of the PN code and returns to an initial value at an interval equal to the symbol length.
  • the counter 87 outputs a value which indicates a chip position at the timing at which the synchronization is acquired, as previously described with reference to FIG. 8B .
  • the ON output of the AND circuit 84 b causes a timer 85 a to start for controlling the other input terminals of the AND circuits 84 b and 84 d .
  • the timer 85 a maintains its output in ON state for a time period corresponding to one reservation packet. This permits the AND gate 85 d to remain open and the AND gate 84 b to remain close until a time set in the timer 85 a expires, thus preventing any other counted value from being set in the first timing register 86 a.
  • the ON output from the AND circuit 84 a is inputted to an enable terminal of a second timing register 86 b through a pair of AND circuits 84 d and 84 d ′ which remain open. As a result, the output value of the counter 87 is set in the second register 86 b .
  • a timer 85 b cooperating with the second timing register 86 b is started and performs a similar operation to that of the timer 85 a to prohibit any other value from being set in the second timing register 86 until a one-packet period has elapsed and to open a pair of AND gates at the next stage so as to input the subsequently generated enable signal to a third timing register 86 c.
  • the packet separation circuit 80 is provided with four timing registers 86 a - 86 d , the synchronization acquisition timing is stored for four reservation packets, determined by the order of generation, within a plurality of reservation packets generated in a time-overlapped condition by repeating the foregoing operations in a similar manner.
  • the value of the synchronization acquisition timing set in the timing register 86 a is compared with an output value of the counter 87 in a comparator 83 b . Every time the counted value is coincident with the synchronization acquisition timing value set in the timing register 86 a , the output of the comparator 83 b is turned ON.
  • the ON output of the comparator 83 b is inputted to an enable terminal of a data register 87 a through the AND circuit 84 c which remains open while the timer 85 a is in ON state.
  • the data register 87 a is supplied with the output of the matched filter 80 a at the synchronization acquisition timing.
  • the remaining timing registers 86 b - 86 d also operate in a manner similar to the foregoing to store the outputs of the matched filter 70 a for respective reservation packets in data registers 87 b - 87 d , respectively.
  • the data registers 87 a - 87 d are supplied with data in accordance with the synchronization acquisition timing of the respective reservation packets, the contents of these data registers 87 a - 87 d are transferred to output registers 88 a - 88 d , respectively, in synchronism with a clock having a bit period generated by a clock generator 88 , and data indicative of the contents of the respective reservation packets are transferred to the decoder 55 a illustrated in FIG. 7 from the output registers 88 a - 88 d.
  • FIG. 10 illustrates an exemplary configuration of the packet controller 90 in the base station 4 .
  • Received data from the reservation channel (the contents of a reservation packet) is inputted to a digital signal processor (DSP) 91 , and is processed by a reservation packet processing routine 92 of the DSP 91 . Subsequently, an assignment of a traffic channel and a time slot (scheduling) is performed by an upward schedule control routine 93 .
  • DSP digital signal processor
  • a traffic channel (PN type) and a time slot (timing information) determined by the upward schedule control routine 93 is transferred to a reply packet constructing unit 97 together with a source address of a reservation packet to which a reply packet is destined.
  • the reply packet constructing unit 97 generates a reply packet including the above information and transmits it to the reply channel signal line 45 a . In this way, the operation for transmitting an upward data packet from each mobile terminal can be controlled in accordance with the scheduling of the base station.
  • Received data from respective traffic channels are inputted to reception processing units 96 b , 96 b ′ arranged in correspondence to the respective traffic channels through signal lines 44 b , 44 b ′, and transferred to the BSC interface 42 through signal lines 46 as received data packets.
  • a downward data packets outputted from the BSC interface 42 to signal lines 47 after temporarily stored in transmission buffers 99 , 99 ′, are transmitted under the control of a schedule executed by a downward schedule control routine 95 of the DSP 91 . More specifically, in accordance with a downward schedule, a reply packet constructed by the reply packet constructing unit 97 is first sent from the reply channel, and subsequently data packets generated by the traffic packet constructing units 98 a , 98 a ′ are sent in predetermined time slots on traffic channels determined by the downward schedule.
  • a busy tone value calculation routine 94 of the DSP 91 for restraining mobile terminals from issuing reservation packets when the traffic channels remain busy, a busy tone value calculation routine 94 of the DSP 91 generates busy tone information in accordance with the number of reservation packets received through the reservation channel and traffic channel utilization state information known to the upward schedule control routine 93 , and notifies the busy tone information to the respective mobile terminals through the reply channel 45 a.
  • FIG. 11 illustrates the configuration of the radio terminal 5 .
  • the radio terminal 5 is composed of an antenna 100 ; a CDMA transceiver 110 connected to the antenna 100 ; a packet controller 130 connected to the CDMA transceiver 110 ; and a data processing unit connected to the packet controller 130 .
  • the data processing unit comprises a microprocessor (MPU) 101 ; a memory 102 for storing data and programs; and a plurality of input/output devices connected to an internal bus through an I/O interface 103 .
  • the input/output devices may comprise, for example, a camera 104 a , a speaker 104 b , a display 104 c , a keyboard 104 , and so on.
  • FIG. 12 illustrates in detail the configuration of the CDMA transceiver 110 in the radio terminal.
  • the CDMA transceiver 110 comprises a receiving radio module 112 and a transmitting radio module 113 . These modules are responsible for modulation or demodulation of a baseband signal and a receiving process or a transmitting process at radio frequencies.
  • a reservation packet signal outputted to a reservation channel signal line 106 a is encoded for error correction in an encoder 120 a , and then multiplied by a unique PN sequence (short code) generated from a PN generator 121 a in a multiplier 114 a to generate a spread-spectrum reservation packet signal which is sent to the transmitting radio module 113 .
  • a unique PN sequence short code
  • a data packet outputted to a traffic channel signal line 106 b is encoded for error correction in an encoder 120 b , and multiplied by a PN sequence (long code) generated by a PN generator 121 b in a multiplier 114 b to generate a spread-spectrum data packet which is sent to the transmitting radio module 113 .
  • the spread-spectrum for the data packet is performed using a PN sequence specified by a base station, which is identified by a control signal outputted onto a signal line 106 c by a packet controller 130 and in synchronism with reference timing 105 c provided from a PN generator 119 in a receiver circuit.
  • a received signal outputted from the receiving radio module 112 is inputted to a multiplier 114 c which multiplies the received signal by a PN code unique to the base station generated by the PN generator 119 to despread the received signal.
  • the output of the multiplier 114 c is parallelly inputted to multipliers 114 d , 114 e and 114 f respectively for the reply channel, traffic channels and pilot channel, and multiplied by orthogonal codes unique to the respective channels generated by an orthogonal code generator 117 .
  • output signals from the multipliers 114 d , 114 e are inputted to accumulators 115 d , 115 e , respectively, to produce accumulated values for each symbol length for despreading the output signals from the multipliers 114 d , 114 e .
  • Output signals of the respective accumulators 115 d , 115 e are inputted to decoders 116 d , 116 e , respectively, for error correction, and then transferred to the packet controller 130 through signal lines 105 d , 105 e , respectively.
  • a pilot signal outputted from an accumulator 115 f is inputted to a DLL (Delay Locked Loop) circuit 118 for tracking of synchronization.
  • the PN generator 119 is forced to generate a PN sequence in synchronism with the output of the DLL circuit 118 . It should be noted that the decoders 116 d , 116 e on the reply channel line 105 a and the traffic channel line 105 b are operated in synchronism with the pilot signal outputted from the accumulator 115 f.
  • FIG. 13 illustrates an exemplary configuration of the packet controller 130 in the radio terminal.
  • Received data through the reply channel appearing on the signal line 105 a is inputted to a DSP 131 and precessed by a monitoring routine 132 .
  • the contents of the reply packet is supplied to an upward schedule control routine 134 and to a downward schedule control routine 135 , while a busy tone signal received through the reply channel is supplied to a busy tone calculation routine 133 .
  • Received data through a traffic channel appearing on the signal line 105 b is received by a reception processing circuit 136 which is controlled by a control signal from the downward schedule control routine 135 and a reference timing signal 105 c , and received data in a particular time slot specified by a base station through a reply packet is outputted onto a signal line 107 as receiving information.
  • transmission data from the radio terminal after temporarily stored in a transmission buffer 138 , is fetched by a traffic packet constructing unit 139 in accordance with an instruction from the upward schedule control routine 134 , and is sent onto the traffic channel signal line 106 b as a data packet.
  • the upward schedule control routine 134 When a reply packet is received from a base station, the upward schedule control routine 134 generates a signal 106 for specifying a traffic channel (PN sequence) to which a traffic packet is to be sent, and issues a data packet sending instruction to the traffic packet constructing unit 139 at timing of a time slot specified by the base station.
  • the traffic packet constructing unit 139 upon receiving the data packet sending instruction from the control routine 134 , reads transmission data from the transmission buffer 138 , and sends the data packet illustrated in FIG. 5C onto the traffic channel signal line 106 b at predetermined output timing determined based on the reference timing signal 105 c.
  • the busy tone value calculation routine 133 calculates a busy tone value indicative of a traffic situation from a busy tone signal received through the reply channel, and notifies the busy tone value to the upward schedule control routine 134 .
  • the upward schedule control routine 134 controls the generation of reservation packets in accordance with the traffic situation. For example, if the busy tone signal does not indicate to restrain data transmission with transmission data being accumulated in the transmission buffer, the reservation packet constructing unit 137 is started at arbitrary timing to transmit a reservation packet to the reservation channel signal line 106 a . Conversely, if the busy tone signal indicates to restrain data transmission, the transmission of reservation packets is restrained until the traffic situation improves.
  • the CDMA scheme is applied to the reservation channel to reduce the possibility of retransmission of reservation packets due to collision of the reservation packets even if respective mobile terminals transmit the reservation packets at arbitrary timing.
  • the busy tone control is added to restrain the transmission of new packets from mobile terminals when the traffic channels or the reservation channel is in an overload condition.
  • the CDMA has a problem that when a plurality of packets are generated in a time-overlapped condition, the packet signals mutually affect as noise, so that if a large number of packets are simultaneously generated, the receiver side cannot identify them because all packet signals are buried in noise.
  • the total number of reply packets and data packets can be controlled by the scheduling function of the base station, whereas the base station cannot directly control reservation packets since they are issued autonomously from respective mobile terminals.
  • a method which allows each radio terminal to autonomously control the transmission of a reservation packet with reference to the busy tone signal from the base station is effective in avoiding concentrated reservation packets to smoothly control the transmission in each terminal.
  • the busy tone signal may be transmitted through a channel dedicated thereto, empty time zones appearing periodically on the reply channel may also be utilized.
  • the reply channel is divided into time slots each having a length corresponding to the length of a data packet on the traffic channel based on the pilot signal. Since the reply packet includes a smaller amount of information, its length can be made shorter than the data packet. For example, assuming that the time slot length (data packet length) is 512 bits and the reply packet length is 42 bits, 12 reply packets can be transmitted through the reply channel during one time slot period on the traffic channel, with a 8-bit empty time zone remaining at the end of the time slot. It is therefore possible to utilize the available empty time zone in the time slot to periodically transmit the busy tone signal through the reply channel.
  • t ⁇ 1”, “t” and “t+1” designate time slot numbers on the reply channel, and a pulse waveform represents the busy tone signal 143 .
  • the busy tone signal 143 is periodically transmitted utilizing an empty time zone left in each time slot on the reply channel.
  • FIG. 14A shows a relationship between a total amount of packets sent out by radio terminals in each time slot and a number T of allowed packets which can be transmitted in a time-overlapped condition.
  • An area 148 indicates an amount of reservation packets sent in the time slot “t ⁇ 1” and an area 149 indicates an amount of data packets sent in the time slot “t ⁇ 1”.
  • R(t)′ and R(t) are defined to be numbers of reservation packets when the length of the reservation packet is normalized by the length of the data packet.
  • the equation (1) is derived by substituting a number R(t ⁇ 1) of reservation packets actually received by the base station as the value of R(t ⁇ 1)′.
  • the number I(t) of data packets in the time slot “t” is known from previously received reservation packets and the result of scheduling the traffic channels for received data packets from other base stations.
  • the value of R(t)′ is estimated from the equation (1), and when a total amount of the number R(t)′ of transmission requested reservation packets and the number I(t) of data packets in the time slot “t” exceeds a tolerable value T as shown by the following equation (2), the transmission of reservation packets is restrained by the busy tone signal: I ( t )+ R ( t )′ ⁇ T (2)
  • the transmission of reservation packets is controlled by the busy tone signal such that the transmission probability P(t) of reservation packets from radio terminals in the service area is restrained by a traffic amount on the traffic channels, as shown by the following equation (3), thereby making the sum of the number of reservation packets and the number of data packets substantially equal to the tolerable value T. Since the number of reservation packets actually transmitted from radio terminals is determined from the probability, it is desirable that the tolerable value T be set at a slightly lower level in order to allow for a certain margin.
  • the base station may notify respective radio terminals of information indicative of the transmission probability expressed by the equation (3) or (4) as the busy tone signal 143 in the time slot “t ⁇ 1”.
  • the present invention applies CDMA to a reservation based packet access control type mobile communication system to reduce the possibility of retransmission of reservation packets due to their collision, even if each mobile terminal is allowed to transmit a reservation packet at its arbitrary timing, to improve the throughput.
  • a short spreading code is applied to a reservation packet, and the synchronization is acquired on the base station side using a matched filter, so that even if a plurality of mobile terminals transmit reservation packets asynchronously to each other, the base station can identify the respective reservation packets at a high speed.
  • a reduced local address (own address) shorter than an original address number or a link number (destination address) is used for terminal address information set to each packet, so that the transmission efficiency can be improved.
  • each terminal is allowed to control the transmission of reservation packets in accordance with a busy tone signal from a base station, it is possible to avoid an excessive amount of reservation packets simultaneously communicated on a channel, thus ensuring a favorable communication environment.

Abstract

A radio communication system having a base station and a plurality of radio terminals, wherein each radio terminal having a transmission request transmits a reservation packet at arbitrary timing through a reservation channel in accordance with a CDMA scheme, and the base station assigns a traffic channel and a time slot to be used to each radio terminal requesting a reservation through a reply packet outputted onto a reply channel. On the reservation channel, a short spreading code corresponding to a matched filter is applied.

Description

The present application is a continuation of application Ser. No. 11/798,659, filed May 16, 2007, which is a continuation application of Ser. No. 10/023,736, filed Dec. 21, 2001; which is a continuation of application Ser. No. 09/511,769, filed Feb. 24, 2000, now U.S. Pat. No. 6,393,013; which is a continuation of application Ser. No. 08/690,819, filed Aug. 1, 1996, now U.S. Pat. No. 6,269,088, the contents of which are incorporated herein by reference. This application claims priority from Japanese Patent Application No. 07-204232, filed on Aug. 10, 1995.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a mobile communication system and a communication method, and more particularly, to a reservation based mobile communication system, mobile terminal equipment, and communication method to which code division multiple access (CDMA) is applied.
2. Description of the Related Art
Conventionally, a mobile communication system which employs a reservation based access control in a frequency division multiple access (FDMA) scheme is known, for example, as described in IEEE Transactions on Communications, Packet Switching in Radio Channels: “Part3-Polling and (Dynamic) Split-Channel Reservation Multiple Access”, COM-24, 8, (1976), pp. 832-845 (hereinafter called “prior art publication 1”).
In the reservation based access control, each of mobile terminals having a request for data transmission reserves a traffic channel to a base station through a reservation packet. The base station, after scheduling traffic channels and transmission timing (time slots) to be assigned to these mobile terminals, notifies each of the mobile terminals of transmission timing to be used on an assigned traffic channel through a reply packet. According to this reservation based access control, collision of packets on the traffic channel can be basically avoided.
As another example of reservation based control type communication system, for example, JP-A-6-311160, corresponding to U.S. patent application Ser. No. 08/230,773 (hereinafter called “prior art publication 2”) has proposed such a communication system based on a time division multiple access scheme.
However, in the mobile communication systems in which the reservation based access control is applied to FDMA and TDMA schemes, as proposed by prior art publications 1 and 2, since respective mobile terminals send reservation packets through a reservation channel asynchronously with each other, a plurality of reservation packets can collide with a high possibility. Thus, repetitive retransmission of reservation packets obliged by the collision of packets constitutes a main cause of degrading the throughput of the entire communication system.
Meanwhile, as a standard for FPLMTS (Future Public Land Mobile Telecommunication Systems), the adoption of the code division multiple access scheme is regarded as promising. A CDMA mobile communication system has been proposed, for example, in JP-A-7-38496 corresponding to U.S. patent application Ser. No. 08/375,679 (hereinafter called “prior art publication 3”). However, prior art publication 3 does not provide any useful information for solving the problem of a degraded throughput in the reservation based access control.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a mobile communication system and a communication method which employ a reservation based access control to realize a high throughput.
It is another object of the present invention to provide CDMA mobile terminal equipment and base station which solve the problem of collision of reservation packets to realize a high throughput.
To achieve the above objects, in a mobile communication system of the present invention, radio channels include a plurality of traffic channels used for transmitting upward data packets directed from mobile terminals to a base station and for transmitting downward data packets directed from the base station to the mobile terminals, a reservation channel used for transmitting reservation packets each indicative of a traffic channel assignment request from a mobile terminal to the base station, and a reply channel used for transmitting reply packets each indicative of a traffic channel through which data is transmitted and received from the base station to a mobile terminal, wherein the reservation, reply and traffic channels are applied with spread-spectrum in accordance with a CDMA scheme. The mobile communication system is characterized in that a mobile terminal having a request for data transmission transmits a reservation packet onto the reservation channel at arbitrary timing, the base station specifies a traffic channel and a time slot to be used by the requesting mobile terminal by a reply packet transmitted through the reply channel, and each mobile terminal transmits and receives a data packet in the time slot on the traffic channel, both specified by the reply packet.
Describing in greater detail, each of the reservation, reply and traffic channels is assigned a unique spreading code, for example, pseudonoise (PN). Particularly, the reservation channel is assigned a spreading code shorter than those assigned to other reply and traffic channels. The base station relies on a matched filter to identify a plurality of reservation packet signals having time-overlapped portions, transmitted from a plurality of mobile terminals, and to perform a receiving process on bit signals corresponding to each packet.
According to a preferred embodiment of the present invention, the base station, upon receiving a reservation packet from a mobile terminal, assigns a time slot on a traffic channel in accordance with a schedule control, and notifies each mobile terminal of the assignment result through a reply packet.
Also, for regulating a total number of simultaneously communicated packets, the base station periodically transmits a busy tone signal indicative of a traffic situation, such that each mobile terminal having a request for data transmission performs a reservation packet transmission control in accordance with the busy tone signal. Alternatively, the radio channels may be provided with a plurality of reply channels so as to specify a reply channel for each mobile terminal to receive the busy tone signal therethrough.
According to the present invention, time slots are defined in the traffic channels such that each mobile terminal transmits and receives data in a particular time slot specified by the base station. The reservation channel, on the other hand, is not provided with time slots, so that each mobile terminal having a request for data transmission transmits a reservation packet at arbitrary timing, thus facilitating the operation of transmitting the reservation packet in each mobile terminal.
Also, each mobile terminal performs a spectrum spreading or multiplies the reservation packet by a spreading code to generate a spread-spectrum reservation packet, where the spreading code has a period shorter than that applied to a data packet transmitted through a traffic channel, while the base station receives reservation packets using a matched filter.
In this case, even if two or more spread-spectrum control packets, modulated by the same spreading code, are partially overlapped on the time axis, the matched filter can identify received packets, provided that there is a timing deviation over one chip or more on the spreading code between the respective packets. Therefore, even if a plurality of mobile terminals generate reservation packets individually at arbitrary timing, a reception disabled condition caused by collision of these packets will occur with an extremely low possibility.
The foregoing and other objects, advantages, manner of operation and novel features of the present invention will be understood from the following detailed description when read in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an exemplary configuration of a mobile communication network to which the present invention is applied;
FIG. 2A is a diagram for explaining a protocol for a call set up process in a radio communication system according to the present invention;
FIG. 2B is a diagram for explaining a protocol for information transmission in the radio communication system according to the present invention;
FIG. 3 is a diagram for explaining a channel access control in a conventional radio communication system;
FIG. 4 is a diagram for explaining a channel access control in a radio communication system according to the present invention applying a CDMA scheme;
FIG. 5A illustrates a format for a reservation packet;
FIG. 5B illustrates a format for a reply packet;
FIG. 5C illustrates a format for an information transmission packet;
FIG. 6 is a block diagram illustrating the configuration of a base station;
FIG. 7 is a block diagram illustrating the configuration of a CDMA transceiver 50 in the base station;
FIG. 8A is a block diagram illustrating the configuration of a matched filter 70;
FIG. 8B is a diagram for explaining how the matched filter processes received reservation packets;
FIG. 9 is a block diagram illustrating the configuration of a packet separation circuit 80;
FIG. 10 is a block diagram illustrating the configuration of a packet controller 90 in the base station;
FIG. 11 is a block diagram illustrating the configuration of a mobile terminal;
FIG. 12 is a block diagram illustrating the configuration of a CDMA transceiver 110 in the mobile terminal;
FIG. 13 is a block diagram illustrating the configuration of a packet controller 130 in the mobile terminal; and
FIGS. 14A and 14B are diagrams for explaining a busy tone control.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 illustrates an exemplary configuration of a mobile communication network to which the present invention is applied.
The illustrated mobile communication network comprises a public network 1 accommodating stationary terminals such as a telephone 3 or the like; and a mobile communication network 2 connected to the public network 1 and accommodating a plurality of base stations 4 (4 a, 4 b, . . . ), wherein each base station 4 communicates with mobile terminals (radio terminals) 5 (5 a, 5 b, . . . ) located in its service area (cell) through radio channels 6. On the radio channel, a CDMA packet transmission is applied because of its suitability to communications of multi-media information in which data, sound and image signals are mixed.
FIG. 2A shows a protocol for a call set up process in the radio communication system according to the present invention.
The call set up process includes two different sequences of operations: one is a sequence of operations for initially allocating local ID's (local addresses) to mobile terminals in a service area, and the other is a sequence of operations for allocating a link number to each mobile terminal for communicating with another destination terminal. The local ID is an address number having a reduced length than that of a unique address previously assigned to each mobile terminal. The use of this local ID results in reducing the length of a packet. The link number also has a similar effect to the local ID.
A procedure of the call set up process is common to the above-mentioned sequences of operations for allocating the local ID's and for allocating the link numbers. Specifically, the procedure comprises the steps of transmitting a control packet (reservation packet) 10 a for call set up from a terminal to a base station through a reservation channel 7; transmitting a control packet (reply packet) 11 a from the base station to the terminal through a reply channel 8; and transmitting a call set up data packet 12 a from the base station to the terminal through a traffic channel.
Address information indicative of a source is set in the control packet 10 a. Also, the address of a terminal required to receive the data packet 12 a and a time slot on the traffic channel 9 in which the data packet 12 a is to be received, are specified by the control packet 11 a, such that the terminal specified by this control packet 11 a receives the call set up data packet 12 a including location registration information (local ID number) or link information (link number) transmitted by the base station in the specified time slot on the traffic channel 9.
It should be noted that if the control packet 11 a has a sufficient length, the location registration information or the link information may be transmitted through the control packet 11 a, instead of utilizing the call set up data packet 12 a.
The reservation channel 7, reply channel 8, and traffic channels 9 are distinguished by PN codes which are applied to spread-spectrum. A plurality of traffic channels 9 can be formed by providing a plurality of PN codes for transmitting data packets.
The base station is provided, for example, with a management table for indicating a slot using situation on each traffic channel such that the base station schedules a slot for transmitting the data packet 12 a so as to minimize a waiting time of the terminal by referring to this management table.
FIG. 2B shows a protocol for transmitting user information (hereinafter simply called the “data”).
A terminal (transmitting terminal) having a request for data transmission utilizes a PN code for the reservation channel 7 to transmit a control packet (reservation packet) 10 b for requesting the assignment of a slot in which a data packet is to be transmitted. The base station, in response to this request, utilizes a PN code for the response channel 8 to transmit a control packet (reply packet) 8 b to the request transmitting terminal, thereby specifying a traffic channel 9 i and a time slot to be used by the request transmitting terminal. The request transmitting terminal, upon receiving the reply packet 11 b, sends the data packet 12 b at the timing of a specified time slot on the traffic channel 9 i.
The data packet 12 b is once received by the base station. The base station confirms a destination address of the data packet, and utilizes the PN code for the reply channel 8 to transmit a control packet 13 for specifying a destination terminal (receiving terminal) as well as a traffic channel 9 j and a time slot with which the receiving terminal is to receive the data packet 12 b, when the receiving terminal is a mobile terminal located in the service area of the base station. Then, the base station sends the received data packet 12 b from the request transmitting terminal as a data packet 14 in the specified time slot. The receiving terminal receives the data packet 14 transferred from the base station in the specified time slot on the traffic channel 9 j specified by the control packet 13.
According to the information transmission protocol described above, while a data transfer in the upward direction from a transmitting terminal to a base station requires a reservation packet, a data transfer in the downward direction from the base station to a receiving terminal does not require the reservation packet.
The base station provides each mobile terminal with reference timing in data packet transmission/reception operations using a pilot signal transmitted through a pilot channel in parallel with the transmission of the data packet 14. Since each mobile terminal can receive the data packet 14 and the pilot signal transmitted from the base station with the same delay time, the mobile terminal can readily accomplish synchronization acquisition, when receiving the data packet 14, by determining the timing of a receiving time slot based on the pilot signal.
FIG. 3 shows a reservation based access control in a conventional FDMA radio communication system.
As described above in connection with FIG. 2A, the reservation based access control is a control method in which a reservation packet is sent prior to the transmission of a data packet, and the data packet is transmitted after the reservation is established. For this control, the reservation channel 7 and the reply channel 8 are provided in addition to the traffic channels 9. The channels may be divided in accordance with the time division multiple access (refer to the prior art 2) other than the frequency division multiple access (refer to the prior art 1) shown in FIG. 3.
In FIG. 3, the abscissa represents the time axis 21. When a radio terminal transmits a reservation packet to a base station through the reservation channel 7, the base station schedules time slots on the traffic channels, and transmits a reply packet indicative of a reservation result to the radio terminal through the reply channel 8.
In the conventional reservation based access control, if a plurality of radio terminals transmit reservation packets onto the reservation channel 7 at a time, the reservation packets may collide with each other and collapse, as indicated by 22 a, 22 b in FIG. 3, with the result that the base station cannot receive the reservation packets. Each radio terminal determines that its reservation packet would have collided with any other reservation packet on the reservation channel if a reply packet destined thereto has not been returned in a predetermined time period after the radio terminal had sent the reservation packet. In this event, the radio terminal again transmits the reservation packet (indicated by 23 a, 23 b). Thus, the throughput in a radio communication system employing the conventional reservation based access control is limited depending on the collision of reservation packets as described above.
FIG. 4 shows an access control in a reservation based CDMA radio communication system according to the present invention.
The present invention applies CDMA packet transmission to a reservation channel to allow a plurality of radio terminals to transmit reservation packets individually at arbitrary timing.
In a reservation channel 7 illustrated in FIG. 4, the ordinate represents transmitting terminals 25. FIG. 4 represents a situation in which the transmitting terminals 25 have transmitted reservation packets partially overlapped on the time axis 21.
In the CDMA scheme, the spread-spectrum is applied by replacing each symbol (bit “1” and “0”) in transmitted data with a spreading code (orthogonal code or PN code) composed of a plurality of chips having unique patterns. For example, in a direct sequence spread-spectrum, a plurality of transmitting terminals modulate transmission data using the same PN (pseudonoise) sequence, and transmit the spread-spectrum data at the same carrier frequency. In this event, if there is a time deviation of one chip or more in transmission timing between respective symbols in data, the receiving side can individually identify each of transmitted data.
If a plurality of reservation packets are transmitted at completely the same timing, the packets will collide, whereby destinations will fail to receive the reservation packets. However, generally, such transmission of a plurality of reservation packets at completely the same transmission timing is rather a rare case. In the spread-spectrum, even if two packets are time-overlapped, the collision is avoided when these packets are deviated in timing by a time equal to or longer than one chip, as indicated by 26 a, 26 b in FIG. 4, thus eliminating the need to retransmit the reservation packets. It will be appreciated that the reservation based control scheme according to the present invention significantly improves the throughput compared with the conventional reservation based communication system.
In the present invention, each radio terminal having a request for data transmission transmits a reservation packet at arbitrary timing on the reservation channel, and sends a data packet in a time slot on a traffic channel, both specified by a reply packet received through the reply channel.
The data packet is transmitted in units of time slot in principle. When transmission data is so long that a plurality of time slots are required for the transmission, the data is divided into a plurality of data packets, and a time slot is reserved for each data packet. However, for reducing overhead due to the reservation process, a plurality of time slots may be reserved by a single reservation packet such that a base station, in response to the reservation packet, assigns a plurality of continuous or intermittent time slots to a transmitting terminal by a single reply packet or a plurality of reply packets generated for respective time slots.
While the present invention allows the mobile terminals to transmit reservation packets at arbitrary timing, the mobile terminals must transmit and receive a reply packet and a data packet in synchronism with a time slot having a previously defined constant length.
As illustrated in FIG. 4, the reply channel 8 and the respective traffic channels 9 are divided into time slots respectively having a fixed length, and a pilot signal is used to match the timing, thus facilitating fast synchronization of spreading codes between each radio terminal and a base station. More specifically, the base station spreads the pilot signal (reference signal) with a spreading code (PN sequence) having a suitable period, and continuously transmits the spread-spectrum pilot signal on a common channel (pilot channel). Each radio terminal generates a synchronization signal based on the pilot channel despread from the spread-spectrum pilot signal with a PN sequence unique to the pilot channel, and sets a time slot in synchronism with the base station on the reply channel and on each traffic channel.
It should be noted that since the pilot signal is intended for the synchronization of the spreading codes, the pilot signal may include any contents. Thus, for transmitting the pilot signal, the reply channel, for example, may be utilized instead of using the dedicated pilot channel.
FIGS. 5A-5C illustrate formats for the packets used in the mobile communication system according to the present invention.
The reservation packet, as illustrated in FIG. 5A, is composed of a preamble 31 a for synchronization acquisition; a type of reservation 432 b indicative of the type of the packet (identification code for identifying a location registration packet, a link securing packet, or a traffic channel reserving packet); a source address 33 (using a local ID if the location has been registered); a destination address 34 (using a link number if a link has been secured); a number 35 of reservation desired transmission packets (time slots); and a CRC (Cyclic Redundancy Check) code 36 a serving as an error detection code, arranged in this order from the beginning. The number 35 of transmission packets is not required in the call set up process for location registration or link securing.
The reply packet, as illustrated in FIG. 5B, is composed of a source address 34; a type of reply 32 b indicative of the type of the packet (for identifying a location registration packet, a link securing packet, an upward direction information transmitting packet or a downward direction information transmitting packet); a PN type 37 indicative of a spreading code of a traffic channel to be sued; timing information 38 indicative of assigned transmission timing (time slot); and a CRC code 36 b, arranged in this order from the beginning.
It should be noted that in the present invention, the reply packet does not require a preamble. This is because each radio terminal can acquire each reply packet by receiving the pilot signal and establishing the synchronization of each time slot on the reply channel based on the pilot signal, as described above.
The data packet for transmitting information, as illustrated in FIG. 5C, is composed of a preamble 31 b; a type of packet (for identifying a location registration packet, a link securing packet, an upward information transmitting packet, or a downward information transmitting packet) 32 c; a source address 33 (using a local ID if the location has been registered); a destination address 34 (using a link number if a link has been secured); data 39 (a PN code for the information transmitting channel or the reply channel, transmission or reception timing, and transmission information); and a CRC code 36 c, arranged in this order from the beginning.
Since the reply channel and the traffic channel for transmitting information are respectively divided into packets, it is desirable that the sizes of respective packets be unified to a fixed length even if the types of packets are different. For this purpose, dummy bits may be inserted in a front portion of each packet so as to adjust the beginning position of respective fields subsequent thereto. In the downward data packet, the preamble 31 b may be omitted as is the case of the reply packet.
FIG. 6 illustrates a schematic configuration of the base station 4.
The base station 4 comprises an antenna 41; a CDMA transceiver 50; a packet controller 90; a BSC interface 42 connected to a controller (BSC 43) intervening between the base station 4 and the mobile communication network 2.
FIG. 7 illustrates in detail the configuration of the CDMA transceiver 50 in the base station. The CDMA transceiver 50 comprises receiving radio module 52 and a transmitting radio module 53 for modulating and demodulating a baseband signal as well as for transmitting and receiving signals at radio frequencies.
Referring specifically to FIG. 7, a control packet (reply packet) signal transmitted from a base station to a radio terminal is inputted to an encoder 58 a through a reply channel signal line 45 a, and is subjected to encoding for error correction using, for example, a convolutional code or the like. The encoded reply packet signal is multiplied by an orthogonal code for the reply channel outputted from an orthogonal code generator 59 in a multiplier 56 a to generate a spread-spectrum reply packet signal which is then inputted to an adder 60.
Similarly to the reply packet signal, data packet signals outputted to a plurality of signal lines 45 b respectively corresponding to traffic channels are encoded in the encoder 58 b, and multiplied by orthogonal codes corresponding to respective traffic channels in a multiplier 56 b to generate spread-spectrum data packet signals which are then supplied to the adder 60. A pilot signal outputted to a signal line 45 c is likewise encoded in an encoder 58 c, multiplied by an orthogonal code unique to the pilot channel in a multiplier 56 c to generate a spread-spectrum pilot signal which is then supplied to the adder 60.
The output of the adder 60 is multiplied by a PN code (long code) unique to each base station outputted from a PN generator 57 a in a multiplier 56 to generate a spread-spectrum signal which is subsequently supplied to the transmitting radio module 53.
On the other hand, a received signal processed by the receiving radio module 52 is inputted to a matched filter 70 a for the reservation channel and to a plurality of matched filters 70 b-70 b′ respectively corresponding to traffic channels.
The matched filter 70 a despreads the received signal with a PN code unique to the reservation channel. The despread signal is separated into a plurality of bit data trains 89 each for a corresponding reservation packet in a packet separation circuit 80. In this case, as described later with reference to FIGS. 8 and 9, if the period of a PN sequence applied to the despreading process is selected to be equal to the number of taps of the matched filter, the outputs of the matched filter can be used as despread results without further processing, thus realizing fast synchronization. Each bit data train for a corresponding reservation packet, separated from other bit data trains in the packet separation circuit 80, is subjected to a decoding process accompanied by error correction, for example, such as Viterbi decoding or the like in a decoder 55 a, and subsequently supplied to the packet controller 90.
The matched filters 70 b-70 b′ are provided for acquiring the initial synchronization of PN sequences of received signal son the respective traffic channels. Once the synchronization is acquired, each of the PN generators 57 b, 57 b′ generates a PN sequence for each channel in synchronism with the acquired PN sequence. The received signal is multiplied by PN sequences corresponding to respective channels generated by the PN generators 57, 57 b in multipliers 56, 56′ to be despread. The despread signals are accumulated for every one symbol length in accumulators 54, 54′. The accumulated results are decoded by decoders 55, 55′ and subsequently supplied to the packet controller 90 as data packet signals for the respective traffic channels.
FIG. 8A illustrates the principle of the matched filter 70 a. The matched filter 70 is composed of a plurality of cascaded delay elements 71 each having a delay time T equal to a chip width of a PN sequence; a plurality of taps arranged on the input side of the delay element at the first stage and on the output side of the respective delay elements; and a plurality of coefficient multipliers 72, one in each tap. The matched filter 70 a is configured such that received signals inputted at every chip time propagate from one tap to the next in the delay time T.
In the matched filter 70 a for the reservation channel, the delay time of each delay element 71 is equal to the chip width of a PN sequence for the reservation channel, and the number of taps is equal to the number of chips included in one period of the PN sequence, such that a one-period portion of the PN sequence simultaneously appears at the plurality of taps at the time the top chip of an inputted signal reaches the rightmost tap. Therefore, respective chip values (“1” or “−1”) of the PN sequence a1-an for the reservation channel are previously set in the respective coefficient multipliers 72 as coefficients, and a total sum of the results of multiplications of respective tap outputs by the respective coefficients is calculated by an accumulator 73. If the accumulation result is outputted as a correlation value between the received signal and the PN sequence for the reservation channel, the synchronization is acquired at the time the correlation value changing for every chip time presents a peak value. Also, the output value of the accumulator 73 at this time indicates a demodulated value generated by despeading the received signal.
In the present invention, the number of taps of the matched filter 70 a is made equal to a spreading code length so that the output 79 a of the matched filter 70 a contains information (symbol code) of a one-bit portion of the reservation packet. Also, a short code type PN sequence having a less number of chips is applied as a spreading code for the reservation channel to reduce the number of taps required to the matched filter, thus facilitating the synchronization acquisition.
FIG. 8B illustrates an output signal of the matched filter 70 a which is generated when two reservation packets A, B are partially overlapped on the time axis.
The output signal 79 a of the matched filter 70 a includes a plurality of positive peak values (indicative of a code bit “1”) and a plurality of negative peak values (indicative of a code bit “0”) generated by the accumulator 70 a. Peak values equal to or more than a predetermined threshold are detected from the output of the matched filter 70 a and grouped into groups of signals appearing at a time interval matching with the PN sequence period from the respective start points at which the first peak values are detected (synchronization acquisition time), thereby making it possible to identify a bit data train 78 belonging to the reservation packet A and a bit data train 76 belonging to the reservation packet B.
In the illustrated example, the peak value 76-1 appearing first is defined as the start point, and signal values (“1” or “−1”) 76-2, 76-3, 76-4, . . . subsequently appearing at a time interval equal to the PN period 75 are extracted from the output of the matched filter 70 a to reproduce the bit data train 76 constituting the reservation packet A. Also, a peak value 77-1 appearing asynchronously with the bit data train 76 is defined as the start point, and signal values (“1” or “−1”) 77-2, 77-3, 77-4, . . . are extracted at a time interval equal to the PN period 75 are extracted from the output of the matched filter 70 a to reproduce a bit data train 77 which constitutes the reservation packet B. By applying a similar principle, even if three or more reservation packets are transmitted in a time-overlapped condition, bit signals for each packet can be identified as long as a phase deviation over one chip or more exists between the respective packets.
FIG. 9 illustrates an exemplary configuration of the packet separation circuit 80.
The output signal 79 a of the matched filter 70 a is inputted to an absolute value circuit (ABS) 81, the output of which is compared with a predetermined threshold outputted from a threshold circuit 82 by a comparator 83 a. When the output of the absolute value circuit 81 is larger than the threshold, the output of the comparator 82 is turned ON (“1” state) and inputted to an AND circuit 84 a. Since the AND circuit 84 a is also supplied, as other input signals, with inverted signals which are initially OFF (“0” state), the AND circuit 84 is opened by the ON output from the comparator 83 a, whereby its output signal is turned ON (“1” state). The ON output from the AND circuit 84A is inputted to AND circuits 84 b and 84 d.
The AND circuit 84 b is also supplied at the other input terminal thereof with an inverted version of an output signal from a timer 85 a. In an initial state, the output of the timer 85 a is in OFF state (“0” state), so that the output of the AND circuit 84 b is also turned ON at the time the output of the AND circuit 84 a is turned ON. The ON output of the AND circuit 84 b is inputted to a timing register 86 a as an enable signal, whereby the timing register 86 a is set at a value recorded on a counter 87 which performs a counting operation at an interval equal to the chip period of the PN code and returns to an initial value at an interval equal to the symbol length. The counter 87 outputs a value which indicates a chip position at the timing at which the synchronization is acquired, as previously described with reference to FIG. 8B.
The ON output of the AND circuit 84 b causes a timer 85 a to start for controlling the other input terminals of the AND circuits 84 b and 84 d. The timer 85 a maintains its output in ON state for a time period corresponding to one reservation packet. This permits the AND gate 85 d to remain open and the AND gate 84 b to remain close until a time set in the timer 85 a expires, thus preventing any other counted value from being set in the first timing register 86 a.
If the next peak value is outputted from the matched filter 70 a before the time set in the timer 85 a expires, the ON output from the AND circuit 84 a is inputted to an enable terminal of a second timing register 86 b through a pair of AND circuits 84 d and 84 d′ which remain open. As a result, the output value of the counter 87 is set in the second register 86 b. At this time, a timer 85 b cooperating with the second timing register 86 b is started and performs a similar operation to that of the timer 85 a to prohibit any other value from being set in the second timing register 86 until a one-packet period has elapsed and to open a pair of AND gates at the next stage so as to input the subsequently generated enable signal to a third timing register 86 c.
In this embodiment, since the packet separation circuit 80 is provided with four timing registers 86 a-86 d, the synchronization acquisition timing is stored for four reservation packets, determined by the order of generation, within a plurality of reservation packets generated in a time-overlapped condition by repeating the foregoing operations in a similar manner.
The value of the synchronization acquisition timing set in the timing register 86 a is compared with an output value of the counter 87 in a comparator 83 b. Every time the counted value is coincident with the synchronization acquisition timing value set in the timing register 86 a, the output of the comparator 83 b is turned ON.
The ON output of the comparator 83 b is inputted to an enable terminal of a data register 87 a through the AND circuit 84 c which remains open while the timer 85 a is in ON state. As a result, the data register 87 a is supplied with the output of the matched filter 80 a at the synchronization acquisition timing. The remaining timing registers 86 b-86 d also operate in a manner similar to the foregoing to store the outputs of the matched filter 70 a for respective reservation packets in data registers 87 b-87 d, respectively.
Since the data registers 87 a-87 d are supplied with data in accordance with the synchronization acquisition timing of the respective reservation packets, the contents of these data registers 87 a-87 d are transferred to output registers 88 a-88 d, respectively, in synchronism with a clock having a bit period generated by a clock generator 88, and data indicative of the contents of the respective reservation packets are transferred to the decoder 55 a illustrated in FIG. 7 from the output registers 88 a-88 d.
FIG. 10 illustrates an exemplary configuration of the packet controller 90 in the base station 4.
Received data from the reservation channel (the contents of a reservation packet) is inputted to a digital signal processor (DSP) 91, and is processed by a reservation packet processing routine 92 of the DSP 91. Subsequently, an assignment of a traffic channel and a time slot (scheduling) is performed by an upward schedule control routine 93.
A traffic channel (PN type) and a time slot (timing information) determined by the upward schedule control routine 93 is transferred to a reply packet constructing unit 97 together with a source address of a reservation packet to which a reply packet is destined. The reply packet constructing unit 97 generates a reply packet including the above information and transmits it to the reply channel signal line 45 a. In this way, the operation for transmitting an upward data packet from each mobile terminal can be controlled in accordance with the scheduling of the base station.
Received data from respective traffic channels are inputted to reception processing units 96 b, 96 b′ arranged in correspondence to the respective traffic channels through signal lines 44 b, 44 b′, and transferred to the BSC interface 42 through signal lines 46 as received data packets.
On the other hand, a downward data packets outputted from the BSC interface 42 to signal lines 47, after temporarily stored in transmission buffers 99, 99′, are transmitted under the control of a schedule executed by a downward schedule control routine 95 of the DSP 91. More specifically, in accordance with a downward schedule, a reply packet constructed by the reply packet constructing unit 97 is first sent from the reply channel, and subsequently data packets generated by the traffic packet constructing units 98 a, 98 a′ are sent in predetermined time slots on traffic channels determined by the downward schedule.
In this embodiment, for restraining mobile terminals from issuing reservation packets when the traffic channels remain busy, a busy tone value calculation routine 94 of the DSP 91 generates busy tone information in accordance with the number of reservation packets received through the reservation channel and traffic channel utilization state information known to the upward schedule control routine 93, and notifies the busy tone information to the respective mobile terminals through the reply channel 45 a.
FIG. 11 illustrates the configuration of the radio terminal 5.
The radio terminal 5 is composed of an antenna 100; a CDMA transceiver 110 connected to the antenna 100; a packet controller 130 connected to the CDMA transceiver 110; and a data processing unit connected to the packet controller 130.
The data processing unit comprises a microprocessor (MPU) 101; a memory 102 for storing data and programs; and a plurality of input/output devices connected to an internal bus through an I/O interface 103. The input/output devices may comprise, for example, a camera 104 a, a speaker 104 b, a display 104 c, a keyboard 104, and so on.
FIG. 12 illustrates in detail the configuration of the CDMA transceiver 110 in the radio terminal.
The CDMA transceiver 110 comprises a receiving radio module 112 and a transmitting radio module 113. These modules are responsible for modulation or demodulation of a baseband signal and a receiving process or a transmitting process at radio frequencies.
In a transmitter circuit, a reservation packet signal outputted to a reservation channel signal line 106 a is encoded for error correction in an encoder 120 a, and then multiplied by a unique PN sequence (short code) generated from a PN generator 121 a in a multiplier 114 a to generate a spread-spectrum reservation packet signal which is sent to the transmitting radio module 113.
On the other hand, a data packet outputted to a traffic channel signal line 106 b is encoded for error correction in an encoder 120 b, and multiplied by a PN sequence (long code) generated by a PN generator 121 b in a multiplier 114 b to generate a spread-spectrum data packet which is sent to the transmitting radio module 113. The spread-spectrum for the data packet is performed using a PN sequence specified by a base station, which is identified by a control signal outputted onto a signal line 106 c by a packet controller 130 and in synchronism with reference timing 105 c provided from a PN generator 119 in a receiver circuit.
In the receiver circuit, a received signal outputted from the receiving radio module 112 is inputted to a multiplier 114 c which multiplies the received signal by a PN code unique to the base station generated by the PN generator 119 to despread the received signal. The output of the multiplier 114 c is parallelly inputted to multipliers 114 d, 114 e and 114 f respectively for the reply channel, traffic channels and pilot channel, and multiplied by orthogonal codes unique to the respective channels generated by an orthogonal code generator 117.
On a reply channel line 105 a and a traffic channel line 105 b, output signals from the multipliers 114 d, 114 e are inputted to accumulators 115 d, 115 e, respectively, to produce accumulated values for each symbol length for despreading the output signals from the multipliers 114 d, 114 e. Output signals of the respective accumulators 115 d, 115 e are inputted to decoders 116 d, 116 e, respectively, for error correction, and then transferred to the packet controller 130 through signal lines 105 d, 105 e, respectively.
On a pilot channel line 122, a pilot signal outputted from an accumulator 115 f is inputted to a DLL (Delay Locked Loop) circuit 118 for tracking of synchronization. The PN generator 119 is forced to generate a PN sequence in synchronism with the output of the DLL circuit 118. It should be noted that the decoders 116 d, 116 e on the reply channel line 105 a and the traffic channel line 105 b are operated in synchronism with the pilot signal outputted from the accumulator 115 f.
FIG. 13 illustrates an exemplary configuration of the packet controller 130 in the radio terminal.
Received data through the reply channel appearing on the signal line 105 a is inputted to a DSP 131 and precessed by a monitoring routine 132. The contents of the reply packet is supplied to an upward schedule control routine 134 and to a downward schedule control routine 135, while a busy tone signal received through the reply channel is supplied to a busy tone calculation routine 133.
Received data through a traffic channel appearing on the signal line 105 b is received by a reception processing circuit 136 which is controlled by a control signal from the downward schedule control routine 135 and a reference timing signal 105 c, and received data in a particular time slot specified by a base station through a reply packet is outputted onto a signal line 107 as receiving information.
On the other hand, transmission data from the radio terminal, after temporarily stored in a transmission buffer 138, is fetched by a traffic packet constructing unit 139 in accordance with an instruction from the upward schedule control routine 134, and is sent onto the traffic channel signal line 106 b as a data packet.
When a reply packet is received from a base station, the upward schedule control routine 134 generates a signal 106 for specifying a traffic channel (PN sequence) to which a traffic packet is to be sent, and issues a data packet sending instruction to the traffic packet constructing unit 139 at timing of a time slot specified by the base station. The traffic packet constructing unit 139, upon receiving the data packet sending instruction from the control routine 134, reads transmission data from the transmission buffer 138, and sends the data packet illustrated in FIG. 5C onto the traffic channel signal line 106 b at predetermined output timing determined based on the reference timing signal 105 c.
The busy tone value calculation routine 133 calculates a busy tone value indicative of a traffic situation from a busy tone signal received through the reply channel, and notifies the busy tone value to the upward schedule control routine 134.
The upward schedule control routine 134 controls the generation of reservation packets in accordance with the traffic situation. For example, if the busy tone signal does not indicate to restrain data transmission with transmission data being accumulated in the transmission buffer, the reservation packet constructing unit 137 is started at arbitrary timing to transmit a reservation packet to the reservation channel signal line 106 a. Conversely, if the busy tone signal indicates to restrain data transmission, the transmission of reservation packets is restrained until the traffic situation improves.
As described above, in this embodiment, the CDMA scheme is applied to the reservation channel to reduce the possibility of retransmission of reservation packets due to collision of the reservation packets even if respective mobile terminals transmit the reservation packets at arbitrary timing. Moreover, the busy tone control is added to restrain the transmission of new packets from mobile terminals when the traffic channels or the reservation channel is in an overload condition.
The CDMA has a problem that when a plurality of packets are generated in a time-overlapped condition, the packet signals mutually affect as noise, so that if a large number of packets are simultaneously generated, the receiver side cannot identify them because all packet signals are buried in noise. As described above, in the mobile communication system of the present invention comprising a reservation channel, a reply channel and a plurality of traffic channels, the total number of reply packets and data packets can be controlled by the scheduling function of the base station, whereas the base station cannot directly control reservation packets since they are issued autonomously from respective mobile terminals.
As described above, a method which allows each radio terminal to autonomously control the transmission of a reservation packet with reference to the busy tone signal from the base station is effective in avoiding concentrated reservation packets to smoothly control the transmission in each terminal.
While the busy tone signal may be transmitted through a channel dedicated thereto, empty time zones appearing periodically on the reply channel may also be utilized.
The reply channel, as shown in FIG. 2, is divided into time slots each having a length corresponding to the length of a data packet on the traffic channel based on the pilot signal. Since the reply packet includes a smaller amount of information, its length can be made shorter than the data packet. For example, assuming that the time slot length (data packet length) is 512 bits and the reply packet length is 42 bits, 12 reply packets can be transmitted through the reply channel during one time slot period on the traffic channel, with a 8-bit empty time zone remaining at the end of the time slot. It is therefore possible to utilize the available empty time zone in the time slot to periodically transmit the busy tone signal through the reply channel.
Next, a reservation packet restraining method using the busy tone signal transmitted in an empty time zone on the reply channel will be described with reference to FIGS. 14A, 14B.
In FIG. 14B, “t−1”, “t” and “t+1” designate time slot numbers on the reply channel, and a pulse waveform represents the busy tone signal 143. The busy tone signal 143 is periodically transmitted utilizing an empty time zone left in each time slot on the reply channel.
FIG. 14A shows a relationship between a total amount of packets sent out by radio terminals in each time slot and a number T of allowed packets which can be transmitted in a time-overlapped condition. An area 148 indicates an amount of reservation packets sent in the time slot “t−1” and an area 149 indicates an amount of data packets sent in the time slot “t−1”.
In the following, the busy tone signal generated by the base station in the time slot “t−1” will be described, assuming that a number of transmitted data packets during the time slot “t” is I(t), a number of transmitted reservation packets is R(t), a number of transmission requested reservation packets is R(t)′, and a transmission probability of reservation packets is P(t). Further, R(t)′ and R(t) are defined to be numbers of reservation packets when the length of the reservation packet is normalized by the length of the data packet.
First, assume the following equation (1):
1R(t)′=R(t−1)P(t −1)  (1).
Assuming that the number R(t)′ of transmission requested reservation packets possessed by all radio terminals in the service area of a base station in the time slot “t” is equal to a number R(t−1)′ of transmission requested reservation packets in the previous time slot “t−1”, the equation (1) is derived by substituting a number R(t−1) of reservation packets actually received by the base station as the value of R(t−1)′. To the base station, the number I(t) of data packets in the time slot “t” is known from previously received reservation packets and the result of scheduling the traffic channels for received data packets from other base stations.
Thus, the value of R(t)′ is estimated from the equation (1), and when a total amount of the number R(t)′ of transmission requested reservation packets and the number I(t) of data packets in the time slot “t” exceeds a tolerable value T as shown by the following equation (2), the transmission of reservation packets is restrained by the busy tone signal:
I(t)+R(t)′≧T  (2)
In this event, the transmission of reservation packets is controlled by the busy tone signal such that the transmission probability P(t) of reservation packets from radio terminals in the service area is restrained by a traffic amount on the traffic channels, as shown by the following equation (3), thereby making the sum of the number of reservation packets and the number of data packets substantially equal to the tolerable value T. Since the number of reservation packets actually transmitted from radio terminals is determined from the probability, it is desirable that the tolerable value T be set at a slightly lower level in order to allow for a certain margin.
P ( t ) = { T - I ( t ) } R ( t ) ( 3 )
On the other hand, if a total amount of packets estimated in the time slot “t” is in a relationship expressed by the following equation (4), the transmission of reservation packets is controlled by the busy tone signal such that the transmission probability P(t) follows the equation (5), thus allowing all radio terminals to freely transmit reservation packets.
I(t)+R(t)′<T  (4)
P(t)=1.0  (5)
The base station may notify respective radio terminals of information indicative of the transmission probability expressed by the equation (3) or (4) as the busy tone signal 143 in the time slot “t−1”.
As will be apparent from the foregoing description, the present invention applies CDMA to a reservation based packet access control type mobile communication system to reduce the possibility of retransmission of reservation packets due to their collision, even if each mobile terminal is allowed to transmit a reservation packet at its arbitrary timing, to improve the throughput.
According to the present invention, for example, a short spreading code is applied to a reservation packet, and the synchronization is acquired on the base station side using a matched filter, so that even if a plurality of mobile terminals transmit reservation packets asynchronously to each other, the base station can identify the respective reservation packets at a high speed. Also, a reduced local address (own address) shorter than an original address number or a link number (destination address) is used for terminal address information set to each packet, so that the transmission efficiency can be improved. Further, when each terminal is allowed to control the transmission of reservation packets in accordance with a busy tone signal from a base station, it is possible to avoid an excessive amount of reservation packets simultaneously communicated on a channel, thus ensuring a favorable communication environment.
It is to be understood that the above-described embodiments are merely illustrative of the principles of the invention and that may variations may be devised by those skilled in the art without departing from the spirit and scope of the invention. It is therefore intended that such variations be included within the scope of the claims.

Claims (6)

What is claimed is:
1. A communication method in a Code Division Multiple Access (CDMA) radio communication system, wherein a base station and a plurality of radio terminals communicate in radio channels, said method comprising the steps of:
transmitting a reservation using a short pseudonoise (PN) code unique to a reservation channel from one of said plurality of radio terminals requesting data transmission;
receiving a reply from the base station, corresponding to the reservation, in the one radio terminal; and
transmitting a single data packet from the one radio terminal in response to the reply, the single data packet being multiplied by a long PN code,
wherein a single data packet is transmitted in response to a single reply packet.
2. The method according to claim 1, wherein a single reservation is transmitted for a single data packet.
3. The method according to claim 2, wherein a single data packet has a constant length not longer than a time slot.
4. The method according to claim 3, wherein a call setup process between the one radio terminal and the base station is performed in advance, and
wherein the one radio terminal transmits a plurality of reservations and data packets after the call setup process.
5. The method according to claim 1, wherein the reservation is transmitted with arbitrary timing.
6. The method according to claim 1, wherein the single data packet is transmitted in a time slot determined by the one radio terminal from the received reply.
US13/785,051 1995-08-10 2013-03-05 CDMA mobile communication system and communication method Expired - Fee Related US8867475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/785,051 US8867475B2 (en) 1995-08-10 2013-03-05 CDMA mobile communication system and communication method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP20423295A JP3212238B2 (en) 1995-08-10 1995-08-10 Mobile communication system and mobile terminal device
US08/690,819 US6269088B1 (en) 1995-08-10 1996-08-01 CDMA mobile communication system and communication method
US09/511,769 US6393013B1 (en) 1995-08-10 2000-02-24 CDMA mobile communication system and communication method
US10/023,736 US7251230B2 (en) 1995-08-10 2001-12-21 CDMA mobile communication system and communication method
US11/798,659 US20070223425A1 (en) 1995-08-10 2007-05-16 CDMA mobile communication system and communication method
US13/785,051 US8867475B2 (en) 1995-08-10 2013-03-05 CDMA mobile communication system and communication method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/798,659 Continuation US20070223425A1 (en) 1995-08-10 2007-05-16 CDMA mobile communication system and communication method

Publications (2)

Publication Number Publication Date
US20130182684A1 US20130182684A1 (en) 2013-07-18
US8867475B2 true US8867475B2 (en) 2014-10-21

Family

ID=16487040

Family Applications (6)

Application Number Title Priority Date Filing Date
US08/690,819 Expired - Lifetime US6269088B1 (en) 1995-08-10 1996-08-01 CDMA mobile communication system and communication method
US09/511,769 Expired - Lifetime US6393013B1 (en) 1995-08-10 2000-02-24 CDMA mobile communication system and communication method
US10/023,737 Expired - Fee Related US7154875B2 (en) 1995-08-10 2001-12-21 CDMA mobile communication system and communication method
US10/023,736 Expired - Fee Related US7251230B2 (en) 1995-08-10 2001-12-21 CDMA mobile communication system and communication method
US11/798,659 Abandoned US20070223425A1 (en) 1995-08-10 2007-05-16 CDMA mobile communication system and communication method
US13/785,051 Expired - Fee Related US8867475B2 (en) 1995-08-10 2013-03-05 CDMA mobile communication system and communication method

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US08/690,819 Expired - Lifetime US6269088B1 (en) 1995-08-10 1996-08-01 CDMA mobile communication system and communication method
US09/511,769 Expired - Lifetime US6393013B1 (en) 1995-08-10 2000-02-24 CDMA mobile communication system and communication method
US10/023,737 Expired - Fee Related US7154875B2 (en) 1995-08-10 2001-12-21 CDMA mobile communication system and communication method
US10/023,736 Expired - Fee Related US7251230B2 (en) 1995-08-10 2001-12-21 CDMA mobile communication system and communication method
US11/798,659 Abandoned US20070223425A1 (en) 1995-08-10 2007-05-16 CDMA mobile communication system and communication method

Country Status (5)

Country Link
US (6) US6269088B1 (en)
JP (1) JP3212238B2 (en)
KR (2) KR100326863B1 (en)
CN (2) CN1238978C (en)
CA (1) CA2182429C (en)

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570865B2 (en) * 1995-08-10 2003-05-27 Hitachi, Ltd. CDMA mobile communications system and communication method
JP3212238B2 (en) * 1995-08-10 2001-09-25 株式会社日立製作所 Mobile communication system and mobile terminal device
US6678311B2 (en) 1996-05-28 2004-01-13 Qualcomm Incorporated High data CDMA wireless communication system using variable sized channel codes
JP3220644B2 (en) * 1996-08-07 2001-10-22 株式会社日立製作所 Mobile communication method and device for implementing the method
US6813261B1 (en) * 1996-08-07 2004-11-02 Hitachi, Ltd. Method of mobile communication and apparatus therefor
FI973800A (en) * 1996-09-27 1998-03-28 Texas Instruments Inc Low Gain Spectrum Communication System and Method
CN1242633C (en) * 1996-11-27 2006-02-15 株式会社日立制作所 Transmitting power controlling method, mobile terminal and base table
US6075792A (en) 1997-06-16 2000-06-13 Interdigital Technology Corporation CDMA communication system which selectively allocates bandwidth upon demand
JP2861985B2 (en) * 1997-06-16 1999-02-24 日本電気株式会社 High-speed cell search method for CDMA
US6542481B2 (en) 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US6081536A (en) * 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US6151332A (en) 1997-06-20 2000-11-21 Tantivy Communications, Inc. Protocol conversion and bandwidth reduction technique providing multiple nB+D ISDN basic rate interface links over a wireless code division multiple access communication system
JPH1141656A (en) * 1997-07-19 1999-02-12 Matsushita Electric Ind Co Ltd Data communication method, mobile equipment and radio base station system
US6285655B1 (en) 1997-09-08 2001-09-04 Qualcomm Inc. Method and apparatus for providing orthogonal spot beams, sectors, and picocells
AU4222097A (en) * 1997-09-19 1999-04-12 Matsushita Electric Industrial Co., Ltd. Radio communication device and method
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US9118387B2 (en) * 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
JP3127867B2 (en) * 1997-11-28 2001-01-29 日本電気株式会社 Random access control method in mobile communication system
KR100269593B1 (en) * 1997-12-02 2000-10-16 정선종 Orthogonal complex spreading based modulation method for multichannel transmission
US7394791B2 (en) 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US20040160910A1 (en) * 1997-12-17 2004-08-19 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
US7936728B2 (en) 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US6396819B1 (en) 1998-03-21 2002-05-28 Richard D. Fleeter Low-cost satellite communication system
CA2324450C (en) * 1998-03-23 2006-01-03 Samsung Electronics Co., Ltd. Power control device and method for controlling a reverse link common channel in a cdma communication system
BRPI9909104B8 (en) * 1998-03-26 2016-05-31 Samsung Electronics Co Ltd common channel message communication device and method at a base station or mobile station in a cdma communication system
DE69930239D1 (en) * 1998-03-26 2006-05-04 Samsung Electronics Co Ltd Device and method for controlling the performance of orthogonal channels and quasi-orthogonal channels in a CDMA communication system
KR100667610B1 (en) * 1998-03-26 2007-01-15 코닌클리케 필립스 일렉트로닉스 엔.브이. Communication network with improved access protocol
JP3058270B2 (en) 1998-04-22 2000-07-04 日本電気株式会社 CDMA communication method, spread spectrum communication system, base station, and terminal device
KR100381012B1 (en) 1998-05-04 2003-08-19 한국전자통신연구원 Random connection device for reverse common channel in cdma scheme and method therefor
US8134980B2 (en) 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
US7221664B2 (en) * 1998-06-01 2007-05-22 Interdigital Technology Corporation Transmittal of heartbeat signal at a lower level than heartbeat request
US7773566B2 (en) 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US6765953B1 (en) * 1998-09-09 2004-07-20 Qualcomm Incorporated User terminal parallel searcher
AU5820899A (en) * 1998-09-11 2000-04-03 Sharewave, Inc. Shadow clients for computer networks
US6973067B1 (en) * 1998-11-24 2005-12-06 Telefonaktiebolaget L M Ericsson (Publ) Multi-media protocol for slot-based communication systems
US6618430B1 (en) * 1998-12-14 2003-09-09 Nortel Networks Limited Methods and apparatus for receiving N-chip resistant codes
US6785257B1 (en) 1999-02-24 2004-08-31 Kokusai Electric Co., Ltd. Base station
JP3387079B2 (en) 1999-03-01 2003-03-17 日本電気株式会社 Correlation value detecting device, spectrum despreading device having the same, receiving terminal and transmitting / receiving terminal, and correlation value detecting method
US6169759B1 (en) * 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
US6614776B1 (en) * 1999-04-28 2003-09-02 Tantivy Communications, Inc. Forward error correction scheme for high rate data exchange in a wireless system
DE69901437T2 (en) * 1999-07-02 2002-12-12 Alcatel Sa Method and receiver for arbitration of collisions in the physical layer in a random access protocol
CA2378404C (en) * 1999-07-07 2008-01-15 Samsung Electronics Co., Ltd. Channel assignment apparatus and method for common packet channel in a wcdma mobile communication system
CA2342637C (en) 1999-07-10 2005-01-18 Chang-Hoi Koo Apparatus and method for designating a reverse common channel for dedicated communication in a mobile communication system
US20070127553A1 (en) 1999-08-13 2007-06-07 Viasat, Inc. Code Reuse Multiple Access For Satellite Return Link
US6526034B1 (en) 1999-09-21 2003-02-25 Tantivy Communications, Inc. Dual mode subscriber unit for short range, high rate and long range, lower rate data communications
US6674772B1 (en) * 1999-10-28 2004-01-06 Velio Communicaitons, Inc. Data communications circuit with multi-stage multiplexing
KR100355376B1 (en) * 1999-12-15 2002-10-12 삼성전자 주식회사 Apparatus for acquisition for asynchronous wideband DS/CDMA signal
US8463255B2 (en) 1999-12-20 2013-06-11 Ipr Licensing, Inc. Method and apparatus for a spectrally compliant cellular communication system
KR100417824B1 (en) * 1999-12-23 2004-02-05 엘지전자 주식회사 A method of dynamic channel allocating for cdma packet data system
US6885713B2 (en) * 1999-12-30 2005-04-26 Comlink 3000 Llc Electromagnetic matched filter based multiple access communications systems
KR100387034B1 (en) * 2000-02-01 2003-06-11 삼성전자주식회사 Apparatus and method for scheduling packet data service in wireless communication system
SG147300A1 (en) 2000-02-02 2008-11-28 Ntt Docomo Inc A single carrier/ds-cdma packet transmission method, an uplink packet transmission method in a multi-carrier/ds-cdma mobile communications system, and a structure of a downlink channel in a multi-carrier/ds-cdma mobile communications system
AU3673001A (en) 2000-02-07 2001-08-14 Tantivy Communications, Inc. Minimal maintenance link to support synchronization
CN1419748A (en) * 2000-02-16 2003-05-21 三星电子株式会社 Apparatus and method for assigning a common packet channel in a cdma communication system
KR100365613B1 (en) * 2000-02-17 2002-12-26 삼성전자 주식회사 Channel assignment apparatus and method for common packet channel in cdma system
US6545994B2 (en) * 2000-02-23 2003-04-08 Tantivy Communications, Inc. Access probe acknowledgment including collision detection to avoid oversetting initial power level
US7227884B2 (en) 2000-02-28 2007-06-05 Aeroastro, Inc. Spread-spectrum receiver with progressive fourier transform
AU2001265075A1 (en) * 2000-05-26 2001-12-11 Infolibria, Inc. High performance efficient subsystem for data object storage
US7173921B1 (en) 2000-10-11 2007-02-06 Aperto Networks, Inc. Protocol for allocating upstream slots over a link in a point-to-multipoint communication system
US7085494B2 (en) 2000-10-12 2006-08-01 At & T Corp. High-capacity packet-switched ring network
US7068683B1 (en) 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
KR100464485B1 (en) * 2000-11-09 2004-12-31 엘지전자 주식회사 A method and a device of transmitting high-speed packet data
KR100847187B1 (en) * 2000-11-16 2008-07-17 소니 가부시끼 가이샤 Information processing apparatus and communication apparatus
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
JP3464649B2 (en) * 2000-12-27 2003-11-10 松下電器産業株式会社 Transmission device, reception device, and communication method
US20040202137A1 (en) * 2001-01-26 2004-10-14 Gerakoulis Diakoumis Parissis Method for CDMA to packet-switching interface code division switching in a terrestrial wireless system
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
US6804220B2 (en) * 2001-05-07 2004-10-12 Qualcomm Incorporated Method and apparatus for generating control information for packet data
US6865176B2 (en) * 2001-06-08 2005-03-08 Motorola, Inc. Method and apparatus for resolving half duplex message collisions
SG185139A1 (en) 2001-06-13 2012-11-29 Ipr Licensing Inc Transmittal of heartbeat signal at a lower level than heartbeat request
KR100744322B1 (en) * 2001-08-14 2007-07-30 삼성전자주식회사 Random Access Schemes in Time Division Duplex Mobile Communication System
US7180879B2 (en) * 2001-08-17 2007-02-20 Ragulan Sinnarajah Method and apparatus for call setup latency reduction
WO2003041438A1 (en) * 2001-11-08 2003-05-15 Ntt Docomo, Inc. Preamble transmission method, mobile station, mobile communication system, preamble transmission program, and computer data signal
US7106787B2 (en) * 2001-11-28 2006-09-12 Broadcom Corporation Acquisition matched filter for W-CDMA systems providing frequency offset robustness
KR101024875B1 (en) * 2002-01-08 2011-03-31 아이피알 라이센싱, 인코포레이티드 Maintaining a maintenance channel in a reverse link of a wireless communications system
JP3662543B2 (en) * 2002-02-15 2005-06-22 松下電器産業株式会社 Base station apparatus and packet transmission method
JP3971984B2 (en) * 2002-10-15 2007-09-05 松下電器産業株式会社 Communication apparatus and communication method
US8134994B2 (en) 2003-02-14 2012-03-13 Alcatel Lucent Method of scheduling on downlink and transmitting on uplink dedicated channels
KR101031725B1 (en) 2003-05-16 2011-04-29 파나소닉 주식회사 Medium access control in master?slave systems
US7200405B2 (en) 2003-11-18 2007-04-03 Interdigital Technology Corporation Method and system for providing channel assignment information used to support uplink and downlink channels
CN101790235B (en) * 2004-03-12 2012-05-23 三星电子株式会社 Method and apparatus for reducing burst allocation information in broadband wireless communication system
US7460624B2 (en) * 2004-03-18 2008-12-02 Motorola, Inc. Method and system of reducing collisions in an asynchronous communication system
JP2005286729A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Synchronization acquisition circuit and receiver utilizing the same
LT1779055T (en) * 2004-07-15 2017-04-10 Cubic Corporation Enhancement of aimpoint in simulated training systems
US8249102B2 (en) * 2004-07-27 2012-08-21 Motorola Solutions, Inc. Method and apparatus for session layer framing to enable interoperability between packet-switched systems
US20060023654A1 (en) * 2004-07-27 2006-02-02 Eitan Koren Method and apparatus for enabling interoperability between packet-switched systems
GB0419693D0 (en) * 2004-09-06 2004-10-06 Givaudan Sa Anti-bacterial compounds
US7881339B2 (en) * 2004-10-06 2011-02-01 Qualcomm, Incorporated Method and apparatus for assigning users to use interlaces in a wireless cellular communication system
US7590130B2 (en) * 2004-12-22 2009-09-15 Exar Corporation Communications system with first and second scan tables
WO2006086263A2 (en) * 2005-02-08 2006-08-17 Altivera L.L.C. One point calibration integrated temperature sensor for wireless radio frequency applications
JP4711750B2 (en) 2005-04-13 2011-06-29 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, mobile station, base station, and communication control method
US7586930B2 (en) * 2005-05-10 2009-09-08 Harris Corporation Multicast data communication method and network
JP4569374B2 (en) 2005-05-10 2010-10-27 富士通株式会社 Wireless communication apparatus and wireless communication method
US7613138B2 (en) * 2005-05-23 2009-11-03 Microsoft Corporation Separating control and data in wireless networks
US8965292B2 (en) * 2005-10-26 2015-02-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements in a mobile telecommunication network
JP4584316B2 (en) * 2005-11-04 2010-11-17 株式会社エヌ・ティ・ティ・ドコモ Packet communication method, mobile station and radio base station
RU2436262C2 (en) * 2005-11-04 2011-12-10 Нтт Досомо, Инк. Signal transmission control method, radio communication mobile station and base station
US7893873B2 (en) * 2005-12-20 2011-02-22 Qualcomm Incorporated Methods and systems for providing enhanced position location in wireless communications
WO2007136415A2 (en) 2005-12-30 2007-11-29 Comtech Mobile Datacom Corporation Mobile satellite communications
US7881724B2 (en) 2006-01-05 2011-02-01 Lg Electronics Inc. Allocating radio resources in mobile communications system
JP4806030B2 (en) 2006-01-05 2011-11-02 エルジー エレクトロニクス インコーポレイティド Method for transferring signals in a mobile communication system
KR20070080552A (en) 2006-02-07 2007-08-10 엘지전자 주식회사 Method for transmitting response information in the mobile communication system
WO2007078171A2 (en) 2006-01-05 2007-07-12 Lg Electronics Inc. Method of transmitting feedback information in a wireless communication system
KR101211807B1 (en) 2006-01-05 2012-12-12 엘지전자 주식회사 Method for managing synchronization state for mobile terminal in mobile communication system
US8179855B2 (en) 2006-02-07 2012-05-15 Research In Motion Limited Method, and associated apparatus, for communicating data at reduced transmission latency in radio communication system having slotted interface
KR101387475B1 (en) 2006-03-22 2014-04-22 엘지전자 주식회사 method of processing data in mobile communication system having a plurality of network entities
EP2618517B1 (en) 2006-06-21 2023-08-02 LG Electronics Inc. Method of supporting data retransmission in a mobile communication system
US8036672B2 (en) * 2006-07-14 2011-10-11 Qualcomm Incorporated Methods and apparatus related to resource allocation in a wireless communications system
WO2008087465A1 (en) * 2007-01-15 2008-07-24 Nokia Corporation A method of transmitting between two nodes
CN101374264B (en) * 2007-08-22 2012-06-06 中兴通讯股份有限公司 Method for distributing real time business bandwidth resource
KR100921772B1 (en) * 2007-11-21 2009-10-15 한국전자통신연구원 Method for delivering and receiving safety message service
US8081673B2 (en) * 2007-11-30 2011-12-20 Cellnet Innovations, Inc. Systems and methods for processing spread spectrum signals
US8107551B2 (en) * 2007-12-14 2012-01-31 Cellnet Innovations, Inc. Systems and methods for signal modulation and demodulation using phase
KR101449757B1 (en) * 2008-01-23 2014-10-13 한국전자통신연구원 Apparatus and Method for Random Access in Cellular System
US8670774B2 (en) * 2008-09-19 2014-03-11 Qualcomm Incorporated Systems and methods for uplink control resource allocation
US9106364B1 (en) 2009-01-26 2015-08-11 Comtech Mobile Datacom Corporation Signal processing of a high capacity waveform
US8548107B1 (en) 2009-01-26 2013-10-01 Comtech Mobile Datacom Corporation Advanced multi-user detector
EP2257114A1 (en) 2009-05-29 2010-12-01 Siemens Aktiengesellschaft Method for allocating data telegrams to time slots in a wireless data bus system with hidden nodes
US8811200B2 (en) 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
US8675711B1 (en) * 2009-09-25 2014-03-18 Comtech Mobile Datacom Corporation System and methods for dynamic spread spectrum usage
CN102469470B (en) * 2010-11-04 2015-10-21 中兴通讯股份有限公司 Transmission method in WLAN (wireless local area network) and device
CN103781126B (en) * 2012-10-18 2017-09-12 中国移动通信集团公司 Communication between devices method and long term evolution base station in long evolving system
WO2016139861A1 (en) * 2015-03-02 2016-09-09 株式会社ワコム Active capacitive stylus, sensor controller, system comprising these, and method executed by these
US10327178B2 (en) * 2016-11-11 2019-06-18 Qualcomm Incorporated Radio resource management procedures for new radio

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170159A (en) 1985-01-24 1986-07-31 Nippon Telegr & Teleph Corp <Ntt> Multiple address system
US4866788A (en) 1986-10-24 1989-09-12 Michel Mouly Process for controlling retransmission of messages from transmitting stations belonging to a cellular system
JPH02192340A (en) 1989-01-20 1990-07-30 Nippon Telegr & Teleph Corp <Ntt> Multiple access device
JPH02220526A (en) 1989-02-21 1990-09-03 Canon Inc Spread spectrum communication equipment
JPH03214825A (en) 1990-01-19 1991-09-20 Nippon Telegr & Teleph Corp <Ntt> Reservation channel split type channel control method
WO1993018601A1 (en) 1992-03-05 1993-09-16 Qualcomm Incorporated Apparatus and method for reducing message collision between mobile stations simultaneously accessing a base station in a cdma cellular communications system
US5276703A (en) * 1992-01-13 1994-01-04 Windata, Inc. Wireless local area network communications system
US5278833A (en) 1991-03-28 1994-01-11 Motorola, Inc. Method for providing reserved communication access using multiple random access resources
JPH0690442A (en) 1992-09-09 1994-03-29 Fujitsu Ltd Leak forecast encoding system
US5329530A (en) 1991-10-25 1994-07-12 Nec Corporation Radio connection system
US5357513A (en) 1990-12-06 1994-10-18 Hughes Aircraft Company Transmission power level adjustment in radio telephony
JPH06311160A (en) 1993-04-21 1994-11-04 Hitachi Ltd Radio communication system and radio terminal equipment
US5371780A (en) * 1990-10-01 1994-12-06 At&T Corp. Communications resource assignment in a wireless telecommunications system
JPH0715433A (en) 1993-04-19 1995-01-17 Internatl Business Mach Corp <Ibm> Digital data radiocommunication system and its operating method
JPH0738496A (en) 1993-07-23 1995-02-07 Hitachi Ltd Spread spectrum communication system and transmission power control method
US5410568A (en) 1992-01-13 1995-04-25 Interdigital Technology Corporation CDMA/TDMA spread-spectrum communications system and method
US5461627A (en) 1991-12-24 1995-10-24 Rypinski; Chandos A. Access protocol for a common channel wireless network
US5481533A (en) 1994-05-12 1996-01-02 Bell Communications Research, Inc. Hybrid intra-cell TDMA/inter-cell CDMA for wireless networks
US5488631A (en) 1994-10-31 1996-01-30 Radio Connect Corporation Wireless direct-sequence spread spectrum TDMA communications system
US5491741A (en) 1992-10-23 1996-02-13 At&T Corp. Prioritizing a multiple access channel in a wireless telephone system
US5491718A (en) 1994-01-05 1996-02-13 Nokia Mobile Phones Ltd. CDMA radiotelephone having optimized slotted mode and long code operation
US5509015A (en) 1992-03-05 1996-04-16 Qualcomm Incorporated Method and apparatus for scheduling communication between transceivers
US5511068A (en) 1993-12-08 1996-04-23 Nec Corporation Mobile communication system capable of transmitting and receiving a radio signal obtained by TDMA and CDMA without interference
US5511067A (en) 1994-06-17 1996-04-23 Qualcomm Incorporated Layered channel element in a base station modem for a CDMA cellular communication system
US5533013A (en) 1992-12-01 1996-07-02 Nokia Mobile Phones Limited Communication method and system
US5546444A (en) 1994-03-11 1996-08-13 Bellsouth Corporation Methods and apparatus for communicating data via a cellular network control channel
US5553076A (en) 1994-05-02 1996-09-03 Tcsi Corporation Method and apparatus for a wireless local area network
US5568472A (en) 1992-11-04 1996-10-22 Ntt Mobile Communications Network Inc. Code division multiple access mobile communication system
US5581547A (en) 1993-03-05 1996-12-03 Ntt Mobile Communications Network Inc. Random access communication method by CDMA and mobile station equipment using the same
US5673259A (en) 1995-05-17 1997-09-30 Qualcomm Incorporated Random access communications channel for data services
US5751708A (en) 1995-10-25 1998-05-12 Lucent Technologies Inc. Access method for broadband and narrowband networks
US5784403A (en) 1995-02-03 1998-07-21 Omnipoint Corporation Spread spectrum correlation using saw device
US5790551A (en) 1995-11-28 1998-08-04 At&T Wireless Services Inc. Packet data transmission using dynamic channel assignment
US5802465A (en) 1993-09-06 1998-09-01 Nokia Mobile Phones Ltd. Data transmission in a radio telephone network
US5828662A (en) 1996-06-19 1998-10-27 Northern Telecom Limited Medium access control scheme for data transmission on code division multiple access (CDMA) wireless systems
US6269088B1 (en) * 1995-08-10 2001-07-31 Hitachi, Ltd. CDMA mobile communication system and communication method
JP3214825B2 (en) 1997-08-28 2001-10-02 本田技研工業株式会社 Vehicle motion control device
US6570865B2 (en) * 1995-08-10 2003-05-27 Hitachi, Ltd. CDMA mobile communications system and communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888938A (en) 1981-11-20 1983-05-27 Nec Corp Satellite packet communication system
JPS6090442A (en) 1983-10-24 1985-05-21 Nec Corp Idle line control system
CA2123670A1 (en) 1993-06-02 1994-12-03 Gregory Peter Kochanski Telecommunications call completion based on mutually agreed upon criteria

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170159A (en) 1985-01-24 1986-07-31 Nippon Telegr & Teleph Corp <Ntt> Multiple address system
US4866788A (en) 1986-10-24 1989-09-12 Michel Mouly Process for controlling retransmission of messages from transmitting stations belonging to a cellular system
JPH02192340A (en) 1989-01-20 1990-07-30 Nippon Telegr & Teleph Corp <Ntt> Multiple access device
US5426666A (en) 1989-02-21 1995-06-20 Canon Kabushiki Kaisha Communication apparatus
JPH02220526A (en) 1989-02-21 1990-09-03 Canon Inc Spread spectrum communication equipment
JPH03214825A (en) 1990-01-19 1991-09-20 Nippon Telegr & Teleph Corp <Ntt> Reservation channel split type channel control method
US5371780A (en) * 1990-10-01 1994-12-06 At&T Corp. Communications resource assignment in a wireless telecommunications system
US5357513A (en) 1990-12-06 1994-10-18 Hughes Aircraft Company Transmission power level adjustment in radio telephony
US5278833A (en) 1991-03-28 1994-01-11 Motorola, Inc. Method for providing reserved communication access using multiple random access resources
US5329530A (en) 1991-10-25 1994-07-12 Nec Corporation Radio connection system
US5461627A (en) 1991-12-24 1995-10-24 Rypinski; Chandos A. Access protocol for a common channel wireless network
US5276703A (en) * 1992-01-13 1994-01-04 Windata, Inc. Wireless local area network communications system
US5410568A (en) 1992-01-13 1995-04-25 Interdigital Technology Corporation CDMA/TDMA spread-spectrum communications system and method
WO1993018601A1 (en) 1992-03-05 1993-09-16 Qualcomm Incorporated Apparatus and method for reducing message collision between mobile stations simultaneously accessing a base station in a cdma cellular communications system
US5544196A (en) * 1992-03-05 1996-08-06 Qualcomm Incorporated Apparatus and method for reducing message collision between mobile stations simultaneously accessing a base station in a CDMA cellular communications system
CN1077069A (en) 1992-03-05 1993-10-06 夸尔柯姆股份有限公司 Reduce the apparatus and method of the information collision between the mobile radio station in the communication system
US5509015A (en) 1992-03-05 1996-04-16 Qualcomm Incorporated Method and apparatus for scheduling communication between transceivers
JPH0690442A (en) 1992-09-09 1994-03-29 Fujitsu Ltd Leak forecast encoding system
US5491741A (en) 1992-10-23 1996-02-13 At&T Corp. Prioritizing a multiple access channel in a wireless telephone system
US5568472A (en) 1992-11-04 1996-10-22 Ntt Mobile Communications Network Inc. Code division multiple access mobile communication system
US5533013A (en) 1992-12-01 1996-07-02 Nokia Mobile Phones Limited Communication method and system
US5581547A (en) 1993-03-05 1996-12-03 Ntt Mobile Communications Network Inc. Random access communication method by CDMA and mobile station equipment using the same
JPH0715433A (en) 1993-04-19 1995-01-17 Internatl Business Mach Corp <Ibm> Digital data radiocommunication system and its operating method
US5559804A (en) 1993-04-21 1996-09-24 Hitachi, Ltd. Wireless communication system and wireless terminal device using fixed length communication frame
JPH06311160A (en) 1993-04-21 1994-11-04 Hitachi Ltd Radio communication system and radio terminal equipment
JPH0738496A (en) 1993-07-23 1995-02-07 Hitachi Ltd Spread spectrum communication system and transmission power control method
US5559790A (en) 1993-07-23 1996-09-24 Hitachi, Ltd. Spread spectrum communication system and transmission power control method therefor
US5802465A (en) 1993-09-06 1998-09-01 Nokia Mobile Phones Ltd. Data transmission in a radio telephone network
US5511068A (en) 1993-12-08 1996-04-23 Nec Corporation Mobile communication system capable of transmitting and receiving a radio signal obtained by TDMA and CDMA without interference
US5596571A (en) 1994-01-05 1997-01-21 Nokia Mobile Phones Ltd. CDMA radiotelephone having optimized slotted mode and long code operation
US5491718A (en) 1994-01-05 1996-02-13 Nokia Mobile Phones Ltd. CDMA radiotelephone having optimized slotted mode and long code operation
US5546444A (en) 1994-03-11 1996-08-13 Bellsouth Corporation Methods and apparatus for communicating data via a cellular network control channel
US5553076A (en) 1994-05-02 1996-09-03 Tcsi Corporation Method and apparatus for a wireless local area network
US5481533A (en) 1994-05-12 1996-01-02 Bell Communications Research, Inc. Hybrid intra-cell TDMA/inter-cell CDMA for wireless networks
US5511067A (en) 1994-06-17 1996-04-23 Qualcomm Incorporated Layered channel element in a base station modem for a CDMA cellular communication system
US5488631A (en) 1994-10-31 1996-01-30 Radio Connect Corporation Wireless direct-sequence spread spectrum TDMA communications system
US5784403A (en) 1995-02-03 1998-07-21 Omnipoint Corporation Spread spectrum correlation using saw device
US5673259A (en) 1995-05-17 1997-09-30 Qualcomm Incorporated Random access communications channel for data services
US6269088B1 (en) * 1995-08-10 2001-07-31 Hitachi, Ltd. CDMA mobile communication system and communication method
US6393013B1 (en) 1995-08-10 2002-05-21 Hitachi, Ltd. CDMA mobile communication system and communication method
US6570865B2 (en) * 1995-08-10 2003-05-27 Hitachi, Ltd. CDMA mobile communications system and communication method
US7154875B2 (en) 1995-08-10 2006-12-26 Hitachi, Ltd. CDMA mobile communication system and communication method
US5751708A (en) 1995-10-25 1998-05-12 Lucent Technologies Inc. Access method for broadband and narrowband networks
US5790551A (en) 1995-11-28 1998-08-04 At&T Wireless Services Inc. Packet data transmission using dynamic channel assignment
US5828662A (en) 1996-06-19 1998-10-27 Northern Telecom Limited Medium access control scheme for data transmission on code division multiple access (CDMA) wireless systems
JP3214825B2 (en) 1997-08-28 2001-10-02 本田技研工業株式会社 Vehicle motion control device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. Chang, "A Multiple Access Technique for Cellular Packet Networks with Admission Controrl", 1994, IEEE, pp. 1321-1325.
IEEE Trans. On Communication, Packet Switching in Radio Channels, COM-24, 8(1976), pp. 832-845.
Z. Zhang, "Performance Analysis of Multiple Access Protocols for CDMA Cellular and Personal Communications Services", 1993, IEEE, pp. 1214-1221.

Also Published As

Publication number Publication date
KR100326863B1 (en) 2002-07-22
US7251230B2 (en) 2007-07-31
CN1144445A (en) 1997-03-05
JPH0955693A (en) 1997-02-25
KR100355262B1 (en) 2002-10-11
CN1395399A (en) 2003-02-05
JP3212238B2 (en) 2001-09-25
US7154875B2 (en) 2006-12-26
CA2182429A1 (en) 1997-02-11
US20020071411A1 (en) 2002-06-13
US6393013B1 (en) 2002-05-21
US20070223425A1 (en) 2007-09-27
CA2182429C (en) 2002-07-09
US20020071412A1 (en) 2002-06-13
CN1084574C (en) 2002-05-08
US20130182684A1 (en) 2013-07-18
US6269088B1 (en) 2001-07-31
CN1238978C (en) 2006-01-25

Similar Documents

Publication Publication Date Title
US8867475B2 (en) CDMA mobile communication system and communication method
US6570865B2 (en) CDMA mobile communications system and communication method
US6049536A (en) CDMA communication method and spread spectrum communication system
KR100812434B1 (en) Method and apparatus for gated ???/??? channel in a communication system
RU2343635C1 (en) Method and device for transmitting and receiving downlink control information in mobile communications system, supporting up-link data packet transfer service
US6836469B1 (en) Medium access control protocol for a multi-channel communication system
EP1062829B1 (en) Signalling configuration in a radio communication system
EP0668669A1 (en) Data communication system controlling the information transmission bit rate or source encoding rate
KR20030027875A (en) Channel Encoding and Decoding Method and Apparatus
US6157628A (en) Retransmission control method of CDMA mobile communication
US20030012128A1 (en) Radio base station apparatus and communication terminal apparatus
JP3058270B2 (en) CDMA communication method, spread spectrum communication system, base station, and terminal device
US7512100B2 (en) Method of mobile communication and apparatus therefor
EP1198899A2 (en) Wireless network for requesting a contention channel
JP3584914B2 (en) Mobile communication system and mobile terminal device
US7024216B2 (en) Method and apparatus for allocating a communication resource in a broadband communication system
US7552257B2 (en) Data transmission device with a data transmission channel for the transmission of data between data processing devices
JP3252840B2 (en) Mobile communication system and mobile terminal device
JP2004297824A (en) Mobile communication system and mobile terminal device
JP3584902B2 (en) Mobile communication system, terminal and base station

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20181021