Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8697258 B2
Publication typeGrant
Application numberUS 13/182,474
Publication date15 Apr 2014
Filing date14 Jul 2011
Priority date25 Oct 2006
Also published asCA2663519A1, CN101522930A, CN101522930B, CN102764893A, CN102764893B, EP2078101A2, US8007922, US8841005, US20080145686, US20110265623, US20130028672, WO2008051588A2, WO2008051588A3, WO2008051588A9
Publication number13182474, 182474, US 8697258 B2, US 8697258B2, US-B2-8697258, US8697258 B2, US8697258B2
InventorsPrakash K. Mirchandani, Alfred J. Mosco, Eric W. Olsen, Steven G. Caldwell
Original AssigneeKennametal Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Articles having improved resistance to thermal cracking
US 8697258 B2
Abstract
An article includes a working portion including cemented carbide, and a heat sink portion in thermal communication with the working portion. The heat sink portion includes a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. Also disclosed are methods of making an article including a working portion comprising cemented carbide, and a heat sink portion in thermal communication with the working portion and including a heat sink material having a thermal conductivity that is greater than a thermal conductivity of the cemented carbide. The heat sink portion conducts heat from the working portion.
Images(14)
Previous page
Next page
Claims(29)
What is claimed is:
1. An article comprising:
a cutting portion comprising cemented carbide including a binder and hard particles of tungsten carbide having an average grain size of 0.3 to 10 μm;
a central axis; and
a heat sink portion aligned with and intersected by the central axis, wherein the heat sink portion comprises a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide, wherein the heat sink portion directly contacts the cutting portion and conducts heat from the cutting portion.
2. The article of claim 1, wherein the cutting portion is an outer portion and the heat sink portion is at least one of an interior portion, a core portion, and at least a part of a body portion.
3. The article of claim 1, wherein the heat sink portion is an interior portion coaxially aligned with the central axis.
4. The article of claim 1, wherein the cutting portion comprises a dome-shaped cutting surface, and the heat sink portion is coaxially aligned with and intersected by the central axis.
5. The article of claim 1 comprising a central hole along the central axis, and wherein the heat sink portion is between the central hole and the cutting portion.
6. The article of claim 5, wherein the cutting portion comprises a cutting surface, and the heat sink portion is between the central hole and the cutting surface.
7. The article of claim 1, comprising a body portion supporting the cutting portion, and wherein the heat sink portion contacts the body portion.
8. The article of claim 1, comprising a body portion supporting the cutting portion, and wherein the heat sink portion comprises at least a portion of the body portion.
9. The article of claim 1, comprising a body portion supporting the cutting portion, and wherein the body portion comprises a recess, and at least a portion of the heat sink portion is disposed within the recess.
10. The article of claim 9, wherein at least of portion of the body portion is between the cutting portion and the heat sink portion.
11. The article of claim 9, wherein the cutting portion comprises a cutting surface, and at least of portion of the body portion is between the cutting surface and the heat sink portion.
12. The article of claim 9, wherein the heat sink portion is mechanically attached to the body portion by at least one of press fitting, shrink fitting, a fastener, soldering, brazing, an adhesive, and clamping.
13. The article of claim 9, wherein the heat sink portion comprises at least one of a solid and a powder.
14. The article of claim 9, wherein the heat sink portion comprises a solid plug that forms a mechanical seal within the recess and defines a void within the body portion, and wherein the heat sink portion further comprises a powder within the void.
15. The article of claim 1, wherein the article is selected from an earth boring bit, a cutting insert, a cutting tool, a rotary tool, a rotary tool insert, a drill, a knife, and a slitter.
16. The article of claim 1, wherein the binder comprises at least one of cobalt, nickel, and iron.
17. The article of claim 1, wherein the cemented carbide comprises 2 to 40 weight percent of the binder and 60 to 98 weight percent of the hard particles.
18. The article of claim 1, wherein the heat sink material has a thermal conductivity greater than 150 W/mK.
19. The article of claim 1, wherein the heat sink material comprises at least one material selected from copper, aluminum, silver, gold, silicon carbide, aluminum nitride, boron nitride, aluminum silicon carbide, beryllium oxide, silicon-silicon carbide, aluminum silicon carbide, copper tungsten alloy, copper molybdenum carbide, carbon, diamond, and graphite.
20. The article of claim 1, wherein the cemented carbide comprises a hybrid cemented carbide.
21. The article of claim 20, wherein the hybrid cemented carbide comprises:
a cemented carbide dispersed phase; and
a cemented carbide continuous phase, wherein the contiguity ratio of the dispersed phase is less than or equal to 0.48.
22. The article of claim 1, wherein the heat sink portion comprises:
a first dispersed phase comprising hard particles;
a first continuous phase comprising a binder, wherein the hard particles are dispersed within the first continuous phase; and
a second continuous phase comprising the heat sink material.
23. An article comprising:
a cutting portion comprising a domed-shaped cutting surface and cemented carbide including a binder and hard particles of carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten;
a central axis; and
a heat sink portion coaxially aligned with and intersected by the central axis, wherein the heat sink portion comprises a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide, wherein the heat sink portion directly contacts the cutting portion and conducts heat from the cutting portion.
24. The article of claim 23, wherein the heat sink material has a thermal conductivity greater than 150 W/mk.
25. The article of claim 23, wherein the heat sink material comprises at least one material selected from copper, aluminum, silver, gold, silicon carbide, aluminum nitride, boron nitride, aluminum silicon carbide, beryllium oxide, silicon-silicon carbide, aluminum silicon carbide, copper tungsten alloy, copper molybdenum carbide, carbon, diamond, and graphite.
26. An article comprising:
a cutting portion comprising cemented carbide including a binder and hard particles of carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten;
a body portion supporting the cutting portion;
a central axis; and
a heat sink portion at least partially disposed in a recess of the body portion and aligned with and intersected by the central axis, wherein the heat sink portion comprises a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide, wherein the heat sink portion directly contacts the cutting portion and conducts heat from the cutting portion, the heat sink portion forming a mechanical seal with the recess and defining a void within the body portion, the heat sink portion further comprising a powder within the void.
27. An article comprising:
a cutting portion comprising cemented carbide including a binder and hard particles of carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten;
a central axis; and
a heat sink portion aligned with and intersected by the central axis, wherein the heat sink portion comprises a first dispersed phase comprising hard particles, a first continuous phase comprising binder wherein the hard particles are dispersed within the first continuous phase and a second continuous phase comprising a heat sink material, the heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide, wherein the heat sink portion directly contacts the cutting portion and conducts heat from the cutting portion.
28. The article of claim 27, wherein the heat sink material has a thermal conductivity greater than 150 W/mk.
29. The article of claim 27, wherein the heat sink material comprises at least one material selected from copper, aluminum, silver, gold, silicon carbide, aluminum nitride, boron nitride, aluminum silicon carbide, beryllium oxide, silicon-silicon carbide, aluminum silicon carbide, copper tungsten alloy, copper molybdenum carbide, carbon, diamond, and graphite.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 11/924,273, filed Oct. 25, 2007, now U.S. Pat. No. 8,007,922 which claims priority under 35 U.S.C. §119(e) to U.S. provisional patent application Ser. No. 60/854,348, filed Oct. 25, 2006.

FIELD OF TECHNOLOGY

This invention relates to improvements to articles comprising cemented carbides, such as cutting tools, cutting inserts, seal rings, rolling mill rolls, cutting elements for earth boring bits, as well as other articles subject to heat and/or thermal cycling. The invention also relates to methods of producing such articles. More specifically, the certain embodiments of the invention relate to cemented carbide articles with improved thermal cracking resistance.

BACKGROUND OF THE INVENTION

Articles comprising cemented carbides are commonly used in applications that involve high stresses and friction, such as cutting tools or cutting inserts for use in turning, milling, and drilling; seal rings for agitators and pumps; and rolls for rolling steel. Articles comprising cemented carbides tend to fail by thermal cracking. Cracks in such articles may be initiated if the article is heated above a threshold value, and the cracks may further propagate if the article is subject to thermal cycling.

For example, earth boring (or drilling) bits are commonly employed for oil and natural gas exploration, mining, and excavation. Such earth boring bits may have fixed or rotatable cutting elements. FIG. 1 illustrates a typical rotary cone earth boring bit 10 with rotatable cutting elements 11. Cutting inserts 12, typically made from a cemented carbide, are placed in pockets fabricated on the outer surface of the cutting elements 11. Several cutting inserts 12 may be fixed to the rotatable cutting elements 11 in predetermined positions to optimize cutting.

The service life of an earth boring bit is typically a function of the wear properties of the cemented carbide inserts. One way to increase earth boring bit service life is to employ cutting inserts made of materials with improved combinations of strength, toughness, and abrasion/erosion resistance. As stated above, the cutting inserts comprise cemented carbides, a type of cemented hard particle. The choice of cemented carbides for such applications is predicated on the fact that these materials offer very attractive combinations of strength, fracture toughness, and wear resistance (i.e., properties that are extremely important to the efficient functioning of the boring or drilling bit). Cemented carbides are composites comprising a dispersed, discontinuous phase including particles of carbides of one or more of the transition metals belonging to groups IVB, VB, and VIB of the periodic table (Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W), and a continuous binder phase (typically including cobalt, nickel, or iron) cementing together the hard particles. Among the different possible hard particle-binder combinations, cemented carbides based on tungsten carbide (WC) as the hard particle and cobalt as the binder phase are the cemented hard particles most commonly employed.

The properties of cemented carbides depend upon, among other properties, two microstructural parameters, namely, the average hard particle grain size and the weight or volume fraction of the hard particles and/or the binder. In general, the hardness and wear resistance increases as the grain size decreases and/or the binder content decreases. On the other hand, fracture toughness increases as the grain size increases and/or as the binder content increases. Thus, there is a trade-off between wear resistance and fracture toughness when selecting a cemented carbide grade for any application. As wear resistance increases, fracture toughness typically decreases, and vice versa.

FIGS. 2A-2E illustrate some of the different shapes and designs of the cemented carbide inserts typically employed in rotary cone earth boring bits. Cutting inserts for earth boring bits are typically characterized by the shape of the domed portion, such as, ovoid (FIG. 2A), ballistic (FIG. 2B), chisel (FIG. 2C), multidome (FIG. 2D), and conical (FIG. 2E). The choice of the shape and cemented carbide grade employed depends upon the type of rock to be drilled. Regardless of shape or size, all inserts have a working portion in the form of a cutting portion, and a body portion. For example, cutting insert 20 in FIG. 2A includes dome-shaped cutting portion 22 and body portion 24. Also, for example, cutting insert 30 in FIG. 2B includes ballistic-shaped cutting portion 32 and body portion 34. The cutting action is performed by the cutting portion, while the body portion provides support for the cutting portion. Most, or all, of the body portion is embedded within the bit body or cutting element, and the body portion is typically inserted into the bit body by press fitting the cutting insert into a pocket.

As previously stated, the cutting action is primarily provided by the cutting portion of the tool. The first portion of the cutting portion to begin wearing away is the top half and, in particular, the extreme tip of the cutting portion. In the case of earth boring bits, as the top of the cutting portion begins to flatten out, the efficiency of cutting decreases dramatically since the earth is being removed more by a rubbing action, as opposed to a more efficient cutting action. As rubbing action continues, considerable heat may be generated by the increase in friction between the rock and the cutting insert, thereby resulting in heating of portions of the insert. If the temperature of any portion of the article exceeds a threshold valve, cracks will be initiated at the interface of the hard particles and the binder. Thermal cycling of the article causes propagation of the cracks.

Accordingly, there is a need for improved cemented carbide cutting inserts for earth boring bits having increased resistance to thermal fatigue and cracking. More generally, there is a need for improvements to articles including a working portion including cemented carbide that may be subject to cracking caused by thermal cycling.

SUMMARY OF THE PRESENT INVENTION

The invention relates to improvements to articles comprising cemented carbide, wherein hard particles within the cemented carbide include carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten. Such articles include cutting tools, cutting inserts, seal rings, rolling mill rolls, cutting elements for earth boring bits, as well as other articles including cemented carbide subject to heat and/or thermal cycling. The invention also relates to methods of producing such articles. Certain embodiments of articles according to the present invention may include a portion comprising cemented carbide including a binder and carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and a heat sink portion comprising a material with a thermal conductivity greater than the thermal conductivity of the cemented carbide. The heat sink portion may draw heat from a working portion, which may be, for example, a contact portion or cutting portion, thereby providing improved resistance to certain modes of thermal failure.

According to one aspect of the invention, an article is provided including a working portion including cemented carbide and a heat sink portion in thermal communication with the working portion. The cemented carbide of the working portion includes a binder and hard particles of carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and the heat sink portion includes a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. According to certain non-limiting embodiments, the heat sink portion contacts a body portion of the article, wherein the body portion supports the working portion. Also, according to certain non-limiting embodiments, the working portion is at least one of a cutting portion and a contact portion. In certain non-limiting embodiments in which the working portion is a contact portion, the article is one of a rolling mill roll and a seal ring. In certain non-limiting embodiments in which the working portion is a cutting portion, the article is one of an earth boring bit, a cutting insert, a cutting tool, a rotary tool, a rotary tool insert, a drill, a knife, and a slitter.

According to another aspect of the invention, an article is provided including a cutting portion comprising cemented carbide, a body portion, and a heat sink portion in contact with the body portion. The heat sink portion includes a material having a thermal conductivity greater than a thermal conductivity of the cemented carbide, and the heat sink portion is in thermal communication with the cutting portion. In certain non-limiting embodiments, the article is one of an earth boring bit, a cutting insert, a cutting tool, a rotary tool, a rotary tool insert, a drill, a knife, and a slitter.

According to another aspect of the invention, a rolling mill roll includes a contact portion including cemented carbide, which includes a binder and hard particles of carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, a body portion, and a heat sink portion. The contact portion includes a first end, an opposed second end, and an annular outer wall extending between the first end and the second end and including a contact surface. The body portion supports the contact portion and includes an annular inner wall defining a bore extending longitudinally through the rolling mill roll. The inner wall includes a recess therein. The heat sink portion includes a material having a thermal conductivity greater than a thermal conductivity of the cemented carbide and is in thermal communication with the contact portion. At least a portion of the heat sink portion is disposed within the recess and contacts the body portion.

According to another aspect of the invention, a seal ring includes a contact portion including cemented carbide, which includes a binder and hard particles of carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, a body portion, and a heat sink portion. The contact portion includes a first face including a contact surface. The body portion support the contact portion and includes a second face defining a recess in the body portion. An annular inner wall extends between the first face and the second face and defines a bore extending between and opening on the first face and the second face. The heat sink portion includes a material having a thermal conductivity greater than a thermal conductivity of the cemented carbide and is in thermal communication with the contact portion. At least a portion of the heat sink portion is disposed within the recess and contacts the body portion.

Also according to an aspect of the invention, a method of making an article includes: providing a working portion including cemented carbide, which includes a binder and hard particles of carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten; providing a body portion; and providing a heat sink portion in contact with the body portion and including a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. The working portion is in thermal communication with the heat sink portion. According to certain non-limiting embodiments of the method, the heat sink portion contacts the body portion. Also, according to certain non-limiting embodiments, the working portion is at least one of a cutting portion and a contact portion. In certain non-limiting embodiments of the method in which the working portion is a contact portion, the contact portion may include a contact surface and the article is one of a rolling mill roll and a seal ring. In certain non-limiting embodiments of the method in which the working portion is a cutting portion, the cutting portion may include a cutting surface and the article is one of an earth boring bit, a cutting insert, a cutting tool, a rotary tool, a rotary tool insert, a drill, a knife, and a slitter.

According to yet a further aspect of the invention, a method of making an article including a working portion and a heat sink portion in thermal communication with the working portion includes: partially filling a void of a mold with a cemented carbide powder including a powdered binder and hard particulate carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten; disposing a solid heat sink material in the void; and sintering the cemented carbide powder. The method provides a sintered article including the working portion, which includes cemented carbide, and a solid heat sink portion that is in thermal communication with the working portion.

According to yet another aspect of the invention, a method of making an article including a working portion, a body portion that supports the working portion, and heat sink portion in thermal communication with the working portion is provided. A sintered body comprising cemented carbide is prepared. A heat sink material is added to the sintered body. The heat sink material has a thermal conductivity greater than a thermal conductivity of the cemented carbide. In certain embodiments, the working portion is a contact portion including cemented carbide and a contact surface. In certain other embodiments, the working portion is a cutting portion including cemented carbide and includes a cutting surface. The heat sink portion contacts the body portion and conducts heat from the working portion.

A further aspect of the invention relates to a method of making an article including at least a working portion and a heat sink portion in thermal communication with the working portion. The method includes partially filling a void of a mold with a first cemented carbide powder, and at least partially filling a remainder of the void with a second cemented carbide powder comprising a fugitive material having a melting temperature lower than a sintering temperature of the second cemented carbide powder. The first cemented carbide powder and the second cemented carbide powder are consolidated to form a green compact, and the green compact is sintered to remove the fugitive material and form a sintered article comprising a region of a first cemented carbide and a region of a second cemented carbide including interconnected porosity. A heat sink material is infiltrated into the interconnected porosity of the second cemented carbide, wherein the heat sink material has thermal conductivity greater than the first cemented carbide.

The reader will appreciate the foregoing details and advantages of the present invention, as well as others, upon consideration of the following detailed description of embodiments of the invention. The reader also may comprehend such additional details and advantages of the present invention upon making and/or using embodiments within the present invention.

BRIEF DESCRIPTION OF THE FIGURES

The features and advantages of the present invention may be better understood by reference to the accompanying figures in which:

FIG. 1 illustrates a typical rotary cone earth boring drill bit comprising a bit body, roller cones, and cutting inserts;

FIGS. 2A-2E illustrate different shapes and sizes of cutting inserts typically employed in rotary cone earth boring bits such as ovoid (FIG. 2A), ballistic (FIG. 2B), chisel (FIG. 2C), multidome (FIG. 2D), and conical (FIG. 2E);

FIG. 3 is a photomicrograph of cracks caused by thermal fatigue in a cemented carbide material;

FIG. 4 shows the typical microstructure of a cemented hard particle material having a continuous binder phase and a discontinuous hard particle phase;

FIGS. 5A-5J are schematic representations of articles comprising cemented carbide and a heat sink;

FIG. 6 is a schematic representation of a cutting insert of the present invention comprising a cemented carbide infiltrated with a conductive material;

FIG. 7 is a photograph of two cemented carbide cutting inserts for earth boring bits with plugs of a heat sink material visible within a cemented carbide working portion.

FIGS. 8A and 8B are schematic representations of an embodiment of a seal ring according to the present invention including a working portion comprising cemented carbide and a heat sink portion in thermal communication with the working portion; and

FIGS. 9A-9C are schematic representations of an embodiment of a rolling mill roll according to the present invention including an annular working portion comprising cemented carbide and heat sink portion in thermal communication with the working portion.

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Unless otherwise indicated, all numbers expressing quantities of ingredients, time, temperatures, and so forth used in the present specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, may inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.

Embodiments of the present invention include articles comprising cemented carbide and a heat sink material. As used herein, the term “cemented carbide” refers a composite material including a discontinuous phase comprising hard particles and continuous phase of binder cementing together the hard particles. The hard particles comprise carbides of at least one transition metal selected from Groups IVB, VB, and VIB of the periodic table (titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten). Cemented carbides in which the hard particles consist of transition metal carbides are referred to herein as “cemented transition metal carbides”. Embodiments of articles according to the present invention may comprise a working portion including cemented carbide and a heat sink portion including a heat sink material. The articles also may include a body portion supporting the working portion. Examples of embodiments of the present invention include, but are not limited to, a rolling mill roll, a seal ring, an earth boring bit, a cutting insert, a cutting tool, a rotary tool, a rotary tool insert, a drill, a knife, and a slitter.

As used herein, the term “working portion” means the portion of an article involved in performing an intended function of the article. For example, an earth boring bit, a cutting insert, a cutting tool, a rotary tool, a rotary tool insert, a drill, a knife, and a slitter function to remove and/or separate a target material, and a working portion of such articles is a cutting portion adapted for removing and/or separating the material. A cutting portion may include a cutting surface, which is a surface of the cutting portion that acts to remove or separate the target material. According to another example, a rolling mill roll functions to contact a workpiece and thereby exert a mechanical force on and modify the workpiece's shape. A working portion of a rolling mill roll is a contact portion, which is a portion of the roll that contacts the workpiece while performing the roll's intended function. The contact portion may also comprise a contact surface, which is a surface of the contact portion that contacts the workpiece. According to yet another example, a seal ring (also known as a sealing ring) functions to create a mechanical seal at the interface between two or more parts, and a working portion of a seal ring also is a contact portion, which may include a contact surface that contacts one or more of the parts.

Also, as used herein, a “body portion” refers to a portion of the article that supports the working portion. The body portion and working portion may be, but need not be, regions of a unitary article. As such, it will be understood that in certain embodiments of an article according to the present invention, there may not exist a clear line of division between working portion and body portion. In such embodiments, however, an ordinarily skilled person will recognize a difference between the portions in that the working portion will be adapted to carry out the intended function of the article, while the body portion will be adapted to support the working portion. Alternatively, the working portion and body portion may be formed of different materials and otherwise securely attached or bonded together so that the body portion provides the requisite support for the working portion when the article is in service.

Embodiments of the present invention include articles comprising a working portion and a heat sink portion, wherein the heat sink portion is in thermal communication with the working portion. A heat sink material of the heat sink portion has a higher thermal conductivity than a cemented carbide of the working portion. As used herein, the term “thermal communication” means that the heat may be conducted from the working portion to the heat sink portion. The heat sink portion may contact the working portion, wherein the heat is conducted directly from the working portion to the heat sink portion. Alternatively, the heat sink portion may be in contact with a body portion and is not in contact with the working portion. In this scenario, the heat is conducted from the working portion and through the body portion to the heat sink portion.

Embodiments of the present invention include articles comprising a working portion and a heat sink portion. Additionally, the articles may include a body portion or other portions. In order to remain in thermal communication with the working portion, the heat sink portion must contact one of the article, working portion, body portion, or another portion of the article in such a manner that heat can be conducted from the working portion to the heat sink portion. To achieve thermal communication, the heat sink portion can be mechanically attached to on of the article, working portion, body portion, or other portion. As used herein, the term “mechanically attached” refers to any means of mechanically attaching a heat sink portion to another portion, including, but not limited to, application of adhesives, connecting with fasteners (for example, screws, bolts, pins) soldering, brazing, clamping, press fitting, and shrink fitting. Additionally, the heat sink portion may be mechanically attached to the article or a portion thereof by physically confining all or a region of the heat sink portion within the article or portion thereof. Other possible means of mechanically attaching the heat sink portion include, for example use of threads, slots, and keyways. Other means of mechanically attaching the heat sink portion to the article or a portion thereof will be readily apparent to one of ordinary skill upon considering the present description of the invention. Also, it will be apparent that use of adhesives, soldering, brazing, and the like must be accomplished in such a way as to allow for the requisite thermal communication between the heat sink portion and the working portion. This can be achieved, for example, by ensuring that at least some direct contact is made between the heat sink portion and the article, working portion, body portion, or other portion in a fashion as to provide a pathway for conduction of heat form the working portion to the heat sink portion. Also, according to certain embodiments, and adhesives, solder, or brazing material used to mechanically attach the working portion may have a thermal conductivity greater than the thermal conductivity of one of the working portion or cemented carbide of the working portion.

Embodiments of the present invention include articles comprising cemented carbide hard particles with increased thermal cracking resistance, including earth boring drill bits, cutting tools, cutting inserts, seal rings, and rolling mill rolls, as well as other articles subject to heat and/or thermal cycling. Certain embodiments of the articles of the present invention comprise a cutting portion and a heat sink portion. The cutting portion comprises cemented carbide. The heat sink portion comprises a material with a thermal conductivity greater than the thermal conductivity of the cemented carbide. Of course, embodiments of the invention include various shapes and sizes of the cutting portion and the heat sink portion and are not limited by the embodiments described herein. For example, the article may be a cutting insert for an earth boring bit having the shapes shown in FIGS. 2A-2E which, as noted above, are ovoid (FIG. 2A), ballistic (FIG. 2B), chisel (FIG. 2C), multidome (FIG. 2D), and conical (FIG. 2E). The heat sink portion may be a core region of a body portion of the cutting insert, or may be a body region. See FIG. 5A, for example, which depicts a cross-section of a cutting insert 50 for an earth boring bit according to the present invention including a working portion in the form of a cutting portion 51, and a body portion 52 including heat sink portion 53 embedded therein. Heat sink portion 53 is in thermal communication with cutting portion 51 and conducts heat from the cutting portion 51. FIG. 7 is a photograph of an actual example of a cutting insert 60 for an earth boring having the construction depicted in FIG. 5A. In FIG. 7, inserts 60 include cemented carbide cutting portion 61, cemented carbide body portion 62 supporting cutting portion 61, and copper heat sink portion 63 embedded within body portion 62 in thermal communication with cutting portion 61. Additional portions within cutting inserts according to the present invention may include central axis support portions, bottom portions, transitional portions, or other portions that may enhance the thermal properties of the cutting inserts for earth boring drill bits.

Embodiments of the articles of the present invention comprise a working portion such as, for example, a cutting portion or a contact portion, wherein the working portion comprises cemented carbide, and a body portion, wherein the body portion includes a heat sink portion in contact therewith. The cemented carbide of the working portion comprises hard particles and a binder. The hard particles comprise carbides of at least one transition metal selected from titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten. The binder of the cemented carbide typically comprises at least one of cobalt, nickel, iron, or alloys of these metals, but may be any metal or alloy capable of binding the hard particles together. The binder may further comprise an alloying agent selected from tungsten, titanium, tantalum, niobium, chromium, molybdenum, boron, carbon, silicon, ruthenium, rhenium, manganese, aluminum, and copper. In one embodiment, the hard particles of the cemented carbide comprise tungsten carbide having an average grain size of 0.3 to 10 μm, and the binder of the cemented carbide comprises cobalt. To provide the desired properties for certain applications, the cemented carbide may comprise 2 to 40 weight percent of the binder and 60 to 98 weight percent of a transition metal carbide. In certain embodiments, the cemented carbide may comprise tungsten carbide particles having an average grain size of 0.5 to 10 μm.

The heat sink portion is in thermal communication with the working portion and conducts heat away from the working portion to reduce heat build up within the working portion. As noted above, that the heat sink portion is in “thermal communication” with the working portion means that heat may flow from the working portion to the heat sink portion. As such, although in certain embodiments of the articles of the invention the heat sink portion contacts the working portion, it is not necessarily the case that the heat sink portion and working portion are in contact. Instead, a suitably thermally conductive material may be interposed between the working portion and the heat sink portion so that heat flows from the working portion to the heat sink portion. For example, in certain embodiments a region of the body portion of the article may be interposed between the working portion and the heat sink portion. Those with ordinary skill will readily comprehend other designs for the articles according to the present invention allowing for the requisite thermal communication between the working portion and the heat sink portion, and all such embodiments are within the scope of the present invention.

The heat sink portion includes a heat sink material that may be any material with a thermal conductivity greater than the thermal conductivity of the cemented carbide of the working portion. Preferably, the heat sink material has a thermal conductivity greater than twice the thermal conductivity of the cemented carbide of the working portion. For example, the heat sink material may have a thermal conductivity of greater than 150 W/mK, or even greater than 250 W/mK. In certain high friction applications, the heat sink material may have a thermal conductivity of greater than 350 W/mK. Examples of heat sink materials include, but are not limited to, copper, aluminum, silver, gold, silicon carbide, aluminum nitride, boron nitride, aluminum silicon carbide, beryllium oxide, silicon-silicon carbide, aluminum silicon carbide, copper tungsten alloys, copper molybdenum carbides, carbon, diamond, and combinations thereof. Further, the heat sink material may include graphite and other forms of carbon. Preferably, the heat sink portion is large enough to conduct heat from the working portion at a rate sufficient to prevent the working portion from reaching the threshold temperature for crack initiation.

FIGS. 5A-5J illustrate embodiments of articles of the present invention. It will be understood that these figures necessarily illustrate only a limited number of possible embodiments intended to illustrate various concepts disclosed herein. As discussed above, FIG. 5A illustrates a cross-section of an embodiment of a cutting insert for an earth boring bit 50 of the present invention. The cross-section of the cutting insert 50 of FIG. 5A shows a cutting portion 51 and a body portion 52. The cutting portion 51 of the cutting insert 50 comprises a cemented tungsten carbide material and is adapted to cut through rock and earth during drilling operations. The body portion 52 comprises a heat sink portion 53 forming a core region. The heat sink portion 53 is in thermal communication with and conducts heat from the cutting portion 51 to reduce temperature buildup in the cutting portion 51, thereby reducing the incidence of thermal crack initiation and propagation. In certain embodiments, the heat sink portion may comprise the entire body portion. In other embodiments, the heat sink portion may be in contact with but constitute a separate portion of the article. For example, as shown in FIGS. 5A and 7, the heat sink portion may be disposed in a recess in the body portion.

FIG. 5B is a cross-section of another embodiment of a cutting insert 150 for an earth boring bit wherein a heat sink portion is disposed in a recess in a body portion of the article. In particular, cutting insert 150 includes a working portion in the form of a cutting portion 151, and a body portion 152. The body portion 152 includes multiple recess in which multiple heat sink portions 153 are disposed. A region 154 of the body portion is intermediate the heat sink portions 153 heat sink and the cutting portion 151 and provides for thermal communication between the cutting portion 151 and the heat sink portions 153. The heat sink portions 153 may be designed in any manner capable of increasing the bulk thermal conductivity of the article.

In certain embodiments, a cutting insert for an earth boring bit constructed according to the invention may comprise a heat sink portion that extends into the bit body. For example, FIGS. 5C and 5D show cross-sections of embodiments of cutting inserts for an earth boring bits wherein the cutting inserts 250,350 comprise working portions in the form of cutting portions 251,351 and body portions 252,352. Each body portion 252,352 includes a recess therein for receiving a heat sink portion 254,354. The recess of cutting insert 250 extends through the body portion 252 and into the working portion 251. The body portions 252,352 may be press fit into a recess in the bit body or roller cone 253,353. The heat sink portions 254,354 may press fit into the recess in the body portions 252,353 of cutting inserts 250,350 and also into the recess in the bit body or roller cone 253,353. In this way, the heat sink portions 254,354 directly conduct heat from the articles to the bit body

FIG. 5E is an embodiment of a cutting insert 450 for metal working according the present invention. The cutting insert 450 comprises a working portion in the form of a cemented transition metal carbide cutting portion 451 for removing material from a work piece and a heat sink portion 452 for conducting heat away for the cutting portion and raising the bulk thermal conductivity of the article. Accordingly, the heat sink portion 452 of insert 450 also functions as a body portion that supports the cutting portion 452, and the heat sink portion 452 directly contacts the cutting portion 451. A central hole 453 is typically, but not always, included in the cutting insert 450 to allow attachment to a tool holder by a screw. Certain embodiments of inserts that may benefit from the invention may be attached to the tool holder by a clamp. The cutting insert 450 may be adapted for milling, turning, drilling, or other cutting operations.

FIG. 5F includes a plan view and a cross-section view (taken through A-A) of an embodiment of a diamond-shaped cutting insert 550 constructed according to the present invention. The cutting insert 550 is indexable, with four cutting edges. Cutting insert 550 includes working portions in the form of cutting portions 551 and a body portion 552 comprising a heat sink material. As such, the body portion 552 also constitutes a heat sink portion that conducts heat from the cutting portions 551. In the embodiment of cutting insert 550, the cutting portion 551 is comprised only of cemented transition metal carbide material, and the heat sink material has a thermal conductivity that is greater than the thermal conductivity of the cemented carbide material.

FIG. 5G includes a plan view and a cross-section view (taken through B-B) of another embodiment of a diamond-shaped cutting insert 650 constructed according to the present invention. Cutting insert 650 shown is similar to cutting insert 550 in that both cutting inserts are indexable diamond-shaped cutting inserts for metal working. Insert 650 comprises working portions in the form of cutting portions 651, and a body portion 652. Differences between inserts 550 and 650 may be seen by comparing section A-A of FIG. 5F and section B-B of FIG. 5G. As may be seen in section B-B, the cutting portion 651 comprises a region of cemented transition metal carbide 653. A region 654 of heat sink material underlies the cemented carbide regions 653 on each end of the insert 650. In such an embodiment, the regions 654 may be considered heat sink portions or, alternatively, the regions 654 may be considered to be regions of the body portion 652. In either case, the heat sink material regions 654 conduct heat from the cutting portions 653. Such an embodiment provides a significant amount of heat sink material in the cutting insert.

Embodiments of articles according to the present invention also include cutting tools. An embodiment of a cutting tool 750 is shown in FIG. 5H. Cutting tool includes a working portion in the form of cutting portion 751, and a body portion 752. The cutting portion 751 comprises two cemented transition metal carbide regions 753. A heat sink material region 754 is interposed between and conducts heat from the cutting regions 753. The heat sink material has a thermal conductivity that is greater than the thermal conductivity of the cemented carbide. In one embodiment, the heat sink region 754 contacts the body portion 752, which also may be formed of a heat sink material having a thermal conductivity greater than the cemented carbide material of regions 753. Alternatively, the heat sink region 754 is integral with and forms a part of the body portion 752, which is formed of a single heat sink material.

Further embodiments of articles constructed according to the present invention are shown in the cross sections of FIGS. 5I and 5J. The embodiment shown in the longitudinal cross section of FIG. 5I is a rod 850 comprising a working portion in the form of an outer or contact portion 851 and an inner or core region 852. Such an embodiment may be used as blanks for rotary tools, for example, blanks for drill bits and end mills. The inner or core region may comprise a heat sink portion. The heat sink portion may be only a section of the core region, or, the entire core region may be the heat sink portion. The contact portion 851 include cemented carbide, and heat sink portion may include a heat sink material having a thermal conductivity that is greater than a thermal conductivity of the cemented carbide. Cutting features may be formed on the outer or contact portion. In addition, cutting features may be formed on an end of the rod. When in use, the contact region 851 becomes hot, and heat is conducted from the contact region 851 by the heat sink portion 852.

FIG. 5J also shows a rod embodiment constructed according to the present invention. The cross section shown in FIG. 5J is taken at a right angle through the longitudinal axis of rod 950. Rod 950 comprises a working portion in the form of an outer or contact region 951 and an inner or core region 952. As in the embodiment of FIG. 5I, all or a portion of the core region 952 is a heat sink portion comprising a heat sink material. Rod 950, however, also includes longitudinally extending coolant channels 953 in which a coolant may be circulated to further conduct heat from the contact portion 851 and the core region 952. Such an embodiment may be used for drill bits, milling bits, or other rotary tools. It will be understood that although FIGS. 5I and 5J depict rods, the same principles of construction may be applied to finished tools that may be constructed using the rods as blanks. As suggested herein, such tools include, for example, drill bits and certain rotary tools.

Embodiments of the present invention also include an earth boring bit comprising a bit body or roller cone, a heat sink, and a cutting insert in contact with the heat sink, wherein the cutting insert is fastened to the bit body or the roller cone. The heat sink may also be in contact with the bit body. Preferably, the heat sink is embedded, integral to, or is disposed in a recess in at least one of the cutting insert or the bit body or roller cone. Further, the cutting insert may be fastened in a pocket of the bit body or roller by brazing, adhesive bonding, friction fit, or other mechanical affixation, as well as other means.

Certain additional embodiments of articles according to the present invention include seal rings such as seal ring 1000 shown in perspective FIG. 8A and in cross-section along line B-B in FIG. 8B. Seal rings are commonly found in equipment such as pumps and compressors and provide a mechanical seal around a shaft or other moving part. Seal ring 1000 includes a working portion in the form of an annular contact portion 1010, a heat sink portion 1020, and a body portion 1015 at least partially intermediate the contact portion 1010 and the heat sink portion 1020. The contact portion may comprise cemented carbide and may include a contact surface 1012 that contacts and applies a force to one or more parts of an apparatus to provide a mechanical seal. As contact is made at the contact surface 1012, friction generates heat at the contact surface 1012. The heat sink portion 1020 conducts heat away from the contact portion 1010 to reduce heat buildup at the contact surface 1012. The heat sink portion 1020 includes a heat sink material having a thermal conductivity greater than the thermal conductivity of the cemented carbide of the contact portion 1010, and is in thermal communication with the contact portion.

Certain other embodiments of articles according to the present invention include rolling mill rolls such as roll 2000 shown in FIG. 9A through. FIG. 9A is a schematic perspective view showing certain interior features in dotted lines. FIG. 9B is a cross-section taken through the mid way point of roll 2000 at a right angle to the roll's longitudinal axis. FIG. 9C is a cross-sectional view taken through the longitudinal axis of roll 2000. Rolling mill rolls are commonly used to work metal and metallic alloy workpieces and may be adapted to reduce a thickness of or otherwise modify the shape of such workpieces. Roll 2000 includes a contact portion 2010, at least one heat sink portion 2020, and a body portion intermediate the contact portion 2010 and the heat sink portion 2020. The contact portion 2010, as well as the body portion 2015, may comprise cemented carbide as described elsewhere herein. The contact portion 20101 also may comprise a contact surface 2012. As the rolling mill roll 2000 rotates, contact with the workpiece results in friction that heats the contact surface 2012. In addition, the workpiece itself may have been heated to high temperature before it is worked by the roll 2000. The heat sink portion 2020 includes a heat sink material, which is may be any suitable material with a thermal conductivity greater than the thermal conductivity of the cemented carbide of the contact portion 2010. The heat sink portion 2020 conducts heat from the contact portion 2010 to reduce heat buildup at the contact surface 2012, and is in thermal communication with the contact portion.

Cemented carbides offer very attractive combinations of strength, abrasion and erosion resistance, as well as fracture toughness. Cemented carbides do, however, have limited thermal fatigue and shock resistance. When subjected to thermal fatigue and shock (high temperatures with repeated heating and quenching), cemented carbides often exhibit surface cracking. FIG. 3 shows a typical cemented carbide with surface cracks resulting from thermal fatigue. Once cracks are initiated in a cemented carbide, the cracks continue to grow as the inserts are subjected to continued thermal cycling. Ultimately, numerous cracks will intersect and pieces of the cemented carbide insert may break away from the bulk material (often referred to as spalling).

For example, cutting inserts for earth boring bits are subject to a great deal of rubbing action against the rock being cut during earth boring operations. The friction resulting from the rubbing action causes a substantial temperature increase at the cutting surface of the inserts. Further, the cutting inserts are also subject to quenching by the coolant (mud) during the boring operation. They are thus subject to intense thermal cycling by the constant heating and cooling. In many instances, premature thermal cracking by thermal fatigue is the primary factor limiting the life of cemented carbide inserts employed in earth boring bits. Other examples of articles subject to thermal cycling and thermal fatigue include cutting inserts for milling, drilling, or boring, seal rings, and rolling mill rolls.

The relatively limited thermal cracking resistance of cemented carbides may be related to the fact that the materials are composites comprising two phases with different thermal expansion properties. FIG. 4 illustrates a typical microstructure of a cemented carbide. As can be seen in FIG. 4, the microstructure consists of grains of a hard discontinuous phase 41 dispersed within a continuous matrix of a binder phase 42. The coefficient of thermal expansion (CTE) of the hard discontinuous phase 41, is greatly different than the CTE of the binder phase 42. For example, the CTE of cobalt, a typical binder for cemented carbides, is approximately 3 times greater than the CTE of tungsten carbide (WC), a typical hard particle in cemented carbides (12×10−6 cm/cm/° C. for cobalt versus 4×10−6 cm/cm/° C. for WC). As the temperature of a cemented carbide rises, the cobalt expands at a much faster rate than the WC. As a result, large stresses occur at the interfaces between the two phases. The magnitudes of the stresses are directly related to the extent of the temperature increase. Furthermore, as the cemented carbide is subjected to thermal cycling (repeated heating and quenching), the interface weakens sufficiently to allow cracks to initiate. With continued thermal cycling the cracks can grow until spalling occurs.

There is thus a great need for approaches to improve the thermal cracking resistance of cemented carbides and other cemented hard particle materials, but without sacrificing their inherent strength, abrasion, erosion resistance, and fracture toughness.

In general, the thermal cracking resistance of any cemented carbide is directly proportional to its thermal conductivity (TC) as well as fracture toughness (Klc), and inversely proportional to its coefficient of thermal expansion (CTE) and Young's modulus (E). Thus, thermal cracking resistance may be improved by increasing the bulk thermal conductivity and/or fracture toughness, and by decreasing bulk thermal expansion and/or stiffness (Young's modulus). Increased TC prevents localized hot spots, while reduced thermal conductivity reduces the stresses at the phase interfaces. Cemented carbide materials having improved thermal cracking resistance can be expected to operate at higher temperatures and for a larger number of thermal cycles before thermal cracks initiate and grow.

The thermal conductivity, fracture toughness, thermal expansion and Young's modulus of a cemented carbide may be altered by varying chemical composition and/or microstructure. For example, bulk or local fracture toughness can be altered by varying the hard particle grain size and/or binder content. Unfortunately, an increase in fracture toughness (desirable from a thermal cracking resistance point of view) may be detrimental from a performance standpoint since an increase in hard particle grain size and/or binder content will invariably result in a decrease in abrasion and erosion resistance.

Similarly, thermal conductivity can be increased by increasing the hard particle content of a cemented carbide material. However, an increase in hard particle concentration will invariably result in a decrease in fracture toughness. Also, the coefficient of thermal expansion can be decreased by changing the composition of the binder or decreasing binder content. In either case, fracture toughness is reduced. Finally, the Young's modulus may be decreased by decreasing hard particle content. However, decreasing the hard particle content will result in a decrease in abrasion and erosion resistance. Therefore, attempts to improve thermal cracking resistance by altering thermal conductivity, fracture toughness, thermal expansion, and Young's modulus using conventional methods may also result in diminished performance through either a decrease in fracture toughness or abrasion and erosion resistance.

Certain embodiments of the present invention are directed to a novel method of improving the effective thermal conductivity in cemented carbide earth boring inserts without altering the chemical makeup or microstructure of the cutting (working) portion of the inserts. In this manner, the inherent fracture toughness, strength, and abrasion/erosion resistance of the insert is not altered, while the overall thermal conductivity (and hence, thermal cracking resistance) is substantially improved.

In one embodiment, the cutting insert is comprised of a working portion in the form of a cutting portion with a cemented transition metal carbide chemical composition (e.g., binder and/or hard particle identity and/or content) and microstructure (e.g., hard particle grain size) optimized for the intended application (e.g., type of rock being cut, desired cutting speed), as well as a heat sink portion that has a substantially higher thermal conductivity compared to the cutting portion. During the cutting operation, the heat sink portion conducts heat generated at the cutting surface of the cutting portion away from the cutting surface. In this manner, the temperature increase at the cutting portion is reduced relative to a conventionally designed article, and the propensity for thermal crack initiation is reduced.

FIG. 5A illustrates one embodiment of a cutting insert 50 comprising a heat sink. The insert 50 includes a dome-shaped cutting portion 51 having a cutting surface 55, and body portion 52. Both the cutting portion 51 and the body portion 52 comprise cemented transition metal carbide. Heat sink portion 53 is disposed within body region 52 and includes a heat sink material. Possible heat sink materials include highly thermally conductive metals such as, for example, Cu, Al, Ag, or Au. In certain embodiments, the cemented carbide may be a grade having thermal conductivity (TC) in the range of 90 W/mK up to 105 W/mK. In such embodiments, the TC of the heat sink material would be greater. For example, Cu has a TC of approximately 401 W/mK, Al has a TC of approximately 373 W/mK, Ag has a TC of approximately 429 W/mK, and Au has a TC of approximately 317 W/mK. Alternatively, for example, the heat sink portion could comprise graphite, which has a thermal conductivity up to 450 W/mK, depending upon grade. Clearly, the bulk thermal conductivity of the cemented transition metal carbide insert 50 can be greatly increased by incorporating a highly conductive core region as shown in FIG. 5A. The presence of the conductive core (heat sink portion 53) can be expected to rapidly conduct heat from the cutting surface 55, thus inhibiting build-up of heat and initiation of thermal cracks. The improvement in thermal conductivity may be obtained with no sacrifice in fracture toughness or abrasion/erosion resistance in the cutting portion 51. Other embodiments of articles according to the present invention, for example, other cutting inserts, tools, rolling mill rolls, and seal rings, may benefit in a similar manner from the design principles described herein.

Cutting inserts according to a first example can be made by first fabricating an insert with a central blind hole or recess in a body portion of the insert and disposing a thermally conductive metal or metallic alloy heat sink material in the recess to provide a heat sink portion. In certain embodiments, the thermally conductive heat sink material may be disposed in the recess in the body portion by heating the material to melt the material, and then pouring the molten material into the recess and allowing the material to cool to a solid form. Alternatively, the heat sink material may be disposed in the recess as a solid plug, or may be disposed in the recess as a powder. A solid heat sink material may be secured in the recess (i.e., mechanically attached) by shrink fitting and/or press fitting. In addition, a thermally conductive metal or metallic alloy in powder form could be placed in the recess and then tamped in place so as to densely pack and thereby mechanically attach the heat sink material in the recess. FIG. 5A, discussed above, schematically depicts an embodiment that may be made by disposing a molten or powdered heat sink material in a recess in a base portion of the insert. Also, subsequent to adding the powdered heat sink material to the recess, a solid plug may be press fit or otherwise mechanically attached in the recess, such that the powdered heat sink material is mechanically attached within a void in the body portion. The solid plug may also comprise a heat sink material such that the solid plug and the powder secured within the void in the body portion by the solid plug constitute the heat sink portion. Securing the solid plug in the recess also may act to further tamp or compact the powdered heat sink material in the recess, which may improve the thermal conductivity of the powder and, more generally, the heat sink portion. In an alternative design shown in FIG. 5B, a cutting insert according to the present invention may comprise more than one heat sink portion disposed in a body portion of the insert.

FIG. 6 illustrates another embodiment of a cutting insert for an earth boring bit according to the present invention. The cutting insert 60 comprises a dome-shaped cutting portion 61 and a base or body portion 62. While the cutting portion 61 consists of a conventional fully-dense cemented carbide material, the base portion 62 consists of a cemented carbide with interconnected porosity. The porosity in the base region is infiltrated with a heat sink material that may be a highly thermally conductive metal or metallic alloy. As discussed herein, a suitable thermally conductive metal or metallic alloy any such material with a thermal conductivity greater than that of the cemented carbide. Examples of suitable heat sink materials include, but are not limited to, copper, aluminum, silver, gold, silicon carbide, aluminum nitride, boron nitride, aluminum silicon carbide, beryllium oxide, silicon-silicon carbide, aluminum silicon carbide, copper tungsten alloys, copper molybdenum carbides, carbon, diamond, and combinations thereof. The base portion 62 can be expected to have a significantly higher thermal conductivity than the cutting portion 61, and hence, will act as heat sink similar to the centrally-disposed heat sink portion in the embodiment depicted in FIG. 5A, discussed above. In the body portion of such an embodiment, the hard particles of the cemented carbide form a dispersed first phase. The binder of the cemented carbide forms a first continuous phase, wherein the hard particles are dispersed within the first continuous phase. The heat sink portion forms a second continuous phase.

Methods of making an article with an infiltrated heat sink portion are described herein. A portion of a mold may be filled with a cemented carbide powder blend including a fugitive material. A fugitive material is a relatively low melting point material included in powder metal blends and which is removed from the powder compact by heating, thereby providing interconnected porosity in the compact or sintered material. Fugitive materials are known in the powder metal art and include, but are not limited to, wax particles and particulate polymers such as polyethylene and polypropylene. The powder blend may be consolidated, forming a green compact, and the green compact is subsequently sintered. During the sintering process (or during some other heating process before sintering), the fugitive material is removed by one of melting, burning, and evaporation, thereby providing a series of interconnected voids. The interconnected porosity is infiltrated with a heat sink material by any infiltration method known in the art. For example, the article can be submerged in a molten bath of heat sink material. In the alternative, the article may be contacted with a mass of the heat sink material and heated to a temperature above the melting temperature of the heat sink material.

Alternative embodiments of articles including an heat sink material infiltrated into interconnected porosity may be formed by first filling a portion of a mold with a first cemented carbide powder. At least portion of the remainder of the void is filled with a second cemented carbide powder comprising a fugitive material. The powders are consolidated in the mold to form a unitary green body with two regions. The green body is sintered, thereby removing the fugitive material and resulting in a cemented carbide article having a first region of substantially fully dense cemented carbide and a second region of cemented carbide including interconnected porosity. The second region is infiltrated with a heat sink material.

Any of the articles constructed according to the present invention may comprise hybrid cemented carbides in, for example, the working portion and/or the body portion. For example, embodiments of cutting inserts and other articles according to the present invention may comprise hybrid cemented carbides, such as, but not limited to, the hybrid cemented carbides described in co-pending U.S. patent application Ser. No. 10/735,379, which is hereby incorporated herein by reference. Generally, hybrid cemented carbide is a material comprising particles of at least one cemented carbide grade dispersed throughout a second cemented carbide continuous phase, thereby forming a composite of cemented carbides. The hybrid cemented carbides of U.S. patent application Ser. No. 10/735,379, for example, have low contiguity ratios and improved properties relative to other hybrid cemented carbides. Preferably, the contiguity ratio of the dispersed phase of the hybrid cemented carbide may be less than or equal to 0.48. Also, a hybrid cemented carbide composite of the present invention preferably has a dispersed phase with a hardness greater than the hardness of the continuous phase. For example, in certain embodiments of the hybrid cemented carbides used in one or more portions of cutting inserts and other articles according to the present invention, the hardness of the dispersed phase is preferably greater than or equal to 88 HRA and less than or equal to 95 HRA, and the hardness of the continuous phase is greater than or equal to 78 and less than or equal to 91 HRA.

Additional embodiments of cutting inserts and other articles according to the present invention may include hybrid cemented carbide composites comprising a first cemented carbide dispersed phase and a second cemented carbide continuous phase, wherein the volume fraction of the first cemented dispersed phase is less than 50 volume percent and the contiguity ratio of the dispersed phase is less than or equal to 1.5 times the volume fraction of the dispersed phase in the composite material.

The manufacturing process for articles of cemented carbide typically comprises blending or mixing a powdered metal comprising the hard transition metal carbide particles and a powdered metal comprising the binder to form a powder blend. The powder blend may be consolidated or pressed to form a green compact. The green compact is then sintered to form the article or a portion of the article having a solid monolithic construction. As used herein, an article or a region of an article has a monolithic construction if it is composed of a material, such as, for example, a cemented carbide material, having substantially the same characteristics at any working volume within the article or region. Subsequent to sintering, the article may be appropriately machined to form the desired shape or other features of the particular geometry of the article. For example, the powder blend may be consolidated by mechanically or isostatically compressing the powder blend to form the green compact. The green compact is subsequently sintered to further densify the compact and to form an autogenous bond between the regions or portions of the article. Preferably, the compact is over pressure sintered at a pressure of 300-2000 psi and at a temperature of 1350-1500° C.

Embodiments of the present invention include methods of producing cutting inserts for drilling bits or earth boring bits. Such methods, however, also may be adapted for forming any of the articles according to the present invention, including, for example, cutting tools, rotary tools, rotary tool inserts, drills, knifes, slitters, rolling mill rolls, and seal rings. One such method includes placing a cemented carbide powder blend into a first region of a void of a mold. A solid heat sink material, such as one or more solid pieces of the heat sink material, may be placed into a second region of the void of the mold. Depending on the number of regions of cemented carbide to be included in the cutting insert along with the heat sink material, the mold may be partitioned into additional regions in which additional powders may be disposed. For example, the mold may be segregated into regions by placing one or more physical partitions in the void of the mold to define the several regions, or by merely filling the portions of the mold without providing a partition. The powders are chosen to achieve the desired properties of the corresponding portions of the cutting insert, as described herein. The powders and the solid heat sink material within the mold are then mechanically or isostatically compressed at the same time to densify the powders and heat sink material solids together to form a green compact of consolidated powder and heat sink material. The green compact may then be sintered to densify the consolidated powders originally added to the mold. In embodiments according to the present invention wherein a cemented carbide powder and a heat sink material are heated while in contact with one another so as to sinter the cemented carbide powder, however, the heat sink material must have a melting temperature that is higher than the sintering temperature. In particular, with respect to heat sink materials described herein having melting temperatures less than conventional cemented carbide powder sintering temperatures (for example, copper, aluminum, silver, and gold), these heat sink materials would not wet and form a metallurgical bond with a cemented carbide formed by co-sintering the cemented carbide powder in contact with the powdered heat sink material.

The heat sink material forms or comprises a heat sink portion that contacts or otherwise thermally communicates with the working portion of the insert. The foregoing method of preparing a sintered compact including a heat sink portion provides a cutting insert that may be of any shape and have any other physical geometric features. Particularly advantageous cutting insert shapes and features formed in the methods according to the present invention will be known to those of ordinary skill in the art of manufacturing cutting inserts.

In certain of the methods according to the present invention, the cemented carbide powder is consolidated in the mold to form a green compact, and the green compact is sintered before the heat sink material is added to the article.

In other embodiments, the cemented carbide powder is added to a mold and consolidated to form a first green compact. The heat sink material is subsequently added to the first green compact, and the combined materials are consolidated. The second green compact is subsequently sintered to form the article. The article includes a working portion comprising the cemented carbide formed during sintering of the cemented carbide powder, and a heat sink portion comprising the heat sink material. Considering the nature of the heat sink materials herein, however, a metallurgical bond would not form between the working portion and the heat sink portion during heating.

A further embodiment of the method of the present invention comprises consolidating a cemented carbide in a mold to form a first green compact comprising a recess. The recess may then be filled with a heat sink metal. The first green compact may be sintered before addition of the heat sink material. The first green compact may also be sintered after addition of the heat sink material if the heat sink material is added in solid form and has a melting temperature greater than the sintering temperature. If desired, the first green compact may be presintered up to a temperature of about 1200° C. to provide strength to the green compact prior to addition of the heat sink material. In certain embodiments in which the heat sink material is a solid, the solid may be secured in the recess by shrink-fitting or press-fitting the solid on the recess.

In certain embodiments of a method of making an article according to the present invention, a sintered body is prepared comprising cemented carbide, and a heat sink material is disposed within and mechanically attached to the sintered body. The heat sink material has a thermal conductivity greater than the thermal conductivity of the cemented carbide. The sintered body may comprise a recess, and adding the heat sink material may comprise disposing the heat sink material in the recess. The heat sink material may be a solid, a powder, a liquid, or combinations of any thereof. Solids may be added to a recess by, for example, press fitting or shrink fitting, thereby forming a mechanical bond between the solid heat sink material and the recess. In other embodiments, a powdered heat sink material is disposed in the recess. The powder may be compacted in the recess. Also, in certain embodiments the powder is compacted and secured within the recess by disposing a solid plug in the recess to form a mechanical seal within the recess subsequent to adding the powdered heat sink material.

Such embodiments of the method of the present invention provide the cutting insert designer increased flexibility in design of the different shapes of each portion for particular applications. The green compact may be designed in any desired shape from any desired cemented carbide material.

One skilled in the art would understand the process parameters required for consolidation and sintering to form cemented carbide cutting inserts and other articles. Such parameters may be used in the methods of the present invention. For example, sintering of cemented carbide powders used in forming cutting inserts and other articles according to the present invention may be performed at a temperature suitable to densify the article, such as at temperatures up to 1500° C.

It is to be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects of the invention that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although embodiments of the present invention have been described, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US150943631 Oct 192123 Sep 1924Louis MarxTop
US15302938 May 192317 Mar 1925Geometric Tool CoRotary collapsing tap
US180813819 Jan 19282 Jun 1931Nat Acme CoCollapsible tap
US181180225 Apr 192723 Jun 1931Landis Machine CoCollapsible tap
US191229816 Dec 193030 May 1933Landis Machine CoCollapsible tap
US205402813 Sep 19348 Sep 1936William L BenninghoffMachine for cutting threads
US209350730 Jul 193621 Sep 1937Cons Machine Tool CorpTap structure
US20937427 May 193421 Sep 1937Staples Evans MCircular cutting tool
US20939867 Oct 193621 Sep 1937Evans M StaplesCircular cutting tool
US224084013 Oct 19396 May 1941Fischer Gordon HTap construction
US224623726 Dec 193917 Jun 1941William L BenninghoffApparatus for cutting threads
US22832803 Apr 194019 May 1942Landis Machine CoCollapsible tap
US229920718 Feb 194120 Oct 1942Bevil CorpMethod of making cutting tools
US23518279 Nov 194220 Jun 1944Mcallister Joseph SCutting tool
US24229943 Jan 194424 Jun 1947Carboloy Company IncTwist drill
US281995816 Aug 195514 Jan 1958Mallory Sharon Titanium CorpTitanium base alloys
US281995919 Jun 195614 Jan 1958Mallory Sharon Titanium CorpTitanium base vanadium-iron-aluminum alloys
US290665423 Sep 195429 Sep 1959Stanley AbkowitzHeat treated titanium-aluminumvanadium alloy
US29545707 Oct 19574 Oct 1960Couch AceHolder for plural thread chasing tools including tool clamping block with lubrication passageway
US304164124 Sep 19593 Jul 1962Nat Acme CoThreading machine with collapsible tap having means to permit replacement of cutter bits
US309385030 Oct 195918 Jun 1963United States Steel CorpThread chasers having the last tooth free of flank contact rearwardly of the thread crest cut thereby
US336888112 Apr 196513 Feb 1968Nuclear Metals Division Of TexTitanium bi-alloy composites and manufacture thereof
US347192116 Nov 196614 Oct 1969Shell Oil CoMethod of connecting a steel blank to a tungsten bit body
US348229528 Nov 19679 Dec 1969Wickman Wimet LtdTools and tool tips of sintered hard metal
US34909014 Dec 196720 Jan 1970Fujikoshi KkMethod of producing a titanium carbide-containing hard metallic composition of high toughness
US35818358 May 19691 Jun 1971Stebley Frank EInsert for drill bit and manufacture thereof
US362988722 Dec 196928 Dec 1971Pipe Machinery Co TheCarbide thread chaser set
US366005023 Jun 19692 May 1972Du PontHeterogeneous cobalt-bonded tungsten carbide
US375787924 Aug 197211 Sep 1973Christensen Diamond Prod CoDrill bits and methods of producing drill bits
US376288223 Jun 19712 Oct 1973Di Coat CorpWear resistant diamond coating and method of application
US37766557 Sep 19714 Dec 1973Pipe Machinery CoCarbide thread chaser set and method of cutting threads therewith
US378284820 Nov 19721 Jan 1974J PfeiferCombination expandable cutting and seating tool
US380627020 Mar 197223 Apr 1974W TannerDrill for drilling deep holes
US381254814 Dec 197228 May 1974Pipe Machining CoTool head with differential motion recede mechanism
US38895163 Dec 197317 Jun 1975Colt Ind Operating CorpHardening coating for thread rolling dies
US393629515 Feb 19743 Feb 1976Koppers Company, Inc.Bearing members having coated wear surfaces
US394295431 Dec 19709 Mar 1976Deutsche Edelstahlwerke AktiengesellschaftSintering steel-bonded carbide hard alloy
US39805496 Jan 197514 Sep 1976Di-Coat CorporationMethod of coating form wheels with hard particles
US398785915 May 197526 Oct 1976Dresser Industries, Inc.Unitized rotary rock bit
US400902721 Nov 197422 Feb 1977Jury Vladimirovich NaidichAlloy for metallization and brazing of abrasive materials
US401748020 Aug 197412 Apr 1977Permanence CorporationHigh density composite structure of hard metallic material in a matrix
US404782831 Mar 197613 Sep 1977Makely Joseph ECore drill
US409470910 Feb 197713 Jun 1978Kelsey-Hayes CompanyMethod of forming and subsequently heat treating articles of near net shaped from powder metal
US409718010 Feb 197727 Jun 1978Trw Inc.Chaser cutting apparatus
US40972755 May 197627 Jun 1978Erich HorvathCemented carbide metal alloy containing auxiliary metal, and process for its manufacture
US410504915 Dec 19768 Aug 1978Texaco Exploration Canada Ltd.Abrasive resistant choke
US410638224 May 197715 Aug 1978Ernst SaljeCircular saw tool
US412665225 Feb 197721 Nov 1978Toyo Boseki Kabushiki KaishaProcess for preparation of a metal carbide-containing molded product
US41281369 Dec 19775 Dec 1978Lamage LimitedDrill bit
US417049914 Sep 19789 Oct 1979The Regents Of The University Of CaliforniaMethod of making high strength, tough alloy steel
US418150517 Apr 19781 Jan 1980General Electric CompanyMethod for the work-hardening of diamonds and product thereof
US419823320 Apr 197815 Apr 1980Thyssen Edelstahlwerke AgMethod for the manufacture of tools, machines or parts thereof by composite sintering
US422127018 Dec 19789 Sep 1980Smith International, Inc.Drag bit
US42296381 Apr 197521 Oct 1980Dresser Industries, Inc.Unitized rotary rock bit
US423372030 Nov 197818 Nov 1980Kelsey-Hayes CompanyMethod of forming and ultrasonic testing articles of near net shape from powder metal
US425516522 Dec 197810 Mar 1981General Electric CompanyComposite compact of interleaved polycrystalline particles and cemented carbide masses
US427095226 Jun 19782 Jun 1981Yoshinobu KobayashiProcess for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
US427678817 Mar 19787 Jul 1981Skf Industrial Trading & Development Co. B.V.Process for the manufacture of a drill head provided with hard, wear-resistant elements
US427710622 Oct 19797 Jul 1981Syndrill Carbide Diamond CompanySelf renewing working tip mining pick
US42771081 May 19807 Jul 1981Reed Tool CompanyHard surfacing for oil well tools
US430613926 Dec 197915 Dec 1981Ishikawajima-Harima Jukogyo Kabushiki KaishaMethod for welding hard metal
US431149022 Dec 198019 Jan 1982General Electric CompanyDiamond and cubic boron nitride abrasive compacts using size selective abrasive particle layers
US432599422 Dec 198020 Apr 1982Ebara CorporationCoating metal for preventing the crevice corrosion of austenitic stainless steel and method of preventing crevice corrosion using such metal
US432715612 May 198027 Apr 1982Minnesota Mining And Manufacturing CompanyInfiltrated powdered metal composite article
US433174121 May 197925 May 1982The International Nickel Co., Inc.Nickel-base hard facing alloy
US43403271 Jul 198020 Jul 1982Gulf & Western Manufacturing Co.Tool support and drilling tool
US434155730 Jul 198027 Jul 1982Kelsey-Hayes CompanyMethod of hot consolidating powder with a recyclable container material
US435140113 Jun 198028 Sep 1982Christensen, Inc.Earth-boring drill bits
US437679328 Aug 198115 Mar 1983Metallurgical Industries, Inc.Process for forming a hardfacing surface including particulate refractory metal
US438995225 Jun 198128 Jun 1983Fritz Gegauf Aktiengesellschaft Bernina-MachmaschinenfabrikNeedle bar operated trimmer
US439632129 Jul 19812 Aug 1983Holmes Horace DTapping tool for making vibration resistant prevailing torque fastener
US439895210 Sep 198016 Aug 1983Reed Rock Bit CompanyMethods of manufacturing gradient composite metallic structures
US442364630 Mar 19813 Jan 1984N.C. Securities Holding, Inc.Process for producing a rotary drilling bit
US447829730 Sep 198223 Oct 1984Strata Bit CorporationDrill bit having cutting elements with heat removal cores
US449735823 Nov 19825 Feb 1985Werner & PfleidererProcess for the manufacture of a steel body with a borehole protected against abrasion
US449904823 Feb 198312 Feb 1985Metal Alloys, Inc.Method of consolidating a metallic body
US449979523 Sep 198319 Feb 1985Strata Bit CorporationMethod of drill bit manufacture
US452088220 Nov 19804 Jun 1985Skf Industrial Trading And Development Co., B.V.Drill head
US452674812 Jul 19822 Jul 1985Kelsey-Hayes CompanyHot consolidation of powder metal-floating shaping inserts
US454710421 Jul 198315 Oct 1985Holmes Horace DTap
US454733719 Jan 198415 Oct 1985Kelsey-Hayes CompanyPressure-transmitting medium and method for utilizing same to densify material
US455053229 Nov 19835 Nov 1985Tungsten Industries, Inc.Automated machining method
US455223229 Jun 198412 Nov 1985Spiral Drilling Systems, Inc.Drill-bit with full offset cutter bodies
US455361517 Feb 198319 Nov 1985Nl Industries, Inc.Rotary drilling bits
US45541301 Oct 198419 Nov 1985Cdp, Ltd.Consolidation of a part from separate metallic components
US45629906 Jun 19837 Jan 1986Rose Robert HDie venting apparatus in molding of thermoset plastic compounds
US45740116 Mar 19844 Mar 1986Stellram S.A.Sintered alloy based on carbides
US457971325 Apr 19851 Apr 1986Ultra-Temp CorporationMethod for carbon control of carbide preforms
US458717423 Dec 19836 May 1986Mitsubishi Kinzoku Kabushiki KaishaTungsten cermet
US459268520 Jan 19843 Jun 1986Beere Richard FDeburring machine
US459669418 Jan 198524 Jun 1986Kelsey-Hayes CompanyMethod for hot consolidating materials
US459773016 Jan 19851 Jul 1986Kelsey-Hayes CompanyAssembly for hot consolidating materials
US460410629 Apr 19855 Aug 1986Smith International Inc.Composite polycrystalline diamond compact
US460478119 Feb 198512 Aug 1986Combustion Engineering, Inc.Highly abrasive resistant material and grinding roll surfaced therewith
US460534320 Sep 198412 Aug 1986General Electric CompanySintered polycrystalline diamond compact construction with integral heat sink
US460957710 Jan 19852 Sep 1986Armco Inc.Method of producing weld overlay of austenitic stainless steel
US463069315 Apr 198523 Dec 1986Goodfellow Robert DRotary cutter assembly
US464200322 Aug 198410 Feb 1987Mitsubishi Kinzoku Kabushiki KaishaRotary cutting tool of cemented carbide
US464685724 Oct 19853 Mar 1987Reed Tool CompanyMeans to secure cutting elements on drag type drill bits
US464908621 Feb 198510 Mar 1987The United States Of America As Represented By The United States Department Of EnergyLow friction and galling resistant coatings and processes for coating
US46560023 Oct 19857 Apr 1987Roc-Tec, Inc.Self-sealing fluid die
US466246129 Jul 19815 May 1987Garrett William RFixed-contact stabilizer
US466775623 May 198626 May 1987Hughes Tool Company-UsaMatrix bit with extended blades
US46860809 Dec 198511 Aug 1987Sumitomo Electric Industries, Ltd.Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same
US468615611 Oct 198511 Aug 1987Gte Service CorporationCoated cemented carbide cutting tool
US469491922 Jan 198622 Sep 1987Nl Petroleum Products LimitedRotary drill bits with nozzle former and method of manufacturing
US470854219 Apr 198524 Nov 1987Greenfield Industries, Inc.Threading tap
US47224051 Oct 19862 Feb 1988Dresser Industries, Inc.Wear compensating rock bit insert
US472978921 May 19878 Mar 1988Toyo Kohan Co., Ltd.Process of manufacturing an extruder screw for injection molding machines or extrusion machines and product thereof
US473433924 Jun 198529 Mar 1988Santrade LimitedBody with superhard coating
US473565629 Dec 19865 Apr 1988United Technologies CorporationAbrasive material, especially for turbine blade tips
US474351525 Oct 198510 May 1988Santrade LimitedCemented carbide body used preferably for rock drilling and mineral cutting
US47449438 Dec 198617 May 1988The Dow Chemical CompanyProcess for the densification of material preforms
US474905324 Feb 19867 Jun 1988Baker International CorporationDrill bit having a thrust bearing heat sink
US475215910 Mar 198621 Jun 1988Howlett Machine WorksTapered thread forming apparatus and method
US475216412 Dec 198621 Jun 1988Teledyne Industries, Inc.Thread cutting tools
US476184427 Jan 19879 Aug 1988Turchan Manuel CCombined hole making and threading tool
US477944030 Oct 198625 Oct 1988Fried. Krupp Gesellschaft Mit Beschraenkter HaftungExtrusion tool for producing hard-metal or ceramic drill blank
US478027424 Oct 198625 Oct 1988Reed Tool Company, Ltd.Manufacture of rotary drill bits
US480404930 Nov 198414 Feb 1989Nl Petroleum Products LimitedRotary drill bits
US480990326 Nov 19867 Mar 1989United States Of America As Represented By The Secretary Of The Air ForceMethod to produce metal matrix composite articles from rich metastable-beta titanium alloys
US481382314 Jan 198721 Mar 1989Fried. Krupp Gesellschaft Mit Beschrankter HaftungDrilling tool formed of a core-and-casing assembly
US48316745 Feb 198823 May 1989Sandvik AbDrilling and threading tool and method for drilling and threading
US483836630 Aug 198813 Jun 1989Jones A RaymondDrill bit
US486135018 Aug 198829 Aug 1989Cornelius PhaalTool component
US48713773 Feb 19883 Oct 1989Frushour Robert HComposite abrasive compact having high thermal stability and transverse rupture strength
US488143123 May 198821 Nov 1989Fried. Krupp Gesellscahft mit beschrankter HaftungMethod of making a sintered body having an internal channel
US488447731 Mar 19885 Dec 1989Eastman Christensen CompanyRotary drill bit with abrasion and erosion resistant facing
US488901729 Apr 198826 Dec 1989Reed Tool Co., Ltd.Rotary drill bit for use in drilling holes in subsurface earth formations
US489983829 Nov 198813 Feb 1990Hughes Tool CompanyEarth boring bit with convergent cutter bearing
US491901314 Sep 198824 Apr 1990Eastman Christensen CompanyPreformed elements for a rotary drill bit
US49235127 Apr 19898 May 1990The Dow Chemical CompanyCobalt-bound tungsten carbide metal matrix composites and cutting tools formed therefrom
US493404010 Jul 198619 Jun 1990Turchan Manuel CSpindle driver for machine tools
US494319118 Aug 198924 Jul 1990Schmitt M NorbertDrilling and thread-milling tool and method
US49560123 Oct 198811 Sep 1990Newcomer Products, Inc.Dispersion alloyed hard metal composites
US496834828 Nov 19896 Nov 1990Dynamet Technology, Inc.Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding
US497148525 Jan 199020 Nov 1990Sumitomo Electric Industries, Ltd.Cemented carbide drill
US49916708 Nov 198912 Feb 1991Reed Tool Company, Ltd.Rotary drill bit for use in drilling holes in subsurface earth formations
US50002735 Jan 199019 Mar 1991Norton CompanyLow melting point copper-manganese-zinc alloy for infiltration binder in matrix body rock drill bits
US501094510 Nov 198830 Apr 1991Lanxide Technology Company, LpInvestment casting technique for the formation of metal matrix composite bodies and products produced thereby
US503059822 Jun 19909 Jul 1991Gte Products CorporationSilicon aluminum oxynitride material containing boron nitride
US503235221 Sep 199016 Jul 1991Ceracon, Inc.Composite body formation of consolidated powder metal part
US504126121 Dec 199020 Aug 1991Gte Laboratories IncorporatedMethod for manufacturing ceramic-metal articles
US504945010 May 199017 Sep 1991The Perkin-Elmer CorporationAluminum and boron nitride thermal spray powder
US506786013 Aug 199026 Nov 1991Tipton Manufacturing CorporationApparatus for removing burrs from workpieces
US507531517 May 199024 Dec 1991Mcneilab, Inc.Antipsychotic hexahydro-2H-indeno[1,2-c]pyridine derivatives
US507531620 Mar 199024 Dec 1991Ciba-Geigy CorporationPest control compositions
US508053821 Nov 199014 Jan 1992Schmitt M NorbertMethod of making a threaded hole
US50904914 Mar 199125 Feb 1992Eastman Christensen CompanyEarth boring drill bit with matrix displacing material
US509241229 Nov 19903 Mar 1992Baker Hughes IncorporatedEarth boring bit with recessed roller bearing
US50945718 Apr 198810 Mar 1992Ekerot Sven TorbjoernDrill
US509646513 Dec 198917 Mar 1992Norton CompanyDiamond metal composite cutter and method for making same
US50982322 Dec 198724 Mar 1992Stellram LimitedThread cutting tool
US511068731 Oct 19905 May 1992Kabushiki Kaisha Kobe Seiko ShoComposite member and method for making the same
US511216220 Dec 199012 May 1992Advent Tool And Manufacturing, Inc.Thread milling cutter assembly
US511216822 Aug 199112 May 1992Emuge-Werk Richard Glimpel Fabrik Fur Prazisionswerkzeuge Vormals Moschkau & GlimpelTap with tapered thread
US51166593 Dec 199026 May 1992Schwarzkopf Development CorporationExtrusion process and tool for the production of a blank having internal bores
US5126206 *6 Sep 199030 Jun 1992Diamonex, IncorporatedDiamond-on-a-substrate for electronic applications
US512777622 Aug 19917 Jul 1992Emuge-Werk Richard Glimpel Fabrik Fur Prazisionswerkzeuge Vormals Moschkau & GlimpelTap with relief
US513580113 Jun 19884 Aug 1992Sandvik AbDiffusion barrier coating material
US51618985 Jul 199110 Nov 1992Camco International Inc.Aluminide coated bearing elements for roller cutter drill bits
US517470011 Jul 199029 Dec 1992Commissariat A L'energie AtomiqueDevice for contouring blocking burrs for a deburring tool
US517977226 Apr 199119 Jan 1993Plakoma Planungen Und Konstruktionen Von Maschinellen Einrichtungen GmbhApparatus for removing burrs from metallic workpieces
US518673921 Feb 199016 Feb 1993Sumitomo Electric Industries, Ltd.Cermet alloy containing nitrogen
US520351320 Feb 199120 Apr 1993Kloeckner-Humboldt-Deutz AktiengesellschaftWear-resistant surface armoring for the rollers of roller machines, particularly high-pressure roller presses
US520393214 Mar 199120 Apr 1993Hitachi, Ltd.Fe-base austenitic steel having single crystalline austenitic phase, method for producing of same and usage of same
US521708114 Jun 19918 Jun 1993Sandvik AbTools for cutting rock drilling
US523252217 Oct 19913 Aug 1993The Dow Chemical CompanyRapid omnidirectional compaction process for producing metal nitride, carbide, or carbonitride coating on ceramic substrate
US525035517 Dec 19915 Oct 1993Kennametal Inc.Arc hardfacing rod
US526641515 Jun 199230 Nov 1993Lanxide Technology Company, LpCeramic articles with a modified metal-containing component and methods of making same
US527338031 Jul 199228 Dec 1993Musacchia James EDrill bit point
US528126028 Feb 199225 Jan 1994Baker Hughes IncorporatedHigh-strength tungsten carbide material for use in earth-boring bits
US52866857 Dec 199215 Feb 1994Savoie RefractairesRefractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
US530584014 Sep 199226 Apr 1994Smith International, Inc.Rock bit with cobalt alloy cemented tungsten carbide inserts
US531195823 Sep 199217 May 1994Baker Hughes IncorporatedEarth-boring bit with an advantageous cutting structure
US532619621 Jun 19935 Jul 1994Noll Robert RPilot drill bit
US533352018 May 19932 Aug 1994Sandvik AbMethod of making a cemented carbide body for tools and wear parts
US533573814 Jun 19919 Aug 1994Sandvik AbTools for percussive and rotary crushing rock drilling provided with a diamond layer
US53381359 Apr 199216 Aug 1994Sumitomo Electric Industries, Ltd.Drill and lock screw employed for fastening the same
US534631618 Mar 199313 Sep 1994Hitachi, Ltd.Bearing unit, drainage pump and hydraulic turbine each incorporating the bearing unit
US534880618 Sep 199220 Sep 1994Hitachi Metals, Ltd.Cermet alloy and process for its production
US535415523 Nov 199311 Oct 1994Storage Technology CorporationDrill and reamer for composite material
US53597724 Jun 19931 Nov 1994Sandvik AbMethod for manufacture of a roll ring comprising cemented carbide and cast iron
US537390726 Jan 199320 Dec 1994Dresser Industries, Inc.Method and apparatus for manufacturing and inspecting the quality of a matrix body drill bit
US537632916 Nov 199227 Dec 1994Gte Products CorporationMethod of making composite orifice for melting furnace
US541343818 Mar 19919 May 1995Turchan; Manuel C.Combined hole making and threading tool
US542389916 Jul 199313 Jun 1995Newcomer Products, Inc.Dispersion alloyed hard metal composites and method for producing same
US542945928 May 19914 Jul 1995Manuel C. TurchanMethod of and apparatus for thread mill drilling
US543328016 Mar 199418 Jul 1995Baker Hughes IncorporatedFabrication method for rotary bits and bit components and bits and components produced thereby
US543810825 Jan 19941 Aug 1995Mitsubishi Gas Chemical Company, Inc.Graft precursor and process for producing grafted aromatic polycarbonate resin
US543885817 Jun 19928 Aug 1995Gottlieb Guhring KgExtrusion tool for producing a hard metal rod or a ceramic rod with twisted internal boreholes
US54433372 Jul 199322 Aug 1995Katayama; IchiroSintered diamond drill bits and method of making
US544754917 Feb 19935 Sep 1995Mitsubishi Materials CorporationHard alloy
US545277131 Mar 199426 Sep 1995Dresser Industries, Inc.Rotary drill bit with improved cutter and seal protection
US54676695 Apr 199521 Nov 1995American National Carbide CompanyCutting tool insert
US547440725 Jan 199512 Dec 1995Stellram GmbhDrilling tool for metallic materials
US547999719 Aug 19942 Jan 1996Baker Hughes IncorporatedEarth-boring bit with improved cutting structure
US54802723 May 19942 Jan 1996Power House Tool, Inc.Chasing tap with replaceable chasers
US548267020 May 19949 Jan 1996Hong; JoonpyoCemented carbide
US54844687 Feb 199416 Jan 1996Sandvik AbCemented carbide with binder phase enriched surface zone and enhanced edge toughness behavior and process for making same
US54876267 Sep 199430 Jan 1996Sandvik AbThreading tap
US549218630 Sep 199420 Feb 1996Baker Hughes IncorporatedSteel tooth bit with a bi-metallic gage hardfacing
US549613712 Aug 19945 Mar 1996Iscar Ltd.Cutting insert
US549814230 May 199512 Mar 1996Kudu Industries, Inc.Hardfacing for progressing cavity pump rotors
US550574827 May 19949 Apr 1996Tank; KlausMethod of making an abrasive compact
US55060558 Jul 19949 Apr 1996Sulzer Metco (Us) Inc.Boron nitride and aluminum thermal spray powder
US551807722 Mar 199521 May 1996Dresser Industries, Inc.Rotary drill bit with improved cutter and seal protection
US552513412 Jan 199511 Jun 1996Kennametal Inc.Silicon nitride ceramic and cutting tool made thereof
US554100623 Dec 199430 Jul 1996Kennametal Inc.Method of making composite cermet articles and the articles
US554323526 Apr 19946 Aug 1996SintermetMultiple grade cemented carbide articles and a method of making the same
US55445509 May 199513 Aug 1996Baker Hughes IncorporatedFabrication method for rotary bits and bit components
US556023823 Nov 19941 Oct 1996The National Machinery CompanyThread rolling monitor
US55604407 Nov 19941 Oct 1996Baker Hughes IncorporatedBit for subterranean drilling fabricated from separately-formed major components
US55709785 Dec 19945 Nov 1996Rees; John X.High performance cutting tools
US558066620 Jan 19953 Dec 1996The Dow Chemical CompanyCemented ceramic article made from ultrafine solid solution powders, method of making same, and the material thereof
US558661226 Jan 199524 Dec 1996Baker Hughes IncorporatedRoller cone bit with positive and negative offset and smooth running configuration
US55907299 Dec 19947 Jan 1997Baker Hughes IncorporatedSuperhard cutting structures for earth boring with enhanced stiffness and heat transfer capabilities
US55934744 Aug 198814 Jan 1997Smith International, Inc.Composite cemented carbide
US560185714 Nov 199411 Feb 1997Konrad Friedrichs KgExtruder for extrusion manufacturing
US56030753 Mar 199511 Feb 1997Kennametal Inc.Corrosion resistant cermet wear parts
US560928628 Aug 199511 Mar 1997Anthon; Royce A.Brazing rod for depositing diamond coating metal substrate using gas or electric brazing techniques
US560944728 Sep 199411 Mar 1997Rogers Tool Works, Inc.Surface decarburization of a drill bit
US56112511 May 199518 Mar 1997Katayama; IchiroSintered diamond drill bits and method of making
US561226413 Nov 199518 Mar 1997The Dow Chemical CompanyMethods for making WC-containing bodies
US562883728 Sep 199413 May 1997Rogers Tool Works, Inc.Surface decarburization of a drill bit having a refined primary cutting edge
US563524717 Feb 19953 Jun 1997Seco Tools AbAlumina coated cemented carbide body
US56412516 Jun 199524 Jun 1997Cerasiv Gmbh Innovatives Keramik-EngineeringAll-ceramic drill bit
US564192122 Aug 199524 Jun 1997Dennis Tool CompanyLow temperature, low pressure, ductile, bonded cermet for enhanced abrasion and erosion performance
US566218315 Aug 19952 Sep 1997Smith International, Inc.High strength matrix material for PDC drag bits
US56654313 Sep 19919 Sep 1997Valenite Inc.Titanium carbonitride coated stratified substrate and cutting inserts made from the same
US566686431 Mar 199516 Sep 1997Tibbitts; Gordon A.Earth boring drill bit with shell supporting an external drilling surface
US567238225 May 199530 Sep 1997Sumitomo Electric Industries, Ltd.Composite powder particle, composite body and method of preparation
US56770426 Jun 199514 Oct 1997Kennametal Inc.Composite cermet articles and method of making
US567944523 Dec 199421 Oct 1997Kennametal Inc.Composite cermet articles and method of making
US56861192 Feb 199611 Nov 1997Kennametal Inc.Composite cermet articles and method of making
US569704221 Dec 19959 Dec 1997Kennametal Inc.Composite cermet articles and method of making
US56970466 Jun 19959 Dec 1997Kennametal Inc.Composite cermet articles and method of making
US56974627 Aug 199616 Dec 1997Baker Hughes Inc.Earth-boring bit having improved cutting structure
US57047368 Jun 19956 Jan 1998Giannetti; Enrico R.Dove-tail end mill having replaceable cutter inserts
US571203029 Nov 199527 Jan 1998Sumitomo Electric Industries Ltd.Sintered body insert for cutting and method of manufacturing the same
US571894817 Mar 199417 Feb 1998Sandvik AbCemented carbide body for rock drilling mineral cutting and highway engineering
US573278311 Jan 199631 Mar 1998Camco Drilling Group Limited Of HycalogIn or relating to rotary drill bits
US573307818 Jun 199631 Mar 1998Osg CorporationDrilling and threading tool
US573364923 Sep 199631 Mar 1998Kennametal Inc.Matrix for a hard composite
US573366418 Dec 199531 Mar 1998Kennametal Inc.Matrix for a hard composite
US575024715 Mar 199612 May 1998Kennametal, Inc.Coated cutting tool having an outer layer of TiC
US57531602 Oct 199519 May 1998Ngk Insulators, Ltd.Method for controlling firing shrinkage of ceramic green body
US575503320 Jul 199426 May 1998Maschinenfabrik Koppern Gmbh & Co. KgMethod of making a crushing roll
US575529812 Mar 199726 May 1998Dresser Industries, Inc.Hardfacing with coated diamond particles
US576284323 Dec 19949 Jun 1998Kennametal Inc.Method of making composite cermet articles
US576509519 Aug 19969 Jun 1998Smith International, Inc.Polycrystalline diamond bit manufacturing
US577659321 Dec 19957 Jul 1998Kennametal Inc.Composite cermet articles and method of making
US57783018 Jan 19967 Jul 1998Hong; JoonpyoCemented carbide
US57896866 Jun 19954 Aug 1998Kennametal Inc.Composite cermet articles and method of making
US579183329 Dec 199411 Aug 1998Kennametal Inc.Cutting insert having a chipbreaker for thin chips
US57924032 Feb 199611 Aug 1998Kennametal Inc.Method of molding green bodies
US580315220 May 19948 Sep 1998Warman International LimitedMicrostructurally refined multiphase castings
US580693421 Dec 199515 Sep 1998Kennametal Inc.Method of using composite cermet articles
US583025610 May 19963 Nov 1998Northrop; Ian ThomasCemented carbide
US585109426 Nov 199722 Dec 1998Seco Tools AbTool for chip removal
US585662620 Dec 19965 Jan 1999Sandvik AbCemented carbide body with increased wear resistance
US58636403 Jul 199626 Jan 1999Sandvik AbCoated cutting insert and method of manufacture thereof
US586557117 Jun 19972 Feb 1999Norton CompanyNon-metallic body cutting tools
US587368429 Mar 199723 Feb 1999Tool Flo Manufacturing, Inc.Thread mill having multiple thread cutters
US588038231 Jul 19979 Mar 1999Smith International, Inc.Double cemented carbide composites
US589085217 Mar 19986 Apr 1999Emerson Electric CompanyThread cutting die and method of manufacturing same
US589320412 Nov 199613 Apr 1999Dresser Industries, Inc.Production process for casting steel-bodied bits
US58978306 Dec 199627 Apr 1999Dynamet TechnologyP/M titanium composite casting
US589925728 Sep 19834 May 1999Societe Nationale D'etude Et De Construction De Moteurs D'aviationProcess for the fabrication of monocrystalline castings
US59476603 May 19967 Sep 1999Seco Tools AbTool for cutting machining
US59570062 Aug 199628 Sep 1999Baker Hughes IncorporatedFabrication method for rotary bits and bit components
US595775521 Nov 199728 Sep 1999Laflamme; RobertRemanufactured cutting insert and method of remanufacturing the same
US596377515 Sep 19975 Oct 1999Smith International, Inc.Pressure molded powder metal milled tooth rock bit cone
US596455520 Nov 199712 Oct 1999Seco Tools AbMilling tool and cutter head therefor
US59672493 Feb 199719 Oct 1999Baker Hughes IncorporatedSuperabrasive cutters with structure aligned to loading and method of drilling
US597167028 Aug 199526 Oct 1999Sandvik AbShaft tool with detachable top
US597670726 Sep 19962 Nov 1999Kennametal Inc.Cutting insert and method of making the same
US598895315 Sep 199723 Nov 1999Seco Tools AbTwo-piece rotary metal-cutting tool and method for interconnecting the pieces
US600790919 Jul 199628 Dec 1999Sandvik AbCVD-coated titanium based carbonitride cutting toll insert
US60128827 Jan 199711 Jan 2000Turchan; Manuel C.Combined hole making, threading, and chamfering tool with staggered thread cutting teeth
US602217527 Aug 19978 Feb 2000Kennametal Inc.Elongate rotary tool comprising a cermet having a Co-Ni-Fe binder
US60295443 Dec 199629 Feb 2000Katayama; IchiroSintered diamond drill bits and method of making
US605117118 May 199818 Apr 2000Ngk Insulators, Ltd.Method for controlling firing shrinkage of ceramic green body
US60633331 May 199816 May 2000Penn State Research FoundationMethod and apparatus for fabrication of cobalt alloy composite inserts
US60680703 Sep 199730 May 2000Baker Hughes IncorporatedDiamond enhanced bearing for earth-boring bit
US607351824 Sep 199613 Jun 2000Baker Hughes IncorporatedBit manufacturing method
US60769997 Jul 199720 Jun 2000Sandvik AktiebolagBoring bar
US608600326 May 199811 Jul 2000Maschinenfabrik Koppern Gmbh & Co. KgRoll press for crushing abrasive materials
US608698018 Dec 199711 Jul 2000Sandvik AbMetal working drill/endmill blank and its method of manufacture
US608912316 Apr 199818 Jul 2000Baker Hughes IncorporatedStructure for use in drilling a subterranean formation
US610937715 Jul 199729 Aug 2000Kennametal Inc.Rotatable cutting bit assembly with cutting inserts
US610967728 May 199829 Aug 2000Sez North America, Inc.Apparatus for handling and transporting plate like substrates
US61174933 Jun 199812 Sep 2000Northmonte Partners, L.P.Bearing with improved wear resistance and method for making same
US61352189 Mar 199924 Oct 2000Camco International Inc.Fixed cutter drill bits with thin, integrally formed wear and erosion resistant surfaces
US61489364 Feb 199921 Nov 2000Camco International (Uk) LimitedMethods of manufacturing rotary drill bits
US62005149 Feb 199913 Mar 2001Baker Hughes IncorporatedProcess of making a bit body and mold therefor
US620942017 Aug 19983 Apr 2001Baker Hughes IncorporatedMethod of manufacturing bits, bit components and other articles of manufacture
US621413424 Jul 199510 Apr 2001The United States Of America As Represented By The Secretary Of The Air ForceMethod to produce high temperature oxidation resistant metal matrix composites by fiber density grading
US621424710 Jun 199810 Apr 2001Tdy Industries, Inc.Substrate treatment method
US62142876 Apr 200010 Apr 2001Sandvik AbMethod of making a submicron cemented carbide with increased toughness
US621799221 May 199917 Apr 2001Kennametal Pc Inc.Coated cutting insert with a C porosity substrate having non-stratified surface binder enrichment
US622011718 Aug 199824 Apr 2001Baker Hughes IncorporatedMethods of high temperature infiltration of drill bits and infiltrating binder
US622718811 Jun 19988 May 2001Norton CompanyMethod for improving wear resistance of abrasive tools
US622813422 Apr 19988 May 20013M Innovative Properties CompanyExtruded alumina-based abrasive grit, abrasive products, and methods
US622813926 Apr 20008 May 2001Sandvik AbFine-grained WC-Co cemented carbide
US623426128 Jun 199922 May 2001Camco International (Uk) LimitedMethod of applying a wear-resistant layer to a surface of a downhole component
US624103616 Sep 19985 Jun 2001Baker Hughes IncorporatedReinforced abrasive-impregnated cutting elements, drill bits including same
US624827727 Oct 199719 Jun 2001Konrad Friedrichs KgContinuous extrusion process and device for rods made of a plastic raw material and provided with a spiral inner channel
US625465824 Feb 19993 Jul 2001Mitsubishi Materials CorporationCemented carbide cutting tool
US628736018 Sep 199811 Sep 2001Smith International, Inc.High-strength matrix body
US629043819 Feb 199918 Sep 2001August Beck Gmbh & Co.Reaming tool and process for its production
US62939866 Mar 199825 Sep 2001Widia GmbhHard metal or cermet sintered body and method for the production thereof
US629965811 Dec 19979 Oct 2001Sumitomo Electric Industries, Ltd.Cemented carbide, manufacturing method thereof and cemented carbide tool
US630222413 May 199916 Oct 2001Halliburton Energy Services, Inc.Drag-bit drilling with multi-axial tooth inserts
US63265821 Jun 20004 Dec 2001Robert B. NorthBearing with improved wear resistance and method for making same
US634594123 Feb 200012 Feb 2002Ati Properties, Inc.Thread milling tool having helical flutes
US635377122 Jul 19965 Mar 2002Smith International, Inc.Rapid manufacturing of molds for forming drill bits
US637234613 May 199816 Apr 2002Enduraloy CorporationTough-coated hard powders and sintered articles thereof
US63749326 Apr 200023 Apr 2002William J. BradyHeat management drilling system and method
US637570611 Jan 200123 Apr 2002Smith International, Inc.Composition for binder material particularly for drill bit bodies
US63869549 Mar 200114 May 2002Tanoi Manufacturing Co., Ltd.Thread forming tap and threading method
US639471128 Mar 200028 May 2002Tri-Cel, Inc.Rotary cutting tool and holder therefor
US639510830 Apr 200128 May 2002Recherche Et Developpement Du Groupe Cockerill SambreFlat product, such as sheet, made of steel having a high yield strength and exhibiting good ductility and process for manufacturing this product
US640243930 Jun 200011 Jun 2002Seco Tools AbTool for chip removal machining
US642571613 Apr 200030 Jul 2002Harold D. CookHeavy metal burr tool
US645073930 Jun 200017 Sep 2002Seco Tools AbTool for chip removing machining and methods and apparatus for making the tool
US645389922 Nov 199924 Sep 2002Ultimate Abrasive Systems, L.L.C.Method for making a sintered article and products produced thereby
US64540253 Mar 200024 Sep 2002Vermeer Manufacturing CompanyApparatus for directional boring under mixed conditions
US64540284 Jan 200124 Sep 2002Camco International (U.K.) LimitedWear resistant drill bit
US645403025 Jan 199924 Sep 2002Baker Hughes IncorporatedDrill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same
US64584717 Dec 20001 Oct 2002Baker Hughes IncorporatedReinforced abrasive-impregnated cutting elements, drill bits including same and methods
US646140110 Aug 20008 Oct 2002Smith International, Inc.Composition for binder material particularly for drill bit bodies
US647442519 Jul 20005 Nov 2002Smith International, Inc.Asymmetric diamond impregnated drill bit
US647564718 Oct 20005 Nov 2002Surface Engineered Products CorporationProtective coating system for high temperature stainless steel
US649991729 Jun 200031 Dec 2002Seco Tools AbThread-milling cutter and a thread-milling insert
US649992022 Apr 199931 Dec 2002Tanoi Mfg. Co., Ltd.Tap
US650022624 Apr 200031 Dec 2002Dennis Tool CompanyMethod and apparatus for fabrication of cobalt alloy composite inserts
US650262330 Aug 20007 Jan 2003Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H.Process of making a metal matrix composite (MMC) component
US651126514 Dec 199928 Jan 2003Ati Properties, Inc.Composite rotary tool and tool fabrication method
US654112413 Nov 20011 Apr 2003Rhino Metals, Inc.Drill resistant hard plate
US654430830 Aug 20018 Apr 2003Camco International (Uk) LimitedHigh volume density polycrystalline diamond with working surfaces depleted of catalyzing material
US654699116 Aug 200115 Apr 2003Krauss-Maffei Kunststofftechnik GmbhDevice for manufacturing semi-finished products and molded articles of a metallic material
US655103516 Oct 200022 Apr 2003Seco Tools AbTool for rotary chip removal, a tool tip and a method for manufacturing a tool tip
US655454811 Aug 200029 Apr 2003Kennametal Inc.Chromium-containing cemented carbide body having a surface zone of binder enrichment
US656246220 Dec 200113 May 2003Camco International (Uk) LimitedHigh volume density polycrystalline diamond with working surfaces depleted of catalyzing material
US657618229 Mar 199610 Jun 2003Institut Fuer Neue Materialien Gemeinnuetzige GmbhProcess for producing shrinkage-matched ceramic composites
US65821262 Oct 200124 Jun 2003Northmonte Partners, LpBearing surface with improved wear resistance and method for making same
US65858648 Jun 20001 Jul 2003Surface Engineered Products CorporationCoating system for high temperature stainless steel
US65896401 Nov 20028 Jul 2003Nigel Dennis GriffinPolycrystalline diamond partially depleted of catalyzing material
US659946715 Oct 199929 Jul 2003Toyota Jidosha Kabushiki KaishaProcess for forging titanium-based material, process for producing engine valve, and engine valve
US66076939 Jun 200019 Aug 2003Kabushiki Kaisha Toyota Chuo KenkyushoTitanium alloy and method for producing the same
US660783515 Jun 200119 Aug 2003Smith International, Inc.Composite constructions with ordered microstructure
US662037520 Apr 199916 Sep 2003Klaus TankDiamond compact
US663752811 Apr 200128 Oct 2003Japan National Oil CorporationBit apparatus
US663860929 Oct 200128 Oct 2003Sandvik AktiebolagCoated inserts for rough milling
US664806830 Apr 199918 Nov 2003Smith International, Inc.One-trip milling system
US664968225 Jun 200118 Nov 2003Conforma Clad, IncProcess for making wear-resistant coatings
US665175716 May 200125 Nov 2003Smith International, Inc.Toughness optimized insert for rock and hammer bits
US665548125 Jun 20022 Dec 2003Baker Hughes IncorporatedMethods for fabricating drill bits, including assembling a bit crown and a bit body material and integrally securing the bit crown and bit body material to one another
US665588222 Aug 20012 Dec 2003Kennametal Inc.Twist drill having a sintered cemented carbide body, and like tools, and use thereof
US667686324 Sep 200113 Jan 2004Courtoy NvRotary tablet press and a method of using and cleaning the press
US668278022 May 200227 Jan 2004Bodycote Metallurgical Coatings LimitedProtective system for high temperature metal alloy products
US66858809 Nov 20013 Feb 2004Sandvik AktiebolagMultiple grade cemented carbide inserts for metal working and method of making the same
US66889884 Jun 200210 Feb 2004Balax, Inc.Looking thread cold forming tool
US669555124 Oct 200124 Feb 2004Sandvik AbRotatable tool having a replaceable cutting tip secured by a dovetail coupling
US670632711 Oct 200116 Mar 2004Sandvik AbMethod of making cemented carbide body
US67163884 Feb 20036 Apr 2004Seco Tools AbTool for rotary chip removal, a tool tip and a method for manufacturing a tool tip
US671907420 Mar 200213 Apr 2004Japan National Oil CorporationInsert chip of oil-drilling tricone bit, manufacturing method thereof and oil-drilling tricone bit
US672338920 Dec 200120 Apr 2004Toshiba Tungaloy Co., Ltd.Process for producing coated cemented carbide excellent in peel strength
US672595322 Apr 200227 Apr 2004Smith International, Inc.Drill bit having diamond impregnated inserts primary cutting structure
US67371781 Dec 200018 May 2004Sumitomo Electric Industries Ltd.Coated PCBN cutting tools
US67426084 Oct 20021 Jun 2004Henry W. MurdochRotary mine drilling bit for making blast holes
US674261130 May 20001 Jun 2004Baker Hughes IncorporatedLaminated and composite impregnated cutting structures for drill bits
US675600918 Dec 200229 Jun 2004Daewoo Heavy Industries & Machinery Ltd.Method of producing hardmetal-bonded metal component
US67645553 Dec 200120 Jul 2004Nisshin Steel Co., Ltd.High-strength austenitic stainless steel strip having excellent flatness and method of manufacturing same
US676687021 Aug 200227 Jul 2004Baker Hughes IncorporatedMechanically shaped hardfacing cutting/wear structures
US676750512 Jul 200127 Jul 2004Utron Inc.Dynamic consolidation of powders using a pulsed energy source
US677284925 Oct 200110 Aug 2004Smith International, Inc.Protective overlay coating for PDC drill bits
US678295828 Mar 200231 Aug 2004Smith International, Inc.Hardfacing for milled tooth drill bits
US679964827 Aug 20025 Oct 2004Applied Process, Inc.Method of producing downhole drill bits with integral carbide studs
US68088215 Sep 200126 Oct 2004Dainippon Ink And Chemicals, Inc.Unsaturated polyester resin composition
US684408512 Jul 200218 Jan 2005Komatsu LtdCopper based sintered contact material and double-layered sintered contact member
US684852110 Sep 20031 Feb 2005Smith International, Inc.Cutting elements of gage row and first inner row of a drill bit
US684923130 Sep 20021 Feb 2005Kobe Steel, Ltd.α-β type titanium alloy
US688449622 Dec 200126 Apr 2005Widia GmbhMethod for increasing compression stress or reducing internal tension stress of a CVD, PCVD or PVD layer and cutting insert for machining
US688449718 Mar 200326 Apr 2005Seco Tools AbPVD-coated cutting tool insert
US689279310 Nov 200317 May 2005Alcoa Inc.Caster roll
US689949512 Nov 200231 May 2005Sandvik AbRotatable tool for chip removing machining and appurtenant cutting part therefor
US69189426 Jun 200319 Jul 2005Toho Titanium Co., Ltd.Process for production of titanium alloy
US693217230 Nov 200023 Aug 2005Harold A. DvorachekRotary contact structures and cutting elements
US693304911 Jun 200323 Aug 2005Diamond Innovations, Inc.Abrasive tool inserts with diminished residual tensile stresses and their production
US694889010 May 200427 Sep 2005Seco Tools AbDrill having internal chip channel and internal flush channel
US69491485 Dec 200227 Sep 2005Denso CorporationMethod of stress inducing transformation of austenite stainless steel and method of producing composite magnetic members
US695523312 Feb 200418 Oct 2005Smith International, Inc.Roller cone drill bit legs
US695809922 Apr 200325 Oct 2005Sumitomo Metal Industries, Ltd.High toughness steel material and method of producing steel pipes using same
US701471923 Aug 200221 Mar 2006Nisshin Steel Co., Ltd.Austenitic stainless steel excellent in fine blankability
US70147205 Mar 200321 Mar 2006Sumitomo Metal Industries, Ltd.Austenitic stainless steel tube excellent in steam oxidation resistance and a manufacturing method thereof
US701767714 May 200328 Mar 2006Smith International, Inc.Coarse carbide substrate cutting elements and method of forming the same
US703661122 Jul 20032 May 2006Baker Hughes IncorporatedExpandable reamer apparatus for enlarging boreholes while drilling and methods of use
US704424331 Jan 200316 May 2006Smith International, Inc.High-strength/high-toughness alloy steel drill bit blank
US704808128 May 200323 May 2006Baker Hughes IncorporatedSuperabrasive cutting element having an asperital cutting face and drill bit so equipped
US70706664 Sep 20034 Jul 2006Intermet CorporationMachinable austempered cast iron article having improved machinability, fatigue performance, and resistance to environmental cracking and a method of making the same
US70809985 Nov 200425 Jul 2006Intelliserv, Inc.Internal coaxial cable seal system
US709073131 Jan 200215 Aug 2006Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)High strength steel sheet having excellent formability and method for production thereof
US71011288 Apr 20035 Sep 2006Sandvik Intellectual Property AbCutting tool and cutting head thereto
US71014463 Jun 20055 Sep 2006Sumitomo Metal Industries, Ltd.Austenitic stainless steel
US711214317 Jul 200226 Sep 2006Fette GmbhThread former or tap
US71252076 Aug 200424 Oct 2006Kennametal Inc.Tool holder with integral coolant channel and locking screw therefor
US712877330 Apr 200431 Oct 2006Smith International, Inc.Compositions having enhanced wear resistance
US714741327 Feb 200312 Dec 2006Kennametal Inc.Precision cemented carbide threading tap
US715270117 Aug 200426 Dec 2006Smith International, Inc.Cutting element structure for roller cone bit
US717214215 Nov 20046 Feb 2007Diamicron, Inc.Nozzles, and components thereof and methods for making the same
US717540427 Mar 200213 Feb 2007Kabushiki Kaisha Toyota Chuo KenkyushoComposite powder filling method and composite powder filling device, and composite powder molding method and composite powder molding device
US719266026 Apr 200420 Mar 2007Seco Tools AbLayer with controlled grain size and morphology for enhanced wear resistance
US720411724 Dec 200317 Apr 2007Arno FriedrichsMethod and device for producing a hard metal tool
US720740114 Oct 200324 Apr 2007Smith International, Inc.One trip milling system
US72077508 Jul 200424 Apr 2007Sandvik Intellectual Property AbSupport pad for long hole drill
US721672721 Dec 200015 May 2007Weatherford/Lamb, Inc.Drilling bit for drilling while running casing
US723198426 Feb 200419 Jun 2007Weatherford/Lamb, Inc.Gripping insert and method of gripping a tubular
US723454119 Aug 200226 Jun 2007Baker Hughes IncorporatedDLC coating for earth-boring bit seal ring
US723455029 Oct 200326 Jun 2007Smith International, Inc.Bits and cutting structures
US72352113 Jun 200326 Jun 2007Smith International, Inc.Rotary cone bit with functionally-engineered composite inserts
US723841424 May 20043 Jul 2007Sgl Carbon AgFiber-reinforced composite for protective armor, and method for producing the fiber-reinforced composition and protective armor
US724451920 Aug 200417 Jul 2007Tdy Industries, Inc.PVD coated ruthenium featured cutting tools
US725006918 Jun 200331 Jul 2007Smith International, Inc.High-strength, high-toughness matrix bit bodies
US72617825 Dec 200128 Aug 2007Kabushiki Kaisha Toyota Chuo KenkyushoTitanium alloy having high elastic deformation capacity and method for production thereof
US726224023 Jun 200328 Aug 2007Kennametal Inc.Process for making wear-resistant coatings
US726718724 Oct 200311 Sep 2007Smith International, Inc.Braze alloy and method of use for drilling applications
US726754327 Apr 200411 Sep 2007Concurrent Technologies CorporationGated feed shoe
US727067918 Feb 200418 Sep 2007Warsaw Orthopedic, Inc.Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
US72964974 May 200520 Nov 2007Sandvik Intellectual Property AbMethod and device for manufacturing a drill blank or a mill blank
US735059918 Oct 20041 Apr 2008Smith International, Inc.Impregnated diamond cutting structures
US738128321 Apr 20043 Jun 2008Yageo CorporationMethod for reducing shrinkage during sintering low-temperature-cofired ceramics
US738441313 Jun 200310 Jun 2008Elan Pharma International LimitedDrug delivery device
US738444312 Dec 200310 Jun 2008Tdy Industries, Inc.Hybrid cemented carbide composites
US739588219 Feb 20048 Jul 2008Baker Hughes IncorporatedCasing and liner drilling bits
US741061012 Nov 200412 Aug 2008General Electric CompanyMethod for producing a titanium metallic composition having titanium boride particles dispersed therein
US748784916 May 200510 Feb 2009Radtke Robert PThermally stable diamond brazing
US749450728 Aug 200224 Feb 2009Diamicron, Inc.Articulating diamond-surfaced spinal implants
US749728027 Jan 20053 Mar 2009Baker Hughes IncorporatedAbrasive-impregnated cutting structure having anisotropic wear resistance and drag bit including same
US749739622 Nov 20043 Mar 2009Khd Humboldt Wedag GmbhGrinding roller for the pressure comminution of granular material
US751332016 Dec 20047 Apr 2009Tdy Industries, Inc.Cemented carbide inserts for earth-boring bits
US752435130 Sep 200428 Apr 2009Intel CorporationNano-sized metals and alloys, and methods of assembling packages containing same
US75566684 Dec 20027 Jul 2009Baker Hughes IncorporatedConsolidated hard materials, methods of manufacture, and applications
US75756205 Jun 200618 Aug 2009Kennametal Inc.Infiltrant matrix powder and product using such powder
US762515718 Jan 20071 Dec 2009Kennametal Inc.Milling cutter and milling insert with coolant delivery
US763232329 Dec 200515 Dec 2009Schlumberger Technology CorporationReducing abrasive wear in abrasion resistant coatings
US766149118 Jun 200716 Feb 2010Smith International, Inc.High-strength, high-toughness matrix bit bodies
US768715618 Aug 200530 Mar 2010Tdy Industries, Inc.Composite cutting inserts and methods of making the same
US770355530 Aug 200627 Apr 2010Baker Hughes IncorporatedDrilling tools having hardfacing with nickel-based matrix materials and hard particles
US781058823 Feb 200712 Oct 2010Baker Hughes IncorporatedMulti-layer encapsulation of diamond grit for use in earth-boring bits
US783245627 Apr 200716 Nov 2010Halliburton Energy Services, Inc.Molds and methods of forming molds associated with manufacture of rotary drill bits and other downhole tools
US783245719 Oct 200716 Nov 2010Halliburton Energy Services, Inc.Molds, downhole tools and methods of forming
US784655116 Mar 20077 Dec 2010Tdy Industries, Inc.Composite articles
US788774711 Sep 200615 Feb 2011Sanalloy Industry Co., Ltd.High strength hard alloy and method of preparing the same
US795456928 Apr 20057 Jun 2011Tdy Industries, Inc.Earth-boring bits
US800792225 Oct 200730 Aug 2011Tdy Industries, IncArticles having improved resistance to thermal cracking
US802511222 Aug 200827 Sep 2011Tdy Industries, Inc.Earth-boring bits and other parts including cemented carbide
US808732420 Apr 20103 Jan 2012Tdy Industries, Inc.Cast cones and other components for earth-boring tools and related methods
US810917712 Oct 20057 Feb 2012Smith International, Inc.Bit body formed of multiple matrix materials and method for making the same
US814166512 Dec 200627 Mar 2012Baker Hughes IncorporatedDrill bits with bearing elements for reducing exposure of cutters
US84593808 Jun 201211 Jun 2013TDY Industries, LLCEarth-boring bits and other parts including cemented carbide
US2002000410516 May 200110 Jan 2002Kunze Joseph M.Laser fabrication of ceramic parts
US2003001040916 May 200216 Jan 2003Triton Systems, Inc.Laser fabrication of discontinuously reinforced metal matrix composites
US2003004192228 Mar 20026 Mar 2003Fuji Oozx Inc.Method of strengthening Ti alloy
US2003021960530 Jan 200327 Nov 2003Iowa State University Research Foundation Inc.Novel friction and wear-resistant coatings for tools, dies and microelectromechanical systems
US2004001355810 Jul 200322 Jan 2004Kabushiki Kaisha Toyota Chuo KenkyushoGreen compact and process for compacting the same, metallic sintered body and process for producing the same, worked component part and method of working
US2004010573017 Jun 20033 Jun 2004Osg CorporationRotary cutting tool having main body partially coated with hard coating
US2004022869531 Dec 200318 Nov 2004Clauson Luke W.Methods and devices for adjusting the shape of a rotary bit
US2004023482023 May 200325 Nov 2004Kennametal Inc.Wear-resistant member having a hard composite comprising hard constituents held in an infiltrant matrix
US200402445405 Jun 20039 Dec 2004Oldham Thomas W.Drill bit body with multiple binders
US200402450225 Jun 20039 Dec 2004Izaguirre Saul N.Bonding of cutters in diamond drill bits
US200402450245 Jun 20039 Dec 2004Kembaiyan Kumar T.Bit body formed of multiple matrix materials and method for making the same
US200500085243 Jun 200213 Jan 2005Claudio TestaniProcess for the production of a titanium alloy based composite material reinforced with titanium carbide, and reinforced composite material obtained thereby
US20050019114 *25 Jul 200327 Jan 2005Chien-Min SungNanodiamond PCD and methods of forming
US2005008440730 Jul 200421 Apr 2005Myrick James J.Titanium group powder metallurgy
US2005010340419 Nov 200419 May 2005Yieh United Steel Corp.Low nickel containing chromim-nickel-mananese-copper austenitic stainless steel
US200501179844 Dec 20022 Jun 2005Eason Jimmy W.Consolidated hard materials, methods of manufacture and applications
US200501940734 Mar 20058 Sep 2005Daido Steel Co., Ltd.Heat-resistant austenitic stainless steel and a production process thereof
US2005021147518 May 200429 Sep 2005Mirchandani Prakash KEarth-boring bits
US2005024749128 Apr 200510 Nov 2005Mirchandani Prakash KEarth-boring bits
US2005026874619 Apr 20058 Dec 2005Stanley AbkowitzTitanium tungsten alloys produced by additions of tungsten nanopowder
US2006001652122 Jul 200426 Jan 2006Hanusiak William MMethod for manufacturing titanium alloy wire with enhanced properties
US2006003267730 Aug 200516 Feb 2006Smith International, Inc.Novel bits and cutting structures
US2006004364815 Jul 20052 Mar 2006Ngk Insulators, Ltd.Method for controlling shrinkage of formed ceramic body
US2006006039222 Dec 200423 Mar 2006Smith International, Inc.Thermally stable diamond polycrystalline diamond constructions
US2006018577322 Feb 200524 Aug 2006Canadian Oil Sands LimitedLightweight wear-resistant weld overlay
US2006028641031 Jan 200621 Dec 2006Sandvik Intellectual Property AbCemented carbide insert for toughness demanding short hole drilling operations
US2006028882027 Jun 200528 Dec 2006Mirchandani Prakash KComposite article with coolant channels and tool fabrication method
US2007008222911 Oct 200512 Apr 2007Mirchandani Rajini PBiocompatible cemented carbide articles and methods of making the same
US2007010219810 Nov 200510 May 2007Oxford James AEarth-boring rotary drill bits and methods of forming earth-boring rotary drill bits
US2007010219910 Nov 200510 May 2007Smith Redd HEarth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US2007010220029 Sep 200610 May 2007Heeman ChoeEarth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US200701022026 Nov 200610 May 2007Baker Hughes IncorporatedEarth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US2007010865024 Oct 200617 May 2007Mirchandani Prakash KInjection molding fabrication method
US200701263345 Feb 20077 Jun 2007Akiyoshi NakamuraImage display unit, and method of manufacturing the same
US2007016367927 Jan 200519 Jul 2007Jfe Steel CorporationAustenitic-ferritic stainless steel
US200701937821 May 200723 Aug 2007Smith International, Inc.Polycrystalline diamond carbide composites
US2007025173220 Apr 20071 Nov 2007Tdy Industries, Inc.Modular Fixed Cutter Earth-Boring Bits, Modular Fixed Cutter Earth-Boring Bit Bodies, and Related Methods
US2008001151917 Jul 200617 Jan 2008Baker Hughes IncorporatedCemented tungsten carbide rock bit cone
US2008010197731 Oct 20071 May 2008Eason Jimmy WSintered bodies for earth-boring rotary drill bits and methods of forming the same
US2008016372320 Feb 200810 Jul 2008Tdy Industries Inc.Earth-boring bits
US2008019631819 Feb 200721 Aug 2008Tdy Industries, Inc.Carbide Cutting Insert
US2008030257615 Aug 200811 Dec 2008Baker Hughes IncorporatedEarth-boring bits
US2009003250111 Aug 20065 Feb 2009Deloro Stellite Holdings CorporationAbrasion-resistant weld overlay
US2009004161225 Jul 200812 Feb 2009Tdy Industries, Inc.Composite cutting inserts and methods of making the same
US2009013630827 Nov 200728 May 2009Tdy Industries, Inc.Rotary Burr Comprising Cemented Carbide
US200901809154 Mar 200916 Jul 2009Tdy Industries, Inc.Methods of making cemented carbide inserts for earth-boring bits
US2009029084913 May 200926 Nov 2009Sony CorporationImage processing apparatus, image processing method, image playback apparatus, image playback method, and program
US200902936722 Jun 20093 Dec 2009Tdy Industries, Inc.Cemented carbide - metallic alloy composites
US2009030178810 Jun 200810 Dec 2009Stevens John HComposite metal, cemented carbide bit construction
US2010004411422 Aug 200825 Feb 2010Tdy Industries, Inc.Earth-boring bits and other parts including cemented carbide
US2010004411522 Aug 200825 Feb 2010Tdy Industries, Inc.Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US2010027860313 Jul 20104 Nov 2010Tdy Industries, Inc.Multi-Piece Drill Head and Drill Including the Same
US2010029084912 May 200918 Nov 2010Tdy Industries, Inc.Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US201003035664 Aug 20102 Dec 2010Tdy Industries, Inc.Composite Articles
US2010032321319 Jun 200923 Dec 2010Trevor AitchisonMultilayer overlays and methods for applying multilayer overlays
US2011001196514 Jul 200920 Jan 2011Tdy Industries, Inc.Reinforced Roll and Method of Making Same
US2011010781111 Nov 200912 May 2011Tdy Industries, Inc.Thread Rolling Die and Method of Making Same
US2011028417919 May 201124 Nov 2011Baker Hughes IncorporatedMethods of forming at least a portion of earth-boring tools
US2011028723819 May 201124 Nov 2011Baker Hughes IncorporatedMethods of forming at least a portion of earth-boring tools, and articles formed by such methods
US2011028792419 May 201124 Nov 2011Baker Hughes IncorporatedMethods of forming at least a portion of earth-boring tools, and articles formed by such methods
US2011029056611 Aug 20111 Dec 2011Tdy Industries, Inc.Earth-boring bits and other parts including cemented carbide
US201202373864 Jun 201220 Sep 2012TDY Industries, LLCCemented carbide - metallic alloy composites
US201202404768 Jun 201227 Sep 2012TDY Industries, LLCEarth-boring bits and other parts including cemented carbide
US2012028205117 Jul 20128 Nov 2012TDY Industries, LLCComposite Cemented Carbide Rotary Cutting Tools and Rotary Cutting Tool Blanks
US2012028529326 Jul 201215 Nov 2012TDY Industries, LLCComposite sintered powder metal articles
US2012032149822 Aug 201220 Dec 2012TDY Industries, LLCComposite cemented carbide rotary cutting tools and rotary cutting tool blanks
US201300251279 Oct 201231 Jan 2013TDY Industries, LLCReinforced roll and method of making same
US201300258138 Oct 201231 Jan 2013TDY Industries, LLCReinforced roll and method of making same
US201300262748 Oct 201231 Jan 2013TDY Industries, LLCReinforced roll and method of making same
US201300286721 Oct 201231 Jan 2013TDY Industries, LLCArticles having improved resistance to thermal cracking
US2013003687216 Oct 201214 Feb 2013TDY Industries, LLCModular Fixed Cutter Earth-Boring Bits, Modular Fixed Cutter Earth-Boring Bit Bodies, and Related Methods
US2013003798516 Oct 201214 Feb 2013TDY Industries, LLCEarth-Boring Bit Parts Including Hybrid Cemented Carbides and Methods of Making the Same
US201300436151 Oct 201221 Feb 2013TDY Industries, LLCInjection molding fabrication method
US2013004870131 Aug 201128 Feb 2013Prakash K. MirchandaniMethods of forming wear resistant layers on metallic surfaces
US2013007516530 Aug 201228 Mar 2013TDY Industries, LLCCutting inserts for earth-boring bits
USRE286455 Nov 19739 Dec 1975 Method of heat-treating low temperature tough steel
USRE3375329 Dec 198926 Nov 1991Centro Sviluppo Materiali S.P.A.Austenitic steel with improved high-temperature strength and corrosion resistance
USRE3553816 Oct 199517 Jun 1997Santrade LimitedSintered body for chip forming machine
AU695583B2 Title not available
CA1018474A11 May 19724 Oct 1977Zigmund R. GrutzaWear resistant diamond coating and method of application
CA1158073A20 May 19806 Dec 1983International Nickel Company, Inc. (The)Nickel-base hard facing alloy
CA1250156A22 May 198521 Feb 1989Arthur L. Rankin, IiiHighly abrasive resistant material
CA2022065A126 Jul 19903 Feb 1991Diwakar GargHigh erosion/wear resistant multi-layered coating system
CA2107004C27 Sep 199314 May 1996Kenneth L. SantelmannReversible, wear-resistant ash screw cooler section
CA2108274C15 Apr 19924 Jul 2000George William BrowneOverlaying of weld metal onto metal plates
CA2120332C1 Dec 19929 Jun 1998Harold C. NewmanArc hardfacing rod
CA2198985A13 Mar 19973 Sep 1998Royce A. AnthonBrazing rod for depositing diamond coating to metal substrate using gas or electric brazing techniques
CA2201969C3 Apr 19974 Feb 2003Serge DallaireThermally sprayed metal-based composite coatings
CA2212197C1 Aug 199717 Oct 2000Smith International, Inc.Double cemented carbide inserts
CA2213169C15 Aug 199729 Mar 2005Shell Canada LimitedRepairing a weak spot in the wall of a vessel
CA2228398A129 Jul 199620 Feb 1997Robert DelwicheHardfacing with coated diamond particles
CA2357407C8 Jun 20018 Jan 2008Surface Engineered Products Corp.Coating system for high temperature stainless steels
CA2498073A123 Feb 200522 Aug 2006Canadian Oil Sands LimitedLightweight wear-resistant weld overlay
CA2556132A114 Aug 200612 Feb 2007Deloro Stellite Holdings CorporationAbrasion-resistant weld overlay
CA2570937A112 Dec 200629 Jun 2007Schlumberger Canada LimitedReducing abrasive wear in abrasion resistant coatings
DE10300283B32 Jan 20039 Jun 2004Arno FriedrichsHard metal workpiece manufacturing method using extrusion for formation of lesser hardness material into rod-shaped carrier for greater hardness material
DE19634314A124 Aug 199629 Jan 1998Widia GmbhCompound components for cutting tools
DE102006030661A14 Jul 200610 Jan 2008Profiroll Technologies GmbhHard metallic profile rolling bar, rolling rod and/or roll cheek or circular rolling tool for cold rolling, comprise base body with mounting elements, and profile gear
DE102007006943A113 Feb 200714 Aug 2008Robert Bosch GmbhSchneidelement für einen Gesteinsbohrer und ein Verfahren zur Herstellung eines Schneidelements für einen Gesteinsbohrer
EP0157625A21 Apr 19859 Oct 1985Sumitomo Electric Industries LimitedComposite tool
EP0264674A230 Sep 198727 Apr 1988Baker-Hughes IncorporatedLow pressure bonding of PCD bodies and method
EP0453428A118 Apr 199123 Oct 1991Sandvik AktiebolagMethod of making cemented carbide body for tools and wear parts
EP0605585B115 Sep 199216 Aug 1995Technogenia S.A.Method for making a composite part with an antiabrasion surface, and parts obtained by such method
EP0641620B11 Sep 199425 Feb 1998Sandvik AktiebolagThreading tap
EP0759480B123 Aug 199530 Jan 2002Toshiba Tungaloy Co. Ltd.Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
EP0773202A26 Nov 199614 May 1997Sumitomo Electric Industries, Ltd.Composite material and method of manufacturing the same
EP0995876A213 Oct 199926 Apr 2000Camco International (UK) LimitedMethods of manufacturing rotary drill bits
EP1065021A121 Jun 20003 Jan 2001Seco Tools AbTool, method and device for manufacturing a tool
EP1066901A221 Jun 200010 Jan 2001Seco Tools AbTool for chip removing machining
EP1077268B111 Aug 200021 May 2003Smith International, Inc.Composition for binder material
EP1077783B120 Apr 19992 Jan 2003De Beers Industrial Diamonds (Proprietary) LimitedDiamond compact
EP1106706A113 Oct 200013 Jun 2001Nisshin Steel Co., Ltd.Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
EP1244531B111 Dec 20006 Oct 2004TDY Industries, Inc.Composite rotary tool and tool fabrication method
EP1686193A216 Dec 20052 Aug 2006TDY Industries, Inc.Cemented carbide inserts for earth-boring bits
EP1788104A122 Nov 200523 May 2007MEC Holding GmbHMaterial for producing parts or coatings adapted for high wear and friction-intensive applications, method for producing such a material and a torque-reduction device for use in a drill string made from the material
FR2627541A2 Title not available
GB622041A Title not available
GB945227A Title not available
GB1082568A Title not available
GB1309634A Title not available
GB1420906A Title not available
GB1491044A Title not available
GB2064619A Title not available
GB2158744A Title not available
GB2218931A Title not available
GB2315452A Title not available
GB2352727A Title not available
GB2384745A Title not available
GB2385350A Title not available
GB2393449A Title not available
GB2397832A Title not available
GB2409467A Title not available
GB2435476A Title not available
GE2324752A Title not available
JP02254144A Title not available
JP2000237910A Title not available
JP2000296403A * Title not available
JP2000355725A Title not available
JP2001179517A Title not available
JP2002097885A Title not available
JP2002166326A Title not available
JP2002317596A Title not available
JP2003306739A Title not available
JP2003342610A Title not available
JP2004160591A Title not available
JP2004190034A Title not available
JP2004243380A Title not available
JP2004315904A Title not available
JP2004514065A Title not available
JP2005111581A Title not available
JP2005519448A Title not available
JP2006175456A Title not available
JP2006181628A Title not available
JP2006328477A Title not available
JP2006524173A Title not available
JP2008127616A Title not available
JPH0564288U Title not available
JPH03119090U Title not available
JPH10511740A Title not available
KR20050055268A Title not available
RU2135328C1 Title not available
RU2167262C2 Title not available
RU2173241C2 Title not available
SU967786A1 Title not available
SU975369A1 Title not available
SU990423A1 Title not available
SU1269922A1 Title not available
SU1292917A1 Title not available
SU1350322A1 Title not available
UA6742U Title not available
UA23749U Title not available
UA63469C2 Title not available
WO1992005009A115 May 19912 Apr 1992Kennametal Inc.Binder enriched cvd and pvd coated cutting tool
WO1992022390A117 Jun 199223 Dec 1992Gottlieb Gühring KgExtrusion die tool for producing a hard metal or ceramic rod with twisted internal bores
WO1996020058A130 Oct 19954 Jul 1996Kennametal Inc.Composite cermet articles and method of making
WO1997000734A124 Jun 19969 Jan 1997The Dow Chemical CompanyMethod of coating, method for making ceramic-metal structures, method for bonding, and structures formed thereby
WO1997019201A16 Nov 199629 May 1997The Dow Chemical CompanyProcess for making complex-shaped ceramic-metal composite articles
WO1997034726A121 Mar 199725 Sep 1997Hawke Terrence CTap and method of making a tap with selected size limits
WO1998028455A118 Dec 19972 Jul 1998Sandvik Ab (Publ)Metal working drill/endmill blank
WO1999013121A14 Sep 199818 Mar 1999Sandvik Ab (Publ)Tool for drilling/routing of printed circuit board materials
WO1999036590A14 Jan 199922 Jul 1999Dresser Industries, Inc.Hardfacing having coated ceramic particles or coated particles of other hard materials
WO2000043628A213 Jan 200027 Jul 2000Baker Hughes IncorporatedRotary-type earth drilling bit, modular gauge pads therefor and methods of testing or altering such drill bits
WO2000052217A128 Feb 20008 Sep 2000Sandvik Ab (Publ)Tool for wood working
WO2001043899A111 Dec 200021 Jun 2001Tdy Industries, Inc.Composite rotary tool and tool fabrication method
WO2003010350A121 Jun 20026 Feb 2003Kennametal Inc.Fine grained sintered cemented carbide, process for manufacturing and use thereof
WO2003011508A217 Jul 200213 Feb 2003Fette GmbhThread former or tap
WO2003049889A24 Dec 200219 Jun 2003Baker Hughes IncorporatedConsolidated hard materials, methods of manufacture, and applications
WO2004053197A25 Dec 200324 Jun 2004Ikonics CorporationMetal engraving method, article, and apparatus
WO2005045082A122 Oct 200419 May 2005Nippon Steel & Sumikin Stainless Steel CorporationAUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY
WO2005054530A16 Oct 200416 Jun 2005Kennametal Inc.Cemented carbide body containing zirconium and niobium and method of making the same
WO2005061746A12 Dec 20047 Jul 2005Tdy Industries, Inc.Hybrid cemented carbide composites
WO2005106183A128 Apr 200510 Nov 2005Tdy Industries, Inc.Earth-boring bits
WO2006071192A128 Dec 20056 Jul 2006Outokumpu OyjAn austenitic steel and a steel product
WO2006104004A123 Mar 20065 Oct 2006Kyocera CorporationSuper hard alloy and cutting tool
WO2007001870A214 Jun 20064 Jan 2007Tdy Industries, Inc.Composite article with coolant channels and tool fabrication method
WO2007022336A217 Aug 200622 Feb 2007Tdy Industries, Inc.Composite cutting inserts and methods of making the same
WO2007030707A18 Sep 200615 Mar 2007Baker Hughes IncorporatedComposite materials including nickel-based matrix materials and hard particles, tools including such materials, and methods of using such materials
WO2007044791A111 Oct 200619 Apr 2007U.S. Synthetic CorporationCutting element apparatuses, drill bits including same, methods of cutting, and methods of rotating a cutting element
WO2007127680A120 Apr 20078 Nov 2007Tdy Industries, Inc.Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
WO2008115703A16 Mar 200825 Sep 2008Tdy Industries, Inc.Composite articles
WO2011000348A121 Jun 20106 Jan 2011Mtu Aero Engines GmbhCoating and method for coating a component
WO2011008439A223 Jun 201020 Jan 2011Tdy Industries, Inc.Reinforced roll and method of making same
Non-Patent Citations
Reference
1"Material: Tungsten Carbide (WC), bulk", MEMSnet, printed from http://www.memsnet.org/material/tungstencarbidewcbulk/ on Aug. 19, 2001, 1 page.
2"Percentage by Weight to Percentage by Volume Conversion Calculator", Roseller Sunga, n.d., May 15, 2013, http://www.handymath.com/cgi-bin/dnstywtvol.cgi?sumit=Entry, 1 page.
3"Thread Milling", Traditional Machining Processes, 1997, pp. 268-269.
4Advisory Action before mailing of Appeal Brief mailed Jun. 29, 2009 in U.S. Appl. No. 10/903,198.
5Advisory Action Before the Filing of an Appeal Brief mailed Aug. 31, 2011 in U.S. Appl. No. 12/397,597.
6Advisory Action Before the Filing of an Appeal Brief mailed Mar. 22, 2012 in U.S. Appl. No. 11/737,993.
7Advisory Action Before the Filing of an Appeal Brief mailed May 12, 2010 in U.S. Appl. No. 11/167,811.
8Advisory Action Before the Filing of an Appeal Brief mailed Sep. 9, 2010 in U.S. Appl. No. 11/737,993.
9Advisory Action mailed Jan. 26, 2012 in U.S. Appl. No. 12/397,597.
10Advisory Action mailed May 11, 2011 in U.S. Appl. No. 11/167,811.
11Advisory Action mailed May 3, 2011 in U.S. Appl. No. 11/585,408.
12Alloys International (Australasia) Pty. Ltd., "The Tungsten Carbide Vibratory Feeder System", (undated) 6 pages.
13Ancormet® 101, Data Sheet, 0001-AM101-D-1, Hoeganaes, www.hoeganaes.com, 7 pages. (date unavailable).
14ASM Materials Engineering Dictionary, J.R. Davis, Ed., ASM International, Fifth printing, Jan. 2006, p. 98.
15ASTM G65-04, Standard Test Method for Measuring Abrasion Using the Dry Sand, Nov. 1, 2004, printed from http://infostore.saiglobal.com.
16Beard, T. "The INS and OUTS of Thread Milling; Emphasis: Hole Making, Interview", Modern Machine Shop, Gardner Publications, Inc. 1991, vol. 64, No. 1, 5 pages.
17Brookes, Kenneth J. A., "World Directory and Handbook of Hardmetals and Hard Materials", International Carbide Data, U.K. 1996, Sixth Edition, p. 42.
18Brookes, Kenneth J. A., "World Directory and Handbook of Hardmetals and Hard Materials", International Carbide Data, U.K. 1996, Sixth Edition, pp. D182-D184.
19Childs et al., "Metal Machining", 2000, Elsevier, p. 111.
20Corrected Notice of Allowability mailed Jun. 21, 2012 in U.S. Appl. No. 12/476,738.
21Corrected Notice of Allowability mailed Oct. 18, 2012 in U.S. Appl. No. 11/585,408.
22Coyle, T.W. and A. Bahrami, "Structure and Adhesion of Ni and Ni-WC Plasma Spray Coatings," Thermal Spray, Surface Engineering via Applied Research, Proceedings of the 1st International Thermal Spray Conference, May 8-11, 2000, Montreal, Quebec, Canada, 2000, pp. 251-254.
23Decision on Appeal mailed Jun. 3, 2013 in U.S. Appl. No. 10/903,198.
24Deng, X. et al., "Mechanical Properties of a Hybrid Cemented Carbide Composite," International Journal of Refractory Metals and Hard Materials, Elsevier Science Ltd., vol. 19, 2001, pp. 547-552.
25Dynalloy Industries, G.M.A.C.E, 2003, printed Jul. 8, 2009, 1 page.
26Dynalloy Industries, Hardhead Technology, Tungsten Carbide Pellets, 2003, printed Jul. 8, 2009, 1 page.
27Examiner's Answer mailed Aug. 17, 2010 in U.S. Appl. No. 10/903,198.
28Final Office Action mailed Jun. 12, 2009 in U.S. Appl. No. 11/167,811.
29Firth Sterling grade chart. Allegheny Technologies, attached to Declaration of Prakash Mirchandani Ph.D. as filed in U.S. Appl. No. 11/737,993 on Sep. 9, 2009.
30Gurland, Joseph, "Application of Quantitative Microscopy to Cemented Carbides," Practical Applications of Quantitative Matellography, ASTM Special Technical Publication 839, ASTM 1984, pp. 65-84.
31Hayden, Matthew and Lyndon Scott Stephens, "Experimental Results for a Heat-Sink Mechanical Seal," Tribology Transactions, 48, 2005, pp. 352-361.
32Haynes et al., Physical Constants of Inorganic Compounds, CRC Handbook of Chemistry and Physics, 93rd Edition, Internet Version 2013, downloaded May 15, 2013, 2 pages.
33Helical Carbide Thread Mills, Schmarje Tool Company, 1998, 2 pages.
34Industrial Renewal Services, Steel BOC (Basic Oxygen Furnace) & BOP (Basic Oxygen Process) Hoods, printed Nov. 8, 2007, 2 pages.
35Interview Summary mailed Feb. 16, 2011 in U.S. Appl. No. 11/924,273.
36Interview Summary mailed May 9, 2011 in U.S. Appl. No. 11/924,273.
37J. Gurland, Quantitative Microscopy, R.T. DeHoff and F.N. Rhines, eds., McGraw-Hill Book Company, New York, 1968, pp. 279-290.
38Johnson, M. "Tapping", Traditional Machining Processes, 1997, pp. 255-265.
39Kennametal press release on Jun. 10, 2010, http://news.thomasnet.com/companystory/Kennametal-Launches-Beyond-BLAST-TM-at-IMTS-2010-Booth-W-1522-833445 (2 pages) accessed on Oct. 14, 2010.
40Koelsch, J., "Thread Milling Takes on Tapping", Manufacturing Engineering, 1995, vol. 115, No. 4, 6 pages.
41Lincoln Electric, MIG Carbide Vibratory Feeder Assembly, (undated) 1 page.
42McGraw-Hill Dictionary of Scientific and Technical Terms, 5th Edition, Sybil P. Parker, Editor in Chief, 1993, pp. 799, 800, 1933, and 2047.
43Metals Handbook Desk Edition, definition of ‘wear’, 2nd Ed., J.R. Davis, Editor, ASM International 1998, p. 62.
44Metals Handbook Desk Edition, definition of 'wear', 2nd Ed., J.R. Davis, Editor, ASM International 1998, p. 62.
45Metals Handbook, vol. 16 Machining, "Cemented Carbides" (ASM International 1989), pp. 71-89.
46Metals Handbook, vol. 16 Machining, "Tapping" (ASM International 1989), pp. 255-267.
47Nassau, K. Ph.D. and Julia Nassau, "The History and Present Status of Synthetic Diamond, Part I and II", reprinted from The Lapidary Journal, Inc., vol. 32, No. 1, Apr. 1978; vol. 32, No. 2, May 1978, 15 pages.
48Notice of Allowance mailed Apr. 13, 2012 in U.S. Appl. No. 13/207,478.
49Notice of Allowance mailed Apr. 17, 2012 in U.S. Appl. No. 12/476,738.
50Notice of Allowance mailed Apr. 30, 2012 in U.S. Appl. No. 12/179,999.
51Notice of Allowance mailed Apr. 9, 2012 in U.S. Appl. No. 12/464,607.
52Notice of Allowance mailed Feb. 4, 2008 in U.S. Appl. No. 11/013,842.
53Notice of Allowance mailed Jan. 27, 2011 in U.S. Appl. No. 12/196,815.
54Notice of Allowance mailed Jul. 1, 2013 in U.S. Appl. No. 11/167,811.
55Notice of Allowance mailed Jul. 10, 2012 in U.S. Appl. No. 12/502,277.
56Notice of Allowance mailed Jul. 16, 2012 in U.S. Appl. No. 12/464,607.
57Notice of Allowance mailed Jul. 20, 2012 in U.S. Appl. No. 11/585,408.
58Notice of Allowance mailed Jul. 25, 2012 in U.S. Appl. No. 11/737,993.
59Notice of Allowance mailed Jul. 31, 2012 in U.S. Appl. No. 12/196,951.
60Notice of Allowance mailed Jun. 24, 2011 in U.S. Appl. No. 11/924,273.
61Notice of Allowance mailed Mar. 6, 2013 in U.S. Appl. No. 13/491,638.
62Notice of Allowance mailed May 16, 2011 in U.S. Appl. No. 12/196,815.
63Notice of Allowance mailed May 18, 2010 in U.S. Appl. No. 11/687,343.
64Notice of Allowance mailed May 21, 2007 for U.S. Appl. No. 10/922,750.
65Notice of Allowance mailed May 9, 2012 in U.S. Appl. No. 11/585,408.
66Notice of Allowance mailed Nov. 13, 2008 in U.S. Appl. No. 11/206,368.
67Notice of Allowance mailed Nov. 15, 2011 in U.S. Appl. No. 12/850,003.
68Notice of Allowance mailed Nov. 26, 2008 in U.S. Appl. No. 11/013,842.
69Notice of Allowance mailed Nov. 30, 2009 in U.S. Appl. No. 11/206,368.
70Notice of Allowance mailed Oct. 21, 2002 in U.S. Appl. No. 09/460,540.
71Office Action mailed Apr. 12, 2011 in U.S. Appl. No. 12/196,951.
72Office Action mailed Apr. 13, 2012 in U.S. Appl. No. 12/397,597.
73Office Action mailed Apr. 17, 2009 in U.S. Appl. No. 10/903,198.
74Office Action mailed Apr. 20, 2011 in U.S. Appl. No. 11/737,993.
75Office Action mailed Apr. 22, 2010 in U.S. Appl. No. 12/196,951.
76Office Action mailed Apr. 30, 2009 in U.S. Appl. No. 11/206,368.
77Office Action mailed Apr. 5, 2013 in U.S. Appl. No. 13/632,177.
78Office Action mailed Aug. 17, 2011 in U.S. Appl. No. 11/585,408.
79Office Action mailed Aug. 19, 2010 in U.S. Appl. No. 11/167,811.
80Office Action mailed Aug. 28, 2009 in U.S. Appl. No. 11/167,811.
81Office Action mailed Aug. 29, 2011 in U.S. Appl. No. 12/476,738.
82Office Action mailed Aug. 3, 2011 in U.S. Appl. No. 11/737,993.
83Office Action mailed Aug. 31, 2007 in U.S. Appl. No. 11/206,368.
84Office Action mailed Dec. 1, 2001 in U.S. Appl. No. 09/460,540.
85Office Action mailed Dec. 21, 2011 in U.S. Appl. No. 12/476,738.
86Office Action mailed Dec. 29, 2005 in U.S. Appl. No. 10/903,198.
87Office Action mailed Dec. 9, 2009 in U.S. Appl. No. 11/737,993.
88Office Action mailed Feb. 16, 2011 in U.S. Appl. No. 11/585,408.
89Office Action mailed Feb. 2, 2011 in U.S. Appl. No. 11/924,273.
90Office Action mailed Feb. 24, 2010 in U.S. Appl. No. 11/737,993.
91Office Action mailed Feb. 27, 2013 in U.S. Appl. No. 13/550,690.
92Office Action mailed Feb. 28, 2008 in U.S. Appl. No. 11/206,368.
93Office Action mailed Feb. 3, 2011 in U.S. Appl. No. 11/167,811.
94Office Action mailed Feb. 5, 2013 in U.S. Appl. No. 13/652,503.
95Office Action mailed Jan. 16, 2007 in U.S. Appl. No. 11/013,842.
96Office Action mailed Jan. 16, 2008 in U.S. Appl. No. 10/903,198.
97Office Action mailed Jan. 20, 2012 in U.S. Appl. No. 12/502,277.
98Office Action mailed Jan. 21, 2010 in U.S. Appl. No. 11/687,343.
99Office Action mailed Jan. 23, 2013 in U.S. Appl. No. 13/652,508.
100Office Action mailed Jan. 6, 2012 in U.S. Appl. No. 11/737,993.
101Office Action mailed Jul. 11, 2012 in U.S. Appl. No. 13/222,324.
102Office Action mailed Jul. 16, 2008 in Appl. No. 11/013,842.
103Office Action mailed Jul. 22, 2011 in U.S. Appl. No. 11/167 811.
104Office Action mailed Jul. 25, 2013 in U.S. Appl. No. 13/652,508.
105Office Action mailed Jul. 30, 2007 in U.S. Appl. No. 11/013,842.
106Office Action mailed Jul. 5, 2013 in U.S. Appl. No. 13/652,503.
107Office Action mailed Jun. 1, 2001 in U.S. Appl. No. 09/460,540.
108Office Action mailed Jun. 18, 2002 in U.S. Appl. No. 09/460,540.
109Office Action mailed Jun. 20, 2013 in U.S. Appl. No. 12/397,597.
110Office Action mailed Jun. 28, 2012 in U.S. Appl. No. 13/222,324.
111Office Action mailed Jun. 29, 2010 in U.S. Appl. No. 11/737,993.
112Office Action mailed Jun. 3, 2009 in U.S. Appl. No. 11/737,993.
113Office Action mailed Jun. 7, 2011 in U.S. Appl. No. 12/397,597.
114Office Action mailed Mar. 12, 2009 in U.S. Appl. No. 11/585,408.
115Office Action mailed Mar. 15, 2002 in U.S. Appl. No. 09/460,540.
116Office Action mailed Mar. 15, 2012 in U.S. Appl. No. 12/464,607.
117Office Action mailed Mar. 19, 2009 in U.S. Appl. No. 11/737,993.
118Office Action mailed Mar. 19, 2012 in U.S. Appl. No. 12/196,951.
119Office Action mailed Mar. 2, 2010 in U.S. Appl. No. 11/167,811.
120Office Action mailed Mar. 2, 2012 in U.S. Appl. No. 13/207,478.
121Office Action mailed Mar. 27, 2007 in U.S. Appl. No. 10/903,198.
122Office Action mailed Mar. 28, 2012 in U.S. Appl. No. 11/167,811.
123Office Action mailed Mar. 6, 2013 in U.S. Appl. No. 13/632,178.
124Office Action mailed May 14, 2000 in U.S. Appl. No. 11/687,343.
125Office Action mailed May 22, 2013 in U.S. Appl. No. 13/487,323.
126Office Action mailed May 3, 2010 in U.S. Appl. No. 11/924,273.
127Office Action mailed Nov. 14, 2011 in U.S. Appl. No. 12/502,277.
128Office Action mailed Nov. 15, 2010 in U.S. Appl. No. 12/397,597.
129Office Action mailed Nov. 16, 2012 in U.S. Appl. No. 12/397,597.
130Office Action mailed Nov. 17, 2010 in U.S. Appl. No. 12/196,815.
131Office Action mailed Nov. 17, 2011 in U.S. Appl. No. 12/397,597.
132Office Action mailed Nov. 6, 2012 in U.S. Appl. No. 13/222,324.
133Office Action mailed Oct. 11, 2011 in U.S. Appl. No. 11/737,993.
134Office Action mailed Oct. 13, 2006 in U.S. Appl. No. 10/922,750.
135Office Action mailed Oct. 13, 2011 in U.S. Appl. No. 12/179,999.
136Office Action mailed Oct. 14, 2010 in U.S. Appl. No. 11/924,273.
137Office Action mailed Oct. 19, 2011 in U.S. Appl. No. 12/196,951.
138Office Action Mailed Oct. 21, 2008 in U.S. Appl. No. 11/167,811.
139Office Action mailed Oct. 27, 2010 in U.S. Appl. No. 12/196,815.
140Office Action mailed Oct. 29, 2010 in U.S. Appl. No. 12/196,951.
141Office Action mailed Oct. 31, 2008 in U.S. Appl. No. 10/903,198.
142Office Action mailed Oct. 31, 2011 in U.S. Appl. No. 13/207,478.
143Office Action mailed Oct. 4, 2012 in U.S. Appl. No. 13/491,638.
144Office Action mailed Sep. 2, 2011 in U.S. Appl. No. 12/850,003.
145Office Action mailed Sep. 22, 2009 in U.S. Appl. No. 11/585,408.
146Office Action mailed Sep. 26, 2007 in U.S. Appl. No. 10/903,198.
147Office Action mailed Sep. 29, 2006 in U.S. Appl. No. 10/903,198.
148Office Action mailed Sep. 7, 2010 in U.S. Appl. No. 11/585,408.
149Pages from Kennametal site, https://www.kennametal.com/en-US/promotions/Beyond-Blast.jhtml (7 pages) accessed on Oct. 14, 2010.
150Pages from Kennametal site, https://www.kennametal.com/en-US/promotions/Beyond—Blast.jhtml (7 pages) accessed on Oct. 14, 2010.
151Peterman, Waiter, "Heat-Sink Compound Protects the Unprotected," Welding Design and Fabrication, Sep. 2003, pp. 20-22.
152Postalloy, Data Sheet, Postle Industries, Inc., Postalloy 14 TC, (undated) 1 page.
153Postalloy, Data Sheet, Postle Industries, Inc., Postalloy 299-SPL, (undated) 1 page.
154Postalloy, Data Sheet, Postle Industries, Inc., Postalloy CP 63070, (undated) 1 page.
155Postalloy, Data Sheet, Postle Industries, Inc., Postalloy PS-98, A Tungsten Carbide Matrix Wire for Carbide Embedding, (undated) 1 page.
156Postalloy, Postle Industries, Inc., Postalloy PS-98, Tungsten Matrix Alloy, (undated) 1 page.
157Postalloy, The best in hardfacing, Postle Industries, Inc., (undated) 13 pages.
158Pre-Appeal Conference Decision mailed Jun. 19, 2008 in U.S. Appl. No. 11/206,368.
159Pre-Brief Appeal Conference Decision mailed Nov. 22, 2010 in U.S. Appl. No. 11/737,993.
160ProKon Version 8.6, The Calculation Companion, Properties for W, Ti, Mo, Co, Ni and Fe, Copyright 1997-1998, 6 pages.
161Pyrotek, Zyp Zircwash, www.pyrotek.info, Feb. 2003, 1 page.
162Restriction Requirement mailed Aug. 4, 2010 in U.S. Appl. No. 12/196,815.
163Restriction Requirement mailed Jan. 3, 2013 in U.S. Appl. No. 13/632,178.
164Restriction Requirement mailed Jul. 24, 2008 in U.S. Appl. No. 11/167,811.
165Restriction Requirement mailed Sep. 17, 2010 in U.S. Appl. No. 12/397,597.
166Scientific Cutting Tools, "The Cutting Edge", 1998, printed on Feb. 1, 2000, 15 pages.
167Shi et al., "Composite Ductility-The Role of Reinforcement and Matrix", TMS Meeting, Las Vegas NV, Feb. 12-16, 1995, 10 pages.
168Shi et al., "Composite Ductility—The Role of Reinforcement and Matrix", TMS Meeting, Las Vegas NV, Feb. 12-16, 1995, 10 pages.
169Shi et al., "Study on shaping technology of nanocrystalline WC-Co composite powder", Rare Metal and Materials and Engineering, vol. 33, Suppl. 1, Jun. 2004, pp. 93-96. (English abstract).
170Sikkenga, "Cobalt and Cobalt Alloy Castings", Casting, vol. 15, ASM Handbook, ASM International, 2008, pp. 1114-1118.
171Sims et al., "Casting Engineering", Superalloys II, Aug. 1987, pp. 420-426.
172Specialty Metals, "Tungchip Dispenser, An improved feeder design, to allow for accurate delivery of Tungsten Carbide granules into the molten weld pool, generated by a MIG (GMAW) welding system", (undated) 2 pages.
173Sriram; et al., "Effect of Cerium Addition on Microstructures of Carbon-Alloyed Iron Aluminides," Bull. Mater. Sci., vol. 28, No. 6, Oct. 2005, pp. 547-554.
174Starck, H.C., Surface Technology, Powders for PTA-Welding, Lasercladding and other Wear Protective Welding Applications, Jan. 2011, 4 pages.
175Supplemental Notice of Allowability mailed Jul. 20, 2012 in U.S. Appl. No. 12/502,277.
176Supplemental Notice of Allowability mailed Jul. 3, 2007 for U.S. Appl. No. 10/922,750.
177Supplemental Notice of Allowability mailed Jun. 29, 2012 in U.S. Appl. No. 13/207,478.
178The Thermal Conductivity of Some Common Materials and Gases, The Engineering ToolBox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-d—429.html on Dec. 15, 2011, 4 pages.
179Thermal Conductivity of Metals, The Engineering ToolBox, printed from http://www.engineeringtoolbox.com/thermal-conductivity-metals-d—858.html on Oct. 27, 2011, 3 pages.
180TIBTECH Innovations, "Properties table of stainless steel, metals and other conductive materiels", printed from http://www.tibtech.com/conductivity.php on Aug. 19, 2011, 1 page.
181Tool and Manufacturing Engineers Handbook, Fourth Edition, vol. 1, Machining, Society of Manufacturing Engineers, Chapter 12, vol. 1, 1983, pp. 12-110-12-114.
182Tracey et al., "Development of Tungsten Carbide-Cobalt-Ruthenium Cutting Tools for Machining Steels" Proceedings Annual Microprogramming Workshop, vol. 14, 1981, pp. 281-292.
183Translated First Office Action for Chinese Patent Application No. 201210168378.3; 4 pgs.
184U.S. Appl. No. 13/207,478, filed Aug. 11, 2011.
185Underwood, Quantitative Stereology, pp. 23-108 (1970).
186US 4,966,627, 10/1990, Keshavan et al. (withdrawn)
187UWO Products, printed Nov. 8, 2007 from http://www.universalweld.com/products.htm, 2 pages.
188Vander Vort, "Introduction to Quantitative Metallography", Tech Notes, vol. 1, Issue 5, published by Buehler, Ltd. 1997, 6 pages.
189Wearshield Hardfacing Electrodes, Tungsten Carbide Products, (undated) 1 page.
190Williams, Wendell S., "The Thermal Conductivity of Metallic Ceramics", JOM, Jun. 1998, pp. 62-66.
191You Tube, "The Story Behind Kennametal's Beyond Blast", dated Sep. 14, 2010. http://www.youtube.com/watch?v=8-A-bYVwmU8 (3 pages) accessed on Oct. 14, 2010.
192You Tube, "The Story Behind Kennametal's Beyond Blast", dated Sep. 14, 2010. http://www.youtube.com/watch?v=8—A-bYVwmU8 (3 pages) accessed on Oct. 14, 2010.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US20130205862 *1 Feb 201315 Aug 2013Mitsubishi Materials CorporationDie for press working
Legal Events
DateCodeEventDescription
15 Aug 2011ASAssignment
Owner name: TDY INDUSTRIES, INC., PENNSYLVANIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIRCHANDANI, PRAKASH K.;MOSCO, ALFRED J.;OLSEN, ERIC W.;AND OTHERS;SIGNING DATES FROM 20080118 TO 20080121;REEL/FRAME:026748/0895
19 Sep 2012ASAssignment
Owner name: TDY INDUSTRIES, LLC, PENNSYLVANIA
Free format text: CHANGE OF NAME;ASSIGNOR:TDY INDUSTRIES, INC.;REEL/FRAME:029005/0307
Effective date: 20120102
15 Nov 2013ASAssignment
Owner name: KENNAMETAL INC., PENNSYLVANIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TDY INDUSTRIES, LLC;REEL/FRAME:031640/0510
Effective date: 20131104
16 Oct 2017MAFP
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)
Year of fee payment: 4