US8430837B2 - Thrombectomy apparatus and method - Google Patents

Thrombectomy apparatus and method Download PDF

Info

Publication number
US8430837B2
US8430837B2 US12/026,317 US2631708A US8430837B2 US 8430837 B2 US8430837 B2 US 8430837B2 US 2631708 A US2631708 A US 2631708A US 8430837 B2 US8430837 B2 US 8430837B2
Authority
US
United States
Prior art keywords
lumen
high pressure
pressure lumen
thrombi
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/026,317
Other versions
US20080255596A1 (en
Inventor
Mark L. Jenson
William J. Drasler
Joseph M. Thielen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walk Vascular LLC
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/026,317 priority Critical patent/US8430837B2/en
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Priority to US12/040,179 priority patent/US8900179B2/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THIELEN, JOSEPH M., JENSON, MARK L., DRASLER, WILLIAM J.
Publication of US20080255596A1 publication Critical patent/US20080255596A1/en
Application granted granted Critical
Publication of US8430837B2 publication Critical patent/US8430837B2/en
Priority to US14/513,579 priority patent/US9662137B2/en
Priority to US15/497,357 priority patent/US10314608B2/en
Priority to US16/421,649 priority patent/US11653945B2/en
Assigned to WALK VASCULAR, LLC reassignment WALK VASCULAR, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOSTON SCIENTIFIC SCIMED, INC.
Priority to US17/887,910 priority patent/US20220387064A1/en
Priority to US17/887,879 priority patent/US20220387063A1/en
Priority to US17/887,819 priority patent/US20220387062A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • A61B17/32037Fluid jet cutting instruments for removing obstructions from inner organs or blood vessels, e.g. for atherectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/84Drainage tubes; Aspiration tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2212Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having a closed distal end, e.g. a loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters

Definitions

  • the present invention pertains generally to medical devices and methods of their use. More particularly, the present invention pertains to thrombectomy devices and methods of their use.
  • thrombolytic medications and mechanical devices such as fluid jets, ultrasound, laser, thermal, suction, balloons, rotating burrs, cutters, baskets, and wires.
  • Thrombolytic medications are simpler to administer and have advantages in reaching any desired vessel, but disadvantages in slower action, monitoring requirements, bleeding complications, high cost, inability to remove harder or more organized thrombi, and travel to other vessels besides the target vessel.
  • thrombectomy devices including fluid jet thrombectomy devices, have difficulty in treating large thrombi and in efficiently and effectively removing thrombus from large diameter vessels.
  • a fluid jet catheter may obtain some mixing and work at some distance, but doing so safely and capturing all the thrombus for removal is problematic.
  • a variety of thrombus removal catheters can be utilized in smaller vessels such as coronary or leg arteries, and so forth.
  • thrombus removal capability particularly for large vessels, including peripheral or central veins, pulmonary arteries and branches, chambers of the heart, larger arteries, and vascular prostheses.
  • a thrombectomy system may include an elongate shaft that defines a high pressure lumen and a low pressure lumen.
  • the high pressure lumen may terminate near an end of the low pressure lumen.
  • An expandable capture basket may be disposed near the end of the low pressure lumen.
  • the thrombectomy system may function without a capture basket.
  • a thrombectomy apparatus may include an elongate shaft, an evacuation lumen extending within the elongate shaft and a high pressure lumen extending within the elongate shaft.
  • a capture apparatus may be disposed within a wire lumen that extends within the elongate shaft such that the capture apparatus extends distally from the wire lumen.
  • an apparatus may include a first catheter shaft segment and a second catheter shaft segment.
  • the first catheter shaft segment may have a suction lumen and a high pressure lumen.
  • the second catheter shaft segment may have a wire lumen and a capture apparatus that is disposed at least partially within the wire lumen.
  • thrombi may be removed from within a vessel by using a high pressure jet as an ejector/aspiration device to pull the thrombi within the suction lumen.
  • the captured thrombi may be disrupted by the high pressure jet and the disrupted thrombi may be suctioned out of the vessel.
  • the high pressure jet may be located near the distal opening of the distal tip.
  • the high pressure jet may exit a high pressure lumen at an angle which generally parallels a proximal slope associated with the distal opening or at an angle which is somewhat more inclined toward an axial orientation.
  • thrombi may be removed from within a vessel by capturing the thrombi within a capture apparatus.
  • the captured thrombi may be disrupted with a high pressure jet and then the disrupted thrombi may be suctioned out of the vessel.
  • thrombi may be removed by providing a thrombectomy apparatus similar to that described above.
  • the thrombectomy apparatus may be advanced to a desired location within a patient's vasculature.
  • the expandable capture basket may be expanded, and thrombi may be captured therein.
  • a high pressure fluid source may be provided via the high pressure lumen in order to break apart the captured thrombi.
  • Suction may be applied to the low pressure lumen in order to evacuate the broken apart thrombi.
  • FIG. 1 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention
  • FIG. 2 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention
  • FIG. 3 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention
  • FIG. 4 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 5 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 5A is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 5B is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 6 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 7 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 8 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 9 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 10 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 11 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 12 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 13 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention.
  • FIG. 14 is a diagrammatic view of a thrombectomy system in accordance with an embodiment of the invention.
  • FIG. 15 is a diagrammatic view of a thrombectomy system in accordance with an embodiment of the invention.
  • the invention pertains generally to a thrombectomy apparatus that includes a low pressure or evacuation lumen, a high pressure lumen and an expandable capture basket.
  • a thrombectomy apparatus may be provided within an external sheath for storage, transportation and/or delivery.
  • FIG. 1 is a schematic cross-sectional view of a portion of a thrombectomy catheter 10 .
  • the thrombectomy catheter 10 includes an elongate shaft 12 that has a distal region 14 defining a distal end 16 .
  • a low pressure or evacuation lumen 18 extends through the distal region 12 and may, as shown, extend to the distal end 14 .
  • the evacuation lumen 18 may terminate at a distal opening 20 .
  • a high pressure lumen 22 may extend through the distal region 14 .
  • the high pressure lumen 22 may terminate at a distal opening 24 .
  • the high pressure lumen 22 may extend at least substantially parallel with the evacuation lumen 18 .
  • the high pressure lumen 22 may be formed by a tubular member extending within the evacuation lumen 18 . While not expressly shown in this Figure, it will be recognized that the elongate shaft 12 may include one or more additional lumens such as a capture basket lumen, a guidewire lumen, and the like.
  • the thrombectomy catheter 12 may be considered as being disposed within a patient's vasculature or other desired lumen or void that may contain thrombi or other undesirable material, although the environment is not expressly shown.
  • Thrombi 26 are generically shown disposed just distal of the distal end 16 of the elongate shaft 12 .
  • Thrombi 26 may be drawn towards and into the evacuation lumen 18 by applying a low pressure source to a proximal end (not illustrated) of the evacuation lumen 18 .
  • a low pressure source may provide suction, such as a vacuum source.
  • the low pressure within the evacuation lumen 18 may be generically represented by arrows 28 . These arrows 28 also indicate the direction in which the thrombi 26 will travel through the evacuation lumen 18 .
  • a high pressure fluid source may be placed in fluid communication with the high pressure lumen 22 .
  • a suitable fluid such as saline or another therapeutically acceptable fluid may travel in a direction indicated by arrows 30 .
  • the high pressure fluid may exit the high pressure lumen 22 through the distal opening 24 .
  • the distal opening 24 may be a jet orifice that causes the high pressure fluid to exit therefrom at a high rate of speed. The high pressure fluid may, therefore, impact the thrombi 26 and at least partially break the thrombi 26 into smaller pieces that may better fit through the evacuation lumen 18 without clogging the evacuation lumen 18 .
  • the distal opening 24 of the high pressure lumen 22 may be positioned relative to the distal opening 20 of the evacuation lumen 18 such that the high pressure fluid creates a jet that extends at least partially across the distal opening 20 .
  • the distal opening 24 may have a variety of different locations relative to the distal opening 20 of the evacuation lumen 18 .
  • the elongate shaft 12 may be formed of any suitable materials. In some cases, the elongate shaft 12 may be formed of one or more suitable polymeric materials.
  • suitable polymers include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers,
  • the evacuation lumen 18 and the high pressure lumen 22 may be formed as parallel lumens within a single catheter shaft.
  • the evacuation lumen 18 may be formed within a catheter shaft or as a separate elongate tubular member while the high pressure lumen 22 may be formed as an elongate tube provided at least partially on the exterior of the catheter shaft or elongate tubular member forming the evacuation lumen 18 .
  • a thrombectomy apparatus may also include a capture basket.
  • FIG. 2 illustrates an expandable capture basket 32 that may, if desired, be used in conjunction with or even incorporated into the thrombectomy catheter 10 discussed with respect to FIG. 1 .
  • the expandable capture basket 32 includes a frame structure 34 and a membrane 36 that is disposed over at least a portion of the frame structure 34 .
  • the membrane 36 may be formed of any suitable material such as those listed above and may be manipulated to have any desired level of porosity.
  • the membrane 36 may be constructed to be at least substantially permeable to blood but not to larger items such as thrombi. In some instances, it may be useful to construct the membrane 36 to be at least substantially impermeable to blood flow.
  • the frame structure 34 may include a first loop 38 and a second loop 40 .
  • the first loop 38 may have a proximal end 42 and a distal end 44 while the second loop 40 may have a distal end 46 and a proximal end 48 .
  • the first loop 38 may be formed by looping a first length of wire or filament and thus the proximal end 42 may include two wire or filament ends.
  • the second loop 40 may be formed by looping a second length of wire or filament and thus the distal end 46 may include two wire or filament ends.
  • the first loop 38 and/or the second loop 40 may instead be formed by welding or otherwise joining together the two ends of the first length of wire or filament to form a closed loop.
  • the distal end 44 of the first loop 38 may, if desired, be secured to the proximal end 48 of the second loop 40 .
  • the proximal end 42 of the first loop 38 may extend to and be secured to an actuation filament 50 while the distal end 46 of the second loop 40 may extend to and be secured to a wire 52 .
  • the expandable capture basket 32 may be either opened or closed, as desired, by axially moving the actuation filament 50 relative to the wire 52 .
  • FIG. 2 shows the expandable capture basket 32 in an open configuration while FIG. 3 shows the expandable capture basket 32 in a closed configuration.
  • FIG. 4 provides a better view of the frame structure 34 , as the membrane 36 has been removed.
  • structure may be provided to permit the actuation filament 50 to move axially relative to the wire 52 while constraining the actuation filament 50 and/or the wire 52 from excessive radial movement.
  • relative movement between the actuation filament 50 and the wire 52 may be controlled by providing at least one of the actuation filament 50 and/or the wire 52 within an appropriate lumen within the thrombectomy catheter 10 ( FIG. 1 ).
  • a suitable lumen may be provided either parallel to or even within the evacuation lumen 18 , for example.
  • the actuation filament 50 and the wire 52 may be formed of any suitable material.
  • the actuation filament 50 and the wire 52 may, independently, be formed of any suitable polymeric or metallic material.
  • suitable materials include metal, metal alloy, polymer (some examples of which are disclosed above), a metal-polymer composite, combinations thereof, and the like, or any other suitable material.
  • suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY®& C276®), other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL®400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.
  • the actuation filament 50 and the wire 52 are wire structures. In some instances, however, part or all of the actuation filament 50 and/or the wire 52 may be hollow and may be in fluid communication with a high pressure fluid source such as the high pressure lumen 22 ( FIG. 1 ). In some situations, it may be desirable to have one or more high pressure jets disposed at one or more locations within the frame structure 34 . For example, it may be desirable to have a high pressure jet located at a midpoint 54 of the frame structure 34 . In some cases, it may be desirable to have one or more high pressure jets disposed along the first loop 38 and/or the second loop 40 . In some cases, it is contemplated that the actuation filament 50 and the wire 52 may be wire structures while another feed line (not seen in this Figure) provides fluid to the aforementioned high pressure jets.
  • a thrombectomy assembly 56 is shown as including the thrombectomy catheter 10 and the expandable capture basket 32 as previously described.
  • the actuation filament 50 and the wire 52 are shown extending proximally next to the elongate shaft 12 .
  • the elongate shaft 12 may include one or more additional lumens (not illustrated) through which the actuation filament 50 and/or the wire 52 may extend.
  • a separate catheter (not shown) may provide a lumen or lumens suitable to constrain the actuation filament 50 and/or the wire 52 .
  • FIGS. 5A and 5B are schematic cross-sectional views providing several examples of how the elongate shaft 12 could accommodate the actuation filament 50 and the wire 52 .
  • FIG. 5A provides an example in a wire lumen 58 extends through the elongate shaft 12 and is parallel with the evacuation lumen 18 and the high pressure lumen 22 .
  • the wire lumen 58 may be sized to accommodate both the actuation filament 50 and the wire 52 .
  • the wire lumen 58 may have a diameter that is large enough to permit relative axial movement between the actuation filament 50 and the wire 52 yet small enough to limit relative radial movement between the actuation filament 50 and the wire 52 .
  • FIG. 5B provides an example in which an actuation filament lumen 60 and a wire lumen 62 extend through the elongate shaft 12 and are parallel with the evacuation lumen 18 and the high pressure lumen 22 .
  • the actuation filament lumen 60 may be sized to slidingly accommodate the actuation filament 50 and the wire lumen 62 may be sized to slidingly accommodate the wire 52 .
  • FIGS. 5A and 5B show the additional lumens as being formed within a single shaft, it will be recognized that one or more of wire lumen 58 , actuation filament lumen 60 and wire lumen 62 may be formed within distinct and separate tubular members that may be joined together to form the elongate shaft 12 .
  • FIG. 6 is similar to FIG. 5 , but adds a high pressure jet 58 located near the distal end 44 of the first loop 38 .
  • the high pressure jet 58 may simply be a small aperture formed within a tube forming the first loop 38 , particularly if the tube forming the first loop 38 is hollow and is in fluid communication with a high pressure fluid source such as the high pressure lumen 22 .
  • the high pressure jet 58 may be an orifice provided in a separate fluid line (not illustrated).
  • the high pressure jet 58 may be considered as being pointed at least partially towards the distal opening 20 of the evacuation lumen 18 .
  • the high pressure jet 58 may be pointed in a more downward direction.
  • the high pressure jet 58 may be aimed more directly at an interior surface of the membrane 36 .
  • two, three or more high pressure jets such as high pressure jet 58 may be disposed at various locations in and near the expandable capture basket 32 .
  • FIG. 7 provides an illustrative thrombectomy apparatus 64 that is configured to provide pressurized fluid to one or more locations within a capture basket.
  • the thrombectomy apparatus 64 includes a catheter portion 66 and a basket portion 68 .
  • the catheter portion 66 includes a proximal shaft section 70 and an intermediate shaft section 72 that is disposed at least partially within the proximal shaft section 70 and extends distally therefrom.
  • a distal shaft section 74 extends from the intermediate shaft section 72 and extends distally to a distal tip 76 .
  • the catheter portion 66 may include one or more lumens such as an evacuation lumen, a high pressure fluid lumen, wire lumen, guidewire lumen, and the like.
  • the proximal shaft section 70 and the intermediate shaft section 72 may be configured to provide an evacuation lumen similar to the evacuation lumen 18 previously discussed.
  • An evacuation lumen may, for example, terminate at a distal opening 78 .
  • the evacuation lumen (not seen in this view) may be placed in fluid communication with a low pressure source such as suction to draw thrombi and other unwanted material into the evacuation lumen.
  • a proximal high pressure fluid line 80 may extend parallel to the intermediate shaft section 72 .
  • the proximal high pressure fluid line 80 may extend proximally within the proximal shaft section and may be in fluid communication with a high pressure fluid source.
  • the proximal high pressure fluid line 80 may extend to a junction 82 , from which a distal high pressure fluid line 84 may extend distally to the distal tip 76 .
  • the junction 82 may include a jet orifice, but this is not required.
  • the basket portion 68 is shown without a membrane, but it will be recognized that the basket portion 68 may include a membrane similar to the membrane 36 described previously with respect to FIG. 2 .
  • the basket portion 68 includes a tubular line 86 that extends proximally from the distal tip 76 .
  • the distal tip 76 may include appropriate plumbing connections such that the tubular line 86 may be in fluid communication with the distal high pressure fluid line 84 .
  • the tubular line 86 may extend to a junction 88 . If desired, the junction 88 may also include a jet orifice.
  • a pair of actuation filaments 90 are connected to the junction 88 and extend proximally therefrom.
  • the actuation filaments 90 enter the proximal shaft section 70 via an entrance 92 and extend proximally through the proximal shaft section 90 .
  • the basket portion 68 may be moved between an open configuration (as illustrated) and a closed configuration.
  • the actuation filaments 90 may be wires.
  • one or both of the actuation filaments 90 may be hollow tubes that may be in fluid communication with the junction 88 .
  • FIGS. 8 through 13 provide illustrative but non-limiting examples of thrombectomy apparatuses. For clarity, certain elements such as wire lumens and capture basket membranes are excluded from the drawings. It will be recognized, however, that these elements may be included, as desired.
  • FIG. 8 shows a thrombectomy apparatus 94 that may be either a monorail or an over-the-wire type.
  • the thrombectomy apparatus 94 includes a guidewire lumen 96 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 96 is seen in the Figure, one of skill will recognize that the guidewire lumen 96 may have a relatively short length if the thrombectomy apparatus 94 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 96 may extend a substantial distance proximally if the thrombectomy apparatus 94 is designed as an over-the-wire catheter.
  • the thrombectomy apparatus 94 includes an elongate shaft 100 extending to a distal end 102 .
  • the guidewire lumen 96 may, if desired, be formed as an integral portion of the elongate shaft 100 .
  • An evacuation lumen 104 is formed within the elongate shaft 100 and extends distally to a distal opening 106 .
  • the evacuation lumen 104 may be in fluid communication with a low pressure source such as vacuum.
  • the distal opening 106 may be tapered to facilitate advancement of the thrombectomy apparatus 94 through a patient's vasculature, for example, yet still be sized appropriate to accommodate thrombi and other similar material.
  • the elongate shaft 100 also includes a high pressure lumen 108 that extends distally within the elongate shaft 100 .
  • the high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. It can be seen that in this configuration, the jet orifice 110 may provide a fluid jet that traverses the evacuation lumen 104 and thus may help break up any thrombi passing into the evacuation lumen 104 .
  • FIG. 9 shows a thrombectomy apparatus 112 that is configured as an over-the-wire type.
  • the thrombectomy apparatus 112 includes an elongate shaft 114 extending to a distal end 116 .
  • An evacuation lumen 118 is formed within the elongate shaft 114 and extends distally to a distal opening 120 .
  • a guidewire 98 extends through the evacuation lumen 118 .
  • the evacuation lumen 118 may be in fluid communication with a low pressure source such as vacuum.
  • a low pressure source such as vacuum.
  • the distal opening 120 may be tapered to facilitate advancement of the thrombectomy apparatus 112 through a patient's vasculature, for example, yet still be sized appropriate to accommodate thrombi and other similar material.
  • the elongate shaft 101 140 also includes a high pressure lumen 108 that extends distally within the elongate shaft 100 .
  • the high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. It can be seen that in this configuration, the jet orifice 110 may provide a fluid jet that traverses the evacuation lumen 118 and thus may help break up any thrombi passing into the evacuation lumen 118 .
  • FIG. 10 shows a thrombectomy apparatus 120 that may be either a monorail or an over-the-wire type.
  • the thrombectomy apparatus 120 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, one of skill will recognize that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 120 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 120 is designed as an over-the-wire catheter.
  • the thrombectomy apparatus 120 includes an elongate shaft 124 extending to a distal end 126 .
  • the guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124 .
  • An evacuation lumen 128 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 128 may have a side opening 130 that is sized to permit thrombi and similar material to enter the evacuation lumen 128 through the side opening 130 .
  • the evacuation lumen 128 may be in fluid communication with a low pressure source such as vacuum.
  • the elongate shaft 124 may terminate in an angled end 132 to facilitate advancement of the thrombectomy apparatus 120 through a patient's vasculature, for example.
  • the elongate shaft 124 also includes a high pressure lumen 108 that extends distally within the elongate shaft 124 .
  • the high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. It can be seen that in this configuration, the jet orifice 110 may provide a fluid jet that traverses the evacuation lumen 128 and thus may help break up any thrombi passing into the evacuation lumen 128 . In this configuration, the jet orifice 110 may be positioned at or near a midpoint of the side opening 130 .
  • FIG. 11 shows a thrombectomy apparatus 134 that may be either a monorail or an over-the-wire type.
  • the thrombectomy apparatus 134 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, it will be recognized that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 134 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 134 is designed as an over-the-wire catheter.
  • the thrombectomy apparatus 134 includes an elongate shaft 124 extending to a distal end 126 .
  • the guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124 .
  • An evacuation lumen 128 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 128 may have a side opening 130 that is sized to permit thrombi and similar material to enter the evacuation lumen 128 through the side opening 130 .
  • the evacuation lumen 128 may be in fluid communication with a low pressure source such as vacuum.
  • the elongate shaft 124 may terminate in an angled end 132 to facilitate advancement of the thrombectomy apparatus 134 through a patient's vasculature, for example.
  • the elongate shaft 124 also includes a high pressure lumen 108 that extends distally within the elongate shaft 124 .
  • the high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. In this configuration, the jet orifice 110 may be positioned at or near a distal edge of the side opening 130 .
  • FIG. 12 shows a thrombectomy apparatus 136 that may be either a monorail or an over-the-wire type.
  • the thrombectomy apparatus 136 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, one of skill will recognize that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 136 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 136 is designed as an over-the-wire catheter.
  • the thrombectomy apparatus 136 includes an elongate shaft 138 extending to a distal end 140 .
  • the guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124 .
  • An evacuation lumen 142 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 142 may have a side opening 144 that is sized to permit thrombi and similar material to enter the evacuation lumen 142 through the side opening 144 .
  • the evacuation lumen 142 may be in fluid communication with a low pressure source such as vacuum.
  • the elongate shaft 138 may terminate in an angled end 146 to facilitate advancement of the thrombectomy apparatus 136 through a patient's vasculature, for example.
  • the angled end 146 may include an interior curved surface 148 , if desired to control flow characteristics within the evacuation lumen 142 .
  • the elongate shaft 138 also includes a high pressure lumen 150 that extends distally within the elongate shaft 138 .
  • the high pressure lumen 150 includes a jet orifice 152 that is disposed in a distal end of the high pressure lumen 150 .
  • the jet 152 110 may provide a fluid jet that can cause turbulence within a distal region 154 of the evacuation lumen 142 . In some cases, this turbulence may help break up any thrombi passing into the evacuation lumen 142 .
  • FIG. 13 shows a thrombectomy apparatus 156 that may be either a monorail or an over-the-wire type.
  • the thrombectomy apparatus 156 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, one of skill will recognize that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 156 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 156 is designed as an over-the-wire catheter.
  • the thrombectomy apparatus 156 includes an elongate shaft 138 extending to a distal end 140 .
  • the guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124 .
  • An evacuation lumen 142 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 142 may have a side opening 144 that is sized to permit thrombi and similar material to enter the evacuation lumen 142 through the side opening 144 .
  • the evacuation lumen 142 may be in fluid communication with a low pressure source such as vacuum.
  • the elongate shaft 138 may terminate in an angled end 146 to facilitate advancement of the thrombectomy apparatus 156 through a patient's vasculature, for example.
  • the angled end 146 may include an interior curved surface 148 , if desired to control flow characteristics within the evacuation lumen 142 .
  • the elongate shaft 138 also includes a high pressure lumen 150 that extends distally within the elongate shaft 138 . Unlike FIG. 12 , in FIG. 13 the high pressure lumen 150 is located away from the side opening 144 .
  • the high pressure lumen 150 includes a jet orifice 152 that is disposed in a distal end of the high pressure lumen 150 . It can be seen that in this configuration, the jet 152 110 may provide a fluid jet that can cause turbulence within a distal region 154 of the evacuation lumen 142 . In some cases, this turbulence may help break up any thrombi passing into the evacuation lumen 142 .
  • FIG. 14 schematically illustrates a thrombectomy system 158 .
  • the thrombectomy system 158 may be considered as being a self-contained assembly that can be operated without exterior fluid or power connections.
  • the thrombectomy system 158 includes a thrombectomy apparatus 160 , similar to those described above with respect to FIGS. 1 through 13 .
  • a working fluid reservoir 162 may be pressurized via a propellant that is stored within a propellant reservoir 164 .
  • the propellant reservoir 164 may contain a propellant in liquid form. As the propellant vaporizes, the resultant gas may travel through a line 166 and into the working fluid reservoir 162 . As diagrammatically illustrated, the propellant reservoir 164 may be about half full with a liquefied propellant (bottom half as drawn) and about half full with a vaporized propellant. Similarly, the bottom half of the working fluid reservoir 162 may be filled with a liquid working fluid such as saline while the top half is filled with the vaporized propellant. In some cases, the propellant is carbon dioxide. As a result, the working fluid in working fluid reservoir 162 is pressurized as the propellant in propellant reservoir 164 vaporizes. Alternatively, it is contemplated that the working fluid may be pressurized externally. For example, an external source of a pressurized gas such as oxygen or nitrogen could be used to pressure the working fluid within the working fluid reservoir 162 .
  • a pressurized gas such as oxygen or nitrogen could be used to pressure the working fluid
  • Pressurized working fluid may be provided to the thrombectomy apparatus 160 via a supply line 168 .
  • pressurized working fluid may also be provided to a suction device 170 via another supply line 172 .
  • the suction device 170 may, for example, be a jet pump suction device, a venture, or the like, and may be connected to a low pressure lumen within the thrombectomy apparatus 160 via supply line 174 .
  • suction may instead be provided externally, such as a vacuum port within a hospital room, for example.
  • Any thrombi or other material removed via the thrombectomy apparatus 160 may be collected in a collection reservoir 176 .
  • the collection reservoir 176 may be a reusable container.
  • the collection reservoir 176 may be a disposable bag or other similar structure.
  • FIG. 15 shows a thrombectomy apparatus which may function without an associated capture device.
  • Thrombectomy catheter 10 includes an elongate shaft 12 having an evacuation lumen 18 and a generally parallel high pressure lumen 22 .
  • the elongate shaft 12 optionally may accommodate the high pressure lumen 22 , a guide wire lumen (not shown) and the like as shown in FIG. 5A .
  • the high pressure lumen 22 may be provided as a distinct and separate tubular member that may be joined to the evacuation lumen 18 to form elongate shaft 12 .
  • the evacuation lumen 18 may terminate at a distal opening 20 .
  • the high pressure lumen 22 may terminate near the distal opening 20 of elongate shaft 12 at a distal opening 24 .
  • the distal opening 24 may be formed in a distal plug 16 inserted in the high pressure lumen 22 .
  • Thrombi 26 generically shown disposed just distal of the distal opening 20 of elongate shaft 12 , may be drawn into evacuation lumen 18 by providing a low pressure source to a proximal end (not illustrated) of the evacuation lumen 18 .
  • a suitable fluid such as a saline or other therapeutically acceptable fluid may travel in a direction indicated by arrow 30 within high pressure lumen 22 .
  • the flow may join a flow existing within evacuation lumen 18 generally in the direction of arrow 28 .
  • the flow exiting distal opening 24 may provide an ejector/aspirator action to assist in drawing thrombus 26 within elongate shaft 12 . It is believed that the flow exiting distal opening 24 may disrupt and dilute thrombus as it enters evacuation lumen 18 .
  • Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure.
  • Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like.
  • a degree of MRI compatibility may be imparted into parts of the devices described herein.
  • MRI Magnetic Resonance Imaging
  • Some ferromagnetic materials may not be suitable as they may create artifacts in an MRI image.
  • the devices described herein may include materials that the MRI machine can image.
  • Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
  • cobalt-chromium-molybdenum alloys e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like
  • nickel-cobalt-chromium-molybdenum alloys e.g., UNS: R30035 such as MP35-N® and the like
  • nitinol and the like, and others.
  • some of the devices described herein may include a coating such as a lubricious coating or a hydrophilic coating.
  • Hydrophobic coatings such as fluoropolymers provide a dry lubricity.
  • Lubricious coatings improve steerability and improve lesion crossing capability.
  • Suitable lubricious polymers are well known in the art and may include silicone and the like, hydrophilic polymers such as high-density polyethylene (HDPE), polytetrafluoroethylene (PTFE), polyarylene oxides, polyvinylpyrolidones, polyvinylalcohols, hydroxy alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof.
  • Hydrophilic polymers may be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coatings with suitable lubricity, bonding, and solubility.

Abstract

A thrombectomy system may include an elongate shaft that defines a high pressure lumen and a low pressure lumen. The high pressure lumen may terminate near an end of the low pressure lumen. An expandable capture basket may be disposed near the end of the low pressure lumen. A thrombectomy apparatus may include an elongate shaft, an evacuation lumen extending within the elongate shaft and a high pressure lumen extending within the elongate shaft. A capture apparatus may be disposed within a wire lumen that extends within the elongate shaft such that the capture apparatus extends distally from the wire lumen.

Description

RELATED APPLICATIONS
This application is the parent of U.S. application Ser. No. 12/040,179, filed Feb. 29, 2008.
This application claims priority to U.S. Provisional Application No. 60/888,265 filed Feb. 5, 2007.
TECHNICAL FIELD
The present invention pertains generally to medical devices and methods of their use. More particularly, the present invention pertains to thrombectomy devices and methods of their use.
BACKGROUND
A variety of methods have been developed to remove thrombi and other unwanted material from a patient's vasculature. Examples include thrombolytic medications and mechanical devices such as fluid jets, ultrasound, laser, thermal, suction, balloons, rotating burrs, cutters, baskets, and wires. Thrombolytic medications are simpler to administer and have advantages in reaching any desired vessel, but disadvantages in slower action, monitoring requirements, bleeding complications, high cost, inability to remove harder or more organized thrombi, and travel to other vessels besides the target vessel. Mechanical devices are often faster and are specific to the target vessel, but have disadvantages in being larger size, difficulty in reaching a target vessel, local injury to the vessel wall, mechanical plugging, complicated and time-consuming setup, complicated operation requiring operator training and skill, and high cost; the effectiveness on harder or more organized thrombi varies, with the more effective devices being more invasive, more dangerous, or more expensive.
There are many situations in which it is desirable to remove thrombus or blood clots from the body, particularly in large blood vessels, heart chambers, or in extravascular spaces which could fill with blood during hemorrhage such as retroperitoneal bleeding, or other spaces such as cerebrospinal fluid spaces, hollow body organs, and so forth.
Existing thrombectomy devices, including fluid jet thrombectomy devices, have difficulty in treating large thrombi and in efficiently and effectively removing thrombus from large diameter vessels. A fluid jet catheter may obtain some mixing and work at some distance, but doing so safely and capturing all the thrombus for removal is problematic. A variety of thrombus removal catheters can be utilized in smaller vessels such as coronary or leg arteries, and so forth.
Thus, a need remains for improved thrombus removal capability particularly for large vessels, including peripheral or central veins, pulmonary arteries and branches, chambers of the heart, larger arteries, and vascular prostheses.
SUMMARY
The invention pertains generally to devices for removing thrombi and other unwanted materials from within vessels such as relatively large arteries and veins. In an illustrative but non-limiting example, a thrombectomy system may include an elongate shaft that defines a high pressure lumen and a low pressure lumen. The high pressure lumen may terminate near an end of the low pressure lumen. An expandable capture basket may be disposed near the end of the low pressure lumen. In some applications, the thrombectomy system may function without a capture basket.
In another illustrative but non-limiting example, a thrombectomy apparatus may include an elongate shaft, an evacuation lumen extending within the elongate shaft and a high pressure lumen extending within the elongate shaft. A capture apparatus may be disposed within a wire lumen that extends within the elongate shaft such that the capture apparatus extends distally from the wire lumen.
In another illustrative but non-limiting example, an apparatus may include a first catheter shaft segment and a second catheter shaft segment. The first catheter shaft segment may have a suction lumen and a high pressure lumen. The second catheter shaft segment may have a wire lumen and a capture apparatus that is disposed at least partially within the wire lumen.
In another illustrative but non-limiting example, thrombi may be removed from within a vessel by using a high pressure jet as an ejector/aspiration device to pull the thrombi within the suction lumen. The captured thrombi may be disrupted by the high pressure jet and the disrupted thrombi may be suctioned out of the vessel. In such apparatus, the high pressure jet may be located near the distal opening of the distal tip. In some embodiments, the high pressure jet may exit a high pressure lumen at an angle which generally parallels a proximal slope associated with the distal opening or at an angle which is somewhat more inclined toward an axial orientation.
In another illustrative but non-limiting example, thrombi may be removed from within a vessel by capturing the thrombi within a capture apparatus. The captured thrombi may be disrupted with a high pressure jet and then the disrupted thrombi may be suctioned out of the vessel.
In another illustrative but non-limiting example, thrombi may be removed by providing a thrombectomy apparatus similar to that described above. The thrombectomy apparatus may be advanced to a desired location within a patient's vasculature. The expandable capture basket may be expanded, and thrombi may be captured therein. A high pressure fluid source may be provided via the high pressure lumen in order to break apart the captured thrombi. Suction may be applied to the low pressure lumen in order to evacuate the broken apart thrombi.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and Detailed Description that follow more particularly exemplify these embodiments.
BRIEF DESCRIPTION OF THE FIGURES
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
FIG. 1 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 2 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 3 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 4 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 5 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 5A is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 5B is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 6 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 7 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 8 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 9 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 10 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 11 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 12 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention;
FIG. 13 is a diagrammatic view of a portion of a thrombectomy apparatus in accordance with an embodiment of the invention; and
FIG. 14 is a diagrammatic view of a thrombectomy system in accordance with an embodiment of the invention.
FIG. 15 is a diagrammatic view of a thrombectomy system in accordance with an embodiment of the invention.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
DETAILED DESCRIPTION
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
The invention pertains generally to a thrombectomy apparatus that includes a low pressure or evacuation lumen, a high pressure lumen and an expandable capture basket. In some cases, a thrombectomy apparatus may be provided within an external sheath for storage, transportation and/or delivery.
Merely for clarity, some Figures show only certain elements of the invention while not showing certain other elements. It will be understood that these elements may be combined as desired in practicing the invention.
FIG. 1 is a schematic cross-sectional view of a portion of a thrombectomy catheter 10. The thrombectomy catheter 10 includes an elongate shaft 12 that has a distal region 14 defining a distal end 16. In the illustrated embodiment, a low pressure or evacuation lumen 18 extends through the distal region 12 and may, as shown, extend to the distal end 14. The evacuation lumen 18 may terminate at a distal opening 20. A high pressure lumen 22 may extend through the distal region 14. The high pressure lumen 22 may terminate at a distal opening 24.
In some instances, as illustrated, the high pressure lumen 22 may extend at least substantially parallel with the evacuation lumen 18. In some cases, the high pressure lumen 22 may be formed by a tubular member extending within the evacuation lumen 18. While not expressly shown in this Figure, it will be recognized that the elongate shaft 12 may include one or more additional lumens such as a capture basket lumen, a guidewire lumen, and the like.
In FIG. 1, the thrombectomy catheter 12 may be considered as being disposed within a patient's vasculature or other desired lumen or void that may contain thrombi or other undesirable material, although the environment is not expressly shown. Thrombi 26 are generically shown disposed just distal of the distal end 16 of the elongate shaft 12. Thrombi 26 may be drawn towards and into the evacuation lumen 18 by applying a low pressure source to a proximal end (not illustrated) of the evacuation lumen 18. A low pressure source may provide suction, such as a vacuum source. The low pressure within the evacuation lumen 18 may be generically represented by arrows 28. These arrows 28 also indicate the direction in which the thrombi 26 will travel through the evacuation lumen 18.
In some cases, if desired, a high pressure fluid source may be placed in fluid communication with the high pressure lumen 22. A suitable fluid such as saline or another therapeutically acceptable fluid may travel in a direction indicated by arrows 30. In some instances, the high pressure fluid may exit the high pressure lumen 22 through the distal opening 24. In some cases, the distal opening 24 may be a jet orifice that causes the high pressure fluid to exit therefrom at a high rate of speed. The high pressure fluid may, therefore, impact the thrombi 26 and at least partially break the thrombi 26 into smaller pieces that may better fit through the evacuation lumen 18 without clogging the evacuation lumen 18.
In some cases, as illustrated, the distal opening 24 of the high pressure lumen 22 may be positioned relative to the distal opening 20 of the evacuation lumen 18 such that the high pressure fluid creates a jet that extends at least partially across the distal opening 20. As will be discussed with respect to subsequent Figures, the distal opening 24 may have a variety of different locations relative to the distal opening 20 of the evacuation lumen 18.
The elongate shaft 12 may be formed of any suitable materials. In some cases, the elongate shaft 12 may be formed of one or more suitable polymeric materials. Examples of suitable polymers include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like.
In some cases, the evacuation lumen 18 and the high pressure lumen 22 may be formed as parallel lumens within a single catheter shaft. In some cases, the evacuation lumen 18 may be formed within a catheter shaft or as a separate elongate tubular member while the high pressure lumen 22 may be formed as an elongate tube provided at least partially on the exterior of the catheter shaft or elongate tubular member forming the evacuation lumen 18.
As discussed above, a thrombectomy apparatus may also include a capture basket. FIG. 2 illustrates an expandable capture basket 32 that may, if desired, be used in conjunction with or even incorporated into the thrombectomy catheter 10 discussed with respect to FIG. 1. The expandable capture basket 32 includes a frame structure 34 and a membrane 36 that is disposed over at least a portion of the frame structure 34. In some cases, the membrane 36 may be formed of any suitable material such as those listed above and may be manipulated to have any desired level of porosity. In some cases, the membrane 36 may be constructed to be at least substantially permeable to blood but not to larger items such as thrombi. In some instances, it may be useful to construct the membrane 36 to be at least substantially impermeable to blood flow.
In some cases, the frame structure 34 may include a first loop 38 and a second loop 40. The first loop 38 may have a proximal end 42 and a distal end 44 while the second loop 40 may have a distal end 46 and a proximal end 48. It will be recognized that the first loop 38 may be formed by looping a first length of wire or filament and thus the proximal end 42 may include two wire or filament ends. Similarly, the second loop 40 may be formed by looping a second length of wire or filament and thus the distal end 46 may include two wire or filament ends. In some cases, it is contemplated that the first loop 38 and/or the second loop 40 may instead be formed by welding or otherwise joining together the two ends of the first length of wire or filament to form a closed loop.
In some instances, the distal end 44 of the first loop 38 may, if desired, be secured to the proximal end 48 of the second loop 40. In some cases, the proximal end 42 of the first loop 38 may extend to and be secured to an actuation filament 50 while the distal end 46 of the second loop 40 may extend to and be secured to a wire 52. It can be seen that the expandable capture basket 32 may be either opened or closed, as desired, by axially moving the actuation filament 50 relative to the wire 52. FIG. 2 shows the expandable capture basket 32 in an open configuration while FIG. 3 shows the expandable capture basket 32 in a closed configuration. FIG. 4 provides a better view of the frame structure 34, as the membrane 36 has been removed.
It will be recognized that structure may be provided to permit the actuation filament 50 to move axially relative to the wire 52 while constraining the actuation filament 50 and/or the wire 52 from excessive radial movement. In some cases, relative movement between the actuation filament 50 and the wire 52 may be controlled by providing at least one of the actuation filament 50 and/or the wire 52 within an appropriate lumen within the thrombectomy catheter 10 (FIG. 1). In some instances, a suitable lumen may be provided either parallel to or even within the evacuation lumen 18, for example.
The actuation filament 50 and the wire 52 may be formed of any suitable material. In some cases, the actuation filament 50 and the wire 52 may, independently, be formed of any suitable polymeric or metallic material. Examples of suitable materials include metal, metal alloy, polymer (some examples of which are disclosed above), a metal-polymer composite, combinations thereof, and the like, or any other suitable material. Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY®& C276®), other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL®400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; combinations thereof, and the like; or any other suitable material.
As noted above, in some cases the actuation filament 50 and the wire 52 are wire structures. In some instances, however, part or all of the actuation filament 50 and/or the wire 52 may be hollow and may be in fluid communication with a high pressure fluid source such as the high pressure lumen 22 (FIG. 1). In some situations, it may be desirable to have one or more high pressure jets disposed at one or more locations within the frame structure 34. For example, it may be desirable to have a high pressure jet located at a midpoint 54 of the frame structure 34. In some cases, it may be desirable to have one or more high pressure jets disposed along the first loop 38 and/or the second loop 40. In some cases, it is contemplated that the actuation filament 50 and the wire 52 may be wire structures while another feed line (not seen in this Figure) provides fluid to the aforementioned high pressure jets.
Turning now to FIG. 5, a thrombectomy assembly 56 is shown as including the thrombectomy catheter 10 and the expandable capture basket 32 as previously described. As illustrated, the actuation filament 50 and the wire 52 are shown extending proximally next to the elongate shaft 12. It will be recognized that the elongate shaft 12 may include one or more additional lumens (not illustrated) through which the actuation filament 50 and/or the wire 52 may extend. In some cases, a separate catheter (not shown) may provide a lumen or lumens suitable to constrain the actuation filament 50 and/or the wire 52.
FIGS. 5A and 5B are schematic cross-sectional views providing several examples of how the elongate shaft 12 could accommodate the actuation filament 50 and the wire 52. FIG. 5A provides an example in a wire lumen 58 extends through the elongate shaft 12 and is parallel with the evacuation lumen 18 and the high pressure lumen 22. The wire lumen 58 may be sized to accommodate both the actuation filament 50 and the wire 52. In some instances, the wire lumen 58 may have a diameter that is large enough to permit relative axial movement between the actuation filament 50 and the wire 52 yet small enough to limit relative radial movement between the actuation filament 50 and the wire 52.
FIG. 5B provides an example in which an actuation filament lumen 60 and a wire lumen 62 extend through the elongate shaft 12 and are parallel with the evacuation lumen 18 and the high pressure lumen 22. The actuation filament lumen 60 may be sized to slidingly accommodate the actuation filament 50 and the wire lumen 62 may be sized to slidingly accommodate the wire 52. While FIGS. 5A and 5B show the additional lumens as being formed within a single shaft, it will be recognized that one or more of wire lumen 58, actuation filament lumen 60 and wire lumen 62 may be formed within distinct and separate tubular members that may be joined together to form the elongate shaft 12.
FIG. 6 is similar to FIG. 5, but adds a high pressure jet 58 located near the distal end 44 of the first loop 38. In some cases, the high pressure jet 58 may simply be a small aperture formed within a tube forming the first loop 38, particularly if the tube forming the first loop 38 is hollow and is in fluid communication with a high pressure fluid source such as the high pressure lumen 22. In some instances, it is contemplated that the high pressure jet 58 may be an orifice provided in a separate fluid line (not illustrated).
As illustrated, the high pressure jet 58 may be considered as being pointed at least partially towards the distal opening 20 of the evacuation lumen 18. In some cases, the high pressure jet 58 may be pointed in a more downward direction. In some instances, the high pressure jet 58 may be aimed more directly at an interior surface of the membrane 36. In some cases, two, three or more high pressure jets such as high pressure jet 58 may be disposed at various locations in and near the expandable capture basket 32.
FIG. 7 provides an illustrative thrombectomy apparatus 64 that is configured to provide pressurized fluid to one or more locations within a capture basket. The thrombectomy apparatus 64 includes a catheter portion 66 and a basket portion 68. The catheter portion 66 includes a proximal shaft section 70 and an intermediate shaft section 72 that is disposed at least partially within the proximal shaft section 70 and extends distally therefrom. A distal shaft section 74 extends from the intermediate shaft section 72 and extends distally to a distal tip 76. It will be recognized that the catheter portion 66 may include one or more lumens such as an evacuation lumen, a high pressure fluid lumen, wire lumen, guidewire lumen, and the like.
The proximal shaft section 70 and the intermediate shaft section 72 may be configured to provide an evacuation lumen similar to the evacuation lumen 18 previously discussed. An evacuation lumen may, for example, terminate at a distal opening 78. As discussed previously, the evacuation lumen (not seen in this view) may be placed in fluid communication with a low pressure source such as suction to draw thrombi and other unwanted material into the evacuation lumen.
A proximal high pressure fluid line 80 may extend parallel to the intermediate shaft section 72. The proximal high pressure fluid line 80 may extend proximally within the proximal shaft section and may be in fluid communication with a high pressure fluid source. The proximal high pressure fluid line 80 may extend to a junction 82, from which a distal high pressure fluid line 84 may extend distally to the distal tip 76. If desired, the junction 82 may include a jet orifice, but this is not required.
For clarity, the basket portion 68 is shown without a membrane, but it will be recognized that the basket portion 68 may include a membrane similar to the membrane 36 described previously with respect to FIG. 2. The basket portion 68 includes a tubular line 86 that extends proximally from the distal tip 76. In some instances, the distal tip 76 may include appropriate plumbing connections such that the tubular line 86 may be in fluid communication with the distal high pressure fluid line 84. In some cases, the tubular line 86 may extend to a junction 88. If desired, the junction 88 may also include a jet orifice.
A pair of actuation filaments 90 are connected to the junction 88 and extend proximally therefrom. In some cases, the actuation filaments 90 enter the proximal shaft section 70 via an entrance 92 and extend proximally through the proximal shaft section 90. By moving the actuation filaments 90 in an axial direction, the basket portion 68 may be moved between an open configuration (as illustrated) and a closed configuration. In some instances, the actuation filaments 90 may be wires. In some cases, one or both of the actuation filaments 90 may be hollow tubes that may be in fluid communication with the junction 88.
FIGS. 8 through 13 provide illustrative but non-limiting examples of thrombectomy apparatuses. For clarity, certain elements such as wire lumens and capture basket membranes are excluded from the drawings. It will be recognized, however, that these elements may be included, as desired.
FIG. 8 shows a thrombectomy apparatus 94 that may be either a monorail or an over-the-wire type. The thrombectomy apparatus 94 includes a guidewire lumen 96 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 96 is seen in the Figure, one of skill will recognize that the guidewire lumen 96 may have a relatively short length if the thrombectomy apparatus 94 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 96 may extend a substantial distance proximally if the thrombectomy apparatus 94 is designed as an over-the-wire catheter.
The thrombectomy apparatus 94 includes an elongate shaft 100 extending to a distal end 102. The guidewire lumen 96 may, if desired, be formed as an integral portion of the elongate shaft 100. An evacuation lumen 104 is formed within the elongate shaft 100 and extends distally to a distal opening 106. The evacuation lumen 104 may be in fluid communication with a low pressure source such as vacuum. In some instances, as illustrated, the distal opening 106 may be tapered to facilitate advancement of the thrombectomy apparatus 94 through a patient's vasculature, for example, yet still be sized appropriate to accommodate thrombi and other similar material.
The elongate shaft 100 also includes a high pressure lumen 108 that extends distally within the elongate shaft 100. The high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. It can be seen that in this configuration, the jet orifice 110 may provide a fluid jet that traverses the evacuation lumen 104 and thus may help break up any thrombi passing into the evacuation lumen 104.
FIG. 9 shows a thrombectomy apparatus 112 that is configured as an over-the-wire type. The thrombectomy apparatus 112 includes an elongate shaft 114 extending to a distal end 116. An evacuation lumen 118 is formed within the elongate shaft 114 and extends distally to a distal opening 120. A guidewire 98 extends through the evacuation lumen 118.
The evacuation lumen 118 may be in fluid communication with a low pressure source such as vacuum. In some instances, as illustrated, the distal opening 120 may be tapered to facilitate advancement of the thrombectomy apparatus 112 through a patient's vasculature, for example, yet still be sized appropriate to accommodate thrombi and other similar material.
The elongate shaft 101 140 also includes a high pressure lumen 108 that extends distally within the elongate shaft 100. The high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. It can be seen that in this configuration, the jet orifice 110 may provide a fluid jet that traverses the evacuation lumen 118 and thus may help break up any thrombi passing into the evacuation lumen 118.
FIG. 10 shows a thrombectomy apparatus 120 that may be either a monorail or an over-the-wire type. The thrombectomy apparatus 120 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, one of skill will recognize that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 120 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 120 is designed as an over-the-wire catheter.
The thrombectomy apparatus 120 includes an elongate shaft 124 extending to a distal end 126. The guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124. An evacuation lumen 128 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 128 may have a side opening 130 that is sized to permit thrombi and similar material to enter the evacuation lumen 128 through the side opening 130. The evacuation lumen 128 may be in fluid communication with a low pressure source such as vacuum. In some instances, as illustrated, the elongate shaft 124 may terminate in an angled end 132 to facilitate advancement of the thrombectomy apparatus 120 through a patient's vasculature, for example.
The elongate shaft 124 also includes a high pressure lumen 108 that extends distally within the elongate shaft 124. The high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. It can be seen that in this configuration, the jet orifice 110 may provide a fluid jet that traverses the evacuation lumen 128 and thus may help break up any thrombi passing into the evacuation lumen 128. In this configuration, the jet orifice 110 may be positioned at or near a midpoint of the side opening 130.
FIG. 11 shows a thrombectomy apparatus 134 that may be either a monorail or an over-the-wire type. The thrombectomy apparatus 134 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, it will be recognized that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 134 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 134 is designed as an over-the-wire catheter.
The thrombectomy apparatus 134 includes an elongate shaft 124 extending to a distal end 126. The guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124. An evacuation lumen 128 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 128 may have a side opening 130 that is sized to permit thrombi and similar material to enter the evacuation lumen 128 through the side opening 130. The evacuation lumen 128 may be in fluid communication with a low pressure source such as vacuum. In some instances, as illustrated, the elongate shaft 124 may terminate in an angled end 132 to facilitate advancement of the thrombectomy apparatus 134 through a patient's vasculature, for example.
The elongate shaft 124 also includes a high pressure lumen 108 that extends distally within the elongate shaft 124. The high pressure lumen 108 includes a jet orifice 110 that is disposed in a side of the high pressure lumen 108 proximate a distal end thereof. In this configuration, the jet orifice 110 may be positioned at or near a distal edge of the side opening 130.
FIG. 12 shows a thrombectomy apparatus 136 that may be either a monorail or an over-the-wire type. The thrombectomy apparatus 136 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, one of skill will recognize that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 136 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 136 is designed as an over-the-wire catheter.
The thrombectomy apparatus 136 includes an elongate shaft 138 extending to a distal end 140. The guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124. An evacuation lumen 142 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 142 may have a side opening 144 that is sized to permit thrombi and similar material to enter the evacuation lumen 142 through the side opening 144. The evacuation lumen 142 may be in fluid communication with a low pressure source such as vacuum. In some instances, as illustrated, the elongate shaft 138 may terminate in an angled end 146 to facilitate advancement of the thrombectomy apparatus 136 through a patient's vasculature, for example. In some cases, the angled end 146 may include an interior curved surface 148, if desired to control flow characteristics within the evacuation lumen 142.
The elongate shaft 138 also includes a high pressure lumen 150 that extends distally within the elongate shaft 138. The high pressure lumen 150 includes a jet orifice 152 that is disposed in a distal end of the high pressure lumen 150. It can be seen that in this configuration, the jet 152 110 may provide a fluid jet that can cause turbulence within a distal region 154 of the evacuation lumen 142. In some cases, this turbulence may help break up any thrombi passing into the evacuation lumen 142.
FIG. 13 shows a thrombectomy apparatus 156 that may be either a monorail or an over-the-wire type. The thrombectomy apparatus 156 includes a guidewire lumen 122 through which a guidewire 98 is disposed. While only a distal portion of the guidewire lumen 122 is seen in the Figure, one of skill will recognize that the guidewire lumen 122 may have a relatively short length if the thrombectomy apparatus 156 is intended as a monorail (or single-operator exchange) catheter. In some instances, the guidewire lumen 122 may extend a substantial distance proximally if the thrombectomy apparatus 156 is designed as an over-the-wire catheter.
The thrombectomy apparatus 156 includes an elongate shaft 138 extending to a distal end 140. The guidewire lumen 122 may, if desired, be formed as an integral portion of the elongate shaft 124. An evacuation lumen 142 is formed within the elongate shaft 124 and extends distally. In some cases, as illustrated, the evacuation lumen 142 may have a side opening 144 that is sized to permit thrombi and similar material to enter the evacuation lumen 142 through the side opening 144. The evacuation lumen 142 may be in fluid communication with a low pressure source such as vacuum. In some instances, as illustrated, the elongate shaft 138 may terminate in an angled end 146 to facilitate advancement of the thrombectomy apparatus 156 through a patient's vasculature, for example. In some cases, the angled end 146 may include an interior curved surface 148, if desired to control flow characteristics within the evacuation lumen 142.
The elongate shaft 138 also includes a high pressure lumen 150 that extends distally within the elongate shaft 138. Unlike FIG. 12, in FIG. 13 the high pressure lumen 150 is located away from the side opening 144. The high pressure lumen 150 includes a jet orifice 152 that is disposed in a distal end of the high pressure lumen 150. It can be seen that in this configuration, the jet 152 110 may provide a fluid jet that can cause turbulence within a distal region 154 of the evacuation lumen 142. In some cases, this turbulence may help break up any thrombi passing into the evacuation lumen 142.
FIG. 14 schematically illustrates a thrombectomy system 158. In some cases, the thrombectomy system 158 may be considered as being a self-contained assembly that can be operated without exterior fluid or power connections. The thrombectomy system 158 includes a thrombectomy apparatus 160, similar to those described above with respect to FIGS. 1 through 13. A working fluid reservoir 162 may be pressurized via a propellant that is stored within a propellant reservoir 164.
In some cases, the propellant reservoir 164 may contain a propellant in liquid form. As the propellant vaporizes, the resultant gas may travel through a line 166 and into the working fluid reservoir 162. As diagrammatically illustrated, the propellant reservoir 164 may be about half full with a liquefied propellant (bottom half as drawn) and about half full with a vaporized propellant. Similarly, the bottom half of the working fluid reservoir 162 may be filled with a liquid working fluid such as saline while the top half is filled with the vaporized propellant. In some cases, the propellant is carbon dioxide. As a result, the working fluid in working fluid reservoir 162 is pressurized as the propellant in propellant reservoir 164 vaporizes. Alternatively, it is contemplated that the working fluid may be pressurized externally. For example, an external source of a pressurized gas such as oxygen or nitrogen could be used to pressure the working fluid within the working fluid reservoir 162.
Pressurized working fluid may be provided to the thrombectomy apparatus 160 via a supply line 168. In some cases, pressurized working fluid may also be provided to a suction device 170 via another supply line 172. The suction device 170 may, for example, be a jet pump suction device, a venture, or the like, and may be connected to a low pressure lumen within the thrombectomy apparatus 160 via supply line 174. In some cases, it is contemplated that suction may instead be provided externally, such as a vacuum port within a hospital room, for example. Any thrombi or other material removed via the thrombectomy apparatus 160 may be collected in a collection reservoir 176. In some cases, the collection reservoir 176 may be a reusable container. In some instances, the collection reservoir 176 may be a disposable bag or other similar structure.
FIG. 15 shows a thrombectomy apparatus which may function without an associated capture device. Thrombectomy catheter 10 includes an elongate shaft 12 having an evacuation lumen 18 and a generally parallel high pressure lumen 22. The elongate shaft 12 optionally may accommodate the high pressure lumen 22, a guide wire lumen (not shown) and the like as shown in FIG. 5A. In other embodiments, the high pressure lumen 22 may be provided as a distinct and separate tubular member that may be joined to the evacuation lumen 18 to form elongate shaft 12. The evacuation lumen 18 may terminate at a distal opening 20. The high pressure lumen 22 may terminate near the distal opening 20 of elongate shaft 12 at a distal opening 24. In some embodiments, the distal opening 24 may be formed in a distal plug 16 inserted in the high pressure lumen 22. Thrombi 26, generically shown disposed just distal of the distal opening 20 of elongate shaft 12, may be drawn into evacuation lumen 18 by providing a low pressure source to a proximal end (not illustrated) of the evacuation lumen 18. In some embodiments a suitable fluid such as a saline or other therapeutically acceptable fluid may travel in a direction indicated by arrow 30 within high pressure lumen 22. Upon exiting distal opening 24, the flow may join a flow existing within evacuation lumen 18 generally in the direction of arrow 28. In some configurations, especially when the flow exiting distal opening 24 is directed generally between perpendicular to the axis of the low pressure lumen 18 and axially within the low pressure lumen in the direction indicated by arrow 30, the flow exiting distal opening 24 may provide an ejector/aspirator action to assist in drawing thrombus 26 within elongate shaft 12. It is believed that the flow exiting distal opening 24 may disrupt and dilute thrombus as it enters evacuation lumen 18.
In some cases, parts or all of the devices described herein may be doped with, made of, coated with, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like.
In some instances, a degree of MRI compatibility may be imparted into parts of the devices described herein. For example, to enhance compatibility with Magnetic Resonance Imaging (MRI) machines, it may be desirable to make various portions of the devices described herein from materials that do not substantially distort MRI images or cause substantial artifacts (gaps in the images). Some ferromagnetic materials, for example, may not be suitable as they may create artifacts in an MRI image. In some cases, the devices described herein may include materials that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
In some instances, some of the devices described herein may include a coating such as a lubricious coating or a hydrophilic coating. Hydrophobic coatings such as fluoropolymers provide a dry lubricity. Lubricious coatings improve steerability and improve lesion crossing capability. Suitable lubricious polymers are well known in the art and may include silicone and the like, hydrophilic polymers such as high-density polyethylene (HDPE), polytetrafluoroethylene (PTFE), polyarylene oxides, polyvinylpyrolidones, polyvinylalcohols, hydroxy alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof. Hydrophilic polymers may be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coatings with suitable lubricity, bonding, and solubility.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The scope of the invention is, of course, defined in the language in which the appended claims are expressed.

Claims (32)

We claim:
1. A method of removing thrombi, the method comprising the steps of:
providing a thrombectomy apparatus comprising an elongate shaft defining a high pressure lumen and a low pressure lumen, the high pressure lumen terminating near a distal end of the low pressure lumen, and an expandable capture basket disposed generally adjacent the distal end of the low pressure lumen;
wherein the expandable capture basket includes an actuatable frame and a blood permeable membrane disposed over at least a portion of the frame;
advancing the thrombectomy apparatus to a desired location within a patient's vasculature;
expanding the expandable capture basket;
capturing thrombi within the expandable capture basket;
providing a source of pressurized fluid in fluid communication with the high pressure lumen;
breaking apart the captured thrombi using the pressurized fluid; and
providing suction to the low pressure lumen to evacuate the broken apart thrombi.
2. The method of claim 1, wherein the actuatable frame comprises an actuation filament that can be advanced or withdrawn to open or close the expandable capture basket.
3. The method of claim 1, wherein the actuatable frame contacts a vessel wall when the expandable capture basket is expanded.
4. The method of claim 2, wherein the actuatable frame is secured at one end to an elongate wire and at an opposite end to the actuation filament.
5. The method of claim 4, wherein the elongate shaft further comprises a wire lumen, and the elongate wire extends through the wire lumen.
6. The method of claim 5, wherein the actuation filament also extends through the wire lumen.
7. The method of claim 4, wherein the actuatable frame comprises a first loop having a proximal end and a distal end, and a second loop having a proximal end and a distal end.
8. The method of claim 7, wherein the distal end of the first loop is secured to the proximal end of the second loop.
9. The method of claim 8, wherein the proximal end of the first loop is secured to the actuation filament and the distal end of the second loop is secured to the elongate wire.
10. The method of claim 1, wherein the distal end of the low pressure lumen forms an angled opening with respect to the axis of the elongate shaft.
11. The method of claim 10, wherein the high pressure lumen terminates near the most distal portion of the angled opening of the low pressure lumen.
12. The method of claim 11, wherein the high pressure lumen terminates in one or more jets directed within the low pressure lumen and generally directed proximal with respect to the opening of the low pressure lumen.
13. The method of claim 10, wherein the high pressure lumen terminates near the most proximal portion of the angled opening of the low pressure lumen.
14. The method of claim 13, wherein the high pressure lumen terminates in at least one jet directed within the low pressure lumen.
15. The method of claim 14, wherein the at least one jet is directed generally proximal with respect to the angled opening of the low pressure lumen.
16. The method of claim 10, wherein the angled opening of the low pressure lumen has an area less than the cross-sectional area of the low pressure lumen proximal the angled opening.
17. The method of claim 16, wherein the high pressure lumen terminates in at least one jet directed generally within the low pressure lumen.
18. The method of claim 1, wherein the high pressure lumen further comprises a plug inserted into the distal end of the high pressure lumen, wherein the plug includes a distal opening directed generally between perpendicular to the axis of the evacuation lumen and axially within the evacuation lumen in the proximal direction.
19. The method of claim 1, wherein the actuatable frame includes a first loop and a second loop, at least one of the first loop and the second loop being formed of a hollow tube having a lumen in fluid communication with the high pressure lumen.
20. The method of claim 19, wherein the actuatable frame includes one or more high pressure jets disposed at one or more locations along the actuatable frame, the one or more high pressure jets configured to break apart captured thrombi using the pressurized fluid.
21. A method of removing thrombi from within a vessel, the method comprising steps of:
capturing thrombi within a capture apparatus comprising an actuatable frame and a blood permeable membrane disposed over at least a portion of the frame, the membrane defining an interior of the capture apparatus therein;
advancing a thrombectomy catheter defining a high pressure lumen and an evacuation lumen into the interior of the capture apparatus;
disrupting the captured thrombi with a high pressure jet exiting a distal end of the high pressure lumen; and
suctioning the disrupted thrombi out of the interior of the capture apparatus through the evacuation lumen.
22. The method of claim 21, wherein the step of capturing thrombi is preceded by a step of actuating the actuatable frame to move the capture apparatus against a wall of the vessel in order to loosen thrombi from the vessel wall.
23. The method of claim 21, wherein the step of disrupting the captured thrombi comprises breaking the thrombi into smaller pieces so that they may pass through the evacuation lumen without clogging the evacuation lumen.
24. The method of claim 21, wherein the high pressure lumen extends alongside the evacuation lumen.
25. The method of claim 21, wherein the high pressure lumen is non-concentrically disposed within the evacuation lumen.
26. The method of claim 21, wherein the evacuation lumen extends to a distal end of the thrombectomy catheter.
27. The method of claim 26, wherein the high pressure lumen extends to a position proximate the distal end of the thrombectomy catheter.
28. The method of claim 21, wherein the evacuation lumen includes a side opening within the distal region of the thrombectomy catheter.
29. The method of claim 28, wherein the high pressure lumen extends to a position distal of the side opening.
30. The method of claim 28, wherein the high pressure lumen extends to a position midway across the side opening.
31. The method of claim 21, wherein the high pressure lumen comprises a jet orifice disposed at an end of the high pressure lumen.
32. The method of claim 21, wherein the high pressure lumen comprises a jet orifice disposed in a side of the high pressure lumen.
US12/026,317 2007-02-05 2008-02-05 Thrombectomy apparatus and method Active 2030-09-04 US8430837B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/026,317 US8430837B2 (en) 2007-02-05 2008-02-05 Thrombectomy apparatus and method
US12/040,179 US8900179B2 (en) 2007-02-05 2008-02-29 Thrombectomy apparatus and method
US14/513,579 US9662137B2 (en) 2007-02-05 2014-10-14 Thrombectomy apparatus and method
US15/497,357 US10314608B2 (en) 2007-02-05 2017-04-26 Thrombectomy apparatus and method
US16/421,649 US11653945B2 (en) 2007-02-05 2019-05-24 Thrombectomy apparatus and method
US17/887,819 US20220387062A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method
US17/887,879 US20220387063A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method
US17/887,910 US20220387064A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88826507P 2007-02-05 2007-02-05
US12/026,317 US8430837B2 (en) 2007-02-05 2008-02-05 Thrombectomy apparatus and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/040,179 Continuation US8900179B2 (en) 2007-02-05 2008-02-29 Thrombectomy apparatus and method

Publications (2)

Publication Number Publication Date
US20080255596A1 US20080255596A1 (en) 2008-10-16
US8430837B2 true US8430837B2 (en) 2013-04-30

Family

ID=39590700

Family Applications (8)

Application Number Title Priority Date Filing Date
US12/026,317 Active 2030-09-04 US8430837B2 (en) 2007-02-05 2008-02-05 Thrombectomy apparatus and method
US12/040,179 Active 2028-12-31 US8900179B2 (en) 2007-02-05 2008-02-29 Thrombectomy apparatus and method
US14/513,579 Active 2028-10-11 US9662137B2 (en) 2007-02-05 2014-10-14 Thrombectomy apparatus and method
US15/497,357 Active 2028-03-14 US10314608B2 (en) 2007-02-05 2017-04-26 Thrombectomy apparatus and method
US16/421,649 Active 2029-12-26 US11653945B2 (en) 2007-02-05 2019-05-24 Thrombectomy apparatus and method
US17/887,879 Pending US20220387063A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method
US17/887,910 Pending US20220387064A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method
US17/887,819 Pending US20220387062A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method

Family Applications After (7)

Application Number Title Priority Date Filing Date
US12/040,179 Active 2028-12-31 US8900179B2 (en) 2007-02-05 2008-02-29 Thrombectomy apparatus and method
US14/513,579 Active 2028-10-11 US9662137B2 (en) 2007-02-05 2014-10-14 Thrombectomy apparatus and method
US15/497,357 Active 2028-03-14 US10314608B2 (en) 2007-02-05 2017-04-26 Thrombectomy apparatus and method
US16/421,649 Active 2029-12-26 US11653945B2 (en) 2007-02-05 2019-05-24 Thrombectomy apparatus and method
US17/887,879 Pending US20220387063A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method
US17/887,910 Pending US20220387064A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method
US17/887,819 Pending US20220387062A1 (en) 2007-02-05 2022-08-15 Thrombectomy apparatus and method

Country Status (5)

Country Link
US (8) US8430837B2 (en)
EP (2) EP2120737B1 (en)
JP (7) JP5385155B2 (en)
CA (1) CA2677343C (en)
WO (1) WO2008097993A2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204712A1 (en) * 2009-02-11 2010-08-12 Mark Mallaby Neurovascular microcatheter device, system and methods for use thereof
US9248221B2 (en) 2014-04-08 2016-02-02 Incuvate, Llc Aspiration monitoring system and method
US9433427B2 (en) 2014-04-08 2016-09-06 Incuvate, Llc Systems and methods for management of thrombosis
US9717882B2 (en) 2014-02-05 2017-08-01 Boston Scientific Scimed, Inc. Multi-lumen catheters and related methods of manufacture
US20170265885A1 (en) * 2013-02-13 2017-09-21 Boston Scientific Limited Thrombectomy catheter system
US9883877B2 (en) 2014-05-19 2018-02-06 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US10219814B2 (en) 2013-12-13 2019-03-05 Rex Medical, L.P. Aspiration system for thrombectomy procedures
US10226263B2 (en) 2015-12-23 2019-03-12 Incuvate, Llc Aspiration monitoring system and method
US10292804B2 (en) 2015-09-21 2019-05-21 Stryker Corporation Embolectomy devices
US10441404B2 (en) 2015-09-21 2019-10-15 Stryker Corporation Embolectomy devices
US10492805B2 (en) 2016-04-06 2019-12-03 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
US10561440B2 (en) 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
US10702292B2 (en) 2015-08-28 2020-07-07 Incuvate, Llc Aspiration monitoring system and method
US10743907B2 (en) 2014-11-07 2020-08-18 National University Of Ireland, Galway Thrombectomy device
US10779852B2 (en) 2013-03-15 2020-09-22 National University Of Ireland, Galway Device suitable for removing matter from inside the lumen and the wall of a body lumen
US20200352553A1 (en) * 2017-10-09 2020-11-12 The Board Of Regents Of The University Of Oklahoma Surgical evacuation apparatus and method
EP3884883A1 (en) * 2016-01-28 2021-09-29 Gyrus ACMI, Inc. d/b/a Olympus Surgical Technologies America Apparatus for stone fragments removal
US11160572B2 (en) 2014-01-03 2021-11-02 Legacy Ventures LLC Clot retrieval system
US11376028B1 (en) 2021-04-17 2022-07-05 Inquis Medical, Inc. Devices, systems, and methods for removing obstructive material from body lumens
US11497521B2 (en) 2008-10-13 2022-11-15 Walk Vascular, Llc Assisted aspiration catheter system
US11540847B2 (en) 2015-10-09 2023-01-03 Incuvate, Llc Systems and methods for management of thrombosis
US11653945B2 (en) 2007-02-05 2023-05-23 Walk Vascular, Llc Thrombectomy apparatus and method
US11679195B2 (en) 2021-04-27 2023-06-20 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11730925B2 (en) 2021-06-28 2023-08-22 Inquis Medical, Inc. Apparatuses and methods for tracking obstructive material within a suction catheter
US11931502B2 (en) 2023-04-27 2024-03-19 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939991B2 (en) 2008-06-08 2015-01-27 Hotspur Technologies, Inc. Apparatus and methods for removing obstructive material from body lumens
US9101382B2 (en) 2009-02-18 2015-08-11 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US8945160B2 (en) 2008-07-03 2015-02-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
WO2010010545A1 (en) 2008-07-22 2010-01-28 Neuravi Limited Clot capture systems and associated methods
US9095328B2 (en) * 2008-12-12 2015-08-04 Boston Scientific Scimed, Inc. Endoscopes having multiple lumens for tissue acquisition and removal and related methods of use
US20120109057A1 (en) 2009-02-18 2012-05-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US20110106134A1 (en) * 2009-10-29 2011-05-05 Medtronic Vascular, Inc. Indwelling Temporary IVC Filter System with Aspiration
US8771289B2 (en) * 2009-12-21 2014-07-08 Acist Medical Systems, Inc. Thrombus removal device and system
WO2011083451A2 (en) 2010-01-11 2011-07-14 Motus Gi Medical Technologies Ltd. Systems and methods for cleaning body cavities
US20110184311A1 (en) * 2010-01-25 2011-07-28 Parihar Shailendra K Tissue Retrieval Device with Resilient Member
US8353874B2 (en) 2010-02-18 2013-01-15 Covidien Lp Access apparatus including integral zero-closure valve and check valve
GB2478592B (en) * 2010-03-12 2012-02-29 Cook Medical Technologies Llc Obstruction removal assembly and method
WO2011158232A2 (en) 2010-06-13 2011-12-22 Motus Gi Medical Technologies Ltd. Systems and methods for cleaning body cavities
US8685049B2 (en) 2010-11-18 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
US8685050B2 (en) 2010-10-06 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
US9282991B2 (en) 2010-10-06 2016-03-15 Rex Medical, L.P. Cutting wire assembly with coating for use with a catheter
WO2012052982A1 (en) * 2010-10-22 2012-04-26 Neuravi Limited Clot engagement and removal system
US8702736B2 (en) 2010-11-22 2014-04-22 Rex Medical L.P. Cutting wire assembly for use with a catheter
WO2012120490A2 (en) 2011-03-09 2012-09-13 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
EP2762083B1 (en) * 2011-09-27 2017-01-18 Kanji Inoue Device for capturing debris in blood vessel
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
WO2014140092A2 (en) 2013-03-14 2014-09-18 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
CN105208950A (en) 2013-03-14 2015-12-30 尼尔拉维有限公司 A clot retrieval device for removing occlusive clot from a blood vessel
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
JP5597737B2 (en) * 2013-03-15 2014-10-01 株式会社 先端医療開発 Aspiration catheter
CN104068910A (en) * 2013-03-26 2014-10-01 上海微创医疗器械(集团)有限公司 Blood vessel thrombus extracting system
US9782195B2 (en) * 2013-11-20 2017-10-10 Board Of Regents Of The University Of Nebraska Fluid jet arterial surgical device
US10285720B2 (en) 2014-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
EP3154452A1 (en) 2014-06-13 2017-04-19 Neuravi Limited Devices for removal of acute blockages from blood vessels
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
CN106999196B (en) 2014-11-26 2020-07-28 尼尔拉维有限公司 Thrombus retrieval device for removing obstructive thrombus from blood vessel
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US10433868B2 (en) 2014-12-27 2019-10-08 Rex Medical, L.P. Artherectomy device
US10463389B2 (en) 2014-12-27 2019-11-05 Rex Medical, L.P. Atherectomy device
US11253292B2 (en) 2015-09-13 2022-02-22 Rex Medical, L.P. Atherectomy device
US10342571B2 (en) 2015-10-23 2019-07-09 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
US9700332B2 (en) * 2015-10-23 2017-07-11 Inari Medical, Inc. Intravascular treatment of vascular occlusion and associated devices, systems, and methods
JP6643487B2 (en) * 2016-01-22 2020-02-12 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Collection system
WO2017152086A1 (en) * 2016-03-03 2017-09-08 Boston Scientific Scimed, Inc. Accessory devices for use with catheters
CN108778165B (en) * 2016-03-09 2021-12-07 泰尔茂株式会社 Medical instrument and treatment method
US10307175B2 (en) * 2016-03-26 2019-06-04 Rex Medical, L.P Atherectomy device
MX2019001899A (en) 2016-08-17 2019-09-18 Neuravi Ltd A clot retrieval system for removing occlusive clot from a blood vessel.
CA3035706A1 (en) 2016-09-06 2018-03-15 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
WO2018080590A1 (en) 2016-10-24 2018-05-03 Inari Medical Devices and methods for treating vascular occlusion
US20220104840A1 (en) 2017-10-16 2022-04-07 Retriever Medical, Inc. Clot Removal Methods and Devices with Multiple Independently Controllable Elements
US10172634B1 (en) 2017-10-16 2019-01-08 Michael Bruce Horowitz Catheter based retrieval device with proximal body having axial freedom of movement
US20220104839A1 (en) 2017-10-16 2022-04-07 Retriever Medical, Inc. Clot Removal Methods and Devices with Multiple Independently Controllable Elements
EP3737311A1 (en) * 2018-01-10 2020-11-18 Boston Scientific Scimed, Inc. Aspiration medical device
CN108283758B (en) * 2018-01-24 2021-07-23 张海军 Drug eluting balloon catheter with thrombus breaking and dissolving and suction functions
CN112020336A (en) 2018-04-19 2020-12-01 巴德股份有限公司 Catheter for active sectioning/scoring and related methods
US10716880B2 (en) 2018-06-15 2020-07-21 Incuvate, Llc Systems and methods for aspiration and monitoring
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
JP7312262B2 (en) * 2018-09-28 2023-07-20 フロー メディカル コーポレイション catheter device
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
US11826068B2 (en) * 2018-12-10 2023-11-28 Acclarent, Inc. Method of forming suction instrument end and shaver instrument end
BR112021011486A2 (en) * 2018-12-15 2021-08-31 Eric Raul Guerra THROMBECTOMY CATHETER AND METHODS OF USE
JP2020142074A (en) 2019-03-04 2020-09-10 ニューラヴィ・リミテッド Actuated clot retrieval catheter
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
KR102249913B1 (en) * 2019-08-05 2021-05-10 계명대학교 산학협력단 Venous thrombus removal device using thrombus dragnet and aspiration catheter and use method thereof
EP3791815A1 (en) 2019-09-11 2021-03-17 Neuravi Limited Expandable mouth catheter
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
JP2023507553A (en) 2019-12-18 2023-02-24 インパラティブ、ケア、インク. Methods and systems for treating venous thromboembolism
JP2023511540A (en) * 2020-01-13 2023-03-20 ハイドロシジョン・インコーポレーテッド water jet surgical device
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
US20220257268A1 (en) * 2021-02-15 2022-08-18 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam
WO2023122352A1 (en) * 2021-12-24 2023-06-29 Hydrocision, Inc. Deployable dynamic stent and adjustable cutting jet device
KR102536453B1 (en) * 2022-11-03 2023-05-26 대구가톨릭대학교산학협력단 Endovascular Apparatus and Device with Labyrinthine Septum Capable of Endovascular Blood Flow Reopening and Microfluidic Circuit Generation
WO2024039214A1 (en) * 2022-08-18 2024-02-22 대구가톨릭대학교산학협력단 Blood clot removal system
KR102535089B1 (en) * 2022-08-18 2023-05-26 대구가톨릭대학교산학협력단 Thrombus Removal Device with Stentretriever Style Capable of Endovascular Blood Flow Reopening and Microfluidic Circuit Generation
KR102535096B1 (en) * 2022-09-13 2023-05-26 대구가톨릭대학교산학협력단 Thrombus Removal Device with Aspiration Catheter Style Capable of Endovascular Blood Flow Reopening and Microfluidic Circuit Generation

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1148093A (en) 1915-03-22 1915-07-27 Charles Edmund Kells Apparatus for surgically cleansing surfaces.
US4690672A (en) 1984-09-06 1987-09-01 Veltrup Elmar M Apparatus for removing solid structures from body passages
DE3715418A1 (en) 1986-05-08 1987-11-12 Olympus Optical Co LITHOTOM
US5057098A (en) 1987-05-01 1991-10-15 Ophthalmocare, Inc. Apparatus and method for extracting cataract tissue
US5135482A (en) 1985-12-31 1992-08-04 Arnold Neracher Hydrodynamic device for the elimination of an organic deposit obstructing a vessel of a human body
US5248297A (en) * 1992-02-26 1993-09-28 Haruo Takase Suction tube for use in surgical operation
US5318518A (en) 1991-08-14 1994-06-07 Hp Medica Gesellschaft Mbh Fur Medizintechnische Systeme Irrigating catheter
US5395315A (en) 1990-02-14 1995-03-07 Cordis Corporation Drainage catheter
US5496267A (en) 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
US5713851A (en) 1993-07-05 1998-02-03 Cordis Corporation Method for manufacturing a catheter with at least one high-pressure lumen
US5795332A (en) 1996-04-15 1998-08-18 Lucas; Daniel R. Silicone catheter
US5827229A (en) 1995-05-24 1998-10-27 Boston Scientific Corporation Northwest Technology Center, Inc. Percutaneous aspiration thrombectomy catheter system
US5989210A (en) 1998-02-06 1999-11-23 Possis Medical, Inc. Rheolytic thrombectomy catheter and method of using same
US6022336A (en) * 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment
US6096001A (en) 1990-08-06 2000-08-01 Possis Medical, Inc. Thrombectomy and tissue removal device
US6129697A (en) 1990-08-06 2000-10-10 Possis Medical, Inc. Thrombectomy and tissue removal device
US6129698A (en) 1996-05-24 2000-10-10 Beck; Robert C Catheter
US6224570B1 (en) 1998-02-06 2001-05-01 Possis Medical, Inc. Rheolytic thrombectomy catheter and method of using same
US6375635B1 (en) 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US20020068895A1 (en) 1999-12-10 2002-06-06 Beck Robert C. Interventional device
US20020173819A1 (en) 2001-05-21 2002-11-21 Bacchus Vascular, Inc. Apparatus and methods for capturing particulate material within blood vessels
US6572578B1 (en) 2000-08-25 2003-06-03 Patrick A. Blanchard Fluid-jet catheter and its application to flexible endoscopy
US6579270B2 (en) 1998-06-04 2003-06-17 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US20030144688A1 (en) 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US6616679B1 (en) 1999-07-30 2003-09-09 Incept, Llc Rapid exchange vascular device for emboli and thrombus removal and methods of use
US20030216760A1 (en) * 2002-05-20 2003-11-20 Eric Welch Apparatus and system for removing an obstruction from a lumen
US6719717B1 (en) 2000-03-17 2004-04-13 Advanced Research & Technology Institute, Inc. Thrombectomy treatment system and method
US6755803B1 (en) 1998-02-06 2004-06-29 Possis Medical, Inc. Single operator exchange fluid jet thrombectomy device
US20040193046A1 (en) 2003-03-28 2004-09-30 John E. Nash Catheter with associated extension lumen
US20040199201A1 (en) * 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Embolectomy devices
WO2004100772A2 (en) 2003-05-12 2004-11-25 University Of Florida Devices and methods for disruption and removal of luninal occlusions
US20040243157A1 (en) 2002-10-25 2004-12-02 Connor Brian G. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
EP1488748A1 (en) 2003-06-17 2004-12-22 Terumo Kabushiki Kaisha Living body lumen washing apparatus
US7846175B2 (en) * 2006-04-03 2010-12-07 Medrad, Inc. Guidewire and collapsable filter system

Family Cites Families (588)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1144268A (en) 1915-06-22 Frederick William Vickery Laying-machine.
US1114268A (en) * 1913-10-14 1914-10-20 Charles Edmund Kells Method for surgically cleansing wounds and other surfaces.
US2804075A (en) 1955-11-14 1957-08-27 Ruth O Borden Non-clogging surgical aspirator
US3429313A (en) 1966-02-01 1969-02-25 Ram Domestic Products Co Medical drainage pump
US3631847A (en) 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
NL145136C (en) 1967-07-25 1900-01-01
US3494363A (en) 1969-04-01 1970-02-10 Technical Resources Inc Control for devices used in surgery
US3620650A (en) 1969-12-05 1971-11-16 Robert F Shaw Gas-disabled liquid-pumping apparatus
US3707967A (en) 1970-10-01 1973-01-02 Tecna Corp Steady flow regenerative peritoneal dialysis system and method
US3693613A (en) 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith
US3748435A (en) 1971-12-16 1973-07-24 Welding Research Inc Wire attitude control
US3847140A (en) 1971-12-16 1974-11-12 Catheter & Instr Corp Operating handle for spring guides
US3807401A (en) * 1972-06-21 1974-04-30 Department Of Health Education Anticoagulating blood suction device
US3818913A (en) 1972-08-30 1974-06-25 M Wallach Surgical apparatus for removal of tissue
US3916892A (en) 1974-04-29 1975-11-04 Haemonetics Corp Phlebotomy needle system incorporating means to add anticoagulant and wash liquid
US3930505A (en) 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US3918453A (en) 1974-07-01 1975-11-11 Baxter Laboratories Inc Surgical suction device
US3955573A (en) 1974-10-11 1976-05-11 Sorenson Research Co., Inc. Anticoagulant delivery device and method
US4030503A (en) 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
US4274411A (en) 1979-03-30 1981-06-23 Dotson Robert S Jun Fluid operated ophthalmic irrigation and aspiration device
US4299221A (en) 1979-09-28 1981-11-10 Stryker Corporation Irrigation and suction handpiece
US4465470A (en) 1982-06-04 1984-08-14 Kelman Charles D Apparatus for and method of irrigating and aspirating an eye
US4573476A (en) * 1983-11-14 1986-03-04 Ruiz Oscar F Angiographic catheter
US5197951A (en) 1983-12-14 1993-03-30 Mahurkar Sakharam D Simple double lumen catheter
US4574812A (en) 1984-04-18 1986-03-11 The Kendall Company Arterial thrombus detection system and method
US4894051A (en) 1984-05-14 1990-01-16 Surgical Systems & Instruments, Inc. Atherectomy system with a biasing sleeve and method of using the same
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US5024651A (en) 1984-05-14 1991-06-18 Surgical Systems & Instruments, Inc. Atherectomy system with a sleeve
US5135531A (en) 1984-05-14 1992-08-04 Surgical Systems & Instruments, Inc. Guided atherectomy system
US5002553A (en) 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US6440148B1 (en) 1984-05-14 2002-08-27 Samuel Shiber Stent unclogging system with stepped spiral
US4842579B1 (en) 1984-05-14 1995-10-31 Surgical Systems & Instr Inc Atherectomy device
US5443443A (en) 1984-05-14 1995-08-22 Surgical Systems & Instruments, Inc. Atherectomy system
US4957482A (en) 1988-12-19 1990-09-18 Surgical Systems & Instruments, Inc. Atherectomy device with a positive pump means
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US5653696A (en) 1984-05-14 1997-08-05 Surgical Systems & Instruments, Inc. Stent unclogging method
US5306244A (en) 1984-05-14 1994-04-26 Surgical Systems & Instruments, Inc. Method of guidewire insertion
US4886490A (en) 1984-05-14 1989-12-12 Surgical Systems & Instruments, Inc. Atherectomy catheter system and method of using the same
US5334211A (en) 1984-05-14 1994-08-02 Surgical System & Instruments, Inc. Lumen tracking atherectomy system
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US4569344A (en) * 1984-07-23 1986-02-11 Ballard Medical Products Aspirating/ventilating apparatus and method
US4790813A (en) 1984-12-17 1988-12-13 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4832685A (en) 1985-06-05 1989-05-23 Coopervision, Inc. Fluid flow control system and connecting fitting therefor
US4700705A (en) 1985-08-12 1987-10-20 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4770654A (en) 1985-09-26 1988-09-13 Alcon Laboratories Inc. Multimedia apparatus for driving powered surgical instruments
US4702733A (en) 1985-11-22 1987-10-27 Innovative Surgical Products, Inc. Foot actuated pinch valve and high vacuum source for irrigation/aspiration handpiece system
GB8602732D0 (en) 1986-02-04 1986-03-12 Univ Brunel Taking samples from patients
US4728319A (en) 1986-03-20 1988-03-01 Helmut Masch Intravascular catheter
US4740203A (en) 1986-06-05 1988-04-26 Thomas J. Fogarty Refillable injection device
US5527274A (en) 1986-06-09 1996-06-18 Development Collaborative Corporation Catheter for chemical contact dissolution of gallstones
US4715853A (en) 1986-09-19 1987-12-29 Ideal Instruments, Inc. Back-fill syringe
US4747821A (en) 1986-10-22 1988-05-31 Intravascular Surgical Instruments, Inc. Catheter with high speed moving working head
EP0287920B1 (en) 1987-04-22 1991-05-15 Siemens Aktiengesellschaft Piston pump for a device for dosing medicaments
US5011468A (en) 1987-05-29 1991-04-30 Retroperfusion Systems, Inc. Retroperfusion and retroinfusion control apparatus, system and method
US4857046A (en) 1987-10-21 1989-08-15 Cordis Corporation Drive catheter having helical pump drive shaft
DE8714529U1 (en) 1987-10-31 1988-12-08 Schnepp-Pesch, Wolfram, 7505 Ettlingen, De
US4854325A (en) 1987-11-09 1989-08-08 Stevens Robert C Reciprocating guidewire method
US4886507A (en) 1988-02-01 1989-12-12 Medex, Inc. Y connector for angioplasty procedure
US5073168A (en) 1988-10-05 1991-12-17 Danforth John W Y-adaptor and percutaneous sheath for intravascular catheters
SE462414B (en) 1988-11-15 1990-06-25 Paal Svedman INSTRUMENTS FOR WEAVING OF WEAVEN
US5011488A (en) 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
US5129887A (en) 1988-12-07 1992-07-14 Scimed Life Systems, Inc. Adjustable manifold for dilatation catheter
US5197795A (en) 1989-06-30 1993-03-30 Gruhn Usa, Inc. Adjustable-length removably-mountable holder system
US5318529A (en) 1989-09-06 1994-06-07 Boston Scientific Corporation Angioplasty balloon catheter and adaptor
US5055109A (en) 1989-10-05 1991-10-08 Advanced Cardiovascular Systems, Inc. Torque transmitting assembly for intravascular devices
US5091656A (en) 1989-10-27 1992-02-25 Storz Instrument Company Footswitch assembly with electrically engaged detents
US5163433A (en) 1989-11-01 1992-11-17 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
US5324263A (en) 1989-11-02 1994-06-28 Danforth Biomedical, Inc. Low profile high performance interventional catheters
US5074841A (en) 1990-01-30 1991-12-24 Microcision, Inc. Atherectomy device with helical cutter
US5158564A (en) 1990-02-14 1992-10-27 Angiomed Ag Atherectomy apparatus
US5125893A (en) 1990-04-16 1992-06-30 Dryden Gale E Suction catheter with wall lumen for irrigation
US5073164A (en) 1990-05-02 1991-12-17 Hollister William H Suction catheter
DE4018736A1 (en) * 1990-06-12 1992-01-02 Wigbert S Prof Dr Med Rau Aspiration catheter removing blockage from blood vessel - has nozzles at end of suction tube to direct water jets rearwards
US5195954A (en) 1990-06-26 1993-03-23 Schnepp Pesch Wolfram Apparatus for the removal of deposits in vessels and organs of animals
US5520189A (en) 1990-07-13 1996-05-28 Coraje, Inc. Intravascular ultrasound imaging guidewire
US6007513A (en) 1990-07-17 1999-12-28 Aziz Yehia Anis Removal of tissue
US6676627B1 (en) 1990-08-06 2004-01-13 Possis Medical, Inc. Crossflow thrombectomy catheter and system
US5078722A (en) 1990-08-14 1992-01-07 Cordis Corporation Method and apparatus for removing deposits from a vessel
US5064428A (en) 1990-09-18 1991-11-12 Cook Incorporated Medical retrieval basket
CA2093821A1 (en) 1990-10-09 1992-04-10 Walter R. Pyka Device or apparatus for manipulating matter
EP0555362A4 (en) 1990-10-29 1993-09-15 Scimed Life Systems, Inc. Guide catheter system for angioplasty balloon catheter
US5527292A (en) 1990-10-29 1996-06-18 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
CA2048239A1 (en) * 1990-11-08 1992-05-09 William J. Drasler Water jet atherectomy device
US5916192A (en) 1991-01-11 1999-06-29 Advanced Cardiovascular Systems, Inc. Ultrasonic angioplasty-atherectomy catheter and method of use
US5234407A (en) 1991-03-06 1993-08-10 Baxter International Inc. Method and device for exchanging cardiovascular guide catheter while a previously inserted angioplasty guide wire remains in place
DE69224636T2 (en) 1991-04-24 1998-11-05 Advanced Cardiovascular System INTERCHANGEABLE BALLOON CATHETER WITH INTEGRATED GUIDE WIRE
US5290247A (en) 1991-05-21 1994-03-01 C. R. Bard, Inc. Intracoronary exchange apparatus and method
US5569275A (en) 1991-06-11 1996-10-29 Microvena Corporation Mechanical thrombus maceration device
US5284486A (en) 1991-06-11 1994-02-08 Microvena Corporation Self-centering mechanical medical device
US5490837A (en) 1991-07-05 1996-02-13 Scimed Life Systems, Inc. Single operator exchange catheter having a distal catheter shaft section
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5261877A (en) 1991-07-22 1993-11-16 Dow Corning Wright Method of performing a thrombectomy procedure
US5254085A (en) 1991-09-19 1993-10-19 Xomed-Treace Inc. Aspiration system with positive pressure
US5571087A (en) 1992-02-10 1996-11-05 Scimed Life Systems, Inc. Intravascular catheter with distal tip guide wire lumen
US5242404A (en) 1992-02-12 1993-09-07 American Cyanamid Company Aspiration control system
US5356375A (en) 1992-04-06 1994-10-18 Namic U.S.A. Corporation Positive pressure fluid delivery and waste removal system
WO1993019679A1 (en) 1992-04-07 1993-10-14 The Johns Hopkins University A percutaneous mechanical fragmentation catheter system
WO1993020876A1 (en) 1992-04-14 1993-10-28 Du-Med B.V. Electronic catheter displacement sensor
US5368566A (en) 1992-04-29 1994-11-29 Cardiovascular Dynamics, Inc. Delivery and temporary stent catheter having a reinforced perfusion lumen
US5322504A (en) 1992-05-07 1994-06-21 United States Surgical Corporation Method and apparatus for tissue excision and removal by fluid jet
US5389072A (en) 1992-06-05 1995-02-14 Mircor Biomedical, Inc. Mechanism for manipulating a tool and flexible elongate device using the same
DE4221931C1 (en) * 1992-07-03 1993-07-08 Harald Dr. 8521 Moehrendorf De Mang
US5524180A (en) 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5524635A (en) 1992-09-14 1996-06-11 Interventional Technologies Inc. Apparatus for advancing a guide wire
US5243997A (en) 1992-09-14 1993-09-14 Interventional Technologies, Inc. Vibrating device for a guide wire
US5443078A (en) 1992-09-14 1995-08-22 Interventional Technologies, Inc. Method for advancing a guide wire
US5312427A (en) 1992-10-16 1994-05-17 Shturman Cardiology Systems, Inc. Device and method for directional rotational atherectomy
JPH06125915A (en) 1992-10-21 1994-05-10 Inter Noba Kk Catheter type medical instrument
US5368555A (en) 1992-12-29 1994-11-29 Hepatix, Inc. Organ support system
US5626563A (en) 1993-01-12 1997-05-06 Minnesota Mining And Manufacturing Company Irrigation system with tubing cassette
US5910252A (en) 1993-02-12 1999-06-08 Cobe Laboratories, Inc. Technique for extracorporeal treatment of blood
US5403276A (en) 1993-02-16 1995-04-04 Danek Medical, Inc. Apparatus for minimally invasive tissue removal
US5403274A (en) 1993-03-15 1995-04-04 Cannon; Louis A. Perfusion catheter and method of use
US5327906A (en) 1993-04-28 1994-07-12 Medtronic, Inc. Steerable stylet handle
US5325868A (en) 1993-05-04 1994-07-05 Kimmelstiel Carey D Self-gripping medical wire torquer
US5413561A (en) 1993-05-13 1995-05-09 Cathco, Inc. Guiding catheter with sealing cap system for reducing blood loss when inserting guiding catheters
US5342306A (en) 1993-05-26 1994-08-30 Don Michael T Anthony Adjustable catheter device
US5342293A (en) 1993-06-22 1994-08-30 Allergan, Inc. Variable vacuum/variable flow phacoemulsification method
CA2127637C (en) 1993-07-26 2006-01-03 Scott Bair Fluid jet surgical cutting tool
US6113576A (en) 1993-08-04 2000-09-05 Lake Region Manufacturing, Inc. Thrombolysis catheter system with fixed length infusion zone
US5392778A (en) 1993-08-11 1995-02-28 B. Braun Medical, Inc. Guidewire torque device for single-hand manipulation
EP0726466B1 (en) 1993-08-31 2002-04-24 Aloka Co. Ltd. Pipetting apparatus equipped with closure detection function
US5577674A (en) 1993-09-08 1996-11-26 Somat Corporation Waste pulping and liquid extraction system and method including automatic bag feeding
US5462529A (en) 1993-09-29 1995-10-31 Technology Development Center Adjustable treatment chamber catheter
US5419772A (en) * 1993-09-29 1995-05-30 Teitz; Bernard R. Surgical irrigation apparatus for cleaning and sterilizing wounds and surgical areas during surgery
US5476450A (en) 1993-11-04 1995-12-19 Ruggio; Joseph M. Apparatus and method for aspirating intravascular, pulmonary and cardiac obstructions
US5605545A (en) 1994-05-05 1997-02-25 Northgate Technologies Incorporated Tubing system for delivering fluid to a surgical site
JPH07299078A (en) * 1994-05-09 1995-11-14 Olympus Optical Co Ltd Electrotomy device for endoscope
US5478331A (en) 1994-05-11 1995-12-26 Localmed, Inc. Multi-function proximal end adapter for catheter
EP0954244A1 (en) * 1994-07-01 1999-11-10 SciMed Life Systems, Inc. Intravascular device utilizing fluid to extract occlusive material
DE69536046D1 (en) 1994-07-08 2010-04-01 Ev3 Inc System for performing an intravascular procedure
NL9401184A (en) 1994-07-19 1996-03-01 Cordis Europ Suction catheter.
US5507738A (en) 1994-08-05 1996-04-16 Microsonic Engineering Devices Company, Inc. Ultrasonic vascular surgical system
US5634475A (en) 1994-09-01 1997-06-03 Datascope Investment Corp. Guidewire delivery assist device and system
FR2724564B1 (en) 1994-09-16 1997-04-04 Boussignac Georges RESPIRATORY ASSISTANCE DEVICE
US5647847A (en) 1994-09-16 1997-07-15 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
US5785685A (en) 1994-09-16 1998-07-28 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
US5634933A (en) 1994-09-29 1997-06-03 Stryker Corporation Powered high speed rotary surgical handpiece chuck and tools therefore
WO1996010366A1 (en) 1994-10-03 1996-04-11 Heart Technology, Inc. Transluminal thrombectomy apparatus
US5624394A (en) 1994-10-28 1997-04-29 Iolab Corporation Vacuum system and a method of operating a vacuum system
US5520635A (en) 1994-12-16 1996-05-28 Gelbfish; Gary A. Method and associated device for removing clot
US5876414A (en) 1995-03-28 1999-03-02 Straub Medical Ag Catheter for detaching abnormal deposits from blood vessels in humans
US5795322A (en) * 1995-04-10 1998-08-18 Cordis Corporation Catheter with filter and thrombus-discharge device
WO1996035469A1 (en) 1995-05-10 1996-11-14 Cardiogenesis Corporation System for treating or diagnosing heart tissue
US5938645A (en) 1995-05-24 1999-08-17 Boston Scientific Corporation Northwest Technology Center Inc. Percutaneous aspiration catheter system
US6216573B1 (en) 1995-06-07 2001-04-17 Hydrocision, Inc. Fluid jet cutting system
US5944686A (en) 1995-06-07 1999-08-31 Hydrocision, Inc. Instrument for creating a fluid jet
US5713878A (en) 1995-06-07 1998-02-03 Surgi-Jet Corporation Hand tightenable high pressure connector
US5871462A (en) 1995-06-07 1999-02-16 Hydrocision, Inc. Method for using a fluid jet cutting system
US6027460A (en) 1995-09-14 2000-02-22 Shturman Cardiology Systems, Inc. Rotatable intravascular apparatus
US5843022A (en) 1995-10-25 1998-12-01 Scimied Life Systems, Inc. Intravascular device utilizing fluid to extract occlusive material
JP3343712B2 (en) * 1995-12-27 2002-11-11 宮城化学工業株式会社 Non-antigenic stabilizer and bioactive substance
US5642997A (en) 1996-02-01 1997-07-01 Gregg, Ii; Robert H. Laser excisional new attachment procedure
US5895398A (en) 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
NL1003056C2 (en) 1996-05-07 1997-11-10 Cordis Europ Suction catheter with hemostasis device.
US6019728A (en) 1996-05-08 2000-02-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Catheter and sensor having pressure detecting function
US6958059B2 (en) 1996-05-20 2005-10-25 Medtronic Ave, Inc. Methods and apparatuses for drug delivery to an intravascular occlusion
US6544276B1 (en) 1996-05-20 2003-04-08 Medtronic Ave. Inc. Exchange method for emboli containment
US6152909A (en) 1996-05-20 2000-11-28 Percusurge, Inc. Aspiration system and method
US5833644A (en) 1996-05-20 1998-11-10 Percusurge, Inc. Method for emboli containment
US5662671A (en) 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6830577B2 (en) 1996-07-26 2004-12-14 Kensey Nash Corporation System and method of use for treating occluded vessels and diseased tissue
US6652546B1 (en) 1996-07-26 2003-11-25 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US5779721A (en) 1996-07-26 1998-07-14 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other blood vessels
US6569147B1 (en) 1996-07-26 2003-05-27 Kensey Nash Corporation Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes
US6080170A (en) 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US6905505B2 (en) 1996-07-26 2005-06-14 Kensey Nash Corporation System and method of use for agent delivery and revascularizing of grafts and vessels
US5855567A (en) 1996-08-22 1999-01-05 Scimed Life Systems, Inc. Catheter management system
US5836909A (en) 1996-09-13 1998-11-17 Cosmescu; Ioan Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US5730734A (en) 1996-11-14 1998-03-24 Scimed Life Systems, Inc. Catheter systems with interchangeable parts
US5827243A (en) 1996-11-29 1998-10-27 Palestrant; Aubrey M. Collapsible aspiration catheter
US6165188A (en) 1996-12-02 2000-12-26 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use
US5810770A (en) 1996-12-13 1998-09-22 Stryker Corporation Fluid management pump system for surgical procedures
US6146355A (en) 1996-12-30 2000-11-14 Myelotec, Inc. Steerable catheter
US5893857A (en) 1997-01-21 1999-04-13 Shturman Cardiology Systems, Inc. Handle for atherectomy device
AU6688398A (en) 1997-03-06 1998-09-22 Percusurge, Inc. Intravascular aspiration system
US5908395A (en) 1997-03-17 1999-06-01 Advanced Cardiovascular Systems, Inc. Vibrating guidewire
US5772674A (en) 1997-03-31 1998-06-30 Nakhjavan; Fred K. Catheter for removal of clots in blood vessels
DE19717790A1 (en) 1997-04-26 1998-10-29 Convergenza Ag Device with a therapeutic catheter
US5885244A (en) 1997-05-14 1999-03-23 Cordis Corporation & University Of Miami Synchronous, pulsatile angioplasty system
US6176844B1 (en) 1997-05-22 2001-01-23 Peter Y. Lee Catheter system for the isolation of a segment of blood vessel
WO2001028618A2 (en) 1999-10-22 2001-04-26 Boston Scientific Corporation Double balloon thrombectomy catheter
US6090118A (en) 1998-07-23 2000-07-18 Mcguckin, Jr.; James F. Rotational thrombectomy apparatus and method with standing wave
JPH11221229A (en) 1997-09-24 1999-08-17 Eclipse Surgical Technol Inc Catheter
US6179809B1 (en) 1997-09-24 2001-01-30 Eclipse Surgical Technologies, Inc. Drug delivery catheter with tip alignment
US6554794B1 (en) 1997-09-24 2003-04-29 Richard L. Mueller Non-deforming deflectable multi-lumen catheter
US6033366A (en) 1997-10-14 2000-03-07 Data Sciences International, Inc. Pressure measurement device
US5957901A (en) 1997-10-14 1999-09-28 Merit Medical Systems, Inc. Catheter with improved spray pattern for pharmaco-mechanical thrombolysis therapy
US5908435A (en) 1997-10-23 1999-06-01 Samuels; Shaun L. W. Expandable lumen device and method of use
US6156046A (en) 1997-11-07 2000-12-05 Prolifix Medical, Inc. Methods and systems for treating obstructions in a body lumen
US6183432B1 (en) 1997-11-13 2001-02-06 Lumend, Inc. Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip
US6050986A (en) 1997-12-01 2000-04-18 Scimed Life Systems, Inc. Catheter system for the delivery of a low volume liquid bolus
US6295990B1 (en) 1998-02-03 2001-10-02 Salient Interventional Systems, Inc. Methods and systems for treating ischemia
US6622367B1 (en) 1998-02-03 2003-09-23 Salient Interventional Systems, Inc. Intravascular device and method of manufacture and use
US7879022B2 (en) 1998-02-06 2011-02-01 Medrad, Inc. Rapid exchange fluid jet thrombectomy device and method
US6875193B1 (en) 1998-02-06 2005-04-05 Possis Medical, Inc. Rapid exchange fluid jet thrombectomy device and method
US9586023B2 (en) 1998-02-06 2017-03-07 Boston Scientific Limited Direct stream hydrodynamic catheter system
US20070225615A1 (en) 2006-03-22 2007-09-27 Revascular Therapeutics Inc. Guidewire controller system
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US20060074442A1 (en) 2000-04-06 2006-04-06 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
IL123646A (en) 1998-03-11 2010-05-31 Refael Beyar Remote control catheterization
US6423032B2 (en) 1998-03-13 2002-07-23 Arteria Medical Science, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6001112A (en) 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6190357B1 (en) 1998-04-21 2001-02-20 Cardiothoracic Systems, Inc. Expandable cannula for performing cardiopulmonary bypass and method for using same
US6293960B1 (en) 1998-05-22 2001-09-25 Micrus Corporation Catheter with shape memory polymer distal tip for deployment of therapeutic devices
US6196989B1 (en) * 1998-06-04 2001-03-06 Alcon Laboratories, Inc. Tip for liquefracture handpiece
US6331171B1 (en) 1998-06-04 2001-12-18 Alcon Laboratories, Inc. Tip for a liquefracture handpiece
FR2779934B1 (en) 1998-06-17 2001-01-05 Saphir Medical Sa PNEUMATICALLY CONTROLLED HANDPIECE FOR SURGICAL AND MEDICAL APPLICATIONS
US5911722A (en) 1998-07-23 1999-06-15 Millenium Devices Llc Leban/Gordon surgical hand driver
US6231588B1 (en) 1998-08-04 2001-05-15 Percusurge, Inc. Low profile catheter for angioplasty and occlusion
US7621893B2 (en) 1998-10-29 2009-11-24 Medtronic Minimed, Inc. Methods and apparatuses for detecting occlusions in an ambulatory infusion pump
US7193521B2 (en) 1998-10-29 2007-03-20 Medtronic Minimed, Inc. Method and apparatus for detecting errors, fluid pressure, and occlusions in an ambulatory infusion pump
US7766873B2 (en) 1998-10-29 2010-08-03 Medtronic Minimed, Inc. Method and apparatus for detecting occlusions in an ambulatory infusion pump
US6283719B1 (en) 1998-11-05 2001-09-04 Frantz Medical Development Ltd Detecting obstructions in enteral/parenteral feeding tubes and automatic removal of clogs therefrom
US5989271A (en) * 1998-11-09 1999-11-23 Possis Medical, Inc. Flexible tip rheolytic thrombectomy catheter and method of constructing same
US6585705B1 (en) 1999-01-15 2003-07-01 Maginot Catheter Technologies, Inc. Retractable catheter systems
US6146396A (en) 1999-03-05 2000-11-14 Board Of Regents, The University Of Texas System Declotting method and apparatus
US6599271B1 (en) 1999-04-13 2003-07-29 Syntec, Inc. Ophthalmic flow converter
US6790215B2 (en) 1999-04-30 2004-09-14 Edwards Lifesciences Corporation Method of use for percutaneous material removal device and tip
US6238405B1 (en) 1999-04-30 2001-05-29 Edwards Lifesciences Corp. Percutaneous material removal device and method
AU3844399A (en) * 1999-05-07 2000-11-21 Salviac Limited Support frame for embolic protection device
US6350271B1 (en) 1999-05-17 2002-02-26 Micrus Corporation Clot retrieval device
JP2001070438A (en) 1999-09-02 2001-03-21 Sentan Kagaku Gijutsu Incubation Center:Kk Precision screw pump for living body
US6454775B1 (en) 1999-12-06 2002-09-24 Bacchus Vascular Inc. Systems and methods for clot disruption and retrieval
US6702830B1 (en) 1999-09-17 2004-03-09 Bacchus Vascular, Inc. Mechanical pump for removal of fragmented matter and methods of manufacture and use
US7655016B2 (en) 1999-09-17 2010-02-02 Covidien Mechanical pump for removal of fragmented matter and methods of manufacture and use
US6615835B1 (en) 1999-09-20 2003-09-09 Ballard Medical Products Flexible multiple port adaptor
US6554791B1 (en) 1999-09-29 2003-04-29 Smisson-Cartledge Biomedical, Llc Rapid infusion system
CA2321221A1 (en) 1999-10-13 2001-04-13 Debra M. Kozak Crossflow thrombectomy catheter and system
US8414543B2 (en) 1999-10-22 2013-04-09 Rex Medical, L.P. Rotational thrombectomy wire with blocking device
GB9927898D0 (en) * 1999-11-25 2000-01-26 Ssl Int Plc Irrigation of a hollow body
DE60034146T2 (en) 1999-12-22 2007-12-13 Boston Scientific Ltd., St. Michael ENDOLUMINAL OCCLUSION SPÜLKATHETER
US6511493B1 (en) 2000-01-10 2003-01-28 Hydrocision, Inc. Liquid jet-powered surgical instruments
US6451017B1 (en) 2000-01-10 2002-09-17 Hydrocision, Inc. Surgical instruments with integrated electrocautery
US6929633B2 (en) 2000-01-25 2005-08-16 Bacchus Vascular, Inc. Apparatus and methods for clot dissolution
US6663613B1 (en) 2000-01-25 2003-12-16 Bacchus Vascular, Inc. System and methods for clot dissolution
US6808505B2 (en) 2000-02-01 2004-10-26 Kadan Jeffrey S Diagnostic needle arthroscopy and lavage system
US7811250B1 (en) 2000-02-04 2010-10-12 Boston Scientific Scimed, Inc. Fluid injectable single operator exchange catheters and methods of use
US7163504B1 (en) 2000-02-16 2007-01-16 Advanced Cardiovascular Systems, Inc. Multi-lumen fluted balloon radiation centering catheter
US6752800B1 (en) 2000-02-18 2004-06-22 Intraluminal Therapeutics Inc. Catheter handle for controlling the advancement of a guide wire
US20010031981A1 (en) 2000-03-31 2001-10-18 Evans Michael A. Method and device for locating guidewire and treating chronic total occlusions
AU2001253173B2 (en) 2000-04-05 2005-05-12 Boston Scientific Limited Intralumenal material removal systems and methods
US7517352B2 (en) 2000-04-07 2009-04-14 Bacchus Vascular, Inc. Devices for percutaneous remote endarterectomy
US6533772B1 (en) 2000-04-07 2003-03-18 Innex Corporation Guide wire torque device
US6544231B1 (en) 2000-05-22 2003-04-08 Medcanica, Inc. Catch, stop and marker assembly for a medical instrument and medical instrument incorporating the same
AU2001275100A1 (en) 2000-05-31 2001-12-11 Courtney, Brian K. Embolization protection system for vascular procedures
US6824545B2 (en) 2000-06-29 2004-11-30 Concentric Medical, Inc. Systems, methods and devices for removing obstructions from a blood vessel
US7232430B2 (en) 2000-07-07 2007-06-19 Mack Ventures, Inc. Air-in-line and pressure detection
US7108674B2 (en) 2000-08-30 2006-09-19 Radius International Limited Partnership Catheter
WO2002026289A1 (en) * 2000-09-28 2002-04-04 Beck Robert C Catheter system
US7094216B2 (en) 2000-10-18 2006-08-22 Medrad, Inc. Injection system having a pressure isolation mechanism and/or a handheld controller
US6758824B1 (en) 2000-11-06 2004-07-06 Suros Surgical Systems, Inc. Biopsy apparatus
US20020058904A1 (en) 2000-11-08 2002-05-16 Robert Boock Thrombus removal device
JP4276834B2 (en) 2000-12-27 2009-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Biological information and blood processing apparatus information management system
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
JP3845857B2 (en) 2001-03-15 2006-11-15 ニプロ株式会社 Simple chemical injector
US20030065287A1 (en) 2001-04-03 2003-04-03 Spohn Michael A. Encoding and sensing of syringe information
US7044958B2 (en) 2001-04-03 2006-05-16 Medtronic Vascular, Inc. Temporary device for capturing embolic material
JP4073313B2 (en) 2001-04-27 2008-04-09 ハイドロシジョン・インコーポレーテッド High pressure pumping cartridge for medical and surgical pumping and infusion devices
US7422579B2 (en) 2001-05-01 2008-09-09 St. Jude Medical Cardiology Divison, Inc. Emboli protection devices and related methods of use
US7604612B2 (en) 2001-05-01 2009-10-20 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US7374560B2 (en) 2001-05-01 2008-05-20 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US7635342B2 (en) 2001-05-06 2009-12-22 Stereotaxis, Inc. System and methods for medical device advancement and rotation
ATE412372T1 (en) 2001-05-06 2008-11-15 Stereotaxis Inc CATHETER ADVANCEMENT SYSTEM
US6623507B2 (en) 2001-05-07 2003-09-23 Fathy M.A. Saleh Vascular filtration device
DE10123278C1 (en) 2001-05-10 2002-06-13 Univ Hamburg Breathing device used in intensive care or during anesthesia comprises a respirator, an outlet, an inhalation tube, a twin-channel endotracheal tube, flow meters, pressure meters, and an evaluation device
JP2003010194A (en) * 2001-06-29 2003-01-14 Nippon Clean Engine Lab Co Ltd Method and device for intravascular operation using catheter adopting reverse injection technology of liquid current
US20030013986A1 (en) 2001-07-12 2003-01-16 Vahid Saadat Device for sensing temperature profile of a hollow body organ
AU2002322520A1 (en) 2001-07-17 2003-03-03 Kerberos Proximal Solutions Fluid exchange system for controlled and localized irrigation and aspiration
US20050085769A1 (en) 2001-07-17 2005-04-21 Kerberos Proximal Solutions Fluid exchange system for controlled and localized irrigation and aspiration
US20030023263A1 (en) 2001-07-24 2003-01-30 Incept Llc Apparatus and methods for aspirating emboli
ATE433778T1 (en) 2001-08-08 2009-07-15 Hydrocision Inc MEDICAL DEVICE HAVING A HANDPIECE WITH A HIGH PRESSURE QUICK COUPLING
GB2378734A (en) 2001-08-14 2003-02-19 Carmeli Adahan Disposable pump with detachable motor
US6902540B2 (en) 2001-08-22 2005-06-07 Gerald Dorros Apparatus and methods for treating stroke and controlling cerebral flow characteristics
US20030055404A1 (en) 2001-09-17 2003-03-20 Moutafis Timothy E. Endoscopic rotary abraders
DE60227288D1 (en) 2001-09-17 2008-08-07 Hydrocision Inc SURGICAL ROTATING ABRASION DEVICE
JP2003101194A (en) 2001-09-21 2003-04-04 Hitachi Chem Co Ltd Production method for printed wiring board
ATE328621T1 (en) 2001-10-12 2006-06-15 Coloplast As LOCKING DEVICE
EP1438085B1 (en) 2001-10-25 2008-10-15 Emory University Catheter for modified perfusion
CA2495911C (en) 2001-11-21 2011-06-07 Hydrocision, Inc. Liquid jet surgical instruments incorporating channel openings aligned along the jet beam
US6755812B2 (en) 2001-12-11 2004-06-29 Cardiac Pacemakers, Inc. Deflectable telescoping guide catheter
GB0130139D0 (en) 2001-12-18 2002-02-06 Dca Design Int Ltd Improvements in and relating to a medicament injection apparatus
DE10202378B4 (en) 2002-01-23 2005-07-21 Dürr Dental GmbH & Co. KG Dental treatment device
US7311690B2 (en) 2002-02-25 2007-12-25 Novashunt Ag Implantable fluid management system for the removal of excess fluid
JP2003260127A (en) 2002-03-10 2003-09-16 Nippon Clean Engine Lab Co Ltd Suction method by pressurized reverse jet supply of fluid and apparatus therefor
JP2003290236A (en) 2002-04-06 2003-10-14 Nippon Clean Engine Lab Co Ltd Catheter apparatus for collision/diffusion supply and suction of fluid
US20030220556A1 (en) 2002-05-20 2003-11-27 Vespro Ltd. Method, system and device for tissue characterization
US20030236533A1 (en) 2002-06-20 2003-12-25 The Regents Of The University Of California Shape memory polymer actuator and catheter
US20030236489A1 (en) 2002-06-21 2003-12-25 Baxter International, Inc. Method and apparatus for closed-loop flow control system
US7831297B2 (en) 2003-05-24 2010-11-09 Scottsdale Medical Devices, Inc. Guide wire torque device
US7232452B2 (en) 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
US7166120B2 (en) 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
JP2004049704A (en) 2002-07-23 2004-02-19 Nipro Corp Medical aspirator
US6893414B2 (en) 2002-08-12 2005-05-17 Breg, Inc. Integrated infusion and aspiration system and method
US6991625B1 (en) 2002-08-23 2006-01-31 Medical Components, Inc. Shielded tip catheter
EP1546710A4 (en) 2002-09-10 2011-05-25 Placor Inc Method and device for monitoring platelet function
US20040049225A1 (en) 2002-09-11 2004-03-11 Denison Andy E. Aspiration catheter
US8298161B2 (en) 2002-09-12 2012-10-30 Intuitive Surgical Operations, Inc. Shape-transferring cannula system and method of use
US20070167804A1 (en) 2002-09-18 2007-07-19 Byong-Ho Park Tubular compliant mechanisms for ultrasonic imaging systems and intravascular interventional devices
US7998107B2 (en) 2002-09-24 2011-08-16 Kensey Nash Corporation Interventional procedure drive and control system
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
CN100401994C (en) 2002-10-18 2008-07-16 阿里耶·谢尔 Atherectomy system with imaging guidewire
AU2002342283A1 (en) 2002-11-04 2004-06-07 Lawrence A. D. O. Lynn Catheter flushing fluid lock system and method
US7115100B2 (en) 2002-11-15 2006-10-03 Ethicon, Inc. Tissue biopsy and processing device
WO2004047651A2 (en) 2002-11-25 2004-06-10 Boston Scientific Limited Injection device for treating mammalian body
ATE538748T1 (en) 2003-01-06 2012-01-15 Maquet Cardiovascular Llc DEVICE FOR PRESSURE CONTROL IN MEDICAL PROCEDURES
US7699804B2 (en) 2003-01-31 2010-04-20 Creare Inc. Fluid ejection system
EP1445001B1 (en) 2003-02-07 2006-11-22 Pierpont Family Limited Partnership Catheter system for performing angioplasty
US7393339B2 (en) 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US20040181209A1 (en) 2003-03-14 2004-09-16 Gross James R. Multiple port catheter connector
US7776005B2 (en) 2003-03-28 2010-08-17 Covidien Ag Triple lumen catheter with occlusion resistant tip
US20040215222A1 (en) 2003-04-25 2004-10-28 Michael Krivoruchko Intravascular material removal device
US7862575B2 (en) 2003-05-21 2011-01-04 Yale University Vascular ablation apparatus and method
US20060129091A1 (en) 2004-12-10 2006-06-15 Possis Medical, Inc. Enhanced cross stream mechanical thrombectomy catheter with backloading manifold
US7588033B2 (en) 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
US20050004594A1 (en) 2003-07-02 2005-01-06 Jeffrey Nool Devices and methods for aspirating from filters
US20050043682A1 (en) 2003-08-22 2005-02-24 Cannuflow Incorporated Flexible inflow/outflow cannula and flexible instrument port
US6969368B2 (en) 2003-09-02 2005-11-29 The Anspach Effort, Inc. Suction and directional irrigation apparatus
US7220269B1 (en) 2003-11-06 2007-05-22 Possis Medical, Inc. Thrombectomy catheter system with occluder and method of using same
US8469036B2 (en) 2003-11-07 2013-06-25 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US7744604B2 (en) 2003-11-13 2010-06-29 Lawrence Livermore National Security, Llc Shape memory polymer medical device
US7887510B2 (en) 2003-12-08 2011-02-15 Boehringer Laboratories, Inc. Suction control apparatus and methods for maintaining fluid flow without compromising sterile lines
ATE509646T1 (en) 2003-12-22 2011-06-15 Medela Holding Ag DRAINAGE APPARATUS AND METHOD
US7951073B2 (en) 2004-01-21 2011-05-31 Boston Scientific Limited Endoscopic device having spray mechanism and related methods of use
WO2005070491A2 (en) 2004-01-26 2005-08-04 Cathrx Ltd A catheter assembly with an adjustable loop
DE602005008717D1 (en) 2004-03-05 2008-09-18 Future Medical System Sa Cassette for an irrigation or aspiration device for endoscopy
US8092483B2 (en) 2004-03-06 2012-01-10 Medtronic, Inc. Steerable device having a corewire within a tube and combination with a functional medical component
US20070118165A1 (en) 2004-03-08 2007-05-24 Demello Jonathan R System and method for removal of material from a blood vessel using a small diameter catheter
US7615032B2 (en) 2004-03-24 2009-11-10 Windcrest Llc Vascular guidewire control apparatus
US7905710B2 (en) 2004-03-26 2011-03-15 Hospira, Inc. System and method for improved low flow medical pump delivery
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US20050240120A1 (en) 2004-04-26 2005-10-27 Modesitt D B Vise and method of use
US8920402B2 (en) 2004-04-27 2014-12-30 The Spectranetics Corporation Thrombectomy and soft debris removal device
US7959608B2 (en) 2004-04-27 2011-06-14 The Spectranetics Corporation Thrombectomy and soft debris removal device
KR100560483B1 (en) 2004-05-04 2006-03-13 삼성에스디아이 주식회사 Secondary battery
JP5129568B2 (en) 2004-05-21 2013-01-30 アニシージア・セイフティ・プロダクツ・エルエルシー System for detecting and removing air bubbles from vascular infusion lines
IL162318A (en) 2004-06-03 2011-07-31 Tal Wenderow Transmission for a remote catheterization system
US7662144B2 (en) 2004-06-22 2010-02-16 Boston Scientific Scimed, Inc. Catheter shaft with improved manifold bond
US8366735B2 (en) 2004-09-10 2013-02-05 Penumbra, Inc. System and method for treating ischemic stroke
WO2006034149A2 (en) 2004-09-17 2006-03-30 Cordis Neurovascular, Inc. Expandable vascular occlusion device
JP2006087643A (en) 2004-09-24 2006-04-06 Terumo Corp Apparatus for sucking foreign substance from blood vessel
US7753880B2 (en) 2004-09-28 2010-07-13 Stryker Corporation Method of operating a surgical irrigation pump capable of performing a priming operation
US7479106B2 (en) 2004-09-30 2009-01-20 Boston Scientific Scimed, Inc. Automated control of irrigation and aspiration in a single-use endoscope
EP1799096A2 (en) 2004-09-30 2007-06-27 Boston Scientific Scimed, Inc. System and method of obstruction removal
US7819887B2 (en) 2004-11-17 2010-10-26 Rex Medical, L.P. Rotational thrombectomy wire
US20080009784A1 (en) 2004-11-22 2008-01-10 Leedle John D Dialysis catheter
US20060229550A1 (en) * 2004-12-14 2006-10-12 Hydrocision, Incorporated Liquid jet surgical instrument
US7691095B2 (en) 2004-12-28 2010-04-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Bi-directional steerable catheter control handle
US20060142630A1 (en) 2004-12-29 2006-06-29 Attila Meretei Systems and methods for treating a thrombus in a blood vessel
US7491192B2 (en) 2004-12-30 2009-02-17 C. R. Bard, Inc. Cardiovascular access catheter with slit valve
US7740780B2 (en) 2005-01-20 2010-06-22 Hamboly M Samy Ahmed Multitube catheter and method for making the same
US7972354B2 (en) 2005-01-25 2011-07-05 Tyco Healthcare Group Lp Method and apparatus for impeding migration of an implanted occlusive structure
US20060184186A1 (en) 2005-02-16 2006-08-17 Medtronic Vascular, Inc. Drilling guidewire for treating chronic total occlusion
US20060253099A1 (en) 2005-04-21 2006-11-09 Medtronic Vascular, Inc. Guiding catheter with resiliently compressible occluder
US20080097291A1 (en) 2006-08-23 2008-04-24 Hanson Ian B Infusion pumps and methods and delivery devices and methods with same
IL179618A0 (en) 2006-11-27 2007-10-31 Eyoca Medical Ltd Device for inducing vibrations
JP2006335033A (en) * 2005-06-06 2006-12-14 Saito Shokai:Kk Electromotive cutter
US7938851B2 (en) 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
WO2006135934A2 (en) 2005-06-13 2006-12-21 Smith & Nephew, Inc. Surgical fluid management
US8192397B2 (en) 2005-06-21 2012-06-05 Medrad, Inc. Medical fluid injection and inflation system
US7524299B2 (en) 2005-06-21 2009-04-28 Alcon, Inc. Aspiration control
US20120330196A1 (en) 2005-06-24 2012-12-27 Penumbra Inc. Methods and Apparatus for Removing Blood Clots and Tissue from the Patient's Head
US20070016105A1 (en) 2005-06-27 2007-01-18 Mamourian Alexander C Wire torque apparatus, wire insertion devices, improved aneurysm clips and improved aneurysm clip applicators
US20070078438A1 (en) 2005-07-05 2007-04-05 Okid Corporation Catheter assembly and sheath tear assistant tool
US8221348B2 (en) 2005-07-07 2012-07-17 St. Jude Medical, Cardiology Division, Inc. Embolic protection device and methods of use
US8012766B2 (en) 2005-08-01 2011-09-06 Ortho-Clinical Diagnostics, Inc. Prediction of aspirated volume of a liquid
US8021351B2 (en) 2005-08-18 2011-09-20 Medtronic Vascular, Inc. Tracking aspiration catheter
US7938820B2 (en) 2005-08-18 2011-05-10 Lumen Biomedical, Inc. Thrombectomy catheter
GR20050100452A (en) 2005-09-02 2007-04-25 Estelle Enterprises Limited Fluid exchange catheter's system
US7713240B2 (en) 2005-09-13 2010-05-11 Medtronic Minimed, Inc. Modular external infusion device
US7935077B2 (en) 2005-09-28 2011-05-03 Medrad, Inc. Thrombectomy catheter deployment system
US8545445B2 (en) 2006-02-09 2013-10-01 Deka Products Limited Partnership Patch-sized fluid delivery systems and methods
US8398582B2 (en) 2005-10-27 2013-03-19 Novartis Ag Fluid pressure sensing chamber
US8202243B2 (en) 2005-10-27 2012-06-19 Novartis Ag Fluid pressure sensing chamber
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
EP1968508B1 (en) 2005-12-22 2019-05-15 Hybernia Medical LLC Systems for intravascular cooling
KR20080098503A (en) 2006-01-24 2008-11-10 하이드로시젼, 인크 Liquid jet surgical instrument having a distal end with a selectively controllable shape
US7608063B2 (en) 2006-02-23 2009-10-27 Medrad, Inc. Dual lumen aspiration catheter system
EP2001541B1 (en) 2006-03-20 2019-04-24 Merit Medical Systems, Inc. Torque device for a medical guidewire
US7981073B2 (en) 2006-03-30 2011-07-19 Moellstam Anders Method and device for irrigation of body cavities
US20070239182A1 (en) 2006-04-03 2007-10-11 Boston Scientific Scimed, Inc. Thrombus removal device
EP2010250A2 (en) 2006-04-06 2009-01-07 Medtronic, Inc. Systems and methods of identifying catheter malfunctions using pressure sensing
US20070249990A1 (en) 2006-04-20 2007-10-25 Ioan Cosmescu Automatic smoke evacuator and insufflation system for surgical procedures
WO2007124076A1 (en) 2006-04-21 2007-11-01 Abbott Laboratories Guidewire handling device
KR20090031674A (en) 2006-04-25 2009-03-27 하이드로시젼, 인크 Electroformed liquid jet surgical instrument
US8048032B2 (en) 2006-05-03 2011-11-01 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
US7520858B2 (en) 2006-06-05 2009-04-21 Physical Logic Ag Catheter with pressure sensor and guidance system
ES2751017T3 (en) 2006-06-08 2020-03-30 Hoffmann La Roche System to detect an occlusion in a tube
US20070299306A1 (en) 2006-06-21 2007-12-27 Parasher Vinod K Probe assembly for endoscopic procedures
US8361094B2 (en) 2006-06-30 2013-01-29 Atheromed, Inc. Atherectomy devices and methods
US20080004645A1 (en) 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US9314263B2 (en) 2006-06-30 2016-04-19 Atheromed, Inc. Atherectomy devices, systems, and methods
US8007506B2 (en) 2006-06-30 2011-08-30 Atheromed, Inc. Atherectomy devices and methods
US8628549B2 (en) 2006-06-30 2014-01-14 Atheromed, Inc. Atherectomy devices, systems, and methods
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
GB0613981D0 (en) 2006-07-13 2006-08-23 Shturman Leonid
EP2073884B1 (en) 2006-08-02 2018-10-10 Osprey Medical Inc. Microvascular obstruction detection and therapy
US7918835B2 (en) 2006-08-21 2011-04-05 Tyco Healthcare Group Lp Compliant guard for use with an aspiration instrument
EP1891998B1 (en) 2006-08-24 2019-03-13 Alka Kumar Surgical aspiration system
US8876754B2 (en) 2006-08-31 2014-11-04 Bayer Medical Care Inc. Catheter with filtering and sensing elements
US8652086B2 (en) 2006-09-08 2014-02-18 Abbott Medical Optics Inc. Systems and methods for power and flow rate control
US8394078B2 (en) 2006-10-04 2013-03-12 Medrad, Inc. Interventional catheters incorporating an active aspiration system
EP2068730B1 (en) 2006-10-04 2016-11-23 Boston Scientific Limited Interventional catheters
EP1911474B1 (en) 2006-10-11 2012-07-11 Alka Kumar Efficient continuous flow irrigation system
WO2008049088A2 (en) 2006-10-21 2008-04-24 Rollins Aaron M D Guidewire manipulation device
US8226635B2 (en) 2006-10-23 2012-07-24 Boston Scientific Scimed, Inc. Device for circulating heated fluid
US8414521B2 (en) 2006-11-06 2013-04-09 Aardvark Medical, Inc. Irrigation and aspiration devices and methods
US8317773B2 (en) 2006-11-07 2012-11-27 Angio Dynamics, Inc. Catheter with open faced sloped end portion
US8152786B2 (en) 2006-11-07 2012-04-10 Osprey Medical, Inc. Collection catheter and kit
US8246641B2 (en) 2006-11-08 2012-08-21 Cook Medical Technolgies, LLC Thrombus removal device
WO2008079828A2 (en) 2006-12-20 2008-07-03 Onset Medical Corporation Expandable trans-septal sheath
US7591816B2 (en) 2006-12-28 2009-09-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter having a pressure sensor to detect tissue contact
US7914549B2 (en) 2007-01-05 2011-03-29 Hesham Morsi Mechanical embolectomy and suction catheter
US8430837B2 (en) 2007-02-05 2013-04-30 Boston Scientific Scimed, Inc. Thrombectomy apparatus and method
NL1033434C2 (en) 2007-02-21 2008-08-22 Multilevelcontrol B V Medical-dental instruments.
US9254144B2 (en) 2007-03-30 2016-02-09 Covidien Lp Methods and apparatus for thrombectomy system
US8900214B2 (en) 2007-03-30 2014-12-02 Onset Medical Corporation Expandable trans-septal sheath
US20080249501A1 (en) 2007-04-09 2008-10-09 Medtronic Vascular, Inc. Methods for Simultaneous Injection and Aspiration of Fluids During a Medical Procedure
US7951112B2 (en) 2007-05-16 2011-05-31 Smiths Medical Asd, Inc. Pump module for use in a medical fluid dispensing system
JP5128847B2 (en) 2007-05-22 2013-01-23 オリンパスメディカルシステムズ株式会社 Endoscope
US7798999B2 (en) 2007-06-05 2010-09-21 Cook Incorporated Adjustable length catheter
US8974418B2 (en) 2007-06-12 2015-03-10 Boston Scientific Limited Forwardly directed fluid jet crossing catheter
US7914482B2 (en) 2007-06-13 2011-03-29 Dana Llc Vacuum surge suppressor for surgical aspiration systems
ES2471118T3 (en) 2007-06-22 2014-06-25 Ekos Corporation Method and apparatus for the treatment of intracranial hemorrhages
US8545432B2 (en) 2009-06-03 2013-10-01 Silk Road Medical, Inc. System and methods for controlling retrograde carotid arterial blood flow
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
JP5290290B2 (en) 2007-07-18 2013-09-18 シルク・ロード・メディカル・インコーポレイテッド Method and system for establishing regurgitation of carotid blood flow
JP2009039216A (en) 2007-08-07 2009-02-26 Terumo Corp Liquid jet flow release tube
JP5115088B2 (en) 2007-08-10 2013-01-09 セイコーエプソン株式会社 Surgical tool
JP4311483B2 (en) 2007-08-10 2009-08-12 セイコーエプソン株式会社 Liquid ejecting apparatus and surgical instrument using the same
US10342701B2 (en) 2007-08-13 2019-07-09 Johnson & Johnson Surgical Vision, Inc. Systems and methods for phacoemulsification with vacuum based pumps
US7753868B2 (en) 2007-08-21 2010-07-13 Cook Critical Care Incorporated Multi-lumen catheter
US20090082722A1 (en) 2007-08-21 2009-03-26 Munger Gareth T Remote navigation advancer devices and methods of use
US7998020B2 (en) 2007-08-21 2011-08-16 Stereotaxis, Inc. Apparatus for selectively rotating and/or advancing an elongate device
US9248253B2 (en) 2007-08-21 2016-02-02 Cook Medical Technologies Llc Winged catheter assembly
CN201079629Y (en) 2007-10-15 2008-07-02 徐加成 Medical flushing drainage tube
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8007490B2 (en) 2007-10-19 2011-08-30 Cook Medical Technologies Llc Reduced width dual-lumen catheter
US8500697B2 (en) 2007-10-19 2013-08-06 Pressure Products Medical Supplies, Inc. Transseptal guidewire
EP2209515B1 (en) 2007-10-19 2013-09-18 Navilyst Medical, Inc. Recirculation minimizing catheter
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
US8236016B2 (en) 2007-10-22 2012-08-07 Atheromed, Inc. Atherectomy devices and methods
US8292841B2 (en) 2007-10-26 2012-10-23 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
DE102007053370B3 (en) 2007-11-09 2009-02-26 Carl Zeiss Surgical Gmbh Surgical system for controlling fluid
EP2229199B1 (en) 2007-11-19 2013-06-05 Mallinckrodt LLC Power injector having patency check with pressure monitoring
US8262645B2 (en) 2007-11-21 2012-09-11 Actuated Medical, Inc. Devices for clearing blockages in in-situ artificial lumens
US8323268B2 (en) 2007-12-06 2012-12-04 The Alfred E. Mann Foundation For Scientific Research Implantable infusion devices including apparatus for confirming fluid flow and systems, apparatus and methods associated with same
US20090292212A1 (en) 2008-05-20 2009-11-26 Searete Llc, A Limited Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8734374B2 (en) 2007-12-20 2014-05-27 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system during a surgical procedure
US8034018B2 (en) 2007-12-20 2011-10-11 Bausch & Lomb Incorporated Surgical system having means for stopping vacuum pump
WO2009080288A1 (en) 2007-12-21 2009-07-02 Loders Croklaan B.V. Process for producing a palm oil product
SG154343A1 (en) 2008-01-08 2009-08-28 Ting Choon Meng Method and apparatus for intra-articular injection or aspiration
US8986246B2 (en) 2008-01-16 2015-03-24 Catheter Robotics Inc. Remotely controlled catheter insertion system
US7867192B2 (en) 2008-02-29 2011-01-11 The Alfred E. Mann Foundation For Scientific Research Ambulatory infusion devices and methods with blockage detection
AU2009223037A1 (en) 2008-03-12 2009-09-17 Smith & Nephew Plc Negative pressure dressing and method of using same
US8647294B2 (en) 2008-03-20 2014-02-11 Medrad, Inc. Direct stream hydrodynamic catheter system
US8066677B2 (en) 2008-03-21 2011-11-29 Medtronic Vascular, Inc Rapid exchange catheter with tear resistant guidewire shaft
US9333287B2 (en) 2008-04-08 2016-05-10 Jet Prep Ltd. Body passage cleansing device
US9078671B2 (en) 2008-04-17 2015-07-14 Warsaw Orthopedic, Inc. Surgical tool
BRPI0802006B1 (en) 2008-04-17 2020-12-15 Universidade Federal De Minas Gerais DEVICE FOR CONTROL AND MONITORING OF VACUUM PRESSURE IN ASPIRATION SYSTEMS FOR BIOLOGICAL SECRETIONS
US8140146B2 (en) 2008-05-30 2012-03-20 General Electric Company Catheter tip device and method for manufacturing same
DE102009055227B3 (en) 2009-12-23 2011-06-22 Human Med AG, 19061 Method for conveying a fluid and device for generating a volume flow
AU2009266808B2 (en) 2008-07-03 2014-07-10 Teleflex Life Sciences Limited Apparatus and methods for treating obstructions within body lumens
US8070694B2 (en) 2008-07-14 2011-12-06 Medtronic Vascular, Inc. Fiber based medical devices and aspiration catheters
US20100030134A1 (en) 2008-07-29 2010-02-04 Fitzgerald Matthew J Precision orifice safety device
US8465456B2 (en) 2008-07-31 2013-06-18 Boston Scientific Scimed, Inc. Extendable aspiration catheter
EP2158828A1 (en) 2008-08-25 2010-03-03 Koninklijke Philips Electronics N.V. Device for frothing milk, comprising means for preventing blockage of an air restriction by milk residue
US8864792B2 (en) 2008-08-29 2014-10-21 Rapid Medical, Ltd. Device and method for clot engagement
US9005237B2 (en) 2008-08-29 2015-04-14 Rapid Medical Ltd. Device and method for clot capture
ATE534336T1 (en) 2008-08-29 2011-12-15 Rapid Medical Ltd EMBOLECTOMY DEVICE
US9034008B2 (en) 2008-08-29 2015-05-19 Rapid Medical Ltd. Device and method involving stabilization during clot removal
US8758364B2 (en) 2008-08-29 2014-06-24 Rapid Medical Ltd. Device and method for clot engagement and capture
EP2346549A2 (en) 2008-10-01 2011-07-27 Alfredo R. Zarate Methods of improving fluid delivery
US8223028B2 (en) 2008-10-10 2012-07-17 Deka Products Limited Partnership Occlusion detection system and method
US9510854B2 (en) 2008-10-13 2016-12-06 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
US8460214B2 (en) 2008-10-14 2013-06-11 The Cleveland Clinic Foundation Vascular guidewire system and method
US20110152920A1 (en) 2008-12-02 2011-06-23 Rapid Medical Ltd. Embolectomy device
US8162919B2 (en) 2008-12-08 2012-04-24 Bausch & Lomb Incorporated Flow control system based on leakage
US10226563B2 (en) 2008-12-23 2019-03-12 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
JP5569818B2 (en) 2009-01-07 2014-08-13 エンライテン テクノロジーズ, インコーポレイテッド Tissue removal device, system and method
JP2012515578A (en) 2009-01-23 2012-07-12 エンドールミナル サイエンシーズ プロプライエタリー リミテッド Intravascular devices and related systems and methods
US8287485B2 (en) 2009-01-28 2012-10-16 Olympus Medical Systems Corp. Treatment system for surgery and control method of treatment system for surgery
JP5818357B2 (en) 2009-02-10 2015-11-18 ヴェサテック エルエルシー Method and apparatus for operating a surgical guidewire
US20100204672A1 (en) 2009-02-12 2010-08-12 Penumra, Inc. System and method for treating ischemic stroke
US8608699B2 (en) 2009-03-31 2013-12-17 Tandem Diabetes Care, Inc. Systems and methods to address air, leaks and occlusions in an insulin pump system
DE102009016859B4 (en) 2009-04-08 2018-06-14 Erbe Elektromedizin Gmbh Water jet surgical instrument
US8353858B2 (en) 2009-06-03 2013-01-15 Medrad, Inc. Rapid exchange fluid jet catheter and method
WO2010146579A1 (en) 2009-06-14 2010-12-23 Medingo Ltd. Devices and methods for malfunctions recognition in a therapeutic dispensing device
BR112012000934A2 (en) 2009-07-13 2016-12-20 Nestec Sa cassettes and methods of use of these
EP3284494A1 (en) 2009-07-30 2018-02-21 Tandem Diabetes Care, Inc. Portable infusion pump system
JP4655163B1 (en) 2009-08-26 2011-03-23 セイコーエプソン株式会社 Fluid ejecting apparatus and method for controlling fluid ejecting apparatus
EP2475415B1 (en) 2009-09-09 2016-06-22 Abiomed, Inc. Method for simultaneously delivering fluid to a dual lumen catheter with a single fluid source
ATE530213T1 (en) 2009-09-10 2011-11-15 Hoffmann La Roche MEDICAL INFUSION PUMP AND METHOD FOR DETERMINING THE CAUSE OF A POWER INTERRUPTION IN THE PUMP
US20110071844A1 (en) 2009-09-22 2011-03-24 Cerner Innovation, Inc. Pharmacy infusion management
WO2011037838A1 (en) 2009-09-25 2011-03-31 Neuroenterprises, Llc Regulated gravity-based cerebral spinal fluid drainage device
US8317786B2 (en) 2009-09-25 2012-11-27 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
WO2011044387A2 (en) 2009-10-07 2011-04-14 The Board Of Regents Of The University Of Texas System Pressure-sensing medical devices, systems and methods, and methods of forming medical devices
US8209060B2 (en) 2009-11-05 2012-06-26 Smiths Medical Asd, Inc. Updating syringe profiles for a syringe pump
US8876757B2 (en) 2009-11-12 2014-11-04 Abbott Medical Optics Inc. Fluid level detection system
EP2498806B1 (en) 2009-11-12 2014-12-31 Ramot at Tel-Aviv University Ltd. Compositions comprising pedf and uses of same in the treatment and prevention of ovary-related syndromes
US8398579B2 (en) 2009-12-16 2013-03-19 Medrad, Inc. Catheter including composite guide and methods for use of the same
US8337175B2 (en) 2009-12-22 2012-12-25 Smith & Nephew, Inc. Disposable pumping system and coupler
US8613724B2 (en) 2009-12-31 2013-12-24 DEKA Products Limted Partnership Infusion pump assembly
WO2011083451A2 (en) 2010-01-11 2011-07-14 Motus Gi Medical Technologies Ltd. Systems and methods for cleaning body cavities
US20120029429A1 (en) 2010-01-19 2012-02-02 Klein Jeffrey Alan Sterile disposable remote pneumatic actuators
CN201603160U (en) 2010-01-24 2010-10-13 邓仲存 Improved ventricular drainage tube
JP2011177407A (en) 2010-03-03 2011-09-15 Seiko Epson Corp Fluid injection device
EP2558005B1 (en) 2010-04-13 2022-03-30 MIVI Neuroscience, Inc Embolectomy devices for treatment of acute ischemic stroke condition
US8246573B2 (en) 2010-04-27 2012-08-21 Medtronic, Inc. Detecting empty medical pump reservoir
US8764779B2 (en) 2010-05-13 2014-07-01 Rex Medical, L.P. Rotational thrombectomy wire
US9023070B2 (en) 2010-05-13 2015-05-05 Rex Medical, L.P. Rotational thrombectomy wire coupler
US9795406B2 (en) 2010-05-13 2017-10-24 Rex Medical, L.P. Rotational thrombectomy wire
US8663259B2 (en) 2010-05-13 2014-03-04 Rex Medical L.P. Rotational thrombectomy wire
US8936447B2 (en) 2010-08-26 2015-01-20 Carefusion 303, Inc. IV pump dual piston disposable cassette and system
US9107691B2 (en) 2010-10-19 2015-08-18 Distal Access, Llc Apparatus for rotating medical devices, systems including the apparatus, and associated methods
US9585667B2 (en) 2010-11-15 2017-03-07 Vascular Insights Llc Sclerotherapy catheter with lumen having wire rotated by motor and simultaneous withdrawal from vein
US9180043B2 (en) 2010-11-15 2015-11-10 Focal Cool, Llc Apparatus for treatment of reperfusion injury
JP5881735B2 (en) 2010-12-22 2016-03-09 スミス アンド ネフュー インコーポレーテッド Apparatus and method for negative pressure wound therapy
CN102092670B (en) 2010-12-27 2013-04-17 清华大学 Carbon nano-tube composite structure and preparation method thereof
US9624915B2 (en) 2011-03-09 2017-04-18 Fresenius Medical Care Holdings, Inc. Medical fluid delivery sets and related systems and methods
US9055964B2 (en) 2011-03-15 2015-06-16 Angio Dynamics, Inc. Device and method for removing material from a hollow anatomical structure
WO2012135794A1 (en) 2011-04-01 2012-10-04 Christopher Burnside Gordon Fluid jet cell harvester and cellular delivery system
US9149546B2 (en) 2011-05-20 2015-10-06 Nihon Medi-Physics Co., Ltd. Compound having affinity for amyloid
US20120291811A1 (en) 2011-05-20 2012-11-22 Dabney James H Feeding Tube Cleaning Devices and Methods
US10286144B2 (en) 2011-06-23 2019-05-14 Debiotech S.A. Method and system for detecting malfunction of a MEMS micropump
US8702678B2 (en) 2011-08-03 2014-04-22 Venous Therapy, Inc. Assemblies, systems, and methods for infusing therapeutic agents into the body
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US20130190701A1 (en) 2012-01-19 2013-07-25 Kirn Medical Design Llc Medical tube unclogging system and related method
JP5575281B2 (en) 2012-01-26 2014-08-20 コヴィディエン リミテッド パートナーシップ Thrombectomy catheter system
US9238122B2 (en) 2012-01-26 2016-01-19 Covidien Lp Thrombectomy catheter systems
WO2013119336A1 (en) 2012-02-10 2013-08-15 Laurimed, Llc Vacuum powered rotary devices and methods
JP2013180156A (en) * 2012-03-05 2013-09-12 Sumitomo Bakelite Co Ltd Medical equipment
AU2013235701B2 (en) 2012-03-17 2017-02-09 Johnson & Johnson Surgical Vision, Inc. Surgical cassette
CN102698328B (en) 2012-06-08 2014-12-03 李广成 Double-container balanced lavaging device for hematoma remover
US9050127B2 (en) 2012-06-27 2015-06-09 Boston Scientific Limited Consolidated atherectomy and thrombectomy catheter
US8454557B1 (en) 2012-07-19 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
US9332999B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
US9332998B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
JP6317751B2 (en) 2012-11-08 2018-04-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. System for performing medical procedures
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
US9539022B2 (en) 2012-11-28 2017-01-10 Microvention, Inc. Matter conveyance system
US9042938B2 (en) 2012-12-27 2015-05-26 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US20140303658A1 (en) 2013-02-13 2014-10-09 Bayer Medical Care Inc. Thrombectomy Catheter System
US20140228869A1 (en) 2013-02-13 2014-08-14 Medrad, Inc. Thrombectomy catheter
US9883885B2 (en) 2013-03-13 2018-02-06 The Spectranetics Corporation System and method of ablative cutting and pulsed vacuum aspiration
US9456872B2 (en) 2013-03-13 2016-10-04 The Spectranetics Corporation Laser ablation catheter
US9283040B2 (en) 2013-03-13 2016-03-15 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US8715315B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment systems
AU2014228778B2 (en) 2013-03-15 2019-06-06 Atrium Medical Corporation Fluid analyzer and associated methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
US9693789B2 (en) 2013-03-29 2017-07-04 Silk Road Medical, Inc. Systems and methods for aspirating from a body lumen
JP2014200617A (en) 2013-04-10 2014-10-27 セイコーエプソン株式会社 Fluid injection device and clogging detection method
US10441460B2 (en) 2013-04-26 2019-10-15 Med-Logics, Inc. Tissue removal devices, systems and methods
US9539402B2 (en) 2013-06-10 2017-01-10 Guidance Airway Solutions, Llc Combined laryngo-tracheal anesthetic and stylet device
US9289575B2 (en) * 2013-06-20 2016-03-22 Philip J. Dye Catheter
US9259237B2 (en) 2013-07-12 2016-02-16 Inceptus Medical, Llc Methods and apparatus for treating pulmonary embolism
EP3052156B1 (en) 2013-10-02 2020-12-23 3M Innovative Properties Company Diposable reduced-pressure therapy system with electronic feedback
US9782195B2 (en) 2013-11-20 2017-10-10 Board Of Regents Of The University Of Nebraska Fluid jet arterial surgical device
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US20150374391A1 (en) 2014-03-07 2015-12-31 Inceptus Medical, Llc Methods and apparatus for treating small vessel thromboembolisms
DE102014204799A1 (en) 2014-03-14 2015-09-17 Siemens Aktiengesellschaft Method and device for displaying a vessel
US9820761B2 (en) 2014-03-21 2017-11-21 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
US9248221B2 (en) 2014-04-08 2016-02-02 Incuvate, Llc Aspiration monitoring system and method
US9433427B2 (en) 2014-04-08 2016-09-06 Incuvate, Llc Systems and methods for management of thrombosis
CA2949968C (en) 2014-04-28 2021-10-12 Distal Access, Llc Tissue resectors with cutting wires, hand-operated tissue resector systems and associated methods
US9883877B2 (en) 2014-05-19 2018-02-06 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
CA2939315C (en) 2014-06-09 2018-09-11 Inceptus Medical, Llc Retraction and aspiration device for treating embolism and associated systems and methods
WO2016027198A1 (en) 2014-08-21 2016-02-25 Koninklijke Philips N.V. Device and methods for crossing occlusions
DE202016009165U1 (en) 2015-02-04 2023-04-26 Route 92 Medical, Inc. Rapid Aspiration Thrombectomy System
US10238853B2 (en) 2015-04-10 2019-03-26 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10702292B2 (en) 2015-08-28 2020-07-07 Incuvate, Llc Aspiration monitoring system and method
US10561440B2 (en) 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
US10226263B2 (en) 2015-12-23 2019-03-12 Incuvate, Llc Aspiration monitoring system and method
EP3416568A4 (en) 2016-02-16 2019-10-16 Insera Therapeutics, Inc. Aspiration devices and anchored flow diverting devices
US10492805B2 (en) 2016-04-06 2019-12-03 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
US10492821B2 (en) 2016-06-24 2019-12-03 Hydrocision, Inc. Selective tissue removal treatment device
US9770551B1 (en) 2017-01-13 2017-09-26 Joel S. Faden Apparatus and methods of dispensing fluid intravenously and flushing lines of intravenous fluid administration systems
US20180207397A1 (en) 2017-01-23 2018-07-26 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
EP3634265A1 (en) 2017-05-23 2020-04-15 Asahi Intecc Co., Ltd. Assistive jet aspiration thrombectomy catheter and method of using same
US10716880B2 (en) 2018-06-15 2020-07-21 Incuvate, Llc Systems and methods for aspiration and monitoring
US10531883B1 (en) 2018-07-20 2020-01-14 Syntheon 2.0, LLC Aspiration thrombectomy system and methods for thrombus removal with aspiration catheter
CN112533550A (en) 2018-07-24 2021-03-19 半影公司 Device and method for controlled clot aspiration
US20200345904A1 (en) 2019-05-01 2020-11-05 Neuravi Limited Aspiration control valve

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1148093A (en) 1915-03-22 1915-07-27 Charles Edmund Kells Apparatus for surgically cleansing surfaces.
US4690672A (en) 1984-09-06 1987-09-01 Veltrup Elmar M Apparatus for removing solid structures from body passages
US5135482A (en) 1985-12-31 1992-08-04 Arnold Neracher Hydrodynamic device for the elimination of an organic deposit obstructing a vessel of a human body
DE3715418A1 (en) 1986-05-08 1987-11-12 Olympus Optical Co LITHOTOM
US5057098A (en) 1987-05-01 1991-10-15 Ophthalmocare, Inc. Apparatus and method for extracting cataract tissue
US5395315A (en) 1990-02-14 1995-03-07 Cordis Corporation Drainage catheter
US6096001A (en) 1990-08-06 2000-08-01 Possis Medical, Inc. Thrombectomy and tissue removal device
US6544209B1 (en) 1990-08-06 2003-04-08 Possis Medical, Inc. Thrombectomy and tissue removal method and device
US6926726B2 (en) 1990-08-06 2005-08-09 Possis Medical, Inc. Thrombectomy and tissue removal method
US6129697A (en) 1990-08-06 2000-10-10 Possis Medical, Inc. Thrombectomy and tissue removal device
US5496267A (en) 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
US5318518A (en) 1991-08-14 1994-06-07 Hp Medica Gesellschaft Mbh Fur Medizintechnische Systeme Irrigating catheter
US5248297A (en) * 1992-02-26 1993-09-28 Haruo Takase Suction tube for use in surgical operation
US5713851A (en) 1993-07-05 1998-02-03 Cordis Corporation Method for manufacturing a catheter with at least one high-pressure lumen
US5827229A (en) 1995-05-24 1998-10-27 Boston Scientific Corporation Northwest Technology Center, Inc. Percutaneous aspiration thrombectomy catheter system
US5795332A (en) 1996-04-15 1998-08-18 Lucas; Daniel R. Silicone catheter
US6022336A (en) * 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment
US6129698A (en) 1996-05-24 2000-10-10 Beck; Robert C Catheter
US5989210A (en) 1998-02-06 1999-11-23 Possis Medical, Inc. Rheolytic thrombectomy catheter and method of using same
US6224570B1 (en) 1998-02-06 2001-05-01 Possis Medical, Inc. Rheolytic thrombectomy catheter and method of using same
US6755803B1 (en) 1998-02-06 2004-06-29 Possis Medical, Inc. Single operator exchange fluid jet thrombectomy device
US6579270B2 (en) 1998-06-04 2003-06-17 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US20030144688A1 (en) 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US6375635B1 (en) 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US6616679B1 (en) 1999-07-30 2003-09-09 Incept, Llc Rapid exchange vascular device for emboli and thrombus removal and methods of use
US20020068895A1 (en) 1999-12-10 2002-06-06 Beck Robert C. Interventional device
US6719717B1 (en) 2000-03-17 2004-04-13 Advanced Research & Technology Institute, Inc. Thrombectomy treatment system and method
US6572578B1 (en) 2000-08-25 2003-06-03 Patrick A. Blanchard Fluid-jet catheter and its application to flexible endoscopy
US6635070B2 (en) 2001-05-21 2003-10-21 Bacchus Vascular, Inc. Apparatus and methods for capturing particulate material within blood vessels
US20020173819A1 (en) 2001-05-21 2002-11-21 Bacchus Vascular, Inc. Apparatus and methods for capturing particulate material within blood vessels
US20030216760A1 (en) * 2002-05-20 2003-11-20 Eric Welch Apparatus and system for removing an obstruction from a lumen
US20040243157A1 (en) 2002-10-25 2004-12-02 Connor Brian G. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
US20040193046A1 (en) 2003-03-28 2004-09-30 John E. Nash Catheter with associated extension lumen
US20040199201A1 (en) * 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Embolectomy devices
WO2004100772A2 (en) 2003-05-12 2004-11-25 University Of Florida Devices and methods for disruption and removal of luninal occlusions
EP1488748A1 (en) 2003-06-17 2004-12-22 Terumo Kabushiki Kaisha Living body lumen washing apparatus
US7846175B2 (en) * 2006-04-03 2010-12-07 Medrad, Inc. Guidewire and collapsable filter system

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11653945B2 (en) 2007-02-05 2023-05-23 Walk Vascular, Llc Thrombectomy apparatus and method
US11497521B2 (en) 2008-10-13 2022-11-15 Walk Vascular, Llc Assisted aspiration catheter system
US20100204712A1 (en) * 2009-02-11 2010-08-12 Mark Mallaby Neurovascular microcatheter device, system and methods for use thereof
US20170265885A1 (en) * 2013-02-13 2017-09-21 Boston Scientific Limited Thrombectomy catheter system
US10813663B2 (en) 2013-03-15 2020-10-27 National University Of Ireland, Galway Device suitable for removing matter from inside the lumen and the wall of a body lumen
US11278307B2 (en) 2013-03-15 2022-03-22 Vetex Medical Limited Thrombectomy devices with aspiration
US11317939B2 (en) 2013-03-15 2022-05-03 Vetex Medical Limited Thrombectomy devices with maceration
US10779852B2 (en) 2013-03-15 2020-09-22 National University Of Ireland, Galway Device suitable for removing matter from inside the lumen and the wall of a body lumen
US11406418B2 (en) 2013-03-15 2022-08-09 Vetex Medial Limited Thrombectomy devices with control assemblies
US10874421B2 (en) 2013-03-15 2020-12-29 National University Of Ireland, Galway Extraction devices
US11896257B2 (en) 2013-03-15 2024-02-13 Vetex Medical Limited Thrombectomy devices with control assemblies
US10219814B2 (en) 2013-12-13 2019-03-05 Rex Medical, L.P. Aspiration system for thrombectomy procedures
US10772644B2 (en) 2013-12-13 2020-09-15 Rex Medical L.P. Aspiration system for thrombectomy procedures
US11160572B2 (en) 2014-01-03 2021-11-02 Legacy Ventures LLC Clot retrieval system
US9717882B2 (en) 2014-02-05 2017-08-01 Boston Scientific Scimed, Inc. Multi-lumen catheters and related methods of manufacture
US11678896B2 (en) 2014-04-08 2023-06-20 Incuvate, Llc Aspiration monitoring system and method
US9433427B2 (en) 2014-04-08 2016-09-06 Incuvate, Llc Systems and methods for management of thrombosis
US10603415B2 (en) 2014-04-08 2020-03-31 Incuvate, Llc Aspiration monitoring system and method
US10192230B2 (en) 2014-04-08 2019-01-29 Incuvate, Llc Systems and methods for management of thrombosis
US10922704B2 (en) 2014-04-08 2021-02-16 Incuvate, Llc Systems and methods for management of thrombosis
US9913936B2 (en) 2014-04-08 2018-03-13 Incuvate, Llc Systems and methods for management of thrombosis
US9895473B2 (en) 2014-04-08 2018-02-20 Incuvate, Llc Aspiration monitoring system and method
US9248221B2 (en) 2014-04-08 2016-02-02 Incuvate, Llc Aspiration monitoring system and method
US10716583B2 (en) 2014-05-19 2020-07-21 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11490909B2 (en) 2014-05-19 2022-11-08 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US9883877B2 (en) 2014-05-19 2018-02-06 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US10743907B2 (en) 2014-11-07 2020-08-18 National University Of Ireland, Galway Thrombectomy device
US10702292B2 (en) 2015-08-28 2020-07-07 Incuvate, Llc Aspiration monitoring system and method
US11744600B2 (en) 2015-08-28 2023-09-05 Incuvate, Llc Aspiration monitoring system and method
US11672561B2 (en) 2015-09-03 2023-06-13 Walk Vascular, Llc Systems and methods for manipulating medical devices
US10561440B2 (en) 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
US10292804B2 (en) 2015-09-21 2019-05-21 Stryker Corporation Embolectomy devices
US10441404B2 (en) 2015-09-21 2019-10-15 Stryker Corporation Embolectomy devices
US11540847B2 (en) 2015-10-09 2023-01-03 Incuvate, Llc Systems and methods for management of thrombosis
US11051832B2 (en) 2015-12-23 2021-07-06 Incuvate, Llc Aspiration monitoring system and method
US10226263B2 (en) 2015-12-23 2019-03-12 Incuvate, Llc Aspiration monitoring system and method
US11771445B2 (en) 2015-12-23 2023-10-03 Incuvate, Llc Aspiration monitoring system and method
EP3884883A1 (en) * 2016-01-28 2021-09-29 Gyrus ACMI, Inc. d/b/a Olympus Surgical Technologies America Apparatus for stone fragments removal
US11510689B2 (en) 2016-04-06 2022-11-29 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
US10492805B2 (en) 2016-04-06 2019-12-03 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
US11744565B2 (en) * 2017-10-09 2023-09-05 The Board Of Regents Of The University Of Oklahoma Surgical evacuation apparatus and method
US20200352553A1 (en) * 2017-10-09 2020-11-12 The Board Of Regents Of The University Of Oklahoma Surgical evacuation apparatus and method
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11376028B1 (en) 2021-04-17 2022-07-05 Inquis Medical, Inc. Devices, systems, and methods for removing obstructive material from body lumens
US11717603B2 (en) 2021-04-27 2023-08-08 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss
US11679194B2 (en) 2021-04-27 2023-06-20 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss
US11679195B2 (en) 2021-04-27 2023-06-20 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss
US11730925B2 (en) 2021-06-28 2023-08-22 Inquis Medical, Inc. Apparatuses and methods for tracking obstructive material within a suction catheter
US11730924B2 (en) 2021-06-28 2023-08-22 Inquis Medical, Inc. Apparatuses and methods for controlling removal of obstructive material
US11931502B2 (en) 2023-04-27 2024-03-19 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss

Also Published As

Publication number Publication date
US9662137B2 (en) 2017-05-30
JP6189408B2 (en) 2017-08-30
US8900179B2 (en) 2014-12-02
WO2008097993A3 (en) 2009-02-26
JP7104816B2 (en) 2022-07-21
US20220387064A1 (en) 2022-12-08
EP2120737B1 (en) 2020-04-01
US10314608B2 (en) 2019-06-11
US20220387063A1 (en) 2022-12-08
JP6823693B2 (en) 2021-02-03
WO2008097993A2 (en) 2008-08-14
US20220387062A1 (en) 2022-12-08
JP2017192815A (en) 2017-10-26
US20170224374A1 (en) 2017-08-10
US20150032138A1 (en) 2015-01-29
JP2014039851A (en) 2014-03-06
US11653945B2 (en) 2023-05-23
US20080255596A1 (en) 2008-10-16
JP2019188216A (en) 2019-10-31
CA2677343C (en) 2016-06-21
JP7338008B2 (en) 2023-09-04
JP2022125273A (en) 2022-08-26
US20080262410A1 (en) 2008-10-23
JP5385155B2 (en) 2014-01-08
US20190274704A1 (en) 2019-09-12
JP2010517642A (en) 2010-05-27
JP2021062236A (en) 2021-04-22
JP2016040022A (en) 2016-03-24
EP3689274A1 (en) 2020-08-05
JP6122755B2 (en) 2017-04-26
CA2677343A1 (en) 2008-08-14
EP2120737A2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US11653945B2 (en) Thrombectomy apparatus and method
EP1819296B1 (en) Improved sheath for use with an embolic protection filter
US7137991B2 (en) Multi-wire embolic protection filtering device
US11376028B1 (en) Devices, systems, and methods for removing obstructive material from body lumens
US20110137334A1 (en) Electroactively Deployed Filter Device
US20050137620A1 (en) Balloon catheter retrieval device
US20070299423A1 (en) Wire stabilization
US20070219577A1 (en) Sprayed in delivery sheath tubes

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JENSON, MARK L.;DRASLER, WILLIAM J.;THIELEN, JOSEPH M.;REEL/FRAME:021184/0679;SIGNING DATES FROM 20080602 TO 20080701

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JENSON, MARK L.;DRASLER, WILLIAM J.;THIELEN, JOSEPH M.;SIGNING DATES FROM 20080602 TO 20080701;REEL/FRAME:021184/0679

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: WALK VASCULAR, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:058995/0337

Effective date: 20210901