US8361539B2 - Methods of forming microparticle coated medical device - Google Patents

Methods of forming microparticle coated medical device Download PDF

Info

Publication number
US8361539B2
US8361539B2 US10/663,181 US66318103A US8361539B2 US 8361539 B2 US8361539 B2 US 8361539B2 US 66318103 A US66318103 A US 66318103A US 8361539 B2 US8361539 B2 US 8361539B2
Authority
US
United States
Prior art keywords
solution
polymer
drug
microparticles
stent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/663,181
Other versions
US20040052858A1 (en
Inventor
Steven Z. Wu
Syed F. A. Hossainy
Sameer Harish
Deborra Sanders-Millare
Daryush Mirzaee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Advanced Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Cardiovascular Systems Inc filed Critical Advanced Cardiovascular Systems Inc
Priority to US10/663,181 priority Critical patent/US8361539B2/en
Assigned to ADVANCED CARDIOVASCULAR SYSTEMS, INC. reassignment ADVANCED CARDIOVASCULAR SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARISH, SAMEER, MIRZAEE, DARYUSH, HOSSAINY, SYED F.A., SANDERS-MILLARE, DEBORRA, WU, STEVEN Z.
Publication of US20040052858A1 publication Critical patent/US20040052858A1/en
Application granted granted Critical
Publication of US8361539B2 publication Critical patent/US8361539B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/622Microcapsules

Definitions

  • the present invention relates to a medical device for use in tissue and organ treatment and, in particular, to drug-loaded microparticles embedded within a matrix and applied to the medical device.
  • PTCA percutaneous transluminal coronary angioplasty
  • PTCA is a catheter-based technique whereby a balloon catheter is inserted into a blocked or narrowed coronary lumen of the patient. Once the balloon is positioned at the blocked lumen or target site, the balloon is inflated causing dilation of the lumen. The catheter is then removed from the target site thereby allowing blood to freely flow through the unrestricted lumen.
  • PTCA and related procedures aid in alleviating intraluminal constrictions, such constrictions or blockages reoccur in many cases.
  • the cause of these recurring obstructions termed restenosis, is due to the body's immune system responding to the trauma of the surgical procedure. As a result, the PTCA procedure may need to be repeated to repair the damaged lumen.
  • Stents or drug therapies are often used to avoid or mitigate the effects of restenosis at the surgical site.
  • stents are small, cylindrical devices whose structure serves to create or maintain an unobstructed opening within a lumen.
  • the stents are typically made of stainless steel or a memory-responsive metal, such as NitinolTM and are delivered to the target site via a balloon catheter.
  • NitinolTM a memory-responsive metal
  • the stents are effective in opening the stenotic lumen, the foreign material and structure of the stents themselves may exacerbate the occurrence of restenosis or thrombosis.
  • Drugs or similar agents that limit or dissolve plaque and clots are used to reduce, or in some cases eliminate, the incidence of restenosis and thrombosis. Since the drugs are applied systemically to the patient, they are absorbed not only by the tissues at the target site, but by all areas of the body. As such, one drawback associated with the systemic application of drugs is that areas of the body not needing treatment are also affected.
  • stents are frequently used as a means of delivering the drugs exclusively to the target site. By positioning the stent at the target site, the drugs can be applied directly to the area of the lumen requiring therapy or diagnosis.
  • drug-loaded stents also offer long-term treatment and/or diagnostic capabilities.
  • These stents include a biodegradable or absorbable polymer suspension that is saturated with a particular drug. In use, the stent is positioned at the target site and retained at that location either for a predefined period or permanently. The polymer suspension releases the drug into the surrounding tissue at a controlled rate based upon the chemical and/or biological composition of the polymer and drug.
  • the drug-delivery device allows one or more drugs to be released from the medical device to the target site.
  • the device features enable one or more drugs to be released at variable and/or independent rates.
  • a method of manufacturing such an improved drug delivery device that is convenient, efficient and cost effective.
  • a small particle such as a micro- and/or nanoparticle (hereinafter referred to interchangeably as “microparticle”), is formed and loaded with a drug.
  • the drug-loaded microparticle is formulated by combining a drug with various chemical solutions.
  • a microparticle can be formed by adding a drug-loaded solution containing a photoinitiator into a relatively inert bath. Light or similar energy is applied to the solution in the bath causing a photo-chemical reaction that produces one or more microparticles.
  • the drug-loaded solution is combined with a cross-linker solution and vigorously vortexed in a inert bath.
  • microparticles The agitation together with the chemical reaction produces one or more microparticles.
  • Specified sizes of the microparticles and amounts of drug(s) contained within the microparticles may be varied by altering the proportions of the above chemicals/solutions and by varying the process parameters during mixing.
  • therapeutic substances and radioactive isotopes may also be loaded into the microparticles.
  • a microparticle can be formed and loaded with one or more drugs, as described above.
  • the drug-loaded microparticle is suspended in a polymer solution forming a polymer matrix.
  • the medical device is dipped in the polymer matrix so that a coating of the polymer matrix having a relatively smooth surface texture is applied over the entire surface of the medical device.
  • the entire surface of the medical device is spray coated with the polymer matrix.
  • only select portions of the medical device are coated with one or more polymer matrices.
  • Embodiments of the medical device make possible site specific treatment therapies. Coating different portions of an implantable medical device, with the disclosed microparticles loaded with various drugs advantageously allows site-specific treatment of discrete sections of the patient's lumen. In addition, by embedding the drug-loaded microparticle in a polymer, the resulting matrix can increase or decrease the release rate of the drug from the microparticle, depending on the type of polymer used. As such, drug release rates and thereby, for example, long term treatment or diagnostic capabilities, can be controlled.
  • the drugs can be suspended in a tissue-compatible polymer, such as silicone, polyurethane, polyvinyl alcohol, polyethylene, polyesters, swellable hydrogels, hyaluronate, various copolymers and blended mixtures thereof. Accordingly, a very selective cushioning effect can be attained.
  • a tissue-compatible polymer such as silicone, polyurethane, polyvinyl alcohol, polyethylene, polyesters, swellable hydrogels, hyaluronate, various copolymers and blended mixtures thereof. Accordingly, a very selective cushioning effect can be attained.
  • FIG. 1 is a side view of a drug-loaded medical device, e.g. stent, in accordance with an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a drug-coated elongated element in accordance with an embodiment of the present invention.
  • FIG. 3 illustrates a medical device inserted into the lumen of a patient in accordance with an embodiment of the present invention.
  • drug(s), refers to all therapeutic agents, diagnostic agents/reagents and other similar chemical/biological agents, including combinations thereof, used to treat and/or diagnose restenosis, thrombosis and related conditions.
  • examples of various drugs or agents commonly used include heparin, hirudin, antithrombogenic agents, steroids, ibuprofen, antimicrobials, antibiotics, tissue plasma activators, monoclonal antibodies, and antifibrosis agents.
  • therapeutic substances or agents may include, but are not limited to, antineoplastic, antimitotic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antiproliferative, antibiotic, antioxidant, and antiallergic substances as well as combinations thereof.
  • antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S.
  • methotrexate methotrexate
  • azathioprine vincristine, vinblastine
  • fluorouracil actinomycin-D
  • doxorubicin hydrochloride e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.
  • mitomycin e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.
  • antiplatelets examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as AngiomaxTM (Biogen, Inc., Cambridge, Mass.).
  • AngiomaxTM Biogen, Inc., Cambridge, Mass.
  • cytostatic or antiproliferative agents examples include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g.
  • nifedipine calcium channel blockers
  • FGF fibroblast growth factor
  • fish oil omega 3-fatty acid
  • histamine antagonists lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.)
  • monoclonal antibodies such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide.
  • An example of an antiallergic agent is permirolast potassium.
  • Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered
  • FIG. 1 illustrates a drug-loaded medical device 10 .
  • Medical device can be any suitable medical device or prosthesis including, but not limited to, balloons, stents coverings, vascular grafts, and other implantable devices.
  • medical device 10 referenced in the text and figures of the present disclosure is an implantable stent.
  • stent 10 includes one or more elongated elements 12 that are formed into a generally cylindrical or tubular shape having a first end 14 and a second end 16 .
  • the shape of the preformed elongated elements 12 may be straight, sinusoidal, V-shaped, or any other of a variety of patterns and shapes not disclosed herein.
  • one or more interconnecting elements may also be included to connect adjacent elongated elements 12 and increase the structural integrity of stent 10 .
  • the interconnecting elements may also have a variety of shapes and patterns including, but not limited to, circular, oval, straight, curved, and the like.
  • the elongated elements 12 and interconnecting elements of stent 10 are configured to allow stent 10 to easily expand and contract, thereby facilitating placement of stent 10 into an insertion device and, ultimately, a lumen of the body.
  • these components are typically fabricated from a metallic material or alloy, such as stainless steel, NitinolTM, tantalum, or other similar materials and/or combinations of such materials.
  • the diameter of each elongated element 12 is typically within the range of approximately 3.9 ⁇ 10 ⁇ 4 inch (0.001 cm) to 1.18 ⁇ 10 ⁇ 3 inch (0.003 cm).
  • the diameter for each interconnecting element is approximately within the range of 3.9 ⁇ 10 ⁇ 4 inch (0.001 cm) to 1.18 ⁇ 10 ⁇ 3 inch (0.003 cm).
  • Overall stent 10 diameter and length is approximately within the range of 0.1378 ⁇ 0.0394 inch (0.35 ⁇ 0.1 cm) and 0.5118 ⁇ 0.1969 inch (1.3 ⁇ 0.5 cm), respectively.
  • the particular configuration of stent 10 such as choice of materials, size, structural characteristics, and the like, may vary based upon the location of the lesion, type of lesion and lumen dimensions of the target area.
  • the entire surface of stent 10 can be coated with a polymer solution 18 , which includes a suspension of drug-loaded microparticles 20 , such as microspheres and/or nanospheres.
  • a polymer solution 18 which includes a suspension of drug-loaded microparticles 20 , such as microspheres and/or nanospheres.
  • the microparticles are not limited to spheres and thus may have any shape and remain within the scope of the invention.
  • the drug(s) remain suspended in the polymer matrix until stent 10 is deployed to the target site.
  • the drug(s) disseminate from the polymer matrix (not shown) at a controlled release-rate.
  • the drug(s) are absorbed into the tissue of the walls 24 of the lumen 26 that are in contact with stent 10 .
  • FIG. 2 shows a detailed cross-sectional portion of an elongated element 12 .
  • Various methods can be employed to formulate and drug-load the microparticles 20 .
  • the embodiments of the composition of drug-loaded microparticles 20 can be prepared by conventional methods where all components are combined then blended.
  • microparticles 20 can be prepared using a predetermined amount of a polymer or a prepolymer that is added to a predetermined amount of a solvent or a combination of solvents.
  • the solvent is mutually compatible with the polymer and is capable of placing the polymer into solution at the concentration desired in the solution.
  • Useful solvents can expand the chains of the polymer for maximum interaction with the surface of the medical device, such as a metallic surface of a stent.
  • solvents can include, but are not limited to, dimethylsulfoxide (DMSO), Dimethyl Acetamide (DMAC), chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, N-methyl pyrrolidinone, toluene and mixtures thereof.
  • DMSO dimethylsulfoxide
  • DMAC Dimethyl Acetamide
  • chloroform acetone
  • acetone water
  • xylene acetone
  • methanol ethanol
  • ethanol 1-propanol
  • tetrahydrofuran 1-butanone
  • dimethylformamide dimethylacetamide
  • cyclohexanone ethy
  • Microparticles 20 can be prepared in ambient pressure and under anhydrous atmosphere. If necessary, a free radical or UV initiator can be added to microparticles 20 for initiating the curing or cross-linking of the prepolymer. Heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent.
  • a free radical or UV initiator can be added to microparticles 20 for initiating the curing or cross-linking of the prepolymer. Heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent.
  • the polymer can comprise from about 0.1% to about 35%, more narrowly about 2% to about 20% by weight of the total weight of the total solution, and the solvent can comprise from about 65% to about 99.9%, more narrowly about 80% to about 98% by weight, of the total weight of the total solution.
  • a specific weight ratio is dependent on factors such as the material from which the implantable device is made and the geometrical structure of the device.
  • an active ingredient is dispersed or dissolved in microparticles 20 .
  • the active ingredient should be in solution or suspension. If the active ingredient is not completely soluble in the composition, operations including mixing, stirring, and/or agitation can be employed to effect homogeneity.
  • the active ingredient may be added so that the dispersion is in fine particles.
  • the mixing of the active ingredient can be conducted in an anhydrous atmosphere, at ambient pressure, and at room temperature.
  • the active ingredient can minimize or inhibit the progression of neointimal hyperplasia. More specifically, the active ingredient is aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells and activation of inflammatory cells and platelets.
  • w/w is an abbreviation for “by weight,” used in chemistry and pharmacology to describe the concentration of a substance in a mixture or solution.
  • 25% w/w means that the mass of the substance is 25% of the total mass of the solution or mixture.
  • a first solution is formulated using 25% w/w Polyethylene glycol diacrylate (PEGDA) dissolved in water.
  • a water soluble drug such as dexamethasone, is added at 5% w/w into the first solution, forming a second, PEGDA-Dexamethasone, solution.
  • a third solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in vinyl pyrrolidone (VP) monomer. This third solution is the curing agent or photoinitiator solution.
  • a final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA-Dexamethasone solution.
  • the process of fabricating a single microparticle 20 involves adding a drop of the final solution, using a 10 micro-liter pipette, into a viscous mineral oil or silicone oil bath. After adding the drop of solution to the bath, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplet suspended in the bath. This results in a crosslinked, swollen PEGDA particle containing dexamethasone. The microparticle 20 is left to settle to the bottom of the vial containing the oil bath. The above process is repeated until the desired quantity of microparticles 20 is formed. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
  • a solvent such as acetone
  • a first solution is formulated using 25% w/w PEGDA dissolved in deionized water. Actinomycin-D (Ac/D) is added at 5% w/w into the first solution, forming a second solution comprising a suspension of Ac/D in the PEGDA solution.
  • a third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer.
  • a final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA-Ac/D suspension.
  • the process of fabricating a single microparticle 20 involves adding a drop of the final solution, using a 10 micro-liter pipette, into a viscous mineral oil or silicone oil bath. After adding the drop of solution to the bath, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplet suspended in the bath. This results in a crosslinked, swollen PEGDA particle containing Ac/D. The microparticle 20 is left to settle to the bottom of the vial containing the oil bath. The above process is repeated until the desired quantity of microparticles 20 is formed. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
  • a solvent such as acetone
  • a first solution is formulated using 25% w/w PEGDA dissolved in deionized water.
  • Ac/D and dexamethasone are each added at 5% w/w into the first solution, forming a second solution comprising a suspension of Ac/D and a solution of dexamethasone in the PEGDA solution.
  • a third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer.
  • a final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA-Ac/D suspension.
  • the final solution is added into a viscous mineral oil or silicone oil and vortexed vigorously.
  • a 360 nm wavelength black ray UV lamp is used to cure the spherical droplets suspended in the bath. This results in crosslinked, swollen PEGDA particles containing Ac/D.
  • the microparticles 20 are left to settle to the bottom of the vial containing the oil bath.
  • the oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
  • a first solution is formulated using 25% w/w VP dissolved in deionized water.
  • PEGDA having a molecular weight of 1000, is added at 8% w/w into the first solution, together with 5% w/w dexamethasone, forming a second solution comprising a suspension of PEGDA-dexamethasone in the VP solution.
  • a third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer.
  • a final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the VP-Dexamethasone suspension.
  • the process of fabricating a single microparticle 20 involves adding a drop of the final solution, using a 10 micro-liter pipette, into a viscous mineral oil or silicone oil bath. After adding the drop of solution to the bath, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplet suspended in the bath. This results in a crosslinked, swollen VP particle containing Dexamethasone. The microparticle 20 is left to settle to the bottom of the vial containing the oil bath. The above process is repeated until the desired quantity of microparticles 20 is formed. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
  • a solvent such as acetone
  • a first solution is formulated using 15% w/w VP dissolved in deionized water.
  • PEGDA having a molecular weight of 1000
  • Ac/D is also added at 5% w/w, forming a second solution comprising a suspension of PEGDA and Ac/D in the VP solution.
  • a third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer.
  • a final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA/Ac/D-VP suspension.
  • the final solution is added into a viscous mineral oil or silicone oil and vortexed vigorously.
  • a 360 nm wavelength black ray UV lamp is used to cure the spherical droplets suspended in the bath. This results in crosslinked, swollen PEGDA particles containing Ac/D.
  • the microparticles 20 are left to settle to the bottom of the vial containing the oil bath.
  • the oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
  • a first solution is formulated using 10% w/w Poly Alginate (PAIg) dissolved in deionized water.
  • Ac/D is added at 5% w/w into the first solution, forming a second solution comprising a suspension of Ac/D in the PAIg solution.
  • a third solution is formulated using 10% w/w Calcium chloride solution dissolved in deionized water. This third solution is the curing agent or cross-linker solution.
  • the Ac/D-PAIg suspension is added into the cross-linker solution and vortexed vigorously. After the divalent ion cross-linked Alginate particles are formed, the particles 20 are left to settle to the bottom of the vial containing the cross-linker solution. The cross-linker phase is decanted off and the particles 20 are then washed in deionized water.
  • a first solution is formed by dissolving 10% w/v cellulose acetate phthalate (CAP), available from Schutz & Co., Germany, in a solvent, such as acetone.
  • CAP cellulose acetate phthalate
  • a solvent such as acetone.
  • the weight by volume is the mass (in grams) of the substance dissolved in or mixed with 100 milliliters of solution or mixture.
  • concentration of CAP in a solvent, such as acetone is 0.10% w/v, meaning that there is 0.10 gram of CAP per 100 milliliters of acetone.
  • 1% w/v is equal to 1 gram per deciliter (g/dL) or 10 grams per liter.
  • a second solution is formed by combining 100 mL of liquid paraffin (or other similar mixture of hydrocarbons) with 1% w/v SpanTM 80 in a 400 mL beaker. This solution is then agitated at 400 rpm using a 3-bladed stirrer (having a 5 cm diameter) connected to a stirring motor (e.g., TecmaticTM SD2).
  • a stirring motor e.g., TecmaticTM SD2
  • One gram of Ac/D is dissolved in 20 mL of the first solution. This solution is then poured into the second solution, forming a final solution. Evaporation of the solvent from the final solution proceeds for 24 hours at 30° C., producing residual microparticles 20 at the bottom of the beaker. The microparticles 20 are collected in a Büchner, or equivalent, filter and washed in 50 mL of ether. The microparticles 20 are then allowed to dry at room temperature for 24 hours.
  • a first solution is formed by dissolving 10% w/v cellulose acetate phthalate (CAP), available from Schutz & Co., Germany, in a solvent, such as acetone.
  • CAP cellulose acetate phthalate
  • a second solution is formed by combining 100 mL of liquid paraffin with 1% w/v Span 80 in a 400 mL beaker. This solution is then agitated at 400 rpm using a 3-bladed stirrer (having a 5 cm diameter) connected to a stirring motor (e.g., Tecmatic SD2).
  • Trapidil is dissolved in 20 mL of the first solution. This mixture is then poured into the second solution. Evaporation of the solvent from the mixture/solution proceeds for 24 hours at 30° C., producing residual microparticles 20 at the bottom of the beaker. The microparticles 20 are collected in a Buchner, or equivalent, filter and washed in 50 mL of ether. The microparticles 20 are then allowed to dry at room temperature for 24 hours.
  • formulation examples are specific to drug-loaded microparticles 20 .
  • Other materials such as PEG-gels, PLA (polylactic acid), PCL (poly caprolactone), and the like, may also be used to formulate drug-loadable microparticles 20 using similar methods to those described above.
  • PEG-gels PLA (polylactic acid), PCL (poly caprolactone), and the like, may also be used to formulate drug-loadable microparticles 20 using similar methods to those described above.
  • PEG-gels polylactic acid
  • PCL poly caprolactone
  • microparticles 20 of varying sizes may be formed. Smaller or larger sized microparticles 20 may be preferred to more accurately control drug volumes and duration of release rates.
  • a second drug can be applied in the matrix polymer, such as EVAL.
  • PEGDA hydrogel nanoparticles can be combined with other drug loaded nanoparticles to obtain additional effects, such as a cushioning effect.
  • radioactive isotopes may also be loaded into the microparticles 20 , utilizing relatively similar formulation techniques.
  • radioactive isotopes include, but are not limited to, 32 P, 55,56,57 Co, 52 Mg, and 55 Fe.
  • nano-sized gold-particles containing one or multiple radioisotopes are used to create a radiopaque/radiotherapy stent that is easily tracked through or located within the body of the patient.
  • the drug-loaded microparticles 20 are coated onto the entire surface of stent 10 with a biocompatible polymer solution 18 .
  • Any suitable polymer solutions 18 can be used, such as low-density polyethylene, poly (ethylene glycol) and other similar solutions, such as polycaprolactone, ethylene vinyl acetate, polyvinyl alcohol and the like.
  • the polymer solution 18 can be ethylene vinyl alcohol, which is functionally a very suitable choice of polymer.
  • Ethylene vinyl alcohol copolymer commonly known by the generic name EVOH or by the trade name EVAL®, refers to copolymers including residues of both ethylene and vinyl alcohol monomers.
  • ethylene vinyl alcohol copolymer may also be a terpolymer so as to include small amounts of additional monomers, for example less than about five (5) mole percentage of styrenes, propylene, or other suitable monomers.
  • the copolymer comprises a mole percent of ethylene of from about 27% to about 47%. Typically, 44 mole percent ethylene is suitable.
  • Ethylene vinyl alcohol copolymers are available commercially from companies such as Aldrich Chemical Company, Milwaukee, Wis., or EVOH Company of America, Lisle, Ill., or can be prepared by conventional polymerization procedures that are well known to one of ordinary skill in the art.
  • the copolymer possesses good adhesive qualities to the surface of stent 10 , particularly stainless steel surfaces, and has illustrated the ability to expand with stent 10 without any significant detachment of the copolymer from the surface of stent 10 .
  • the solvent should be mutually compatible with polymer solution 18 and should be capable of placing polymer solution 18 into solution at the concentration desired in the solution.
  • Useful solvents should also be able to expand the chains of the polymer for maximum interaction with the surface of the device, such as the metallic surface of stent 10 .
  • solvent examples include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, N-methyl pyrrolidinone, toluene and mixtures thereof.
  • DMSO dimethylsulfoxide
  • chloroform acetone
  • acetone water (buffered saline)
  • xylene acetone
  • methanol ethanol
  • ethanol 1-propanol
  • tetrahydrofuran 1-butanone
  • dimethylformamide dimethylacetamide
  • cyclohexanone ethyl acetate
  • a suitable fluid having a high capillary permeation can be added to polymer solution 18 to enhance the wetting for a more uniform coating application.
  • the wetting fluid typically, should have a viscosity not greater than about 50 centipoise, narrowly about 0.3 to about 5 centipoise, more narrowly about 0.4 to about 2.5 centipoise.
  • the wetting fluid should be mutually compatible with polymer solution 18 and the solvent and should not precipitate polymer solution 18 .
  • the wetting fluid can also act as the solvent.
  • wetting fluid examples include, but are not limited to, tetrahydrofuran (THF), dimethylformamide (DMF), 1-butanol, n-butyl acetate, dimethyl acetamide (DMAC), and mixtures and combinations thereof.
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • DMAC dimethyl acetamide
  • a fluid can be added to the composition to enhance the wetting of the composition for a more uniform coating application.
  • a suitable fluid typically has a high capillary permeation. Capillary permeation or wetting is the movement of a fluid on a solid substrate driven by interfacial energetics.
  • the wetting fluid should be mutually compatible with the polymer and the solvent and should not precipitate the polymer.
  • the wetting fluid can also act as the solvent.
  • Useful examples of the wetting fluid include, but are not limited to, tetrahydrofuran (THF), dimethylformamide (DMF), 1-butanol, n-butyl acetate, dimethyl acetamide (DMAC), and mixtures and combinations thereof.
  • the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition;
  • the solvent can comprise from about 19.9% to about 98.9%, more narrowly from about 58% to about 84% by weight of the total weight of the composition;
  • the wetting fluid can comprise from about 1% to about 80%, more narrowly from about 5% to about 40% by weight of the total weight of the composition.
  • the specific weight ratio of the wetting fluid depends on the type of wetting fluid employed and type of and the weight ratio of the polymer and the solvent.
  • tetrahydrofuran used as the wetting fluid can comprise, for example, from about 1% to about 44%, more narrowly about 21% by weight of the total weight of the solution.
  • Dimethylformamide used as the wetting fluid can comprise, for example, from about 1% to about 80%, more narrowly about 8% by weight of the total weight of the solution.
  • One-butanol (1-butanol) used as the wetting fluid can comprise, for example, from about 1% to about 33%, more narrowly about 9% by weight of the total weight of the solution.
  • N-butyl acetate used as the wetting fluid can comprise, for example, from about 1% to about 34%, more narrowly about 14% by weight of the total weight of the solution.
  • Dimethyl acetamide used as the wetting fluid can comprise, for example, from about 1% to about 40%, more narrowly about 20% by weight of the total weight of the solution.
  • the microparticles 20 are embedded within the polymer solution 18 , thereby forming a polymer matrix that securely adheres to the surface of stent 10 .
  • the drug release rates may also be controlled.
  • a polymer solution 18 such as ethylene vinyl alcohol copolymer, polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), and the like
  • the deposited polymer solution 18 should be exposed to a heat treatment at temperature range greater than about the glass transition temperature (Tg) and less than about the melting temperature (Tm) of the polymer.
  • Stent 10 should be exposed to the heat treatment for any suitable duration of time, which would allow for the formation of the coating on the surface of stent 10 and allows for the evaporation of the solvent or combination of solvent and wetting fluid, if necessary. It is understood that essentially all of the solvent and the wetting fluid will be removed from the composition but traces or residues can remain blended with the polymer.
  • the Tg and Tm for the polymers used in the embodiments of the present invention are attainable by one or ordinary skill in the art.
  • Table 1 lists the T g and T m for some exemplary polymers which can be used in embodiments of the present invention.
  • T g and T m of polymers are attainable by one or ordinary skill in the art.
  • the cited exemplary temperature and time for exposure is provided by way of illustration and it is not meant to be limiting.
  • thermoplastic polymers With the use of one of the aforementioned thermoplastic polymers, the use of initiators may be required.
  • epoxy systems consisting of diglycidyl ether of bisphenol A resins can be cured with amine curatives, thermoset polyurethane prepolymers can cured with polyols, polyamines, or water (moisture), and acrylated urethane can be cured with UV light.
  • solvents, wetting fluids and initiators are disclosed in commonly assigned U.S. application Ser. No. 09/750,595, now U.S. Pat No. 6,730,288, entitled “Coating for Implantable Devices and a Method of Forming the Same”, filed Dec. 28, 2000, which is herein incorporated by reference for all purposes.
  • EVOH Solution Formulation An EVOH solution is made by adding 10 grams of EVOH into 90 grams of DMAC. The components are dissolved to form a solution by heating the mixture to 50° C., with constant stirring.
  • PEGDA microparticles 20 ranging in size from approximately 0.5 to 2.0 microns (0.1 ⁇ 10 ⁇ 4 mm to 0.5 ⁇ 10 ⁇ 4 mm) in length, are suspended in the EVOH solution by adding 20 grams of microparticles 20 into 80 grams of the EVOH solution. The final suspension is constantly agitated or stirred to prevent flocculation. Stents 10 are dipped in the final suspension and then centrifuged at 6,000 rpm for 60 seconds resulting in a coating having a relatively smooth surface texture.
  • Stent Coating Process see Method 1 (above).
  • a co-solvent solution is formulated by combining 2% EVOH in 1:1 w/w DMSO:DMF.
  • Stents 10 are then spray-coated with a top coat of a co-solvent solution so that the initial microparticle 20 coating is completely covered by the EVOH top coat.
  • This top coat provides a means to control drug release rates and obtain smooth surface textures.
  • Stent Coating Process Ac/D loaded CAP microparticles 20 , ranging in size from approximately 0.5 to 2.0 microns (0.1 ⁇ 10 ⁇ 4 mm to 0.5 ⁇ 10 ⁇ 4 mm) in length, are suspended in the EVOH solution by adding 20 grams of microparticles to 80 grams of EVOH solution. To prevent flocculation, the final solution is constantly stirred. Stents 10 are then dipped in the final suspension and then centrifuged at 6,000 rpm for 60 seconds, resulting in a coating having a relatively smooth surface texture. The coated stents 10 are then spray-coated with a top coat of a co-solvent solution containing 2% EVOH in DMAC. This top coat provides a means to control drug release rates and obtain smooth surface textures.
  • EVOH Solution Formulation see Method 1 (above).
  • stents 10 Prior to applying the polymer matrix, described below, stents 10 are initially coated with a layer of EVOH by dipping, spraying or similar coating techniques.
  • PEGDA microparticles 20 ranging in size from approximately 0.5 to 2.0 microns (0.1 ⁇ 10 ⁇ 4 mm to 0.5 ⁇ 10 ⁇ 4 mm) in length, are suspended in methanol by adding 50 grams of microparticles 20 into 50 grams of methanol.
  • the final suspension i.e. polymer matrix
  • Stents 10 are dipped in the final suspension and then centrifuged at 2,000 rpm for 60 seconds resulting in a coating having a relatively smooth surface texture.
  • the coated stents 10 are then spray-coated with a co-solvent solution containing 2% EVOH in 1:1 w/w DMSO:DMF.
  • PEGDA microparticles 20 ranging in size from approximately 0.5 to 2.0 microns (0.1 ⁇ 10 ⁇ 4 mm to 0.5 ⁇ 10 ⁇ 4 mm) in length, are suspended in methanol by adding 50 grams of microparticles 20 into 50 grams of methanol. The final suspension is constantly stirred to prevent flocculation. Stents 10 are selectively dipped, e.g. only the ends 14 , 16 of each stent 10 are dipped, in the final suspension and then centrifuged at 1,000 rpm for 30 seconds resulting in a coating having a relatively smooth surface texture.
  • the coated stents 10 are then spray-coated with a top coat of a co-solvent solution containing 2% EVOH in 1:1 w/w DMSO:DMF.
  • the initial selective dipping of stent 10 together with the sprayed top-coat, produces a hydrogel cushion at each end 14 , 16 of stent 10 .
  • This hydrogel cushion reduces or eliminates trauma to the lumen or vessel due to contact with un-coated ends 14 , 16 of stent 10 .
  • Stent Coating Process VP microparticles 20 , ranging in size from approximately 0.5 to 2.0 microns (0.1 ⁇ 10 ⁇ 4 mm to 0.5 ⁇ 10 ⁇ 4 mm) in length, are suspended in methanol by adding 50 grams of microparticles 20 into 50 grams of methanol. The final suspension is constantly stirred to prevent flocculation. Stents 10 are dipped in the final suspension and then centrifuged at 2,000 rpm for 60 seconds resulting in a coating having a relatively smooth surface texture. The coated stents 10 are then spray-coated with a co-solvent solution containing 2% EVOH in 1:1 w/w DMSO:DMF, thereby completely covering the microparticle 20 coating with a top-coat of EVOH.
  • Alternative methods of applying drug-loaded microparticles 20 onto the surface of a stent 10 are also within the scope of the present disclosure.
  • the type of microparticle 20 , drug and layering technique provide increased volume of drug-loading on stent 10 and controllable drug release rates.
  • the entire stent 10 is coated with a first layer of EVOH as described above.
  • a first suspension of Ac/D loaded CAP microparticles 20 and a second suspension of PEGDA microparticles 20 are selectively applied as a second layer on stent 10 .
  • first end of stent 10 is coated with a layer of the first suspension and the second end 16 of stent 10 is coated with a layer of the second suspension.
  • This embodiment allows stent 10 to selectively deliver two types of drugs to two different target sites in the lumen.
  • the entire stent 10 is coated with a first layer of EVOH.
  • a suspension made of a combination of Ac/D loaded CAP microparticles 20 and PEGDA microparticles 20 is formulated and applied as a second layer on stent 10 .
  • the ratio of Ac/D loaded CAP microparticles 20 to PEGDA microparticles 20 in the suspension is variable based upon the desired treatment or diagnosis.
  • the second layer of the suspension may either be applied over the entire stent 10 or over only selective portions of stent 10 , using dipping, spraying, or other similar methods.
  • the entire stent 10 is coated with a first layer of EVOH.
  • a second layer comprising a suspension formulated from a combination of Ac/D loaded CAP microparticles 20 , PEGDA microparticles 20 and VP microparticles 20 is selectively applied to stent 10 .
  • only selected portions of stent 10 may be coated with a variety of second layers.
  • a first portion of stent 10 may be coated with a suspension consisting of Ac/D loaded CAP microparticles 20 and VP microparticles 20 , a second portion with only PEGDA microparticles 20 , and a third portion with PEGDA microparticles 20 and VP microparticles 20 .
  • microparticles 20 can be layered by depositing a first layer followed by a top-coating.
  • the top-coating can be, for example, a blank matrix polymer.
  • a second layering of microparticle 20 can then be applied over the top-coating.
  • the second layering of microparticles 20 can be the same type of microparticles as the first layering or, alternatively, the second layering can include a different type of microparticles 20 (i.e., a different formulation) from the first layering of microparticles 20 .
  • the process of layering microparticles intermittent with the top-coating can be repeated to provide layering patterns according to the requirements of the desired treatment or diagnosis.
  • Embodiments of the device make possible site specific treatment therapies. Coating different portions of a stent, or other implantable medical device, with the disclosed microparticles loaded with various drugs advantageously allows site-specific treatment of discrete sections of the patient's lumen. In addition, by embedding the drug-loaded microparticle in a polymer, the resulting matrix can increase or decrease the release rate of the drug from the microparticle, depending on the type of polymer used. As such, drug release rates and, for example, long term treatment or diagnostic capabilities, can be controlled.
  • the scope of the present invention also includes alternative stent embodiments having various combinations of drugs and layering patterns/methods.
  • the particular drug(s) and layering patterns on the stent are configured according to the requirements of the desired treatment or diagnosis.

Abstract

A drug-loaded microparticle is applied to a medical device for subsequent application to biological tissues. A method of formulating a drug-loaded microparticle and applying it to the surface of a medical device, such as a stent, is disclosed. The drug-loaded microparticle is formulated by combining a drug with various chemical solutions. Specified sizes of the microparticles and amounts of drug(s) contained within the microparticles may be varied by altering the proportions of the chemicals/solutions. In addition to various drugs, therapeutic substances and radioactive isotopes may also be loaded into the microparticles. The drug-loaded microparticle are suspended in a polymer solution forming a polymer matrix. The polymer matrix may be applied to the entire surface or only selected portions of the medical device via dipping, spraying or combinations thereof.

Description

CROSS REFERENCE
This is a divisional application of application Ser. No. 09/851,877, filed on May 9, 2001, and which issued as U.S. Pat. No. 6,656,506 on Dec. 2, 2003.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a medical device for use in tissue and organ treatment and, in particular, to drug-loaded microparticles embedded within a matrix and applied to the medical device.
2. Related Art
A variety of surgical procedures and medical devices are currently used to relieve intraluminal constrictions caused by disease or tissue trauma. An example of one such procedure is percutaneous transluminal coronary angioplasty (PTCA). PTCA is a catheter-based technique whereby a balloon catheter is inserted into a blocked or narrowed coronary lumen of the patient. Once the balloon is positioned at the blocked lumen or target site, the balloon is inflated causing dilation of the lumen. The catheter is then removed from the target site thereby allowing blood to freely flow through the unrestricted lumen.
Although PTCA and related procedures aid in alleviating intraluminal constrictions, such constrictions or blockages reoccur in many cases. The cause of these recurring obstructions, termed restenosis, is due to the body's immune system responding to the trauma of the surgical procedure. As a result, the PTCA procedure may need to be repeated to repair the damaged lumen.
Stents or drug therapies, either alone or in combination with the PTCA procedure, are often used to avoid or mitigate the effects of restenosis at the surgical site. In general, stents are small, cylindrical devices whose structure serves to create or maintain an unobstructed opening within a lumen. The stents are typically made of stainless steel or a memory-responsive metal, such as Nitinol™ and are delivered to the target site via a balloon catheter. Although the stents are effective in opening the stenotic lumen, the foreign material and structure of the stents themselves may exacerbate the occurrence of restenosis or thrombosis.
Drugs or similar agents that limit or dissolve plaque and clots are used to reduce, or in some cases eliminate, the incidence of restenosis and thrombosis. Since the drugs are applied systemically to the patient, they are absorbed not only by the tissues at the target site, but by all areas of the body. As such, one drawback associated with the systemic application of drugs is that areas of the body not needing treatment are also affected. To provide more site-specific treatment, stents are frequently used as a means of delivering the drugs exclusively to the target site. By positioning the stent at the target site, the drugs can be applied directly to the area of the lumen requiring therapy or diagnosis.
In addition to the benefit of site-specific treatment, drug-loaded stents also offer long-term treatment and/or diagnostic capabilities. These stents include a biodegradable or absorbable polymer suspension that is saturated with a particular drug. In use, the stent is positioned at the target site and retained at that location either for a predefined period or permanently. The polymer suspension releases the drug into the surrounding tissue at a controlled rate based upon the chemical and/or biological composition of the polymer and drug.
The above-described devices and methods for treatment of restenosis and thrombosis, and other similar conditions not specifically described, offer many advantages to potential users. However, it has been discovered that such devices and methods may be deficient in their current drug-loading and drug-delivery characteristics. In particular, the amount or volume of drug capable of being delivered to the target site may be insufficient due to the limited surface area of the stent. In addition, drug release rates may also be inadequate since the rate at which the drug is released or delivered to the target site is a function of the chemical and/or biological properties of the polymer in which the drug is embedded.
SUMMARY
In view of the above, it is apparent that there is a need to provide a drug delivery device offering increased drug loading capabilities for medical devices and improved drug release rates. It is also desirable that the drug-delivery device allows one or more drugs to be released from the medical device to the target site. In addition, it is preferred that the device features enable one or more drugs to be released at variable and/or independent rates. There is also a need to provide a method of manufacturing such an improved drug delivery device that is convenient, efficient and cost effective.
In accordance with various aspects of the present invention, a small particle, such as a micro- and/or nanoparticle (hereinafter referred to interchangeably as “microparticle”), is formed and loaded with a drug. The drug-loaded microparticle is formulated by combining a drug with various chemical solutions. In one embodiment, a microparticle can be formed by adding a drug-loaded solution containing a photoinitiator into a relatively inert bath. Light or similar energy is applied to the solution in the bath causing a photo-chemical reaction that produces one or more microparticles. In another embodiment, the drug-loaded solution is combined with a cross-linker solution and vigorously vortexed in a inert bath. The agitation together with the chemical reaction produces one or more microparticles. Specified sizes of the microparticles and amounts of drug(s) contained within the microparticles may be varied by altering the proportions of the above chemicals/solutions and by varying the process parameters during mixing. In addition to various drugs, therapeutic substances and radioactive isotopes may also be loaded into the microparticles.
Another aspect of the present invention is a method of applying a drug-loaded microparticle onto a medical device. A microparticle can be formed and loaded with one or more drugs, as described above. The drug-loaded microparticle is suspended in a polymer solution forming a polymer matrix. In one embodiment, the medical device is dipped in the polymer matrix so that a coating of the polymer matrix having a relatively smooth surface texture is applied over the entire surface of the medical device. In another embodiment, the entire surface of the medical device is spray coated with the polymer matrix. In yet another embodiment, only select portions of the medical device are coated with one or more polymer matrices.
Embodiments of the medical device make possible site specific treatment therapies. Coating different portions of an implantable medical device, with the disclosed microparticles loaded with various drugs advantageously allows site-specific treatment of discrete sections of the patient's lumen. In addition, by embedding the drug-loaded microparticle in a polymer, the resulting matrix can increase or decrease the release rate of the drug from the microparticle, depending on the type of polymer used. As such, drug release rates and thereby, for example, long term treatment or diagnostic capabilities, can be controlled. Moreover, the drugs can be suspended in a tissue-compatible polymer, such as silicone, polyurethane, polyvinyl alcohol, polyethylene, polyesters, swellable hydrogels, hyaluronate, various copolymers and blended mixtures thereof. Accordingly, a very selective cushioning effect can be attained.
BRIEF DESCRIPTION OF THE DRAWINGS
The features of the described embodiments are specifically set forth in the appended claims. However, embodiments relating to both structure and method of operation are best understood by referring to the following description and accompanying drawings, in which similar parts are identified by like reference numerals.
FIG. 1 is a side view of a drug-loaded medical device, e.g. stent, in accordance with an embodiment of the present invention;
FIG. 2 is a cross-sectional view of a drug-coated elongated element in accordance with an embodiment of the present invention; and
FIG. 3 illustrates a medical device inserted into the lumen of a patient in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION
The term “drug(s),” as used herein, refers to all therapeutic agents, diagnostic agents/reagents and other similar chemical/biological agents, including combinations thereof, used to treat and/or diagnose restenosis, thrombosis and related conditions. Examples of various drugs or agents commonly used include heparin, hirudin, antithrombogenic agents, steroids, ibuprofen, antimicrobials, antibiotics, tissue plasma activators, monoclonal antibodies, and antifibrosis agents.
A variety of drug classes and therapeutic substances may be used in accordance with the present disclosure. For example, therapeutic substances or agents may include, but are not limited to, antineoplastic, antimitotic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antiproliferative, antibiotic, antioxidant, and antiallergic substances as well as combinations thereof. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S. A., Frankfurt, Germany), methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, actinomycin-D, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax™ (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, and dexamethasone.
While the above listed substances or agents are well known for preventative and therapeutic utility, the substances are listed by way of example and are not meant to be limiting. Other therapeutic substances which are currently available or that may be developed in the future are equally applicable. The treatment of patients using the above mentioned medicines is well-known to those of ordinary skill in the art.
FIG. 1 illustrates a drug-loaded medical device 10. Medical device can be any suitable medical device or prosthesis including, but not limited to, balloons, stents coverings, vascular grafts, and other implantable devices. For convenience and ease of comprehension, with no intent to limit the invention thereby, medical device 10 referenced in the text and figures of the present disclosure is an implantable stent.
As shown in FIG. 1, stent 10 includes one or more elongated elements 12 that are formed into a generally cylindrical or tubular shape having a first end 14 and a second end 16. The shape of the preformed elongated elements 12 may be straight, sinusoidal, V-shaped, or any other of a variety of patterns and shapes not disclosed herein. In addition, one or more interconnecting elements (not shown) may also be included to connect adjacent elongated elements 12 and increase the structural integrity of stent 10. As with the elongated elements 12, the interconnecting elements may also have a variety of shapes and patterns including, but not limited to, circular, oval, straight, curved, and the like.
The elongated elements 12 and interconnecting elements of stent 10 are configured to allow stent 10 to easily expand and contract, thereby facilitating placement of stent 10 into an insertion device and, ultimately, a lumen of the body. To further enhance stent 10 flexibility, these components are typically fabricated from a metallic material or alloy, such as stainless steel, Nitinol™, tantalum, or other similar materials and/or combinations of such materials. The diameter of each elongated element 12 is typically within the range of approximately 3.9×10−4 inch (0.001 cm) to 1.18×10−3 inch (0.003 cm). Similarly, the diameter for each interconnecting element is approximately within the range of 3.9×10−4 inch (0.001 cm) to 1.18×10−3 inch (0.003 cm). Overall stent 10 diameter and length is approximately within the range of 0.1378±0.0394 inch (0.35±0.1 cm) and 0.5118±0.1969 inch (1.3±0.5 cm), respectively. The particular configuration of stent 10, such as choice of materials, size, structural characteristics, and the like, may vary based upon the location of the lesion, type of lesion and lumen dimensions of the target area.
Referring to the embodiment of FIG. 2, to aid in the treatment and/or diagnosis of various conditions affecting the lumen, the entire surface of stent 10 can be coated with a polymer solution 18, which includes a suspension of drug-loaded microparticles 20, such as microspheres and/or nanospheres. It should be understood that the microparticles are not limited to spheres and thus may have any shape and remain within the scope of the invention.
In this embodiment, the drug(s) remain suspended in the polymer matrix until stent 10 is deployed to the target site. When the surface 22 of stent 10 engages the wall 24 of the lumen 26, as shown in FIG. 3, the drug(s) disseminate from the polymer matrix (not shown) at a controlled release-rate. The drug(s) are absorbed into the tissue of the walls 24 of the lumen 26 that are in contact with stent 10.
FIG. 2 shows a detailed cross-sectional portion of an elongated element 12. Various methods can be employed to formulate and drug-load the microparticles 20. The embodiments of the composition of drug-loaded microparticles 20 can be prepared by conventional methods where all components are combined then blended. In accordance with one embodiment, microparticles 20 can be prepared using a predetermined amount of a polymer or a prepolymer that is added to a predetermined amount of a solvent or a combination of solvents. The solvent is mutually compatible with the polymer and is capable of placing the polymer into solution at the concentration desired in the solution. Useful solvents can expand the chains of the polymer for maximum interaction with the surface of the medical device, such as a metallic surface of a stent. Examples of solvents can include, but are not limited to, dimethylsulfoxide (DMSO), Dimethyl Acetamide (DMAC), chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, N-methyl pyrrolidinone, toluene and mixtures thereof.
Microparticles 20 can be prepared in ambient pressure and under anhydrous atmosphere. If necessary, a free radical or UV initiator can be added to microparticles 20 for initiating the curing or cross-linking of the prepolymer. Heating and stirring and/or mixing can be employed to effect dissolution of the polymer into the solvent.
By way of example, and not limitation, the polymer can comprise from about 0.1% to about 35%, more narrowly about 2% to about 20% by weight of the total weight of the total solution, and the solvent can comprise from about 65% to about 99.9%, more narrowly about 80% to about 98% by weight, of the total weight of the total solution. A specific weight ratio is dependent on factors such as the material from which the implantable device is made and the geometrical structure of the device.
Sufficient amounts of an active ingredient are dispersed or dissolved in microparticles 20. The active ingredient should be in solution or suspension. If the active ingredient is not completely soluble in the composition, operations including mixing, stirring, and/or agitation can be employed to effect homogeneity. The active ingredient may be added so that the dispersion is in fine particles. The mixing of the active ingredient can be conducted in an anhydrous atmosphere, at ambient pressure, and at room temperature. In one embodiment, the active ingredient can minimize or inhibit the progression of neointimal hyperplasia. More specifically, the active ingredient is aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells and activation of inflammatory cells and platelets.
The following examples illustrate various drug-loading and microparticle formulation techniques, but do not limit possible techniques within the scope of the present invention. Note that “w/w” is an abbreviation for “by weight,” used in chemistry and pharmacology to describe the concentration of a substance in a mixture or solution. For example, 25% w/w means that the mass of the substance is 25% of the total mass of the solution or mixture.
EXAMPLE 1
A first solution is formulated using 25% w/w Polyethylene glycol diacrylate (PEGDA) dissolved in water. A water soluble drug, such as dexamethasone, is added at 5% w/w into the first solution, forming a second, PEGDA-Dexamethasone, solution. A third solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in vinyl pyrrolidone (VP) monomer. This third solution is the curing agent or photoinitiator solution. A final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA-Dexamethasone solution.
The process of fabricating a single microparticle 20 involves adding a drop of the final solution, using a 10 micro-liter pipette, into a viscous mineral oil or silicone oil bath. After adding the drop of solution to the bath, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplet suspended in the bath. This results in a crosslinked, swollen PEGDA particle containing dexamethasone. The microparticle 20 is left to settle to the bottom of the vial containing the oil bath. The above process is repeated until the desired quantity of microparticles 20 is formed. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
EXAMPLE 2
A first solution is formulated using 25% w/w PEGDA dissolved in deionized water. Actinomycin-D (Ac/D) is added at 5% w/w into the first solution, forming a second solution comprising a suspension of Ac/D in the PEGDA solution. A third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer. A final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA-Ac/D suspension.
The process of fabricating a single microparticle 20 involves adding a drop of the final solution, using a 10 micro-liter pipette, into a viscous mineral oil or silicone oil bath. After adding the drop of solution to the bath, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplet suspended in the bath. This results in a crosslinked, swollen PEGDA particle containing Ac/D. The microparticle 20 is left to settle to the bottom of the vial containing the oil bath. The above process is repeated until the desired quantity of microparticles 20 is formed. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
EXAMPLE 3
A first solution is formulated using 25% w/w PEGDA dissolved in deionized water. Ac/D and dexamethasone are each added at 5% w/w into the first solution, forming a second solution comprising a suspension of Ac/D and a solution of dexamethasone in the PEGDA solution. A third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer. A final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA-Ac/D suspension.
The final solution is added into a viscous mineral oil or silicone oil and vortexed vigorously. After the water-in-oil emulsion is formed, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplets suspended in the bath. This results in crosslinked, swollen PEGDA particles containing Ac/D. The microparticles 20 are left to settle to the bottom of the vial containing the oil bath. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
EXAMPLE 4
A first solution is formulated using 25% w/w VP dissolved in deionized water. PEGDA, having a molecular weight of 1000, is added at 8% w/w into the first solution, together with 5% w/w dexamethasone, forming a second solution comprising a suspension of PEGDA-dexamethasone in the VP solution. A third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer. A final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the VP-Dexamethasone suspension.
The process of fabricating a single microparticle 20 involves adding a drop of the final solution, using a 10 micro-liter pipette, into a viscous mineral oil or silicone oil bath. After adding the drop of solution to the bath, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplet suspended in the bath. This results in a crosslinked, swollen VP particle containing Dexamethasone. The microparticle 20 is left to settle to the bottom of the vial containing the oil bath. The above process is repeated until the desired quantity of microparticles 20 is formed. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
EXAMPLE 5
A first solution is formulated using 15% w/w VP dissolved in deionized water. PEGDA, having a molecular weight of 1000, is added at 15% w/w into the first solution. In addition, Ac/D is also added at 5% w/w, forming a second solution comprising a suspension of PEGDA and Ac/D in the VP solution. A third (curing agent/photoinitiator) solution is formulated using 10% w/w 2,2, dimethoxy 2 phenyl acetophenone solution dissolved in VP monomer. A final solution is formulated by adding 1 mL of the initiator solution per 9 mL of the PEGDA/Ac/D-VP suspension.
The final solution is added into a viscous mineral oil or silicone oil and vortexed vigorously. After the water-in-oil emulsion is formed, a 360 nm wavelength black ray UV lamp is used to cure the spherical droplets suspended in the bath. This results in crosslinked, swollen PEGDA particles containing Ac/D. The microparticles 20 are left to settle to the bottom of the vial containing the oil bath. The oil phase is then decanted off and the particles 20 are washed in a solvent, such as acetone, to remove the presence of any remaining oil.
EXAMPLE 6
A first solution is formulated using 10% w/w Poly Alginate (PAIg) dissolved in deionized water. Ac/D is added at 5% w/w into the first solution, forming a second solution comprising a suspension of Ac/D in the PAIg solution. A third solution is formulated using 10% w/w Calcium chloride solution dissolved in deionized water. This third solution is the curing agent or cross-linker solution.
The Ac/D-PAIg suspension is added into the cross-linker solution and vortexed vigorously. After the divalent ion cross-linked Alginate particles are formed, the particles 20 are left to settle to the bottom of the vial containing the cross-linker solution. The cross-linker phase is decanted off and the particles 20 are then washed in deionized water.
EXAMPLE 7
A first solution is formed by dissolving 10% w/v cellulose acetate phthalate (CAP), available from Schutz & Co., Germany, in a solvent, such as acetone. Note that “w/v” is an abbreviation for “weight by volume,” a phrase used in chemistry and pharmacology to describe the concentration of a substance in a mixture or solution. The weight by volume is the mass (in grams) of the substance dissolved in or mixed with 100 milliliters of solution or mixture. For example, the concentration of CAP in a solvent, such as acetone, is 0.10% w/v, meaning that there is 0.10 gram of CAP per 100 milliliters of acetone. Thus 1% w/v is equal to 1 gram per deciliter (g/dL) or 10 grams per liter.
A second solution is formed by combining 100 mL of liquid paraffin (or other similar mixture of hydrocarbons) with 1% w/v Span™ 80 in a 400 mL beaker. This solution is then agitated at 400 rpm using a 3-bladed stirrer (having a 5 cm diameter) connected to a stirring motor (e.g., Tecmatic™ SD2).
One gram of Ac/D is dissolved in 20 mL of the first solution. This solution is then poured into the second solution, forming a final solution. Evaporation of the solvent from the final solution proceeds for 24 hours at 30° C., producing residual microparticles 20 at the bottom of the beaker. The microparticles 20 are collected in a Büchner, or equivalent, filter and washed in 50 mL of ether. The microparticles 20 are then allowed to dry at room temperature for 24 hours.
EXAMPLE 8
A first solution is formed by dissolving 10% w/v cellulose acetate phthalate (CAP), available from Schutz & Co., Germany, in a solvent, such as acetone. A second solution is formed by combining 100 mL of liquid paraffin with 1% w/v Span 80 in a 400 mL beaker. This solution is then agitated at 400 rpm using a 3-bladed stirrer (having a 5 cm diameter) connected to a stirring motor (e.g., Tecmatic SD2).
One gram of Trapidil is dissolved in 20 mL of the first solution. This mixture is then poured into the second solution. Evaporation of the solvent from the mixture/solution proceeds for 24 hours at 30° C., producing residual microparticles 20 at the bottom of the beaker. The microparticles 20 are collected in a Buchner, or equivalent, filter and washed in 50 mL of ether. The microparticles 20 are then allowed to dry at room temperature for 24 hours.
The above-described formulation examples are specific to drug-loaded microparticles 20. Other materials, such as PEG-gels, PLA (polylactic acid), PCL (poly caprolactone), and the like, may also be used to formulate drug-loadable microparticles 20 using similar methods to those described above. Further, by modifying the pipette/dropper size or vortex speed, microparticles 20 of varying sizes may be formed. Smaller or larger sized microparticles 20 may be preferred to more accurately control drug volumes and duration of release rates.
In some embodiments, a second drug can be applied in the matrix polymer, such as EVAL. PEGDA hydrogel nanoparticles can be combined with other drug loaded nanoparticles to obtain additional effects, such as a cushioning effect.
In addition to drugs, radioactive isotopes may also be loaded into the microparticles 20, utilizing relatively similar formulation techniques. Examples of radioactive isotopes include, but are not limited to, 32P, 55,56,57Co, 52Mg, and 55Fe. In one embodiment, nano-sized gold-particles containing one or multiple radioisotopes are used to create a radiopaque/radiotherapy stent that is easily tracked through or located within the body of the patient.
To increase overall drug-loading on stent 10, the drug-loaded microparticles 20, shown in FIG. 2, are coated onto the entire surface of stent 10 with a biocompatible polymer solution 18. Any suitable polymer solutions 18 can be used, such as low-density polyethylene, poly (ethylene glycol) and other similar solutions, such as polycaprolactone, ethylene vinyl acetate, polyvinyl alcohol and the like. In one embodiment, the polymer solution 18 can be ethylene vinyl alcohol, which is functionally a very suitable choice of polymer. Ethylene vinyl alcohol copolymer, commonly known by the generic name EVOH or by the trade name EVAL®, refers to copolymers including residues of both ethylene and vinyl alcohol monomers. One of ordinary skill in the art understands that ethylene vinyl alcohol copolymer may also be a terpolymer so as to include small amounts of additional monomers, for example less than about five (5) mole percentage of styrenes, propylene, or other suitable monomers. In a useful embodiment, the copolymer comprises a mole percent of ethylene of from about 27% to about 47%. Typically, 44 mole percent ethylene is suitable. Ethylene vinyl alcohol copolymers are available commercially from companies such as Aldrich Chemical Company, Milwaukee, Wis., or EVOH Company of America, Lisle, Ill., or can be prepared by conventional polymerization procedures that are well known to one of ordinary skill in the art. The copolymer possesses good adhesive qualities to the surface of stent 10, particularly stainless steel surfaces, and has illustrated the ability to expand with stent 10 without any significant detachment of the copolymer from the surface of stent 10.
If polymer solution 18 is used with a solvent, the solvent should be mutually compatible with polymer solution 18 and should be capable of placing polymer solution 18 into solution at the concentration desired in the solution. Useful solvents should also be able to expand the chains of the polymer for maximum interaction with the surface of the device, such as the metallic surface of stent 10. Examples of solvent can include, but are not limited to, dimethylsulfoxide (DMSO), chloroform, acetone, water (buffered saline), xylene, acetone, methanol, ethanol, 1-propanol, tetrahydrofuran, 1-butanone, dimethylformamide, dimethylacetamide, cyclohexanone, ethyl acetate, methylethylketone, propylene glycol monomethylether, isopropanol, N-methyl pyrrolidinone, toluene and mixtures thereof.
A suitable fluid having a high capillary permeation can be added to polymer solution 18 to enhance the wetting for a more uniform coating application. The wetting fluid, typically, should have a viscosity not greater than about 50 centipoise, narrowly about 0.3 to about 5 centipoise, more narrowly about 0.4 to about 2.5 centipoise. The wetting fluid should be mutually compatible with polymer solution 18 and the solvent and should not precipitate polymer solution 18. The wetting fluid can also act as the solvent. Useful examples of the wetting fluid include, but are not limited to, tetrahydrofuran (THF), dimethylformamide (DMF), 1-butanol, n-butyl acetate, dimethyl acetamide (DMAC), and mixtures and combinations thereof.
In accordance with another embodiment, a fluid can be added to the composition to enhance the wetting of the composition for a more uniform coating application. To enhance the wetting of the composition, a suitable fluid typically has a high capillary permeation. Capillary permeation or wetting is the movement of a fluid on a solid substrate driven by interfacial energetics. The wetting fluid should be mutually compatible with the polymer and the solvent and should not precipitate the polymer. The wetting fluid can also act as the solvent. Useful examples of the wetting fluid include, but are not limited to, tetrahydrofuran (THF), dimethylformamide (DMF), 1-butanol, n-butyl acetate, dimethyl acetamide (DMAC), and mixtures and combinations thereof.
By way of example and not limitation, the polymer can comprise from about 0.1% to about 35%, more narrowly from about 2% to about 20% by weight of the total weight of the composition; the solvent can comprise from about 19.9% to about 98.9%, more narrowly from about 58% to about 84% by weight of the total weight of the composition; the wetting fluid can comprise from about 1% to about 80%, more narrowly from about 5% to about 40% by weight of the total weight of the composition. The specific weight ratio of the wetting fluid depends on the type of wetting fluid employed and type of and the weight ratio of the polymer and the solvent. More particularly, tetrahydrofuran used as the wetting fluid can comprise, for example, from about 1% to about 44%, more narrowly about 21% by weight of the total weight of the solution. Dimethylformamide used as the wetting fluid can comprise, for example, from about 1% to about 80%, more narrowly about 8% by weight of the total weight of the solution. One-butanol (1-butanol) used as the wetting fluid can comprise, for example, from about 1% to about 33%, more narrowly about 9% by weight of the total weight of the solution. N-butyl acetate used as the wetting fluid can comprise, for example, from about 1% to about 34%, more narrowly about 14% by weight of the total weight of the solution. Dimethyl acetamide used as the wetting fluid can comprise, for example, from about 1% to about 40%, more narrowly about 20% by weight of the total weight of the solution.
In accordance with one embodiment, the microparticles 20 are embedded within the polymer solution 18, thereby forming a polymer matrix that securely adheres to the surface of stent 10. In addition, depending on the polymer solution 18 and the porosity of the micro/nano-spheres 20, the drug release rates may also be controlled. With the use of a polymer solution 18, such as ethylene vinyl alcohol copolymer, polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), and the like, the deposited polymer solution 18 should be exposed to a heat treatment at temperature range greater than about the glass transition temperature (Tg) and less than about the melting temperature (Tm) of the polymer. Stent 10 should be exposed to the heat treatment for any suitable duration of time, which would allow for the formation of the coating on the surface of stent 10 and allows for the evaporation of the solvent or combination of solvent and wetting fluid, if necessary. It is understood that essentially all of the solvent and the wetting fluid will be removed from the composition but traces or residues can remain blended with the polymer. The Tg and Tm for the polymers used in the embodiments of the present invention are attainable by one or ordinary skill in the art.
Table 1 lists the Tg and Tm for some exemplary polymers which can be used in embodiments of the present invention. Tg and Tm of polymers are attainable by one or ordinary skill in the art. The cited exemplary temperature and time for exposure is provided by way of illustration and it is not meant to be limiting.
TABLE 1
Exemplary
Exemplary Duration of
Temperature Time For
Polymer Tg (° C.) Tm (° C.) (° C.) Heating
EVOH 55 165 140 4 hours
polycaprolactone −60 60 50 2 hours
ethylene vinyl 36 63 45 2 hours
acetate
(e.g., 33%
vinylacetate content)
Polyvinyl 75-85* 200-220* 165 2 hours
alcohol
*Exact temperature depends on the degree of hydrolysis which is also known as the amount of residual acetate.
With the use of one of the aforementioned thermoplastic polymers, the use of initiators may be required. By way of example, epoxy systems consisting of diglycidyl ether of bisphenol A resins can be cured with amine curatives, thermoset polyurethane prepolymers can cured with polyols, polyamines, or water (moisture), and acrylated urethane can be cured with UV light. Further discussion of polymers, solvents, wetting fluids and initiators are disclosed in commonly assigned U.S. application Ser. No. 09/750,595, now U.S. Pat No. 6,730,288, entitled “Coating for Implantable Devices and a Method of Forming the Same”, filed Dec. 28, 2000, which is herein incorporated by reference for all purposes.
The following methods may be used to embed the micro/nano-spheres 20 in the polymer solution 18 and apply the resulting matrix to the surface of stent 10. Although several methods are disclosed, it is to be understood that the following list is not inclusive. Other similar methods may also be used and are within the scope of the presently claimed invention.
Method 1
EVOH Solution Formulation: An EVOH solution is made by adding 10 grams of EVOH into 90 grams of DMAC. The components are dissolved to form a solution by heating the mixture to 50° C., with constant stirring.
Stent Coating Process: PEGDA microparticles 20, ranging in size from approximately 0.5 to 2.0 microns (0.1×10−4 mm to 0.5×10−4 mm) in length, are suspended in the EVOH solution by adding 20 grams of microparticles 20 into 80 grams of the EVOH solution. The final suspension is constantly agitated or stirred to prevent flocculation. Stents 10 are dipped in the final suspension and then centrifuged at 6,000 rpm for 60 seconds resulting in a coating having a relatively smooth surface texture.
Method 2
EVOH Solution Formulation: see Method 1 (above).
Stent Coating Process: see Method 1 (above). In addition, a co-solvent solution is formulated by combining 2% EVOH in 1:1 w/w DMSO:DMF. Stents 10 are then spray-coated with a top coat of a co-solvent solution so that the initial microparticle 20 coating is completely covered by the EVOH top coat. This top coat provides a means to control drug release rates and obtain smooth surface textures.
Method 3
EVOH Solution Formulation: see Method 1 (above).
Stent Coating Process: Ac/D loaded CAP microparticles 20, ranging in size from approximately 0.5 to 2.0 microns (0.1×10−4 mm to 0.5×10−4 mm) in length, are suspended in the EVOH solution by adding 20 grams of microparticles to 80 grams of EVOH solution. To prevent flocculation, the final solution is constantly stirred. Stents 10 are then dipped in the final suspension and then centrifuged at 6,000 rpm for 60 seconds, resulting in a coating having a relatively smooth surface texture. The coated stents 10 are then spray-coated with a top coat of a co-solvent solution containing 2% EVOH in DMAC. This top coat provides a means to control drug release rates and obtain smooth surface textures.
Method 4
EVOH Solution Formulation: see Method 1 (above). Prior to applying the polymer matrix, described below, stents 10 are initially coated with a layer of EVOH by dipping, spraying or similar coating techniques.
Stent Coating Process: PEGDA microparticles 20, ranging in size from approximately 0.5 to 2.0 microns (0.1×10−4 mm to 0.5×10−4 mm) in length, are suspended in methanol by adding 50 grams of microparticles 20 into 50 grams of methanol. The final suspension (i.e. polymer matrix) is constantly stirred to prevent flocculation. Stents 10 are dipped in the final suspension and then centrifuged at 2,000 rpm for 60 seconds resulting in a coating having a relatively smooth surface texture. The coated stents 10 are then spray-coated with a co-solvent solution containing 2% EVOH in 1:1 w/w DMSO:DMF.
Method 5
EVOH Solution Formulation: see Method 4 (above).
Stent Coating Process: PEGDA microparticles 20, ranging in size from approximately 0.5 to 2.0 microns (0.1×10−4 mm to 0.5×10−4 mm) in length, are suspended in methanol by adding 50 grams of microparticles 20 into 50 grams of methanol. The final suspension is constantly stirred to prevent flocculation. Stents 10 are selectively dipped, e.g. only the ends 14, 16 of each stent 10 are dipped, in the final suspension and then centrifuged at 1,000 rpm for 30 seconds resulting in a coating having a relatively smooth surface texture. The coated stents 10 are then spray-coated with a top coat of a co-solvent solution containing 2% EVOH in 1:1 w/w DMSO:DMF. The initial selective dipping of stent 10, together with the sprayed top-coat, produces a hydrogel cushion at each end 14, 16 of stent 10. This hydrogel cushion reduces or eliminates trauma to the lumen or vessel due to contact with un-coated ends 14, 16 of stent 10.
Method 6
EVOH Solution Formulation: see Method 4 (above).
Stent Coating Process: VP microparticles 20, ranging in size from approximately 0.5 to 2.0 microns (0.1×10−4 mm to 0.5×10−4 mm) in length, are suspended in methanol by adding 50 grams of microparticles 20 into 50 grams of methanol. The final suspension is constantly stirred to prevent flocculation. Stents 10 are dipped in the final suspension and then centrifuged at 2,000 rpm for 60 seconds resulting in a coating having a relatively smooth surface texture. The coated stents 10 are then spray-coated with a co-solvent solution containing 2% EVOH in 1:1 w/w DMSO:DMF, thereby completely covering the microparticle 20 coating with a top-coat of EVOH.
Alternative methods of applying drug-loaded microparticles 20 onto the surface of a stent 10, including various combinations of methods, are also within the scope of the present disclosure. The type of microparticle 20, drug and layering technique provide increased volume of drug-loading on stent 10 and controllable drug release rates. For example, in one embodiment, the entire stent 10 is coated with a first layer of EVOH as described above. A first suspension of Ac/D loaded CAP microparticles 20 and a second suspension of PEGDA microparticles 20 (formulated according to the methods described above) are selectively applied as a second layer on stent 10. In particular, the first end of stent 10 is coated with a layer of the first suspension and the second end 16 of stent 10 is coated with a layer of the second suspension. This embodiment allows stent 10 to selectively deliver two types of drugs to two different target sites in the lumen.
In an alternate embodiment, the entire stent 10 is coated with a first layer of EVOH. A suspension made of a combination of Ac/D loaded CAP microparticles 20 and PEGDA microparticles 20 is formulated and applied as a second layer on stent 10. The ratio of Ac/D loaded CAP microparticles 20 to PEGDA microparticles 20 in the suspension is variable based upon the desired treatment or diagnosis. In addition, the second layer of the suspension may either be applied over the entire stent 10 or over only selective portions of stent 10, using dipping, spraying, or other similar methods.
In yet another embodiment, the entire stent 10 is coated with a first layer of EVOH. A second layer comprising a suspension formulated from a combination of Ac/D loaded CAP microparticles 20, PEGDA microparticles 20 and VP microparticles 20 is selectively applied to stent 10. Alternatively, only selected portions of stent 10 may be coated with a variety of second layers. For example, a first portion of stent 10 may be coated with a suspension consisting of Ac/D loaded CAP microparticles 20 and VP microparticles 20, a second portion with only PEGDA microparticles 20, and a third portion with PEGDA microparticles 20 and VP microparticles 20.
In yet another embodiment, microparticles 20 can be layered by depositing a first layer followed by a top-coating. The top-coating can be, for example, a blank matrix polymer. A second layering of microparticle 20 can then be applied over the top-coating. In one embodiment, the second layering of microparticles 20 can be the same type of microparticles as the first layering or, alternatively, the second layering can include a different type of microparticles 20 (i.e., a different formulation) from the first layering of microparticles 20. The process of layering microparticles intermittent with the top-coating can be repeated to provide layering patterns according to the requirements of the desired treatment or diagnosis.
Embodiments of the device make possible site specific treatment therapies. Coating different portions of a stent, or other implantable medical device, with the disclosed microparticles loaded with various drugs advantageously allows site-specific treatment of discrete sections of the patient's lumen. In addition, by embedding the drug-loaded microparticle in a polymer, the resulting matrix can increase or decrease the release rate of the drug from the microparticle, depending on the type of polymer used. As such, drug release rates and, for example, long term treatment or diagnostic capabilities, can be controlled.
The scope of the present invention also includes alternative stent embodiments having various combinations of drugs and layering patterns/methods. The particular drug(s) and layering patterns on the stent are configured according to the requirements of the desired treatment or diagnosis.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary sill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by was of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.

Claims (18)

1. A method of coating a stent comprising:
adding polymeric particles containing a therapeutic substance to a fluid form of a stent coating material, wherein the coating material comprises a polymeric material dissolved in a solvent, such that the polymeric particles containing the therapeutic substance are suspended in the coating material;
applying the fluid form of the coating material comprising the polymeric particles added thereto to a stent; and
solidifying the coating material to a film layer by allowing the solvent to evaporate, wherein the film layer comprises the polymeric particles containing the therapeutic substance.
2. The method of claim 1, wherein the polymeric particles are made by water-in-oil emulsion.
3. The method of claim 1, wherein the polymeric particles have a hydrogel consistency.
4. The method of claim 1, wherein the therapeutic substance is for the treatment of restenosis.
5. The method of claim 1, wherein the film layer comprises the polymeric material encasing the polymeric particles.
6. The method of claim 1, wherein the polymeric material dissolved in the solvent is selected from the group consisting of polyvinyl alcohol, ethylene-vinyl alcohol copolymers, polyurethanes, and copolymers and mixtures thereof.
7. The method of claim 6, wherein the polymeric material dissolved in the solvent is a polyurethane.
8. The method of claim 6, wherein the polymeric material dissolved in the solvent is polyvinyl alcohol.
9. The method of claim 6, wherein the polymeric material dissolved in the solvent is an ethylene-vinyl alcohol copolymer.
10. The method of claim 1, wherein the coating material further comprises a second therapeutic substance that may be the same as or different from the therapeutic substance of the polymeric particles.
11. The method of claim 1, wherein a polymer of the polymeric particles is different from the polymeric material of the coating material.
12. The method of claim 1, wherein the coating material is free from any therapeutic substances.
13. The method of claim 1, wherein the film layer is free from any therapeutic substances such that the therapeutic substance is encased only in the polymeric particles.
14. The method of claim 13, wherein a polymer of the polymeric particles is different from the polymeric material of the coating material.
15. The method of claim 1, wherein the polymeric particles comprise a polymer, the constituent monomer of the polymer or at least one constituent monomer of the polymer being vinyl pyrrolidone.
16. The method of claim 1, wherein the polymeric particles comprise a polymer, the constituent monomer of the polymer or at least one constituent monomer of the polymer being polyethylene glycol diacrylate.
17. The method of claim 1, wherein the polymeric particles comprise poly(alginate).
18. The method of claim 1, wherein the polymeric particles comprise cellulose acetate phthalate.
US10/663,181 2001-05-09 2003-09-15 Methods of forming microparticle coated medical device Expired - Fee Related US8361539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/663,181 US8361539B2 (en) 2001-05-09 2003-09-15 Methods of forming microparticle coated medical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/851,877 US6656506B1 (en) 2001-05-09 2001-05-09 Microparticle coated medical device
US10/663,181 US8361539B2 (en) 2001-05-09 2003-09-15 Methods of forming microparticle coated medical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/851,877 Division US6656506B1 (en) 2001-05-09 2001-05-09 Microparticle coated medical device

Publications (2)

Publication Number Publication Date
US20040052858A1 US20040052858A1 (en) 2004-03-18
US8361539B2 true US8361539B2 (en) 2013-01-29

Family

ID=29550500

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/851,877 Expired - Lifetime US6656506B1 (en) 2001-05-09 2001-05-09 Microparticle coated medical device
US10/663,568 Expired - Fee Related US8603536B2 (en) 2001-05-09 2003-09-15 Microparticle coated medical device
US10/663,181 Expired - Fee Related US8361539B2 (en) 2001-05-09 2003-09-15 Methods of forming microparticle coated medical device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/851,877 Expired - Lifetime US6656506B1 (en) 2001-05-09 2001-05-09 Microparticle coated medical device
US10/663,568 Expired - Fee Related US8603536B2 (en) 2001-05-09 2003-09-15 Microparticle coated medical device

Country Status (1)

Country Link
US (3) US6656506B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439869B2 (en) 2006-06-23 2016-09-13 Abott Cardiovascular Systems Inc. Nanoshells on polymers
US10201809B2 (en) 2013-07-05 2019-02-12 Nitto Denko Corporation Photocatalyst sheet

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US7967855B2 (en) 1998-07-27 2011-06-28 Icon Interventional Systems, Inc. Coated medical device
US8070796B2 (en) 1998-07-27 2011-12-06 Icon Interventional Systems, Inc. Thrombosis inhibiting graft
US20090000007A1 (en) * 1998-12-07 2009-01-01 Meridian Research And Development, Inc. Nonwoven radiopaque material for medical garments and method for making same
US7476889B2 (en) * 1998-12-07 2009-01-13 Meridian Research And Development Radiation detectable and protective articles
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US20050238686A1 (en) * 1999-12-23 2005-10-27 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6451373B1 (en) * 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6953560B1 (en) * 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7807210B1 (en) * 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US6780424B2 (en) * 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US6743462B1 (en) * 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7033602B1 (en) 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US8016881B2 (en) 2002-07-31 2011-09-13 Icon Interventional Systems, Inc. Sutures and surgical staples for anastamoses, wound closures, and surgical closures
US20060265043A1 (en) * 2002-09-30 2006-11-23 Evgenia Mandrusov Method and apparatus for treating vulnerable plaque
US7326238B1 (en) * 2002-09-30 2008-02-05 Abbott Cardiovascular Systems Inc. Method and apparatus for treating vulnerable plaque
US6896965B1 (en) * 2002-11-12 2005-05-24 Advanced Cardiovascular Systems, Inc. Rate limiting barriers for implantable devices
US8034361B2 (en) * 2002-11-12 2011-10-11 Advanced Cardiovascular Systems, Inc. Stent coatings incorporating nanoparticles
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7074276B1 (en) 2002-12-12 2006-07-11 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20060002968A1 (en) 2004-06-30 2006-01-05 Gordon Stewart Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
AU2004213021B2 (en) * 2003-02-18 2010-12-09 Medtronic, Inc. Occlusion resistant hydrocephalic shunt
US20090093875A1 (en) * 2007-05-01 2009-04-09 Abbott Laboratories Drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations
US7063884B2 (en) * 2003-02-26 2006-06-20 Advanced Cardiovascular Systems, Inc. Stent coating
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US8465537B2 (en) * 2003-06-17 2013-06-18 Gel-Del Technologies, Inc. Encapsulated or coated stent systems
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7220816B2 (en) * 2003-12-16 2007-05-22 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same
US7435788B2 (en) 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7211108B2 (en) 2004-01-23 2007-05-01 Icon Medical Corp. Vascular grafts with amphiphilic block copolymer coatings
US7803178B2 (en) * 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US20050208093A1 (en) * 2004-03-22 2005-09-22 Thierry Glauser Phosphoryl choline coating compositions
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US20050271700A1 (en) * 2004-06-03 2005-12-08 Desnoyer Jessica R Poly(ester amide) coating composition for implantable devices
US7563780B1 (en) * 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
WO2006002399A2 (en) * 2004-06-24 2006-01-05 Surmodics, Inc. Biodegradable implantable medical devices, methods and systems
US20050287184A1 (en) 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
US8696564B2 (en) * 2004-07-09 2014-04-15 Cardiac Pacemakers, Inc. Implantable sensor with biocompatible coating for controlling or inhibiting tissue growth
US7494665B1 (en) 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8980300B2 (en) 2004-08-05 2015-03-17 Advanced Cardiovascular Systems, Inc. Plasticizers for coating compositions
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7244443B2 (en) 2004-08-31 2007-07-17 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US7166680B2 (en) * 2004-10-06 2007-01-23 Advanced Cardiovascular Systems, Inc. Blends of poly(ester amide) polymers
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US20060089485A1 (en) * 2004-10-27 2006-04-27 Desnoyer Jessica R End-capped poly(ester amide) copolymers
US20060095122A1 (en) * 2004-10-29 2006-05-04 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable star polymers and methods for fabricating the same
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
US7214759B2 (en) * 2004-11-24 2007-05-08 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on polyesters and methods for fabricating the same
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US20060115449A1 (en) * 2004-11-30 2006-06-01 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
US7604818B2 (en) * 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7419504B2 (en) 2004-12-27 2008-09-02 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7202325B2 (en) * 2005-01-14 2007-04-10 Advanced Cardiovascular Systems, Inc. Poly(hydroxyalkanoate-co-ester amides) and agents for use with medical articles
WO2006110197A2 (en) 2005-03-03 2006-10-19 Icon Medical Corp. Polymer biodegradable medical device
US9107899B2 (en) 2005-03-03 2015-08-18 Icon Medical Corporation Metal alloys for medical devices
US7540995B2 (en) 2005-03-03 2009-06-02 Icon Medical Corp. Process for forming an improved metal alloy stent
US20060198940A1 (en) * 2005-03-04 2006-09-07 Mcmorrow David Method of producing particles utilizing a vibrating mesh nebulizer for coating a medical appliance, a system for producing particles, and a medical appliance
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
WO2006116392A2 (en) 2005-04-27 2006-11-02 The Regents Of The University Of Michigan Particle-containing complex porous materials
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US20070031611A1 (en) * 2005-08-04 2007-02-08 Babaev Eilaz P Ultrasound medical stent coating method and device
US9248034B2 (en) * 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US20070100279A1 (en) * 2005-11-03 2007-05-03 Paragon Intellectual Properties, Llc Radiopaque-balloon microcatheter and methods of manufacture
US20070128246A1 (en) * 2005-12-06 2007-06-07 Hossainy Syed F A Solventless method for forming a coating
US20070135909A1 (en) * 2005-12-08 2007-06-14 Desnoyer Jessica R Adhesion polymers to improve stent retention
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070148251A1 (en) * 2005-12-22 2007-06-28 Hossainy Syed F A Nanoparticle releasing medical devices
US20070196428A1 (en) 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7601383B2 (en) * 2006-02-28 2009-10-13 Advanced Cardiovascular Systems, Inc. Coating construct containing poly (vinyl alcohol)
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US20070231363A1 (en) * 2006-03-29 2007-10-04 Yung-Ming Chen Coatings formed from stimulus-sensitive material
US7744928B2 (en) * 2006-04-14 2010-06-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treatment of lesioned sites of body vessels
US20080051335A1 (en) * 2006-05-02 2008-02-28 Kleiner Lothar W Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers
US20070259101A1 (en) * 2006-05-02 2007-11-08 Kleiner Lothar W Microporous coating on medical devices
US20070258903A1 (en) * 2006-05-02 2007-11-08 Kleiner Lothar W Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US20070286882A1 (en) * 2006-06-09 2007-12-13 Yiwen Tang Solvent systems for coating medical devices
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
WO2008002778A2 (en) 2006-06-29 2008-01-03 Boston Scientific Limited Medical devices with selective coating
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US8952123B1 (en) 2006-08-02 2015-02-10 Abbott Cardiovascular Systems Inc. Dioxanone-based copolymers for implantable devices
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
JP2010503469A (en) 2006-09-14 2010-02-04 ボストン サイエンティフィック リミテッド Medical device having drug-eluting film
WO2008066656A2 (en) * 2006-11-03 2008-06-05 Boston Scientific Limited Stents with drug eluting coatings
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US20080175882A1 (en) * 2007-01-23 2008-07-24 Trollsas Mikael O Polymers of aliphatic thioester
US8916185B2 (en) * 2007-02-28 2014-12-23 The Regents Of The University Of Michigan Immobilizing particles onto surfaces
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) * 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8802184B2 (en) 2007-05-30 2014-08-12 Abbott Cardiovascular Systems Inc. Medical devices containing biobeneficial particles
US10155881B2 (en) 2007-05-30 2018-12-18 Abbott Cardiovascular Systems Inc. Substituted polycaprolactone for coating
US9737638B2 (en) * 2007-06-20 2017-08-22 Abbott Cardiovascular Systems, Inc. Polyester amide copolymers having free carboxylic acid pendant groups
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US7927621B2 (en) * 2007-06-25 2011-04-19 Abbott Cardiovascular Systems Inc. Thioester-ester-amide copolymers
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US20090004243A1 (en) 2007-06-29 2009-01-01 Pacetti Stephen D Biodegradable triblock copolymers for implantable devices
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8815273B2 (en) * 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
JP2010535541A (en) 2007-08-03 2010-11-25 ボストン サイエンティフィック リミテッド Coating for medical devices with large surface area
US20090041845A1 (en) * 2007-08-08 2009-02-12 Lothar Walter Kleiner Implantable medical devices having thin absorbable coatings
MX2010003087A (en) 2007-09-21 2010-06-23 Enox Biopharma Inc Antimicrobial gas-releasing ear drainage tubes.
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
WO2009046372A2 (en) 2007-10-04 2009-04-09 Trivascular2, Inc. Modular vascular graft for low profile percutaneous delivery
US9814553B1 (en) 2007-10-10 2017-11-14 Abbott Cardiovascular Systems Inc. Bioabsorbable semi-crystalline polymer for controlling release of drug from a coating
US20090104241A1 (en) * 2007-10-23 2009-04-23 Pacetti Stephen D Random amorphous terpolymer containing lactide and glycolide
US20090306120A1 (en) * 2007-10-23 2009-12-10 Florencia Lim Terpolymers containing lactide and glycolide
US8642062B2 (en) 2007-10-31 2014-02-04 Abbott Cardiovascular Systems Inc. Implantable device having a slow dissolving polymer
US20090110713A1 (en) * 2007-10-31 2009-04-30 Florencia Lim Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
WO2009064442A1 (en) * 2007-11-13 2009-05-22 Brookwood Pharmaceuticals, Inc. Viscous terpolymers as drug delivery platform
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8016208B2 (en) 2008-02-08 2011-09-13 Bacoustics, Llc Echoing ultrasound atomization and mixing system
US7950594B2 (en) 2008-02-11 2011-05-31 Bacoustics, Llc Mechanical and ultrasound atomization and mixing system
US7830070B2 (en) 2008-02-12 2010-11-09 Bacoustics, Llc Ultrasound atomization system
US8128983B2 (en) 2008-04-11 2012-03-06 Abbott Cardiovascular Systems Inc. Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network
US8916188B2 (en) 2008-04-18 2014-12-23 Abbott Cardiovascular Systems Inc. Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block
US20090285873A1 (en) * 2008-04-18 2009-11-19 Abbott Cardiovascular Systems Inc. Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide)
US20090297584A1 (en) * 2008-04-18 2009-12-03 Florencia Lim Biosoluble coating with linear over time mass loss
EP2271380B1 (en) 2008-04-22 2013-03-20 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US8697113B2 (en) 2008-05-21 2014-04-15 Abbott Cardiovascular Systems Inc. Coating comprising a terpolymer comprising caprolactone and glycolide
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US20100158978A1 (en) * 2008-12-23 2010-06-24 Peter Markland Bioactive spray coating compositions and methods of making and uses thereof
US8974808B2 (en) * 2008-12-23 2015-03-10 Surmodics, Inc. Elastic implantable composites and implants comprising same
US8951546B2 (en) 2008-12-23 2015-02-10 Surmodics Pharmaceuticals, Inc. Flexible implantable composites and implants comprising same
US9415197B2 (en) 2008-12-23 2016-08-16 Surmodics, Inc. Implantable suction cup composites and implants comprising same
US20100215833A1 (en) * 2009-02-26 2010-08-26 Lothar Sellin Coating for medical device and method of manufacture
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8183337B1 (en) 2009-04-29 2012-05-22 Abbott Cardiovascular Systems Inc. Method of purifying ethylene vinyl alcohol copolymers for use with implantable medical devices
US8697110B2 (en) 2009-05-14 2014-04-15 Abbott Cardiovascular Systems Inc. Polymers comprising amorphous terpolymers and semicrystalline blocks
US20110319987A1 (en) * 2009-05-20 2011-12-29 Arsenal Medical Medical implant
JP5820370B2 (en) * 2009-05-20 2015-11-24 アーセナル メディカル, インコーポレイテッド Medical implant
US8888840B2 (en) * 2009-05-20 2014-11-18 Boston Scientific Scimed, Inc. Drug eluting medical implant
US9265633B2 (en) 2009-05-20 2016-02-23 480 Biomedical, Inc. Drug-eluting medical implants
US8992601B2 (en) 2009-05-20 2015-03-31 480 Biomedical, Inc. Medical implants
US9309347B2 (en) 2009-05-20 2016-04-12 Biomedical, Inc. Bioresorbable thermoset polyester/urethane elastomers
US8911766B2 (en) 2009-06-26 2014-12-16 Abbott Cardiovascular Systems Inc. Drug delivery compositions including nanoshells for triggered drug release
US9993441B2 (en) 2009-12-30 2018-06-12 Surmodics, Inc. Controlled release matrix barrier structure for subcutaneous medical devices
US8398916B2 (en) 2010-03-04 2013-03-19 Icon Medical Corp. Method for forming a tubular medical device
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US9295663B2 (en) 2010-07-14 2016-03-29 Abbott Cardiovascular Systems Inc. Drug coated balloon with in-situ formed drug containing microspheres
US8492512B2 (en) 2010-08-30 2013-07-23 Surmodics Pharmaceuticals, Inc. Process for reducing moisture in a biodegradable implant device
EP2747800A1 (en) 2011-08-26 2014-07-02 Ella-CS, s.r.o. Self-expandable biodegradable stent made of clad radiopaque fibers covered with biodegradable elastic foil and therapeutic agent and method of preparation thereof
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
CN106535826A (en) 2014-06-24 2017-03-22 怡康医疗股份有限公司 Improved metal alloys for medical devices
WO2017151548A1 (en) 2016-03-04 2017-09-08 Mirus Llc Stent device for spinal fusion

Citations (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4941870A (en) 1986-11-10 1990-07-17 Ube-Nitto Kasei Co., Ltd. Method for manufacturing a synthetic vascular prosthesis
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
US5102402A (en) 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5165919A (en) 1988-03-28 1992-11-24 Terumo Kabushiki Kaisha Medical material containing covalently bound heparin and process for its production
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
EP0514406B1 (en) 1990-01-30 1994-03-02 Akzo Nobel N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5292516A (en) 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5417981A (en) 1992-04-28 1995-05-23 Terumo Kabushiki Kaisha Thermoplastic polymer composition and medical devices made of the same
EP0301856B1 (en) 1987-07-28 1995-05-24 Biomeasure, Inc. Delivery system
US5447724A (en) 1990-05-17 1995-09-05 Harbor Medical Devices, Inc. Medical device polymer
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5510077A (en) 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US5551954A (en) 1991-10-04 1996-09-03 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5578075A (en) 1992-11-04 1996-11-26 Michael Peck Dayton Minimally invasive bioactivated endoprosthesis for vessel repair
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5607467A (en) 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5628730A (en) 1990-06-15 1997-05-13 Cortrak Medical, Inc. Phoretic balloon catheter with hydrogel coating
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
US5665382A (en) 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5684059A (en) 1986-07-18 1997-11-04 Salamone; Joseph C. Fluorine containing soft contact lens hydrogels
EP0809999A2 (en) 1996-05-29 1997-12-03 Ethicon, Inc. Method of varying amounts of heparin coated on a medical device to control treatment thereon
US5700286A (en) 1994-12-13 1997-12-23 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US5716981A (en) 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5735897A (en) 1993-10-19 1998-04-07 Scimed Life Systems, Inc. Intravascular stent pump
US5746998A (en) 1994-06-24 1998-05-05 The General Hospital Corporation Targeted co-polymers for radiographic imaging
US5756553A (en) 1993-07-21 1998-05-26 Otsuka Pharmaceutical Factory, Inc. Medical material and process for producing the same
US5769883A (en) 1991-10-04 1998-06-23 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5800507A (en) 1992-03-19 1998-09-01 Medtronic, Inc. Intraluminal stent
US5800392A (en) 1995-01-23 1998-09-01 Emed Corporation Microporous catheter
US5820917A (en) 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5858746A (en) 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5871437A (en) 1996-12-10 1999-02-16 Inflow Dynamics, Inc. Radioactive stent for treating blood vessels to prevent restenosis
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5925720A (en) 1995-04-19 1999-07-20 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
US5981568A (en) 1993-01-28 1999-11-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6015541A (en) 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
EP0982041A1 (en) 1998-08-21 2000-03-01 Medtronic Ave, Inc. Thromboresistant coating using silanes or siloxanes
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6042875A (en) 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US6051648A (en) 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US6080488A (en) 1995-02-01 2000-06-27 Schneider (Usa) Inc. Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US6120904A (en) 1995-02-01 2000-09-19 Schneider (Usa) Inc. Medical device coated with interpenetrating network of hydrogel polymers
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6165212A (en) 1993-10-21 2000-12-26 Corvita Corporation Expandable supportive endoluminal grafts
WO2001001890A1 (en) * 1999-07-02 2001-01-11 Boston Scientific Limited Stent coating
US6203551B1 (en) 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6245753B1 (en) 1998-05-28 2001-06-12 Mediplex Corporation, Korea Amphiphilic polysaccharide derivatives
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
EP0910584B1 (en) 1996-06-03 2001-07-25 Gore Enterprise Holdings, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US20010018469A1 (en) 1999-09-03 2001-08-30 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
EP0953320A3 (en) 1998-04-30 2001-09-05 Medtronic, Inc. Medical device
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US20010022988A1 (en) * 1999-04-19 2001-09-20 Marlene Schwarz Device and method for protecting medical devices during a coating process
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US6309569B1 (en) 1998-05-13 2001-10-30 Microbiological Research Authority Encapsulation of bioactive agents
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6335029B1 (en) 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6379379B1 (en) 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
EP0701802B1 (en) 1994-09-15 2002-08-28 Medtronic, Inc. Drug eluting stent
US6451373B1 (en) 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US20020133183A1 (en) * 2000-09-29 2002-09-19 Lentz David Christian Coated medical devices
US20020155212A1 (en) 2001-04-24 2002-10-24 Hossainy Syed Faiyaz Ahmed Coating for a stent and a method of forming the same
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6497729B1 (en) 1998-11-20 2002-12-24 The University Of Connecticut Implant coating for control of tissue/implant interactions
US6503556B2 (en) 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6503954B1 (en) 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US6506437B1 (en) 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6527863B1 (en) 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US20030099712A1 (en) 2001-11-26 2003-05-29 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US20040052859A1 (en) 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US6719998B1 (en) * 1998-07-14 2004-04-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Treatment of restenosis
US6730313B2 (en) 2000-01-25 2004-05-04 Edwards Lifesciences Corporation Delivery systems for periadventitial delivery for treatment of restenosis and anastomotic intimal hyperplasia
US20040117007A1 (en) 2001-03-16 2004-06-17 Sts Biopolymers, Inc. Medicated stent having multi-layer polymer coating
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US7008642B1 (en) 2001-02-12 2006-03-07 Advanced Cardiovascular Systems, Inc. Compositions for achieving a therapeutic effect in an anatomical structure and methods of using the same
US7070809B2 (en) 2000-03-13 2006-07-04 Biocure, Inc. Hydrogel biomedical articles
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7396539B1 (en) 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US8034361B2 (en) 2002-11-12 2011-10-11 Advanced Cardiovascular Systems, Inc. Stent coatings incorporating nanoparticles

Patent Citations (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
US4733665B1 (en) 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5684059A (en) 1986-07-18 1997-11-04 Salamone; Joseph C. Fluorine containing soft contact lens hydrogels
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
US4941870A (en) 1986-11-10 1990-07-17 Ube-Nitto Kasei Co., Ltd. Method for manufacturing a synthetic vascular prosthesis
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
EP0301856B1 (en) 1987-07-28 1995-05-24 Biomeasure, Inc. Delivery system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5165919A (en) 1988-03-28 1992-11-24 Terumo Kabushiki Kaisha Medical material containing covalently bound heparin and process for its production
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
EP0514406B1 (en) 1990-01-30 1994-03-02 Akzo Nobel N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5298260A (en) 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5292516A (en) 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
US5447724A (en) 1990-05-17 1995-09-05 Harbor Medical Devices, Inc. Medical device polymer
US5569463A (en) 1990-05-17 1996-10-29 Harbor Medical Devices, Inc. Medical device polymer
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US5628730A (en) 1990-06-15 1997-05-13 Cortrak Medical, Inc. Phoretic balloon catheter with hydrogel coating
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5607467A (en) 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5102402A (en) 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5551954A (en) 1991-10-04 1996-09-03 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5769883A (en) 1991-10-04 1998-06-23 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5510077A (en) 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
US5800507A (en) 1992-03-19 1998-09-01 Medtronic, Inc. Intraluminal stent
US5858746A (en) 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5417981A (en) 1992-04-28 1995-05-23 Terumo Kabushiki Kaisha Thermoplastic polymer composition and medical devices made of the same
US5578075A (en) 1992-11-04 1996-11-26 Michael Peck Dayton Minimally invasive bioactivated endoprosthesis for vessel repair
US5578075B1 (en) 1992-11-04 2000-02-08 Daynke Res Inc Minimally invasive bioactivated endoprosthesis for vessel repair
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5981568A (en) 1993-01-28 1999-11-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5665382A (en) 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US5776184A (en) 1993-04-26 1998-07-07 Medtronic, Inc. Intravasoular stent and method
US5837008A (en) 1993-04-26 1998-11-17 Medtronic, Inc. Intravascular stent and method
EP0623354B1 (en) 1993-04-26 2002-10-02 Medtronic, Inc. Intravascular stents
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5624411A (en) 1993-04-26 1997-04-29 Medtronic, Inc. Intravascular stent and method
US5679400A (en) 1993-04-26 1997-10-21 Medtronic, Inc. Intravascular stent and method
US5716981A (en) 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5886026A (en) 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
EP0665023B1 (en) 1993-07-21 2004-04-21 Otsuka Pharmaceutical Factory, Inc. Medical material and process for producing the same
US5756553A (en) 1993-07-21 1998-05-26 Otsuka Pharmaceutical Factory, Inc. Medical material and process for producing the same
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5735897A (en) 1993-10-19 1998-04-07 Scimed Life Systems, Inc. Intravascular stent pump
US6165212A (en) 1993-10-21 2000-12-26 Corvita Corporation Expandable supportive endoluminal grafts
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
US5746998A (en) 1994-06-24 1998-05-05 The General Hospital Corporation Targeted co-polymers for radiographic imaging
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
EP0701802B1 (en) 1994-09-15 2002-08-28 Medtronic, Inc. Drug eluting stent
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
EP0716836B1 (en) 1994-12-13 2001-07-04 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5700286A (en) 1994-12-13 1997-12-23 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5800392A (en) 1995-01-23 1998-09-01 Emed Corporation Microporous catheter
US6080488A (en) 1995-02-01 2000-06-27 Schneider (Usa) Inc. Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
US6120904A (en) 1995-02-01 2000-09-19 Schneider (Usa) Inc. Medical device coated with interpenetrating network of hydrogel polymers
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5925720A (en) 1995-04-19 1999-07-20 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
US6358556B1 (en) 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5873904A (en) 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US5865814A (en) 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US6096070A (en) 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5820917A (en) 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5851508A (en) 1995-07-27 1998-12-22 Microtherapeutics, Inc. Compositions for use in embolizing blood vessels
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
US6051648A (en) 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5876433A (en) 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
EP0809999A2 (en) 1996-05-29 1997-12-03 Ethicon, Inc. Method of varying amounts of heparin coated on a medical device to control treatment thereon
EP0910584B1 (en) 1996-06-03 2001-07-25 Gore Enterprise Holdings, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US6284305B1 (en) 1996-06-13 2001-09-04 Schneider (Usa) Inc. Drug coating with topcoat
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
EP0832655B1 (en) 1996-06-13 2004-09-01 Schneider (Usa) Inc. Drug release stent coating and process
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5871437A (en) 1996-12-10 1999-02-16 Inflow Dynamics, Inc. Radioactive stent for treating blood vessels to prevent restenosis
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
EP0850651B1 (en) 1996-12-20 2004-02-25 Schneider (Usa) Inc. Method and Apparatus for applying drug-release coatings
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6306176B1 (en) 1997-01-27 2001-10-23 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6042875A (en) 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
EP0879595B1 (en) 1997-04-30 2003-01-29 Schneider (Usa) Inc., Drug-releasing coatings for medical devices
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6015541A (en) 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
EP0923953B1 (en) 1997-12-22 2008-08-13 Boston Scientific Scimed, Inc. Drug coating with topcoat
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
EP0953320A3 (en) 1998-04-30 2001-09-05 Medtronic, Inc. Medical device
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6379379B1 (en) 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
US6309569B1 (en) 1998-05-13 2001-10-30 Microbiological Research Authority Encapsulation of bioactive agents
US6245753B1 (en) 1998-05-28 2001-06-12 Mediplex Corporation, Korea Amphiphilic polysaccharide derivatives
EP0970711B1 (en) 1998-06-30 2004-10-13 Ethicon, Inc. Process for coating stents
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6719998B1 (en) * 1998-07-14 2004-04-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Treatment of restenosis
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
EP0982041A1 (en) 1998-08-21 2000-03-01 Medtronic Ave, Inc. Thromboresistant coating using silanes or siloxanes
US6335029B1 (en) 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6497729B1 (en) 1998-11-20 2002-12-24 The University Of Connecticut Implant coating for control of tissue/implant interactions
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US20010022988A1 (en) * 1999-04-19 2001-09-20 Marlene Schwarz Device and method for protecting medical devices during a coating process
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
WO2001001890A1 (en) * 1999-07-02 2001-01-11 Boston Scientific Limited Stent coating
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US20010018469A1 (en) 1999-09-03 2001-08-30 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6346110B2 (en) 1999-10-04 2002-02-12 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implantable device
US6203551B1 (en) 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US20010037145A1 (en) 1999-12-08 2001-11-01 Guruwaiya Judy A. Coated stent
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
US6730313B2 (en) 2000-01-25 2004-05-04 Edwards Lifesciences Corporation Delivery systems for periadventitial delivery for treatment of restenosis and anastomotic intimal hyperplasia
US7070809B2 (en) 2000-03-13 2006-07-04 Biocure, Inc. Hydrogel biomedical articles
US6503954B1 (en) 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6451373B1 (en) 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US20020133183A1 (en) * 2000-09-29 2002-09-19 Lentz David Christian Coated medical devices
US6506437B1 (en) 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6503556B2 (en) 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US7008642B1 (en) 2001-02-12 2006-03-07 Advanced Cardiovascular Systems, Inc. Compositions for achieving a therapeutic effect in an anatomical structure and methods of using the same
US20040117007A1 (en) 2001-03-16 2004-06-17 Sts Biopolymers, Inc. Medicated stent having multi-layer polymer coating
US20020155212A1 (en) 2001-04-24 2002-10-24 Hossainy Syed Faiyaz Ahmed Coating for a stent and a method of forming the same
US20040052859A1 (en) 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6527863B1 (en) 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US20030099712A1 (en) 2001-11-26 2003-05-29 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7396539B1 (en) 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US8034361B2 (en) 2002-11-12 2011-10-11 Advanced Cardiovascular Systems, Inc. Stent coatings incorporating nanoparticles

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
Anonymous, Cardiologists Draw-Up The Dream Stent, Clinica 710:15 (Jun. 17, 1996), http://www.dialogweb.com/cgi/document?req=1061848202959, printed Aug. 25, 2003 (2 pages).
Anonymous, Cardiologists Draw—Up The Dream Stent, Clinica 710:15 (Jun. 17, 1996), http://www.dialogweb.com/cgi/document?req=1061848202959, printed Aug. 25, 2003 (2 pages).
Anonymous, Heparin-coated stents cut complications by 30%, Clinica 732:17 (Nov. 18, 1996), http://www.dialogweb.com/cgi/document?req=1061847871753, printed Aug. 25, 2003. (2 pages).
Anonymous, Rolling Therapeutic Agent Loading Device for Therapeutic Agent Delivery or Coated Stent (Abstract 434009), Res. Disclos. pp. 974-975 (Jun. 2000).
Anonymous, Stenting continues to dominate cardiology, Clinica 720:22 (Sep. 2, 1996), http://www.dialogweb.com/cgi/document?req=1061848017752, printed Aug. 25, 2003 (2 pages).
Aoyagi et al., Preparation of cross-linked aliphatic polyester and application to thermo-responsive material, Journal of Controlled Release 32:87-96 (1994).
Barath et al., Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury, JACC 13(2): 252A (Abstract) (Feb. 1989).
Barbucci et al., Coating of commercially available materials with a new heparinizable material, J. Biomed. Mater. Res. 25:1259-1274 (Oct. 1991).
Chung et al., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65:93-103 (2000).
Dev et al., Kinetics of Drug Delivery to the Arterial Wall Via Polyurethane-Coated Removable Nitinol Stent: Comparative Study of Two Drugs, Catheterization and Cardiovascular Diagnosis 34:272-278 (1995).
Dichek et al., Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells, Circ. 80(5):1347-1353 (Nov. 1989).
Eigler et al., Local Arterial Wall Drug Delivery from a Polymer Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin, JACC, 4A (701-1), Abstract (Feb. 1994).
Helmus, Overview of Biomedical Materials, MRS Bulletin, pp. 33-38 (Sep. 1991).
Herdeg et al., Antiproliferative Stent Coatings: Taxol and Related Compounds, Semin. Intervent. Cardiol. 3:197-199 (1998).
Inoue et al., An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs, Journal of Controlled Release 51:221-229 (1998).
Kataoka et al., Block copolymer micelles as vehicles for drug delivery, Journal of Controlled Release 24:119-132 (1993).
Levy et al., Strategies For Treating Arterial Restenosis Using Polymeric Controlled Release Implants, Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.], pp. 259-268 (1994).
Liu et al., Drug release characteristics of unimolecular polymeric micelles, Journal of Controlled Release 68:167-174 (2000).
Marconi et al., Covalent bonding of heparin to a vinyl copolymer for biomedical applications, Biomaterials 18(12):885-890 (1997).
Matsumaru et al., Embolic Materials For Endovascular Treatment of Cerebral Lesions, J. Biomater. Sci. Polymer Edn 8(7):555-569 (1997).
Miyazaki et al., Antitumor Effect of Implanted Ethylene-Vinyl Alcohol Copolymer Matrices Containing Anticancer Agents on Ehrlich Ascites Carcinoma and P388 Leukemia in Mice, Chem. Pharm. Bull. 33(6) 2490-2498 (1985).
Miyazawa et al., Effects of Pemirolast and Tranilast on Intimal Thickening After Arterial Injury in the Rat, J. Cardiovasc. Pharmacol., pp. 157-162 (1997).
Nordrehaug et al., A novel biocompatible coating applied to coronary stents, European Heart Journal 14, p. 321 (P1694), Abstr. Suppl. (1993).
Ohsawa et al., Preventive Effects of an Antiallergic Drug, Pemirolast Potassium, on Restenosis After Percutaneous Transluminal Coronary Angioplasty, American Heart Journal 136(6):1081-1087 (Dec. 1998).
Ozaki et al., New Stent Technologies, Progress in Cardiovascular Diseases, vol. XXXIX(2):129-140 (Sep./Oct. 1996).
Pechar et al., Poly(ethylene glycol) Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin, Bioconjucate Chemistry 11(2):131-139 (Mar./Apr. 2000).
Peng et al., Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17:685-694 (1996).
Shigeno, Prevention of Cerebrovascular Spasm By Bosentan, Novel Endothelin Receptor, Chemical Abstract 125:212307 (1996).
van Beusekom et al., Coronary stent coatings, Coronary Artery Disease 5(7):590-596 (Jul. 1994).
Wilensky et al., Methods and Devices for Local Drug Delivery in Coronary and Peripheral Arteries, Trends Cardiovasc. Med. 3(5):163-170 (1993).
Yokoyama et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release 50:79-92 (1998).

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439869B2 (en) 2006-06-23 2016-09-13 Abott Cardiovascular Systems Inc. Nanoshells on polymers
US10201809B2 (en) 2013-07-05 2019-02-12 Nitto Denko Corporation Photocatalyst sheet

Also Published As

Publication number Publication date
US8603536B2 (en) 2013-12-10
US20040052859A1 (en) 2004-03-18
US20040052858A1 (en) 2004-03-18
US6656506B1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US8361539B2 (en) Methods of forming microparticle coated medical device
US8911766B2 (en) Drug delivery compositions including nanoshells for triggered drug release
US6824559B2 (en) Ethylene-carboxyl copolymers as drug delivery matrices
US7014913B2 (en) Rate-reducing membrane for release of an agent
US6585765B1 (en) Implantable device having substances impregnated therein and a method of impregnating the same
US20050238686A1 (en) Coating for implantable devices and a method of forming the same
US8034361B2 (en) Stent coatings incorporating nanoparticles
US8303651B1 (en) Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8287590B2 (en) Medicated stent having multi-layer polymer coating
US20070191938A1 (en) Remote activation of an implantable device
US20080306584A1 (en) Implantable medical devices for local and regional treatment
JP2007534389A (en) Balloon used for angiogenesis
US8252361B2 (en) Implantable medical devices for local and regional treatment
JP2004526499A (en) Drug-loaded stent with multi-layer polymer coating
JP2008523901A (en) Antiluminal multi-layer coating construct for drug delivery stent
JP2009519110A (en) Anti-adhesive substances for drug coatings
JP2011516208A (en) Coating comprising a poly (ethylene glycol) -poly (lactide-glycolide-caprolactone) interpenetrating network
WO2009158068A2 (en) Methods of application of coatings composed of hydrophobic, high glass transition polymers with tunable drug release rates
JP5611036B2 (en) Implantable medical device having an elastomeric block copolymer coating
Kitsongsermthon The development of particle-coated stents and balloons

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, STEVEN Z.;HOSSAINY, SYED F.A.;HARISH, SAMEER;AND OTHERS;REEL/FRAME:014508/0305;SIGNING DATES FROM 20010501 TO 20010504

Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, STEVEN Z.;HOSSAINY, SYED F.A.;HARISH, SAMEER;AND OTHERS;SIGNING DATES FROM 20010501 TO 20010504;REEL/FRAME:014508/0305

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170129