US7975115B2 - Method and apparatus for separating snapshot preserved and write data - Google Patents

Method and apparatus for separating snapshot preserved and write data Download PDF

Info

Publication number
US7975115B2
US7975115B2 US11/779,965 US77996507A US7975115B2 US 7975115 B2 US7975115 B2 US 7975115B2 US 77996507 A US77996507 A US 77996507A US 7975115 B2 US7975115 B2 US 7975115B2
Authority
US
United States
Prior art keywords
data
snapshot
write
command
preserved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/779,965
Other versions
US20080256141A1 (en
Inventor
James George Wayda
Kent Lee
Ngoclan Thi Vu
Elizabeth G. Rodriguez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Cloud Systems Inc
Original Assignee
Dot Hill Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/734,081 external-priority patent/US7716183B2/en
Application filed by Dot Hill Systems Corp filed Critical Dot Hill Systems Corp
Priority to US11/779,965 priority Critical patent/US7975115B2/en
Assigned to DOT HILL SYSTEMS, CORP. reassignment DOT HILL SYSTEMS, CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, KENT, RODRIGUEZ, ELIZABETH G., VU, NGOCLAN THI, WAYDA, JAMES GEORGE
Publication of US20080256141A1 publication Critical patent/US20080256141A1/en
Application granted granted Critical
Publication of US7975115B2 publication Critical patent/US7975115B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/065Replication mechanisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0608Saving storage space on storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0644Management of space entities, e.g. partitions, extents, pools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2002Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where interconnections or communication control functionality are redundant
    • G06F11/2007Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where interconnections or communication control functionality are redundant using redundant communication media
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2053Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant
    • G06F11/2089Redundant storage control functionality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/84Using snapshots, i.e. a logical point-in-time copy of the data

Definitions

  • the present invention is directed to data storage management.
  • the present invention is directed to methods and apparatuses for managing snapshot data.
  • data storage systems are available that can provide at least limited data archiving through backup facilities and/or snapshot facilities.
  • the use of snapshot facilities greatly reduces the amount of storage space required for archiving large amounts of data.
  • Snapshots provide a versatile feature that is useful for data recovery operations, such as backup and recovery of storage elements.
  • traditional snapshots are read-only accessible and their contents cannot be modified, thereby rendering their use somewhat limited, particularly for operating systems and applications that do not have a notion of a read-only data store (e.g., a read-only file system) and that expect to write metadata at any time that the file system is accessible.
  • a read-only data store e.g., a read-only file system
  • an issue arises in that the host may attempt to write data to the read-only image. This is a fundamental issue in the design of a reliable system for backups.
  • a controller typically modifies snapshot data by what is known as a copy-on-write (COW) operation.
  • COW copy-on-write
  • the COW operation determines when a change to a storage volume is going to occur and then determines if the targeted blocks of that storage volume have changed since a snapshot was taken. If the blocks have not changed since the snapshot was taken, then the controller proceeds by copying the original contents of those blocks and writing them to the snapshot data prior to changing the storage volume.
  • the COW operation ensures that the data from the storage volume at the point-in-time that a snapshot was taken either resides on the storage volume or on the snapshot. The controller therefore changes the snapshot only when doing so is required to preserve the data that was on the storage volume at the time the snapshot was taken, but that will be overwritten on the storage volume.
  • Direct modification of a snapshot image could have serious consequences. Such consequences may include the fact that the data of the snapshot is no longer a point-in-time copy and a consistent image of the storage volume may no longer be available for subsequent recovery operations. Accordingly, most snapshot facilities do not allow a host to write data directly to a snapshot without modifying the original data of the snapshot. Thus, many snapshot applications must be used for backup purposes only, where the snapshot cannot be mounted for write access or modification purposes. Furthermore, in some operating systems, a snapshot cannot be mounted as read-only.
  • a service for efficiently managing snapshot data is provided.
  • the method generally comprises receiving a command to create a snapshot at a first point-in-time and in response to receiving the command, allocating a first set of memory addresses for storage of preserved data in association with the snapshot and allocating a second set of memory addresses for storage of write data.
  • the second set of memory addresses are host writeable whereas the first set of memory addresses are not. This allows a user to write data directly to the snapshot using the second set of memory addresses without altering the point-in-time representation of the snapshot maintained by the first set of memory addresses.
  • the second set of memory addresses is not populated with write data unless a user writes directly to the snapshot, thereby reducing the amount of data storage space needed to facilitate the write functionality.
  • a device for managing snapshot data generally comprises an input operable to receive instructions to create a snapshot of a master volume at a first point-in-time and a snapshot application operable to create a first snapshot in response to receiving the instructions, wherein the first snapshot comprises two separate data storage areas for storing different instances of data corresponding to a common data block range on the master volume.
  • a data storage device is also provided to store snapshots created in accordance with embodiments of the present invention.
  • FIG. 1 is a functional block diagram depicting components of an electronic data system incorporating one or more data storage systems in accordance with embodiments of the present invention
  • FIG. 2 is a block diagram depicting components of a data storage system in accordance with embodiments of the present invention
  • FIG. 3 is a block diagram depicting components of a storage controller in accordance with embodiments of the present invention.
  • FIG. 4A is a block diagram depicting a first series of snapshots of a master volume in accordance with embodiments of the present invention
  • FIG. 4B is a block diagram depicting a second series of snapshots of a master volume in accordance with embodiments of the present invention.
  • FIG. 5 is a flow chart depicting a method of creating a snapshot in accordance with embodiments of the present invention.
  • FIG. 6 is a flow chart depicting a method of modifying snapshots in accordance with embodiments of the present invention.
  • FIG. 7 is a flow chart depicting a method of recovering a snapshot in accordance with embodiments of the present invention.
  • a snapshot is a block level point-in-time representation of data on a storage volume.
  • the data is essentially frozen in time at the instant that the snapshot is taken.
  • data on the storage volume may change as a result of write operations, the data within the snapshot will remain constant and frozen in time at the instant that the snapshot was taken.
  • a backing store also known as a snap pool, is used to store data that is not otherwise represented in the storage volume and snapshot metadata. All data and metadata associated with the snapshot is stored in the backing store.
  • data is stored within the snapshot in “chunks” or “block ranges.”
  • a chunk is equivalent to a number of Logical Block Addresses (LBAs).
  • LBAs Logical Block Addresses
  • data can be stored within subchunks.
  • a subchunk is a fixed size subset of a chunk. Pointers, table entries, or other data structures can be used to identify the location of a chunk in the backing store.
  • FIG. 1 is a block diagram depicting an electronic data system 100 in accordance with embodiments of the present invention incorporating a first data storage system 104 and a second data storage system 108 .
  • the electronic data system 100 may also include one or more host processors, computers or computer systems 112 .
  • the electronic data system 100 may include or may be interconnected to an administrative computer 116 .
  • embodiments of the present invention have application in association with single or multiple hosts 112 in storage area network (SAN) or direct connect environments.
  • SAN storage area network
  • the data storage systems 104 , 108 are typically interconnected to one another through an in-band network 120 .
  • the in-band network 120 may also interconnect the data storage systems 104 , 108 to a host computer 112 and/or an administrative computer 116 .
  • the electronic data system 100 may also include an out-of-band network 124 interconnecting some or all of the electronic data system 100 nodes 104 , 108 , 112 and/or 116 .
  • one or more host computers 112 are connected to each data storage system 104 , 108 .
  • a first data storage system 104 is connected to a second data storage system 108 across some distance by a Fibre Channel or a TCP/IP network 120 , and each of these data storage systems 104 , 108 is connected to a host computer 112 through an in-band 120 and/or an out-of-band 124 network.
  • the in-band or storage area network 120 generally functions to transport data between data storage systems 104 and/or 108 and host devices 112 , and can be any data pipe capable of supporting multiple initiators and targets. Accordingly, examples of in-band networks 120 include Fibre Channel (FC), iSCSI, parallel SCSI, Ethernet, ESCON, or FICON connections or networks, which may typically be characterized by an ability to transfer relatively large amounts of data at medium to high bandwidths.
  • the out-of-band network 124 generally functions to support the transfer of communications and/or commands between various network nodes, such as data storage resource systems 104 , 108 , host computer 112 , and/or administrative computers 116 , although such data may also be transferred over the in-band communication network 120 .
  • Examples of an out-of-band communication network 124 include a local area network (LAN) or other transmission control protocol/Internet protocol (TCP/IP) network.
  • LAN local area network
  • TCP/IP transmission control protocol/Internet protocol
  • the out-of-band communication network 124 is characterized by an ability to interconnect disparate nodes or other devices through uniform user interfaces, such as a web browser.
  • the out-of-band communication network 124 may provide the potential for globally or other widely distributed management of data storage systems 104 , 108 via TCP/IP.
  • Every electronic data system node or computer 104 , 108 , 112 and 116 need not be interconnected to every other node or device through both the in-band network 120 and the out-of-band network 124 .
  • no host computer 112 needs to be interconnected to any other host computer 112 , data storage system 104 , 108 , or administrative computer 116 through the out-of-band communication network 124 , although interconnections between a host computer 112 and other devices 104 , 108 , 116 through the out-of-band communication network 124 are not prohibited.
  • an administrative computer 116 may be interconnected to at least one storage system 104 or 108 through the out-of-band communication network 124 .
  • An administrative computer 116 may also be interconnected to the in-band network 120 directly, although such an interconnection is not required. For example, instead of a direct connection, an administrator computer 116 may communicate with a controller of a data storage system 104 , 108 using the in-band network 120 .
  • a host computer 112 exchanges data with one or more of the data storage systems 104 , 108 in connection with the performance of the execution of application programming, whether that application programming concerns data management or otherwise.
  • an electronic data system 100 may include multiple host computers 112 .
  • An administrative computer 116 may provide a user interface for controlling aspects of the operation of the storage systems 104 , 108 .
  • the administrative computer 116 may be interconnected to the storage system 104 , 108 directly, and/or through a bus or network 120 and/or 124 .
  • an administrative computer 116 may be integrated with a host computer 112 .
  • multiple administrative computers 116 may be provided as part of the electronic data system 100 .
  • an electronic data system 100 may include more than two data storage systems or may include a single data storage system.
  • FIG. 2 illustrates components that may be included in a data storage system 104 , 108 in accordance with embodiments of the present invention.
  • the data storage system 104 , 108 includes a number of storage devices 204 .
  • Examples of storage devices 204 include hard disk drives, such as serial advanced technology attachment (SATA), small computer system interface (SCSI), serial attached SCSI (SAS), Fibre Channel (FC), or parallel advanced technology attached (PATA) hard disk drives.
  • Other examples of storage devices 204 include magnetic tape storage devices, optical storage devices or solid state disk devices.
  • LUNs logical unit numbers
  • a LUN may be implemented in accordance with any one of the various array levels or other arrangements for storing data on one or more storage devices 104 .
  • the storage devices 204 may contain data comprising a master storage volume, which may correspond to a LUN, in addition to one or more snapshots of the master storage volume taken at different times.
  • snapshots may comprise metadata and data stored in a backing store on the storage devices 204 .
  • the storage devices 204 contain data comprising a master storage volume, which may correspond to a LUN, and one or more snapshots of the storage volume taken at different times.
  • the snapshots may be mapped to the LUNs and stored on a backing store.
  • the backing store which also occupies an array and/or array partition, does not have a LUN number assigned to it, thus making the backing store invisible to a host computer 112 and/or administrative computer 116 .
  • a data storage system 104 , 108 may be provided with a first controller slot 208 a .
  • other embodiments may include additional controller slots, such as a second controller slot 208 b .
  • a controller slot 208 may comprise a connection or set of connections to enable a controller 212 to be operably interconnected to other components of the data storage system 104 , 108 .
  • a data storage system 104 , 108 in accordance with embodiments of the present invention includes at least one controller 212 a .
  • the data storage system 104 , 108 may include exactly one controller 212 .
  • a data storage system 104 , 108 in accordance with other embodiments of the present invention may be operated in a dual redundant active-active controller mode by providing a second controller 212 b .
  • the second controller slot 208 b receives the second controller.
  • the provision of two controllers, 212 a and 212 b permits data to be mirrored between the controllers 212 a - 212 b , providing redundant active-active controller operation.
  • One or more busses or channels 216 are generally provided to interconnect a controller or controllers 212 through the associated controller slot or slots 208 to the storage devices 204 . Furthermore, while illustrated as a single shared bus or channel 216 , it can be appreciated that a number of dedicated and/or shared buses or channels may be provided. Additional components that may be included in a data storage system 104 include one or more power supplies 224 and one or more cooling units 228 . In addition, a bus or network interface 220 may be provided to interconnect the data storage system 104 , 108 to the bus or network 112 , and/or to a host computer 108 or administrative computer 116 .
  • the data storage system 104 , 108 can comprise one or more storage volumes implemented in various other ways.
  • the data storage system 104 , 108 may comprise a hard disk drive or other storage device 204 connected or associated with a server or a general-purpose computer.
  • the storage system 104 may comprise a Just a Bunch of Disks (JBOD) system or a Switched Bunch of Disks (SBOD) system.
  • JBOD Just a Bunch of Disks
  • SBOD Switched Bunch of Disks
  • FIG. 3 illustrates aspects of a storage controller 212 in accordance with embodiments of the present invention.
  • a storage controller 212 includes a processor subsystem 304 capable of executing instructions for performing, implementing and or controlling various controller 212 functions. Such instructions may include instructions for implementing aspects of a snapshot management method and apparatus. Furthermore, such instructions may be stored as software and/or firmware. As can be appreciated by one of skill in the art, operations concerning the generation of parity data or other operations may be performed using one or more hardwired and/or programmable logic circuits provided as part of the processor subsystem 304 . Accordingly, the processor subsystem 304 may be implemented as a number of discrete components, such as one or more programmable processors in combination with one or more logic circuits. Processor subsystem 304 may also include or be implemented as one or more integrated devices or processors. For example a processor subsystem may comprise a complex programmable logic device (CPLD).
  • CPLD complex programmable logic device
  • a controller 212 also generally includes memory 308 .
  • the memory 308 is not specifically limited to memory of any particular type.
  • the memory 308 may comprise a solid-state memory device, or a number of solid-state memory devices.
  • the memory 308 may include separate non-volatile memory 310 and volatile memory 312 portions.
  • the memory 308 may include a read cache 316 and a write cache 320 that are provided as part of the volatile memory 312 portion of the memory 308 , although other arrangements are possible.
  • a storage controller 212 can improve the speed of input/output (IO) operations between a host 112 and the data storage devices 204 comprising an array or array partition.
  • Examples of volatile memory 312 include DRAM and SDRAM.
  • the non-volatile memory 310 may be used to store data that was written to the write cache of memory 308 in the event of a power outage affecting the data storage system 104 .
  • the non-volatile memory portion 310 of the storage controller memory 308 may include any type of data memory device that is capable of retaining data without requiring power from an external source. Examples of non-volatile memory 310 include, but are not limited to, compact flash or other standardized non-volatile memory devices.
  • a volume information block 324 may be stored in the non-volatile memory 310 , although in accordance with at least some embodiments of the present invention, the volume information block 324 resides in volatile memory 312 .
  • the volume information block 324 comprises data that may be used to represent attribute and state information for master volumes, backing stores, and/or snapshots. Each master volume, backing store, and snapshot is typically associated with a different volume information block 324 .
  • the volume information block 324 is generally employed by the processor 304 to determine whether certain data is located on master volumes, backing stores, and/or snapshots and whether such data is safe to access based on the state of each. For example, the state of a master volume or backing store may be such that if data access were attempted, data corruption may occur. Accordingly, the volume information block 324 may be referenced prior to data access during an I/O operation.
  • the memory 308 also includes portions of the memory 308 comprising a region that provides storage for controller code 328 .
  • the controller code 328 may comprise a number of components, including an I/O application 332 comprising instructions for accessing and manipulating data.
  • the I/O application 332 may provide the controller 212 with the ability to perform read and/or write operations of data on a storage volume and/or on a snapshot.
  • the I/O application 332 may reference the volume information block 324 prior to executing such operations.
  • the I/O application 332 may also employ the read and write caches 316 and 320 respectively when performing such operations.
  • a snapshot application 336 is an example of another application that may be included in the controller code 328 .
  • the snapshot application 336 may be adapted to create and manage snapshots of a master volume.
  • the snapshot application 336 is characterized by the ability to create a writeable snapshot that represent a point-in-time but still allows for modification without disrupting data from the point-in-time. More specifically, the snapshot application 336 may be adapted to create snapshots that support controller 212 initiated read and write operations as well as host 112 initiated read and write operations.
  • a storage controller 212 may additionally include other components.
  • a bus and/or network interface 340 may be provided for operably interconnecting the storage controller 212 to the remainder of the data storage system 104 , for example through a controller slot 208 and a bus or channel 216 .
  • the interface 340 may be configured to facilitate removal or replacement of the storage controller 212 in a controller slot 208 as a field replaceable unit (FRU).
  • integral signal and power channels may be provided for interconnecting the various components of the storage controller 212 to one another.
  • the functionality of the snapshot application 336 may be performed on components other than the controller 212 . More specifically, the snapshot functionality of the present invention could be integrated into a storage application such as an operating system of a computer or onto a switch that contains an operating system and software to implement the snapshot functionality.
  • a series of snapshots 408 of a master volume 404 will be described in accordance with at least some embodiments of the present invention.
  • a master volume 404 is depicted having two snapshots 408 a and 408 b associated therewith.
  • the snapshots 408 are ordered based on their relative age where the first snapshot 408 a is an older snapshot of the master volume 404 than the second snapshot 408 b .
  • the I/O application 332 would first search the write data area 416 of the first snapshot 408 a , and if the data is not found there, the I/O application 332 would search preserved data area 412 of the first snapshot 408 a . If the data is not found on the first snapshot 408 a , then the I/O application 332 would search the preserved data area 412 of the second snapshot 408 b . If the data is not on the preserved data area 412 of the second snapshot 408 b , then the I/O application 332 would find the data on the master volume 404 .
  • snapshot data i.e., data from a specified block range
  • the I/O application 332 will search the write data area 416 of the targeted snapshot 408 and not the write data areas 416 of any other snapshot 408 . Thereafter, the I/O application 332 will only search the preserved data area 412 of the targeted snapshot 408 then the preserved data areas 412 of any newer snapshots 408 .
  • Each snapshot 408 may be created with separate and distinct preserved data 412 and write data 416 areas. Changes to the snapshot 408 by a COW operation may affect the preserved data 412 while host initiated changes to the snapshot 408 may affect data in the write data area 416 .
  • Changes in the master volume 404 made after creation of the first snapshot 408 a but before creation of the second snapshot 408 b are written to the preserved data area 412 of the first snapshot 408 a .
  • the preserved data area 412 of the first snapshot 408 a is changed by COW operations initiated by the controller 212 and/or by deletion of a snapshot 408 .
  • the change to a snapshot 408 by a COW and/or deletion operation is performed to ensure the point-in-time image of the snapshot 408 is preserved. Otherwise, the preserved data area 412 remains unchanged and continues to represent the point-in-time that the first snapshot 408 a was created, even in the event of a host 112 initiated write operation.
  • the preserved data area 412 is used to maintain the point-in-time representation of the snapshot 408
  • the write data area 416 is used to maintain normal write data that is not specifically tied to a point-in-time.
  • the preserved data area 412 of the first snapshot 408 a will not change, unless either the first 408 a or second 408 b snapshot are deleted. Any changes to the master volume 404 are otherwise reflected in the preserved data area 412 of the second snapshot 408 b.
  • Each block range is represented by a different letter (i.e., A, B, C, etc.) and each version of the block range is represented by a variation of that letter. More specifically, the data on the master volume 404 at the point-in-time corresponding to the first snapshot 408 a includes A, B, C, D, and E, whereas data on the master volume 404 at the later point-in-time corresponding to the second snapshot 408 b includes A′, B′, C, D′, and E. Since the E data block range has not been altered since the creation of either the first 408 a or second 408 b snapshot, it still resides on the master volume 404 .
  • the subsequent changes to a data block range on the master volume 404 are updated as A′′, B′′, or D′′ respectively.
  • Host 112 initiated changes made directly to a snapshot 408 are represented by lower case letters in the write data area 416 .
  • all snapshot 408 have separate preserved data areas 412 and write data areas 416 , but the write data area 412 is empty until a host 112 writes directly to the snapshot 408 . Since the write data area 412 remains empty until a host 112 initiated write command is received, the additional space required for the snapshot 408 having this improved functionality is kept as small as possible.
  • the first instance of the A data block range that resided on the master volume 404 when the first snapshot 408 a was taken is stored in the preserved data area 412 of the first snapshot 408 a .
  • the second instance of the same A data block i.e., A′
  • A′ the second instance of the same A data block
  • a user may elect to mount the first snapshot 408 a and write data to the same A data block range. Any host 112 initiated request like this will result in the storage of changes in the write data area 416 of the first snapshot 408 a .
  • a host 112 can access the newly created data (i.e., a′) in the write data area 416 without altering the point-in-time representation of the corresponding A data block range stored in the preserved data area 412 .
  • the snapshot 408 is configured to allow two different instances of data for the same data block range to reside thereon. By allowing two instances of the same data block range to exist on a single snapshot 408 , a user can manipulate the snapshot data without disrupting the point-in-time representation of the snapshot 408 .
  • the host 112 may request to delete the data from the write data area 416 , thereby leaving only the data in the preserved data area 412 .
  • the snapshot application 336 may create a third snapshot 408 c of the master volume 404 .
  • the third snapshot 408 c is assigned an “age” that is relatively younger than the first 408 a and second 408 b snapshot.
  • the third snapshot 408 c is created with separate data structures for the preserved data 412 and write data 416 much like the other snapshots 408 .
  • the preserved data area 412 of the second snapshot 408 b is maintained in its current state where it contains only A′, C, and D′ as data, unless a snapshot is deleted thus resulting in the addition of further snapshot data.
  • Any changes to the master volume 404 after the creation of the third snapshot 408 c are logged in the preserved data area 412 of the third snapshot 408 c .
  • a user may mount the third snapshot 408 c and write data directly to the write data area 416 of the third snapshot 408 c without altering the data in the preserved data area 412 .
  • FIG. 5 is a flow diagram depicting a method of creating a snapshot 408 in accordance with at least some embodiments of the present invention. The method is initiated when a request to create a snapshot 408 is received at the controller 212 (step 504 ). The request may be received from one or both of a host 112 and administrative computer 116 in the form of an electronic message or signal.
  • the controller 212 Upon receiving the request to create a snapshot 408 , the controller 212 employs the snapshot application 336 to ensure that sufficient space exists in the backing store for the snapshot 408 (step 508 ).
  • the step of ensuring that sufficient space exists in the backing store may comprise determining the amount of storage available on the backing store and comparing that to a minimum amount of space required to store snapshot 408 metadata (e.g., space to keep track of the preserved data and write data).
  • the minimum amount of space required to store a single snapshot 408 comprises the space required to keep track of the metadata associated with the preserved and write data currently held for the snapshot 408 .
  • the actual space required to retain the write and preserved data in the write data area 416 and the preserved data area 412 respectively is a function of the amount of data uniquely written to the master volume 404 and snapshot 408 .
  • the space required may increase for each additional snapshot taken of the master volume 404 . If there is insufficient resources to track another snapshot, in step 508 the controller 212 may return an error message or allocate additional resources to accommodate. Resources could include memory allocation, metadata space on the backing store, etc.
  • the method continues with the controller 212 allocating space on the backing store for the new snapshot 408 (step 512 ).
  • the controller 212 may allocate space on the backing store used for the tracking of preserved data and write data associated with a snapshot 408 .
  • the data blocks on the backing store allocated for the snapshot 408 may be mapped to the assigned LUNs.
  • the controller 212 proceeds by separating the allocated space into two separate areas, namely a preserved data area 412 and a write data area 416 (step 516 ).
  • the separation of the allocated space may occur at the block or chunk level in the data storage device 204 , whereby a first range of storage addresses are allocated to the preserved data area 412 and a second range of storage addresses are allocated to the write data area 416 .
  • a greater amount of space is provided for the preserved data area 412 as opposed to the write data area 416 .
  • other embodiments may allocate an equal or greater amount of space to the write data area 416 as compared to the preserved data area 412 .
  • the separation of the allocated space allows for two separate data storage areas within the snapshot 408 .
  • the snapshot 408 will be able to maintain the data corresponding to the point-in-time that the create request was received in the preserved data area 412 while allowing data to be written to the write data area 416 .
  • the snapshot 408 can facilitate the storage of two instances of data for the same master volume 404 block range.
  • Space may be dynamically allocated to the preserved data area 412 and the write data area 416 on an “as needed basis.” Dynamically allocated storage space is assigned from the backing store to the preserved data area 412 when a COW operation occurs. Dynamically allocated storage space is assigned from the backing store to the snapshot 408 write data area 416 when a host 112 write to a snapshot 408 occurs.
  • the space may be preallocated statically.
  • the controller 212 creates an array partition to for the new snapshot 408 (step 524 ).
  • the array partition provides access to a virtual disk drive which can read or write fixed blocks addressed by LBA.
  • the array partition corresponding to the new snapshot 408 has a valid LUN number assigned to it, thereby rendering it host addressable.
  • the controller 212 updates the volume information block 324 to reflect the creation of the new snapshot 408 (step 524 ).
  • the volume information block 324 is updated to provide the I/O application 332 the ability to verify that it is safe to access the new snapshot 408 prior to executing an I/O command. Once the volume information block 324 has been updated, the method ends (step 528 ).
  • FIG. 6 is a flow diagram depicting a method of modifying snapshots in accordance with at least some embodiments of the present invention.
  • the controller 212 is in a ready state, waiting to receive a request to write to a snapshot 408 (step 604 ).
  • the method continues when a request to modify the snapshot data is received by the controller 212 (step 608 ).
  • the request is received at the bus and/or network interface 340 , which generally constitutes an input means, and is processed by the processor 304 .
  • the request may be host 112 or administrative computer 116 initiated either in response to the host 112 or administrative computer 116 requesting to modify the master volume 404 or the snapshot 408 data directly.
  • the controller 212 determines if the modification in snapshot data is due to the initiation of a COW operation (i.e., is controller 212 initiated) (step 612 ). In other words, the controller 212 determines if the request is directed toward a modification in the master volume 404 such that original data on the master volume 404 needs to be transferred to the snapshot 408 prior to modifying the master volume 404 . In the event that the modification in the snapshot 408 is required as a part of a COW operation, the controller 212 continues by changing the data in the appropriate block range of the preserved data area 412 of the newest snapshot 408 associated with the master volume 404 (step 616 ).
  • the controller 212 continues by completing the COW operation (step 624 ). As part of completing the COW operation, the controller 212 makes the requested modification to the master volume 404 , thus changing the data from A to A′, for example.
  • the controller 212 continues by modifying the write data area 416 of the targeted snapshot 408 (step 620 ).
  • a user may elect to alter the write data area 416 of any snapshot 408 , in contrast to the COW operation that only modifies the preserved data area 412 of the newest snapshot 408 .
  • the controller 212 may write a′ or a′′ to the write data area 416 of the selected snapshot 408 .
  • FIG. 7 is a flow diagram depicting a snapshot recovery method in accordance with at least some embodiments of the present invention.
  • the method begins when a snapshot 408 is mounted for read/write access by a host 112 or administrative computer 116 (step 704 ). Since the snapshot 408 is associated with an array partition having a LUN assigned thereto, the snapshot 408 is host 112 addressable.
  • a user selects the snapshot 408 from the host 112 or administrative computer 116 and accesses it using one or more applications running on the computer.
  • the user may write changes directly to the snapshot 408 by issuing write commands to the controller 212 .
  • the write commands are received at the bus and/or network interface 340 of the controller 212 and forwarded to the processor 304 (step 708 ).
  • the processor 304 engages the snapshot application 336 to locate the block range on the snapshot 408 corresponding to the requested write command (step 712 ).
  • the block range that is located by the snapshot application 336 corresponds to a block range in the write data area 416 of the snapshot, since the write command was received directly from the host 112 or administrative computer 116 .
  • the data is written to the located block range within the write data area 416 (step 716 ). Since the write only alters the write data area 416 , the data in the preserved data area 412 of the snapshot 412 remains a representation of the point-in-time that the snapshot 408 was created. Additional writes may be registered on the snapshot 408 for the same block range or for different block ranges.
  • the user may decide to delete the changes to the snapshot 408 and restore the snapshot 408 back to its original point-in-time representation.
  • the user may issue a restore command that is received at the controller 212 (step 720 ).
  • the controller 212 will employ the processor 304 and snapshot application 336 to delete the data in the write data area 416 of the mounted snapshot 408 (step 724 ).
  • the write data area 416 cleared, the only remaining snapshot data is the stored in the preserved data area 412 , which is the data corresponding to the point-in-time that the snapshot 408 was created.
  • a restore command a user is allowed to modify a snapshot 408 then quickly restore it back to its original state. Once the write data area 416 has been cleared, the method ends (step 728 ).

Abstract

A method and device for managing snapshot data is provided. Snapshots may be created having a preserved data area and a write data area. The preserved data area is used to maintain snapshot data corresponding to the point-in-time when the snapshot was created while the write data area is used to facilitate host read/write access to the snapshot. By maintaining two separate areas, the snapshot can be written to without altering the point-in-time representation of the snapshot.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of application Ser. No. 11/734,081, filed Apr. 11, 2007, entitled “Snapshot Preserved Data Cloning,” the entire disclosure of which is hereby incorporated herein by reference.
FIELD OF THE INVENTION
The present invention is directed to data storage management. In particular, the present invention is directed to methods and apparatuses for managing snapshot data.
BACKGROUND
The need to store digital files, documents, pictures, images and other data continues to increase rapidly. In connection with the electronic storage of data, various data storage systems have been devised for the rapid and secure storage of large amounts of data. Such systems may include one or a plurality of storage devices that are used in a coordinated fashion. Systems in which data can be distributed across multiple storage devices such that data will not be irretrievably lost if one of the storage devices (or in some cases, more than one storage device) fails are also available. Systems that coordinate operation of a number of individual storage devices can also provide improved data access and/or storage times. Examples of systems that can provide such advantages can be found in the various RAID (redundant array of independent disks) levels that have been developed. Whether implemented using one or a plurality of storage devices, the storage provided by a data storage system can be treated as one or more storage volumes.
In order to facilitate the availability of desired data, it is often advantageous to maintain different versions of a data storage volume. Indeed, data storage systems are available that can provide at least limited data archiving through backup facilities and/or snapshot facilities. The use of snapshot facilities greatly reduces the amount of storage space required for archiving large amounts of data.
Snapshots provide a versatile feature that is useful for data recovery operations, such as backup and recovery of storage elements. However, traditional snapshots are read-only accessible and their contents cannot be modified, thereby rendering their use somewhat limited, particularly for operating systems and applications that do not have a notion of a read-only data store (e.g., a read-only file system) and that expect to write metadata at any time that the file system is accessible. When a storage element that is held in a snapshot is exported to a client or host and contains the data for such a problematic file system, an issue arises in that the host may attempt to write data to the read-only image. This is a fundamental issue in the design of a reliable system for backups. In general, once a backup image is made via a mechanism like a sparse snapshot, that image should be maintained as a point-in-time representation of the storage volume. A controller typically modifies snapshot data by what is known as a copy-on-write (COW) operation. The COW operation determines when a change to a storage volume is going to occur and then determines if the targeted blocks of that storage volume have changed since a snapshot was taken. If the blocks have not changed since the snapshot was taken, then the controller proceeds by copying the original contents of those blocks and writing them to the snapshot data prior to changing the storage volume. The COW operation ensures that the data from the storage volume at the point-in-time that a snapshot was taken either resides on the storage volume or on the snapshot. The controller therefore changes the snapshot only when doing so is required to preserve the data that was on the storage volume at the time the snapshot was taken, but that will be overwritten on the storage volume.
Direct modification of a snapshot image (e.g., direct modification by a client or host rather than a controller performing a COW operation) could have serious consequences. Such consequences may include the fact that the data of the snapshot is no longer a point-in-time copy and a consistent image of the storage volume may no longer be available for subsequent recovery operations. Accordingly, most snapshot facilities do not allow a host to write data directly to a snapshot without modifying the original data of the snapshot. Thus, many snapshot applications must be used for backup purposes only, where the snapshot cannot be mounted for write access or modification purposes. Furthermore, in some operating systems, a snapshot cannot be mounted as read-only.
The reason for this limited functionality is that traditional sparse snapshot designs employ a single data area to contain all data that is preserved in the snapshot or written to the snapshot by a host system. Although this spare snapshot configuration helps reduce the amount of memory used by a snapshot it severely limits the functionality available to snapshot applications. It would be useful to have a snapshot that provides enhanced snapshot functionality while making efficient use of data storage space.
SUMMARY
The present invention is directed to solving these and other problems and disadvantages of the prior art. In accordance with embodiments of the present invention, a service for efficiently managing snapshot data is provided. The method generally comprises receiving a command to create a snapshot at a first point-in-time and in response to receiving the command, allocating a first set of memory addresses for storage of preserved data in association with the snapshot and allocating a second set of memory addresses for storage of write data. In accordance with at least some embodiments of the present invention, the second set of memory addresses are host writeable whereas the first set of memory addresses are not. This allows a user to write data directly to the snapshot using the second set of memory addresses without altering the point-in-time representation of the snapshot maintained by the first set of memory addresses. Furthermore, the second set of memory addresses is not populated with write data unless a user writes directly to the snapshot, thereby reducing the amount of data storage space needed to facilitate the write functionality.
In accordance with at least some embodiments of the present invention, a device for managing snapshot data is provided. The device generally comprises an input operable to receive instructions to create a snapshot of a master volume at a first point-in-time and a snapshot application operable to create a first snapshot in response to receiving the instructions, wherein the first snapshot comprises two separate data storage areas for storing different instances of data corresponding to a common data block range on the master volume. A data storage device is also provided to store snapshots created in accordance with embodiments of the present invention.
Additional features and advantages of embodiments of the present invention will become more readily apparent from the following description, particularly when taken together with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a functional block diagram depicting components of an electronic data system incorporating one or more data storage systems in accordance with embodiments of the present invention;
FIG. 2 is a block diagram depicting components of a data storage system in accordance with embodiments of the present invention;
FIG. 3 is a block diagram depicting components of a storage controller in accordance with embodiments of the present invention;
FIG. 4A is a block diagram depicting a first series of snapshots of a master volume in accordance with embodiments of the present invention;
FIG. 4B is a block diagram depicting a second series of snapshots of a master volume in accordance with embodiments of the present invention;
FIG. 5 is a flow chart depicting a method of creating a snapshot in accordance with embodiments of the present invention;
FIG. 6 is a flow chart depicting a method of modifying snapshots in accordance with embodiments of the present invention; and
FIG. 7 is a flow chart depicting a method of recovering a snapshot in accordance with embodiments of the present invention.
DETAILED DESCRIPTION
In accordance with embodiments of the present invention, a snapshot is a block level point-in-time representation of data on a storage volume. The data is essentially frozen in time at the instant that the snapshot is taken. Although data on the storage volume may change as a result of write operations, the data within the snapshot will remain constant and frozen in time at the instant that the snapshot was taken. In order to preserve snapshot data, a backing store, also known as a snap pool, is used to store data that is not otherwise represented in the storage volume and snapshot metadata. All data and metadata associated with the snapshot is stored in the backing store. In accordance with embodiments of the present invention, data is stored within the snapshot in “chunks” or “block ranges.” A chunk is equivalent to a number of Logical Block Addresses (LBAs). Alternatively or in addition, data can be stored within subchunks. A subchunk is a fixed size subset of a chunk. Pointers, table entries, or other data structures can be used to identify the location of a chunk in the backing store.
FIG. 1 is a block diagram depicting an electronic data system 100 in accordance with embodiments of the present invention incorporating a first data storage system 104 and a second data storage system 108. The electronic data system 100 may also include one or more host processors, computers or computer systems 112. In addition, the electronic data system 100 may include or may be interconnected to an administrative computer 116. As will be appreciated by one of skill in the art after consideration of the present disclosure, embodiments of the present invention have application in association with single or multiple hosts 112 in storage area network (SAN) or direct connect environments.
The data storage systems 104, 108 are typically interconnected to one another through an in-band network 120. The in-band network 120 may also interconnect the data storage systems 104, 108 to a host computer 112 and/or an administrative computer 116. The electronic data system 100 may also include an out-of-band network 124 interconnecting some or all of the electronic data system 100 nodes 104, 108, 112 and/or 116. For example, one or more host computers 112 are connected to each data storage system 104, 108. For instance, a first data storage system 104 is connected to a second data storage system 108 across some distance by a Fibre Channel or a TCP/IP network 120, and each of these data storage systems 104, 108 is connected to a host computer 112 through an in-band 120 and/or an out-of-band 124 network.
The in-band or storage area network 120 generally functions to transport data between data storage systems 104 and/or 108 and host devices 112, and can be any data pipe capable of supporting multiple initiators and targets. Accordingly, examples of in-band networks 120 include Fibre Channel (FC), iSCSI, parallel SCSI, Ethernet, ESCON, or FICON connections or networks, which may typically be characterized by an ability to transfer relatively large amounts of data at medium to high bandwidths. The out-of-band network 124 generally functions to support the transfer of communications and/or commands between various network nodes, such as data storage resource systems 104, 108, host computer 112, and/or administrative computers 116, although such data may also be transferred over the in-band communication network 120. Examples of an out-of-band communication network 124 include a local area network (LAN) or other transmission control protocol/Internet protocol (TCP/IP) network. In general, the out-of-band communication network 124 is characterized by an ability to interconnect disparate nodes or other devices through uniform user interfaces, such as a web browser. Furthermore, the out-of-band communication network 124 may provide the potential for globally or other widely distributed management of data storage systems 104, 108 via TCP/IP.
Every electronic data system node or computer 104, 108, 112 and 116, need not be interconnected to every other node or device through both the in-band network 120 and the out-of-band network 124. For example, no host computer 112 needs to be interconnected to any other host computer 112, data storage system 104, 108, or administrative computer 116 through the out-of-band communication network 124, although interconnections between a host computer 112 and other devices 104, 108, 116 through the out-of-band communication network 124 are not prohibited. As another example, an administrative computer 116 may be interconnected to at least one storage system 104 or 108 through the out-of-band communication network 124. An administrative computer 116 may also be interconnected to the in-band network 120 directly, although such an interconnection is not required. For example, instead of a direct connection, an administrator computer 116 may communicate with a controller of a data storage system 104, 108 using the in-band network 120.
In general, a host computer 112 exchanges data with one or more of the data storage systems 104, 108 in connection with the performance of the execution of application programming, whether that application programming concerns data management or otherwise. Furthermore, an electronic data system 100 may include multiple host computers 112. An administrative computer 116 may provide a user interface for controlling aspects of the operation of the storage systems 104, 108. The administrative computer 116 may be interconnected to the storage system 104, 108 directly, and/or through a bus or network 120 and/or 124. In accordance with still other embodiments of the present invention, an administrative computer 116 may be integrated with a host computer 112. In addition, multiple administrative computers 116 may be provided as part of the electronic data system 100. Furthermore, although two data storage systems 104, 108 are shown in FIG. 1, an electronic data system 100 may include more than two data storage systems or may include a single data storage system.
FIG. 2 illustrates components that may be included in a data storage system 104, 108 in accordance with embodiments of the present invention. In general, the data storage system 104, 108 includes a number of storage devices 204. Examples of storage devices 204 include hard disk drives, such as serial advanced technology attachment (SATA), small computer system interface (SCSI), serial attached SCSI (SAS), Fibre Channel (FC), or parallel advanced technology attached (PATA) hard disk drives. Other examples of storage devices 204 include magnetic tape storage devices, optical storage devices or solid state disk devices. Furthermore, although a number of storage devices 204 are illustrated, it should be appreciated that embodiments of the present invention are not limited to any particular number of storage devices 204, and that a lesser or greater number of storage devices 204 may be provided as part of a data storage system 104. As can be appreciated by one of skill in the art, one or more arrays and/or array partitions, hereinafter referred to as logical unit numbers (LUNs) comprising a storage volume, may be established on the data storage devices 204. As can be further appreciated by one of skill in the art, a LUN may be implemented in accordance with any one of the various array levels or other arrangements for storing data on one or more storage devices 104. As can also be appreciated by one of skill in the art, the storage devices 204 may contain data comprising a master storage volume, which may correspond to a LUN, in addition to one or more snapshots of the master storage volume taken at different times. As can further be appreciated by one of skill in the art, snapshots may comprise metadata and data stored in a backing store on the storage devices 204. As can also be appreciated by one of skill in the art, the storage devices 204 contain data comprising a master storage volume, which may correspond to a LUN, and one or more snapshots of the storage volume taken at different times. In one embodiment, the snapshots may be mapped to the LUNs and stored on a backing store. However, the backing store, which also occupies an array and/or array partition, does not have a LUN number assigned to it, thus making the backing store invisible to a host computer 112 and/or administrative computer 116.
A data storage system 104, 108, in accordance with embodiments of the present invention, may be provided with a first controller slot 208 a. In addition, other embodiments may include additional controller slots, such as a second controller slot 208 b. As can be appreciated by one of skill in the art, a controller slot 208 may comprise a connection or set of connections to enable a controller 212 to be operably interconnected to other components of the data storage system 104, 108. Furthermore, a data storage system 104, 108 in accordance with embodiments of the present invention includes at least one controller 212 a. For example, while the data storage system 104, 108 is operated in a single controller, non-failover mode, the data storage system 104, 108 may include exactly one controller 212. A data storage system 104, 108 in accordance with other embodiments of the present invention may be operated in a dual redundant active-active controller mode by providing a second controller 212 b. When a second controller 212 b is used in addition to a first controller 212 a, the second controller slot 208 b receives the second controller. As can be appreciated by one of skill in the art, the provision of two controllers, 212 a and 212 b, permits data to be mirrored between the controllers 212 a-212 b, providing redundant active-active controller operation.
One or more busses or channels 216 are generally provided to interconnect a controller or controllers 212 through the associated controller slot or slots 208 to the storage devices 204. Furthermore, while illustrated as a single shared bus or channel 216, it can be appreciated that a number of dedicated and/or shared buses or channels may be provided. Additional components that may be included in a data storage system 104 include one or more power supplies 224 and one or more cooling units 228. In addition, a bus or network interface 220 may be provided to interconnect the data storage system 104, 108 to the bus or network 112, and/or to a host computer 108 or administrative computer 116.
Although illustrated as a complete RAID system in FIG. 2, it should be appreciated that the data storage system 104, 108 can comprise one or more storage volumes implemented in various other ways. For example, the data storage system 104, 108 may comprise a hard disk drive or other storage device 204 connected or associated with a server or a general-purpose computer. As further examples, the storage system 104 may comprise a Just a Bunch of Disks (JBOD) system or a Switched Bunch of Disks (SBOD) system.
FIG. 3 illustrates aspects of a storage controller 212 in accordance with embodiments of the present invention. In general, a storage controller 212 includes a processor subsystem 304 capable of executing instructions for performing, implementing and or controlling various controller 212 functions. Such instructions may include instructions for implementing aspects of a snapshot management method and apparatus. Furthermore, such instructions may be stored as software and/or firmware. As can be appreciated by one of skill in the art, operations concerning the generation of parity data or other operations may be performed using one or more hardwired and/or programmable logic circuits provided as part of the processor subsystem 304. Accordingly, the processor subsystem 304 may be implemented as a number of discrete components, such as one or more programmable processors in combination with one or more logic circuits. Processor subsystem 304 may also include or be implemented as one or more integrated devices or processors. For example a processor subsystem may comprise a complex programmable logic device (CPLD).
A controller 212 also generally includes memory 308. The memory 308 is not specifically limited to memory of any particular type. For example, the memory 308 may comprise a solid-state memory device, or a number of solid-state memory devices. In addition, the memory 308 may include separate non-volatile memory 310 and volatile memory 312 portions. As can be appreciated by one of skill in the art, the memory 308 may include a read cache 316 and a write cache 320 that are provided as part of the volatile memory 312 portion of the memory 308, although other arrangements are possible. By providing caches 316, 320, a storage controller 212 can improve the speed of input/output (IO) operations between a host 112 and the data storage devices 204 comprising an array or array partition. Examples of volatile memory 312 include DRAM and SDRAM.
The non-volatile memory 310 may be used to store data that was written to the write cache of memory 308 in the event of a power outage affecting the data storage system 104. The non-volatile memory portion 310 of the storage controller memory 308 may include any type of data memory device that is capable of retaining data without requiring power from an external source. Examples of non-volatile memory 310 include, but are not limited to, compact flash or other standardized non-volatile memory devices.
A volume information block 324 may be stored in the non-volatile memory 310, although in accordance with at least some embodiments of the present invention, the volume information block 324 resides in volatile memory 312. The volume information block 324 comprises data that may be used to represent attribute and state information for master volumes, backing stores, and/or snapshots. Each master volume, backing store, and snapshot is typically associated with a different volume information block 324. The volume information block 324 is generally employed by the processor 304 to determine whether certain data is located on master volumes, backing stores, and/or snapshots and whether such data is safe to access based on the state of each. For example, the state of a master volume or backing store may be such that if data access were attempted, data corruption may occur. Accordingly, the volume information block 324 may be referenced prior to data access during an I/O operation.
The memory 308 also includes portions of the memory 308 comprising a region that provides storage for controller code 328. The controller code 328 may comprise a number of components, including an I/O application 332 comprising instructions for accessing and manipulating data. The I/O application 332 may provide the controller 212 with the ability to perform read and/or write operations of data on a storage volume and/or on a snapshot. The I/O application 332 may reference the volume information block 324 prior to executing such operations. The I/O application 332 may also employ the read and write caches 316 and 320 respectively when performing such operations.
A snapshot application 336 is an example of another application that may be included in the controller code 328. The snapshot application 336 may be adapted to create and manage snapshots of a master volume. In accordance with at least one embodiment of the present invention, the snapshot application 336 is characterized by the ability to create a writeable snapshot that represent a point-in-time but still allows for modification without disrupting data from the point-in-time. More specifically, the snapshot application 336 may be adapted to create snapshots that support controller 212 initiated read and write operations as well as host 112 initiated read and write operations.
A storage controller 212 may additionally include other components. For example, a bus and/or network interface 340 may be provided for operably interconnecting the storage controller 212 to the remainder of the data storage system 104, for example through a controller slot 208 and a bus or channel 216. Furthermore, the interface 340 may be configured to facilitate removal or replacement of the storage controller 212 in a controller slot 208 as a field replaceable unit (FRU). In addition, integral signal and power channels may be provided for interconnecting the various components of the storage controller 212 to one another.
As can be appreciated by one skilled in the art, the functionality of the snapshot application 336 may be performed on components other than the controller 212. More specifically, the snapshot functionality of the present invention could be integrated into a storage application such as an operating system of a computer or onto a switch that contains an operating system and software to implement the snapshot functionality.
With reference to FIGS. 4A and 4B, a series of snapshots 408 of a master volume 404 will be described in accordance with at least some embodiments of the present invention. Referring initially to FIG. 4A, a master volume 404 is depicted having two snapshots 408 a and 408 b associated therewith. The snapshots 408 are ordered based on their relative age where the first snapshot 408 a is an older snapshot of the master volume 404 than the second snapshot 408 b. Accordingly, if the I/O application 332 were searching for snapshot data (i.e., data from a specified block range) associated with the first snapshot 408 a, the I/O application 332 would first search the write data area 416 of the first snapshot 408 a, and if the data is not found there, the I/O application 332 would search preserved data area 412 of the first snapshot 408 a. If the data is not found on the first snapshot 408 a, then the I/O application 332 would search the preserved data area 412 of the second snapshot 408 b. If the data is not on the preserved data area 412 of the second snapshot 408 b, then the I/O application 332 would find the data on the master volume 404. It should be noted that the I/O application 332 will search the write data area 416 of the targeted snapshot 408 and not the write data areas 416 of any other snapshot 408. Thereafter, the I/O application 332 will only search the preserved data area 412 of the targeted snapshot 408 then the preserved data areas 412 of any newer snapshots 408.
Each snapshot 408 may be created with separate and distinct preserved data 412 and write data 416 areas. Changes to the snapshot 408 by a COW operation may affect the preserved data 412 while host initiated changes to the snapshot 408 may affect data in the write data area 416.
Changes in the master volume 404 made after creation of the first snapshot 408 a but before creation of the second snapshot 408 b are written to the preserved data area 412 of the first snapshot 408 a. The preserved data area 412 of the first snapshot 408 a is changed by COW operations initiated by the controller 212 and/or by deletion of a snapshot 408. The change to a snapshot 408 by a COW and/or deletion operation is performed to ensure the point-in-time image of the snapshot 408 is preserved. Otherwise, the preserved data area 412 remains unchanged and continues to represent the point-in-time that the first snapshot 408 a was created, even in the event of a host 112 initiated write operation. The preserved data area 412 is used to maintain the point-in-time representation of the snapshot 408, while the write data area 416 is used to maintain normal write data that is not specifically tied to a point-in-time.
However, once the newer second snapshot 408 b is created, the preserved data area 412 of the first snapshot 408 a will not change, unless either the first 408 a or second 408 b snapshot are deleted. Any changes to the master volume 404 are otherwise reflected in the preserved data area 412 of the second snapshot 408 b.
Each block range is represented by a different letter (i.e., A, B, C, etc.) and each version of the block range is represented by a variation of that letter. More specifically, the data on the master volume 404 at the point-in-time corresponding to the first snapshot 408 a includes A, B, C, D, and E, whereas data on the master volume 404 at the later point-in-time corresponding to the second snapshot 408 b includes A′, B′, C, D′, and E. Since the E data block range has not been altered since the creation of either the first 408 a or second 408 b snapshot, it still resides on the master volume 404. The subsequent changes to a data block range on the master volume 404 are updated as A″, B″, or D″ respectively. Host 112 initiated changes made directly to a snapshot 408 are represented by lower case letters in the write data area 416. In accordance with at least some embodiments of the present invention, all snapshot 408 have separate preserved data areas 412 and write data areas 416, but the write data area 412 is empty until a host 112 writes directly to the snapshot 408. Since the write data area 412 remains empty until a host 112 initiated write command is received, the additional space required for the snapshot 408 having this improved functionality is kept as small as possible.
As a further example, the first instance of the A data block range that resided on the master volume 404 when the first snapshot 408 a was taken is stored in the preserved data area 412 of the first snapshot 408 a. After the second snapshot 408 b was created, the second instance of the same A data block (i.e., A′) is maintained in the preserved data area 412 of the second snapshot 408 b. Advantageously, a user may elect to mount the first snapshot 408 a and write data to the same A data block range. Any host 112 initiated request like this will result in the storage of changes in the write data area 416 of the first snapshot 408 a. A host 112 can access the newly created data (i.e., a′) in the write data area 416 without altering the point-in-time representation of the corresponding A data block range stored in the preserved data area 412. One unique aspect of the present invention is that the snapshot 408 is configured to allow two different instances of data for the same data block range to reside thereon. By allowing two instances of the same data block range to exist on a single snapshot 408, a user can manipulate the snapshot data without disrupting the point-in-time representation of the snapshot 408.
Additionally, if the user decides that the changes made to the first snapshot 408 a are not worth saving and would rather revert back to the point-in-time corresponding to the first snapshot 408 a, then the host 112 may request to delete the data from the write data area 416, thereby leaving only the data in the preserved data area 412.
Referring now to FIG. 4B, the snapshot application 336 may create a third snapshot 408 c of the master volume 404. The third snapshot 408 c is assigned an “age” that is relatively younger than the first 408 a and second 408 b snapshot. The third snapshot 408 c is created with separate data structures for the preserved data 412 and write data 416 much like the other snapshots 408. Upon creation of the third snapshot 408 c, the preserved data area 412 of the second snapshot 408 b is maintained in its current state where it contains only A′, C, and D′ as data, unless a snapshot is deleted thus resulting in the addition of further snapshot data. Any changes to the master volume 404 after the creation of the third snapshot 408 c are logged in the preserved data area 412 of the third snapshot 408 c. As with the other snapshots 408, a user may mount the third snapshot 408 c and write data directly to the write data area 416 of the third snapshot 408 c without altering the data in the preserved data area 412.
FIG. 5 is a flow diagram depicting a method of creating a snapshot 408 in accordance with at least some embodiments of the present invention. The method is initiated when a request to create a snapshot 408 is received at the controller 212 (step 504). The request may be received from one or both of a host 112 and administrative computer 116 in the form of an electronic message or signal.
Upon receiving the request to create a snapshot 408, the controller 212 employs the snapshot application 336 to ensure that sufficient space exists in the backing store for the snapshot 408 (step 508). The step of ensuring that sufficient space exists in the backing store may comprise determining the amount of storage available on the backing store and comparing that to a minimum amount of space required to store snapshot 408 metadata (e.g., space to keep track of the preserved data and write data). The minimum amount of space required to store a single snapshot 408 comprises the space required to keep track of the metadata associated with the preserved and write data currently held for the snapshot 408. The actual space required to retain the write and preserved data in the write data area 416 and the preserved data area 412 respectively is a function of the amount of data uniquely written to the master volume 404 and snapshot 408. The space required may increase for each additional snapshot taken of the master volume 404. If there is insufficient resources to track another snapshot, in step 508 the controller 212 may return an error message or allocate additional resources to accommodate. Resources could include memory allocation, metadata space on the backing store, etc.
After the controller 212 has ensured that there is sufficient space on the backing store, the method continues with the controller 212 allocating space on the backing store for the new snapshot 408 (step 512). In this step, the controller 212 may allocate space on the backing store used for the tracking of preserved data and write data associated with a snapshot 408. The data blocks on the backing store allocated for the snapshot 408 may be mapped to the assigned LUNs.
Once space has been allocated on the backing store for the snapshot 408, the controller 212 proceeds by separating the allocated space into two separate areas, namely a preserved data area 412 and a write data area 416 (step 516). The separation of the allocated space may occur at the block or chunk level in the data storage device 204, whereby a first range of storage addresses are allocated to the preserved data area 412 and a second range of storage addresses are allocated to the write data area 416. In accordance with at least one embodiment of the present invention, a greater amount of space is provided for the preserved data area 412 as opposed to the write data area 416. Of course, other embodiments may allocate an equal or greater amount of space to the write data area 416 as compared to the preserved data area 412. The separation of the allocated space allows for two separate data storage areas within the snapshot 408. By separating the allocated space, the snapshot 408 will be able to maintain the data corresponding to the point-in-time that the create request was received in the preserved data area 412 while allowing data to be written to the write data area 416. Accordingly, the snapshot 408 can facilitate the storage of two instances of data for the same master volume 404 block range. Space may be dynamically allocated to the preserved data area 412 and the write data area 416 on an “as needed basis.” Dynamically allocated storage space is assigned from the backing store to the preserved data area 412 when a COW operation occurs. Dynamically allocated storage space is assigned from the backing store to the snapshot 408 write data area 416 when a host 112 write to a snapshot 408 occurs. However, in accordance with other embodiments of the present invention, the space may be preallocated statically.
With the preserved data area 412 and write data area 416 established on the snapshot 408, the controller 212 creates an array partition to for the new snapshot 408 (step 524). As noted above, the array partition provides access to a virtual disk drive which can read or write fixed blocks addressed by LBA. In accordance with at least some embodiments of the present invention, the array partition corresponding to the new snapshot 408 has a valid LUN number assigned to it, thereby rendering it host addressable.
Following the creation of the array partition, the controller 212 updates the volume information block 324 to reflect the creation of the new snapshot 408 (step 524). The volume information block 324 is updated to provide the I/O application 332 the ability to verify that it is safe to access the new snapshot 408 prior to executing an I/O command. Once the volume information block 324 has been updated, the method ends (step 528).
FIG. 6 is a flow diagram depicting a method of modifying snapshots in accordance with at least some embodiments of the present invention. Initially, the controller 212 is in a ready state, waiting to receive a request to write to a snapshot 408 (step 604). The method continues when a request to modify the snapshot data is received by the controller 212 (step 608). The request is received at the bus and/or network interface 340, which generally constitutes an input means, and is processed by the processor 304. The request may be host 112 or administrative computer 116 initiated either in response to the host 112 or administrative computer 116 requesting to modify the master volume 404 or the snapshot 408 data directly.
Upon receiving the request, the controller 212 determines if the modification in snapshot data is due to the initiation of a COW operation (i.e., is controller 212 initiated) (step 612). In other words, the controller 212 determines if the request is directed toward a modification in the master volume 404 such that original data on the master volume 404 needs to be transferred to the snapshot 408 prior to modifying the master volume 404. In the event that the modification in the snapshot 408 is required as a part of a COW operation, the controller 212 continues by changing the data in the appropriate block range of the preserved data area 412 of the newest snapshot 408 associated with the master volume 404 (step 616). After the data has been transferred from the master volume 404 to the preserved data area 412, the controller 212 continues by completing the COW operation (step 624). As part of completing the COW operation, the controller 212 makes the requested modification to the master volume 404, thus changing the data from A to A′, for example.
In the event that the change to snapshot data is not due to a COW operation (i.e., is not controller 212 initiated), and is instead a direct request by a host 112 or administrative computer 116 to modify the snapshot 408, then the controller 212 continues by modifying the write data area 416 of the targeted snapshot 408 (step 620). A user may elect to alter the write data area 416 of any snapshot 408, in contrast to the COW operation that only modifies the preserved data area 412 of the newest snapshot 408. As an example, in this step the controller 212 may write a′ or a″ to the write data area 416 of the selected snapshot 408. Once the requested modification has been executed, the method returns to step 604, where the controller 212 awaits receipts of further commands.
FIG. 7 is a flow diagram depicting a snapshot recovery method in accordance with at least some embodiments of the present invention. The method begins when a snapshot 408 is mounted for read/write access by a host 112 or administrative computer 116 (step 704). Since the snapshot 408 is associated with an array partition having a LUN assigned thereto, the snapshot 408 is host 112 addressable. In the step of mounting the snapshot 408, a user selects the snapshot 408 from the host 112 or administrative computer 116 and accesses it using one or more applications running on the computer.
After the user has mounted the snapshot 408, the user may write changes directly to the snapshot 408 by issuing write commands to the controller 212. The write commands are received at the bus and/or network interface 340 of the controller 212 and forwarded to the processor 304 (step 708). The processor 304 then engages the snapshot application 336 to locate the block range on the snapshot 408 corresponding to the requested write command (step 712). The block range that is located by the snapshot application 336 corresponds to a block range in the write data area 416 of the snapshot, since the write command was received directly from the host 112 or administrative computer 116.
Once the appropriate data block range has been located, the data is written to the located block range within the write data area 416 (step 716). Since the write only alters the write data area 416, the data in the preserved data area 412 of the snapshot 412 remains a representation of the point-in-time that the snapshot 408 was created. Additional writes may be registered on the snapshot 408 for the same block range or for different block ranges.
After such changes have been made, the user may decide to delete the changes to the snapshot 408 and restore the snapshot 408 back to its original point-in-time representation. Upon making such a decision the user may issue a restore command that is received at the controller 212 (step 720). When the controller 212 receives a restore command, the controller 212 will employ the processor 304 and snapshot application 336 to delete the data in the write data area 416 of the mounted snapshot 408 (step 724). With the write data area 416 cleared, the only remaining snapshot data is the stored in the preserved data area 412, which is the data corresponding to the point-in-time that the snapshot 408 was created. By issuing a restore command a user is allowed to modify a snapshot 408 then quickly restore it back to its original state. Once the write data area 416 has been cleared, the method ends (step 728).
The foregoing discussion of the invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, within the skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described hereinabove are further intended to explain the best modes presently known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or in other embodiments, and with the various modifications required by their particular application or use of the invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.

Claims (18)

1. A method of managing snapshot data in a storage controller, comprising:
at a first point-in-time, receiving a command to create a snapshot, wherein the entire snapshot is created directly from a master volume, wherein creating the snapshot comprises:
allocating a first set of memory addresses for storage of preserved data in association with the snapshot, the preserved data initially comprising data of the master volume at the first point-in-time, wherein the preserved data is only directly writeable by the storage controller and not by a host, wherein the first set of memory addresses are alterable by a copy on write operation; and
allocating a second set of memory addresses for storage of write data in association with the snapshot, wherein the second set of memory addresses are host writeable
receiving a command to write data to the snapshot;
determining whether the command is controller initiated or host initiated;
in the event that the write command is controller initiated, writing data to a block range in the first set of memory addresses; and
in the event that the write command is host initiated, writing data to a block range in the second set of memory addresses.
2. The method of claim 1, further comprising:
receiving a first command from a host to modify the snapshot; and
modifying the snapshot according to the first command received from the host.
3. The method of claim 2, further comprising:
receiving a second command to restore the entire snapshot to the first point-in-time; and
deleting data stored in the second set of memory addresses.
4. The method of claim 2, further comprising:
receiving a second command to read data from the snapshot corresponding to the first point-in-time; and
reading data from the first set of memory addresses.
5. The method of claim 1, wherein a first block range in the first set of memory addresses corresponds to a first block range in the second set of memory addresses and wherein data stored in the first block range of the first set of memory addresses corresponds to the first point-in-time and wherein data stored in the first block range of the second set of memory addresses corresponds to a second point-in-time that is later than the first point-in-time.
6. The method of claim 1, wherein at least one of the first and second sets of memory addresses are dynamically allocated.
7. The method of claim 1, further comprising:
receiving a command to read data from the snapshot;
in response to receiving the command to read data, searching the second set of memory addresses to determine if the requested data resides therein; and
in the event that the requested data does not reside in the second set of memory addresses, searching the first set of memory addresses to determine if the requested data resides therein.
8. A storage controller for managing snapshot data, comprising:
an input operable to receive instructions to create an entire snapshot directly from a master volume at a first point-in-time; and
a snapshot application operable to create a first snapshot in response to receiving the instructions, wherein the first snapshot comprises two separate data storage areas for storing different instances of data corresponding to a common data block range on the master volume, wherein a first of the two data storage areas is used to store preserved data and is alterable by a copy on write operation, wherein a second of the two data storage areas is used to store write data, wherein the preserved data initially comprised data of the master volume at the first point-in-time, wherein the preserved data is only directly writeable by the storage controller and not by a host,
wherein the input receives a command to write new data to the snapshot, wherein the snapshot application determines whether the command is controller-initiated or host-initiated, wherein in the event that the write new data command is controller initiated, the snapshot application writes the new data to the first data storage area, wherein in the event that the write new data command is host-initiated, the snapshot application writes the new data to the second data storage area.
9. The device of claim 8, wherein the preserved data is alterable by a copy on write operation and the write data is alterable by a host.
10. The device of claim 8, wherein the preserved data substantially corresponds to the first point-in-time and the write data corresponds to a second point-in-time after the first point-in-time.
11. The device of claim 8, wherein upon receiving instructions to modify the snapshot at the input, the snapshot application is further operable to modify the snapshot according to the modify command received at the input.
12. The device of claim 11, wherein after receiving the modify command and upon receiving instructions to restore the entire snapshot to the first point-in-time at the input, the snapshot application is further operable to delete data from the second of the two data storage areas.
13. The device of claim 8, further comprising an I/O application, wherein after receiving a read command, the I/O application is operable to search the second of the two data storage areas to determine if the requested data resides therein and in the event that the requested data does not reside in the second of the two data storage areas, search the first of the two data storage areas to determine if the requested data resides therein.
14. The device of claim 13, wherein in the event that the requested data does not reside in either of the two data storage areas, the I/O application is further operable to search preserved data areas of snapshots that were created after the first point-in-time.
15. A data storage device, comprising:
a snapshot having two separate data storage areas for storing different instances of data corresponding to a common data block range on a master volume, wherein a first of the two data storage areas is used to store preserved data and wherein a second of the two data storage areas is used to store write data, wherein the preserved data initially comprises data of the master volume, wherein the preserved data is only directly writeable by a storage controller and not by a host, wherein in response to receiving a command to write data to the snapshot, the data storage device determines whether the command is controller initiated or host initiated:
in the event that the write command is storage controller initiated, writing data to a block range in the first of the two data storage areas; and
in the event that the write command is host initiated, writing data to a block range in the second of the two data storage areas.
16. The device of claim 15, wherein the preserved data and write data are accessible independent of one another.
17. The device of claim 15, wherein the preserved data is alterable by a copy on write operation and the write data is alterable by a host.
18. The device of claim 15, wherein the preserved data substantially corresponds to the first point-in-time and the write data is operable to be modified at any point after the first point-in-time.
US11/779,965 2007-04-11 2007-07-19 Method and apparatus for separating snapshot preserved and write data Expired - Fee Related US7975115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/779,965 US7975115B2 (en) 2007-04-11 2007-07-19 Method and apparatus for separating snapshot preserved and write data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/734,081 US7716183B2 (en) 2007-04-11 2007-04-11 Snapshot preserved data cloning
US11/779,965 US7975115B2 (en) 2007-04-11 2007-07-19 Method and apparatus for separating snapshot preserved and write data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/734,081 Continuation-In-Part US7716183B2 (en) 2007-04-11 2007-04-11 Snapshot preserved data cloning

Publications (2)

Publication Number Publication Date
US20080256141A1 US20080256141A1 (en) 2008-10-16
US7975115B2 true US7975115B2 (en) 2011-07-05

Family

ID=39854725

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/779,965 Expired - Fee Related US7975115B2 (en) 2007-04-11 2007-07-19 Method and apparatus for separating snapshot preserved and write data

Country Status (1)

Country Link
US (1) US7975115B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8874524B1 (en) * 2012-06-22 2014-10-28 Emc Corporation Handling copy on first write data for snapshot purposes
US9436559B2 (en) * 2014-01-17 2016-09-06 Hitachi, Ltd. Storage apparatus and method for controlling cache of storage apparatus
US9460010B1 (en) * 2013-03-14 2016-10-04 Emc Corporation Method, data storage system and computer program product for managing copy on first write data for snapshot purposes
US11588716B2 (en) 2021-05-12 2023-02-21 Pure Storage, Inc. Adaptive storage processing for storage-as-a-service
US11748322B2 (en) 2016-02-11 2023-09-05 Pure Storage, Inc. Utilizing different data compression algorithms based on characteristics of a storage system
US11762781B2 (en) 2017-01-09 2023-09-19 Pure Storage, Inc. Providing end-to-end encryption for data stored in a storage system
US11768636B2 (en) 2017-10-19 2023-09-26 Pure Storage, Inc. Generating a transformed dataset for use by a machine learning model in an artificial intelligence infrastructure
US11775491B2 (en) 2020-04-24 2023-10-03 Pure Storage, Inc. Machine learning model for storage system
US11782631B2 (en) 2021-02-25 2023-10-10 Pure Storage, Inc. Synchronous workload optimization
US11789638B2 (en) 2020-07-23 2023-10-17 Pure Storage, Inc. Continuing replication during storage system transportation
US11789626B2 (en) 2020-12-17 2023-10-17 Pure Storage, Inc. Optimizing block allocation in a data storage system
US11789831B2 (en) 2017-03-10 2023-10-17 Pure Storage, Inc. Directing operations to synchronously replicated storage systems
US11797403B2 (en) 2017-03-10 2023-10-24 Pure Storage, Inc. Maintaining a synchronous replication relationship between two or more storage systems
US11803492B2 (en) 2016-09-07 2023-10-31 Pure Storage, Inc. System resource management using time-independent scheduling
US11811619B2 (en) 2014-10-02 2023-11-07 Pure Storage, Inc. Emulating a local interface to a remotely managed storage system
US11829631B2 (en) 2020-08-26 2023-11-28 Pure Storage, Inc. Protection of objects in an object-based storage system
US11838412B2 (en) 2015-09-30 2023-12-05 Pure Storage, Inc. Secret regeneration from distributed shares
US11838359B2 (en) 2018-03-15 2023-12-05 Pure Storage, Inc. Synchronizing metadata in a cloud-based storage system
US11836349B2 (en) 2018-03-05 2023-12-05 Pure Storage, Inc. Determining storage capacity utilization based on deduplicated data
US11842053B2 (en) 2016-12-19 2023-12-12 Pure Storage, Inc. Zone namespace
US11846968B2 (en) 2018-09-06 2023-12-19 Pure Storage, Inc. Relocation of data for heterogeneous storage systems
US11847320B2 (en) 2016-05-03 2023-12-19 Pure Storage, Inc. Reassignment of requests for high availability
US11847025B2 (en) 2017-11-21 2023-12-19 Pure Storage, Inc. Storage system parity based on system characteristics
US11853616B2 (en) 2020-01-28 2023-12-26 Pure Storage, Inc. Identity-based access to volume objects
US11853164B2 (en) 2020-04-14 2023-12-26 Pure Storage, Inc. Generating recovery information using data redundancy
US11861423B1 (en) 2017-10-19 2024-01-02 Pure Storage, Inc. Accelerating artificial intelligence (‘AI’) workflows
US11886295B2 (en) 2022-01-31 2024-01-30 Pure Storage, Inc. Intra-block error correction
US11886707B2 (en) 2015-02-18 2024-01-30 Pure Storage, Inc. Dataset space reclamation
US11907256B2 (en) 2008-10-24 2024-02-20 Pure Storage, Inc. Query-based selection of storage nodes
US11914861B2 (en) 2014-09-08 2024-02-27 Pure Storage, Inc. Projecting capacity in a storage system based on data reduction levels
US11914455B2 (en) 2016-09-07 2024-02-27 Pure Storage, Inc. Addressing storage device performance
US11922046B2 (en) 2014-07-02 2024-03-05 Pure Storage, Inc. Erasure coded data within zoned drives
US11921567B2 (en) 2016-09-07 2024-03-05 Pure Storage, Inc. Temporarily preventing access to a storage device
US11921908B2 (en) 2017-08-31 2024-03-05 Pure Storage, Inc. Writing data to compressed and encrypted volumes
US11922070B2 (en) 2016-10-04 2024-03-05 Pure Storage, Inc. Granting access to a storage device based on reservations
US11928076B2 (en) 2014-07-03 2024-03-12 Pure Storage, Inc. Actions for reserved filenames
US11936731B2 (en) 2018-01-18 2024-03-19 Pure Storage, Inc. Traffic priority based creation of a storage volume within a cluster of storage nodes
US11936654B2 (en) 2015-05-29 2024-03-19 Pure Storage, Inc. Cloud-based user authorization control for storage system access
US11941116B2 (en) 2019-11-22 2024-03-26 Pure Storage, Inc. Ransomware-based data protection parameter modification
US11947815B2 (en) 2019-01-14 2024-04-02 Pure Storage, Inc. Configuring a flash-based storage device
US11947683B2 (en) 2019-12-06 2024-04-02 Pure Storage, Inc. Replicating a storage system

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110087792A2 (en) * 2006-02-07 2011-04-14 Dot Hill Systems Corporation Data replication method and apparatus
US7783850B2 (en) * 2006-03-28 2010-08-24 Dot Hill Systems Corporation Method and apparatus for master volume access during volume copy
US7716183B2 (en) 2007-04-11 2010-05-11 Dot Hill Systems Corporation Snapshot preserved data cloning
US8001345B2 (en) * 2007-05-10 2011-08-16 Dot Hill Systems Corporation Automatic triggering of backing store re-initialization
US7783603B2 (en) * 2007-05-10 2010-08-24 Dot Hill Systems Corporation Backing store re-initialization method and apparatus
US8204858B2 (en) * 2007-06-25 2012-06-19 Dot Hill Systems Corporation Snapshot reset method and apparatus
US8407448B1 (en) * 2008-05-06 2013-03-26 Emc Corporation Shared storage I/O elimination through mapping client integration into a hypervisor
US8676760B2 (en) * 2008-08-05 2014-03-18 International Business Machines Corporation Maintaining data integrity in data servers across data centers
US8799597B2 (en) * 2009-09-02 2014-08-05 International Business Machines Corporation Data copying
US8386845B1 (en) * 2010-10-04 2013-02-26 Symantec Corporation Techniques for providing instant disaster recovery
US9436720B2 (en) 2013-01-10 2016-09-06 Pure Storage, Inc. Safety for volume operations
US9218244B1 (en) 2014-06-04 2015-12-22 Pure Storage, Inc. Rebuilding data across storage nodes
US11399063B2 (en) 2014-06-04 2022-07-26 Pure Storage, Inc. Network authentication for a storage system
US9495255B2 (en) 2014-08-07 2016-11-15 Pure Storage, Inc. Error recovery in a storage cluster
US9558069B2 (en) 2014-08-07 2017-01-31 Pure Storage, Inc. Failure mapping in a storage array
US10303556B1 (en) * 2014-10-29 2019-05-28 Veritas Technologies Llc Modifiable volume snapshots
US10082985B2 (en) 2015-03-27 2018-09-25 Pure Storage, Inc. Data striping across storage nodes that are assigned to multiple logical arrays
US10178169B2 (en) 2015-04-09 2019-01-08 Pure Storage, Inc. Point to point based backend communication layer for storage processing
US10140149B1 (en) 2015-05-19 2018-11-27 Pure Storage, Inc. Transactional commits with hardware assists in remote memory
WO2017007528A1 (en) * 2015-07-03 2017-01-12 Hewlett Packard Enterprise Development Lp Processing io requests in multi-controller storage systems
US20170060891A1 (en) * 2015-08-26 2017-03-02 Quixey, Inc. File-Type-Dependent Query System
US9843453B2 (en) 2015-10-23 2017-12-12 Pure Storage, Inc. Authorizing I/O commands with I/O tokens
US10262004B2 (en) * 2016-02-29 2019-04-16 Red Hat, Inc. Native snapshots in distributed file systems
US10203903B2 (en) 2016-07-26 2019-02-12 Pure Storage, Inc. Geometry based, space aware shelf/writegroup evacuation
US10528488B1 (en) 2017-03-30 2020-01-07 Pure Storage, Inc. Efficient name coding
US10944671B2 (en) 2017-04-27 2021-03-09 Pure Storage, Inc. Efficient data forwarding in a networked device
US11947489B2 (en) 2017-09-05 2024-04-02 Robin Systems, Inc. Creating snapshots of a storage volume in a distributed storage system
US10884919B2 (en) 2017-10-31 2021-01-05 Pure Storage, Inc. Memory management in a storage system
US10860475B1 (en) 2017-11-17 2020-12-08 Pure Storage, Inc. Hybrid flash translation layer
US10929031B2 (en) 2017-12-21 2021-02-23 Pure Storage, Inc. Maximizing data reduction in a partially encrypted volume
US11748203B2 (en) 2018-01-11 2023-09-05 Robin Systems, Inc. Multi-role application orchestration in a distributed storage system
US11392363B2 (en) 2018-01-11 2022-07-19 Robin Systems, Inc. Implementing application entrypoints with containers of a bundled application
US11582168B2 (en) 2018-01-11 2023-02-14 Robin Systems, Inc. Fenced clone applications
US10467527B1 (en) 2018-01-31 2019-11-05 Pure Storage, Inc. Method and apparatus for artificial intelligence acceleration
US11494109B1 (en) 2018-02-22 2022-11-08 Pure Storage, Inc. Erase block trimming for heterogenous flash memory storage devices
US11436023B2 (en) 2018-05-31 2022-09-06 Pure Storage, Inc. Mechanism for updating host file system and flash translation layer based on underlying NAND technology
US11237750B2 (en) * 2018-08-30 2022-02-01 Portworx, Inc. Dynamic volume replication factor adjustment
CN113330426B (en) * 2018-12-29 2022-12-27 华为技术有限公司 Method, device and system for backing up data
US11334254B2 (en) 2019-03-29 2022-05-17 Pure Storage, Inc. Reliability based flash page sizing
US11775189B2 (en) 2019-04-03 2023-10-03 Pure Storage, Inc. Segment level heterogeneity
US11099986B2 (en) 2019-04-12 2021-08-24 Pure Storage, Inc. Efficient transfer of memory contents
US11256434B2 (en) 2019-04-17 2022-02-22 Robin Systems, Inc. Data de-duplication
US11281394B2 (en) 2019-06-24 2022-03-22 Pure Storage, Inc. Replication across partitioning schemes in a distributed storage system
US11249851B2 (en) 2019-09-05 2022-02-15 Robin Systems, Inc. Creating snapshots of a storage volume in a distributed storage system
US11520650B2 (en) 2019-09-05 2022-12-06 Robin Systems, Inc. Performing root cause analysis in a multi-role application
US11113158B2 (en) * 2019-10-04 2021-09-07 Robin Systems, Inc. Rolling back kubernetes applications
US11347684B2 (en) 2019-10-04 2022-05-31 Robin Systems, Inc. Rolling back KUBERNETES applications including custom resources
US11403188B2 (en) 2019-12-04 2022-08-02 Robin Systems, Inc. Operation-level consistency points and rollback
US11528186B2 (en) 2020-06-16 2022-12-13 Robin Systems, Inc. Automated initialization of bare metal servers
US11740980B2 (en) 2020-09-22 2023-08-29 Robin Systems, Inc. Managing snapshot metadata following backup
US11743188B2 (en) 2020-10-01 2023-08-29 Robin Systems, Inc. Check-in monitoring for workflows
US11456914B2 (en) 2020-10-07 2022-09-27 Robin Systems, Inc. Implementing affinity and anti-affinity with KUBERNETES
US11271895B1 (en) 2020-10-07 2022-03-08 Robin Systems, Inc. Implementing advanced networking capabilities using helm charts
US11750451B2 (en) 2020-11-04 2023-09-05 Robin Systems, Inc. Batch manager for complex workflows
US11556361B2 (en) 2020-12-09 2023-01-17 Robin Systems, Inc. Monitoring and managing of complex multi-role applications
US20230026712A1 (en) * 2021-07-22 2023-01-26 Micron Technology, Inc. Generating system memory snapshot on memory sub-system with hardware accelerated input/output path

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029807A1 (en) 1993-06-03 1994-12-22 Network Appliance Corporation Write anywhere file-system layout
US5551046A (en) 1991-06-14 1996-08-27 International Business Machines Corporation Method for non-hierarchical lock management in a multi-system shared data environment
CA2165912A1 (en) 1995-12-21 1997-06-22 David Hitz Write anywhere file-system layout
US5778189A (en) 1996-05-29 1998-07-07 Fujitsu Limited System and method for converting communication protocols
US5812843A (en) 1994-05-31 1998-09-22 Fujitsu Limited System and method for executing job between different operating systems
US5963962A (en) 1995-05-31 1999-10-05 Network Appliance, Inc. Write anywhere file-system layout
US6073209A (en) 1997-03-31 2000-06-06 Ark Research Corporation Data storage controller providing multiple hosts with access to multiple storage subsystems
US6292808B1 (en) 1996-12-17 2001-09-18 Oracle Corporation Method and apparatus for reapplying changes to a database
US20010039629A1 (en) 1999-03-03 2001-11-08 Feague Roy W. Synchronization process negotiation for computing devices
US6341341B1 (en) * 1999-12-16 2002-01-22 Adaptec, Inc. System and method for disk control with snapshot feature including read-write snapshot half
US20020083037A1 (en) 2000-08-18 2002-06-27 Network Appliance, Inc. Instant snapshot
WO2002050716A1 (en) 2000-12-21 2002-06-27 Legato Systems, Inc. Restoration of data between primary and backup systems
US20020099907A1 (en) 2001-01-19 2002-07-25 Vittorio Castelli System and method for storing data sectors with header and trailer information in a disk cache supporting memory compression
US20020112084A1 (en) 2000-12-29 2002-08-15 Deen Gary D. Methods, systems, and computer program products for controlling devices through a network via a network translation device
US6548634B1 (en) 1998-09-30 2003-04-15 Chiron Corporation Synthetic peptides having FGF receptor affinity
US6557079B1 (en) 1999-12-20 2003-04-29 Emc Corporation Remote data facility prefetch
US6594744B1 (en) 2000-12-11 2003-07-15 Lsi Logic Corporation Managing a snapshot volume or one or more checkpoint volumes with multiple point-in-time images in a single repository
US20030154314A1 (en) 2002-02-08 2003-08-14 I/O Integrity, Inc. Redirecting local disk traffic to network attached storage
US20030158863A1 (en) 2002-02-15 2003-08-21 International Business Machines Corporation File system snapshot with ditto address feature
US6615223B1 (en) 2000-02-29 2003-09-02 Oracle International Corporation Method and system for data replication
US20030167380A1 (en) 2002-01-22 2003-09-04 Green Robbie A. Persistent Snapshot Management System
US20030188223A1 (en) 2002-03-27 2003-10-02 Alexis Alan Previn BIOS shadowed small-print hard disk drive as robust, always on, backup for hard disk image & software failure
US20030191745A1 (en) 2002-04-04 2003-10-09 Xiaoye Jiang Delegation of metadata management in a storage system by leasing of free file system blocks and i-nodes from a file system owner
US20030229764A1 (en) 2002-06-05 2003-12-11 Hitachi, Ltd. Data storage subsystem
US20040030727A1 (en) 2002-08-06 2004-02-12 Philippe Armangau Organization of multiple snapshot copies in a data storage system
US20040030846A1 (en) 2002-08-06 2004-02-12 Philippe Armangau Data storage system having meta bit maps for indicating whether data blocks are invalid in snapshot copies
US20040030951A1 (en) 2002-08-06 2004-02-12 Philippe Armangau Instantaneous restoration of a production copy from a snapshot copy in a data storage system
US20040034647A1 (en) 2002-05-08 2004-02-19 Aksa-Sds, Inc. Archiving method and apparatus for digital information from web pages
US20040093555A1 (en) 2002-09-10 2004-05-13 Therrien David G. Method and apparatus for managing data integrity of backup and disaster recovery data
US20040117567A1 (en) * 2002-12-13 2004-06-17 Lee Whay Sing System and method for efficient write operations for repeated snapshots by copying-on-write to most recent snapshot
US20040133718A1 (en) 2001-04-09 2004-07-08 Hitachi America, Ltd. Direct access storage system with combined block interface and file interface access
US6771843B1 (en) 2001-05-11 2004-08-03 Lsi Logic Corporation Data timeline management using snapshot volumes
US20040172509A1 (en) 2003-02-27 2004-09-02 Hitachi, Ltd. Data processing system including storage systems
US20040204071A1 (en) 2002-05-01 2004-10-14 Microsoft Corporation Method for wireless capability discovery and protocol negotiation, and wireless device including same
US20040267836A1 (en) 2003-06-25 2004-12-30 Philippe Armangau Replication of snapshot using a file system copy differential
US20050004979A1 (en) 2002-02-07 2005-01-06 Microsoft Corporation Method and system for transporting data content on a storage area network
US20050044088A1 (en) 2003-08-21 2005-02-24 Lindsay Bruce G. System and method for asynchronous data replication without persistence for distributed computing
US20050066128A1 (en) 2003-02-17 2005-03-24 Ikuya Yagisawa Storage system
US20050065985A1 (en) * 2003-09-23 2005-03-24 Himabindu Tummala Organization of read-write snapshot copies in a data storage system
US20050122791A1 (en) 2003-04-03 2005-06-09 Hajeck Michael J. Storage subsystem with embedded circuit for protecting against anomalies in power signal from host
US6907512B2 (en) 2002-05-21 2005-06-14 Microsoft Corporation System and method for filtering write operations to a storage medium containing an operating system image
US20050166022A1 (en) 2004-01-28 2005-07-28 Hitachi, Ltd. Method and apparatus for copying and backup in storage systems
US20050182910A1 (en) 2004-02-04 2005-08-18 Alacritus, Inc. Method and system for adding redundancy to a continuous data protection system
US20050193180A1 (en) 2004-03-01 2005-09-01 Akira Fujibayashi Method and apparatus for data migration with the efficient use of old assets
US20050198452A1 (en) 2004-03-02 2005-09-08 Naoki Watanabe Method and apparatus of remote copy for multiple storage subsystems
US20050240635A1 (en) 2003-07-08 2005-10-27 Vikram Kapoor Snapshots of file systems in data storage systems
US20050246503A1 (en) 2004-04-30 2005-11-03 Fair Robert L Online clone volume splitting technique
US20050246397A1 (en) 2004-04-30 2005-11-03 Edwards John K Cloning technique for efficiently creating a copy of a volume in a storage system
US20060020762A1 (en) 2004-07-23 2006-01-26 Emc Corporation Storing data replicas remotely
US20060053139A1 (en) 2004-09-03 2006-03-09 Red Hat, Inc. Methods, systems, and computer program products for implementing single-node and cluster snapshots
US20060064541A1 (en) * 2004-09-17 2006-03-23 Hitachi Ltd. Method of and system for controlling attributes of a plurality of storage devices
US7047380B2 (en) 2003-07-22 2006-05-16 Acronis Inc. System and method for using file system snapshots for online data backup
US7050457B2 (en) 2000-06-08 2006-05-23 Siemens Aktiengesellschaft Method of communication between communications networks
US20060155946A1 (en) * 2005-01-10 2006-07-13 Minwen Ji Method for taking snapshots of data
US7100089B1 (en) 2002-09-06 2006-08-29 3Pardata, Inc. Determining differences between snapshots
US20060212481A1 (en) * 2005-03-21 2006-09-21 Stacey Christopher H Distributed open writable snapshot copy facility using file migration policies
US20060271604A1 (en) 2003-07-08 2006-11-30 Shoens Kurt A Management of file system snapshots
US7165156B1 (en) 2002-09-06 2007-01-16 3Pardata, Inc. Read-write snapshots
US20070038703A1 (en) 2005-07-14 2007-02-15 Yahoo! Inc. Content router gateway
US20070055710A1 (en) * 2005-09-06 2007-03-08 Reldata, Inc. BLOCK SNAPSHOTS OVER iSCSI
US7191304B1 (en) 2002-09-06 2007-03-13 3Pardata, Inc. Efficient and reliable virtual volume mapping
US7194550B1 (en) 2001-08-30 2007-03-20 Sanera Systems, Inc. Providing a single hop communication path between a storage device and a network switch
US7206961B1 (en) 2002-09-30 2007-04-17 Emc Corporation Preserving snapshots during disk-based restore
US20070094466A1 (en) 2001-12-26 2007-04-26 Cisco Technology, Inc., A Corporation Of California Techniques for improving mirroring operations implemented in storage area networks and network based virtualization
US20070100808A1 (en) 2001-11-01 2007-05-03 Verisign, Inc. High speed non-concurrency controlled database
US20070143563A1 (en) 2005-12-16 2007-06-21 Microsoft Corporation Online storage volume shrink
US7243157B2 (en) 2004-02-20 2007-07-10 Microsoft Corporation Dynamic protocol construction
US20070185973A1 (en) 2006-02-07 2007-08-09 Dot Hill Systems, Corp. Pull data replication model
US20070198605A1 (en) 2006-02-14 2007-08-23 Nobuyuki Saika Snapshot management device and snapshot management method
US20070276885A1 (en) 2006-05-29 2007-11-29 Microsoft Corporation Creating frequent application-consistent backups efficiently
US7313581B1 (en) 1999-04-29 2007-12-25 International Business Machines Corporation Method for deferred deletion of entries for a directory service backing store
US20080082593A1 (en) * 2006-09-28 2008-04-03 Konstantin Komarov Using shrinkable read-once snapshots for online data backup
US7373366B1 (en) 2005-06-10 2008-05-13 American Megatrends, Inc. Method, system, apparatus, and computer-readable medium for taking and managing snapshots of a storage volume
US20080177954A1 (en) 2007-01-18 2008-07-24 Dot Hill Systems Corp. Method and apparatus for quickly accessing backing store metadata
US20080177957A1 (en) 2007-01-18 2008-07-24 Dot Hill Systems Corp. Deletion of rollback snapshot partition
US7426618B2 (en) 2005-09-06 2008-09-16 Dot Hill Systems Corp. Snapshot restore method and apparatus
US20080256311A1 (en) 2007-04-11 2008-10-16 Dot Hill Systems Corp. Snapshot preserved data cloning
US20080281875A1 (en) 2007-05-10 2008-11-13 Dot Hill Systems Corp. Automatic triggering of backing store re-initialization
US20080281877A1 (en) 2007-05-10 2008-11-13 Dot Hill Systems Corp. Backing store re-initialization method and apparatus
US20080320258A1 (en) 2007-06-25 2008-12-25 Dot Hill Systems Corp. Snapshot reset method and apparatus
US7526640B2 (en) 2003-06-30 2009-04-28 Microsoft Corporation System and method for automatic negotiation of a security protocol
US7593973B2 (en) 2006-11-15 2009-09-22 Dot Hill Systems Corp. Method and apparatus for transferring snapshot data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173988A (en) * 1991-12-26 1993-07-13 Toshiba Corp Decentralized processing system and transaction processing system applied to the same
DE59910766D1 (en) * 1998-08-13 2004-11-11 Siemens Ag WIRELESS COMMUNICATION SYSTEM FOR TRANSMITTING VOICE DATA IN ASYNCHRONOUS DATA PACKAGES
US7363366B2 (en) * 2004-07-13 2008-04-22 Teneros Inc. Network traffic routing

Patent Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551046A (en) 1991-06-14 1996-08-27 International Business Machines Corporation Method for non-hierarchical lock management in a multi-system shared data environment
WO1994029807A1 (en) 1993-06-03 1994-12-22 Network Appliance Corporation Write anywhere file-system layout
US20020091670A1 (en) 1993-06-03 2002-07-11 David Hitz Write anywhere file-system layout
US20040260673A1 (en) 1993-06-03 2004-12-23 David Hitz Copy on write file system consistency and block usage
US6289356B1 (en) 1993-06-03 2001-09-11 Network Appliance, Inc. Write anywhere file-system layout
EP1003103A2 (en) 1993-06-03 2000-05-24 Network Appliance, Inc. Write anywhere file-system layout
US5812843A (en) 1994-05-31 1998-09-22 Fujitsu Limited System and method for executing job between different operating systems
US5963962A (en) 1995-05-31 1999-10-05 Network Appliance, Inc. Write anywhere file-system layout
CA2165912A1 (en) 1995-12-21 1997-06-22 David Hitz Write anywhere file-system layout
US5778189A (en) 1996-05-29 1998-07-07 Fujitsu Limited System and method for converting communication protocols
US6292808B1 (en) 1996-12-17 2001-09-18 Oracle Corporation Method and apparatus for reapplying changes to a database
US6073209A (en) 1997-03-31 2000-06-06 Ark Research Corporation Data storage controller providing multiple hosts with access to multiple storage subsystems
US20040054131A1 (en) 1998-09-30 2004-03-18 Marcus Ballinger Synthetic peptides having FGF receptor affinity
US6548634B1 (en) 1998-09-30 2003-04-15 Chiron Corporation Synthetic peptides having FGF receptor affinity
US20010039629A1 (en) 1999-03-03 2001-11-08 Feague Roy W. Synchronization process negotiation for computing devices
US7313581B1 (en) 1999-04-29 2007-12-25 International Business Machines Corporation Method for deferred deletion of entries for a directory service backing store
US6341341B1 (en) * 1999-12-16 2002-01-22 Adaptec, Inc. System and method for disk control with snapshot feature including read-write snapshot half
US6557079B1 (en) 1999-12-20 2003-04-29 Emc Corporation Remote data facility prefetch
US6615223B1 (en) 2000-02-29 2003-09-02 Oracle International Corporation Method and system for data replication
US7050457B2 (en) 2000-06-08 2006-05-23 Siemens Aktiengesellschaft Method of communication between communications networks
US20020083037A1 (en) 2000-08-18 2002-06-27 Network Appliance, Inc. Instant snapshot
US6594744B1 (en) 2000-12-11 2003-07-15 Lsi Logic Corporation Managing a snapshot volume or one or more checkpoint volumes with multiple point-in-time images in a single repository
WO2002050716A1 (en) 2000-12-21 2002-06-27 Legato Systems, Inc. Restoration of data between primary and backup systems
US20020112084A1 (en) 2000-12-29 2002-08-15 Deen Gary D. Methods, systems, and computer program products for controlling devices through a network via a network translation device
US20020099907A1 (en) 2001-01-19 2002-07-25 Vittorio Castelli System and method for storing data sectors with header and trailer information in a disk cache supporting memory compression
US20040133718A1 (en) 2001-04-09 2004-07-08 Hitachi America, Ltd. Direct access storage system with combined block interface and file interface access
US6771843B1 (en) 2001-05-11 2004-08-03 Lsi Logic Corporation Data timeline management using snapshot volumes
US7194550B1 (en) 2001-08-30 2007-03-20 Sanera Systems, Inc. Providing a single hop communication path between a storage device and a network switch
US20070100808A1 (en) 2001-11-01 2007-05-03 Verisign, Inc. High speed non-concurrency controlled database
US20070094466A1 (en) 2001-12-26 2007-04-26 Cisco Technology, Inc., A Corporation Of California Techniques for improving mirroring operations implemented in storage area networks and network based virtualization
US20030167380A1 (en) 2002-01-22 2003-09-04 Green Robbie A. Persistent Snapshot Management System
US20060107006A1 (en) 2002-01-22 2006-05-18 Green Robbie A Persistent snapshot management system
US20050004979A1 (en) 2002-02-07 2005-01-06 Microsoft Corporation Method and system for transporting data content on a storage area network
US20030154314A1 (en) 2002-02-08 2003-08-14 I/O Integrity, Inc. Redirecting local disk traffic to network attached storage
US20030158863A1 (en) 2002-02-15 2003-08-21 International Business Machines Corporation File system snapshot with ditto address feature
US20030188223A1 (en) 2002-03-27 2003-10-02 Alexis Alan Previn BIOS shadowed small-print hard disk drive as robust, always on, backup for hard disk image & software failure
US20030191745A1 (en) 2002-04-04 2003-10-09 Xiaoye Jiang Delegation of metadata management in a storage system by leasing of free file system blocks and i-nodes from a file system owner
US20040204071A1 (en) 2002-05-01 2004-10-14 Microsoft Corporation Method for wireless capability discovery and protocol negotiation, and wireless device including same
US20040034647A1 (en) 2002-05-08 2004-02-19 Aksa-Sds, Inc. Archiving method and apparatus for digital information from web pages
US6907512B2 (en) 2002-05-21 2005-06-14 Microsoft Corporation System and method for filtering write operations to a storage medium containing an operating system image
US20030229764A1 (en) 2002-06-05 2003-12-11 Hitachi, Ltd. Data storage subsystem
US20050071393A1 (en) 2002-06-05 2005-03-31 Hitachi, Ltd. Data storage subsystem
US20040030951A1 (en) 2002-08-06 2004-02-12 Philippe Armangau Instantaneous restoration of a production copy from a snapshot copy in a data storage system
US20040030846A1 (en) 2002-08-06 2004-02-12 Philippe Armangau Data storage system having meta bit maps for indicating whether data blocks are invalid in snapshot copies
US20040030727A1 (en) 2002-08-06 2004-02-12 Philippe Armangau Organization of multiple snapshot copies in a data storage system
US7191304B1 (en) 2002-09-06 2007-03-13 3Pardata, Inc. Efficient and reliable virtual volume mapping
US7165156B1 (en) 2002-09-06 2007-01-16 3Pardata, Inc. Read-write snapshots
US7100089B1 (en) 2002-09-06 2006-08-29 3Pardata, Inc. Determining differences between snapshots
US20040093555A1 (en) 2002-09-10 2004-05-13 Therrien David G. Method and apparatus for managing data integrity of backup and disaster recovery data
US7206961B1 (en) 2002-09-30 2007-04-17 Emc Corporation Preserving snapshots during disk-based restore
US20040117567A1 (en) * 2002-12-13 2004-06-17 Lee Whay Sing System and method for efficient write operations for repeated snapshots by copying-on-write to most recent snapshot
US20050066128A1 (en) 2003-02-17 2005-03-24 Ikuya Yagisawa Storage system
US20040172509A1 (en) 2003-02-27 2004-09-02 Hitachi, Ltd. Data processing system including storage systems
US20050122791A1 (en) 2003-04-03 2005-06-09 Hajeck Michael J. Storage subsystem with embedded circuit for protecting against anomalies in power signal from host
US20040267836A1 (en) 2003-06-25 2004-12-30 Philippe Armangau Replication of snapshot using a file system copy differential
US7526640B2 (en) 2003-06-30 2009-04-28 Microsoft Corporation System and method for automatic negotiation of a security protocol
US20060271604A1 (en) 2003-07-08 2006-11-30 Shoens Kurt A Management of file system snapshots
US20050240635A1 (en) 2003-07-08 2005-10-27 Vikram Kapoor Snapshots of file systems in data storage systems
US20070266066A1 (en) 2003-07-08 2007-11-15 Vikram Kapoor Snapshots of file systems in data storage systems
US7047380B2 (en) 2003-07-22 2006-05-16 Acronis Inc. System and method for using file system snapshots for online data backup
US20050044088A1 (en) 2003-08-21 2005-02-24 Lindsay Bruce G. System and method for asynchronous data replication without persistence for distributed computing
US20050065985A1 (en) * 2003-09-23 2005-03-24 Himabindu Tummala Organization of read-write snapshot copies in a data storage system
US20050166022A1 (en) 2004-01-28 2005-07-28 Hitachi, Ltd. Method and apparatus for copying and backup in storage systems
US20050182910A1 (en) 2004-02-04 2005-08-18 Alacritus, Inc. Method and system for adding redundancy to a continuous data protection system
US7243157B2 (en) 2004-02-20 2007-07-10 Microsoft Corporation Dynamic protocol construction
US20050193180A1 (en) 2004-03-01 2005-09-01 Akira Fujibayashi Method and apparatus for data migration with the efficient use of old assets
US20050198452A1 (en) 2004-03-02 2005-09-08 Naoki Watanabe Method and apparatus of remote copy for multiple storage subsystems
WO2005111802A2 (en) 2004-04-30 2005-11-24 Network Appliance, Inc. Online clone volume splitting technique
US20050246503A1 (en) 2004-04-30 2005-11-03 Fair Robert L Online clone volume splitting technique
US20050246397A1 (en) 2004-04-30 2005-11-03 Edwards John K Cloning technique for efficiently creating a copy of a volume in a storage system
WO2005111773A2 (en) 2004-04-30 2005-11-24 Network Appliance, Inc. Cloning technique for efficiently creating a copy of a volume in a storage system
US20060020762A1 (en) 2004-07-23 2006-01-26 Emc Corporation Storing data replicas remotely
US20060053139A1 (en) 2004-09-03 2006-03-09 Red Hat, Inc. Methods, systems, and computer program products for implementing single-node and cluster snapshots
US20060064541A1 (en) * 2004-09-17 2006-03-23 Hitachi Ltd. Method of and system for controlling attributes of a plurality of storage devices
US20060155946A1 (en) * 2005-01-10 2006-07-13 Minwen Ji Method for taking snapshots of data
US7363444B2 (en) 2005-01-10 2008-04-22 Hewlett-Packard Development Company, L.P. Method for taking snapshots of data
US20060212481A1 (en) * 2005-03-21 2006-09-21 Stacey Christopher H Distributed open writable snapshot copy facility using file migration policies
US7373366B1 (en) 2005-06-10 2008-05-13 American Megatrends, Inc. Method, system, apparatus, and computer-readable medium for taking and managing snapshots of a storage volume
US20070038703A1 (en) 2005-07-14 2007-02-15 Yahoo! Inc. Content router gateway
US20070055710A1 (en) * 2005-09-06 2007-03-08 Reldata, Inc. BLOCK SNAPSHOTS OVER iSCSI
US7426618B2 (en) 2005-09-06 2008-09-16 Dot Hill Systems Corp. Snapshot restore method and apparatus
US20070143563A1 (en) 2005-12-16 2007-06-21 Microsoft Corporation Online storage volume shrink
US20070186001A1 (en) 2006-02-07 2007-08-09 Dot Hill Systems Corp. Data replication method and apparatus
US20070185973A1 (en) 2006-02-07 2007-08-09 Dot Hill Systems, Corp. Pull data replication model
US20070198605A1 (en) 2006-02-14 2007-08-23 Nobuyuki Saika Snapshot management device and snapshot management method
US20070276885A1 (en) 2006-05-29 2007-11-29 Microsoft Corporation Creating frequent application-consistent backups efficiently
US20080082593A1 (en) * 2006-09-28 2008-04-03 Konstantin Komarov Using shrinkable read-once snapshots for online data backup
US7593973B2 (en) 2006-11-15 2009-09-22 Dot Hill Systems Corp. Method and apparatus for transferring snapshot data
US20080177954A1 (en) 2007-01-18 2008-07-24 Dot Hill Systems Corp. Method and apparatus for quickly accessing backing store metadata
US20080177957A1 (en) 2007-01-18 2008-07-24 Dot Hill Systems Corp. Deletion of rollback snapshot partition
US20080256311A1 (en) 2007-04-11 2008-10-16 Dot Hill Systems Corp. Snapshot preserved data cloning
US20080281875A1 (en) 2007-05-10 2008-11-13 Dot Hill Systems Corp. Automatic triggering of backing store re-initialization
US20080281877A1 (en) 2007-05-10 2008-11-13 Dot Hill Systems Corp. Backing store re-initialization method and apparatus
US20080320258A1 (en) 2007-06-25 2008-12-25 Dot Hill Systems Corp. Snapshot reset method and apparatus

Non-Patent Citations (55)

* Cited by examiner, † Cited by third party
Title
Analysis from foreign associate dated Oct. 22, 2009 from 1st office action from Chinese patent office for application 200680032724.8.
Examiner's answer for U.S. Appl. No. 11/624,524, mailed Sep. 10, 2010.
Examiner's answer in U.S. Appl. No. 11/561,512, Sep. 2, 2010.
International Preliminary Report on Patentability and Written Opinion from the PCT dated Mar. 20, 2008 with regard to corresponding PCT Application No. PCT/US/06/32506, 10 pages.
International Preliminary Report on Patentability and Written Opinion from the PCT dated Oct. 22, 2009 with regard to corresponding PCT Application No. PCT/US/08/57326, 10 pages.
International Search Report from the PCT dated Aug. 7, 2008 with regard to corresponding PCT Application No. PCT/US/08/57326, 2 pages.
International Search Report from the PCT dated Mar. 27, 2007 with regard to corresponding PCT Application No. PCT/US/06/32506, 3 pages.
Notice of Allowance for U.S. Appl. No. 11/560,174, mailed Feb. 9, 2009.
Notice of Allowance for U.S. Appl. No. 11/624,565, mailed Sep. 14, 2010.
Notice of Allowance for U.S. Appl. No. 11/624,565, mailed Sep. 29, 2010.
Notice of Allowance for U.S. Appl. No. 11/734,081, mailed Feb. 2, 2010.
Notice of Allowance for U.S. Appl. No. 11/734,081, mailed Mar. 10, 2010.
Notice of Allowance for U.S. Appl. No. 11/747,109, mailed Apr. 29, 2011.
Notice of Allowance for U.S. Appl. No. 11/747,127, mailed Jul. 13, 2010.
Notice of Allowance for U.S. Appl. No. 11/747,127, mailed Jun. 15, 2010.
Notice of Allowance for U.S. Appl. No. 11/747,127, mailed Jun. 2, 2010.
Notice of Allowance for U.S. Appl. No. 11/747,127, mailed May 14, 2010.
Notice of Allowance for U.S. Appl. No. 11/945,940, mailed Jul. 13, 2010.
Notice of Allowance for U.S. Appl. No. 11/945,940, mailed Jun. 18, 2010.
Notice of Allowance in U.S. Appl. No. 11/277,738, Mar. 20, 2008, 6 pages.
Office Action in Application in U.S. Appl. No. 11/277,738, Apr. 3, 2007, 14 pages.
Office Action in Application in U.S. Appl. No. 11/277,738, Dec. 6, 2007, 9 pages.
Office Action in U.S. Appl. No. 11/277,738, Jul. 31, 2007, 8 pages.
Office Action in U.S. Appl. No. 11/561,512, Apr. 3, 2009, 11 pages.
Office Action in U.S. Appl. No. 11/561,512, Dec. 10, 2009.
Office Action in U.S. Appl. No. 11/561,512, Mar. 18, 2010.
Office Action in U.S. Appl. No. 11/561,512, Oct. 30, 2009, 9 pages.
Office Action in U.S. Appl. No. 11/561,680, Apr. 15, 2011.
Office Action in U.S. Appl. No. 11/561,680, Nov. 5, 2010.
Official Action for U.S. Appl. No. 11/560,174, mailed Sep. 5, 2008.
Official Action for U.S. Appl. No. 11/561,512, mailed Jun. 25, 2009.
Official Action for U.S. Appl. No. 11/624,524, mailed Dec. 11, 2008.
Official Action for U.S. Appl. No. 11/624,524, mailed Jan. 26, 2010.
Official Action for U.S. Appl. No. 11/624,524, mailed Jun. 16, 2009.
Official Action for U.S. Appl. No. 11/624,524, mailed Sep. 16, 2009.
Official Action for U.S. Appl. No. 11/624,565, mailed Mar. 30, 2009.
Official Action for U.S. Appl. No. 11/624,565, mailed Nov. 30, 2009.
Official Action for U.S. Appl. No. 11/734,081, mailed Aug. 21, 2009.
Official Action for U.S. Appl. No. 11/734,081, mailed May 8, 2009.
Official Action for U.S. Appl. No. 11/747,109, mailed Dec. 14, 2009.
Official Action for U.S. Appl. No. 11/747,109, mailed Mar. 18, 2011.
Official Action for U.S. Appl. No. 11/747,109, mailed Mar. 30, 2010.
Official Action for U.S. Appl. No. 11/747,109, mailed Mar. 9, 2009.
Official Action for U.S. Appl. No. 11/747,109, mailed Sep. 21, 2009.
Official Action for U.S. Appl. No. 11/747,127, mailed Apr. 15, 2009.
Official Action for U.S. Appl. No. 11/747,127, mailed Jan. 6, 2010.
Official Action for U.S. Appl. No. 11/747,127, mailed Oct. 6, 2009.
Official Action for U.S. Appl. No. 11/768,127, mailed Apr. 2, 2010.
Official Action for U.S. Appl. No. 11/768,127, mailed Jun. 1, 2010.
Official Action for U.S. Appl. No. 11/768,127, mailed Nov. 3, 2010.
Official Action for U.S. Appl. No. 11/945,940, mailed Mar. 5, 2010.
Official Action for U.S. Appl. No. 12/780,891, mailed Mar. 25, 2011.
Official Action for U.S. Appl. No. 12/780,891, mailed Sep. 20, 2010.
Written Opinion from the PCT dated Aug. 7, 2008 with regard to corresponding PCT Application No. PCT/US/08/57326, 6 pages.
Written Opinion from the PCT dated Mar. 27, 2007 with regard to corresponding PCT Application No. PCT/US/06/32506, 10 pages.

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11907256B2 (en) 2008-10-24 2024-02-20 Pure Storage, Inc. Query-based selection of storage nodes
US8874524B1 (en) * 2012-06-22 2014-10-28 Emc Corporation Handling copy on first write data for snapshot purposes
US9460010B1 (en) * 2013-03-14 2016-10-04 Emc Corporation Method, data storage system and computer program product for managing copy on first write data for snapshot purposes
US9436559B2 (en) * 2014-01-17 2016-09-06 Hitachi, Ltd. Storage apparatus and method for controlling cache of storage apparatus
US11922046B2 (en) 2014-07-02 2024-03-05 Pure Storage, Inc. Erasure coded data within zoned drives
US11928076B2 (en) 2014-07-03 2024-03-12 Pure Storage, Inc. Actions for reserved filenames
US11914861B2 (en) 2014-09-08 2024-02-27 Pure Storage, Inc. Projecting capacity in a storage system based on data reduction levels
US11811619B2 (en) 2014-10-02 2023-11-07 Pure Storage, Inc. Emulating a local interface to a remotely managed storage system
US11886707B2 (en) 2015-02-18 2024-01-30 Pure Storage, Inc. Dataset space reclamation
US11936654B2 (en) 2015-05-29 2024-03-19 Pure Storage, Inc. Cloud-based user authorization control for storage system access
US11838412B2 (en) 2015-09-30 2023-12-05 Pure Storage, Inc. Secret regeneration from distributed shares
US11748322B2 (en) 2016-02-11 2023-09-05 Pure Storage, Inc. Utilizing different data compression algorithms based on characteristics of a storage system
US11847320B2 (en) 2016-05-03 2023-12-19 Pure Storage, Inc. Reassignment of requests for high availability
US11914455B2 (en) 2016-09-07 2024-02-27 Pure Storage, Inc. Addressing storage device performance
US11921567B2 (en) 2016-09-07 2024-03-05 Pure Storage, Inc. Temporarily preventing access to a storage device
US11803492B2 (en) 2016-09-07 2023-10-31 Pure Storage, Inc. System resource management using time-independent scheduling
US11922070B2 (en) 2016-10-04 2024-03-05 Pure Storage, Inc. Granting access to a storage device based on reservations
US11842053B2 (en) 2016-12-19 2023-12-12 Pure Storage, Inc. Zone namespace
US11762781B2 (en) 2017-01-09 2023-09-19 Pure Storage, Inc. Providing end-to-end encryption for data stored in a storage system
US11789831B2 (en) 2017-03-10 2023-10-17 Pure Storage, Inc. Directing operations to synchronously replicated storage systems
US11797403B2 (en) 2017-03-10 2023-10-24 Pure Storage, Inc. Maintaining a synchronous replication relationship between two or more storage systems
US11921908B2 (en) 2017-08-31 2024-03-05 Pure Storage, Inc. Writing data to compressed and encrypted volumes
US11768636B2 (en) 2017-10-19 2023-09-26 Pure Storage, Inc. Generating a transformed dataset for use by a machine learning model in an artificial intelligence infrastructure
US11803338B2 (en) 2017-10-19 2023-10-31 Pure Storage, Inc. Executing a machine learning model in an artificial intelligence infrastructure
US11861423B1 (en) 2017-10-19 2024-01-02 Pure Storage, Inc. Accelerating artificial intelligence (‘AI’) workflows
US11847025B2 (en) 2017-11-21 2023-12-19 Pure Storage, Inc. Storage system parity based on system characteristics
US11936731B2 (en) 2018-01-18 2024-03-19 Pure Storage, Inc. Traffic priority based creation of a storage volume within a cluster of storage nodes
US11836349B2 (en) 2018-03-05 2023-12-05 Pure Storage, Inc. Determining storage capacity utilization based on deduplicated data
US11838359B2 (en) 2018-03-15 2023-12-05 Pure Storage, Inc. Synchronizing metadata in a cloud-based storage system
US11846968B2 (en) 2018-09-06 2023-12-19 Pure Storage, Inc. Relocation of data for heterogeneous storage systems
US11947815B2 (en) 2019-01-14 2024-04-02 Pure Storage, Inc. Configuring a flash-based storage device
US11941116B2 (en) 2019-11-22 2024-03-26 Pure Storage, Inc. Ransomware-based data protection parameter modification
US11947683B2 (en) 2019-12-06 2024-04-02 Pure Storage, Inc. Replicating a storage system
US11853616B2 (en) 2020-01-28 2023-12-26 Pure Storage, Inc. Identity-based access to volume objects
US11853164B2 (en) 2020-04-14 2023-12-26 Pure Storage, Inc. Generating recovery information using data redundancy
US11775491B2 (en) 2020-04-24 2023-10-03 Pure Storage, Inc. Machine learning model for storage system
US11789638B2 (en) 2020-07-23 2023-10-17 Pure Storage, Inc. Continuing replication during storage system transportation
US11829631B2 (en) 2020-08-26 2023-11-28 Pure Storage, Inc. Protection of objects in an object-based storage system
US11789626B2 (en) 2020-12-17 2023-10-17 Pure Storage, Inc. Optimizing block allocation in a data storage system
US11782631B2 (en) 2021-02-25 2023-10-10 Pure Storage, Inc. Synchronous workload optimization
US11588716B2 (en) 2021-05-12 2023-02-21 Pure Storage, Inc. Adaptive storage processing for storage-as-a-service
US11886295B2 (en) 2022-01-31 2024-01-30 Pure Storage, Inc. Intra-block error correction

Also Published As

Publication number Publication date
US20080256141A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US7975115B2 (en) Method and apparatus for separating snapshot preserved and write data
US7716183B2 (en) Snapshot preserved data cloning
US7783850B2 (en) Method and apparatus for master volume access during volume copy
US7593973B2 (en) Method and apparatus for transferring snapshot data
US8204858B2 (en) Snapshot reset method and apparatus
US7831565B2 (en) Deletion of rollback snapshot partition
US10235066B1 (en) Journal destage relay for online system checkpoint creation
US10152381B1 (en) Using storage defragmentation function to facilitate system checkpoint
US8751467B2 (en) Method and apparatus for quickly accessing backing store metadata
US8001345B2 (en) Automatic triggering of backing store re-initialization
US7783603B2 (en) Backing store re-initialization method and apparatus
EP1922624B1 (en) Snapshot restore method and apparatus
US10031703B1 (en) Extent-based tiering for virtual storage using full LUNs
US8850145B1 (en) Managing consistency groups in storage systems
US9218138B1 (en) Restoring snapshots to consistency groups of mount points
US11789611B2 (en) Methods for handling input-output operations in zoned storage systems and devices thereof
US10620843B2 (en) Methods for managing distributed snapshot for low latency storage and devices thereof
US9075755B1 (en) Optimizing data less writes for restore operations
US20120278560A1 (en) Pre-fetching in a storage system that maintains a mapping tree
US20180267713A1 (en) Method and apparatus for defining storage infrastructure
US10048885B1 (en) Managing reclaiming storage space in file systems
US9063892B1 (en) Managing restore operations using data less writes
US11315028B2 (en) Method and apparatus for increasing the accuracy of predicting future IO operations on a storage system

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOT HILL SYSTEMS, CORP., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WAYDA, JAMES GEORGE;LEE, KENT;VU, NGOCLAN THI;AND OTHERS;REEL/FRAME:019584/0825

Effective date: 20070718

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230705