US7952885B2 - Control apparatus, in particular a mechatronic transmission control device or engine control device - Google Patents

Control apparatus, in particular a mechatronic transmission control device or engine control device Download PDF

Info

Publication number
US7952885B2
US7952885B2 US11/658,775 US65877505A US7952885B2 US 7952885 B2 US7952885 B2 US 7952885B2 US 65877505 A US65877505 A US 65877505A US 7952885 B2 US7952885 B2 US 7952885B2
Authority
US
United States
Prior art keywords
circuit boards
flexible
control apparatus
base plate
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/658,775
Other versions
US20090002959A1 (en
Inventor
Josef Loibl
Karl Smirra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of US20090002959A1 publication Critical patent/US20090002959A1/en
Assigned to CONTINENTAL AUTOMOTIVE GMBH reassignment CONTINENTAL AUTOMOTIVE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS AKTIENGESELLSCHAFT
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOIBL, JOSEF, SMIRRA, KARL
Application granted granted Critical
Publication of US7952885B2 publication Critical patent/US7952885B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/59Fixed connections for flexible printed circuits, flat or ribbon cables or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5202Sealing means between parts of housing or between housing part and a wall, e.g. sealing rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0026Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units
    • H05K5/0082Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units specially adapted for transmission control units, e.g. gearbox controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0003Arrangement or mounting of elements of the control apparatus, e.g. valve assemblies or snapfittings of valves; Arrangements of the control unit on or in the transmission gearbox
    • F16H61/0006Electronic control units for transmission control, e.g. connectors, casings or circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/142Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09745Recess in conductor, e.g. in pad or in metallic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/0999Circuit printed on or in housing, e.g. housing as PCB; Circuit printed on the case of a component; PCB affixed to housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/049Wire bonding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1147Sealing or impregnating, e.g. of pores
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the present invention relates to a control apparatus, in particular for mechatronic control devices associated with the transmission control or engine control of a motor vehicle.
  • the apparatus includes:
  • pressed screens are used for current and signal distribution.
  • this solution exhibits clear disadvantages in respect of issues such as sealing the electronics space, stress protection, flexibility and tolerance equalization.
  • routing of the conductor paths is more difficult than in the case of flexible conductor paths (construction of extremely fine Cu conductor path structures).
  • modifications require costly intervention in the pressing tool.
  • current production applications for e.g. a mechatronic transmission control unit comprise a circuit carrier 30 which is connected to conductor paths 23 of at least one flexible conductor path carrier 20 for the distribution of electrical signals and currents.
  • the circuit carrier 30 and the conductor path carrier 20 are mounted on a base plate 10 .
  • the circuit carrier 30 is arranged in a cavity 14 which is formed by a housing part 11 , wherein the conductor path carrier 20 is guided between the base plate 10 and the housing part 11 into the cavity 14 and adhered at least partly to the base plate 10 by means of a liquid-resistant adhesive 22 and sealed relative to the housing part 11 by means of at least one gasket element 12 , such that no liquid can penetrate into the cavity 14 .
  • FIG. 1 shows the basic structure of the sealing concept for the electronics space 14 of a transmission control device
  • FIG. 2 shows the structure as per FIG. 1 in a side view.
  • FIG. 3 shows the extract X from FIG. 2 in a magnified illustration.
  • the illustrated layer structure of a flexible conductor path carrier 20 usually consists of a first base film 24 and a second cover film 21 , each of these being made of e.g. polyamide, wherein conductor paths 23 of e.g. copper (Cu) are embedded between said films.
  • a solid unit is produced by using an acrylic adhesive 22 between the layers 21 and 24 .
  • FIG. 4 shows the flexible layout of a mechatronic transmission control unit
  • FIG. 5 shows the basic structure of a mechatronic control unit when using an integral, single-layer flexible circuit board 20 .
  • the present invention addresses the problem of specifying measures which firstly allow a considerable reduction in the area of the expensive flexible material, particularly in mechatronic control apparatuses. Furthermore, measures will be specified for ensuring comparable impermeability.
  • the invention develops control apparatuses of the type in question, in that provision is made for at least one partial flexible circuit board which at the most partially i.e. not completely surrounds the circuit carrier as a conductor path carrier, wherein preferably two to n (in particular four) partial flexible circuit boards are provided.
  • a smooth slope is formed, preferably as far as the level of the base plate, such that the remaining transition zone can be permanently sealed using a gasket element.
  • the formation of the perimeter slope can be achieved, for example, by means of a shaping tool which permanently shapes the boundary area at least in places, wherein the resulting transition zone can advantageously be permanently sealed by means of the sealing element.
  • an adhesive track be deposited in areas between the partial flexible circuit board(s), forming an elevation which is identical to that of the partial flexible circuit board(s). This advantageously ensures that the gasket element lies on a plane again. The gasket element then lies level on the partial flexible circuit board(s) and in the transition zones on the adhesive track(s). This ensures that the gasket element lies on a plane again.
  • the pressed boundary areas of the partial flexible circuit board(s) are sealed by means of the adhesive track.
  • an adhesive bead is applied circumferentially, wherein the gasket element is positioned on said adhesive bead.
  • the (e.g. epoxy) adhesive bead advantageously seals all interfaces to the partial flexible circuit board(s), the base plate and the housing simultaneously.
  • a smooth transition zone be formed in the base plate. This advantageously produces an identical elevation of base plate and top side of the partial flexible circuit board(s).
  • a circumferential and continuous gasket profile is preferably deposited on the components, e.g. by means of a spraying method, advantageously thereby securely closing all unevennesses and possible openings between the partial flexible circuit board(s) and the base plate or floor plate.
  • the housing part together with the gasket element can be located on the continuous gasket profile by means of an adhesive connection.
  • the housing part together with the gasket element can be located and mechanically secured onto the continuous gasket profile, e.g. by means of rivets.
  • the present invention has the advantage of significant cost savings due to a reduction in the flexible material (by a factor of 2 to 3). Moreover, it allows previously unknown structural freedom in the layout of the device design, e.g. a variable arrangement of the flexible parts, a simplified implementation of intersections by means of superimpositions of two flexible parts and/or possibly minimizing the number of rivets, even to the extent that these are omitted altogether.
  • the present invention allows an effective combination of pressed screen technology and flexible technology, particularly in the field of valve contacting using connection paths to the electronics space, and in the use of the well-tested Siemens VDO laser welding method for flexible to pressed screen, or in the use of a flexible film in the sealing region and in the region of the plug connector and the sensors, if applicable, in order to achieve optimal tolerance equalization.
  • the present invention provides cost savings in manufacturing and assembly, particularly in respect of the folding processes, as well as increased quality in the use of a small number of well-tested connection technologies such as bonding, laser welding, etc., a reduction in purchase prices of flexible materials as a result of using a plurality of possible suppliers thereof (reduced complexity and tolerance requirements) and finally, as a result of switching from a single complex flexible complete part to a combination of a plurality of simple flexible individual parts, it advantageously shortens the development times of mechatronic control devices, particularly those installed in the transmission or engine of a motor vehicle.
  • FIG. 1 schematically shows a perspective illustration of the basic structure of the sealing concept of the electronic space of a transmission control device
  • FIG. 2 schematically shows the structure as per FIG. 1 in a side view
  • FIG. 3 schematically shows the extract X from FIG. 2 in a magnified illustration of the side view
  • FIG. 4 schematically shows the flexible layout of a mechatronic transmission control unit
  • FIG. 5 schematically shows the basic structure of a mechatronic control unit when using a single-part, single-layer flexible circuit board
  • FIG. 6 schematically shows the basic structure of a mechatronic control unit when using a plurality of single-layer partial flexible circuit boards according to the invention
  • FIG. 7 schematically shows the exemplary embodiment as per FIG. 6 including shaped flexible boundary areas
  • FIG. 8 schematically shows the shaped flexible boundary areas from FIG. 7 in a side view
  • FIG. 9 schematically shows the exemplary embodiment as per FIG. 6 including flexible boundary areas which have been adhered by means of adhesive dots;
  • FIG. 10 schematically shows the exemplary embodiment as per FIG. 6 including flexible boundary areas which have been adhered by means of equalizing adhesive tracks;
  • FIG. 11 schematically shows the flexible boundary areas which have been adhered by means of equalizing adhesive tracks as per FIG. 10 in a side view;
  • FIG. 12 schematically shows the exemplary embodiment as per FIG. 6 including flexible boundary areas which have been adhered by means of an adhesive bead;
  • FIG. 13 schematically shows the exemplary embodiment as per FIG. 6 including shaped aluminum base plate
  • FIG. 14 schematically shows the shaped aluminum base plate from FIG. 13 in a side view
  • FIG. 15 schematically shows the exemplary embodiment as per FIG. 6 including pointed gasket.
  • FIG. 1 shows the basic structure of the sealing concept of the electronic space of a transmission control device in a perspective illustration.
  • FIG. 2 shows the structure as per FIG. 1 in a side view.
  • a conductor path carrier 20 is guided through a housing wall 11 . More precisely, the conductor path carrier 20 is guided between a metallic base plate 10 and a housing part which is formed as a housing wall 11 into a cavity 14 .
  • the conductor path carrier 20 is adhered onto the base plate 10 , which preferably consists of aluminum, using an oil-resistant acrylic adhesive 22 .
  • the housing wall 11 is part of a housing cover which is preferably a plastic molded part.
  • the housing 11 consists solely of the housing cover and the base plate 10 , and includes a circumferential oil-resistant sealing ring 12 of fluorosilicone, for example.
  • This 12 is pressed or vulcanized onto the conductor path carrier 20 and seals the conductor path carrier 20 relative to the housing wall 11 .
  • mechanical securing is also possible in this context, e.g. by means of rivets 18 (only shown in FIG. 1 ).
  • the housing can also consist of a plurality of parts or parts of a different nature (not illustrated).
  • the base plate 10 does not have to be a unitary part.
  • FIG. 3 shows the extract X from FIG. 2 in a magnified illustration.
  • the illustrated layer structure of a flexible conductor path carrier 20 consists of a first base film 24 and a second cover film 21 , each of these being made of e.g. polyamide, wherein conductor paths 23 of e.g. copper (Cu) are embedded between said films.
  • a solid unit is produced by using an acrylic adhesive 22 between the layers 21 and 24 .
  • the same type of acrylic adhesive 22 a can also be used for adhering or laminating the base layer 24 onto the base plate or underlying plate 10 .
  • gasket element 12 more concisely designated below as gasket 12 , adapts to the contours of the cover film 21 .
  • FIG. 4 shows the flexible layout of a mechatronic transmission control unit. Visible are e.g. individual lines 23 which disperse in a star format from sensors or actuators 33 and/or plug connectors 34 for connecting e.g. to the cable harness of a motor vehicle (not shown) to the control electronics 30 and electronic components 32 which are arranged thereupon. It is clear that provision is made for an opening in the center of the flexible layout, and the circuit carrier 30 including the control electronics circuit 32 is positioned in said opening.
  • FIG. 5 shows the basic structure of a mechatronic control unit when using a single-part, single-layer flexible circuit board 20 in an interior view in detail. It is possible to see the control electronics 30 which are arranged in an opening 29 in the interior area of the flexible circuit board 20 . The ends of the Cu paths 23 in the flexible circuit board 20 are connected to the electronics 30 via electrical contact points 31 by means of bonding connections 40 . The position of the circumferential gasket 12 is also indicated in this view.
  • FIG. 6 shows the basic structure of a mechatronic control unit when using a plurality of preferably single-layer partial flexible circuit boards according to the invention.
  • the following suitable measures are specified:
  • FIG. 7 shows the exemplary embodiment as per FIG. 6 with so-called shaped flexible boundary areas 25 .
  • These 25 were permanently shaped by means of a shaping tool (not illustrated) such that a smooth slope down to the aluminum level of the base plate 10 is produced in the flexible boundary area 25 .
  • the level equalization which is thus formed to the underlying plate 20 advantageously allows a permanent seal by means of the gasket 12 .
  • FIG. 8 shows the boundary areas 25 of the partial flexible parts 20 a , 20 b , . . . from FIG. 7 in a side view, said boundary areas 25 being shaped in the sealing area, thereby advantageously allowing a positive placement of the inlay seal 12 onto the shaped edge 25 .
  • FIG. 9 shows the exemplary embodiment as per FIG. 6 including flexible boundary areas 25 which have been adhered by means of e.g. epoxy-based adhesive dots 26 .
  • the gasket 12 is then deposited.
  • FIG. 10 shows the exemplary embodiment as per FIG. 6 including flexible boundary areas 25 which have been adhered by means of equalizing adhesive tracks 27 .
  • One or more adhesive track(s) are deposited in the curve or straight section between the two flexible parts 20 a , 20 b until the same elevation as the flexible parts 20 a , 20 b , . . . is reached.
  • the gasket 12 then lies level on the flexible parts 20 a , 20 b , . . . and in the transition zones on the adhesive tracks 27 . This ensures that the gasket 12 lies on a plane again.
  • the flexible pressed edges 25 are sealed by means of the adhesive 27 .
  • FIG. 11 shows the flexible boundary areas 25 from FIG. 10 which have been adhered by means of equalizing adhesive tracks 27 in a side view. It is shown how, in accordance with the invention, the adhesive layer 27 is preferably applied by means of a screen printing method.
  • an adhesive 27 is deposited onto the partial flexible circuit boards 20 a , 20 b , . . . and the floor plate 10 by means of a screen printing squeegee through a screen such that only defined columns or partial flexible areas are filled by the adhesive 27 .
  • An arrow indicates the direction of travel of the squeegee 50 .
  • Adhesive tracks 27 which are deposited by means of a screen printing method advantageously even out any imperfections at the flexible edges 25 at the same time.
  • FIG. 12 shows the exemplary embodiment as per FIG. 6 including flexible boundary areas 25 which have been adhered by means of an adhesive bead 28 .
  • an adhesive bead 28 is deposited circumferentially and the cover 11 is adhered to the base plate 10 .
  • the adhesive e.g. epoxy
  • An acrylic adhesive film 22 which is sensitive to pressure and temperature can also be used as an adhesive, said film alone adhering the flexible parts 20 a , 20 b , . . . to the floor plate 10 in an oil-resistant manner.
  • a mechanical fastening measure e.g. rivets 18
  • FIG. 13 shows the exemplary embodiment as per FIG. 6 including an aluminum base plate 10 which is shaped in the areas where the flexible parts 20 a , 20 b , . . . are situated. In this way, the same elevation is obtained for the floor plate 10 and top sides of the partial flexible circuit boards 20 a , 20 b , . . . .
  • the contour width of the floor plate 10 is advantageously somewhat larger than the width of the partial flexible circuit board 20 a , 20 b , . . . .
  • the resulting “hole” between flexible part edge 25 and contour depth 16 on the floor plate 10 can be filled e.g. by means of surplus adhesive 22 during the flexible part laminating process or equalized by means of additionally placed adhesive dots 26 . Residual unevennesses on the resulting surface which must be sealed relative to the cover 11 are significantly smaller than the original flexible part thickness and can be sealed reliably by means of the gasket 12 .
  • FIG. 14 shows the shaped aluminum base plate 10 from FIG. 13 in a side view.
  • FIG. 15 lastly shows the exemplary embodiment as per FIG. 6 including pointed gasket 12 .
  • a circumferential and continuous gasket profile 17 is deposited on the floor plate 10 and the flexible part modules 20 a , 20 b , . . . , in particular by means of spraying.
  • the sealing cover 11 is placed onto said gasket profile 17 which is now sprayed on, and e.g. mechanically secured to the floor plate using a corresponding sealing force, e.g. by means of rivets.
  • the present invention advantageously and for the first time permits the arrangement of a plurality of individual partial flexible circuit boards 20 a , 20 b , . . . in such a way as to allow the optimal routing of signal and current paths while at the same time reducing to a minimum the use of expensive flexible surfaces 20 . It therefore assists in economizing flexible surfaces 20 and in the configuration of flexible component parts such that uses can be optimally exploited and therefore no rejects occur.
  • the individual partial flexible circuit boards 20 a , 20 b , . . . are preferably laminated onto a base plate 10 of aluminum.
  • the boundary areas 25 of the partial flexible circuit boards 20 a , 20 b , . . . are formed using suitable measures such that a secure seal is ensured by means of a gasket.
  • the present invention is therefore suitable for mechatronic control units, in particular for control devices for installation in a transmission or engine of a motor vehicle.

Abstract

A control device includes a number of individual flexible printed circuit boards that are preferably laminated on an aluminum base plate. A molded seal is used to reliably seal the edge areas of the partially flexible printed circuit board and these edge areas are formed to assist in creating the seal. The device is suited for mechatronic control units and is particularly suited for control devices that are mounted in a transmission or engine of a motor vehicle.

Description

BACKGROUND OF THE INVENTION Field of the Invention
The present invention relates to a control apparatus, in particular for mechatronic control devices associated with the transmission control or engine control of a motor vehicle. The apparatus includes:
    • a circuit carrier which is connected to conductor paths of at least one flexible conductor path carrier, and
    • a base plate on which the circuit carrier and the conductor path carrier are mounted, and
    • a housing part which forms a cavity in which the circuit carrier is arranged, wherein
      • the conductor path carrier is guided between the base plate and the housing part into the cavity, and wherein
      • the conductor path carrier is adhered at least partly to the base plate by means of a liquid-resistant adhesive and sealed relative to the housing part by means of at least one gasket element, such that no liquid can penetrate into the cavity.
It is increasingly the case that automatic transmissions for private motor vehicles are largely electronically controlled, and this also applies to combustion engines or braking systems, etc. Whereas so-called “standalone” control devices for this purpose were previously provided for installation in an electronics space (e-box) offering protection against environmental influences or in the passenger compartment, there is a growing trend towards so-called mechatronic control units, i.e. the integration of control electronics and the associated sensor technology in the transmission, the engine, the braking system or similar. There are similar trends towards localized electronic systems in other fields outside of motor vehicle engineering, e.g. air travel and space travel engineering, ship engineering, etc.
In some applications of mechatronic control units, pressed screens are used for current and signal distribution. In comparison with so-called flexible technology, however, this solution exhibits clear disadvantages in respect of issues such as sealing the electronics space, stress protection, flexibility and tolerance equalization. Furthermore, as a result of complying with minimal cross sections of the pressed screens, routing of the conductor paths is more difficult than in the case of flexible conductor paths (construction of extremely fine Cu conductor path structures). In addition, modifications require costly intervention in the pressing tool.
As illustrated in FIGS. 1 to 5, current production applications for e.g. a mechatronic transmission control unit comprise a circuit carrier 30 which is connected to conductor paths 23 of at least one flexible conductor path carrier 20 for the distribution of electrical signals and currents. The circuit carrier 30 and the conductor path carrier 20 are mounted on a base plate 10. The circuit carrier 30 is arranged in a cavity 14 which is formed by a housing part 11, wherein the conductor path carrier 20 is guided between the base plate 10 and the housing part 11 into the cavity 14 and adhered at least partly to the base plate 10 by means of a liquid-resistant adhesive 22 and sealed relative to the housing part 11 by means of at least one gasket element 12, such that no liquid can penetrate into the cavity 14.
In a perspective illustration, FIG. 1 shows the basic structure of the sealing concept for the electronics space 14 of a transmission control device; FIG. 2 shows the structure as per FIG. 1 in a side view.
FIG. 3 shows the extract X from FIG. 2 in a magnified illustration. The illustrated layer structure of a flexible conductor path carrier 20 usually consists of a first base film 24 and a second cover film 21, each of these being made of e.g. polyamide, wherein conductor paths 23 of e.g. copper (Cu) are embedded between said films. A solid unit is produced by using an acrylic adhesive 22 between the layers 21 and 24.
FIG. 4 shows the flexible layout of a mechatronic transmission control unit; FIG. 5 shows the basic structure of a mechatronic control unit when using an integral, single-layer flexible circuit board 20.
The above described sealing concept is disclosed in e.g. U.S. Pat. No. 6,300,566 B1 or EP 0 972 318 B1, wherein single-layer oil-resistant flexible circuit boards 20 are used without exception for the distribution of current and signals for reasons of cost. This special flexible material 20 is currently always embodied as an integral component, i.e. the film 20 completely surrounds the circuit carrier 30, which means the use of large areas of expensive flexible material 20. Moreover, a rectangular area 29 which cannot be used must be left open for the electronics 30 in the central area of the film 20. In order to reach all connector areas 33, 34 at the same time as optimally exploiting the possible uses, a specially developed folding technique is utilized. It is nonetheless unavoidable that rejects frequently occur, since the transmission installation spaces do not allow otherwise.
SUMMARY OF THE INVENTION
With this as its starting point, the present invention addresses the problem of specifying measures which firstly allow a considerable reduction in the area of the expensive flexible material, particularly in mechatronic control apparatuses. Furthermore, measures will be specified for ensuring comparable impermeability.
According to the invention, this problem is solved by the features in the independent patent claim. Advantageous embodiments and developments, which can be used singly or in combination with each other, are the subject matter of the dependent claims.
The invention develops control apparatuses of the type in question, in that provision is made for at least one partial flexible circuit board which at the most partially i.e. not completely surrounds the circuit carrier as a conductor path carrier, wherein preferably two to n (in particular four) partial flexible circuit boards are provided.
In order that the pressed edges of the partial flexible circuit board can also be sealed using gaskets similar to the well-tested sealing concept described in the introduction over the service life of a control apparatus, various advantageous embodiments and developments are specified below.
In a first embodiment, it is thus proposed that in the boundary area of the partial flexible circuit board(s) a smooth slope is formed, preferably as far as the level of the base plate, such that the remaining transition zone can be permanently sealed using a gasket element. The formation of the perimeter slope can be achieved, for example, by means of a shaping tool which permanently shapes the boundary area at least in places, wherein the resulting transition zone can advantageously be permanently sealed by means of the sealing element.
Alternatively or in addition to this, it is proposed that (e.g. epoxy-based) adhesive dots be placed in the boundary areas of the partial flexible circuit board(s), wherein the gasket element is positioned on said dots and forms a seal thus.
In a further embodiment, it is proposed that an adhesive track be deposited in areas between the partial flexible circuit board(s), forming an elevation which is identical to that of the partial flexible circuit board(s). This advantageously ensures that the gasket element lies on a plane again. The gasket element then lies level on the partial flexible circuit board(s) and in the transition zones on the adhesive track(s). This ensures that the gasket element lies on a plane again. The pressed boundary areas of the partial flexible circuit board(s) are sealed by means of the adhesive track. Use of a screen printing method is well proven for applying the adhesive tracks, such that any imperfections at the pressed boundary areas can be advantageously evened out immediately.
In a further embodiment, it is proposed that an adhesive bead is applied circumferentially, wherein the gasket element is positioned on said adhesive bead. In this case, the (e.g. epoxy) adhesive bead advantageously seals all interfaces to the partial flexible circuit board(s), the base plate and the housing simultaneously.
In a further embodiment, it is proposed that in the areas where the partial flexible circuit board(s) rest on the base plate, a smooth transition zone be formed in the base plate. This advantageously produces an identical elevation of base plate and top side of the partial flexible circuit board(s).
According to the invention, after adhesion of the partial flexible circuit board(s) by means of a liquid-resistant adhesive on the base plate, a circumferential and continuous gasket profile is preferably deposited on the components, e.g. by means of a spraying method, advantageously thereby securely closing all unevennesses and possible openings between the partial flexible circuit board(s) and the base plate or floor plate. The housing part together with the gasket element can be located on the continuous gasket profile by means of an adhesive connection. Alternatively or in addition to this, the housing part together with the gasket element can be located and mechanically secured onto the continuous gasket profile, e.g. by means of rivets. An exclusively mechanical securing advantageously allows non-destructive opening for any repairs or recycling activities subsequently.
It is appropriate suitably to support the course of the gasket element in respect of the sealing properties by means of structural measures in the housing part and/or the base plate. The concept can also be advantageously supported by a special embodiment of the gasket element.
In particular, in a further embodiment of the development, it is proposed to configure the cover film below the gasket element such that it is set back in relation to the base film in the boundary area of the partial flexible circuit board(s), thereby reducing the height of the step at the flexible pressed edge.
The present invention has the advantage of significant cost savings due to a reduction in the flexible material (by a factor of 2 to 3). Moreover, it allows previously unknown structural freedom in the layout of the device design, e.g. a variable arrangement of the flexible parts, a simplified implementation of intersections by means of superimpositions of two flexible parts and/or possibly minimizing the number of rivets, even to the extent that these are omitted altogether. In addition, the present invention allows an effective combination of pressed screen technology and flexible technology, particularly in the field of valve contacting using connection paths to the electronics space, and in the use of the well-tested Siemens VDO laser welding method for flexible to pressed screen, or in the use of a flexible film in the sealing region and in the region of the plug connector and the sensors, if applicable, in order to achieve optimal tolerance equalization. Lastly, the present invention provides cost savings in manufacturing and assembly, particularly in respect of the folding processes, as well as increased quality in the use of a small number of well-tested connection technologies such as bonding, laser welding, etc., a reduction in purchase prices of flexible materials as a result of using a plurality of possible suppliers thereof (reduced complexity and tolerance requirements) and finally, as a result of switching from a single complex flexible complete part to a combination of a plurality of simple flexible individual parts, it advantageously shortens the development times of mechatronic control devices, particularly those installed in the transmission or engine of a motor vehicle.
BRIEF DESCRIPTIONS OF THE DRAWINGS
Additional details and further advantages of the invention are described below with reference to a preferred exemplary embodiment in connection with the appended drawing, in which:
FIG. 1 schematically shows a perspective illustration of the basic structure of the sealing concept of the electronic space of a transmission control device;
FIG. 2 schematically shows the structure as per FIG. 1 in a side view;
FIG. 3 schematically shows the extract X from FIG. 2 in a magnified illustration of the side view;
FIG. 4 schematically shows the flexible layout of a mechatronic transmission control unit;
FIG. 5 schematically shows the basic structure of a mechatronic control unit when using a single-part, single-layer flexible circuit board;
FIG. 6 schematically shows the basic structure of a mechatronic control unit when using a plurality of single-layer partial flexible circuit boards according to the invention;
FIG. 7 schematically shows the exemplary embodiment as per FIG. 6 including shaped flexible boundary areas;
FIG. 8 schematically shows the shaped flexible boundary areas from FIG. 7 in a side view;
FIG. 9 schematically shows the exemplary embodiment as per FIG. 6 including flexible boundary areas which have been adhered by means of adhesive dots;
FIG. 10 schematically shows the exemplary embodiment as per FIG. 6 including flexible boundary areas which have been adhered by means of equalizing adhesive tracks;
FIG. 11 schematically shows the flexible boundary areas which have been adhered by means of equalizing adhesive tracks as per FIG. 10 in a side view;
FIG. 12 schematically shows the exemplary embodiment as per FIG. 6 including flexible boundary areas which have been adhered by means of an adhesive bead;
FIG. 13 schematically shows the exemplary embodiment as per FIG. 6 including shaped aluminum base plate;
FIG. 14 schematically shows the shaped aluminum base plate from FIG. 13 in a side view;
FIG. 15 schematically shows the exemplary embodiment as per FIG. 6 including pointed gasket.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following description of the preferred embodiments of the present invention, identical reference signs designate identical or comparable components.
FIG. 1 shows the basic structure of the sealing concept of the electronic space of a transmission control device in a perspective illustration.
FIG. 2 shows the structure as per FIG. 1 in a side view.
The half of a reflectively or rotationally symmetrical body is shown. A conductor path carrier 20 is guided through a housing wall 11. More precisely, the conductor path carrier 20 is guided between a metallic base plate 10 and a housing part which is formed as a housing wall 11 into a cavity 14. The conductor path carrier 20 is adhered onto the base plate 10, which preferably consists of aluminum, using an oil-resistant acrylic adhesive 22. The housing wall 11 is part of a housing cover which is preferably a plastic molded part. The housing 11 consists solely of the housing cover and the base plate 10, and includes a circumferential oil-resistant sealing ring 12 of fluorosilicone, for example. This 12 is pressed or vulcanized onto the conductor path carrier 20 and seals the conductor path carrier 20 relative to the housing wall 11. In addition to adhesive connections, mechanical securing is also possible in this context, e.g. by means of rivets 18 (only shown in FIG. 1). However, the housing can also consist of a plurality of parts or parts of a different nature (not illustrated). Moreover, the base plate 10 does not have to be a unitary part.
FIG. 3 shows the extract X from FIG. 2 in a magnified illustration. The illustrated layer structure of a flexible conductor path carrier 20 consists of a first base film 24 and a second cover film 21, each of these being made of e.g. polyamide, wherein conductor paths 23 of e.g. copper (Cu) are embedded between said films. A solid unit is produced by using an acrylic adhesive 22 between the layers 21 and 24. The same type of acrylic adhesive 22 a can also be used for adhering or laminating the base layer 24 onto the base plate or underlying plate 10. Also clearly visible is the manner in which the gasket element 12, more concisely designated below as gasket 12, adapts to the contours of the cover film 21.
FIG. 4 shows the flexible layout of a mechatronic transmission control unit. Visible are e.g. individual lines 23 which disperse in a star format from sensors or actuators 33 and/or plug connectors 34 for connecting e.g. to the cable harness of a motor vehicle (not shown) to the control electronics 30 and electronic components 32 which are arranged thereupon. It is clear that provision is made for an opening in the center of the flexible layout, and the circuit carrier 30 including the control electronics circuit 32 is positioned in said opening.
FIG. 5 shows the basic structure of a mechatronic control unit when using a single-part, single-layer flexible circuit board 20 in an interior view in detail. It is possible to see the control electronics 30 which are arranged in an opening 29 in the interior area of the flexible circuit board 20. The ends of the Cu paths 23 in the flexible circuit board 20 are connected to the electronics 30 via electrical contact points 31 by means of bonding connections 40. The position of the circumferential gasket 12 is also indicated in this view.
Instead of a bonding connection 40, provision can also be made for the electrical connection arrangement described in U.S. Pat. No. 6,300,566 B1 or EP 0 972 318 B1, full reference to whose disclosure in this respect is made hereby.
FIG. 6 shows the basic structure of a mechatronic control unit when using a plurality of preferably single-layer partial flexible circuit boards according to the invention. In order to make the boundary areas 25 of the partial flexible circuit boards 20 a, 20 b accessible in the area of the sealing cushion 12 of a seal through this 12, the following suitable measures are specified:
FIG. 7 shows the exemplary embodiment as per FIG. 6 with so-called shaped flexible boundary areas 25. These 25 were permanently shaped by means of a shaping tool (not illustrated) such that a smooth slope down to the aluminum level of the base plate 10 is produced in the flexible boundary area 25. The level equalization which is thus formed to the underlying plate 20 advantageously allows a permanent seal by means of the gasket 12.
FIG. 8 shows the boundary areas 25 of the partial flexible parts 20 a, 20 b, . . . from FIG. 7 in a side view, said boundary areas 25 being shaped in the sealing area, thereby advantageously allowing a positive placement of the inlay seal 12 onto the shaped edge 25.
FIG. 9 shows the exemplary embodiment as per FIG. 6 including flexible boundary areas 25 which have been adhered by means of e.g. epoxy-based adhesive dots 26. The gasket 12 is then deposited.
FIG. 10 shows the exemplary embodiment as per FIG. 6 including flexible boundary areas 25 which have been adhered by means of equalizing adhesive tracks 27. One or more adhesive track(s) are deposited in the curve or straight section between the two flexible parts 20 a, 20 b until the same elevation as the flexible parts 20 a, 20 b, . . . is reached. The gasket 12 then lies level on the flexible parts 20 a, 20 b, . . . and in the transition zones on the adhesive tracks 27. This ensures that the gasket 12 lies on a plane again. The flexible pressed edges 25 are sealed by means of the adhesive 27.
FIG. 11 shows the flexible boundary areas 25 from FIG. 10 which have been adhered by means of equalizing adhesive tracks 27 in a side view. It is shown how, in accordance with the invention, the adhesive layer 27 is preferably applied by means of a screen printing method. In this case, an adhesive 27 is deposited onto the partial flexible circuit boards 20 a, 20 b, . . . and the floor plate 10 by means of a screen printing squeegee through a screen such that only defined columns or partial flexible areas are filled by the adhesive 27. An arrow indicates the direction of travel of the squeegee 50. Adhesive tracks 27 which are deposited by means of a screen printing method advantageously even out any imperfections at the flexible edges 25 at the same time.
FIG. 12 shows the exemplary embodiment as per FIG. 6 including flexible boundary areas 25 which have been adhered by means of an adhesive bead 28. It can be seen how an adhesive bead 28 is deposited circumferentially and the cover 11 is adhered to the base plate 10. In this case, the adhesive (e.g. epoxy) simultaneously seals all interfaces to the flexible parts 20 a, 20 b, . . . , to the aluminum plate 10 and to the plastic cover 11. An acrylic adhesive film 22 which is sensitive to pressure and temperature can also be used as an adhesive, said film alone adhering the flexible parts 20 a, 20 b, . . . to the floor plate 10 in an oil-resistant manner. In this embodiment, it is possible to dispense with a mechanical fastening measure (e.g. rivets 18) if applicable.
FIG. 13 shows the exemplary embodiment as per FIG. 6 including an aluminum base plate 10 which is shaped in the areas where the flexible parts 20 a, 20 b, . . . are situated. In this way, the same elevation is obtained for the floor plate 10 and top sides of the partial flexible circuit boards 20 a, 20 b, . . . . The contour width of the floor plate 10 is advantageously somewhat larger than the width of the partial flexible circuit board 20 a, 20 b, . . . . The resulting “hole” between flexible part edge 25 and contour depth 16 on the floor plate 10 can be filled e.g. by means of surplus adhesive 22 during the flexible part laminating process or equalized by means of additionally placed adhesive dots 26. Residual unevennesses on the resulting surface which must be sealed relative to the cover 11 are significantly smaller than the original flexible part thickness and can be sealed reliably by means of the gasket 12.
FIG. 14 shows the shaped aluminum base plate 10 from FIG. 13 in a side view.
FIG. 15 lastly shows the exemplary embodiment as per FIG. 6 including pointed gasket 12. Following the lamination of the flexible part sections 20 a, 20 b, . . . onto the floor plate 10, a circumferential and continuous gasket profile 17 is deposited on the floor plate 10 and the flexible part modules 20 a, 20 b, . . . , in particular by means of spraying. In this way, any unevennesses and possible openings between partial flexible circuit boards 20 a, 20 b, . . . and the floor plate 10 are securely closed. The sealing cover 11 is placed onto said gasket profile 17 which is now sprayed on, and e.g. mechanically secured to the floor plate using a corresponding sealing force, e.g. by means of rivets.
The present invention advantageously and for the first time permits the arrangement of a plurality of individual partial flexible circuit boards 20 a, 20 b, . . . in such a way as to allow the optimal routing of signal and current paths while at the same time reducing to a minimum the use of expensive flexible surfaces 20. It therefore assists in economizing flexible surfaces 20 and in the configuration of flexible component parts such that uses can be optimally exploited and therefore no rejects occur. The individual partial flexible circuit boards 20 a, 20 b, . . . are preferably laminated onto a base plate 10 of aluminum. The boundary areas 25 of the partial flexible circuit boards 20 a, 20 b, . . . are formed using suitable measures such that a secure seal is ensured by means of a gasket.
The present invention is therefore suitable for mechatronic control units, in particular for control devices for installation in a transmission or engine of a motor vehicle.

Claims (13)

1. A control apparatus, comprising:
a circuit carrier; and
a base plate having mounted thereon said circuit carrier;
a plurality of flexible printed circuit boards mounted on said base plate; and
a housing part having a cavity housing said circuit carrier; wherein
said plurality of flexible printed circuit boards guided between said base plate and said housing part into the cavity; and wherein
said plurality of flexible printed circuit boards is glued at least partly to said base plate by way of a liquid-resistant adhesive and sealed relative to said housing part by way of at least one gasket element, to prevent liquid from penetrating into said cavity;
said plurality of flexible printed circuit boards at most partially, but not completely, surrounding said circuit carrier;
said plurality of flexible printed circuit boards having conductor paths formed thereon connected to said circuit carrier; and
said plurality of flexible printed circuit boards having shaped flexible boundary areas defining a smooth slope and a remaining transition zone to be permanently sealed by said at least one gasket element, wherein said plurality of flexible circuit boards are four separate flexible circuit boards each carrying the conductor paths.
2. The control apparatus according to claim 1, wherein the control apparatus is a mechatronic transmission control device or an engine control device.
3. The control apparatus according to claim 1, which further comprises adhesive dots on which said at least one gasket element is positioned, said adhesive dots being placed in boundary areas of said plurality of flexible printed circuit boards.
4. The control apparatus according to claim 1, which further comprises an adhesive track deposited between at least between one of said plurality of flexible printed circuit boards and another one of said plurality of flexible printed circuit boards, said adhesive track having an elevation identical to that of said plurality of flexible printed circuit boards.
5. The control apparatus according to claim 1, which further comprises an adhesive bead applied circumferentially, said at least one gasket element being positioned on said adhesive bead.
6. The control apparatus according to claim 1, wherein a smooth transition zone is formed in said base plate in areas where said plurality of flexible printed circuit boards rest on said base plate.
7. The control apparatus according to claim 1, which further comprises a circumferential and continuous gasket profile deposited on components after adhesion of said said plurality of flexible printed circuit boards on said base plate by a liquid-resistant adhesive.
8. The control apparatus according to claim 7, which further comprises an adhesive connection locating said housing part together with said at least one gasket element on said continuous gasket profile.
9. The control apparatus according to claim 7, wherein said housing part together with said at least one gasket element is located and mechanically secured onto said continuous gasket profile.
10. The control apparatus according to claim 9, which further comprises rivets locating and mechanically securing said housing part together with said at least one gasket element onto said continuous gasket profile.
11. The control apparatus according to claim 1, which further comprises a cover film being disposed below said at least one gasket element and being set back relative to a base film in boundary areas of said plurality of flexible printed circuit boards, for reducing a step height.
12. A control apparatus, comprising:
a base plate;
a housing mounted to said base plate and forming a cavity therewith;
a circuit carrier mounted on said base plate and in said cavity;
a plurality of separate, individual flexible circuit boards at most partially, but not completely, surrounding said circuit carrier, said flexible circuit boards forming conductor path carriers with conductor paths electrically connected with said circuit carrier and guided out of said housing for connection to said circuit carrier;
said flexible circuit boards being at least partly glued to said base plate by way of a liquid-resistant adhesive and sealed relative to said housing by way of at least one gasket element, to prevent liquid from penetrating into said
cavity, wherein said plurality of flexible circuit boards are four separate flexible circuit boards each carrying the conductor paths.
13. The control apparatus according to claim 12, which comprises bonding connections inside said housing connecting said conductor paths to respective contact points on said circuit carrier.
US11/658,775 2004-07-28 2005-04-29 Control apparatus, in particular a mechatronic transmission control device or engine control device Expired - Fee Related US7952885B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004036683.7 2004-07-28
DE102004036683A DE102004036683A1 (en) 2004-07-28 2004-07-28 Control device, in particular mechatronic transmission or engine control unit
DE102004036683 2004-07-28
PCT/EP2005/051956 WO2006010652A1 (en) 2004-07-28 2005-04-29 Control device, particularly a mechatronic transmission control device or engine control device

Publications (2)

Publication Number Publication Date
US20090002959A1 US20090002959A1 (en) 2009-01-01
US7952885B2 true US7952885B2 (en) 2011-05-31

Family

ID=34966933

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/658,775 Expired - Fee Related US7952885B2 (en) 2004-07-28 2005-04-29 Control apparatus, in particular a mechatronic transmission control device or engine control device

Country Status (8)

Country Link
US (1) US7952885B2 (en)
EP (1) EP1771318B1 (en)
JP (1) JP2008507836A (en)
KR (1) KR20070041730A (en)
CN (1) CN1993251A (en)
AT (1) ATE434546T1 (en)
DE (2) DE102004036683A1 (en)
WO (1) WO2006010652A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229863A1 (en) * 2006-07-19 2009-09-17 Continental Automotive Gmbh Conductor Carrier and Arrangement Comprising a Conductor Carrier
US20100012355A1 (en) * 2006-07-18 2010-01-21 Continental Automotive Gmbh Method for producing a flexible conductor carrier and arrangement comprising the flexible conductor carrier
US20100067202A1 (en) * 2006-11-07 2010-03-18 Continental Automotive Gmbh Electronics housing with standard interface
US20120175154A1 (en) * 2010-07-26 2012-07-12 Fumihiko Matsuda Flexible printed circuit board and method of manufacturing the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006029711B4 (en) * 2006-06-28 2018-10-18 Continental Automotive Gmbh support device
DE102006052458B4 (en) * 2006-11-07 2009-07-30 Continental Automotive Gmbh Electronics housing with new flexible printed circuit board technology
DE102006053407A1 (en) * 2006-11-13 2008-05-15 Siemens Ag Standardized electronics housing with modular contact partners
JP4946764B2 (en) * 2007-03-05 2012-06-06 Nok株式会社 Method for manufacturing seal structure
DE102007013617B4 (en) 2007-03-21 2023-06-22 Vitesco Technologies GmbH electronic component
DE102007013619B4 (en) 2007-03-21 2019-07-11 Continental Automotive Gmbh Electronic component with new flexible printed circuit board technology, method for its production and use of such a.
DE102007017532A1 (en) * 2007-04-13 2008-10-23 Continental Automotive Gmbh Method for producing a printed conductor structure on a metallic base plate
DE102007017531A1 (en) * 2007-04-13 2008-10-16 Continental Automotive Gmbh Method for producing a signal and potential distribution system for mechatronic modules
DE102007019096B4 (en) * 2007-04-23 2015-03-12 Continental Automotive Gmbh electronics housing
DE102007019092B4 (en) 2007-04-23 2015-03-12 Continental Automotive Gmbh Standardized electronics housing with contact partners
DE102007032535B4 (en) * 2007-07-12 2009-09-24 Continental Automotive Gmbh Electronic module for integrated mechatronic transmission control
DE102007042593B4 (en) 2007-09-07 2018-10-31 Continental Automotive Gmbh Module for integrated control electronics with simplified design
JP5503329B2 (en) * 2010-02-24 2014-05-28 富士通株式会社 Electronics
CN101907162A (en) * 2010-06-24 2010-12-08 联合汽车电子有限公司 Gear box controller and manufacture method thereof
DE102011083620A1 (en) * 2011-09-28 2013-03-28 Zf Friedrichshafen Ag Printed circuit board for control unit for transmission of vehicle, has seal portion that is attached to cover portion, for sealing the device region which is provided for mounting electronic components on main surface
DE102011085054B4 (en) 2011-10-21 2022-08-18 Robert Bosch Gmbh Control unit for a motor vehicle
DE102013215149A1 (en) * 2013-08-01 2015-02-19 Conti Temic Microelectronic Gmbh Multi-stage sealing system for use in a motor vehicle control unit
KR20150099295A (en) * 2014-02-21 2015-08-31 삼성전자주식회사 Electronic device including a physical key
DE102015208529B3 (en) * 2015-02-10 2016-08-04 Conti Temic Microelectronic Gmbh Electronic component and method for its manufacture
CN104730656A (en) * 2015-04-01 2015-06-24 苏州旭创科技有限公司 Optical module and manufacturing method thereof
DE102015208486A1 (en) * 2015-05-07 2016-11-10 Conti Temic Microelectronic Gmbh Electronic component and method for its manufacture

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038394A1 (en) 1990-12-01 1992-06-04 Bosch Gmbh Robert ARRANGEMENT FOR SEALING A LADDER THROUGH THE WALL OF A HOUSING
US5280413A (en) * 1992-09-17 1994-01-18 Ceridian Corporation Hermetically sealed circuit modules having conductive cap anchors
EP0708583A1 (en) 1994-10-21 1996-04-24 Robert Bosch Gmbh Electronic apparatus and its manufacture
US6300566B1 (en) 1998-03-13 2001-10-09 Siemens Aktiengesellschaft Electrical connection of a circuit carrier to a conductor-track carrier
EP1239710A2 (en) 2001-03-06 2002-09-11 Conti Temic microelectronic GmbH Electronic assembly
EP0972318B1 (en) 1997-04-02 2002-10-23 Siemens Aktiengesellschaft Electrical connection between a circuit support and a strip conductor support
US6570773B1 (en) 1999-02-24 2003-05-27 Siemens Aktiengesellschaft Control apparatus for an automobile
WO2003078211A1 (en) * 2002-03-16 2003-09-25 Conti Temic Microelectronic Gmbh Electronic subassembly for a motor vehicle
US7170011B2 (en) * 2003-09-08 2007-01-30 Kyocera Wireless Corp. System and method for modifying electrical characteristics
US7484419B2 (en) * 2006-01-23 2009-02-03 Denso Corporation Mounting structure of pressure sensor element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637626A1 (en) * 1996-09-16 1998-03-26 Bosch Gmbh Robert Flexible interconnect connection
DE19751095C1 (en) * 1997-11-18 1999-05-20 Siemens Ag Electrical connection arrangement e.g. for motor vehicle transmission housing
DE10100823C1 (en) * 2001-01-10 2002-02-28 Siemens Ag Sealed chamber for electronic control unit integrated into vehicle engine or gearbox, is based on dished panel with sealed, flexible printed circuit lead-in and adhered covering
DE10246090A1 (en) * 2002-03-16 2003-09-25 Conti Temic Microelectronic Electronic assembly for use in motor vehicles, comprises electronic circuit unit with at least one component, mounted on supporting body, and primary and secondary housing sections
DE20320315U1 (en) * 2003-10-31 2004-06-24 Leoni Bordnetz-Systeme Gmbh & Co Kg Foil conduction harness joining conduction paths of foil conduction harness e.g. for motor vehicle internal electronics, has conduction paths of branch line directly contacted with associated conduction paths of supply line

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737579B1 (en) 1990-12-01 2004-05-18 Robert Bosch Gmbh Arrangement for the sealed lead-through of a conductor through the wall of a housing
DE4038394A1 (en) 1990-12-01 1992-06-04 Bosch Gmbh Robert ARRANGEMENT FOR SEALING A LADDER THROUGH THE WALL OF A HOUSING
US5280413A (en) * 1992-09-17 1994-01-18 Ceridian Corporation Hermetically sealed circuit modules having conductive cap anchors
EP0708583A1 (en) 1994-10-21 1996-04-24 Robert Bosch Gmbh Electronic apparatus and its manufacture
DE4437664A1 (en) 1994-10-21 1996-04-25 Bosch Gmbh Robert Electrical device and process for its manufacture
EP0972318B1 (en) 1997-04-02 2002-10-23 Siemens Aktiengesellschaft Electrical connection between a circuit support and a strip conductor support
US6300566B1 (en) 1998-03-13 2001-10-09 Siemens Aktiengesellschaft Electrical connection of a circuit carrier to a conductor-track carrier
US6570773B1 (en) 1999-02-24 2003-05-27 Siemens Aktiengesellschaft Control apparatus for an automobile
DE10110620A1 (en) 2001-03-06 2002-09-26 Conti Temic Microelectronic Electronic assembly
EP1239710A2 (en) 2001-03-06 2002-09-11 Conti Temic microelectronic GmbH Electronic assembly
WO2003078211A1 (en) * 2002-03-16 2003-09-25 Conti Temic Microelectronic Gmbh Electronic subassembly for a motor vehicle
US7170011B2 (en) * 2003-09-08 2007-01-30 Kyocera Wireless Corp. System and method for modifying electrical characteristics
US7484419B2 (en) * 2006-01-23 2009-02-03 Denso Corporation Mounting structure of pressure sensor element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100012355A1 (en) * 2006-07-18 2010-01-21 Continental Automotive Gmbh Method for producing a flexible conductor carrier and arrangement comprising the flexible conductor carrier
US8220148B2 (en) * 2006-07-18 2012-07-17 Continental Automotive Gmbh Method for producing a flexible conductor carrier and arrangement comprising the flexible conductor carrier
US20090229863A1 (en) * 2006-07-19 2009-09-17 Continental Automotive Gmbh Conductor Carrier and Arrangement Comprising a Conductor Carrier
US8039754B2 (en) * 2006-07-19 2011-10-18 Continental Automotive Gmbh Conductor carrier and arrangement comprising a conductor carrier
US20100067202A1 (en) * 2006-11-07 2010-03-18 Continental Automotive Gmbh Electronics housing with standard interface
US8674220B2 (en) 2006-11-07 2014-03-18 Continental Automotive Gmbh Electronics housing with standard interface
US20120175154A1 (en) * 2010-07-26 2012-07-12 Fumihiko Matsuda Flexible printed circuit board and method of manufacturing the same
US9185802B2 (en) * 2010-07-26 2015-11-10 Nippon Mektron, Ltd. Flexible printed circuit board with component mounting section for mounting electronic component and flexible cables extending in different directions from the component mounting section, and method of manufacturing the same
US9655239B2 (en) 2010-07-26 2017-05-16 Nippon Mektron, Ltd. Flexible printed circuit board with component mounting section for mounting electronic component and flexible cable sections extending in different directions from the component mounting section
US10383224B2 (en) 2010-07-26 2019-08-13 Nippon Mektron, Ltd. Method of manufacturing flexible printed circuit board with component mounting section for mounting electronic component and flexible cable sections extending in different directions from the component mounting section

Also Published As

Publication number Publication date
WO2006010652A1 (en) 2006-02-02
JP2008507836A (en) 2008-03-13
DE502005007575D1 (en) 2009-08-06
CN1993251A (en) 2007-07-04
EP1771318B1 (en) 2009-06-24
ATE434546T1 (en) 2009-07-15
EP1771318A1 (en) 2007-04-11
DE102004036683A1 (en) 2006-03-30
US20090002959A1 (en) 2009-01-01
KR20070041730A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US7952885B2 (en) Control apparatus, in particular a mechatronic transmission control device or engine control device
US7749134B2 (en) Control module
US8111527B2 (en) Standardized support element with integrated interface
US6570773B1 (en) Control apparatus for an automobile
US7859852B2 (en) Controller, in particular for motor vehicle transmissions
US20080019106A1 (en) Control Module
US8089773B2 (en) Electronics housing with open conductor track regions and a contact partner formed as a clip
US10470325B2 (en) Media-tight control device for a motor vehicle
US8004849B2 (en) Control unit with flexible circuit board
US20180206355A1 (en) Media-tight control device for a motor vehicle and method for producing the control device
US6350953B1 (en) Method for potting a populated assembly using an anti-vibration potting compound, populated assembly and controller having a populated assembly
WO2011125645A1 (en) Vehicle-mounted electronic device
KR20130128410A (en) Control module and method for producing same
GB2331409A (en) Housing for electronic control unit
US6086043A (en) Valve control apparatus with three-dimensional circuit board using MID technology
US9637073B2 (en) Encapsulated control module for a motor vehicle
US8059407B2 (en) Control device for a motor vehicle
US8674220B2 (en) Electronics housing with standard interface
JP2006522575A (en) Electrical connection device
US9769945B2 (en) Covering device for a contacting portion of a printed circuit board, control system for a mechatronic module and method for assembling a control system
US20010005048A1 (en) Circuit board arrangement
US8220148B2 (en) Method for producing a flexible conductor carrier and arrangement comprising the flexible conductor carrier
US8300415B2 (en) Electronic component
US20230029329A1 (en) Plug-in connector device and method for producing a plug-in connector device of this kind
JP2019530980A (en) Method and apparatus for manufacturing an electronic assembly, particularly for a transmission control module

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINENTAL AUTOMOTIVE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS AKTIENGESELLSCHAFT;REEL/FRAME:025104/0787

Effective date: 20100915

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOIBL, JOSEF;SMIRRA, KARL;REEL/FRAME:026020/0170

Effective date: 20061103

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20190531