US7562242B2 - Electronic apparatus having electric power saving function - Google Patents

Electronic apparatus having electric power saving function Download PDF

Info

Publication number
US7562242B2
US7562242B2 US11/362,765 US36276506A US7562242B2 US 7562242 B2 US7562242 B2 US 7562242B2 US 36276506 A US36276506 A US 36276506A US 7562242 B2 US7562242 B2 US 7562242B2
Authority
US
United States
Prior art keywords
electric power
power saving
electronic apparatus
backlight
modes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/362,765
Other versions
US20060206734A1 (en
Inventor
Masanori Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORION ELECTRIC Co Ltd
Orion Electric Co Ltd
Magnolia Licensing LLC
Original Assignee
Orion Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Electric Co Ltd filed Critical Orion Electric Co Ltd
Assigned to ORION ELECTRIC COMPANY LTD. reassignment ORION ELECTRIC COMPANY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORI, MASANORI
Publication of US20060206734A1 publication Critical patent/US20060206734A1/en
Application granted granted Critical
Publication of US7562242B2 publication Critical patent/US7562242B2/en
Assigned to MAGNOLIA LICENSING LLC reassignment MAGNOLIA LICENSING LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THOMSON LICENSING S.A.S.
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • G06F1/3218Monitoring of peripheral devices of display devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0606Manual adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0613The adjustment depending on the type of the information to be displayed
    • G09G2320/062Adjustment of illumination source parameters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/022Power management, e.g. power saving in absence of operation, e.g. no data being entered during a predetermined time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/485End-user interface for client configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to an electronic apparatus including display means for making a display in accordance with a command from control means.
  • the present invention relates to an electronic apparatus having an electric power saving function, the electronic apparatus including a liquid crystal display unit for illuminating an object with backlight as the display means.
  • a personal computer includes a power supply management function for, in the case where no change occurs with a video image signal, stopping power supply to display means such as a liquid crystal display unit or a CRT (Cathode Ray Tube) to establish a standby state.
  • display means such as a liquid crystal display unit or a CRT (Cathode Ray Tube)
  • CRT Cathode Ray Tube
  • a liquid crystal display unit configured to reduce brightness of a backlight based on whether a video image displayed on the liquid crystal display unit is a still image or a moving image.
  • a fan heater including a liquid crystal display unit having a backlight function, the fan heater supplying hot air into a room, the fan heater being configured to reduce brightness of a light source of the backlight more significantly than during normal operation, while being set in a wakeup timer operation standby mode and a sleep timer operation mode.
  • a variety of electronic apparatuses activate an electric power saving function in the case where a no-signal state has continued for a predetermined period of time.
  • Conditions for the electric power saving function to be activated variously depend on functions of each of the electronic apparatuses.
  • some composite mechanisms including a plurality of functions for example, some of the composite type television image receivers, each of which has a liquid crystal display unit as display means and which includes a storing and reproducing unit for carrying out reproduction and/or recording of an information recording medium such as a DVD or a hard disk, have a plurality of electric power saving functions which are different depending on their respective functions.
  • the present invention has been made to solve the above-described problems. It is an object of the present invention to provide an electronic apparatus having an electric power saving function for, in the case where a plurality of electronic power saving items are set to ON/OFF, and then, an electric power saving function is selected, enabling a user to select a desired electric power saving function with a simple operation.
  • an electronic apparatus having an electric power saving function, including: display means for making a display in accordance with a command from control means; power supply control means for restricting or shutting down power supply to at least the display means during an electric power saving mode; and storage means for storing the electric power saving mode, wherein a plurality of electric power saving modes classified into groups by combining a plurality of electric power saving items are stored in the storage means, and one of the plurality of the electric power saving modes is controlled to be set to ON/OFF, thereby controlling a plurality of the electric power saving items included in the electric power saving modes to be set to ON/OFF all together.
  • the electronic apparatus having an electric power saving function according to the first aspect, wherein each of the electric power saving items in the electric power saving modes classified into groups can be controlled to be set to ON/OFF individually.
  • the electronic apparatus having an electric power saving function according to the first or second aspect, comprising a function for serially numbering the electric power saving modes classified into groups and, when a high order electric power saving mode is set to ON, turning ON a low order electric power saving mode in conformity with the ON setting.
  • the electronic apparatus having an electric power saving function according to any one of the first to third aspects, comprising: a warning display function for, when any one of the electric power saving modes classified into groups is selected, displaying a disadvantage attained when the electric power saving mode has been selected; and an electric power saving effect display function for indicating an electric power saving effect according to each of the electric power saving modes.
  • the electronic apparatus having an electric power saving function according to any one of the first to fourth aspects, wherein the display means is a liquid crystal display unit for use in a television receiver or a personal computer, and includes power supply control for a backlight which illuminates the liquid crystal display unit during the electric power saving mode.
  • the display means is a liquid crystal display unit for use in a television receiver or a personal computer, and includes power supply control for a backlight which illuminates the liquid crystal display unit during the electric power saving mode.
  • an electric power saving mode can be selected very simply.
  • a variety of electric power saving items exists, and there is no need for making a selection for each electric power saving item.
  • an electric power saving mode can be efficiently selected and excellent operability is achieved.
  • each of electric power saving items in electric power saving modes classified into groups is controlled to be set to ON/OFF individually, thereby making it possible to freely select an electric power saving mode according a user's preference or habit.
  • electric power saving modes in the high order group are set to ON, and concurrently, electric power saving modes in the low order group are also set to ON, thus making it possible to select electric power saving modes more easily.
  • power consumption of a liquid crystal display unit can be reduced by controlling a backlight for illuminating the liquid crystal display unit during an electric power saving mode.
  • FIG. 1 is a block diagram depicting a schematic configuration of a whole electronic apparatus according to an embodiment of the present invention
  • FIG. 2 is a block diagram depicting an outline of a microcomputer internal processing operation of the same electronic apparatus
  • FIG. 3 is a front view showing a function setting screen of the same electronic apparatus
  • FIG. 4 is a front view showing an electric power saving function screen of the same electronic apparatus
  • FIG. 5 is a front view showing a detail setting screen of each group of the same electronic apparatus, wherein FIG. 5 ( a ) shows a detail setting screen of group 1; FIG. 5 ( b ) shows a detail setting screen of group 2; and FIG. 5 ( c ) shows a detail setting screen of group 3;
  • FIG. 6 is a front view showing a warning display screen of the same electronic apparatus
  • FIG. 7 is a front view showing an electric power saving effect display screen during an electric power saving mode of the same electronic apparatus
  • FIG. 8 is a flowchart showing control of a backlight for each group during an electric power saving mode of the same electronic apparatus
  • FIG. 9 is a flowchart showing control of a backlight when no signal is supplied, of the same electronic apparatus.
  • FIG. 10 is a flow chart showing control of a backlight during DVD/CD reproduction of the same electronic apparatus.
  • FIG. 11 is a flow chart showing control of a backlight during a PC mode of the same electronic apparatus.
  • a composite type electronic apparatus including a liquid crystal display unit (hereinafter, simply referred to as an LCD) as display means, the electronic apparatus having a storing and reproducing unit for a DVD or a HDD (hard disk drive) and a television image receiver integrated therewith.
  • LCD liquid crystal display unit
  • HDD hard disk drive
  • a composite type electronic apparatus 1 includes: an analog tuner and AV block 2 which processes an analog system signal; a DVD block 3 as a storing and reproducing unit which processes a signal from a DVD; a digital tuner block 4 which processes a signal from a digital tuner; an HDMI (High Definition Multimedia Interface) block 5 which carries out a process for transmitting and receiving video image, voice, and control signals all together; a component block 6 which processes a component signal (such as Y, U, and V signals and S terminal signal); and a PC block 7 which processes a signal from a PC, wherein analog signals from the analog tuner and AV block 2 and the DVD block 3 are outputted to a SCALER IC 8 ; signals from the HDMI block 5 , the component block 6 , and the PC block 7 are outputted to an A/D IC 9 , and the outputted signals are A/D converted; and the A/D converted signals are outputted to the SCALER IC 8 .
  • the resulting signals are outputted from the SCALER
  • the composite type electronic apparatus 1 mainly consists of: an antenna terminal 15 a to which a broadcast signal from an antenna is inputted, the antenna terminal 15 a serving as an external connection terminal; an AV terminal 15 b to which a video image and voice signal from an AV apparatus such as a DVD player or a hard disk drive is inputted; a component terminal 15 c to which a high image quality component signal (such as Y, U, and V signals or an S terminal signal) is inputted; an HDMI terminal 15 d to which a digital signal is inputted; and a PCD-SUB terminal 15 e to which each of R, G, and B signals from a personal computer (hereinafter, simply referred to as a PC) is inputted, wherein signals from these terminals 15 a to 15 e are outputted from a video image detecting section 16 to the microcomputer 10 .
  • a PC PCD-SUB terminal 15 e to which each of R, G, and B signals from a personal computer
  • the microcomputer 10 has a control section 17 , a command section 18 , a memory section 19 , and a counter section 20 , wherein the microcomputer 10 carries out a video image adjusting process such as color demodulation, contrast, and color density, and carries out a processing operation for displaying a video image on the LCD 12 .
  • the microcomputer 10 controls a backlight control section 26 of an LCD panel 25 to control brightness of the LCD 12 .
  • this microcomputer 10 carries out a processing operation in response to a remote control operation by the command section 18 using a key input signal from a remote controller 30 or a main body key (not shown) which is input means by which an input operation is made by a viewer.
  • the memory section 19 stores ON/OFF information for an electric power saving function and light dimmer information or the like for setting brightness of the LCD 12 according to each electric power saving mode, depending on a plurality of the set electric power saving modes.
  • the counter section 20 carries out timer counting when the electric power saving function is operated.
  • a signal from a DVD microcomputer 32 which controls a DVD drive section 31 is outputted to the microcomputer 10 , and the electric power saving mode is controlled in the DVD drive section 31 .
  • Reference numeral 35 in FIG. 2 denotes a power supply section which supplies power to the microcomputer 10 .
  • the memory section 19 stores a plurality of electric power saving modes classified into groups by combining a plurality of electric power saving items in the television image receiver, the DVD, and the LCD 12 , and the microcomputer 10 carries out an ON/OFF control of one of the plurality of electric power saving modes, thereby making it possible to carry out the ON/OFF control of a plurality of electric power saving items included in the electric power saving mode all together.
  • a composite type electronic apparatus formed by combining a storing and reproducing unit such as a DVD or a hard disk drive and a television image receiver.
  • Group 1 includes electric power saving modes which include electric power saving items such as: (1) when an RF signal is received, a video image signal input is eliminated due to the end of a broadcast signal or connector disconnection, and then, a dimming level of the backlight 13 is lowered to zero for 15 minutes until auto shutdown works; (2) in the case where no input occurs at the time of external input (AV, S, component, and PC), the dimming level of the backlight 13 is lowered to zero until auto shutdown works; (3) if a state in which no change is observed with a video image signal continues for 15 minutes, the dimming level of the backlight 13 is lowered to zero, and, if this state continues for further 15 minutes, auto shutdown works; and (4) if no input occurs from a main body key and the remote controller 30 for three hours, auto shutdown works.
  • electric power saving modes which include electric power saving items such as: (1) when an RF signal is received, a video image signal input is eliminated due to the end of a broadcast signal or connector disconnection, and then, a dimming
  • Group 2 includes electric power saving modes which include electric power saving items such as: (1) when an RF signal is received, if a noise screen (or a blue background screen) continues for one minute, the backlight 13 is turned OFF, and further, auto shutdown works in five minutes after the turn OFF; (2) if no input state continues for one minute at the time of an external input (AV, S, component, or PC), the backlight 13 is turned OFF, and further, auto shutdown works in five minutes after the turn OFF; (3) when a DVD logo screen is displayed, the dimming level of the backlight 13 at the time of CD reproduction is lowered by half; (4) when a sleep mode is set, the dimming level of the backlight 13 is automatically lowered by half, and the dimming level of the backlight 13 is further lowered in response to a timer setting time.
  • electric power saving modes which include electric power saving items such as: (1) when an RF signal is received, if a noise screen (or a blue background screen) continues for one minute, the backlight 13 is turned OFF
  • the dimming level of the backlight 13 is lowered to zero; (5) at the time of each of three picture modes, for example, sports, standard, and movie modes, while adjustment of the brightness of each picture mode is normally made only by setting of brightness/contrast, the dimming level of the backlight 13 is added to work with for the adjustment.
  • the dimming level in the sports mode, is set to high (in steps of +12 to +16); in the standard mode, the dimming level is set to middle (in steps of +5 to +8); and in the movie mode, the dimming level is set to minimum (0 step); (6) at the time of PC input, the dimming level is set to middle (in steps of +8) from the start; and (7) with respect to a clock function, from AM10:00 to PM4:00, the dimming level of the backlight 13 is set to middle, and at the other time intervals, no dimming of the backlight 13 is carried out.
  • Group 3 includes electric power saving modes which include electric power saving items such as: (1) frequency of an input system being used by a user is automatically counted, and a power supply required for an input system normally used with less frequency is turned OFF; (2) an input system not used by a user is manually set, and a power supply exclusively used for the input system thus set as not used by the user is turned OFF; and (3) a power supply is turned ON only at a circuit portion required for a currently used input system, and power supplies of other unnecessary circuit portions are turned OFF.
  • the classified groups of these electric power saving modes are numbered for small, middle, and large reduction effect of power consumption. That is, the reduction effect of power consumption increases as the group number increases from 1 to 2 and 3.
  • a function setting screen 40 is displayed as shown in FIG. 3 .
  • the setting items such as 1. individual setting, 2. multilevel setting, and 3. manual setting, are displayed.
  • a viewer selects a desired setting item by a selection key such as a cursor key.
  • an electric power saving function screen 41 is displayed as shown in FIG. 4 so that ON/OFF can be selected for each of the classified groups of electric power saving modes.
  • 2. multilevel setting is generally turned OFF. However, when 2.
  • multilevel setting is set to ON, and when a high order group is set to ON, electric power saving modes in the low order groups are automatically set to ON. That is, when group 2 is selected, group 1 is automatically set to ON. When group 3 is selected., all groups 1 to 3 are automatically set to ON.
  • 3. manual setting is selected, the screen is changed to a detail setting screen 42 displaying the contents of setting items of each of groups 1 to 3, as shown in FIGS. 5 ( a ) to 5 ( c ).
  • ON/OFF can be selected individually for each of the groups 1 to 3 or for the detail settings in the groups.
  • a selection can be made as to whether or not each of the electric power saving items is displayed in the electric power saving mode of the groups 1 to 3.
  • the screen is changed to a warning display screen 43 according to the selected one of groups 1 to 3, as shown in FIG. 6 . Then, a disadvantage attained when that electric power saving mode has been selected is displayed, and then, a current mode is changed to arbitrary one of the electric power saving modes classified into groups on the warning display screen 43 . Further, in the case where a disadvantage displayed on the warning display screen 43 is recognized, a current screen is changed to a display screen 44 indicating an electric power saving effect according to each electric power saving mode as shown in FIG. 7 .
  • This display screen 44 makes a graphic display notifying the user that 10% electric power saving is possible, for example.
  • step S 1 When a composite type electronic apparatus 1 is powered ON, it is judged whether or not an electric power saving function is set to ON (step S 1 ).
  • the electric power saving function is deactivated if it is set to OFF (step S 2 ).
  • this function In the case where this function is set to ON, it is judged which one of groups 1 to 3 is selected (step S 3 ).
  • step S 3 In the case where group 1 is selected, it is judged whether one set of electric power saving items of group 1 is set all together or one or more of the electric saving items thereof are set individually on an electric power saving function screen 41 by a user.
  • the electric power saving items (1) to (4) of group 1 are set to ON all together.
  • the electric power saving items (1) to (4) of group 1 are set to ON all together.
  • FIG. 9 shows control of the backlight 13 when no signal is applied.
  • a video image signal is generated (step S 10 ).
  • the backlight 13 is illuminated (step S 11 ).
  • an electric power saving function is set to ON (step S 12 ).
  • a time interval at which the video image signal is not generated is measured by means of a counter section 20 .
  • a dimming level of the backlight 13 is decreased to the preset brightness or the backlight 13 is shut down (steps S 13 , S 14 , and S 15 ).
  • the backlight 13 is illuminated (step S 11 ).
  • a processing operation similar to that in the flow chart shown in FIG. 9 is carried out.
  • the dimming level of the backlight 13 is decreased to the preset brightness or the backlight 13 is shut down (steps S 20 , S 22 , S 23 , S 24 , and S 25 ).
  • the backlight 13 is illuminated (step S 21 ).
  • step S 30 it is judged whether or not a DVD/CD reproducing mode is established. In the case where the DVD/CD reproducing mode is not established, the dimming level of the backlight 13 does not change (step S 31 ).
  • step S 32 it is judged whether or not the electric power saving function is set to ON (step S 32 ). In the case where the function is set to ON, the dimming level is changed to the brightness preset by a user or the backlight 13 is shut down (step S 33 ). In the case where this function is set to OFF, the dimming level of the backlight 13 does not change (step S 31 ).
  • a plurality of electric power saving modes classified into groups by combining a plurality of electric power saving items are stored in the memory section 19 , and one of the plurality of electric power saving modes is controlled to be set to ON/OFF, whereby there is no need for a user to individually select the plurality of electric power saving items, respectively, and ON/OFF settings can be provided all together for each group.
  • an electric power saving mode can be selected very easily.
  • the composite type electronic apparatus a variety of electric power saving items exist, and thus, the electric power saving mode can be efficiently selected, and excellent operability is achieved.
  • an electric power saving mode of a low order group is set to ON, thereby making it possible to select an electric power saving mode more easily.
  • a manual setting only the electric power saving functions desired by the user can be set to ON, and the electric power saving mode according to the user's preference or habit can be freely selected.
  • the electric power saving function is selected, if any one of groups 1 to 3 is selected so as to be set to ON, a current screen is changed to a warning display screen 43 according to the selected groups 1 to 3.
  • this electric power saving effect may be visually displayed by a pie chart or a barcode and the like. Further, this effect may be merely displayed by numerical data or the like.

Abstract

A memory section stores a plurality of electric power saving modes classified into groups by combining a plurality of electric power saving items in a television image receiver, a DVD or an LCD. Microcomputer controls one of the plurality of the electric power saving modes to be set to ON/OFF, thereby making it possible to ON/OFF control a plurality of electric power saving items included in that electric power saving mode includes all together. In accordance with this electric power saving mode, a dimming level of a backlight is decreased to a preset brightness or the backlight is automatically shut down.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electronic apparatus including display means for making a display in accordance with a command from control means. In particular, the present invention relates to an electronic apparatus having an electric power saving function, the electronic apparatus including a liquid crystal display unit for illuminating an object with backlight as the display means.
2. Description of the Related Art
Conventionally, a personal computer includes a power supply management function for, in the case where no change occurs with a video image signal, stopping power supply to display means such as a liquid crystal display unit or a CRT (Cathode Ray Tube) to establish a standby state. Conventionally, there have been proposed a variety of techniques relating to power supply management in such a liquid crystal display unit. For example, in Japanese Patent Application Laid-open Nos. 2002-123223 and 2003-271106 or the like, there is proposed a liquid crystal display unit configured to reduce brightness of a backlight based on whether a video image displayed on the liquid crystal display unit is a still image or a moving image.
In the meantime, in recent years, there is a demand for energy saving. An electric power saving function is widely employed for a variety of electronic apparatuses as well as a personal computer. For example, in Japanese Patent Application Laid-open No. 09-139924, there is proposed a video image display unit for carrying out CD ROM reproduction with a music CD and a video image display in which, in the case where a CD to be reproduced is a music CD, power supply of a display system is automatically turned OFF. In addition, in Japanese Patent Application Laid-open No. 2003-050053, there is proposed a fan heater including a liquid crystal display unit having a backlight function, the fan heater supplying hot air into a room, the fan heater being configured to reduce brightness of a light source of the backlight more significantly than during normal operation, while being set in a wakeup timer operation standby mode and a sleep timer operation mode.
As described above, a variety of electronic apparatuses activate an electric power saving function in the case where a no-signal state has continued for a predetermined period of time. Conditions for the electric power saving function to be activated variously depend on functions of each of the electronic apparatuses. Thus, some composite mechanisms including a plurality of functions, for example, some of the composite type television image receivers, each of which has a liquid crystal display unit as display means and which includes a storing and reproducing unit for carrying out reproduction and/or recording of an information recording medium such as a DVD or a hard disk, have a plurality of electric power saving functions which are different depending on their respective functions. Thus, for example, when a user selects a plurality of electric power saving functions, there has been a need for selecting the items on a one by one basis, and there has been inconvenience and a time interval for providing settings so that the user can select a desired electric power saving function. In addition, there has been a problem that operability is impaired, and the user cannot easily select one's desired electric power saving function.
SUMMARY OF THE INVENTION
The present invention has been made to solve the above-described problems. It is an object of the present invention to provide an electronic apparatus having an electric power saving function for, in the case where a plurality of electronic power saving items are set to ON/OFF, and then, an electric power saving function is selected, enabling a user to select a desired electric power saving function with a simple operation.
According to a first aspect of the present invention, there is provided an electronic apparatus having an electric power saving function, including: display means for making a display in accordance with a command from control means; power supply control means for restricting or shutting down power supply to at least the display means during an electric power saving mode; and storage means for storing the electric power saving mode, wherein a plurality of electric power saving modes classified into groups by combining a plurality of electric power saving items are stored in the storage means, and one of the plurality of the electric power saving modes is controlled to be set to ON/OFF, thereby controlling a plurality of the electric power saving items included in the electric power saving modes to be set to ON/OFF all together.
According to a second aspect of the present invention, there is provided the electronic apparatus having an electric power saving function according to the first aspect, wherein each of the electric power saving items in the electric power saving modes classified into groups can be controlled to be set to ON/OFF individually.
According to a third aspect of the present invention, there is provided the electronic apparatus having an electric power saving function according to the first or second aspect, comprising a function for serially numbering the electric power saving modes classified into groups and, when a high order electric power saving mode is set to ON, turning ON a low order electric power saving mode in conformity with the ON setting.
According to a fourth aspect of the present invention, there is provided the electronic apparatus having an electric power saving function according to any one of the first to third aspects, comprising: a warning display function for, when any one of the electric power saving modes classified into groups is selected, displaying a disadvantage attained when the electric power saving mode has been selected; and an electric power saving effect display function for indicating an electric power saving effect according to each of the electric power saving modes.
According to a fifth aspect of the present invention, there is provided the electronic apparatus having an electric power saving function according to any one of the first to fourth aspects, wherein the display means is a liquid crystal display unit for use in a television receiver or a personal computer, and includes power supply control for a backlight which illuminates the liquid crystal display unit during the electric power saving mode.
With the electronic apparatus having an electric power saving function according to the first aspect of the present invention, there is no need for a user to individually select a plurality of electric power saving items, respectively, and the user can turn ON/OFF for each group all together. Thus, an electric power saving mode can be selected very simply. In particular, in a composite type electronic apparatus, a variety of electric power saving items exists, and there is no need for making a selection for each electric power saving item. Thus, an electric power saving mode can be efficiently selected and excellent operability is achieved.
With the electronic apparatus having an electric power saving function according to the second aspect of the present invention, each of electric power saving items in electric power saving modes classified into groups is controlled to be set to ON/OFF individually, thereby making it possible to freely select an electric power saving mode according a user's preference or habit.
With the electronic apparatus having an electric power saving function according to the third aspect of the present invention, electric power saving modes in the high order group are set to ON, and concurrently, electric power saving modes in the low order group are also set to ON, thus making it possible to select electric power saving modes more easily.
With the electronic apparatus having an electric power saving function according to the fourth aspect of the present invention, when a user has selected any of the electric power saving modes classified into groups, disadvantage and electric power saving effect in that power saving mode are displayed, and the user can select a desired item after considering these disadvantage and effect.
With the electronic apparatus having an electric power saving function according to the fifth aspect of the present invention, power consumption of a liquid crystal display unit can be reduced by controlling a backlight for illuminating the liquid crystal display unit during an electric power saving mode.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram depicting a schematic configuration of a whole electronic apparatus according to an embodiment of the present invention;
FIG. 2 is a block diagram depicting an outline of a microcomputer internal processing operation of the same electronic apparatus;
FIG. 3 is a front view showing a function setting screen of the same electronic apparatus;
FIG. 4 is a front view showing an electric power saving function screen of the same electronic apparatus;
FIG. 5 is a front view showing a detail setting screen of each group of the same electronic apparatus, wherein FIG. 5 (a) shows a detail setting screen of group 1; FIG. 5 (b) shows a detail setting screen of group 2; and FIG. 5 (c) shows a detail setting screen of group 3;
FIG. 6 is a front view showing a warning display screen of the same electronic apparatus;
FIG. 7 is a front view showing an electric power saving effect display screen during an electric power saving mode of the same electronic apparatus;
FIG. 8 is a flowchart showing control of a backlight for each group during an electric power saving mode of the same electronic apparatus;
FIG. 9 is a flowchart showing control of a backlight when no signal is supplied, of the same electronic apparatus;
FIG. 10 is a flow chart showing control of a backlight during DVD/CD reproduction of the same electronic apparatus; and
FIG. 11 is a flow chart showing control of a backlight during a PC mode of the same electronic apparatus.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Hereinafter, preferred embodiments which are the best mode for carrying out the present invention will be described with reference to FIGS. 1 to 11. Of course, the present invention can be easily applied to embodiments other than the described embodiment without departing from the spirit of the invention.
In the present embodiment, there is shown a case where the present invention is applied to a composite type electronic apparatus including a liquid crystal display unit (hereinafter, simply referred to as an LCD) as display means, the electronic apparatus having a storing and reproducing unit for a DVD or a HDD (hard disk drive) and a television image receiver integrated therewith. A whole equipment configuration will be described with reference to a block diagram of FIG. 1. A composite type electronic apparatus 1 includes: an analog tuner and AV block 2 which processes an analog system signal; a DVD block 3 as a storing and reproducing unit which processes a signal from a DVD; a digital tuner block 4 which processes a signal from a digital tuner; an HDMI (High Definition Multimedia Interface) block 5 which carries out a process for transmitting and receiving video image, voice, and control signals all together; a component block 6 which processes a component signal (such as Y, U, and V signals and S terminal signal); and a PC block 7 which processes a signal from a PC, wherein analog signals from the analog tuner and AV block 2 and the DVD block 3 are outputted to a SCALER IC 8; signals from the HDMI block 5, the component block 6, and the PC block 7 are outputted to an A/D IC 9, and the outputted signals are A/D converted; and the A/D converted signals are outputted to the SCALER IC 8. The resulting signals are outputted from the SCALER IC 8 to a microcomputer 10 which is power supply control means. A power block 11 is controlled by means of the microcomputer 10 and a backlight 13 of an LCD 12 is controlled.
Now, an outline of internal processing of the microcomputer 10 will be described with reference to a block diagram of FIG. 2. The composite type electronic apparatus 1 mainly consists of: an antenna terminal 15 a to which a broadcast signal from an antenna is inputted, the antenna terminal 15 a serving as an external connection terminal; an AV terminal 15 b to which a video image and voice signal from an AV apparatus such as a DVD player or a hard disk drive is inputted; a component terminal 15 c to which a high image quality component signal (such as Y, U, and V signals or an S terminal signal) is inputted; an HDMI terminal 15 d to which a digital signal is inputted; and a PCD-SUB terminal 15 e to which each of R, G, and B signals from a personal computer (hereinafter, simply referred to as a PC) is inputted, wherein signals from these terminals 15 a to 15 e are outputted from a video image detecting section 16 to the microcomputer 10. The microcomputer 10 has a control section 17, a command section 18, a memory section 19, and a counter section 20, wherein the microcomputer 10 carries out a video image adjusting process such as color demodulation, contrast, and color density, and carries out a processing operation for displaying a video image on the LCD 12. The microcomputer 10 controls a backlight control section 26 of an LCD panel 25 to control brightness of the LCD 12. In addition, this microcomputer 10 carries out a processing operation in response to a remote control operation by the command section 18 using a key input signal from a remote controller 30 or a main body key (not shown) which is input means by which an input operation is made by a viewer. The memory section 19 stores ON/OFF information for an electric power saving function and light dimmer information or the like for setting brightness of the LCD 12 according to each electric power saving mode, depending on a plurality of the set electric power saving modes. The counter section 20 carries out timer counting when the electric power saving function is operated. A signal from a DVD microcomputer 32 which controls a DVD drive section 31 is outputted to the microcomputer 10, and the electric power saving mode is controlled in the DVD drive section 31. Reference numeral 35 in FIG. 2 denotes a power supply section which supplies power to the microcomputer 10.
The memory section 19 stores a plurality of electric power saving modes classified into groups by combining a plurality of electric power saving items in the television image receiver, the DVD, and the LCD 12, and the microcomputer 10 carries out an ON/OFF control of one of the plurality of electric power saving modes, thereby making it possible to carry out the ON/OFF control of a plurality of electric power saving items included in the electric power saving mode all together. For example, in the present embodiment, there is a composite type electronic apparatus formed by combining a storing and reproducing unit such as a DVD or a hard disk drive and a television image receiver. Group 1 includes electric power saving modes which include electric power saving items such as: (1) when an RF signal is received, a video image signal input is eliminated due to the end of a broadcast signal or connector disconnection, and then, a dimming level of the backlight 13 is lowered to zero for 15 minutes until auto shutdown works; (2) in the case where no input occurs at the time of external input (AV, S, component, and PC), the dimming level of the backlight 13 is lowered to zero until auto shutdown works; (3) if a state in which no change is observed with a video image signal continues for 15 minutes, the dimming level of the backlight 13 is lowered to zero, and, if this state continues for further 15 minutes, auto shutdown works; and (4) if no input occurs from a main body key and the remote controller 30 for three hours, auto shutdown works.
Group 2 includes electric power saving modes which include electric power saving items such as: (1) when an RF signal is received, if a noise screen (or a blue background screen) continues for one minute, the backlight 13 is turned OFF, and further, auto shutdown works in five minutes after the turn OFF; (2) if no input state continues for one minute at the time of an external input (AV, S, component, or PC), the backlight 13 is turned OFF, and further, auto shutdown works in five minutes after the turn OFF; (3) when a DVD logo screen is displayed, the dimming level of the backlight 13 at the time of CD reproduction is lowered by half; (4) when a sleep mode is set, the dimming level of the backlight 13 is automatically lowered by half, and the dimming level of the backlight 13 is further lowered in response to a timer setting time. For example, in the case where the setting time is set to 60 minutes or more, when the remaining time reduces to ½ of the setting time, the dimming level of the backlight 13 is lowered to zero; (5) at the time of each of three picture modes, for example, sports, standard, and movie modes, while adjustment of the brightness of each picture mode is normally made only by setting of brightness/contrast, the dimming level of the backlight 13 is added to work with for the adjustment. As a specific example, in the sports mode, the dimming level is set to high (in steps of +12 to +16); in the standard mode, the dimming level is set to middle (in steps of +5 to +8); and in the movie mode, the dimming level is set to minimum (0 step); (6) at the time of PC input, the dimming level is set to middle (in steps of +8) from the start; and (7) with respect to a clock function, from AM10:00 to PM4:00, the dimming level of the backlight 13 is set to middle, and at the other time intervals, no dimming of the backlight 13 is carried out.
Group 3 includes electric power saving modes which include electric power saving items such as: (1) frequency of an input system being used by a user is automatically counted, and a power supply required for an input system normally used with less frequency is turned OFF; (2) an input system not used by a user is manually set, and a power supply exclusively used for the input system thus set as not used by the user is turned OFF; and (3) a power supply is turned ON only at a circuit portion required for a currently used input system, and power supplies of other unnecessary circuit portions are turned OFF. The classified groups of these electric power saving modes are numbered for small, middle, and large reduction effect of power consumption. That is, the reduction effect of power consumption increases as the group number increases from 1 to 2 and 3.
In these electric power saving modes, when a user supplies a display command via the remote controller 30, and, for example, a menu key is pressed, a function setting screen 40 is displayed as shown in FIG. 3. On the function setting screen 40, the setting items such as 1. individual setting, 2. multilevel setting, and 3. manual setting, are displayed. A viewer selects a desired setting item by a selection key such as a cursor key. When 1. individual setting is selected, an electric power saving function screen 41 is displayed as shown in FIG. 4 so that ON/OFF can be selected for each of the classified groups of electric power saving modes. 2. multilevel setting is generally turned OFF. However, when 2. multilevel setting is set to ON, and when a high order group is set to ON, electric power saving modes in the low order groups are automatically set to ON. That is, when group 2 is selected, group 1 is automatically set to ON. When group 3 is selected., all groups 1 to 3 are automatically set to ON. When 3. manual setting is selected, the screen is changed to a detail setting screen 42 displaying the contents of setting items of each of groups 1 to 3, as shown in FIGS. 5 (a) to 5 (c). Here, ON/OFF can be selected individually for each of the groups 1 to 3 or for the detail settings in the groups. In addition, a selection can be made as to whether or not each of the electric power saving items is displayed in the electric power saving mode of the groups 1 to 3. In addition, when a selection is made so as to turn ON any of groups 1 to 3, the screen is changed to a warning display screen 43 according to the selected one of groups 1 to 3, as shown in FIG. 6. Then, a disadvantage attained when that electric power saving mode has been selected is displayed, and then, a current mode is changed to arbitrary one of the electric power saving modes classified into groups on the warning display screen 43. Further, in the case where a disadvantage displayed on the warning display screen 43 is recognized, a current screen is changed to a display screen 44 indicating an electric power saving effect according to each electric power saving mode as shown in FIG. 7. This display screen 44 makes a graphic display notifying the user that 10% electric power saving is possible, for example.
Now, an electric power saving mode in the present embodiment will be described with reference to a flow chart shown in FIG. 8. When a composite type electronic apparatus 1 is powered ON, it is judged whether or not an electric power saving function is set to ON (step S1). The electric power saving function is deactivated if it is set to OFF (step S2). In the case where this function is set to ON, it is judged which one of groups 1 to 3 is selected (step S3). In the case where group 1 is selected, it is judged whether one set of electric power saving items of group 1 is set all together or one or more of the electric saving items thereof are set individually on an electric power saving function screen 41 by a user. When the electric power saving items are set all together, the electric power saving items (1) to (4) of group 1 are set to ON all together. When one or more of the electric saving items are set individually, only the user-selected electric power saving items of group 1 are set to ON (step S4). In the case where group 2 or 3 is selected, as in group 1, control is made so as to establish an electric power saving mode in response to the user selection (steps S5, S6).
Now, control of the backlight 13 during an electric power saving mode will be described with reference to flow charts shown in FIGS. 9 to 11. FIG. 9 shows control of the backlight 13 when no signal is applied. First, it is judged whether or not a video image signal is generated (step S10). In the case where the video image signal is generated, the backlight 13 is illuminated (step S11). In the case where no video image signal is generated, it is judged whether or not an electric power saving function is set to ON (step S12). Then, a time interval at which the video image signal is not generated is measured by means of a counter section 20. In the case where a state in which no video image signal is generated continues for a time interval or more stored in a memory section 19, a dimming level of the backlight 13 is decreased to the preset brightness or the backlight 13 is shut down (steps S13, S14, and S15). In the case where a time interval at which no video image signal is generated is shorter than the time interval stored in the memory section 19, the backlight 13 is illuminated (step S11). In addition, in the case of a PC mode shown in FIG. 11, a processing operation similar to that in the flow chart shown in FIG. 9 is carried out. However, in the case of the PC mode, if a state in which no input signal is generated has continued by judging whether or not the input signal is generated, the dimming level of the backlight 13 is decreased to the preset brightness or the backlight 13 is shut down (steps S20, S22, S23, S24, and S25). In the case where the electric power saving function is turned OFF or in the case where a time interval at which no input signal is generated is shorter than the time interval stored in the memory section 19, the backlight 13 is illuminated (step S21).
During DVD/CD reproduction, as shown in FIG. 10, it is judged whether or not a DVD/CD reproducing mode is established (step S30). In the case where the DVD/CD reproducing mode is not established, the dimming level of the backlight 13 does not change (step S31). During the DVD/CD reproducing mode, it is judged whether or not the electric power saving function is set to ON (step S32). In the case where the function is set to ON, the dimming level is changed to the brightness preset by a user or the backlight 13 is shut down (step S33). In the case where this function is set to OFF, the dimming level of the backlight 13 does not change (step S31).
As has been described above, in the present embodiment, a plurality of electric power saving modes classified into groups by combining a plurality of electric power saving items are stored in the memory section 19, and one of the plurality of electric power saving modes is controlled to be set to ON/OFF, whereby there is no need for a user to individually select the plurality of electric power saving items, respectively, and ON/OFF settings can be provided all together for each group. Thus, an electric power saving mode can be selected very easily. In particular, as described in the present embodiment, in the composite type electronic apparatus, a variety of electric power saving items exist, and thus, the electric power saving mode can be efficiently selected, and excellent operability is achieved. Further, by setting a multilevel setting, when a high order group having a good power saving effect is selected, an electric power saving mode of a low order group is set to ON, thereby making it possible to select an electric power saving mode more easily. In addition, by selecting a manual setting, only the electric power saving functions desired by the user can be set to ON, and the electric power saving mode according to the user's preference or habit can be freely selected. In addition, when the electric power saving function is selected, if any one of groups 1 to 3 is selected so as to be set to ON, a current screen is changed to a warning display screen 43 according to the selected groups 1 to 3. Then, a disadvantage attained when that electric power saving mode has been selected is displayed so that a user can make a selection while judging the contents of that warning. Further, an electric power saving effect according to each electric power saving mode is graphically displayed on the display screen 44. For example, the fact that 10% electric power saving is possible can be displayed so that the user can judge its electric power saving effect in response to the selected electric power saving mode.
While an embodiment of the present invention has been described in detail up to now, the present invention is not limited to the above-described embodiment. Various modifications can occur without departing from the spirit of the invention. For example, while the foregoing embodiment has shown a composite type electronic apparatus formed by integrating a storing and reproducing unit such as a DVD or an HDD (hard disk drive) and a television image receiver, the present invention is not always limited thereto. In addition, the electric power saving modes classified into groups and the electric power saving items corresponding to each of the electric power saving modes may be selected as required without being limited to the foregoing embodiment. In addition, although a graphic display example has been shown when an electric power saving effect according to an electric power saving mode is displayed, this electric power saving effect may be visually displayed by a pie chart or a barcode and the like. Further, this effect may be merely displayed by numerical data or the like.

Claims (8)

1. An electronic apparatus having an electric power saving function, comprising:
display means for making a display in accordance with a command from control means;
power supply control means for restricting or shutting down power supply to at least the display means when one of a plurality of electric power saving modes is controlled to be set to ON;
storage means for storing the plurality of electric power saving modes,
wherein each of the plurality of electric power saving modes includes electric power saving items selected from a plurality of electric power saving items, and one of the plurality of the electric power saving modes is controlled to be set to ON/OFF, thereby controlling the electric power saving items included in the one of the electric power saving modes to be set to ON/OFF all together;
a warning display function for, when any one of the electric power saving modes is selected, displaying a disadvantage attained when the selected electric power saving mode is set to ON; and
an electric power saving effect display function for indicating an electric power saving effect according to each of the electric power saving modes.
2. The electronic apparatus having an electric power saving function according to claim 1, wherein each of the electric power saving items in each of the electric power saving modes can be controlled to be set to ON/OFF individually.
3. The electronic apparatus having an electric power saving function according to claim 2, comprising a function for serially numbering the electric power saving modes and, when a high order electric power saving mode is set to ON, turning ON a low order electric power saving mode in conformity with the ON setting.
4. The electronic apparatus having an electric power saving function according to claim 3, wherein the display means is a liquid crystal display unit for use in a television image receiver or a personal computer, and at least one of the electric power saving modes includes power supply control for a backlight which illuminates the liquid crystal display unit during the electric power saving mode.
5. The electronic apparatus having an electric power saving function according to claim 2, wherein the display means is a liquid crystal display unit for use in a television image receiver or a personal computer, and at least one of the electric power saving modes includes power supply control for a backlight which illuminates the liquid crystal display unit during the electric power saving mode.
6. The electronic apparatus having an electric power saving function according to claim 1, comprising a function for serially numbering the electric power saving modes and, when a high order electric power saving mode is set to ON, turning ON a low order electric power saving mode in conformity with the ON setting.
7. The electronic apparatus having an electric power saving function according to claim 6, wherein the display means is a liquid crystal display unit for use in a television image receiver or a personal computer, and at least one of the electric power saving modes includes power supply control for a backlight which illuminates the liquid crystal display unit during the electric power saving mode.
8. The electronic apparatus having an electric power saving function according to claim 1, wherein the display means is a liquid crystal display unit for use in a television image receiver or a personal computer, and at least one of the electric power saving modes includes power supply control for a backlight which illuminates the liquid crystal display unit during the electric power saving mode.
US11/362,765 2005-03-11 2006-02-28 Electronic apparatus having electric power saving function Expired - Fee Related US7562242B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-069258 2005-03-11
JP2005069258A JP2006254185A (en) 2005-03-11 2005-03-11 Electronic apparatus with power saving function

Publications (2)

Publication Number Publication Date
US20060206734A1 US20060206734A1 (en) 2006-09-14
US7562242B2 true US7562242B2 (en) 2009-07-14

Family

ID=36972402

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/362,765 Expired - Fee Related US7562242B2 (en) 2005-03-11 2006-02-28 Electronic apparatus having electric power saving function

Country Status (2)

Country Link
US (1) US7562242B2 (en)
JP (1) JP2006254185A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216692A1 (en) * 2006-03-17 2007-09-20 Meng-Fu Lin Video-processing Chip, Audio-video System and Related Method Capable of Saving Power
US20070242022A1 (en) * 2006-04-14 2007-10-18 Monolithic Power Systems, Inc. Method for controlling a universal backlight inverter
US20080030624A1 (en) * 2006-08-02 2008-02-07 Samsung Electronics Co., Ltd. Broadcast receiving apparatus to minimize standby power and method thereof
US20080172504A1 (en) * 2007-01-12 2008-07-17 Fujitsu Limited Interactive control apparatus using remote control signal between computer and electric home appliance
US20080204443A1 (en) * 2007-02-26 2008-08-28 Kabushiki Kaisha Toshiba Portable display device and display method of portable display device
US20080266311A1 (en) * 2007-04-30 2008-10-30 Duncan Cameron C Computing device entertainment mode system and method
US20090322944A1 (en) * 2008-06-25 2009-12-31 Sanyo Electric Co., Ltd. Electronic Device
US20100220109A1 (en) * 2008-11-19 2010-09-02 Hiroshi Aoki Television device
US20100231808A1 (en) * 2005-12-08 2010-09-16 Wei-Chih Huang Video and audio system capable of saving electric power
US20110069042A1 (en) * 2009-09-24 2011-03-24 Sanyo Electric Co., Ltd. Display apparatus capable of reducing power consumption
US9020651B2 (en) 2010-03-08 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Utilization start interval prediction device and utilization start interval prediction method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330517A (en) * 2005-05-27 2006-12-07 Kyocera Mita Corp Image processor
DE102006059340A1 (en) * 2006-12-15 2008-06-26 Dräger Medical AG & Co. KG therapy device
KR101366316B1 (en) * 2007-01-09 2014-02-21 엘지전자 주식회사 Signal sink and operation method thereof, and computer-readable recording media for storing computer program for controlling the sink
JP2008204209A (en) * 2007-02-21 2008-09-04 Sony Corp Electronic equipment, return interface setting method, return communication method and computer program
JP2008275978A (en) * 2007-05-01 2008-11-13 Funai Electric Co Ltd Liquid crystal display and liquid crystal television
JP2008276067A (en) * 2007-05-02 2008-11-13 Canon Inc Video display device and its control method
JP2009027371A (en) * 2007-07-18 2009-02-05 Sharp Corp Video display processor
EP2027799B2 (en) * 2007-08-22 2016-08-24 Delica AG Device for brewing liquid food or liquid luxury food
JP5078561B2 (en) * 2007-11-05 2012-11-21 インターナショナル・ビジネス・マシーンズ・コーポレーション System and interface for controlling equipment
JP2009251548A (en) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp Liquid crystal display, and its power saving power consumption display method
JP2009272996A (en) * 2008-05-09 2009-11-19 Toshiba Corp Mobile terminal
JP5147572B2 (en) * 2008-07-04 2013-02-20 キヤノン株式会社 Communication apparatus and computer program
JP5159476B2 (en) * 2008-07-07 2013-03-06 キヤノン株式会社 Recording / reproducing apparatus, control method therefor, and program
JP2010079025A (en) * 2008-09-26 2010-04-08 Toshiba Corp Display and method of controlling the same
US8638288B2 (en) * 2008-11-26 2014-01-28 Dell Products L.P. RGB LED backlight color control using adjustable driving current
JP5543747B2 (en) * 2009-09-17 2014-07-09 パナソニック株式会社 Power saving promotion system
JP4873060B2 (en) * 2009-09-30 2012-02-08 ブラザー工業株式会社 Image processing apparatus, program, and image processing system
US9235251B2 (en) 2010-01-11 2016-01-12 Qualcomm Incorporated Dynamic low power mode implementation for computing devices
US8504855B2 (en) * 2010-01-11 2013-08-06 Qualcomm Incorporated Domain specific language, compiler and JIT for dynamic power management
JP6218360B2 (en) 2012-06-19 2017-10-25 船井電機株式会社 Electronics
JP2014022902A (en) * 2012-07-18 2014-02-03 Funai Electric Co Ltd Recording and reproducing device
JP6093249B2 (en) * 2013-06-04 2017-03-08 鹿島建設株式会社 Power supply control device, power supply control system, power supply control method
US10635283B2 (en) * 2014-03-31 2020-04-28 Kyocera Document Solutions Inc. Image forming apparatus
CN117615734A (en) 2021-07-07 2024-02-27 奥若克伦有限公司 Toothbrush with disposable flusher

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313905A (en) 1995-05-17 1996-11-29 Toshiba Corp Liquid crystal display device
JPH09139924A (en) 1995-11-13 1997-05-27 Matsushita Electric Ind Co Ltd Video display device
JPH1090648A (en) 1996-09-18 1998-04-10 Sony Corp Electronic equipment
US6266714B1 (en) * 1997-04-30 2001-07-24 Compaq Computer Corporation Audio CD play subsystem capable for playing audio CDs in a CD-ROM drive during computer system is in power-off state
JP2002123223A (en) 2000-10-13 2002-04-26 Nec Corp Liquid crystal display device and computer
JP2002123240A (en) 2000-10-12 2002-04-26 Nikon Corp Display device
JP2002172981A (en) 2000-12-04 2002-06-18 Matsushita Electric Ind Co Ltd On-vehicle electronic equipment
JP2002229021A (en) 2001-02-02 2002-08-14 Tdk Corp Backlight and display device using the same
JP2003050053A (en) 2001-08-03 2003-02-21 Sanyo Electric Co Ltd Warm-air heater
JP2003271106A (en) 2002-03-14 2003-09-25 Matsushita Electric Ind Co Ltd Display
JP2003274317A (en) 2002-03-14 2003-09-26 Matsushita Electric Ind Co Ltd Liquid crystal monitor
JP2003298684A (en) 2002-04-02 2003-10-17 Nec Commun Syst Ltd Illumination control device for cellular telephone and reilluminating method therefor
US6675233B1 (en) * 1998-03-26 2004-01-06 O2 Micro International Limited Audio controller for portable electronic devices
JP2004004217A (en) 2002-05-31 2004-01-08 Toshiba Corp Electric apparatus
JP2004157559A (en) 2004-01-09 2004-06-03 Sony Corp Liquid crystal display device
JP2004282138A (en) 2003-03-12 2004-10-07 Orion Denki Kk Sound information output control circuit and display apparatus provided with the same
US7028203B2 (en) * 2000-04-28 2006-04-11 Sony Corporation Information processing system and information processing apparatus
US7080271B2 (en) * 2003-02-14 2006-07-18 Intel Corporation Non main CPU/OS based operational environment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309849B1 (en) * 1999-08-31 2001-10-30 Millennium Pharamaceuticals, Inc. Nucleic acid molecules encoding human kinase and phosphatase homologues and uses therefor
WO2002045145A2 (en) * 2000-11-30 2002-06-06 Shipley Company, L.L.C. Uv-free curing of organic dielectrica
WO2002067316A1 (en) * 2001-02-23 2002-08-29 Koninklijke Philips Electronics N.V. Method of bonding a semiconductor device to an electrically conductive plate
JP2003061155A (en) * 2001-08-20 2003-02-28 Toshiba Corp Communication terminal
US20040004217A1 (en) * 2002-03-06 2004-01-08 Vijaysekhar Jayaraman Semiconductor opto-electronic devices with wafer bonded gratings
JP3875196B2 (en) * 2003-02-10 2007-01-31 株式会社東芝 Service providing device, service receiving device, service providing program, service receiving program, proximity wireless communication device, service providing method, and service receiving method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313905A (en) 1995-05-17 1996-11-29 Toshiba Corp Liquid crystal display device
JPH09139924A (en) 1995-11-13 1997-05-27 Matsushita Electric Ind Co Ltd Video display device
JPH1090648A (en) 1996-09-18 1998-04-10 Sony Corp Electronic equipment
US6266714B1 (en) * 1997-04-30 2001-07-24 Compaq Computer Corporation Audio CD play subsystem capable for playing audio CDs in a CD-ROM drive during computer system is in power-off state
US6675233B1 (en) * 1998-03-26 2004-01-06 O2 Micro International Limited Audio controller for portable electronic devices
US7028203B2 (en) * 2000-04-28 2006-04-11 Sony Corporation Information processing system and information processing apparatus
JP2002123240A (en) 2000-10-12 2002-04-26 Nikon Corp Display device
JP2002123223A (en) 2000-10-13 2002-04-26 Nec Corp Liquid crystal display device and computer
JP2002172981A (en) 2000-12-04 2002-06-18 Matsushita Electric Ind Co Ltd On-vehicle electronic equipment
JP2002229021A (en) 2001-02-02 2002-08-14 Tdk Corp Backlight and display device using the same
JP2003050053A (en) 2001-08-03 2003-02-21 Sanyo Electric Co Ltd Warm-air heater
JP2003271106A (en) 2002-03-14 2003-09-25 Matsushita Electric Ind Co Ltd Display
JP2003274317A (en) 2002-03-14 2003-09-26 Matsushita Electric Ind Co Ltd Liquid crystal monitor
JP2003298684A (en) 2002-04-02 2003-10-17 Nec Commun Syst Ltd Illumination control device for cellular telephone and reilluminating method therefor
JP2004004217A (en) 2002-05-31 2004-01-08 Toshiba Corp Electric apparatus
US7080271B2 (en) * 2003-02-14 2006-07-18 Intel Corporation Non main CPU/OS based operational environment
JP2004282138A (en) 2003-03-12 2004-10-07 Orion Denki Kk Sound information output control circuit and display apparatus provided with the same
JP2004157559A (en) 2004-01-09 2004-06-03 Sony Corp Liquid crystal display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159621B2 (en) * 2005-12-08 2012-04-17 Princeton Technology Corporation Video and audio system capable of saving electric power
US20100231808A1 (en) * 2005-12-08 2010-09-16 Wei-Chih Huang Video and audio system capable of saving electric power
US20070216692A1 (en) * 2006-03-17 2007-09-20 Meng-Fu Lin Video-processing Chip, Audio-video System and Related Method Capable of Saving Power
US8902239B2 (en) * 2006-03-17 2014-12-02 Princeton Technology Corporation Video-processing chip, audio-video system and related method capable of saving power
US20070242022A1 (en) * 2006-04-14 2007-10-18 Monolithic Power Systems, Inc. Method for controlling a universal backlight inverter
US7825883B2 (en) * 2006-04-14 2010-11-02 Monolithic Power Systems, Inc. Method for controlling a universal backlight inverter
US20080030624A1 (en) * 2006-08-02 2008-02-07 Samsung Electronics Co., Ltd. Broadcast receiving apparatus to minimize standby power and method thereof
US8654263B2 (en) * 2006-08-02 2014-02-18 Samsung Electronics Co., Ltd. Broadcast receiving apparatus to minimize standby power and method thereof
US20080172504A1 (en) * 2007-01-12 2008-07-17 Fujitsu Limited Interactive control apparatus using remote control signal between computer and electric home appliance
US7827319B2 (en) * 2007-01-12 2010-11-02 Fujitsu Limited Interactive control apparatus using remote control signal between computer and electric home appliance
US20080204443A1 (en) * 2007-02-26 2008-08-28 Kabushiki Kaisha Toshiba Portable display device and display method of portable display device
US20080266311A1 (en) * 2007-04-30 2008-10-30 Duncan Cameron C Computing device entertainment mode system and method
US8068124B2 (en) * 2007-04-30 2011-11-29 Hewlett-Packard Development Company, L.P. Computing device entertainment mode system and method
US8508663B2 (en) * 2008-06-25 2013-08-13 Sanyo Electric Co., Ltd. Electronic device capable of wired connection to an external device having a power-save mode
US20090322944A1 (en) * 2008-06-25 2009-12-31 Sanyo Electric Co., Ltd. Electronic Device
US8390640B2 (en) 2008-11-19 2013-03-05 Hitachi Consumer Electronics Co., Ltd. Television device for adjusting quality of video image to be displayed
US20100220109A1 (en) * 2008-11-19 2010-09-02 Hiroshi Aoki Television device
US20110069042A1 (en) * 2009-09-24 2011-03-24 Sanyo Electric Co., Ltd. Display apparatus capable of reducing power consumption
US8354993B2 (en) * 2009-09-24 2013-01-15 Sanyo Electric Co., Ltd. Display apparatus capable of reducing power consumption
US9020651B2 (en) 2010-03-08 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Utilization start interval prediction device and utilization start interval prediction method

Also Published As

Publication number Publication date
JP2006254185A (en) 2006-09-21
US20060206734A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US7562242B2 (en) Electronic apparatus having electric power saving function
US8447999B2 (en) Electrical power saving system
US20110006690A1 (en) Apparatus and method for managing the power of an electronic device
US20080303947A1 (en) Audio Processing Apparatus and Display Apparatus with Same
US20100013995A1 (en) Method and apparatus for controlling screen of image display device
US20120324260A1 (en) Electronic apparatus for saving power, and method of saving power in an apparatus
JP2007214983A (en) Video display device with quick start mode
US20100122102A1 (en) Display device and method for displaying power consumption
JPH0823479A (en) Television device
JP2006333315A (en) Display device
KR100201306B1 (en) Monitor control apparatus and method of image communication system
KR100655502B1 (en) Image display apparatus
US20090244408A1 (en) Liquid crystal display device
JP2010134381A (en) Display method, display, and computer program
EP2048650A2 (en) Liquid crystal display device
KR100419106B1 (en) Devices for use in audiovisual systems equipped with display devices
US8450880B2 (en) Broadcasting receiver and television apparatus
US20030137502A1 (en) Displaying apparatus and method for controlling the same
JP2002218343A (en) Tv broadcasting receiver having power-saving control function, power-saving control method therefor, and recording medium
JP2000132138A (en) Transmission type display device
JP3569184B2 (en) Liquid crystal display
JP2006318518A (en) Display system
US20120320282A1 (en) Television receiver and method of controlling the same
EP1513147A2 (en) Video display unit
US6816157B2 (en) Personal computer displaying display data inputted from another personal computer

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORION ELECTRIC COMPANY LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HORI, MASANORI;REEL/FRAME:017630/0493

Effective date: 20060206

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

AS Assignment

Owner name: MAGNOLIA LICENSING LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMSON LICENSING S.A.S.;REEL/FRAME:053570/0237

Effective date: 20200708

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210714