US7058298B2 - Optical transmission device and optical transmission system - Google Patents

Optical transmission device and optical transmission system Download PDF

Info

Publication number
US7058298B2
US7058298B2 US10/094,075 US9407502A US7058298B2 US 7058298 B2 US7058298 B2 US 7058298B2 US 9407502 A US9407502 A US 9407502A US 7058298 B2 US7058298 B2 US 7058298B2
Authority
US
United States
Prior art keywords
optical
signal
switching
overhead
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/094,075
Other versions
US20020097462A1 (en
Inventor
Hideaki Koyano
Masato Kobayashi
Kazumaro Takaiwa
Maki Hiraizumi
Akio Takayasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRAIZUMI, MAKI, KOBAYASHI, MASATO, KOYANO, HIDEAKI, TAKAIWA, KAZUMARO, TAKAYASU, AKIO
Publication of US20020097462A1 publication Critical patent/US20020097462A1/en
Application granted granted Critical
Publication of US7058298B2 publication Critical patent/US7058298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects

Definitions

  • the present invention relates to an optical transmission device and an optical transmission system, and more particularly, to an optical transmission device for controlling the transmission of optical signals and to an optical transmission system for controlling the transmission of optical signals over a ring network.
  • Optical communication network technology is a core technology for constructing the infrastructure of information communication networks and is undergoing rapid development for the present-day information-oriented society in which highly advanced, wider-coverage services are demanded. Also, investigation is being made into network topologies that suit various fields of applications of optical communications.
  • FIG. 14 illustrates an optical communication ring system.
  • Nodes 101 to 104 are connected in ring form by an optical fiber cable.
  • the inter-node connection is configured as a redundant system including Work (active) lines and Protection (standby) lines.
  • Ring topology like the illustrated one, basically there is no limit on the number of nodes that can be connected to the system. Ring topology is therefore suited for relatively large-scale networks and is often applied to optical LANs etc. for the trunks of local networks.
  • FIG. 15 schematically illustrates the internal configuration of a conventional node.
  • the node 101 is connected to other nodes via the Work and Protection lines.
  • the node 101 comprises a signal processing section 101 - 1 and an electric switch section 101 - 2 .
  • the signal processing section 101 - 1 converts an electric signal supplied from the electric switch section 101 - 2 to an optical signal and transmits the resulting signal to other nodes. Also, the signal processing section converts an optical signal received from other nodes to an electric signal and supplies the resulting signal to the electric switch section 101 - 2 .
  • the electric switch section 101 - 2 electrically switches signals to be supplied to and received from the signal processing section 101 - 1 and, in case of fault, carries out a switchover between the Work and Protection transmission lines.
  • the node in order for the electric switch section to process high-speed data, it is necessary that the node be provided with a DMUX section for converting high-speed data to low-speed data so that the electric switch section can process the data, as well as an MUX section for converting low-speed data output from the electric switch section to high-speed data.
  • DMUX section for converting high-speed data to low-speed data so that the electric switch section can process the data
  • an MUX section for converting low-speed data output from the electric switch section to high-speed data.
  • the aforementioned conventional technique using 2 ⁇ 2 optical switches provides only the function of performing switchover between the active and standby lines that carry the ring-side high-speed data.
  • no line switching is performed with respect to the terminal office, so that the system lacks expansibility.
  • the present invention was created in view of the above circumstances, and an object thereof is to provide an optical transmission device in which optical signal switching is performed to allow the device to be reduced in size and also which is capable of efficient recovery from fault, thereby improving the system expansibility and the communication quality.
  • Another object of the present invention is to provide an optical transmission system in which optical signal switching is performed to allow each of devices constituting the system to be reduced in size and also which is capable of efficient recovery from fault, thereby improving the system expansibility and the communication quality.
  • an optical transmission device for controlling transmission of an optical signal.
  • the optical transmission device comprises overhead terminating means for converting the optical signal to an electric signal and performing an overhead process including extraction of fault information and setting of status information, optical switch means for performing a process of switching the optical signal between active and standby lines, and switching control means for providing a switching command to the optical switch means in accordance with the fault information.
  • an optical transmission system for controlling transmission of an optical signal over a ring network.
  • the optical transmission system comprises a plurality of optical transmission devices each including overhead terminating means for converting the optical signal to an electric signal and performing an overhead process including extraction of fault information and setting of status information, optical switch means for performing a process of switching the optical signal between active and standby lines and switching control means for providing a switching command to the optical switch means in accordance with the fault information, and an optical transmission medium connecting the optical transmission devices in ring form to constitute the ring network.
  • FIG. 1 is a diagram illustrating the principle of an optical transmission device according to the present invention
  • FIG. 2 is a diagram showing the configuration of the optical transmission device
  • FIG. 3 is a diagram showing an example of a ring system
  • FIG. 4 is a diagram showing the configuration of an optical transmission device in the ring system
  • FIG. 5 is a diagram also showing the configuration of the optical transmission device in the ring system
  • FIG. 6 is a diagram showing the configuration of overhead terminating means which performs optical wavelength conversion
  • FIG. 7 is a diagram showing the configuration of overhead terminating means having an optical coupler
  • FIG. 8 is a diagram showing optical amplifier means
  • FIG. 9 is a diagram showing a ring system constituted by the optical transmission devices.
  • FIG. 10 is a diagram illustrating a case where a fault has occurred in the ring system
  • FIG. 11 is a diagram illustrating line switching
  • FIG. 12 is a diagram illustrating a case where faults have occurred in the ring system
  • FIG. 13 is a diagram illustrating line switching
  • FIG. 14 is a diagram showing an optical communication ring system
  • FIG. 15 is a schematic diagram showing the internal configuration of a conventional node.
  • FIG. 1 illustrates the principle of an optical transmission device according to the present invention.
  • the optical transmission device 10 controls the transmission of optical signals.
  • Overhead terminating means 1 converts an optical signal to an electric signal. Also, the overhead terminating means extracts fault information about fault on the transmission line as well as status information of other devices (information about internal fault etc. of the other devices) from the electric signal, and sets status information of its own device. This process carried out by the overhead terminating means is hereinafter referred to as overhead process.
  • the overhead terminating means 1 outputs the optical signal received from outside to optical switch means 2 , and also outputs the optical signal received from the optical switch means 2 to outside.
  • the optical switch means 2 has an M ⁇ N matrix arrangement including M (desired number) input lines and N (desired number) output lines, and switches the optical signal between active and standby lines.
  • Switching control means 3 provides a switching command to the optical switch means 2 in accordance with the fault information extracted in the overhead process.
  • the overhead terminating means 1 detects SF (Signal Fail)/SD (Signal Degrade) on the transmission line, and exchanges the fault information with the other devices. In accordance with the level of a fault that has occurred, the switching control means 3 determines whether to carry out a switchover.
  • APS Automatic Protection Switch
  • a switchover to a standby line L 2 is carried out.
  • both the transmit and receive lines may be switched to the respective standby lines.
  • the active and standby lines are referred to respectively as Work and Protection lines.
  • FIG. 2 illustrates the configuration of the optical transmission device 10 .
  • the optical transmission device 10 comprises overhead terminating means 1 a and 1 b associated respectively with the Work and Protection lines of a main-stream side, the optical switch means 2 , and the switching control means 3 for providing a switching command for the switching process to the optical switch means 2 .
  • the optical switch means 2 performs a process of switching optical signals from the main-stream lines and side-stream lines (hereinafter referred to as Tributary lines), to carry out a switchover between the Work and Protection lines of at least one of the main-stream and Tributary sides.
  • An O/E section 11 a of the overhead terminating means 1 a which receives an optical signal on the Work line of the main-stream side, converts the optical signal received from the main-stream line to an electric signal.
  • An S/P section 12 a converts the resulting serial electric signal to a parallel electric signal.
  • An OH (overhead) processing section 1 a - 1 extracts switching information (including fault information about fault on the main-stream line and status information about the status of other devices on the main-stream line) from the parallel electric signal, and supplies the extracted information to the switching control means 3 . Also, the OH processing section sets status information which is sent to a terminal office of the Tributary side to notify the same of the status of the optical transmission device 10 .
  • a P/S section 13 a converts the parallel electric signal output from the OH processing section 1 a - 1 to a serial electric signal.
  • An E/O section 14 a converts the serial electric signal to an optical signal, which is then output to the optical switch means 2 .
  • An O/E section 15 a of the overhead terminating means 1 a which is associated with the transmission of signal to the Work line of the main-stream side, converts an optical signal supplied from the optical switch means 2 to an electric signal.
  • An S/P section 16 a converts the resulting serial electric signal to a parallel electric signal.
  • An OH processing section 1 a - 2 extracts switching information (including fault information about fault on the Tributary line and status information about the status of the terminal office on the Tributary line) from the parallel electric signal, and supplies the extracted information to the switching control means 3 . Also, the OH processing section sets status information which is sent to the other devices on the main-stream line to notify the same of the status of the optical transmission device 10 .
  • a P/S section 17 a converts the parallel electric signal output from the OH processing section 1 a - 2 to a serial electric signal.
  • An E/O section 18 a converts the serial electric signal to an optical signal, which is output to the other devices of the main-stream side.
  • the overhead terminating means 1 b is configured in the same manner, and therefore, description thereof is omitted.
  • the switching control means 3 provides a switching command to the optical switch means 2 .
  • the optical switch means 2 has optical couplers 21 a and 24 a and selectors 22 a and 23 a associated with the Work lines of the Tributary side, and also has optical couplers 21 b and 24 b and selectors 22 b and 23 b associated with the Protection lines of the Tributary side.
  • the optical coupler 21 a splits the optical signal output from the overhead terminating means 1 a into two to be supplied to the selectors 23 a and 23 b .
  • the optical coupler 21 b splits the optical signal output from the overhead terminating means 1 b into two to be supplied to the selectors 23 a and 23 b.
  • the optical coupler 24 a splits the optical signal output from the terminal office of the Tributary side into two to be supplied to the selectors 22 a and 22 b .
  • the optical coupler 24 b splits the optical signal output from the terminal office of the Tributary side into two to be supplied to the selectors 22 a and 22 b.
  • the selector 23 a receives the Work-side optical signal output from the optical coupler 21 a and the Protection-side optical signal output from the optical coupler 21 b , and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3 .
  • the selector 23 b receives the Protection-side optical signal output from the optical coupler 21 b and the Work-side optical signal output from the optical coupler 21 a , and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3 .
  • the selector 22 a receives the Work-side optical signal output from the optical coupler 24 a and the Protection-side optical signal output from the optical coupler 24 b , and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3 .
  • the selector 22 b receives the Protection-side optical signal output from the optical coupler 24 b and the Work-side optical signal output from the optical coupler 24 a , and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3 .
  • the OH processing section 1 a - 1 notifies the switching control means 3 of the occurrence of the fault by means of the switching information.
  • the switching control means 3 instructs the selector 23 a to select the optical signal output from the optical coupler 21 b . Accordingly, the selector 23 a performs a switchover of signal from the optical coupler 21 a to the optical coupler 21 b , and outputs the optical signal supplied from the optical coupler 21 b.
  • the OH processing section 1 a - 2 notifies the switching control means 3 of the occurrence of the fault by means of the switching information.
  • the switching control means 3 instructs the selector 22 a to select the optical signal output from the optical coupler 24 b . Consequently, the selector 22 a performs a switchover of signal from the optical coupler 24 a to the optical coupler 24 b , and outputs the optical signal supplied from the optical coupler 24 b.
  • an optical signal is converted to an electric signal to extract the fault information and to set the status information, and optical signal switching is performed in accordance with the fault information, to carry out a switchover between the Work and Protection lines.
  • the optical signal per se is subjected to switching, and it is therefore unnecessary to additionally provide circuits such as MUX and DMUX sections, etc., making it possible to reduce the scale of circuitry and to minimize deterioration in the electric characteristics due to crosstalk etc.
  • the line switching of the terminal office side can also be controlled, whereby expansibility of the system as well as reliability of the overall system can be improved.
  • the OH processing section extracts the switching information and sets the status information of its own device, and this permits a faulty spot to be located with ease.
  • FIG. 3 shows an example of such a ring system.
  • Optical transmission devices 10 - 1 to 10 - 4 are connected in ring form by an optical fiber cable.
  • the interconnection between the optical transmission devices 10 - 1 to 10 - 4 is configured as a redundant system including Work and Protection lines.
  • terminal offices 10 - 1 a and 10 - 1 b are connected to the Tributary side of the optical transmission device 10 - 1 each by means of a redundant system including Work and Protection lines.
  • terminal offices 10 - 2 a and 10 - 2 b are connected to the Tributary side of the optical transmission device 10 - 2 each by means of a redundant system
  • terminal offices 10 - 3 a and 10 - 3 b are connected to the Tributary side of the optical transmission device 10 - 3 each by means of a redundant system
  • Terminal offices 10 - 4 a and 10 - 4 b are connected to the Tributary side of the optical transmission device 10 - 4 each by means of a redundant system.
  • FIGS. 4 and 5 illustrate the configuration of the optical transmission device 10 - 1 in the ring system.
  • the optical transmission device 10 - 1 has overhead terminating means 1 a to 1 d .
  • the West-side overhead terminating means 1 a and 1 b have their respective ring-side Protection and Work lines connected to the optical transmission device 10 - 2
  • the East-side overhead terminating means 1 c and 1 d have their respective ring-side Work and Protection lines connected to the optical transmission device 10 - 4 .
  • the Tributary-side Protection and Work lines on the West side of the optical switch means 2 are connected to the terminal office 10 - 1 b , and the Tributary-side Protection and Work lines on the East side of the optical switch means 2 are connected to the terminal office 10 - 1 a.
  • the internal connections of the optical switch means 2 as illustrated signify that the output 1 b of the optical coupler 21 a , for example, is connected to the input 1 b of the selector 23 b .
  • the interconnections of the other elements are also illustrated in like manner, and therefore, description of such connections is omitted.
  • FIG. 6 illustrates the configuration of the overhead terminating means 1 which performs the optical wavelength conversion.
  • identical reference numerals are used to denote components identical with those appearing in FIG. 2 , and description of such components is omitted.
  • Optical wavelength converting means 18 a - 1 first converts the serial electric signal output from the P/S section 17 a to an optical signal, and then converts the wavelength of the optical signal to be output.
  • the optical wavelength converting means 18 a - 1 can be implemented by a combination of the E/O section 14 a and a tunable LD (Laser Diode) having an optical wavelength converting function.
  • the overhead terminating means 1 capable of performing the optical wavelength conversion, it is possible to construct an optical wavelength multiplex system, and the wavelength multiplexing can improve the utility of optical fibers.
  • FIG. 7 illustrates the configuration of the overhead terminating means 1 having an optical coupler.
  • identical reference numerals are used to denote components identical with those appearing in FIG. 2 , and description of such components is omitted.
  • An optical coupler 19 a splits the optical signal received from outside into two, one being output to the O/E section 11 a and the other to the optical switch means 2 .
  • the split optical signal output to the O/E section 11 a is converted to an electric signal therein, then the resulting serial signal is converted to a parallel signal in the S/P section 12 a , and the switching information is extracted in the OH processing section 1 a - 1 .
  • FIG. 8 shows the optical amplifier means.
  • the optical amplifier means 4 a and 4 b are arranged on the Tributary side of the optical switch means 2 and each comprise E/O's and O/E's.
  • the optical amplifier means 4 a corrects the attenuation in level of the optical signal supplied from the optical switch means 2 , and outputs the resulting signal to the Tributary-side terminal office.
  • the optical amplifier means 4 b corrects the attenuation in level of the optical signal transmitted from the terminal office and outputs the resulting signal to the optical switch means 2 .
  • Attenuation of optical signal level occurs while the signal passes through the optical switch means 2 or because the terminal office is located at a remote place, but by using the optical amplifier means 4 a and 4 b , it is possible to correct such attenuation of the optical signal level, thus ensuring high-quality optical communications.
  • FIG. 9 illustrates a ring system constituted by the optical transmission devices 10 .
  • the optical transmission devices 10 - 1 to 10 - 6 are connected in ring form by an optical fiber cable (4-fiber ring topology).
  • the interconnection between the optical transmission devices 10 - 1 to 10 - 6 is configured as a redundant system including Work and Protection lines. It is assumed here that the optical transmission devices 10 - 1 and 10 - 3 are communicating with each other via the optical transmission devices 10 - 4 to 10 - 6 by using the Work lines.
  • FIG. 10 illustrates a case where a fault has occurred in the ring system. As illustrated, the fault has occurred in a line which, for the optical transmission device 10 - 1 , is the Work receive line.
  • FIG. 11 illustrates line switching. Where the fault has occurred as shown in FIG. 10 , the receive line is switched to a line La which, for the optical transmission device 10 - 1 , is the Protection receive line.
  • the overhead terminating means 1 of the optical transmission device 10 - 1 detects the fault information.
  • the switching control means 3 determines whether or not the fault occurred is of a level requiring a line switching operation.
  • the overhead terminating means 1 looks up the status information carried by the overhead on the Protection line La which is identical in data flow direction with the faulty Work line, to determine whether or not a switchover to the line La is possible.
  • the optical transmission device 10 - 1 transfers a line switching control command to the counter optical transmission device 10 - 3 .
  • the optical transmission devices 10 - 1 and 10 - 3 then operate in Protection mode with the line switched by the optical switches in their optical switch means 2 , thus recovering from the fault.
  • FIG. 12 illustrates a case where faults have occurred in the ring system. As illustrated, the faults have occurred in both the Work and Protection lines.
  • FIG. 13 illustrates line switching. Where the faults have occurred as shown in FIG. 12 , the optical transmission devices 10 - 1 and 10 - 3 use the Work lines passing through the optical transmission device 10 - 2 to recover from the faults.
  • the optical transmission device 10 of the present invention has a hybrid configuration such that the extraction of the fault information and the setting of the status information are performed with respect to electric signals while the line switching is performed with respect to optical signals.
  • the device of the present invention can be reduced in size and also deterioration in the electric characteristics can be lessened.
  • an optical wavelength multiplexing device is constructed using electric switches, as many line switching functions as the number of wavelengths to be used need to be provided. With the configuration of the present invention, the overall size of the device can be reduced.
  • the number of electric processing sections used in the device is small, and accordingly, the device can readily cope with change of transmission method, making it possible to construct a highly flexible system.
  • the optical signal is converted to an electric signal to extract the fault information and to set the status information, and optical signal switching is performed in accordance with the fault information, to carry out a switchover between the active and standby lines. Accordingly, the device can be reduced in size and also can be efficiently recovered from fault.
  • the optical signal is converted to an electric signal to extract the fault information and to set the status information, and optical signal switching is performed in accordance with the fault information, to carry out a switchover between the active and standby lines. Accordingly, the system can be constructed by small-sized devices and also can be efficiently recovered from fault.

Abstract

An optical transmission device in which optical signal switching is performed to allow the device to be reduced in size and also which is capable of efficient recovery from fault, thereby improving system expansibility and communication quality. Overhead terminating section converts an optical signal to an electric signal and performs an overhead process including extraction of fault information and setting of status information. Optical switch section performs a process of switching the optical signal between active and standby lines, and switching control section provides a switching command to the optical switch section in accordance with the fault information.

Description

This application is a continuation of international application number PCTJP 99/06269, filed Nov. 10, 1999.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to an optical transmission device and an optical transmission system, and more particularly, to an optical transmission device for controlling the transmission of optical signals and to an optical transmission system for controlling the transmission of optical signals over a ring network.
(2) Description of the Related Art
Optical communication network technology is a core technology for constructing the infrastructure of information communication networks and is undergoing rapid development for the present-day information-oriented society in which highly advanced, wider-coverage services are demanded. Also, investigation is being made into network topologies that suit various fields of applications of optical communications.
FIG. 14 illustrates an optical communication ring system. Nodes 101 to 104 are connected in ring form by an optical fiber cable. To ensure the reliability in case of fault, the inter-node connection is configured as a redundant system including Work (active) lines and Protection (standby) lines.
In the case of ring topology like the illustrated one, basically there is no limit on the number of nodes that can be connected to the system. Ring topology is therefore suited for relatively large-scale networks and is often applied to optical LANs etc. for the trunks of local networks.
FIG. 15 schematically illustrates the internal configuration of a conventional node. The node 101 is connected to other nodes via the Work and Protection lines.
The node 101 comprises a signal processing section 101-1 and an electric switch section 101-2. The signal processing section 101-1 converts an electric signal supplied from the electric switch section 101-2 to an optical signal and transmits the resulting signal to other nodes. Also, the signal processing section converts an optical signal received from other nodes to an electric signal and supplies the resulting signal to the electric switch section 101-2.
The electric switch section 101-2 electrically switches signals to be supplied to and received from the signal processing section 101-1 and, in case of fault, carries out a switchover between the Work and Protection transmission lines.
While the above node uses an electric switch in its switch section, there has also been proposed a technique of using an optical switch in place of an electric switch. For example, Unexamined Japanese Patent Publication (KOKAI) No. 6-209284 discloses using a plurality of 2×2 (2-input, 2-output) optical switches to perform switchover between transmission lines.
In the aforementioned conventional node provided with an electric switch section, however, in order for the electric switch section to process high-speed data, it is necessary that the node be provided with a DMUX section for converting high-speed data to low-speed data so that the electric switch section can process the data, as well as an MUX section for converting low-speed data output from the electric switch section to high-speed data. A problem also arises in that increase in transmission speed entails enlargement of the scale of the circuitry of these converting sections.
Further, when the high-speed data/low-speed data conversion is performed, an increased number of signals are input to and output from the electric switch section. In such cases, interface signals on the backboard or in the unit also increase, giving rise to a problem that the electric characteristics deteriorate due to crosstalk or the like.
On the other hand, the aforementioned conventional technique using 2×2 optical switches provides only the function of performing switchover between the active and standby lines that carry the ring-side high-speed data. Thus, where a terminal office is connected to the node, no line switching is performed with respect to the terminal office, so that the system lacks expansibility.
Also, since neither fault information extraction process nor device status information setting function is available, a problem arises in that a faulty spot cannot be located.
SUMMARY OF THE INVENTION
The present invention was created in view of the above circumstances, and an object thereof is to provide an optical transmission device in which optical signal switching is performed to allow the device to be reduced in size and also which is capable of efficient recovery from fault, thereby improving the system expansibility and the communication quality.
Another object of the present invention is to provide an optical transmission system in which optical signal switching is performed to allow each of devices constituting the system to be reduced in size and also which is capable of efficient recovery from fault, thereby improving the system expansibility and the communication quality.
To achieve the first object, there is provided an optical transmission device for controlling transmission of an optical signal. The optical transmission device comprises overhead terminating means for converting the optical signal to an electric signal and performing an overhead process including extraction of fault information and setting of status information, optical switch means for performing a process of switching the optical signal between active and standby lines, and switching control means for providing a switching command to the optical switch means in accordance with the fault information.
Also, to achieve the second object, there is provided an optical transmission system for controlling transmission of an optical signal over a ring network. The optical transmission system comprises a plurality of optical transmission devices each including overhead terminating means for converting the optical signal to an electric signal and performing an overhead process including extraction of fault information and setting of status information, optical switch means for performing a process of switching the optical signal between active and standby lines and switching control means for providing a switching command to the optical switch means in accordance with the fault information, and an optical transmission medium connecting the optical transmission devices in ring form to constitute the ring network.
The above and other objects, features and advantages of the present invention will become apparent from the following description when taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention by way of example.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating the principle of an optical transmission device according to the present invention;
FIG. 2 is a diagram showing the configuration of the optical transmission device;
FIG. 3 is a diagram showing an example of a ring system;
FIG. 4 is a diagram showing the configuration of an optical transmission device in the ring system;
FIG. 5 is a diagram also showing the configuration of the optical transmission device in the ring system;
FIG. 6 is a diagram showing the configuration of overhead terminating means which performs optical wavelength conversion;
FIG. 7 is a diagram showing the configuration of overhead terminating means having an optical coupler;
FIG. 8 is a diagram showing optical amplifier means;
FIG. 9 is a diagram showing a ring system constituted by the optical transmission devices;
FIG. 10 is a diagram illustrating a case where a fault has occurred in the ring system;
FIG. 11 is a diagram illustrating line switching;
FIG. 12 is a diagram illustrating a case where faults have occurred in the ring system;
FIG. 13 is a diagram illustrating line switching;
FIG. 14 is a diagram showing an optical communication ring system; and
FIG. 15 is a schematic diagram showing the internal configuration of a conventional node.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiments of the present invention will be hereinafter described with reference to the drawings. FIG. 1 illustrates the principle of an optical transmission device according to the present invention. The optical transmission device 10 controls the transmission of optical signals.
Overhead terminating means 1 converts an optical signal to an electric signal. Also, the overhead terminating means extracts fault information about fault on the transmission line as well as status information of other devices (information about internal fault etc. of the other devices) from the electric signal, and sets status information of its own device. This process carried out by the overhead terminating means is hereinafter referred to as overhead process.
The overhead terminating means 1 outputs the optical signal received from outside to optical switch means 2, and also outputs the optical signal received from the optical switch means 2 to outside.
The optical switch means 2 has an M×N matrix arrangement including M (desired number) input lines and N (desired number) output lines, and switches the optical signal between active and standby lines.
Switching control means 3 provides a switching command to the optical switch means 2 in accordance with the fault information extracted in the overhead process.
In practice, by using APS (Automatic Protection Switch) byte (usually, K byte) as defined in SONET/SDH, the overhead terminating means 1 detects SF (Signal Fail)/SD (Signal Degrade) on the transmission line, and exchanges the fault information with the other devices. In accordance with the level of a fault that has occurred, the switching control means 3 determines whether to carry out a switchover.
For example, in the case where a fault has occurred in an active line L1, as shown in the figure, a switchover to a standby line L2 is carried out. Alternatively, in this case, both the transmit and receive lines may be switched to the respective standby lines. In the following, the active and standby lines are referred to respectively as Work and Protection lines.
The configuration of the optical transmission device 10 of the present invention will be now described in more detail. FIG. 2 illustrates the configuration of the optical transmission device 10. The optical transmission device 10 comprises overhead terminating means 1 a and 1 b associated respectively with the Work and Protection lines of a main-stream side, the optical switch means 2, and the switching control means 3 for providing a switching command for the switching process to the optical switch means 2.
The optical switch means 2 performs a process of switching optical signals from the main-stream lines and side-stream lines (hereinafter referred to as Tributary lines), to carry out a switchover between the Work and Protection lines of at least one of the main-stream and Tributary sides.
An O/E section 11 a of the overhead terminating means 1 a, which receives an optical signal on the Work line of the main-stream side, converts the optical signal received from the main-stream line to an electric signal. An S/P section 12 a converts the resulting serial electric signal to a parallel electric signal.
An OH (overhead) processing section 1 a-1 extracts switching information (including fault information about fault on the main-stream line and status information about the status of other devices on the main-stream line) from the parallel electric signal, and supplies the extracted information to the switching control means 3. Also, the OH processing section sets status information which is sent to a terminal office of the Tributary side to notify the same of the status of the optical transmission device 10.
A P/S section 13 a converts the parallel electric signal output from the OH processing section 1 a-1 to a serial electric signal. An E/O section 14 a converts the serial electric signal to an optical signal, which is then output to the optical switch means 2.
An O/E section 15 a of the overhead terminating means 1 a, which is associated with the transmission of signal to the Work line of the main-stream side, converts an optical signal supplied from the optical switch means 2 to an electric signal. An S/P section 16 a converts the resulting serial electric signal to a parallel electric signal.
An OH processing section 1 a-2 extracts switching information (including fault information about fault on the Tributary line and status information about the status of the terminal office on the Tributary line) from the parallel electric signal, and supplies the extracted information to the switching control means 3. Also, the OH processing section sets status information which is sent to the other devices on the main-stream line to notify the same of the status of the optical transmission device 10.
A P/S section 17 a converts the parallel electric signal output from the OH processing section 1 a-2 to a serial electric signal. An E/O section 18 a converts the serial electric signal to an optical signal, which is output to the other devices of the main-stream side. The overhead terminating means 1 b is configured in the same manner, and therefore, description thereof is omitted.
In accordance with the switching information extracted by the OH processing sections 1 a-1, 1 a-2, 1 b-1 and 1 b-2, the switching control means 3 provides a switching command to the optical switch means 2.
The optical switch means 2 has optical couplers 21 a and 24 a and selectors 22 a and 23 a associated with the Work lines of the Tributary side, and also has optical couplers 21 b and 24 b and selectors 22 b and 23 b associated with the Protection lines of the Tributary side.
The optical coupler 21 a splits the optical signal output from the overhead terminating means 1 a into two to be supplied to the selectors 23 a and 23 b. The optical coupler 21 b splits the optical signal output from the overhead terminating means 1 b into two to be supplied to the selectors 23 a and 23 b.
The optical coupler 24 a splits the optical signal output from the terminal office of the Tributary side into two to be supplied to the selectors 22 a and 22 b. The optical coupler 24 b splits the optical signal output from the terminal office of the Tributary side into two to be supplied to the selectors 22 a and 22 b.
The selector 23 a receives the Work-side optical signal output from the optical coupler 21 a and the Protection-side optical signal output from the optical coupler 21 b, and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3.
The selector 23 b receives the Protection-side optical signal output from the optical coupler 21 b and the Work-side optical signal output from the optical coupler 21 a, and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3.
The selector 22 a receives the Work-side optical signal output from the optical coupler 24 a and the Protection-side optical signal output from the optical coupler 24 b, and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3.
The selector 22 b receives the Protection-side optical signal output from the optical coupler 24 b and the Work-side optical signal output from the optical coupler 24 a, and selects and outputs one of the optical signals in accordance with the switching command from the switching control means 3.
Let us consider a case where, while the Work lines of the main-stream and Tributary sides are in use, a fault has occurred in the Work receive line of the main-stream side, for example. In this case, the OH processing section 1 a-1 notifies the switching control means 3 of the occurrence of the fault by means of the switching information.
The switching control means 3 instructs the selector 23 a to select the optical signal output from the optical coupler 21 b. Accordingly, the selector 23 a performs a switchover of signal from the optical coupler 21 a to the optical coupler 21 b, and outputs the optical signal supplied from the optical coupler 21 b.
Let it be assumed now that, while the Work lines of the main-stream and Tributary sides are in use, a fault has occurred in the Work receive line of the Tributary side. In this case, the OH processing section 1 a-2 notifies the switching control means 3 of the occurrence of the fault by means of the switching information.
The switching control means 3 instructs the selector 22 a to select the optical signal output from the optical coupler 24 b. Consequently, the selector 22 a performs a switchover of signal from the optical coupler 24 a to the optical coupler 24 b, and outputs the optical signal supplied from the optical coupler 24 b.
As described above, in the optical transmission device 10 of the present invention, an optical signal is converted to an electric signal to extract the fault information and to set the status information, and optical signal switching is performed in accordance with the fault information, to carry out a switchover between the Work and Protection lines.
Thus, the optical signal per se is subjected to switching, and it is therefore unnecessary to additionally provide circuits such as MUX and DMUX sections, etc., making it possible to reduce the scale of circuitry and to minimize deterioration in the electric characteristics due to crosstalk etc.
Also, where a terminal office is connected to the Tributary side of the optical transmission device 10, the line switching of the terminal office side can also be controlled, whereby expansibility of the system as well as reliability of the overall system can be improved. Further, the OH processing section extracts the switching information and sets the status information of its own device, and this permits a faulty spot to be located with ease.
A ring system to which the optical transmission device 10 of the present invention is applied will be now described. FIG. 3 shows an example of such a ring system.
Optical transmission devices 10-1 to 10-4 are connected in ring form by an optical fiber cable. The interconnection between the optical transmission devices 10-1 to 10-4 is configured as a redundant system including Work and Protection lines. Also, terminal offices 10-1 a and 10-1 b are connected to the Tributary side of the optical transmission device 10-1 each by means of a redundant system including Work and Protection lines.
Similarly, terminal offices 10-2 a and 10-2 b are connected to the Tributary side of the optical transmission device 10-2 each by means of a redundant system, and terminal offices 10-3 a and 10-3 b are connected to the Tributary side of the optical transmission device 10-3 each by means of a redundant system. Terminal offices 10-4 a and 10-4 b are connected to the Tributary side of the optical transmission device 10-4 each by means of a redundant system.
FIGS. 4 and 5 illustrate the configuration of the optical transmission device 10-1 in the ring system. The optical transmission device 10-1 has overhead terminating means 1 a to 1 d. The West-side overhead terminating means 1 a and 1 b have their respective ring-side Protection and Work lines connected to the optical transmission device 10-2, and the East-side overhead terminating means 1 c and 1 d have their respective ring-side Work and Protection lines connected to the optical transmission device 10-4.
The Tributary-side Protection and Work lines on the West side of the optical switch means 2 are connected to the terminal office 10-1 b, and the Tributary-side Protection and Work lines on the East side of the optical switch means 2 are connected to the terminal office 10-1 a.
The internal connections of the optical switch means 2 as illustrated signify that the output 1 b of the optical coupler 21 a, for example, is connected to the input 1 b of the selector 23 b. The interconnections of the other elements are also illustrated in like manner, and therefore, description of such connections is omitted.
Also, since the internal configurations of the overhead terminating means 1 a to 1 d and the optical switch means 2 are already explained above with reference to FIG. 2, description thereof is omitted.
Overhead terminating means 1 having an optical wavelength converting function will be now described. FIG. 6 illustrates the configuration of the overhead terminating means 1 which performs the optical wavelength conversion. In the figure, identical reference numerals are used to denote components identical with those appearing in FIG. 2, and description of such components is omitted.
Optical wavelength converting means 18 a-1 first converts the serial electric signal output from the P/S section 17 a to an optical signal, and then converts the wavelength of the optical signal to be output. The optical wavelength converting means 18 a-1 can be implemented by a combination of the E/O section 14 a and a tunable LD (Laser Diode) having an optical wavelength converting function.
By using the overhead terminating means 1 capable of performing the optical wavelength conversion, it is possible to construct an optical wavelength multiplex system, and the wavelength multiplexing can improve the utility of optical fibers.
Overhead terminating means 1 including an optical coupler will be now described. FIG. 7 illustrates the configuration of the overhead terminating means 1 having an optical coupler. In the figure, identical reference numerals are used to denote components identical with those appearing in FIG. 2, and description of such components is omitted.
An optical coupler 19 a splits the optical signal received from outside into two, one being output to the O/E section 11 a and the other to the optical switch means 2. The split optical signal output to the O/E section 11 a is converted to an electric signal therein, then the resulting serial signal is converted to a parallel signal in the S/P section 12 a, and the switching information is extracted in the OH processing section 1 a-1. With this configuration, it is possible to reduce the number of circuit elements used in the overhead terminating means 1.
Optical amplifier means will be now described. FIG. 8 shows the optical amplifier means. The optical amplifier means 4 a and 4 b are arranged on the Tributary side of the optical switch means 2 and each comprise E/O's and O/E's.
The optical amplifier means 4 a corrects the attenuation in level of the optical signal supplied from the optical switch means 2, and outputs the resulting signal to the Tributary-side terminal office. The optical amplifier means 4 b corrects the attenuation in level of the optical signal transmitted from the terminal office and outputs the resulting signal to the optical switch means 2.
Attenuation of optical signal level occurs while the signal passes through the optical switch means 2 or because the terminal office is located at a remote place, but by using the optical amplifier means 4 a and 4 b, it is possible to correct such attenuation of the optical signal level, thus ensuring high-quality optical communications.
The following explains a line switching operation performed in case of fault. FIG. 9 illustrates a ring system constituted by the optical transmission devices 10. The optical transmission devices 10-1 to 10-6 are connected in ring form by an optical fiber cable (4-fiber ring topology). The interconnection between the optical transmission devices 10-1 to 10-6 is configured as a redundant system including Work and Protection lines. It is assumed here that the optical transmission devices 10-1 and 10-3 are communicating with each other via the optical transmission devices 10-4 to 10-6 by using the Work lines.
FIG. 10 illustrates a case where a fault has occurred in the ring system. As illustrated, the fault has occurred in a line which, for the optical transmission device 10-1, is the Work receive line.
FIG. 11 illustrates line switching. Where the fault has occurred as shown in FIG. 10, the receive line is switched to a line La which, for the optical transmission device 10-1, is the Protection receive line.
First, the overhead terminating means 1 of the optical transmission device 10-1 detects the fault information. The switching control means 3 then determines whether or not the fault occurred is of a level requiring a line switching operation.
If it is judged that the level of the fault occurred requires a line switching operation, the overhead terminating means 1 looks up the status information carried by the overhead on the Protection line La which is identical in data flow direction with the faulty Work line, to determine whether or not a switchover to the line La is possible.
If it is judged that the switchover is possible, the optical transmission device 10-1 transfers a line switching control command to the counter optical transmission device 10-3. The optical transmission devices 10-1 and 10-3 then operate in Protection mode with the line switched by the optical switches in their optical switch means 2, thus recovering from the fault.
FIG. 12 illustrates a case where faults have occurred in the ring system. As illustrated, the faults have occurred in both the Work and Protection lines.
FIG. 13 illustrates line switching. Where the faults have occurred as shown in FIG. 12, the optical transmission devices 10-1 and 10-3 use the Work lines passing through the optical transmission device 10-2 to recover from the faults.
In the case where faults have occurred in both the Work and Protection lines, the same determinations as explained above with reference to FIG. 11 are made, and if it is judged that the Protection line also is unavailable, switching control is performed to connect the two devices through the reverse course (optical transmission devices 10-1, 10-2, 10-3), thereby recovering from the faults.
While the Protection line is in use, the Work line is monitored, and if the fault is removed, the system resumes a normal operation state and the Protection line is released from service. As described above, the optical transmission device 10 of the present invention has a hybrid configuration such that the extraction of the fault information and the setting of the status information are performed with respect to electric signals while the line switching is performed with respect to optical signals.
Thus, compared with a device using electric switches, the device of the present invention can be reduced in size and also deterioration in the electric characteristics can be lessened.
Also, in the case where an optical wavelength multiplexing device is constructed using electric switches, as many line switching functions as the number of wavelengths to be used need to be provided. With the configuration of the present invention, the overall size of the device can be reduced.
Further, the number of electric processing sections used in the device is small, and accordingly, the device can readily cope with change of transmission method, making it possible to construct a highly flexible system.
As described above, in the optical transmission device of the present invention, the optical signal is converted to an electric signal to extract the fault information and to set the status information, and optical signal switching is performed in accordance with the fault information, to carry out a switchover between the active and standby lines. Accordingly, the device can be reduced in size and also can be efficiently recovered from fault.
In the optical transmission system of the present invention, the optical signal is converted to an electric signal to extract the fault information and to set the status information, and optical signal switching is performed in accordance with the fault information, to carry out a switchover between the active and standby lines. Accordingly, the system can be constructed by small-sized devices and also can be efficiently recovered from fault.
The foregoing is considered as illustrative only of the principles of the present invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and applications shown and described, and accordingly, all suitable modifications and equivalents may be regarded as falling within the scope of the invention in the appended claims and their equivalents.

Claims (5)

1. An optical transmission system for controlling transmission of an optical signal over a ring network, comprising:
a plurality of optical transmission devices each including overhead terminating means for converting the optical signal to an electrical signal and performing an overhead process including extraction of fault information and setting of status information, optical switch means for performing a process of switching the optical signal between active and standby lines, and switching control means for providing a switching command to the optical switch means in accordance with the fault information; and
an optical transmission medium connecting said optical transmission devices in ring form to constitute the ring network;
wherein said optical switch means performs a process of switching optical signal from a main-stream side and a tributary side, to carry out a switchover between the active and standby lines of at least one of the main-stream and tributary sides,
wherein said overhead terminating means includes an optical coupler for splitting the optical signal into two signals, such that one of the two optical signals is converted to the electric signal that is subjected to the overhead process and coupled to the switching control means, and the other of the two optical signals is output directly without conversion by said optical switch means, and
wherein, when a terminal office is connected to the tributary side of said optical switch means,
said overhead terminating means converts a serial electric signal output from the terminal office into an optical signal, and converts the wavelength of the optical signal,
said switching control means controls the line switching of the terminal office to transmit optical wavelength multiplex signals for the ring network.
2. An optical transmission device for controlling transmission of an optical signal, comprising:
overhead terminating means for converting the optical signal to an electric signal and performing an overhead process including extraction of fault information and setting of status information;
optical switch means for performing a process of switching the optical signal between active and standby lines; and
switching control means for providing a switching command to said optical switch means in accordance with the fault information;
wherein said optical switch means performs a process of switching optical signals from a main-stream side and a tributary side, to carry out a switchover between the active and standby lines of at least one of the main-stream and tributary sides,
wherein said overhead terminating means includes an optical coupler for splitting the optical signal into two signals, such that one of the two optical signals is convened to the electric signal that is subjected to the overhead process and coupled to the switching control means, and the other of the two optical signals is output directly without conversion by said optical switch means, and
wherein, when a terminal office is connected to the tributary side of said optical switch means,
said overhead terminating means converts a serial electric signal output from the terminal office into a optical signal, and converts the wavelength of the optical signal,
said switching control means controls the line switching of the terminal office to transmit optical wavelength multiplex signals for the ring network.
3. The optical transmission device according to claim 2, wherein said optical switch means has an M×N matrix arrangement including M input lines and N output lines.
4. The optical transmission device according to claim 2, wherein, after performing the overhead process, said overhead terminating means converts the electric signal again to an optical signal and outputs the optical signal.
5. The optical transmission device according to claim 2, further comprising optical amplifier means for correcting attenuation in light level of the optical signal.
US10/094,075 1999-11-10 2002-03-08 Optical transmission device and optical transmission system Expired - Fee Related US7058298B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006269 WO2001035581A1 (en) 1999-11-10 1999-11-10 Optical communication apparatus and system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006269 Continuation WO2001035581A1 (en) 1999-11-10 1999-11-10 Optical communication apparatus and system

Publications (2)

Publication Number Publication Date
US20020097462A1 US20020097462A1 (en) 2002-07-25
US7058298B2 true US7058298B2 (en) 2006-06-06

Family

ID=14237238

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/094,075 Expired - Fee Related US7058298B2 (en) 1999-11-10 2002-03-08 Optical transmission device and optical transmission system

Country Status (2)

Country Link
US (1) US7058298B2 (en)
WO (1) WO2001035581A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080205891A1 (en) * 2004-02-04 2008-08-28 Huawei Technologies Co., Ltd. Method for Processing Overheads of Optical Communication System and Signal Processing Device
US20120237201A1 (en) * 2011-02-14 2012-09-20 Fujitsu Limited Transmission apparatus and network protection method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3148810A1 (en) 1981-12-10 1983-06-16 Bruno 7957 Schemmerhofen Gerster LOW-CALORIES FOOD AND METHOD FOR THE PRODUCTION THEREOF
EP1524788B1 (en) * 2003-10-14 2008-07-09 Alcatel Lucent Enhanced management of pointer processing in case of concatenated payload in SDH and SONET frames
US7388874B2 (en) * 2004-04-29 2008-06-17 Alcatel Lucent Protection switching methods and systems for electronic devices
JP4638754B2 (en) * 2005-03-18 2011-02-23 富士通株式会社 Optical device and optical cross-connect device
US7805073B2 (en) * 2006-04-28 2010-09-28 Adc Telecommunications, Inc. Systems and methods of optical path protection for distributed antenna systems
CN101414932B (en) * 2007-10-15 2012-09-05 华为技术有限公司 Method, system and apparatus managing alarm of long-distance passive optical network system
US9900101B2 (en) 2012-04-30 2018-02-20 Hewlett Packard Enterprise Development Lp Transceiver module
JP6001209B2 (en) * 2014-09-01 2016-10-05 オリンパス株式会社 Optical communication system and endoscope system
CN106301857B (en) 2015-06-08 2019-10-25 华为技术有限公司 A kind of method of network protection, network node and system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437134A (en) 1987-07-16 1989-02-07 Ericsson Telefon Ab L M Optical regenerator for locating fault in optical transmission system
JPH02146646A (en) 1988-11-29 1990-06-05 Nec Corp Virtual memory controller
JPH06209284A (en) 1993-01-12 1994-07-26 Nippon Telegr & Teleph Corp <Ntt> Optical switching module
US5442623A (en) * 1992-08-17 1995-08-15 Bell Communications Research, Inc. Passive protected self healing ring network
US5500756A (en) * 1992-02-28 1996-03-19 Hitachi, Ltd. Optical fiber transmission system and supervision method of the same
JPH0897841A (en) 1994-09-29 1996-04-12 Hitachi Ltd Method for controlling path changeover transmitter and the path changeover transmitter
JPH11112422A (en) 1997-09-30 1999-04-23 Kdd Multi-wavelength network switching device and multi-wavelength optical ring network system
US5903370A (en) * 1996-06-28 1999-05-11 Mci Communications Corporation System for an optical domain
JPH11289295A (en) 1998-04-01 1999-10-19 Nec Corp Node for optical communication, optical transmission system using the same and node failure recovering method
US5982517A (en) * 1997-06-02 1999-11-09 Fishman Consulting Method and system for service restoration in optical fiber communication networks
US6130764A (en) * 1997-10-20 2000-10-10 Fujitsu Limited Transmission apparatus in ring network
US6201788B1 (en) * 1997-05-12 2001-03-13 Fujitsu Limited Transmission device and system having the same
US6404525B1 (en) * 1997-07-31 2002-06-11 Nec Corporation Optical add-drop multiplexer
US6496300B2 (en) * 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier
US6532089B1 (en) * 1998-08-20 2003-03-11 Nec Corporation Optical cross-connect, method of switching over optical path, optical ADM, and optical cross-connect network system

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887309A (en) 1987-07-16 1989-12-12 Telefonaktiebolaget L M Ericsson Optical repeater for fault tracing in an optical transmission system
JPS6437134A (en) 1987-07-16 1989-02-07 Ericsson Telefon Ab L M Optical regenerator for locating fault in optical transmission system
JPH02146646A (en) 1988-11-29 1990-06-05 Nec Corp Virtual memory controller
US5500756A (en) * 1992-02-28 1996-03-19 Hitachi, Ltd. Optical fiber transmission system and supervision method of the same
US5442623A (en) * 1992-08-17 1995-08-15 Bell Communications Research, Inc. Passive protected self healing ring network
JPH06209284A (en) 1993-01-12 1994-07-26 Nippon Telegr & Teleph Corp <Ntt> Optical switching module
JPH0897841A (en) 1994-09-29 1996-04-12 Hitachi Ltd Method for controlling path changeover transmitter and the path changeover transmitter
US5721727A (en) 1994-09-29 1998-02-24 Hitachi, Ltd. Control method and apparatus for path switching in ring network
US5903370A (en) * 1996-06-28 1999-05-11 Mci Communications Corporation System for an optical domain
US6201788B1 (en) * 1997-05-12 2001-03-13 Fujitsu Limited Transmission device and system having the same
US5982517A (en) * 1997-06-02 1999-11-09 Fishman Consulting Method and system for service restoration in optical fiber communication networks
US6404525B1 (en) * 1997-07-31 2002-06-11 Nec Corporation Optical add-drop multiplexer
JPH11112422A (en) 1997-09-30 1999-04-23 Kdd Multi-wavelength network switching device and multi-wavelength optical ring network system
US6130764A (en) * 1997-10-20 2000-10-10 Fujitsu Limited Transmission apparatus in ring network
US6496300B2 (en) * 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier
JPH11289295A (en) 1998-04-01 1999-10-19 Nec Corp Node for optical communication, optical transmission system using the same and node failure recovering method
US6532089B1 (en) * 1998-08-20 2003-03-11 Nec Corporation Optical cross-connect, method of switching over optical path, optical ADM, and optical cross-connect network system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080205891A1 (en) * 2004-02-04 2008-08-28 Huawei Technologies Co., Ltd. Method for Processing Overheads of Optical Communication System and Signal Processing Device
US8000606B2 (en) * 2004-02-04 2011-08-16 Huawei Technologies Co., Ltd. Method for processing overheads of optical communication system and signal processing device
US20120237201A1 (en) * 2011-02-14 2012-09-20 Fujitsu Limited Transmission apparatus and network protection method
US8712235B2 (en) * 2011-02-14 2014-04-29 Fujitsu Limited Transmission apparatus and network protection method

Also Published As

Publication number Publication date
US20020097462A1 (en) 2002-07-25
WO2001035581A1 (en) 2001-05-17

Similar Documents

Publication Publication Date Title
US7848642B1 (en) Method and apparatus for capacity-efficient restoration in an optical communication system
US6657952B1 (en) Ring network for sharing protection resource by working communication paths
JP2928046B2 (en) Optical network and its fault recovery system
JP4455993B2 (en) OCHP device and method based on WDM layer
JP2002510163A (en) Self-healing optical network
EP0859484B1 (en) Fault restoration control method and it&#39;s apparatus in a communication network
JP3092521B2 (en) Communication network node device, optical communication network node device, signal monitoring method, and communication network
US5754528A (en) Virtual ring configuration method and virtual ring system
CA2266227C (en) Optical transmission system including optical restoration
US20040151499A1 (en) Optical node system and switched connection method
US7058298B2 (en) Optical transmission device and optical transmission system
JP3586586B2 (en) Light wave ring system
US20020105693A1 (en) Optical transmission unit and system
JP2988440B2 (en) Terminal equipment
EP0909526B1 (en) Method and system for overhead controlled switching
US6643423B2 (en) System and method for bridge and roll in a photonic switch
EP0961521A2 (en) A method and apparatus for switching signals using an embedded group signal status
KR100334907B1 (en) Uni-Directional Protection of OCH Signal Layer for the Multi-channel WDM Optical Transmission System
JP3551115B2 (en) Communication network node
JPH098762A (en) Repeater
JPH10257580A (en) Cross connector
JP2003158527A (en) Communication network and communication apparatus
JP2005348165A (en) Node unit
JPH11112422A (en) Multi-wavelength network switching device and multi-wavelength optical ring network system
WO2002007348A1 (en) Hybrid optical shared protection ring

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOYANO, HIDEAKI;KOBAYASHI, MASATO;TAKAIWA, KAZUMARO;AND OTHERS;REEL/FRAME:012719/0252

Effective date: 20020207

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180606