US6908318B2 - Batch electrically connecting sheet - Google Patents

Batch electrically connecting sheet Download PDF

Info

Publication number
US6908318B2
US6908318B2 US10/484,175 US48417504A US6908318B2 US 6908318 B2 US6908318 B2 US 6908318B2 US 48417504 A US48417504 A US 48417504A US 6908318 B2 US6908318 B2 US 6908318B2
Authority
US
United States
Prior art keywords
conductive
adhered
electrically connecting
projections
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/484,175
Other versions
US20040241402A1 (en
Inventor
Kohichiro Kawate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001240533A external-priority patent/JP2003069198A/en
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US10/484,175 priority Critical patent/US6908318B2/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAWATE, KOHICHIRO
Publication of US20040241402A1 publication Critical patent/US20040241402A1/en
Application granted granted Critical
Publication of US6908318B2 publication Critical patent/US6908318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4046Through-connections; Vertical interconnect access [VIA] connections using auxiliary conductive elements, e.g. metallic spheres, eyelets, pieces of wire
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10416Metallic blocks or heatsinks completely inserted in a PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1189Pressing leads, bumps or a die through an insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • Y10T156/1057Subsequent to assembly of laminae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the present invention relates to a heat curable conductive adhesive sheet used when a wiring pattern or the like of an electric circuit is connected, particularly to a batch electrically connecting sheet for connecting plural contact points of a wiring pattern of an electric circuit electrically in a batch manner.
  • Japanese Patent Laid-Open Publication No.H1(1989)-113480 and Japanese Patent Laid-Open Publication No.H1(1989)-309206 disclose conductive adhesive agents wherein conductive particles are dispersed in a heat curable resin.
  • the conductive adhesive agents cause the conductive particles in the heat curable resin to contact each other by heat-curing the adhesive agent under pressure of the heat curable resin, to give electric conductivity.
  • the contact between the conductive particles is in general a point-contact, i.e., the conductive particles are electrically connected to each other in a very small contact area.
  • the conductivity of the conductive adhesive agents in such a case is easily affected by environmental changes, and is therefore poor in stability. It is also difficult to heat-cure the agents under pressure, using only simple equipment such as an ordinary oven. A special tool for pressing contact points upon the heat-curing is necessary, and the execution step is complicated.
  • the metal foil tape is a conductive pressure-sensitive adhesive sheet composed basically of a metal foil and a pressure-sensitive adhesive layer.
  • the hollow projections break through the pressure-sensitive adhesive layer to contact an object to be adhered electrically and directly.
  • a relatively large contact area can be ensured.
  • the conductivity of the metal foil tape is more stable than that of the conductive adhesive agent.
  • the pressure-sensitive adhesive layer is generally made of an acrylic pressure-sensitive adhesive agent and has poor adhesion at elevated temperatures and limited heat resistance.
  • the layer may be easily stripped from the object to be adhered by Joule heat.
  • the thermal stability and the mechanical strength of connection are poor.
  • the present invention is an invention for solving the above-mentioned problems.
  • An object thereof is to provide a batch electrically connecting sheet which makes it possible to form a low-resistance electric connection with mechanical, thermal and electrical stability at plural points of contact by a simple procedure.
  • the present invention is a batch electrically connecting sheet comprising a heat-resistant sheet having plural perforations, conductive blocks, inserted in the perforations having ridges including indentations and projections outstanding from the perforations.
  • the conductive blocks are thicker than the heat-resistant sheet, and an adhesive layer composed of a heat curable adhesive agent applied on at least one surface of the heat-resistant sheet, the surface covering the projections of the conductive blocks.
  • batch electrically connecting sheet means a sheet which electrically connects at multiple points.
  • FIG. 1 is a perspective view illustrating an example of the batch electrically connecting sheet of the present invention.
  • FIG. 2 is an AA′ sectional view of the batch electrically connecting sheet of FIG. 1 .
  • FIG. 3 is a sectional view illustrating an example of the batch electrically connecting sheet of the present invention.
  • FIG. 4 is a sectional view of a connecting structure made of the batch electrically connecting sheet of the present invention.
  • FIGS. 5 a and 5 b are process drawings which schematically illustrate a process of forming an electric connection from the batch electrically connecting sheet of the present invention.
  • FIG. 6 is a sectional view of a connecting structure made of the batch electrically connecting sheet of the present invention.
  • FIG. 7 is a sectional view of a connecting structure made of the batch electrically connecting sheet of the present invention.
  • FIG. 8 is a plan view of an example of the embodiment wherein a batch electrically connecting sheet of the present invention is used to perform batch electric connection.
  • FIG. 1 is a perspective view illustrating an example of the batch electrically connecting sheet of the present invention.
  • plural conductive blocks 3 are formed.
  • the arrangement of the conductive blocks 3 may be regular or irregular.
  • FIG. 2 is an AA′ sectional view of the batch electrically connecting sheet,
  • This batch electrically connecting sheet 5 has a heat-resistant sheet 1 , an adhesive layer 2 applied on the front surface of the heat-resistant sheet 1 , and an adhesive layer 2 ′ applied on the rear surface of the heat-resistant sheet.
  • perforations are made correspondingly to the positions of contact points of an object to be adhered.
  • Conductive blocks 3 are inserted into the perforations.
  • the conductive blocks 3 are thicker than the heat-resistant sheet used so that the blocks can contact the contact points of the abject to be adhered when the blocks are subsequently sandwiched between the objects to be adhered and then adhered to the objects under pressure.
  • the blocks 3 have ridges constituting indentations and projections 4 which protrude from the front surface and the rear surface so that the blocks can easily pierce the adhesive layer to contact the object to be adhered.
  • the heat-resistant sheet should be formed from a material having strength, flexibility, and heat resistance having such a degree that can resist the curing temperature of the heat curable adhesive agent.
  • a film of a heat resistance polymer is preferably used as the heat-resistant sheet.
  • the polymer include polyimide, polyester, polyphenylene ether, polyether imide, polyarylate, polyether sulfone, and polyphenylene sulfide.
  • the thickness of the heat-resistant sheet is not particularly limited, and is usually from 1 to 2000 ⁇ m, preferably from 10 to 1000 ⁇ m, and more preferably from 20 to 100 ⁇ m. If this heat-resistant sheet has a thickness of less than about 1 ⁇ m, the insulating reliability of insulated portions is poor. If the sheet has a thickness of more than about 2000 ⁇ m, flexibility becomes poor so that handling becomes inconvenient.
  • the perforations in the heat-resistant sheet can be manufactured by punching the sheet, or by other means such as laser ablation.
  • One or more perforation(s) may be formed in the sheet.
  • the planar shape of the perforations is usually circular, but is not particularly limited. If necessary, the shape may be polygonal, linear, curved or the like.
  • the size of the perforations may be decided dependently on the size of the conductive object to be adhered, and is not particularly limited. Usually, about the size of the perforations, the perforation diameter is from 0.01 to 10 mm, preferably from 0.1 to 5 mm.
  • the material of the conductive blocks inserted into the perforations is not particularly limited. However, considering thermal conductivity as well as electric conductivity, a preferred conductive block is made of iron, stainless steel, silver, aluminum, nickel, tin or copper. Copper, iron and aluminum are particularly preferred due to cost considerations.
  • the conductive block may be subjected to plating made of gold, tin, solder, silver, zinc, nickel or the like.
  • the planar shape of the conductive block is usually made to a shape corresponding to the perforations.
  • the thickness of the conductive blocks which includes that of the projections present in the ridges, is about 105 to 200%, preferably about 110 to 150% of the thickness of the heat-resistant sheet. If the thickness of the conductive block is less than 104% of that of the heat-resistant sheet, the contact between the conductive block and the contact point of the conductive object to be adhered becomes incomplete. If the thickness is more than 300%, the conductive blocks may not insert well in the heat-resistant sheet.
  • the conductive blocks have a ridged surface including projections 4 and 4 ′, formed in both the front surface and the rear surface of the conductive block, respectively.
  • the shape of these projections 4 and 4 ′ is not particularly limited.
  • the projections may be in a conical, pillar, mesa form or a lattice form to protrude partially.
  • the front surface and the rear surface of the conductive blocks may undulate to form indentations and projections 4 and 4 ′.
  • the number of the projections formed on the surface of the conductive blocks is not particularly limited, and is generally from 1 to 1000 per mm 2 , and preferably from 10 to 1000 per mm 2 .
  • the size of the projections i.e., the height is from 1 to 2000 ⁇ m and the average diameter thereof is from 10 to 20000 ⁇ m. If the height or the average diameter is below the lower limit thereof, the surface of the conductive object to be adhered and the difference between the projections become similar so that contact trends to be unstable. If the height and the average diameter are over the upper limit thereof, great pressure is required for crushing the projections at the time of connection. Considering the case in which an ordinary conductive object to be adhered is used to use a press machine of I ton or less, preferred height and average diameter are from 10 to 200 ⁇ m and from 100 to 5000 ⁇ m, respectively.
  • the average diameter of the projections is preferably set to not more than 1 ⁇ 2 of the wavelength of the above-mentioned high-frequency. If the interval between the projections is over 1 ⁇ 2 of the above-mentioned high-frequency, a conductive area surrounding non-contact portions functions as an antenna so that a risk of causing noises may be generated.
  • Metal materials are generally superior in malleability and ductility, and can easily be processed into a sheet form. About metals, the surface thereof is easily ridged or undulated by an embossing process. Accordingly, in the case in which metal is used as the conductive blocks, the conductive blocks are easily formed by punching out a metal sheet into a shape corresponding to the perforations and subsequently the surface thereof is subjected to an embossing process.
  • the adhesive layers 2 and 2 ′ usually have a thickness of 1 to 100 ⁇ m, preferably from 5 to 50 ⁇ m, and more preferably from 10 to 40 ⁇ m, and are arranged on both surfaces of the heat-resistant sheet 1 .
  • the adhesive layer is formed from a heat curable adhesive agent.
  • a preferred example of the heat curable adhesive layer is formed from a heat curable resin composition containing the following components:
  • the heat curable adhesive agent does not have tackiness substantially.
  • the epoxy resin reacts with the curing agent at a raised temperature or ambient temperature, so as to make it possible to form a cured product having a three-dimensional network structure.
  • the cured product of the epoxy resin is superior in heat resistance and the like, and gives cohesive power to the adhesive layer so that objects to be adhered can be adhered to each other.
  • the adhesive layer which is different from the metal foil tape mentioned in the column of the prior art, is not easily stripped from the adhered conductive object even if Joule heat is applied to the layer by sending an electric current to the electric connection between conductive object to be adhered.
  • the type of epoxy resin is not particularly limited if the resin has heat resistance, cohesive power and so on.
  • useful epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol Novolak type epoxy resin, cresol Novolak type epoxy resin, fluorene epoxy resin, glycidylarnine resin, aliphatic epoxy, polycaprolactone modified epoxy, brominated epoxy, and fluorinated epoxies.
  • the epoxy resin is usually contained at a level of 5 to 80% by weight in this composition. If the content by percentage of the epoxy resin therein is less than 5% by weight, the heat resistance of the composition deteriorates. On the other hand, if the content of the epoxy resin therein is more than 80% by weight, there is a tendency for the cohesive power of the composition deteriorates and a great fluidity is given to the composition.
  • the epoxy resin is contained at a level of 10 to 50% by weight therein.
  • the curing agent is further added to the composition. At a raised temperature or ambient temperature, the curing agent reacts with the epoxy resin to cure the composition thermally.
  • the type of the curing agent is not particularly limited as far as the agent can cure the composition thermally as described above.
  • Useful curing agents include: an amine curing agent, acid anhydride, dicyanarnide, imidazole, cationic polymerization catalysts, hydrazine compounds and the like. Dicyandiamide is particularly preferred from the viewpoint of thermal stability thereof at a room temperature (30° C).
  • the curing agent is contained at a level of 0.1 to 30% by weight in this composition. If the content by weight of the curing agent therein is less than 0.1% by weight, the hardness of the composition deteriorates. If the content of the curing agent therein is more than 30% by weight, the property of the heat curable resin after heat-curing trends to deteriorate.
  • the curing agent is contained at a level of 0.5 to 10% by weight therein.
  • the phenoxy resin is a thermoplastic resin having a chain structure, a typical weight-average molecular weight of 2000 to 2000,000 or a number-average molecular weight of 10000 to 1000,000 and an epoxy equivalent of 500 to 500,000, and is film-forming.
  • the phenoxy resin has a structure similar to that of the above-mentioned epoxy resin and is compatible with it. This composition itself is shaped to be made up to an adhesive agent film. It is particularly preferred to use the phenoxy resin together with bisphenol A type epoxy resin or fluorene epoxy resin. This is because bispheno A type epoxy resin or fluorene epoxy resin has very good compatibility with the phenoxy resin.
  • the adhesive layer has a minimum storage shear modulus of 100,000 Pa or less, preferably 10 to 100,000 Pa, considering unintended flowing-out of the resin. This is because when the conductive objects to be adhered are bonded to each other using a pressure of 10 4 to 5 ⁇ 10 7 Pa at a temperature of 60 to 260° C., such an adhesive layer allows the projections to pierce the adhesive layers and electric connection based on a low resistance between them is relatively easily provided.
  • the storage shear modulus (G′) in the present specification is a minimum value when a dynamic viscoelasticity meter (for example, “RDA II” manufactured by Reometrics Co.) is used to measure the shear modulus at an angular velocity of 6.28 rad/sec (frequency of 1 HZ) while the temperature is raised from 60 to 260° C. at a rate of 5° C. per minute.
  • a dynamic viscoelasticity meter for example, “RDA II” manufactured by Reometrics Co.
  • the adhesive layer may be formed of a composition containing a bismaleimide resin instead of the epoxy resin, or a composition wherein bismaleimide resin is added along with the epoxy resin.
  • various “super engineering” plastics e.g., polyhydroxyether obtained by reacting fluorene bisphenol with epoxy resin, or other thermoplastic resins. Polyhydroxy ether into which the above-mentioned fluorene backbone is introduced particularly improves the heat resistance of the adhesive resin layer and gives the water resistance.
  • the heat curable resin layer may be made of a composition mainly comprising epoxy resin, bismaleimide resin or a mixture thereof, and a without departing from the object and the effect of the present invention.
  • a heat curable resin formed mainly from ethylene-glycidyl methacrylate is low in water absorption.
  • the resin is suitable for use under conditions having high humidity. Since the resin is also chemically stable, it is suitable for, e.g., the protection of an electrode of a nickel-hydrogen battery or a lithium battery.
  • the interval between the conductive blocks is not particularly limited, and is usually from 0.1 to 200 mm. If the interval between the conductive blocks is below the lower limit thereof, a short circuit may be caused. If the interval between the conductive blocks is over the upper limit thereof, merits of connection in a batch manner becomes poor (the blocks may be separately pressed). based on solder is used together, a flux agent made of rosin or the like may be applied to the surface of the adhesive layer in order to make the solder connection easy. The batch electrically connecting sheet may be cut off into several areas which are electrically separated to each other after the formation of the adhesive layer.
  • indentions and projections are disposed on both surfaces of the conductive blocks, and the adhesive layer is disposed on both surfaces of the batch electrically connecting sheet. However, these may be disposed on only a single surface thereof.
  • FIG. 3 is a sectional view of such a batch electrically connecting sheet.
  • FIG. 4 is a sectional view of a connecting structure made of a batch electrically connecting sheet of the present invention.
  • the connecting structure of the present invention is provided with a heat-resistant sheet 1 , conductive blocks 3 inserted into portions thereof, conductive objects 6 and 6 ′ to be adhered, which are set on and beneath the conductive blocks 3 , and an adhesive layer 2 filled into a space between the conductive blocks 3 and the conductive objects 6 and 6 ′ to be adhered.
  • the adhesive layers 2 and 2 ′ are bonded to the conductive objects 6 and 6 ′ to be adhered, and projections 4 and 4 ′ pierce the adhesive layer 2 to contact the conductive objects 6 and 6 ′ to be adhered.
  • the batch electrically connecting sheet forms an electric connection between them to have a low resistance.
  • FIG. 5 are process drawings which schematically illustrate a process of forming an electrical connection by a batch electrically connecting sheet of the present invention.
  • conductive objects 6 and 6 ′ to be adhered are firstly arranged on the adhesive layer of a batch electrically connecting sheet 5 .
  • a desired pressure is applied between the conductive objects to be adhered while the adhesive layers 2 and 2 ′ of the batch electrically connecting sheet 5 are heated together with the conductive objects 6 and 6 ′ to be adhered.
  • the adhesive layers 2 and 2 ′ are softened, and the projections 4 and 4 ′ of the conductive block pierce the adhesive layer to contact the conductive objects 6 and 6 ′ to be adhered.
  • the tips of the projections 4 and 4 ′ deform by the applied pressure so that the contact area between the projections and the conductive objects to be adhered increases (the deformation is not illustrated).
  • the adhesive sheet can provide an electric connection having a low resistance and an excellent stability between the conductive objects to be adhered.
  • the adhesive layer is further heated if necessary, so as to cure the heat curable adhesive agent completely.
  • a large electric current of 10 to 100,000 ⁇ may be sent between the projections of the heat-resistant sheet and the conductive object to be adhered, to melt and bond the projections 4 and 4 ′ and the conductive objects 6 and 6 ′ to be adhered.
  • a brazing material such as solder, tin, zinc, aluminum, or a low melting point metal
  • the temperature at the time of heating and bonding under pressure may be suitably adjusted, or a suitable quantity of electric current sent between the projections of the heat-resistant sheet and the conductive objects to be adhered to braze (solder etc.) the projections 4 and 4 ′ and the conductive objects 6 and 6 ′ to be adhered.
  • the conductive object to be adhered include conductive members of plate-form bodies such as a bus-bar and a print wiring board, and a rod-form or a line-form body such as an electric wire.
  • FIG. 6 is a sectional view illustrating another example of the connecting structure of the present invention.
  • a batch electrically connecting sheet wherein projections and an adhesive layer are disposed on a single surface is used.
  • contact points of the two usually become a single line.
  • the area where the two directly contact each other is small and the electric connection thereof becomes unstable.
  • the rod-form member 6 and the plate-form conductive member 6 ′ ensure electric connection by direct contact between the two and the conductive member 3 . As a result, sure electric connection between the rod-form conductive member 6 and the plate-form conductive member 6 ′ becomes possible.
  • FIG. 7 is a further example illustrating the connecting structure of the present invention.
  • An electric connection is formed between a conductive member 6 and a conductive member 6 ′ on the same side to the batch electrically connecting sheet by a conductive member 3 .
  • a coating solution of a heat curable adhesive agent was obtained by mixing components shown in Table 1.
  • the resultant coating composition was applied onto a polyethylene terephthalate (PET) film (thickness: 50 ⁇ m) subjected to stripping treatment, and the resultant was passed through an oven of 100 to 130° C. and dried to yield a film adhesive agent having a thickness of 50 ⁇ m.
  • PET polyethylene terephthalate
  • the film adhesive agent was stripped from the PET film, and placed on a single surface of the polyimide film.
  • the resultant was heat-laminated with rollers of 100° C.
  • Conductive blocks were inserted into the through holes made in the polyimlide film, and then a film adhesive agent was laminated on the other surface of the polyimide to confine the conductive blocks. In this way, a batch electrically connecting sheet was obtained.
  • FIG. 5 is a plan view of an example of the embodiment wherein a batch electrically connecting sheet of the present invention is used to perform batch electric connection.
  • Three copper plates 7 having a size of 50 ⁇ 2 ⁇ 0.5 mm and subjected to tin plating were lined at intervals of 2 mm.
  • the above-mentioned conductive sheet was placed thereon, and further the same three copper plates 7 ′ as described above, were placed thereon so as to be perpendicular to the lower copper plates.
  • the conductive blocks 3 of the conductive sheet were positioned between three points where the copper plates crossed each other, as illustrated in this figure.
  • the resultant lamination was pressed at 120° C. for 1 second to be temporarily fixed. Next, the lamination was pressed at 200° C. and 200 kgf for 14 seconds, so as to continue to apply pressure.
  • a power source for welding machines (“Studmatic III YS-30” manufactured by Kabushiki Kaisha Yashima) was used to send an electric current to the electrically-connected copper plates for 1 second. Thereafter, the sample was cured in an oven of 200° C. for 5 minutes.
  • a digital micro ohmmeter (“34420A” manufactured by Azirent Technology Co.) was used to measure electric resistance against three contact points a, b and c of the lamination by a four-terminal method.
  • the batch electrically connecting sheet of the present invention it is possible to form an electric connection having a low resistance and mechanical, thermal and electrical stability at plural contact points.

Abstract

A batch electrically connecting sheet makes it possible to form an electric connection with mechanical, thermal, and electrical stability at plural points of contact. A batch electrically connecting sheet comprises a heat-resistant sheet having plural perforations, conductive blocks, inserted in the perforations, having ridges including indentations and projections; the projections are outstanding from the perforations, and the conductive blocks are thicker than the heat-resistant sheet, and the heat-resistant sheet has an adhesive layer composed of a heat curable adhesive agent applied on at least one surface thereof, covering the projections of the conductive blocks.

Description

TECHNICAL FIELD
The present invention relates to a heat curable conductive adhesive sheet used when a wiring pattern or the like of an electric circuit is connected, particularly to a batch electrically connecting sheet for connecting plural contact points of a wiring pattern of an electric circuit electrically in a batch manner.
DESCRIPTION OF THE RELATED ART
When making electric connections of large-current circuits, grounding of printed wiring boards, connection of battery electrodes, and electric connection of microwave printed wiring boards to heat sinks, housings or the like, it is necessary that the connections be mechanically, thermally and electrically stable.
In recent years, electronic parts on which electronic circuits integrated at a high density are mounted are used as electronic apparatus continue to be made smaller and lighter. Usually, electronic circuits control electronic apparatus, using high-frequency signals. High frequency signals are easily affected external minute noises, and the signals may result in malfunction of electronic apparatus. To remove such noises, it is necessary to perform shielding, grounding or the like. It is required to form electric connection having a low resistance easily and surely.
Several conductive materials suitable for connecting a wiring pattern or other electric circuits are suggested. However, considering the tendency to make electronic apparatus smaller and lighter in size, typical examples thereof are conductive adhesive agents and metal foil tapes.
Japanese Patent Laid-Open Publication No.H1(1989)-113480 and Japanese Patent Laid-Open Publication No.H1(1989)-309206 disclose conductive adhesive agents wherein conductive particles are dispersed in a heat curable resin. The conductive adhesive agents cause the conductive particles in the heat curable resin to contact each other by heat-curing the adhesive agent under pressure of the heat curable resin, to give electric conductivity. The contact between the conductive particles is in general a point-contact, i.e., the conductive particles are electrically connected to each other in a very small contact area. The conductivity of the conductive adhesive agents in such a case is easily affected by environmental changes, and is therefore poor in stability. It is also difficult to heat-cure the agents under pressure, using only simple equipment such as an ordinary oven. A special tool for pressing contact points upon the heat-curing is necessary, and the execution step is complicated.
Further, when a large electric current is sent thereto, heat may be generated at portions of contact points since there is a large contact resistance. When specific conductive particles, namely metal plated macromolecular particles, are used, the contact area can be made larger to some extent. However, the conductive layer is very thin; therefore, the problem of heat-generation may still exist. For example, when a large electric power of 100 W or more is continuously applied to an electric connection based on such a conductive adhesive agent, Joule heat is generated to such a degree that it negatively effects surrounding electronic parts.
On the other hand, the metal foil tape is a conductive pressure-sensitive adhesive sheet composed basically of a metal foil and a pressure-sensitive adhesive layer. In the case of an embossed metal foil tape wherein hollow projections are fitted to a metal foil tape by an embossing process, the hollow projections break through the pressure-sensitive adhesive layer to contact an object to be adhered electrically and directly. By deformation of the hollow projections, a relatively large contact area can be ensured. As a result, the conductivity of the metal foil tape is more stable than that of the conductive adhesive agent.
However, in the case of the metal foil tape, the pressure-sensitive adhesive layer is generally made of an acrylic pressure-sensitive adhesive agent and has poor adhesion at elevated temperatures and limited heat resistance. When a large electric current is sent thereto, the layer may be easily stripped from the object to be adhered by Joule heat. Thus, the thermal stability and the mechanical strength of connection are poor.
Thus, the electrical connection for sending a large electric current must rely on a mechanical caulk, as disclosed in Japanese Patent Publication H7(1995)-16090, or welding. Complicated operation is required for execution. Furthermore, when plural contact points are formed, it is necessary that connecting operation is performed for each of the contact points. A great deal of labor is required.
The present invention is an invention for solving the above-mentioned problems. An object thereof is to provide a batch electrically connecting sheet which makes it possible to form a low-resistance electric connection with mechanical, thermal and electrical stability at plural points of contact by a simple procedure.
SUMMARY OF THE INVENTION
The present invention is a batch electrically connecting sheet comprising a heat-resistant sheet having plural perforations, conductive blocks, inserted in the perforations having ridges including indentations and projections outstanding from the perforations. The conductive blocks are thicker than the heat-resistant sheet, and an adhesive layer composed of a heat curable adhesive agent applied on at least one surface of the heat-resistant sheet, the surface covering the projections of the conductive blocks.
The term “batch electrically connecting sheet” means a sheet which electrically connects at multiple points.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view illustrating an example of the batch electrically connecting sheet of the present invention.
FIG. 2 is an AA′ sectional view of the batch electrically connecting sheet of FIG. 1.
FIG. 3 is a sectional view illustrating an example of the batch electrically connecting sheet of the present invention.
FIG. 4 is a sectional view of a connecting structure made of the batch electrically connecting sheet of the present invention.
FIGS. 5 a and 5 b are process drawings which schematically illustrate a process of forming an electric connection from the batch electrically connecting sheet of the present invention.
FIG. 6 is a sectional view of a connecting structure made of the batch electrically connecting sheet of the present invention.
FIG. 7 is a sectional view of a connecting structure made of the batch electrically connecting sheet of the present invention.
FIG. 8 is a plan view of an example of the embodiment wherein a batch electrically connecting sheet of the present invention is used to perform batch electric connection.
DESCRIPTION OF REFERENCE NUMERALS
1 . . . heat-resistant sheet,
2, 2′ . . . adhesive layer,
3 . . . conductive block,
4, 4′ . . . projections,
5 . . . batch electrically connecting sheet,
6, 6′ . . . conductive object to be adhered.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described according to preferred embodiments. In the drawings, the same reference numbers are attached to the same parts or the corresponding parts.
FIG. 1 is a perspective view illustrating an example of the batch electrically connecting sheet of the present invention. Correspondingly to the positions of contact points of a conductive object to be adhered, plural conductive blocks 3 are formed. The arrangement of the conductive blocks 3 may be regular or irregular. FIG. 2 is an AA′ sectional view of the batch electrically connecting sheet,
This batch electrically connecting sheet 5 has a heat-resistant sheet 1, an adhesive layer 2 applied on the front surface of the heat-resistant sheet 1, and an adhesive layer 2′ applied on the rear surface of the heat-resistant sheet. In the heat-resistant sheet, perforations are made correspondingly to the positions of contact points of an object to be adhered. Conductive blocks 3 are inserted into the perforations. The conductive blocks 3, are thicker than the heat-resistant sheet used so that the blocks can contact the contact points of the abject to be adhered when the blocks are subsequently sandwiched between the objects to be adhered and then adhered to the objects under pressure. At this time, it is preferred that the blocks 3 have ridges constituting indentations and projections 4 which protrude from the front surface and the rear surface so that the blocks can easily pierce the adhesive layer to contact the object to be adhered.
The heat-resistant sheet should be formed from a material having strength, flexibility, and heat resistance having such a degree that can resist the curing temperature of the heat curable adhesive agent. In general, a film of a heat resistance polymer is preferably used as the heat-resistant sheet. Particularly preferred examples of the polymer include polyimide, polyester, polyphenylene ether, polyether imide, polyarylate, polyether sulfone, and polyphenylene sulfide.
The thickness of the heat-resistant sheet is not particularly limited, and is usually from 1 to 2000 μm, preferably from 10 to 1000 μm, and more preferably from 20 to 100 μm. If this heat-resistant sheet has a thickness of less than about 1 μm, the insulating reliability of insulated portions is poor. If the sheet has a thickness of more than about 2000 μm, flexibility becomes poor so that handling becomes inconvenient.
The perforations in the heat-resistant sheet can be manufactured by punching the sheet, or by other means such as laser ablation. One or more perforation(s) may be formed in the sheet. The planar shape of the perforations is usually circular, but is not particularly limited. If necessary, the shape may be polygonal, linear, curved or the like. The size of the perforations may be decided dependently on the size of the conductive object to be adhered, and is not particularly limited. Usually, about the size of the perforations, the perforation diameter is from 0.01 to 10 mm, preferably from 0.1 to 5 mm.
The material of the conductive blocks inserted into the perforations is not particularly limited. However, considering thermal conductivity as well as electric conductivity, a preferred conductive block is made of iron, stainless steel, silver, aluminum, nickel, tin or copper. Copper, iron and aluminum are particularly preferred due to cost considerations. The conductive block may be subjected to plating made of gold, tin, solder, silver, zinc, nickel or the like.
The planar shape of the conductive block is usually made to a shape corresponding to the perforations. The thickness of the conductive blocks, which includes that of the projections present in the ridges, is about 105 to 200%, preferably about 110 to 150% of the thickness of the heat-resistant sheet. If the thickness of the conductive block is less than 104% of that of the heat-resistant sheet, the contact between the conductive block and the contact point of the conductive object to be adhered becomes incomplete. If the thickness is more than 300%, the conductive blocks may not insert well in the heat-resistant sheet.
The conductive blocks have a ridged surface including projections 4 and 4′, formed in both the front surface and the rear surface of the conductive block, respectively. The shape of these projections 4 and 4′ is not particularly limited. The projections may be in a conical, pillar, mesa form or a lattice form to protrude partially. Alternatively, the front surface and the rear surface of the conductive blocks may undulate to form indentations and projections 4 and 4′.
The number of the projections formed on the surface of the conductive blocks is not particularly limited, and is generally from 1 to 1000 per mm2, and preferably from 10 to 1000 per mm2.
The size of the projections, i.e., the height is from 1 to 2000 μm and the average diameter thereof is from 10 to 20000 μm. If the height or the average diameter is below the lower limit thereof, the surface of the conductive object to be adhered and the difference between the projections become similar so that contact trends to be unstable. If the height and the average diameter are over the upper limit thereof, great pressure is required for crushing the projections at the time of connection. Considering the case in which an ordinary conductive object to be adhered is used to use a press machine of I ton or less, preferred height and average diameter are from 10 to 200 μm and from 100 to 5000 μm, respectively.
Particularly in the case in which the conductive object to be adhered is a high-frequency printed board such as a microwave printed wiring board, the average diameter of the projections is preferably set to not more than ½ of the wavelength of the above-mentioned high-frequency. If the interval between the projections is over ½ of the above-mentioned high-frequency, a conductive area surrounding non-contact portions functions as an antenna so that a risk of causing noises may be generated.
Metal materials are generally superior in malleability and ductility, and can easily be processed into a sheet form. About metals, the surface thereof is easily ridged or undulated by an embossing process. Accordingly, in the case in which metal is used as the conductive blocks, the conductive blocks are easily formed by punching out a metal sheet into a shape corresponding to the perforations and subsequently the surface thereof is subjected to an embossing process.
Considering that sufficient adhesive strength is obtained and simultaneously the contact between the heat-resistant sheet 1 and the conductive object to be adhered (non-illustrated) is made easy, the adhesive layers 2 and 2′ usually have a thickness of 1 to 100 μm, preferably from 5 to 50 μm, and more preferably from 10 to 40 μm, and are arranged on both surfaces of the heat-resistant sheet 1.
The adhesive layer is formed from a heat curable adhesive agent. A preferred example of the heat curable adhesive layer is formed from a heat curable resin composition containing the following components:
(1) epoxy resin,
(2) a curing agent for the epoxy resin, and
(3) phenoxy resin.
The heat curable adhesive agent does not have tackiness substantially.
The epoxy resin reacts with the curing agent at a raised temperature or ambient temperature, so as to make it possible to form a cured product having a three-dimensional network structure. In this case, the cured product of the epoxy resin is superior in heat resistance and the like, and gives cohesive power to the adhesive layer so that objects to be adhered can be adhered to each other. As a result, the adhesive layer, which is different from the metal foil tape mentioned in the column of the prior art, is not easily stripped from the adhered conductive object even if Joule heat is applied to the layer by sending an electric current to the electric connection between conductive object to be adhered.
The type of epoxy resin is not particularly limited if the resin has heat resistance, cohesive power and so on. Examples of useful epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol Novolak type epoxy resin, cresol Novolak type epoxy resin, fluorene epoxy resin, glycidylarnine resin, aliphatic epoxy, polycaprolactone modified epoxy, brominated epoxy, and fluorinated epoxies.
The epoxy resin is usually contained at a level of 5 to 80% by weight in this composition. If the content by percentage of the epoxy resin therein is less than 5% by weight, the heat resistance of the composition deteriorates. On the other hand, if the content of the epoxy resin therein is more than 80% by weight, there is a tendency for the cohesive power of the composition deteriorates and a great fluidity is given to the composition. Preferably, the epoxy resin is contained at a level of 10 to 50% by weight therein.
The curing agent is further added to the composition. At a raised temperature or ambient temperature, the curing agent reacts with the epoxy resin to cure the composition thermally. The type of the curing agent is not particularly limited as far as the agent can cure the composition thermally as described above. Useful curing agents include: an amine curing agent, acid anhydride, dicyanarnide, imidazole, cationic polymerization catalysts, hydrazine compounds and the like. Dicyandiamide is particularly preferred from the viewpoint of thermal stability thereof at a room temperature (30° C).
The curing agent is contained at a level of 0.1 to 30% by weight in this composition. If the content by weight of the curing agent therein is less than 0.1% by weight, the hardness of the composition deteriorates. If the content of the curing agent therein is more than 30% by weight, the property of the heat curable resin after heat-curing trends to deteriorate. Preferably, the curing agent is contained at a level of 0.5 to 10% by weight therein.
The phenoxy resin is a thermoplastic resin having a chain structure, a typical weight-average molecular weight of 2000 to 2000,000 or a number-average molecular weight of 10000 to 1000,000 and an epoxy equivalent of 500 to 500,000, and is film-forming. The phenoxy resin has a structure similar to that of the above-mentioned epoxy resin and is compatible with it. This composition itself is shaped to be made up to an adhesive agent film. It is particularly preferred to use the phenoxy resin together with bisphenol A type epoxy resin or fluorene epoxy resin. This is because bispheno A type epoxy resin or fluorene epoxy resin has very good compatibility with the phenoxy resin.
According to the present invention, the adhesive layer has a minimum storage shear modulus of 100,000 Pa or less, preferably 10 to 100,000 Pa, considering unintended flowing-out of the resin. This is because when the conductive objects to be adhered are bonded to each other using a pressure of 104 to 5×107 Pa at a temperature of 60 to 260° C., such an adhesive layer allows the projections to pierce the adhesive layers and electric connection based on a low resistance between them is relatively easily provided.
On the other hand, if the minimum storage shear modulus is more than about 100,000, a very large pressure is necessary in order that the projections pierce the adhesive layer. Thus, the pressing becomes difficult. The storage shear modulus (G′) in the present specification is a minimum value when a dynamic viscoelasticity meter (for example, “RDA II” manufactured by Reometrics Co.) is used to measure the shear modulus at an angular velocity of 6.28 rad/sec (frequency of 1 HZ) while the temperature is raised from 60 to 260° C. at a rate of 5° C. per minute.
The adhesive layer may be formed of a composition containing a bismaleimide resin instead of the epoxy resin, or a composition wherein bismaleimide resin is added along with the epoxy resin. Alternatively, it is allowable to use various “super engineering” plastics, e.g., polyhydroxyether obtained by reacting fluorene bisphenol with epoxy resin, or other thermoplastic resins. Polyhydroxy ether into which the above-mentioned fluorene backbone is introduced particularly improves the heat resistance of the adhesive resin layer and gives the water resistance.
The heat curable resin layer may be made of a composition mainly comprising epoxy resin, bismaleimide resin or a mixture thereof, and a without departing from the object and the effect of the present invention. A heat curable resin formed mainly from ethylene-glycidyl methacrylate is low in water absorption. Thus, the resin is suitable for use under conditions having high humidity. Since the resin is also chemically stable, it is suitable for, e.g., the protection of an electrode of a nickel-hydrogen battery or a lithium battery.
The interval between the conductive blocks is not particularly limited, and is usually from 0.1 to 200 mm. If the interval between the conductive blocks is below the lower limit thereof, a short circuit may be caused. If the interval between the conductive blocks is over the upper limit thereof, merits of connection in a batch manner becomes poor (the blocks may be separately pressed). based on solder is used together, a flux agent made of rosin or the like may be applied to the surface of the adhesive layer in order to make the solder connection easy. The batch electrically connecting sheet may be cut off into several areas which are electrically separated to each other after the formation of the adhesive layer.
In the above-mentioned batch electrically connecting sheet, indentions and projections are disposed on both surfaces of the conductive blocks, and the adhesive layer is disposed on both surfaces of the batch electrically connecting sheet. However, these may be disposed on only a single surface thereof. FIG. 3 is a sectional view of such a batch electrically connecting sheet.
FIG. 4 is a sectional view of a connecting structure made of a batch electrically connecting sheet of the present invention.
The connecting structure of the present invention is provided with a heat-resistant sheet 1, conductive blocks 3 inserted into portions thereof, conductive objects 6 and 6′ to be adhered, which are set on and beneath the conductive blocks 3, and an adhesive layer 2 filled into a space between the conductive blocks 3 and the conductive objects 6 and 6′ to be adhered. The adhesive layers 2 and 2′ are bonded to the conductive objects 6 and 6′ to be adhered, and projections 4 and 4′ pierce the adhesive layer 2 to contact the conductive objects 6 and 6′ to be adhered. As a result, in the case in which the conductive objects to be adhered have electrical conductivity, the batch electrically connecting sheet forms an electric connection between them to have a low resistance.
FIG. 5 are process drawings which schematically illustrate a process of forming an electrical connection by a batch electrically connecting sheet of the present invention.
As illustrated in FIG. 5(a), conductive objects 6 and 6′ to be adhered are firstly arranged on the adhesive layer of a batch electrically connecting sheet 5.
Next, a desired pressure is applied between the conductive objects to be adhered while the adhesive layers 2 and 2′ of the batch electrically connecting sheet 5 are heated together with the conductive objects 6 and 6′ to be adhered. As a result, the adhesive layers 2 and 2′ are softened, and the projections 4 and 4′ of the conductive block pierce the adhesive layer to contact the conductive objects 6 and 6′ to be adhered. At this time, the tips of the projections 4 and 4′ deform by the applied pressure so that the contact area between the projections and the conductive objects to be adhered increases (the deformation is not illustrated). As a result, the adhesive sheet can provide an electric connection having a low resistance and an excellent stability between the conductive objects to be adhered. Thereafter, the adhesive layer is further heated if necessary, so as to cure the heat curable adhesive agent completely.
Thereafter, a large electric current of 10 to 100,000 Å may be sent between the projections of the heat-resistant sheet and the conductive object to be adhered, to melt and bond the projections 4 and 4′ and the conductive objects 6 and 6′ to be adhered. If a brazing material such as solder, tin, zinc, aluminum, or a low melting point metal is present between the projections of the heat-resistant sheet and the conductive objects to be adhered, the temperature at the time of heating and bonding under pressure may be suitably adjusted, or a suitable quantity of electric current sent between the projections of the heat-resistant sheet and the conductive objects to be adhered to braze (solder etc.) the projections 4 and 4′ and the conductive objects 6 and 6′ to be adhered. By this means, connection between the projections 4 and 4′ and the conductive objects 6 and 6′ to be adhered becomes firm.
Specific examples of the conductive object to be adhered include conductive members of plate-form bodies such as a bus-bar and a print wiring board, and a rod-form or a line-form body such as an electric wire.
FIG. 6 is a sectional view illustrating another example of the connecting structure of the present invention. In this example, a batch electrically connecting sheet wherein projections and an adhesive layer are disposed on a single surface is used. In the case in which a rod-form conductive member is placed on a plate-form conductive member, contact points of the two usually become a single line. As a result, the area where the two directly contact each other is small and the electric connection thereof becomes unstable. On the other hand, in the connecting structure of FIG. 6, the rod-form member 6 and the plate-form conductive member 6′ ensure electric connection by direct contact between the two and the conductive member 3. As a result, sure electric connection between the rod-form conductive member 6 and the plate-form conductive member 6′ becomes possible.
FIG. 7 is a further example illustrating the connecting structure of the present invention. An electric connection is formed between a conductive member 6 and a conductive member 6′ on the same side to the batch electrically connecting sheet by a conductive member 3.
EXAMPLES Example 1
Formation of an Adhesive Layer
A coating solution of a heat curable adhesive agent was obtained by mixing components shown in Table 1.
TABLE 1
Parts by
Component weight
Phenoxy resin, “YP50S” made by Tohto Kasei Co., average 30
number molecular weight = 11,800
Epoxy resin, “DER332” made by Dow Chemical Japan Ltd., 20
epoxy equivalent = 174
Acrylic polymer dispersed epoxy resin, “Modiver RD102” made 20
by Nippon Oil Co., Ltd., acryl content = 40% by weight
Epoxy resin, “PCL-G402” made by Daicel chemical Industries. 30
Ltd., epoxy equivalent = 1350
MEK sol of silica, “MEK-ST” made by Nissan Chemical 50
Industries, Ltd., silica content = 30% by weight
Dicyandiamide 2.9
Toluene bisdimethylurea, “Omicure-24” made by PTI Japan Co. 2.0
Methanol 40
Methyl ethyl ketone 40
The resultant coating composition was applied onto a polyethylene terephthalate (PET) film (thickness: 50 μm) subjected to stripping treatment, and the resultant was passed through an oven of 100 to 130° C. and dried to yield a film adhesive agent having a thickness of 50 μm.
Formation of Conductive Blocks
A copper foil (“C1020R-H” manufactured by Fukuda Kinzoku Hakufun Co.) having a thickness of 60 μm was punched out to form a disc having a diameter of 3.5 mm. This disc was sandwiched between two stainless steel net (SUS-304, 100 meshes), and pressed at a pressure of 156 kg/mm2 to form an embossed copper foil.
Formation of a Batch Electrically Connecting Sheet
A polyimide film (“Eupilex” manufactured by Ube Industries, Ltd., thickness: 50 μm) having a thickness of 50 μm was punched out to form three through holes having a diameter of 3.8 mm. The film adhesive agent was stripped from the PET film, and placed on a single surface of the polyimide film. The resultant was heat-laminated with rollers of 100° C. Conductive blocks were inserted into the through holes made in the polyimlide film, and then a film adhesive agent was laminated on the other surface of the polyimide to confine the conductive blocks. In this way, a batch electrically connecting sheet was obtained.
Example 2
FIG. 5 is a plan view of an example of the embodiment wherein a batch electrically connecting sheet of the present invention is used to perform batch electric connection.
Formation of a Batch Electrically Connecting Structure
Three copper plates 7 having a size of 50×2×0.5 mm and subjected to tin plating were lined at intervals of 2 mm. The above-mentioned conductive sheet was placed thereon, and further the same three copper plates 7′ as described above, were placed thereon so as to be perpendicular to the lower copper plates. At this time, the conductive blocks 3 of the conductive sheet were positioned between three points where the copper plates crossed each other, as illustrated in this figure.
The resultant lamination was pressed at 120° C. for 1 second to be temporarily fixed. Next, the lamination was pressed at 200° C. and 200 kgf for 14 seconds, so as to continue to apply pressure. A power source for welding machines (“Studmatic III YS-30” manufactured by Kabushiki Kaisha Yashima) was used to send an electric current to the electrically-connected copper plates for 1 second. Thereafter, the sample was cured in an oven of 200° C. for 5 minutes.
Measurement of Resistance
A digital micro ohmmeter (“34420A” manufactured by Azirent Technology Co.) was used to measure electric resistance against three contact points a, b and c of the lamination by a four-terminal method. The measurement results are as follows: a=0.006 milliohm, b=0.008 milliohm, and c=0.006 milliohm.
It was demonstrated as described above that in the batch electrically connecting structure of the present invention, electric connection having a low resistance and superior stability was provided between the conductive objects to be adhered.
According to the batch electrically connecting sheet of the present invention, it is possible to form an electric connection having a low resistance and mechanical, thermal and electrical stability at plural contact points.

Claims (7)

1. A batch electrically connecting sheet comprising a heat-resistant sheet having a plurality of perforations, conductive blocks inserted in the perforations, said blocks having plurality of ridges including indentations and projections wherein the block is thicker than the heat-resistant sheet such that the projections outstand from the perforations, and an adhesive layer composed of a heat curable adhesive agent applied on at least one surface of the heat-resistant sheet covering the projections of the conductive blocks.
2. The batch electrically connecting sheet according to claim 1 wherein the conductive block is formed of a metallic material, and the projections are formed by an embossing process.
3. The batch electrically connecting sheet according to claim 1 wherein said adhesive layer is applied to both surfaces of the heat-resistant sheet covering a front surface and a back surface of the conductive blocks.
4. A process for batch electrically connecting comprising the steps of:
placing a conductive object to be adhered on each adhesive layer of the batch electrically connecting sheet according to claim 3; and
heating the adhesive layers of the batch electrically connecting sheet while applying pressure between the batch electrically connecting sheet and conductive objects to be adhered, wherein the adhesive layers are pierced through by the projections of the conductive blocks, thereby bringing into contact the front surface and back surface of the conductive blocks with the conductive objects to be adhered.
5. The process according to claim 4, further comprising the step of applying electric current between the conductive blocks and the conductive object to be adhered, welding the projections of the conductive blocks with the conductive object to be adhered.
6. The process according to claim 4, further comprising the step of applying heat energy between the conductive blocks and the conductive object to be adhered so as to weld the projections of the conductive blocks with the conductive object to be adhered.
7. A connected structure comprising the batch electrically connecting sheet according to claim 1 and a conductive object to be adhered placed on the adhesive layer of the batch electrically connecting sheet wherein:
the adhesive layer adheres to the conductive object to be adhered; and
the projections of the conductive blocks pierce through the adhesive layer and electrically contact with the conductive object to be adhered.
US10/484,175 2001-08-08 2002-08-06 Batch electrically connecting sheet Expired - Fee Related US6908318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/484,175 US6908318B2 (en) 2001-08-08 2002-08-06 Batch electrically connecting sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-240533 2001-08-08
JP2001240533A JP2003069198A (en) 2001-08-08 2001-08-08 Sheet for electrical batch connection
US10/484,175 US6908318B2 (en) 2001-08-08 2002-08-06 Batch electrically connecting sheet
PCT/US2002/024790 WO2003015218A1 (en) 2001-08-08 2002-08-06 Batch electrically connecting sheet

Publications (2)

Publication Number Publication Date
US20040241402A1 US20040241402A1 (en) 2004-12-02
US6908318B2 true US6908318B2 (en) 2005-06-21

Family

ID=33455345

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/484,175 Expired - Fee Related US6908318B2 (en) 2001-08-08 2002-08-06 Batch electrically connecting sheet

Country Status (1)

Country Link
US (1) US6908318B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052290B1 (en) * 2005-08-10 2006-05-30 Sony Ericsson Mobile Communications Ab Low profile connector for electronic interface modules
US20080020600A1 (en) * 2005-09-08 2008-01-24 International Business Machines Corporation Land grid array (lga) interposer utilizing metal-on-elastomer hemi-torus and other multiple points of contact geometries
US20080073240A1 (en) * 2006-09-26 2008-03-27 Cadbury Adams Usa Llc. Rupturable blister package
US20090035566A1 (en) * 2007-08-03 2009-02-05 Fukui Precision Component (Shenzhen) Co., Ltd. Adhesive layer and printed circuit board assembly having the same
US20120244758A1 (en) * 2011-03-24 2012-09-27 Japan Aviation Electronics, Limited Connector easily enabling a reduction in thickness and being structurally stable
US9216850B2 (en) 2006-09-26 2015-12-22 Intercontinental Great Brands Llc Rupturable substrate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214735A1 (en) * 2008-11-07 2011-09-08 3M Innovative Properities Company Conductive laminated assembly
WO2011008039A2 (en) * 2009-07-16 2011-01-20 (주)새티스 Hot melt adhesive tape and a production method therefor, a method for connecting electronic equipment using the same and a connecting device therefor, and electronic equipment of this type
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102349607B1 (en) 2016-12-12 2022-01-12 에너저스 코포레이션 Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered
US10680319B2 (en) * 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
KR20210117283A (en) 2019-01-28 2021-09-28 에너저스 코포레이션 Systems and methods for a small antenna for wireless power transmission
JP2022519749A (en) 2019-02-06 2022-03-24 エナージャス コーポレイション Systems and methods for estimating the optimum phase for use with individual antennas in an antenna array

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB902567A (en) 1958-02-06 1962-08-01 Reyrolle A & Co Ltd Improvements relating to elongated electrical conductors embedded in cast resin solid insulation
GB1247016A (en) 1967-08-22 1971-09-22 Minnesota Mining & Mfg Electrically conductive adhesive tape
EP0083503A2 (en) 1981-12-28 1983-07-13 Minnesota Mining And Manufacturing Company Insulated connector sheet
US4449774A (en) * 1981-02-05 1984-05-22 Shin-Etsu Polymer Co., Ltd. Electroconductive rubbery member and elastic connector therewith
US4612209A (en) 1983-12-27 1986-09-16 Ciba-Geigy Corporation Process for the preparation of heat-curable adhesive films
EP0223464A2 (en) 1985-11-06 1987-05-27 Minnesota Mining And Manufacturing Company Anisotropically conductive polymeric matrix
EP0237176A2 (en) 1986-02-07 1987-09-16 Minnesota Mining And Manufacturing Company Connector with fine-pitched conductive passages
JPS62227986A (en) 1986-03-31 1987-10-06 Fujikura Rubber Ltd Conductive double-face self-adhesive tape
JPH01113480A (en) 1987-10-27 1989-05-02 Sony Chem Corp Thermosetting anisotropically electroconductive adhesive
JPH01309206A (en) 1988-06-06 1989-12-13 Hitachi Chem Co Ltd Adhesive composite for circuit connection
JPH02272076A (en) 1989-03-09 1990-11-06 Minnesota Mining & Mfg Co <3M> Pressure-sensitive thermosetting adhesive
US5259110A (en) * 1992-04-03 1993-11-09 International Business Machines Corporation Method for forming a multilayer microelectronic wiring module
JPH05315473A (en) 1992-05-06 1993-11-26 Nitto Denko Corp Semiconductor device
US5275856A (en) * 1991-11-12 1994-01-04 Minnesota Mining And Manufacturing Company Electrically conductive adhesive web
WO1994024704A1 (en) 1993-04-12 1994-10-27 Bolger Justin C Area bonding conductive adhesive preforms
JPH0716090A (en) 1993-06-30 1995-01-20 Mayekawa Mfg Co Ltd Production of distilled liquor
JPH07202418A (en) 1993-12-28 1995-08-04 Sumitomo Bakelite Co Ltd Interlayer adhesive for multilayer printed wiring board, copper foil applied with adhesive and production of multilayer printed wiring board
JPH07202426A (en) 1993-12-30 1995-08-04 Cmk Corp Production of multilayer printed wiring board
US5474458A (en) * 1993-07-13 1995-12-12 Fujitsu Limited Interconnect carriers having high-density vertical connectors and methods for making the same
US5484647A (en) * 1993-09-21 1996-01-16 Matsushita Electric Industrial Co., Ltd. Connecting member of a circuit substrate and method of manufacturing multilayer circuit substrates by using the same
JP2000049275A (en) 1998-07-28 2000-02-18 Hitachi Ltd Lead frame, semiconductor device and manufacture thereof
US6052286A (en) * 1997-04-11 2000-04-18 Texas Instruments Incorporated Restrained center core anisotropically conductive adhesive
US6093476A (en) * 1997-05-02 2000-07-25 Shinko Electric Industries Co., Ltd. Wiring substrate having vias
US6168442B1 (en) * 1997-07-11 2001-01-02 Jsr Corporation Anisotropic conductivity sheet with positioning portion
US6465084B1 (en) * 2001-04-12 2002-10-15 International Business Machines Corporation Method and structure for producing Z-axis interconnection assembly of printed wiring board elements
US6527563B2 (en) * 2000-10-04 2003-03-04 Gary A. Clayton Grid interposer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7A (en) * 1836-08-10 Thomas blanchard
US83503A (en) * 1868-10-27 Improved trams for gauging millstones
US1A (en) * 1836-07-13 John Ruggles Locomotive steam-engine for rail and other roads

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB902567A (en) 1958-02-06 1962-08-01 Reyrolle A & Co Ltd Improvements relating to elongated electrical conductors embedded in cast resin solid insulation
GB1247016A (en) 1967-08-22 1971-09-22 Minnesota Mining & Mfg Electrically conductive adhesive tape
US4449774A (en) * 1981-02-05 1984-05-22 Shin-Etsu Polymer Co., Ltd. Electroconductive rubbery member and elastic connector therewith
EP0083503A2 (en) 1981-12-28 1983-07-13 Minnesota Mining And Manufacturing Company Insulated connector sheet
US4612209A (en) 1983-12-27 1986-09-16 Ciba-Geigy Corporation Process for the preparation of heat-curable adhesive films
EP0223464A2 (en) 1985-11-06 1987-05-27 Minnesota Mining And Manufacturing Company Anisotropically conductive polymeric matrix
EP0237176A2 (en) 1986-02-07 1987-09-16 Minnesota Mining And Manufacturing Company Connector with fine-pitched conductive passages
JPS62227986A (en) 1986-03-31 1987-10-06 Fujikura Rubber Ltd Conductive double-face self-adhesive tape
JPH01113480A (en) 1987-10-27 1989-05-02 Sony Chem Corp Thermosetting anisotropically electroconductive adhesive
JPH01309206A (en) 1988-06-06 1989-12-13 Hitachi Chem Co Ltd Adhesive composite for circuit connection
JPH02272076A (en) 1989-03-09 1990-11-06 Minnesota Mining & Mfg Co <3M> Pressure-sensitive thermosetting adhesive
US5275856A (en) * 1991-11-12 1994-01-04 Minnesota Mining And Manufacturing Company Electrically conductive adhesive web
US5259110A (en) * 1992-04-03 1993-11-09 International Business Machines Corporation Method for forming a multilayer microelectronic wiring module
JPH05315473A (en) 1992-05-06 1993-11-26 Nitto Denko Corp Semiconductor device
WO1994024704A1 (en) 1993-04-12 1994-10-27 Bolger Justin C Area bonding conductive adhesive preforms
JPH0716090A (en) 1993-06-30 1995-01-20 Mayekawa Mfg Co Ltd Production of distilled liquor
US5474458A (en) * 1993-07-13 1995-12-12 Fujitsu Limited Interconnect carriers having high-density vertical connectors and methods for making the same
US5484647A (en) * 1993-09-21 1996-01-16 Matsushita Electric Industrial Co., Ltd. Connecting member of a circuit substrate and method of manufacturing multilayer circuit substrates by using the same
JPH07202418A (en) 1993-12-28 1995-08-04 Sumitomo Bakelite Co Ltd Interlayer adhesive for multilayer printed wiring board, copper foil applied with adhesive and production of multilayer printed wiring board
JPH07202426A (en) 1993-12-30 1995-08-04 Cmk Corp Production of multilayer printed wiring board
US6052286A (en) * 1997-04-11 2000-04-18 Texas Instruments Incorporated Restrained center core anisotropically conductive adhesive
US6093476A (en) * 1997-05-02 2000-07-25 Shinko Electric Industries Co., Ltd. Wiring substrate having vias
US6168442B1 (en) * 1997-07-11 2001-01-02 Jsr Corporation Anisotropic conductivity sheet with positioning portion
JP2000049275A (en) 1998-07-28 2000-02-18 Hitachi Ltd Lead frame, semiconductor device and manufacture thereof
US6527563B2 (en) * 2000-10-04 2003-03-04 Gary A. Clayton Grid interposer
US6465084B1 (en) * 2001-04-12 2002-10-15 International Business Machines Corporation Method and structure for producing Z-axis interconnection assembly of printed wiring board elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tadashi Ashida et al., "Structure and adhesive properties of epoxy resins modified with core/shell acrylic particles", J. Adhesion Sci. Technol., vol. 12, No. 7, pp. 749-761 (1998).

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052290B1 (en) * 2005-08-10 2006-05-30 Sony Ericsson Mobile Communications Ab Low profile connector for electronic interface modules
US20080020600A1 (en) * 2005-09-08 2008-01-24 International Business Machines Corporation Land grid array (lga) interposer utilizing metal-on-elastomer hemi-torus and other multiple points of contact geometries
US7354277B2 (en) * 2005-09-08 2008-04-08 International Business Machines Corporation Land grid array (LGA) interposer utilizing metal-on-elastomer hemi-torus and other multiple points of contact geometries
US20080073240A1 (en) * 2006-09-26 2008-03-27 Cadbury Adams Usa Llc. Rupturable blister package
US9169052B2 (en) 2006-09-26 2015-10-27 Intercontinental Great Brands Llc Rupturable blister package
US9216850B2 (en) 2006-09-26 2015-12-22 Intercontinental Great Brands Llc Rupturable substrate
US10220996B2 (en) 2006-09-26 2019-03-05 Intercontinental Great Brands Llc Rupturable substrate
US20090035566A1 (en) * 2007-08-03 2009-02-05 Fukui Precision Component (Shenzhen) Co., Ltd. Adhesive layer and printed circuit board assembly having the same
US7728232B2 (en) * 2007-08-03 2010-06-01 Fukui Precision Component (Shenzhen) Co., Ltd. Printed circuit board assembly having adhesive layer
US20120244758A1 (en) * 2011-03-24 2012-09-27 Japan Aviation Electronics, Limited Connector easily enabling a reduction in thickness and being structurally stable
US8690613B2 (en) * 2011-03-24 2014-04-08 Japan Aviation Electronics Industry, Limited Connector easily enabling a reduction in thickness and being structurally stable

Also Published As

Publication number Publication date
US20040241402A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US6908318B2 (en) Batch electrically connecting sheet
EP1063737B1 (en) Method for manufacturing a film-type data carrier
US6243946B1 (en) Method of forming an interlayer connection structure
US20030079341A1 (en) Method for connecting printed circuit boards and connected printed circuit boards
KR20100114111A (en) Method of connection of flexible printed circuit board and electronic device obtained thereby
KR100617410B1 (en) Thermocurable electroconductive adhesive sheet, connection structure and connection method using the same
EP1415369B1 (en) Batch electrically connecting sheet
JP5184335B2 (en) Printed wiring board, manufacturing method thereof, and connection method of printed wiring board
JP2002217510A (en) Connecting structure of board, and its manufacturing method
JP2002290028A (en) Connection structure and method for printed wiring board
JP4581379B2 (en) Heating element and method for manufacturing the same
KR102640159B1 (en) Shielded printed wiring board and manufacturing method of shielded printed wiring board
JP2001223465A (en) Connection method of printed-wiring board and connection structure
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP3879485B2 (en) How to connect printed circuit boards
JP4795711B2 (en) Circuit forming material, circuit board using the circuit forming material, and manufacturing method thereof
JP3948250B2 (en) Connection method of printed wiring board
JP3936540B2 (en) Method for manufacturing flexible multilayer printed circuit board
JP4003593B2 (en) Multilayer printed circuit board
JP2865241B2 (en) How to connect electronic components
JP2003069216A (en) Method for connecting conductive connectors to each other
JP2001127426A (en) Method and structure for connecting circuit conductor of flat conductor wiring board
JP2001250604A (en) Manufacturing method of conductive sheet and printed circuit board
JP2005183294A (en) Shield coating flexible flat cable and its manufacturing method
JPH06296083A (en) Manufacture of wiring board

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAWATE, KOHICHIRO;REEL/FRAME:015593/0266

Effective date: 20031205

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20090621