US6906131B2 - Cellulose material with improved absorbency - Google Patents

Cellulose material with improved absorbency Download PDF

Info

Publication number
US6906131B2
US6906131B2 US09/954,348 US95434801A US6906131B2 US 6906131 B2 US6906131 B2 US 6906131B2 US 95434801 A US95434801 A US 95434801A US 6906131 B2 US6906131 B2 US 6906131B2
Authority
US
United States
Prior art keywords
superabsorbent polymer
cellulose material
cellulose
monomer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US09/954,348
Other versions
US20030055133A1 (en
Inventor
Iqbal Ahmed
Angela Marie Jones
Scott J. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Stockhausen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/954,348 priority Critical patent/US6906131B2/en
Application filed by Stockhausen GmbH and Co KG filed Critical Stockhausen GmbH and Co KG
Assigned to STOCKHAUSEN GMBH & CO. KG reassignment STOCKHAUSEN GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, SCOTT J., JONES, ANGELA MARIE, AHMED, IQBAL
Priority to DE60238212T priority patent/DE60238212D1/en
Priority to EP02798791A priority patent/EP1438354B1/en
Priority to CNB028199510A priority patent/CN1331930C/en
Priority to PCT/IB2002/003772 priority patent/WO2003025054A1/en
Priority to AT02798791T priority patent/ATE486907T1/en
Priority to BR0212575-7A priority patent/BR0212575A/en
Priority to CA002460152A priority patent/CA2460152C/en
Publication of US20030055133A1 publication Critical patent/US20030055133A1/en
Priority to US10/923,194 priority patent/US7482058B2/en
Assigned to STOCKHAUSEN GMBH reassignment STOCKHAUSEN GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STOCKHAUSEN GMBH & CO., KG, STOCKHAUSEN VERWALTUNGSGESELLSCHAFT
Publication of US6906131B2 publication Critical patent/US6906131B2/en
Application granted granted Critical
Assigned to EVONIK STOCKHAUSEN GMBH reassignment EVONIK STOCKHAUSEN GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STOCKHAUSEN GMBH
Assigned to EVONIK STOCKHAUSEN GMBH reassignment EVONIK STOCKHAUSEN GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STOCKHAUSEN GMBH
Assigned to EVONIK STOCKHAUSEN GMBH reassignment EVONIK STOCKHAUSEN GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STOCKHAUSEN GMBH
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH MERGER (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK STOCKHAUSEN GMBH
Assigned to EVONIK OPERATIONS GMBH reassignment EVONIK OPERATIONS GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK DEGUSSA GMBH
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof

Definitions

  • the present invention relates to cellulose materials that have improved absorbency through the incorporation of polymers that absorb aqueous liquids (such as water, blood and urine).
  • the invention relates to cellulose material treated with a pre-superabsorbent polymer that is converted to superabsorbent polymer upon heating of the treated cellulose material.
  • the resulting cellulose material has enhanced absorbency over non-treated cellulose material.
  • the present invention involves cellulose material and superabsorbent polymers.
  • Cellulose material and the art of manufacture of cellulose material are well known to those skilled in the art.
  • cellulose material and the process to manufacture are discussed in the book entitled “Handbook for Pulp and Paper Technologist” (Angus Wilde Publications Inc., 1992) by Gary A. Smook.
  • Superabsorbent polymers have been used to coat absorbent fibers and drying the coated fibers as disclosed for example see U.S. Pat. No. 4,962,172 (Issued Oct. 9, 1990) to Allen et al; and U.S. Pat. No. 5,160,789 (issued Nov. 3, 1992) to Barcus et al.
  • Cellulose fibers have a retention capacity or CRC of about less then 2g/g i.e. cellulose fibers are considered to be a non-absorbent fiber.
  • coating fibers with a polymer solution generally adversely affects the fibers other properties such as wicking power and makes the fiber brittle.
  • the present invention provides a method for making a treated cellulose material having enhanced absorbency.
  • the method comprises first preparing an aqueous solution of pre-superabsorbent polymer, which is formed from at least one monomer, where the pre-superabsorbent polymer is capable upon being subjected to heating of becoming a superabsorbent polymer.
  • cellulose material is provided that may be pretreated with a treatment solution comprising an aqueous alkaline solution.
  • a slurry is formed made up of the aqueous solution of pre-superabsorbent polymer and the cellulose material. The slurry is then filtered and heat-treated to obtain a treated cellulose material having an enhanced absorbency.
  • the present invention provides an absorbent cellulose material comprising a cellulose material having an application of superabsorbent polymer composition adhered to the cellulose material wherein an aqueous solution of pre-superabsorbent polymer is applied to the cellulose material and converted to absorbent polymer upon subjected to heat for a sufficient time wherein the absorbent cellulose material has a fluid retention of greater than 2g/g.
  • the present invention provides an absorbent product selected from the group consisting of, agricultural products, fiber optic cables, power cables, water blocking tapes, insulation, hygiene articles, feminine care products, sanitary napkins, tampons, adult incontinence items, baby diapers, paper towels, sealing composites for concrete blocks, bandages, surgical sponges, meat trays, and bath mats, wherein the absorbent product comprises an absorbent cellulose material comprising a cellulose material having an application of superabsorbent polymer composition adhered to the cellulose material wherein an aqueous solution of pre-superabsorbent polymer is applied to the cellulose material and converted to absorbent polymer upon subjected to heat for a sufficient time wherein the absorbent cellulose material has a fluid retention of greater than 2g/g.
  • the present invention provides a method for making a treated cellulose material having enhanced absorbency.
  • the method includes a first preparation of an aqueous solution of pre-superabsorbent polymer, which is formed from at least one monomer, where the pre-superabsorbent polymer is capable upon being subjected to heating in a later step of the method of becoming a superabsorbent polymer.
  • Cellulose material is provided that may be pretreated with a treatment solution comprising an aqueous alkaline solution.
  • slurry is formed made up of the aqueous solution of pre-superabsorbent polymer and the cellulose material. The slurry is then filtered and heat-treated to obtain a treated cellulose material having an enhanced absorbency.
  • the first preparation of the method includes an aqueous solution of pre-superabsorbent polymer (pre-SAP).
  • pre-SAP pre-superabsorbent polymer
  • the SAP may be manufactured by any of the prior art polymerization processes for making the SAPs.
  • the pre-SAP is water soluble
  • a solution polymerization process is employed to make the pre-SAP
  • the SAPs made this way are called solution polymerization SAPs.
  • any of the prior art emulsion or suspension polymerization processes may be employed to make the SAP with the following condition.
  • a surfactant would have to be present in order to emulsify the aqueous monomer solution in the oil phase prior to polymerization.
  • Suitable surfactants for use in the present invention are well known to those of skill in the art of emulsion polymerization.
  • the SAPs made this way are called emulsion polymerization SAPs.
  • aqueous solution of the polymer i.e., of the pre-SAP
  • aqueous suspension that has present in it a surfactant
  • the SAP may be obtained by polymerizing at least about 10%, more preferably about 25%, even more preferably about 55 to about 99.9%, by weight of monomers having olefinically-unsaturated carboxylic and/or sulfonic acid groups.
  • acid groups include, but are not limited to, acrylic acid, methacrylic acid, 2-acrylamido-2-methylpropane sulfonic acid, and mixtures thereof.
  • the acid groups are present partially as salts, such as sodium, potassium, or ammonium salts.
  • the acid groups are typically neutralized to at least about 25 mol %, more preferably at least about 50 mol %. More particularly, the preferred SAP has been formed from X-linked acrylic acid or methacrylic acid, which has been neutralized to an extent of about 50 to about 80 mol %, more preferably about 60 to about 70 mol %.
  • Suitable neutralizing agents are hydroxides and/or carbonates of alkaline earth metals and/or alkali metals, for instance, NaOH. Neutralization of acid groups may be performed prior to the polymerization to form the pre-SAP, may be performed on the pre-SAP, or a combination thereof.
  • Additional useful monomers for making the SAPs include from about 0 up to about 60% by weight of acrylamide, methacrylamide, maleic acid, maleic anhydride, esters (such as hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, dimethyl-aminoalkylacrylate, dimethyl-aminoalkyl-methacrylate, diethylaminoalkyl acrylate,diethylaminoalkyl methacrylate and tertairy butylaminoalkyl methacrylate), dimethyl-aminopropyl acrylamide, N,N-Dimethylacrylamide, N,N-Dimethylmethacrylamide, N,N-Diethylacrylamide, N,N-Diethylmethacrylamide, dimethyldiallylamine, 3-methacrylamidopropyldimethylamine, 2-methacryla
  • a preferred amount is from about 1% to about 55%, more preferably from about 2% to about 10% by weight.
  • a suitable hydroxypropyl acrylate for use in the present invention is sold under the trade name Mhoromer AM 438 by Creanova, Inc. Such monomers may be present whether or not a network X-linking agent as described in the next paragraph, is present.
  • Suitable network X-linking agents that may be used in making the SAPs are those, which have 1 ethylenically unsaturated double bond and 1 functional group reactive toward acid groups, and those, which have several functional groups reactive toward acid groups. Very minor amounts of network X-linking agents which have at least 2 ethylenically unsaturated double bonds may also be used to enhance performance.
  • Suitable kinds of network X-linking agents include, but are not limited to, acrylate and methacrylate of polyols (such as butanediol diacrylate, polyglycol diacrylate, hexanediol dimethacrylate, tetrahydrofurfury-2-methacrylate, glycerol dimethacrylate, trimethylolpropane triacrylate, allyloxy polyethylene glycol methacrylate, and ethoxylated trimethylolpropane triacrylate), allyl acrylate, diallyl acrylamide, triallyl amine, diallyl ether, N-methylol acrylamide, methylenebisacrylamide, glycerol dimethacrylate, N,N-dimethylaminoethyl methacrylate, N-dimethylaminopropyl methacryladmide, and N-methylol methacrylamide, two or more valent metal, diglycidyl ether, di
  • the diglycidyl ether is very suitable for use in the present invention and is sold under the trade name: DENACOL®EX830 by Nagase Chemicals Ltd.
  • DENACOL®EX830 by Nagase Chemicals Ltd.
  • one or more of the monomers noted in the previous paragraph may effect network X-linking.
  • the SAP is formed by heating the pre-SAP in the last step of the method.
  • heating may be conducted in the presence of a diglycidyl ether as a network X-linking agent, which causes functional groups, such as hydroxyl and/or carboxyl present in the pre-SAP to X-link via epoxy groups of X-linking agent and form the SAP.
  • a typical temperature range for the network X-linking to convert the pre-SAP into a SAP is selected based on the equipment and process conditions and may range from about 60° C. to about 140° C., more preferably from about 110 to about 135° C. and most preferably from about 120 to about 130° C.
  • the heating to convert the pre-SAP into the SAP may require a higher temperature.
  • the time for heating typically is from about 30 seconds to about 60 minutes. A time of about 1 to about 50 minutes is very typical. The specific time and temperature are not critical, as long as they are sufficient to X-link the pre-SAP and convert it into a SAP.
  • Cellulose materials used in the present invention are commercial products available from various manufacturers such as Georgia Pacific, Rayonier, etc.
  • the cellulose materials may be used by itself with the aqueous solution of the pre-SAP or in the form of a pre-treated aqueous cellulose form.
  • a pre-treated aqueous cellulose is formed by pre-treating a cellulose material with a treatment solution comprising aqueous alkaline solution.
  • a suitable aqueous alkaline solution is NaOH, preferably in the concentration of about 0.5N.
  • the treated cellulose fiber is filtered and washed and optionally dried.
  • a slurry is formed made up of the aqueous solution of pre-superabsorbent polymer and the pre-treated aqueous cellulose.
  • the slurry is agitated for a sufficient amount of time, then filtered and heat-treated to obtain a treated cellulose material having an enhanced absorbency.
  • polymer solution For example to illustrate the preparation of the slurry, about 100 milliliters of approximately 1.5% polymer solution was prepared by diluting the appropriate amount of pre-superabsorbent polymer.
  • One gram of freshly prepared 0.23% DENACOL®EX830 (Nagase Chemicals Ltd., Nishi-Ku, Osaka Japan, a polyethylene glycol diglycidyl ether was added to the dilute polymer solution. The mixture was vigorously stirred at room temperature. About 1 gram of dry pre-treated pulp cellulose fiber made in cellulose pre-treatment step was added to the polymer solution. The mixture was stirred at room temperature for 6 hours. The wet pulp was then filtered and allowed to air dry at room temperature. The cellulose fiber was then heated at 120° C. for 30 minutes. The resulting pulp cellulose fiber was shredded in a blender to make a fluff. The fluffed cellulose fiber was then sieved with 100-mesh size screen to remove fine fiber particles.
  • SAP fines can be added to the process to enhance the absorbency of the cellulose material.
  • SAP fines are commercially available from Stockhausen under the trademark FAVOR®SAP fines.
  • the SAP fines are added to the slurry preparation. For example, an aliquot of SAP fines may be added to the fiber slurry and/or to the aqueous solution of the pre-SAP.
  • the SAP fines are vigorously stirred into the slurry or the aqueous solution for a few minutes to yield a homogeneous mixture.
  • the present invention can be used in the manufacture of pulp and paper or the manufacture of cellulose material.
  • the present invention can be used as a part of the manufacturing process that is in line with current pulp, paper and cellulose material manufacturing techniques.
  • cellulose material having enhanced absorbency of the present invention include, but are not limited to, agricultural products (i.e., a polymer with herbicide and/or insecticide), fiber optic cables, power cables, water blocking tapes, insulation, hygiene articles, feminine care products (i.e., sanitary napkins and/or tampons), incontinence items for adults, diapers for babies, paper towels, sealing composites between concrete blocks, bandages, surgical sponges, meat trays, bath mats, and the like.
  • agricultural products i.e., a polymer with herbicide and/or insecticide
  • fiber optic cables i.e., fiber optic cables, power cables, water blocking tapes, insulation, hygiene articles, feminine care products (i.e., sanitary napkins and/or tampons), incontinence items for adults, diapers for babies, paper towels, sealing composites between concrete blocks, bandages, surgical sponges, meat trays, bath mats, and the like.
  • CRC Test The test was conducted at ambient conditions of room temperature. Retention of 0.9% saline solution was determined according to the tea bag test method and reported as an average value of 2 measurements. Approximately 100 mg of Cellulosic material particles, were enclosed in a tea bag and immersed in the saline solution for 30 minutes. Next individually hang each teabag up by the corners to drip-dry for 10 minutes. Then, the tea bag was centrifuged at 1400 rpm for 5 minutes and weighed. The diameter of the centrifuge apparatus was about 21 cm. Also, 2 tea bags without particles were used as blanks.
  • a method of making the cellulose material of the present invention follows the following general procedure:
  • the fiber/SAP slurry was then filtered under vacuum (30 inches Hg). The wet pulp was then allowed to air dry at room temperature. The cellulose fiber was then heated at 120° C.—for 30 minutes. The resulting pulp cellulose fiber was shredded in a blender to make a fluff. The fluffed cellulose fiber was then sieved with 100-mesh size screen to remove fine fiber particles.
  • Cellulose Fiber/SAP Fines Fluid Retention Sample Composition Process Control Cellulose fiber as received 1.5-2.0 6 2 gram of cellulose fiber as received; First, the cellulose fiber was stirred in polymer/crosslinker 7.1 198 g 1.5% copolymer solution of 50% DN PAA & solution mixture for an hour to obtain an uniform slurry; DMAEA & 2 g of 0.5186% DENACOL EX830 & then SAP fines were added and mixed well and immediateley 1 g FAVOR ® SAP fines. filtered under vacuum. The pad thus obtained was dried at 120° C.
  • the pad thus obtained was dried at 120° C. 11 2 gram of dried alkali cellulose fluff, First cellulose fluff was stirred in polymer/crosslinker 8.3 198 g 1.44% copolymer solution of 50% DN PAA & solution mixture for an hour to obtain an uniform slurry; DMAEA & 2 g of 0.5186% DENACOL EX830 & then SAP fines were added and mixed well and immediately 1 g FAVOR ® SAP fines filtered under vacuum. The pad thus obtained was dried at 120° C.

Abstract

An absorbent cellulose material having an application of superabsorbent polymer adhered to the cellulose material. In particular, the cellulose material has an application of pre-superabsorbent polymer adhered to the material, wherein an aqueous solution of pre-superabsorbent polymer is applied to the cellulose material and converted to superabsorbent polymer upon subjected to heat for a sufficient time. The absorbent cellulose material has a fluid retention of greater then 2g/g.

Description

TECHNICAL FIELD
The present invention relates to cellulose materials that have improved absorbency through the incorporation of polymers that absorb aqueous liquids (such as water, blood and urine). In particular, the invention relates to cellulose material treated with a pre-superabsorbent polymer that is converted to superabsorbent polymer upon heating of the treated cellulose material. The resulting cellulose material has enhanced absorbency over non-treated cellulose material.
Definitions of Abbreviations
Abbreviations Definitions
X-linking cross-linking
SAP superabsorbent polymer, a polymer
which absorbs over 10 times its weight
in water
pre-SAP a polymer which is not a SAP and which
is capable upon heating of becoming a
SAP
CRC centrifuge retention capacity
g gram
DMAEA dimethylaminoethyl acrylate
PAA poly acrylic acid
DN degree of neutralization
BACKGROUND OF THE INVENTION
The present invention involves cellulose material and superabsorbent polymers. Cellulose material and the art of manufacture of cellulose material are well known to those skilled in the art. For example, cellulose material and the process to manufacture are discussed in the book entitled “Handbook for Pulp and Paper Technologist” (Angus Wilde Publications Inc., 1992) by Gary A. Smook.
General background of the manufacture of superabsorbent polymers can be seen in the journal article, “Keeping Dry with Superabsorbent Polymers”, Chemtech, (September, 1994) by Buchholz. This article contains an excellent discussion of the conventional methods for making superabsorbent polymers. Also mentioned are various uses of superabsorbent polymers such as in disposable diapers, in a sealing composite between concrete blocks that make up the wall of underwater tunnels, and in tapes for water blocking in fiber optic cables and power transmission cables.
More general background with respect to various superabsorbent polymers and their methods of manufacture can be seen in U.S. Pat. No. 5,229,466 (issued Jul. 20, 1993) to Brehm and Mertens; U.S. Pat. No. 5,408,019 (issued Apr. 18, 1995) to Mertens, Dahmen and Brehm; and U.S. Pat. No. 5,610,220 (issued Mar. 11, 1997) to Klimmek and Brehm, all of which patents are assigned to Chemische Fabrik Stockhausen GmbH.
Superabsorbent polymers have been used to coat absorbent fibers and drying the coated fibers as disclosed for example see U.S. Pat. No. 4,962,172 (Issued Oct. 9, 1990) to Allen et al; and U.S. Pat. No. 5,160,789 (issued Nov. 3, 1992) to Barcus et al. Cellulose fibers have a retention capacity or CRC of about less then 2g/g i.e. cellulose fibers are considered to be a non-absorbent fiber. Furthermore, coating fibers with a polymer solution generally adversely affects the fibers other properties such as wicking power and makes the fiber brittle.
Another approach of adhering SAP to fibers is by the graft polymerization techniques as disclosed in U.S. Pat. No. 4,986,882 (issued Jan. 22, 1991) to MacKey et at. This approach discloses processes for making highly absorbent tissues and towels by wet-laying pulps comprising particular polycarboxylate polymer-modified fibrous pulps such as mildly hydrolyzed methyl acrylate-graft softwood kraft pulps. Graft polymerization method is a complicated method that requires a multi-step purifying process to remove the homopolymer and unreacted monomers.
Forming an absorbed layer of polyelectolyte on cellulose fibers is disclosed in the article Studies on Interfacial Properties of Polyelectrolyte-Cellulose Systems, J. Applied Polymer Science, Volume 22, pages 3495-3510 (1978).
The disclosures of all the above-mentioned patents and published patent applications are incorporated by reference.
SUMMARY AND OBJECTS OF THE INVENTION
A need exists for a cellulose material having enhanced absorbency and a method to make such a cellulose material.
Therefore, the present invention provides a method for making a treated cellulose material having enhanced absorbency. The method comprises first preparing an aqueous solution of pre-superabsorbent polymer, which is formed from at least one monomer, where the pre-superabsorbent polymer is capable upon being subjected to heating of becoming a superabsorbent polymer. Then cellulose material is provided that may be pretreated with a treatment solution comprising an aqueous alkaline solution. Next, a slurry is formed made up of the aqueous solution of pre-superabsorbent polymer and the cellulose material. The slurry is then filtered and heat-treated to obtain a treated cellulose material having an enhanced absorbency.
Accordingly, it is an object of the present invention to provide a method of making for treated cellulose material including a superabsorbent polymer, wherein the preferred method results in treated cellulose material having enhanced absorbency.
In addition to the method, the present invention provides an absorbent cellulose material comprising a cellulose material having an application of superabsorbent polymer composition adhered to the cellulose material wherein an aqueous solution of pre-superabsorbent polymer is applied to the cellulose material and converted to absorbent polymer upon subjected to heat for a sufficient time wherein the absorbent cellulose material has a fluid retention of greater than 2g/g.
Furthermore, the present invention provides an absorbent product selected from the group consisting of, agricultural products, fiber optic cables, power cables, water blocking tapes, insulation, hygiene articles, feminine care products, sanitary napkins, tampons, adult incontinence items, baby diapers, paper towels, sealing composites for concrete blocks, bandages, surgical sponges, meat trays, and bath mats, wherein the absorbent product comprises an absorbent cellulose material comprising a cellulose material having an application of superabsorbent polymer composition adhered to the cellulose material wherein an aqueous solution of pre-superabsorbent polymer is applied to the cellulose material and converted to absorbent polymer upon subjected to heat for a sufficient time wherein the absorbent cellulose material has a fluid retention of greater than 2g/g.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a method for making a treated cellulose material having enhanced absorbency. The method includes a first preparation of an aqueous solution of pre-superabsorbent polymer, which is formed from at least one monomer, where the pre-superabsorbent polymer is capable upon being subjected to heating in a later step of the method of becoming a superabsorbent polymer. Cellulose material is provided that may be pretreated with a treatment solution comprising an aqueous alkaline solution. Next, slurry is formed made up of the aqueous solution of pre-superabsorbent polymer and the cellulose material. The slurry is then filtered and heat-treated to obtain a treated cellulose material having an enhanced absorbency.
The first preparation of the method includes an aqueous solution of pre-superabsorbent polymer (pre-SAP). As long as the above-mentioned pre-SAP is capable upon heating at a sufficient time and at a sufficient temperature of becoming a SAP (preferably, the pre-SAP has functional groups that will, upon provision of a sufficient amount of heating for a sufficient time, X-link to convert the pre-SAP into a SAP), the SAP may be manufactured by any of the prior art polymerization processes for making the SAPs.
Preferably, the pre-SAP is water soluble, a solution polymerization process is employed to make the pre-SAP, and the SAPs made this way are called solution polymerization SAPs.
Additionally, it is contemplated that any of the prior art emulsion or suspension polymerization processes may be employed to make the SAP with the following condition. A surfactant would have to be present in order to emulsify the aqueous monomer solution in the oil phase prior to polymerization. Suitable surfactants for use in the present invention are well known to those of skill in the art of emulsion polymerization. The SAPs made this way are called emulsion polymerization SAPs.
Thus, by the term “aqueous solution” of the polymer (i.e., of the pre-SAP) is meant to include a true aqueous solution, as well as to include an aqueous suspension that has present in it a surfactant.
Thus, the SAP may be obtained by polymerizing at least about 10%, more preferably about 25%, even more preferably about 55 to about 99.9%, by weight of monomers having olefinically-unsaturated carboxylic and/or sulfonic acid groups. Such acid groups include, but are not limited to, acrylic acid, methacrylic acid, 2-acrylamido-2-methylpropane sulfonic acid, and mixtures thereof. The acid groups are present partially as salts, such as sodium, potassium, or ammonium salts.
The acid groups are typically neutralized to at least about 25 mol %, more preferably at least about 50 mol %. More particularly, the preferred SAP has been formed from X-linked acrylic acid or methacrylic acid, which has been neutralized to an extent of about 50 to about 80 mol %, more preferably about 60 to about 70 mol %. Suitable neutralizing agents are hydroxides and/or carbonates of alkaline earth metals and/or alkali metals, for instance, NaOH. Neutralization of acid groups may be performed prior to the polymerization to form the pre-SAP, may be performed on the pre-SAP, or a combination thereof.
Additional useful monomers for making the SAPs include from about 0 up to about 60% by weight of acrylamide, methacrylamide, maleic acid, maleic anhydride, esters (such as hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, dimethyl-aminoalkylacrylate, dimethyl-aminoalkyl-methacrylate, diethylaminoalkyl acrylate,diethylaminoalkyl methacrylate and tertairy butylaminoalkyl methacrylate), dimethyl-aminopropyl acrylamide, N,N-Dimethylacrylamide, N,N-Dimethylmethacrylamide, N,N-Diethylacrylamide, N,N-Diethylmethacrylamide, dimethyldiallylamine, 3-methacrylamidopropyldimethylamine, 2-methacrylamido-2-methylpropanedimethylamine, 2-methacrylamido-2-methylbutanedimethylamine, N-vinyl imidazole, 1-methyl-2-vinylimidazole, 2-vinylimidazole, 4(5)-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, and quaternary salts of monomeric amines. A preferred amount is from about 1% to about 55%, more preferably from about 2% to about 10% by weight. A suitable hydroxypropyl acrylate for use in the present invention is sold under the trade name Mhoromer AM 438 by Creanova, Inc. Such monomers may be present whether or not a network X-linking agent as described in the next paragraph, is present.
Suitable network X-linking agents that may be used in making the SAPs are those, which have 1 ethylenically unsaturated double bond and 1 functional group reactive toward acid groups, and those, which have several functional groups reactive toward acid groups. Very minor amounts of network X-linking agents which have at least 2 ethylenically unsaturated double bonds may also be used to enhance performance. Suitable kinds of network X-linking agents include, but are not limited to, acrylate and methacrylate of polyols (such as butanediol diacrylate, polyglycol diacrylate, hexanediol dimethacrylate, tetrahydrofurfury-2-methacrylate, glycerol dimethacrylate, trimethylolpropane triacrylate, allyloxy polyethylene glycol methacrylate, and ethoxylated trimethylolpropane triacrylate), allyl acrylate, diallyl acrylamide, triallyl amine, diallyl ether, N-methylol acrylamide, methylenebisacrylamide, glycerol dimethacrylate, N,N-dimethylaminoethyl methacrylate, N-dimethylaminopropyl methacryladmide, and N-methylol methacrylamide, two or more valent metal, diglycidyl ether, diamine, halohydrin, polyisocyanate, dihaloalkane, polyfunctional aziridine compound, dialdehyde, disulfonate ester, multi-functional acid halide, organic carbonate and mixtures thereof.
The diglycidyl ether is very suitable for use in the present invention and is sold under the trade name: DENACOL®EX830 by Nagase Chemicals Ltd. In the embodiment where one or more of these network X-linking agents is not employed then one or more of the monomers noted in the previous paragraph may effect network X-linking.
In the preferred embodiment of the invention, the SAP is formed by heating the pre-SAP in the last step of the method.
More preferably, heating may be conducted in the presence of a diglycidyl ether as a network X-linking agent, which causes functional groups, such as hydroxyl and/or carboxyl present in the pre-SAP to X-link via epoxy groups of X-linking agent and form the SAP. A typical temperature range for the network X-linking to convert the pre-SAP into a SAP is selected based on the equipment and process conditions and may range from about 60° C. to about 140° C., more preferably from about 110 to about 135° C. and most preferably from about 120 to about 130° C.
In the event where no network X-linking agents is employed and one or more of the monomers noted in the previous paragraph effecting network X-linking, the heating to convert the pre-SAP into the SAP may require a higher temperature.
Regardless of whether a network X-linking agent, as defined herein, is present or not, the time for heating typically is from about 30 seconds to about 60 minutes. A time of about 1 to about 50 minutes is very typical. The specific time and temperature are not critical, as long as they are sufficient to X-link the pre-SAP and convert it into a SAP.
Cellulose materials used in the present invention, such as cellulose fibers, are commercial products available from various manufacturers such as Georgia Pacific, Rayonier, etc. The cellulose materials may be used by itself with the aqueous solution of the pre-SAP or in the form of a pre-treated aqueous cellulose form. A pre-treated aqueous cellulose is formed by pre-treating a cellulose material with a treatment solution comprising aqueous alkaline solution. A suitable aqueous alkaline solution is NaOH, preferably in the concentration of about 0.5N. The treated cellulose fiber is filtered and washed and optionally dried.
In an example procedure, about 30 grams of commercial cellulose pulp was stirred in 1.5 liter of 0.5 N NaOH solution at room temperature for 1.5 hours. The pulp fiber was then filtered and thoroughly washed in a funnel until the effluent reached pH of 7. The fiber was finally washed with de-ionized water. The wet fiber was air dried in the hood first followed by drying in an oven at 60° C.
Next, a slurry is formed made up of the aqueous solution of pre-superabsorbent polymer and the pre-treated aqueous cellulose. The slurry is agitated for a sufficient amount of time, then filtered and heat-treated to obtain a treated cellulose material having an enhanced absorbency.
For example to illustrate the preparation of the slurry, about 100 milliliters of approximately 1.5% polymer solution was prepared by diluting the appropriate amount of pre-superabsorbent polymer. One gram of freshly prepared 0.23% DENACOL®EX830 (Nagase Chemicals Ltd., Nishi-Ku, Osaka Japan, a polyethylene glycol diglycidyl ether was added to the dilute polymer solution. The mixture was vigorously stirred at room temperature. About 1 gram of dry pre-treated pulp cellulose fiber made in cellulose pre-treatment step was added to the polymer solution. The mixture was stirred at room temperature for 6 hours. The wet pulp was then filtered and allowed to air dry at room temperature. The cellulose fiber was then heated at 120° C. for 30 minutes. The resulting pulp cellulose fiber was shredded in a blender to make a fluff. The fluffed cellulose fiber was then sieved with 100-mesh size screen to remove fine fiber particles.
In addition to the foregoing steps superabsorbent polymer fines can be added to the process to enhance the absorbency of the cellulose material. SAP fines are commercially available from Stockhausen under the trademark FAVOR®SAP fines. The SAP fines are added to the slurry preparation. For example, an aliquot of SAP fines may be added to the fiber slurry and/or to the aqueous solution of the pre-SAP. The SAP fines are vigorously stirred into the slurry or the aqueous solution for a few minutes to yield a homogeneous mixture.
In addition to the foregoing it is recognized that the present invention can be used in the manufacture of pulp and paper or the manufacture of cellulose material. In particular, the present invention can be used as a part of the manufacturing process that is in line with current pulp, paper and cellulose material manufacturing techniques.
Various end use absorbent products that may contain the cellulose material having enhanced absorbency of the present invention include, but are not limited to, agricultural products (i.e., a polymer with herbicide and/or insecticide), fiber optic cables, power cables, water blocking tapes, insulation, hygiene articles, feminine care products (i.e., sanitary napkins and/or tampons), incontinence items for adults, diapers for babies, paper towels, sealing composites between concrete blocks, bandages, surgical sponges, meat trays, bath mats, and the like.
To characterize the SAPs as set out in the Laboratory Examples below the centrifuge retention capacity (CRC) were measured in the following manner.
CRC Test. The test was conducted at ambient conditions of room temperature. Retention of 0.9% saline solution was determined according to the tea bag test method and reported as an average value of 2 measurements. Approximately 100 mg of Cellulosic material particles, were enclosed in a tea bag and immersed in the saline solution for 30 minutes. Next individually hang each teabag up by the corners to drip-dry for 10 minutes. Then, the tea bag was centrifuged at 1400 rpm for 5 minutes and weighed. The diameter of the centrifuge apparatus was about 21 cm. Also, 2 tea bags without particles were used as blanks.
The specific procedure is as follows:
    • 1. Cut the teabag stock into 3×5-inch rectangles. Fold the strips in half, and seal two of the three open sides so the inside edge of the seals are about ¼ inch from the edge of the teabag.
    • 2. For each determination, weigh 0.100+/−0.005 grams of modified cellulosic material into a teabag. Record the initial weight as W1.
    • 3. Seal the open side of the teabags using the heat sealer. Store the teabags in a desiccator if the period of time between the initial weighing and the determination is greater than 30 minutes.
    • 4. Prepare the two test method blanks by heat-treating two empty teabags without cellulose material sample.
    • 5. Fill a dish with 0.9% saline solution to approximately 4 cm high.
    • 6. Prepare the sealed teabags for immersion by gently shaking the sample to distribute the cellulosic material evenly across the teabag.
    • 7. Immerse the teabags in the 0.9% saline.
    • 8. After 30 minutes, remove the teabags from the test liquid.
    • 9. Individually hang each teabag up by the corners to drip-dry for 10 minutes.
    • 10. Place the teabags into the centrifuge making sure to balance the centrifuge with proper teabag placement. Centrifuge for 3 minutes at 1600 rpm.
    • 11. After centrifugation, determine the weights of each sample. Record the weights of the test blanks, without test sample (W2) and the weight of the teabag with test sample accurate to 0.01(W3).
Then, the CRC property (measured in grams of liquid absorbed per gram of particles) was calculated according to the following equation.
CRC=(W 3 −W 2 −W 1)/W 1
where:
    • CRC=retention after 30 minutes immersion time (g/g)
    • W1=initial weight in grams of SAP particles
    • W2=average weight in grams of two blanks after centrifugation
    • W3=weight in grams of test tea bag after centrifugation
EXAMPLES 1-5
Outline of Procedure
A method of making the cellulose material of the present invention follows the following general procedure:
Step 1—Preparation of Pre-superabsorbent Polymer
An aqueous acrylic acid solution (50 grams acrylic acid in 374.91 grams of water) comprising approximately 3 mole percentage dimethylaminoethyl acrylate, relative to acrylic acid was neutralized with sodium hydroxide (NaOH) solution under cooling condition. The degree of neutralization amounted to about 50 mole percentage and the total monomer concentration amounted to 10 weight %. 500 gram of monomer solution was cooled to 10° C. and purged with nitrogen for 5 minutes. Subsequently, 10 gram of 1 weight % H2O2, 19.90 gram of 2.01 weight % sodium pensulfate, 4.41 gram of 2.27% azo bis-2-amidino propane dihydrochloride and 10 gram of 0.5 weight % of sodium erythorbate were added. If polymerization does not begin within 5 minutes, a few drops of an aqueous FeSO4 is added to kick off the reaction which could be recognized by rapid rising of temperature of the monomer solution. The monomer solution became a very viscous solution after about 2 hours and the resulting viscous polymer solution was allowed to cool down to room temperature before it was ready to be used.
Step 2—Preparation of Cellulose Fiber
About 30 grams of commercial cellulose fiber was stirred in 1.5 liter of 0.5 N NaOH solution at room temperature for 1.5 hours. The cellulosic fiber was then filtered and thoroughly washed in a funnel until the effluent reached a pH of 7. The fiber was finally washed with de-ionized water. The wet fiber was air dried in the hood first followed by drying in an oven at 60° C.
Step 3—Preparation of Slurry.
About 100 milliliters of approximately 1.5% polymer solution was prepared by diluting the appropriate amount of pre-superabsorbent polymer prepared in Step 1. One gram of freshly prepared 0.23% DENACOL®830 (Nagase Chemicals Ltd., Nishi-Ku, Osaka Japan0, a polyethylene glycol diglycidyl ether was added to the dilute polymer solution. The mixture was vigorously stirred at room temperature. About 1 gram of dry pre-treated pulp cellulose fiber made in Step 2 was added to the polymer solution and the resulting slurry was stirred for several hours. The slurry was then filtered and the wet pulp was then allowed to air dry at room temperature. The cellulose fiber was then heated at 120° C.—for 30 minutes. The resulting pulp cellulose fiber was shredded in a blender to make a fluff. The fluffed cellulose fiber was then sieved with 100-mesh size screen to remove fine fiber particles.
Fluid
Retention
Sample Treatment Process (g/g)
Control Cellulose fiber 1.5-2.0
1 Cellulose fiber treated Stirred 6 hours, vacuum 3.2
with DMAEA containing filtered, dried at room
50% DN PAA solution temperature then heated
(1.5%) & 0.16% at 120° C./10 min,
DENACOL ® EX830. shredded & fluffed by a
blender
2 Alkali treated cellulose Stirred 6 hours, vacuum 4.1
fiber treated with filtered, dried at room
DMAEA containing 50% temperature then heated
DN PAA solution at 120° C./10 min,
(2%) & 0.16% shredded & fluffed by a
DENACOL ® EX830. blender.
3 Alkali treated cellulose Stirred 6 hours, vacuum 4.9
fiber with DMAEA filtered, dried at room
containing 50% DN PAA temperature then heated
solution (1.5%) & 0.16% at 120° C./10 min,
DENACOL ® EX830. shredded & fluffed by a
blender.
4 Alkali treated cellulose Stirred 6 hours, vacuum 4.9
fiber treated with NaOH filtered, dried at room
treated cellulosic material temperature then heated
fluff treated with 50% at 120° C./10 min,
DN PAA solution shredded & fluffed by a
(1.37%) & 0.2% blender.
DENACOL ® EX830
5 Alkali treated cellulose Stirred 6 hours, vacuum 5.8
fiber treated with filtered, dried at room
DMAEA containing 50% temperature then heated
DN PAA solution at 120° C./10 min,
(1.6%) & 0.2% shredded & fluffed by a
DENACOL ® EX830 blender.
EXAMPLES 6-13
Outline of Procedure
Another method of making the cellulose material of the present invention follows the following general procedure:
Step 1—Preparation of Pre-Superabsorbent Polymer
An aqueous acrylic acid solution (50 grams acrylic acid in 374.91 grams of water) comprising approximately 3 mole percentage dimethylaminoethyl acrylate, relative to acrylic acid was neutralized with sodium hydroxide (NaOH) solution under cooling condition. The degree of neutralization amounted to about 50 mole percentage and the total monomer concentration amounted to 10 weight %. 500 gram of monomer solution was cooled to 10C.° and purged with nitrogen for 5 minutes. Subsequently, 10 gram of 1 weight % H2O2, 19.90 gram of 2.01 weight % sodium pensulfate, 4.41 gram of 2.27% azo bis-2-amidino propane dihydrochloride and 10 gram of 0.5 weight % of sodium erythorbate were added. If polymerization does not begin within 5 minutes, a few drops an aqueous FeSO4 is added to kick off the reaction which could be recognized by rapid rising of temperature of the monomer solution. The monomer solution became a very viscous solution after about 2 hours and the resulting viscous polymer solution was allowed to cool down to room temperature before it was ready to be used.
Step 2—Preparation of Cellulose Fiber
About 30 grams of commercial cellulose fiber was stirred in 1.5 liter of 0.5 N NaOH solution at room temperature for 1.5 hours. The cellulose fiber was then filtered and thoroughly washed in a funnel until the effluent reached ph of 7. The fiber was finally washed with de-ionized water. The wet fiber was air dried in the hood first followed by drying in an oven at 60° C.
Step 3—Preparation of Slurry.
About 198 milliliters of approximately 1.5% polymer solution was prepared by diluting the appropriate amount of pre-superabsorbent polymer prepared in Step 1. One gram of freshly prepared 0.23% DENACOL®830 (Nagase Chemicals Ltd., Nishi-Ku, Osaka Japan0, an polyethylene glycol diglycidyl ether was added to the dilute polymer solution. The mixture was vigorously stirred at room temperature. About 2 gram of dry pre-treated cellulose fiber made in Step 2 was added to the polymer solution and stirred for some time to obtain an uniform slurry. An aliquot of pre-surface cross-linked SAP fines were added to the fiber slurry and was vigorously stirred for a few minutes to yield a homogeneous mixture. The fiber/SAP slurry was then filtered under vacuum (30 inches Hg). The wet pulp was then allowed to air dry at room temperature. The cellulose fiber was then heated at 120° C.—for 30 minutes. The resulting pulp cellulose fiber was shredded in a blender to make a fluff. The fluffed cellulose fiber was then sieved with 100-mesh size screen to remove fine fiber particles.
Cellulose Fiber/SAP Fines Fluid Retention
Sample Composition Process (g/g)
Control Cellulose fiber as received 1.5-2.0
 6 2 gram of cellulose fiber as received; First, the cellulose fiber was stirred in polymer/crosslinker 7.1
198 g 1.5% copolymer solution of 50% DN PAA & solution mixture for an hour to obtain an uniform slurry;
DMAEA & 2 g of 0.5186% DENACOL EX830 & then SAP fines were added and mixed well and immediateley
1 g FAVOR ® SAP fines. filtered under vacuum. The pad thus obtained was dried at
120° C.
 7 2 gram of cellulose fiber as received; First, SAP fines were stirred in polymer/crosslinker 7.3
198 g 1.5% copolymer solution of 50% DN PAA & solution mixture to obtain an uniform slurry; then
DMAEA & 2 g of 0.5186% DENACOL EX830 & cellulose fiber was added and stirred well to obtain
1 g FAVOR ® SAP fines. an uniform mixture. The mixture was then filtered under
vacuum. The pad thus obtained was dried at 120° C.
 8 2 gram of dried alkali treated cellulosic; First, the cellulose fiber was stirred in polymer/crosslinker 6.3
198 g 1.44% copolymer solution of 50% DN PAA & solution mixture for an hour to obtain an uniform slurry;
DMAEA & 2 g of 0.5186% DENACOL EX830 & then SAP fines were added and mixed well and immediately
1 g FAVOR ® SAP fines. filtered under vacuum. The pad thus obtained was dried at
120° C.
 9 2 gram of dried alkali treated cellulose fiber; The filtrate was refiltered, made slurry with fiber, 7.3
filtrate from Example 8 & 1 g then SAP fines were added, mixed well, filtered and
FAVOR ® SAP fines dried the resulting pad at 120° C.
10 2 gram of dried alkali treated cellulose fiber; First, cellulose fiber was stirred in polymer/crosslinker 7.1
198 g 1.44% copolymer solution of 50% DN solution mixture for an hour to obtain an uniform slurry;
PAA & DMAEA & 2 g of 0.5186% DENACOL then SAP fines were added and mixed well and immediately
EX830 & 1 g FAVOR ® SAP fines filtered under vacuum. The pad thus obtained was dried at
120° C.
11 2 gram of dried alkali cellulose fluff, First cellulose fluff was stirred in polymer/crosslinker 8.3
198 g 1.44% copolymer solution of 50% DN PAA & solution mixture for an hour to obtain an uniform slurry;
DMAEA & 2 g of 0.5186% DENACOL EX830 & then SAP fines were added and mixed well and immediately
1 g FAVOR ® SAP fines filtered under vacuum. The pad thus obtained was dried at
120° C.
12 2 gram of dried alkali cellulose fiber, The filtrate refiltered, made slurry with fiber, then SAP 8.5
filtrate from Example 10 & fines add, mixed well, filtered, and dried the resulting
1 g FAVOR ® SAP fines. pad at 120° C.
13 2 gram of alkali cellulose fiber, 35 g 1.44% First, cellulose fluff was mixed with 25 g of polymer/crosslinker 9.6
copolymer solution of 50% DN PAA & DMAEA & solution, then the paste like mixture was transferred to a blender
2g of 0.5186% DENACOL EX830 & 1 g and 1 g of SAP fines was added. The content was blended at a
FAVOR ® SAP fines low speed for a couple of minutes. Then an additional 10 g of
polymer/crosslinker solution was added to the blender and the
whole content was blended at a high speed for 2-3 minutes.
The paste was then vacuum filtered to remove excess fluid (˜5 g).
The pad thus obtained was dried at 120° C.

It will be understood that various details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation of the invention being defined by the claims.

Claims (14)

1. A method for making a treated cellulose material having enhanced absorbency, said method comprising
(a) preparing an aqueous solution of pre-superabsorbent polymer, which is formed from at least one monomer, and wherein the pre-superabsorbent polymer has functional groups attached thereto, where the functional groups of the pre-superabsorbent polymer upon heating will crosslink to convert the pre-superabsorbent polymer to a superabsorbent polymer;
(b) providing cellulose material;
(c) preparing a slurry comprising the aqueous solution of pre-superabsorbent polymer and cellulose material;
(d) filtering and heat treating the slurry to obtain a treated cellulose material having enhanced absorbency.
2. The method of claim 1 wherein pre-superabsorbent is a water soluble polymer.
3. The method of claim 1 wherein the pre-superabsorbent polymer is formed from a monomer selected from the group consisting of carboxylic acid monomer, salt of carboxylic acid monomer, nitrogen containing vinylic monomer, and hydroxyl monomer.
4. The method of claim 1 wherein a network crosslinking agent is added to the aqueous solution of pre-superabsorbent polymer and the functional groups of the pre-superabsorbent polymer include hydroxyl and/or carboxyl groups.
5. The method of claim 1 wherein the crosslinking agent is diglycidyl ether.
6. The method of claim 1 wherein the cellulose material of step (b) is pretreated with an aqueous alkali solution.
7. The method of claim 1 wherein the cellulose material is cellulose fiber.
8. A method for making a treated cellulose material having enhanced absorbency, said method comprising
(a) preparing an aqueous solution of pre-superabsorbent polymer, which is form from at least one monomer, where the pre-superabsorbent polymer is capable upon being subjected to heating of becoming a superabsorbent polymer;
(b) providing cellulose material;
(c) providing superabsorbent polymer fines;
(d) preparing a slurry comprising the aqueous solution of pre-superabsorbent polymer, the superabsorbent polymer fines, and the cellulose material; and
(e) filtering and heat treating the cellulose material to convert the aqueous solution of pre-superabsorbent and superabsorbent polymer fines into a superabsorbent polymer resulting in a treated cellulose material having enhanced absorbency.
9. The method of claim 8 wherein a network crosslinking agent is added to the aqueous solution of pre-superabsorbent polymer.
10. The method of claim 8 wherein the cellulose material of step (b) is pretreated with an aqueous alkali solution.
11. The method of claim 8 wherein the cellulose material is cellulose fiber.
12. The method of claim 8 wherein pre-superabsorbent is a water soluble polymer.
13. The method of claim 8 wherein the pre-superabsorbent polymer is formed from a monomer selected from the group consisting of carboxylic acid monomer, salt of carboxylic acid monomer, nitrogen containing vinylic monomer, and hydroxy monomer.
14. The method of claim 8 wherein the aqueous alkaline material is sodium hydroxide.
US09/954,348 2001-09-17 2001-09-17 Cellulose material with improved absorbency Expired - Lifetime US6906131B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US09/954,348 US6906131B2 (en) 2001-09-17 2001-09-17 Cellulose material with improved absorbency
DE60238212T DE60238212D1 (en) 2001-09-17 2002-09-12 CELLULOSE MATERIAL WITH IMPROVED ABSORPTION
EP02798791A EP1438354B1 (en) 2001-09-17 2002-09-12 Cellulose material with improved absorbency
CNB028199510A CN1331930C (en) 2001-09-17 2002-09-12 Cellulose material with improved absorbency
PCT/IB2002/003772 WO2003025054A1 (en) 2001-09-17 2002-09-12 Cellulose material with improved absorbency
AT02798791T ATE486907T1 (en) 2001-09-17 2002-09-12 CELLULOSE MATERIAL WITH IMPROVED ABSORBENT CAPACITY
BR0212575-7A BR0212575A (en) 2001-09-17 2002-09-12 Enhanced absorbency cellulose material
CA002460152A CA2460152C (en) 2001-09-17 2002-09-12 Cellulose material with improved absorbency
US10/923,194 US7482058B2 (en) 2001-09-17 2004-08-20 Cellulose material with improved absorbency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/954,348 US6906131B2 (en) 2001-09-17 2001-09-17 Cellulose material with improved absorbency

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/923,194 Division US7482058B2 (en) 2001-09-17 2004-08-20 Cellulose material with improved absorbency

Publications (2)

Publication Number Publication Date
US20030055133A1 US20030055133A1 (en) 2003-03-20
US6906131B2 true US6906131B2 (en) 2005-06-14

Family

ID=25495298

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/954,348 Expired - Lifetime US6906131B2 (en) 2001-09-17 2001-09-17 Cellulose material with improved absorbency
US10/923,194 Expired - Lifetime US7482058B2 (en) 2001-09-17 2004-08-20 Cellulose material with improved absorbency

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/923,194 Expired - Lifetime US7482058B2 (en) 2001-09-17 2004-08-20 Cellulose material with improved absorbency

Country Status (8)

Country Link
US (2) US6906131B2 (en)
EP (1) EP1438354B1 (en)
CN (1) CN1331930C (en)
AT (1) ATE486907T1 (en)
BR (1) BR0212575A (en)
CA (1) CA2460152C (en)
DE (1) DE60238212D1 (en)
WO (1) WO2003025054A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070867A1 (en) * 2003-09-25 2005-03-31 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with superabsorbent polymers
US20050101928A1 (en) * 2003-09-25 2005-05-12 The Procter & Gamble Company Absorbent articles comprising super absorbent polymer having a substantially non-convalently bonded surface coating
US20070066718A1 (en) * 2003-10-31 2007-03-22 Stockhausen, Inc. Superabsorbent polymer with high permeability
US20070270070A1 (en) * 2006-05-19 2007-11-22 Hamed Othman A Chemically Stiffened Fibers In Sheet Form
US20080234420A1 (en) * 2007-03-23 2008-09-25 Smith Scott J High permeability superabsorbent polymer compositions
US20090191408A1 (en) * 2008-01-30 2009-07-30 Gonglu Tian Superabsorbent polymer compositions having a triggering composition
US20100075844A1 (en) * 2006-12-18 2010-03-25 Frank Loeker Water-absorbing polymer structures produced using polymer dispersions
US20100100066A1 (en) * 2008-10-20 2010-04-22 Azad Michael M Superabsorbent polymer containing clay, particulate, and method of making same
US20100130355A1 (en) * 2008-11-25 2010-05-27 Gonglu Tian Water-absorbing polysaccharide and method for producing the same
US20100166375A1 (en) * 2008-12-30 2010-07-01 Draka Comteq B.V. Perforated Water-Blocking Element
US20100311578A1 (en) * 2003-04-25 2010-12-09 Evonik Stockhausen, Llc Superabsorbent polymer with high permeability
US20110009841A1 (en) * 2007-07-16 2011-01-13 Evonik Stockhausen Llc Superabsorbent polymer compositions having color stability
US20110015601A1 (en) * 2003-07-25 2011-01-20 Evonik Stockhausen Gmbh Water-absorbing polymer particles with thermoplastic coating
US20110121231A1 (en) * 2008-10-22 2011-05-26 Evonik Stockhausen Inc. Recycling superabsorbent polymer fines
US20110176782A1 (en) * 2010-01-20 2011-07-21 Draka Comteq, B.V. Water-Soluble Water-Blocking Element
US8252873B1 (en) 2010-03-30 2012-08-28 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8292863B2 (en) 2009-10-21 2012-10-23 Donoho Christopher D Disposable diaper with pouches
US8682123B2 (en) 2010-07-15 2014-03-25 Draka Comteq, B.V. Adhesively coupled optical fibers and enclosing tape
US8802786B2 (en) 2011-04-21 2014-08-12 Evonik Corporation Particulate superabsorbent polymer composition having improved performance properties
US8859758B2 (en) 2004-06-21 2014-10-14 Evonik Degussa Gmbh Water-absorbing polymer
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US9375507B2 (en) 2013-04-10 2016-06-28 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US10189008B2 (en) 2012-10-24 2019-01-29 Evonik Degussa Gmbh Odor and color stable water-absorbing composition
US10287379B2 (en) 2014-03-05 2019-05-14 Evonik Degussa Gmbh Superabsorbent polymers with improved odor control capacity and process for the production thereof
US11680184B2 (en) 2014-07-25 2023-06-20 Evonik Superabsorber Gmbh Anti-stick processing aids and use thereof in the production of water-absorbing particles

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689441B2 (en) * 2005-11-14 2011-05-25 キヤノン株式会社 Waveguide and device having the same
US20090118396A1 (en) * 2007-11-01 2009-05-07 American Wood Fibers Process to manufacture wood flour and natural fibers to enhance cellulosic plastic composites
MX2010009942A (en) * 2008-03-31 2010-09-28 Rhodia Operations Self-situating stimuli-responsive polymer compositions in soil additives and methods for use.
CN102294047B (en) * 2011-08-24 2013-12-11 稳健实业(深圳)有限公司 Antibacterial dressing based on cellulose fibre fabric modification and preparation method thereof
US9997830B2 (en) 2012-05-13 2018-06-12 Amir Keyvan Khandani Antenna system and method for full duplex wireless transmission with channel phase-based encryption
WO2013173251A2 (en) 2012-05-13 2013-11-21 Invention Mine Llc Wireless transmission with channel state perturbation
US10177896B2 (en) 2013-05-13 2019-01-08 Amir Keyvan Khandani Methods for training of full-duplex wireless systems
WO2015027120A1 (en) 2013-08-21 2015-02-26 Jiang Jean X Compositions and methods for targeting connexin hemichannels
US9413516B2 (en) 2013-11-30 2016-08-09 Amir Keyvan Khandani Wireless full-duplex system and method with self-interference sampling
US9236996B2 (en) 2013-11-30 2016-01-12 Amir Keyvan Khandani Wireless full-duplex system and method using sideband test signals
US9820311B2 (en) 2014-01-30 2017-11-14 Amir Keyvan Khandani Adapter and associated method for full-duplex wireless communication
CN116672445A (en) 2016-02-26 2023-09-01 德克萨斯大学体系董事会 Connexin (Cx) 43 hemichannel binding antibodies and uses thereof
US10778295B2 (en) 2016-05-02 2020-09-15 Amir Keyvan Khandani Instantaneous beamforming exploiting user physical signatures
US10700766B2 (en) 2017-04-19 2020-06-30 Amir Keyvan Khandani Noise cancelling amplify-and-forward (in-band) relay with self-interference cancellation
US11212089B2 (en) 2017-10-04 2021-12-28 Amir Keyvan Khandani Methods for secure data storage
US11012144B2 (en) 2018-01-16 2021-05-18 Amir Keyvan Khandani System and methods for in-band relaying

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410571A (en) 1980-08-25 1983-10-18 Johnson & Johnson Absorbent products, process and compositions for immobilization of particulate absorbents
US4444830A (en) 1981-11-09 1984-04-24 The Dow Chemical Company Method for preparing absorbent fibrous fluff
US4727097A (en) * 1983-08-10 1988-02-23 Kao Corporation Process for preparing highly reactive, water-absorptive resin
US4962172A (en) 1986-11-20 1990-10-09 Allied Colloids Ltd. Absorbent products and their manufacture
EP0396920A1 (en) 1989-04-10 1990-11-14 Weyerhaeuser Company Manufacture of composite web having absorbent properties
US4986882A (en) 1989-07-11 1991-01-22 The Proctor & Gamble Company Absorbent paper comprising polymer-modified fibrous pulps and wet-laying process for the production thereof
US5160789A (en) 1989-12-28 1992-11-03 The Procter & Gamble Co. Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
EP0676496A2 (en) 1994-04-07 1995-10-11 Basf Aktiengesellschaft Nonwoven having superabsorbent particles adhesively fixed to its upper surface
US5589256A (en) 1992-08-17 1996-12-31 Weyerhaeuser Company Particle binders that enhance fiber densification
WO1999049905A2 (en) 1998-03-27 1999-10-07 Basf Corporation Improved process to make a wet-laid absorbent structure
US6270893B1 (en) 1989-03-20 2001-08-07 Weyerhaeuser Company Coated fiber product with adhered super absorbent particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748076A (en) * 1985-02-16 1988-05-31 Hayashikane Shipbuilding & Engineering Co., Ltd. Water absorbent fibrous product and a method of producing the same
CA2004864A1 (en) * 1988-12-08 1990-06-08 Kinya Nagasuna Method for production of absorbent resin excelling in durability
WO1995017216A1 (en) * 1993-12-20 1995-06-29 The Procter & Gamble Company pH-MODIFIED POLYMER COMPOSITIONS WITH ENHANCED BIODEGRADABILITY
EP0937444B1 (en) * 1993-12-28 2002-11-06 Kao Corporation Crosslinked cellulose fibers, absorbent papers and absorbent members using the same, topsheets using the same, and absorbent articles using the same
JP3517045B2 (en) * 1995-10-30 2004-04-05 ユニ・チャーム株式会社 Cellulose-polyacrylic acid-based highly water-retaining fiber and method for producing the same
JP2003503114A (en) * 1999-06-29 2003-01-28 ストックハウゼン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト Manufacture of woven superabsorbent polymers and fibers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410571A (en) 1980-08-25 1983-10-18 Johnson & Johnson Absorbent products, process and compositions for immobilization of particulate absorbents
US4444830A (en) 1981-11-09 1984-04-24 The Dow Chemical Company Method for preparing absorbent fibrous fluff
US4727097A (en) * 1983-08-10 1988-02-23 Kao Corporation Process for preparing highly reactive, water-absorptive resin
US4962172A (en) 1986-11-20 1990-10-09 Allied Colloids Ltd. Absorbent products and their manufacture
US6270893B1 (en) 1989-03-20 2001-08-07 Weyerhaeuser Company Coated fiber product with adhered super absorbent particles
EP0396920A1 (en) 1989-04-10 1990-11-14 Weyerhaeuser Company Manufacture of composite web having absorbent properties
US4986882A (en) 1989-07-11 1991-01-22 The Proctor & Gamble Company Absorbent paper comprising polymer-modified fibrous pulps and wet-laying process for the production thereof
US5160789A (en) 1989-12-28 1992-11-03 The Procter & Gamble Co. Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
US5589256A (en) 1992-08-17 1996-12-31 Weyerhaeuser Company Particle binders that enhance fiber densification
EP0676496A2 (en) 1994-04-07 1995-10-11 Basf Aktiengesellschaft Nonwoven having superabsorbent particles adhesively fixed to its upper surface
WO1999049905A2 (en) 1998-03-27 1999-10-07 Basf Corporation Improved process to make a wet-laid absorbent structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Cellulose, Structure, Accessibility & Reactivity", Krassig, Hans A. p. 258. *
Fumihiko Onabe, Studies on Interfacial Properties of Polyelectrolyte-Cellulose Systems. I. Formation and Structure of Adsorbed Layers of Cationic Polyelectrolyte-(Poly-DMDAAC) on Cellulose Fibers, Journal of Applied Polymer Science, vol. 22, pp. 3495-3510 (1978) Tokyo, Japan.

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466228B2 (en) 2003-04-25 2013-06-18 Evonik Corporation Superabsorbent polymer with high permeability
US20100311578A1 (en) * 2003-04-25 2010-12-09 Evonik Stockhausen, Llc Superabsorbent polymer with high permeability
US8518541B2 (en) 2003-07-25 2013-08-27 Evonik Stockhausen Gmbh Powdery water-absorbing polymers with fine particles bound by thermoplastic adhesives
US8288002B2 (en) 2003-07-25 2012-10-16 Evonik Stockhausen Gmbh Water-absorbing polymer particles with thermoplastic coating
US20110015601A1 (en) * 2003-07-25 2011-01-20 Evonik Stockhausen Gmbh Water-absorbing polymer particles with thermoplastic coating
US7847144B2 (en) 2003-09-25 2010-12-07 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with superabsorbent polymers
US20050101928A1 (en) * 2003-09-25 2005-05-12 The Procter & Gamble Company Absorbent articles comprising super absorbent polymer having a substantially non-convalently bonded surface coating
US7405341B2 (en) * 2003-09-25 2008-07-29 The Procter & Gamble Company Absorbent articles comprising super absorbent polymer having a substantially non-convalently bonded surface coating
US20050070867A1 (en) * 2003-09-25 2005-03-31 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with superabsorbent polymers
US20070066718A1 (en) * 2003-10-31 2007-03-22 Stockhausen, Inc. Superabsorbent polymer with high permeability
US8883881B2 (en) 2003-10-31 2014-11-11 Evonik Corporation Superabsorbent polymer with high permeability
US7777093B2 (en) 2003-10-31 2010-08-17 Evonik Stockhausen, Llc Superabsorbent polymer with high permeability
US8859758B2 (en) 2004-06-21 2014-10-14 Evonik Degussa Gmbh Water-absorbing polymer
US20070270070A1 (en) * 2006-05-19 2007-11-22 Hamed Othman A Chemically Stiffened Fibers In Sheet Form
US20100075844A1 (en) * 2006-12-18 2010-03-25 Frank Loeker Water-absorbing polymer structures produced using polymer dispersions
US8906824B2 (en) 2006-12-18 2014-12-09 Evonik Degussa Gmbh Water-absorbing polymer structures produced using polymer dispersions
US8822582B2 (en) 2007-03-23 2014-09-02 Evonik Corporation High permeability superabsorbent polymer compositions
US20080234420A1 (en) * 2007-03-23 2008-09-25 Smith Scott J High permeability superabsorbent polymer compositions
US8236884B2 (en) 2007-03-23 2012-08-07 Evonik Stockhausen, Llc High permeability superabsorbent polymer compositions
US8519041B2 (en) 2007-03-23 2013-08-27 Evonik Stockhausen, Llc High permeability superabsorbent polymer compositions
US8063118B2 (en) 2007-07-16 2011-11-22 Evonik Stockhausen, Llc Superabsorbent polymer compositions having color stability
US8236876B2 (en) 2007-07-16 2012-08-07 Evonik Stockhausen, Llc Superabsorbent polymer compositions having color stability
US20110009841A1 (en) * 2007-07-16 2011-01-13 Evonik Stockhausen Llc Superabsorbent polymer compositions having color stability
US8318306B2 (en) 2008-01-30 2012-11-27 Evonik Stockhausen, Llc Superabsorbent polymer compositions having a triggering composition
US8734948B2 (en) 2008-01-30 2014-05-27 Evonik Stockhausen, Llc Superabsorbent polymer compositions having a triggering composition
US20090191408A1 (en) * 2008-01-30 2009-07-30 Gonglu Tian Superabsorbent polymer compositions having a triggering composition
US20100100066A1 (en) * 2008-10-20 2010-04-22 Azad Michael M Superabsorbent polymer containing clay, particulate, and method of making same
US8962910B2 (en) 2008-10-20 2015-02-24 Evonik Corporation Superabsorbent polymer containing clay particulate, and method of making same
US8222477B2 (en) 2008-10-20 2012-07-17 Evonik Stockhausen, Llc Superabsorbent polymer containing clay, particulate, and method of making same
US8487049B2 (en) 2008-10-22 2013-07-16 Evonik Stockhausen, Llc Recycling superabsorbent polymer fines
US8309682B2 (en) 2008-10-22 2012-11-13 Evonik Stockhausen, Llc Recycling superabsorbent polymer fines
US8318895B1 (en) 2008-10-22 2012-11-27 Evonik Stockhausen, Llc Recycling superabsorbent polymer fines
US20110121231A1 (en) * 2008-10-22 2011-05-26 Evonik Stockhausen Inc. Recycling superabsorbent polymer fines
US8486855B2 (en) 2008-11-25 2013-07-16 Evonik Stockhausen Llc Water-absorbing polysaccharide and method for producing the same
US8703645B2 (en) 2008-11-25 2014-04-22 Evonik Corporation Water-absorbing polysaccharide and method for producing the same
US20100130355A1 (en) * 2008-11-25 2010-05-27 Gonglu Tian Water-absorbing polysaccharide and method for producing the same
US8361926B2 (en) 2008-11-25 2013-01-29 Evonik Stockhausen, Llc Water-absorbing polysaccharide and method for producing the same
US8891923B2 (en) 2008-12-30 2014-11-18 Draka Comteq, B.V. Perforated water-blocking element
US20100166375A1 (en) * 2008-12-30 2010-07-01 Draka Comteq B.V. Perforated Water-Blocking Element
US9182566B2 (en) 2008-12-30 2015-11-10 Draka Comteq, B.V. Optical-fiber cable having a perforated water blocking element
US8292863B2 (en) 2009-10-21 2012-10-23 Donoho Christopher D Disposable diaper with pouches
US20110176782A1 (en) * 2010-01-20 2011-07-21 Draka Comteq, B.V. Water-Soluble Water-Blocking Element
US9042693B2 (en) 2010-01-20 2015-05-26 Draka Comteq, B.V. Water-soluble water-blocking element
US8252873B1 (en) 2010-03-30 2012-08-28 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8682123B2 (en) 2010-07-15 2014-03-25 Draka Comteq, B.V. Adhesively coupled optical fibers and enclosing tape
US8802786B2 (en) 2011-04-21 2014-08-12 Evonik Corporation Particulate superabsorbent polymer composition having improved performance properties
US9102806B2 (en) 2011-04-21 2015-08-11 Evonik Corporation Particulate superabsorbent polymer composition having improved performance properties
US10189008B2 (en) 2012-10-24 2019-01-29 Evonik Degussa Gmbh Odor and color stable water-absorbing composition
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US9375507B2 (en) 2013-04-10 2016-06-28 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US10307732B2 (en) 2013-04-10 2019-06-04 Evonik Corporation Particulate superabsorbent polymer composition having improved stability and fast absorption
US10287379B2 (en) 2014-03-05 2019-05-14 Evonik Degussa Gmbh Superabsorbent polymers with improved odor control capacity and process for the production thereof
US10738141B2 (en) 2014-03-05 2020-08-11 Evonik Operations Gmbh Superabsorbent polymers with improved odor control capacity and process for the production thereof
US11680184B2 (en) 2014-07-25 2023-06-20 Evonik Superabsorber Gmbh Anti-stick processing aids and use thereof in the production of water-absorbing particles

Also Published As

Publication number Publication date
US7482058B2 (en) 2009-01-27
US20050020771A1 (en) 2005-01-27
US20030055133A1 (en) 2003-03-20
DE60238212D1 (en) 2010-12-16
ATE486907T1 (en) 2010-11-15
WO2003025054A1 (en) 2003-03-27
CA2460152C (en) 2009-10-27
EP1438354A1 (en) 2004-07-21
BR0212575A (en) 2004-10-13
CN1331930C (en) 2007-08-15
CN1568347A (en) 2005-01-19
EP1438354B1 (en) 2010-11-03
CA2460152A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
US6906131B2 (en) Cellulose material with improved absorbency
EP1173639B1 (en) Polymers that are cross-linkable to form superabsorbent polymers
US6743391B2 (en) Superabsorbent polymers having delayed water absorption characteristics
EP1105168B1 (en) Superabsorbent polymers having anti-caking characteristics
US5409771A (en) Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles
JP4685332B2 (en) Water-absorbent resin suitable for absorption of viscous liquid containing high molecular weight body, and absorbent body and absorbent article using the same
US5676660A (en) Absorbent product including absorbent layer treated with surface active agent
MXPA06003348A (en) Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles.
MXPA04008606A (en) Polymer mixtures with improved odor control.
JP2011088145A (en) Damage-resistant superabsorbent material
MXPA06003346A (en) Absorbent articles comprising superabsorbent polymer particles having a non-covalently bonded surface coating.
CA2242642A1 (en) Absorption of water
JPH11267500A (en) Water absorbent and absorptive product using that
JP4942235B2 (en) Water-absorbing agent, absorber, absorbent article, and method for measuring absorption characteristics

Legal Events

Date Code Title Description
AS Assignment

Owner name: STOCKHAUSEN GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHMED, IQBAL;JONES, ANGELA MARIE;SMITH, SCOTT J.;REEL/FRAME:012375/0383;SIGNING DATES FROM 20011113 TO 20011207

AS Assignment

Owner name: STOCKHAUSEN GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNORS:STOCKHAUSEN GMBH & CO., KG;STOCKHAUSEN VERWALTUNGSGESELLSCHAFT;REEL/FRAME:015689/0508

Effective date: 20040601

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: EVONIK STOCKHAUSEN GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:STOCKHAUSEN GMBH;REEL/FRAME:021982/0371

Effective date: 20070917

AS Assignment

Owner name: EVONIK STOCKHAUSEN GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:STOCKHAUSEN GMBH;REEL/FRAME:024023/0758

Effective date: 20070917

Owner name: EVONIK STOCKHAUSEN GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:STOCKHAUSEN GMBH;REEL/FRAME:024023/0758

Effective date: 20070917

AS Assignment

Owner name: EVONIK STOCKHAUSEN GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:STOCKHAUSEN GMBH;REEL/FRAME:025308/0973

Effective date: 20070917

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: MERGER;ASSIGNOR:EVONIK STOCKHAUSEN GMBH;REEL/FRAME:030417/0037

Effective date: 20120606

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: EVONIK OPERATIONS GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:052152/0001

Effective date: 20191104