US6601584B2 - Contracting snoring treatment implant - Google Patents

Contracting snoring treatment implant Download PDF

Info

Publication number
US6601584B2
US6601584B2 US09/814,459 US81445901A US6601584B2 US 6601584 B2 US6601584 B2 US 6601584B2 US 81445901 A US81445901 A US 81445901A US 6601584 B2 US6601584 B2 US 6601584B2
Authority
US
United States
Prior art keywords
implant
soft palate
tissue
palate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US09/814,459
Other versions
US20010050085A1 (en
Inventor
Mark B. Knudson
Timothy R. Conrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PILLAR PALATAL LLC
SNORING CENTER USA LLC
Original Assignee
Pi Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/398,991 external-priority patent/US6250307B1/en
Priority claimed from US09/513,039 external-priority patent/US6415796B1/en
Priority claimed from US09/513,432 external-priority patent/US6450169B1/en
Priority claimed from US09/602,141 external-priority patent/US6390096B1/en
Priority to US09/814,459 priority Critical patent/US6601584B2/en
Application filed by Pi Medical Inc filed Critical Pi Medical Inc
Assigned to PI MEDICAL, INC. reassignment PI MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CONRAD, TIMOTHY R., KNUDSON, MARK B.
Publication of US20010050085A1 publication Critical patent/US20010050085A1/en
Priority to EP02753781A priority patent/EP1379204A1/en
Priority to PCT/US2002/007975 priority patent/WO2002076354A1/en
Assigned to RESTORE MEDICAL INC. reassignment RESTORE MEDICAL INC. MERGER AND CHANGE OF NAME Assignors: PI MEDICAL INC.
Publication of US6601584B2 publication Critical patent/US6601584B2/en
Application granted granted Critical
Assigned to MEDTRONIC RESTORE MEDICAL, INC. reassignment MEDTRONIC RESTORE MEDICAL, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: RESTORE MEDICAL, INC.
Assigned to MEDTRONIC XOMED, INC. reassignment MEDTRONIC XOMED, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: MEDTRONIC RESTORE MEDICAL, INC.
Assigned to SNORING CENTER USA, LLC reassignment SNORING CENTER USA, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDTRONIC XOMED, INC.
Assigned to PILLAR PALATAL, LLC reassignment PILLAR PALATAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDTRONIC XOMED, INC.
Assigned to PROVIDENCE BANK D/B/A PREMIER BANK TEXAS reassignment PROVIDENCE BANK D/B/A PREMIER BANK TEXAS SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PILLAR PALATAL, LLC, A TEXAS LIMITED LIABILITY COMPANY, AND SNORING CENTER USA, LLC, A TEXAS LIMITED LIABILITY COMPANY
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/56Devices for preventing snoring
    • A61F5/566Intra-oral devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/56Devices for preventing snoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0059Cosmetic or alloplastic implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/20Epiglottis; Larynxes; Tracheae combined with larynxes or for use therewith

Definitions

  • This invention is directed to methods and apparatuses for treating snoring. More particularly, this invention is directed such a method and apparatus incorporating a contracting implant.
  • Snoring has received increased scientific and academic attention.
  • One publication estimates that up to 20% of the adult population snores habitually.
  • Huang, et al. “Biomechanics of Snoring”, Endeavour, p. 96-100, Vol. 19, No. 3 (1995).
  • Snoring can be a serious cause of marital discord.
  • snoring can present a serious health risk to the snorer.
  • collapse of the airway during sleep can lead to obstructive sleep apnea syndrome. Id.
  • Surgical treatments have been employed.
  • One such treatment is uvulopalatopharyngoplasty.
  • so-called laser ablation is used to remove about 2 cm of the trailing edge of the soft palate thereby reducing the soft palate's ability to flutter between the tongue and the pharyngeal wall of the throat.
  • the procedure is frequently effective to abate snoring but is painful and frequently results in undesirable side effects.
  • removal of the soft palate trailing edge comprises the soft palate's ability to seal off nasal passages during swallowing and speech.
  • fluid escapes from the mouth into the nose while drinking. Huang, et al., supra at 99.
  • Uvulopalatopharyngoplasty is also described in Harries, et al., “The Surgical treatment of snoring”, Journal of Laryngology and Otology, pp. 1105-1106 (1996) which describes removal of up to 1.5 cm of the soft palate. Assessment of snoring treatment is discussed in Cole, et al., “Snoring: A review and a Reassessment”, Journal of Otolaryngology, pp. 303-306 (1995).
  • Huang, et al., supra describe the soft palate and palatal snoring as an oscillating system which responds to airflow over the soft palate. Resulting flutter of the soft palate (rapidly opening and closing air passages) is a dynamic response generating sounds associated with snoring.
  • Huang, et al. propose an alternative to uvulopalatopharyngoplasty. The proposal includes using a surgical laser to create scar tissue on the surface of the soft palate. The scar is to reduce flexibility of the soft palate to reduce palatal flutter.
  • Huang, et al. report initial results of complete or nearcomplete reduction in snoring and reduced side effects.
  • Surgical procedures such as uvulopalatopharyngoplasty and those proposed by Huang, et al., continue to have problems.
  • the area of surgical treatment i.e., removal of palatal tissue or scarring of palatal tissue
  • Surgical lasers are expensive.
  • the proposed procedures are painful with drawn out and uncomfortable healing periods.
  • the procedures have complications and side effects and variable efficacy (e.g., Huang, et al., report promising results in 75% of patients suggesting a full quarter of patients are not effectively treated after painful surgery).
  • the procedures may involve lasting discomfort. For example, scar tissue on the soft palate may present a continuing irritant to the patient.
  • the procedures are not reversible in the event they happen to induce adverse side effects not justified by the benefits of the surgery.
  • a method and apparatus for treating snoring of a patient attributable at least in part to motion of a soft palate of the patient.
  • the method and apparatus include selecting an implant formed of a bio-compatible material having dimensions including a longitudinal length, a thickness and a width.
  • the material is sized to be inserted into the soft palate with the longitudinal length extending aligned with an anterior-posterior axis of the palate and with the thickness contained within a thickness of the soft palate.
  • the implant includes a tissue growth-inducing material having a plurality of spaces for accepting tissue growth from the soft palate into the spaces.
  • the material is contractible in at least one of the dimensions in response to implantation of the implant in a body tissue.
  • FIG. 1 is a side sectional view of a portion of a human head showing a soft palate in a relaxed state and in relation in adjacent anatomical features;
  • FIG. 2 is a portion of the view of FIG. 1 showing the soft palate in a flexed state
  • FIG. 3 is a front view of an interior of the mouth shown in FIG. 1 and showing an area to be ablated according to a first prior art surgical procedure;
  • FIG. 4 is the view of FIG. 3 and showing an area to be scarred according to a second prior art surgical procedure
  • FIG. 5 is a schematic representation of a spring-mass system model of the soft palate
  • FIG. 6 is the view of FIG. 1 with the soft palate containing an implant according to a first embodiment of the present invention
  • FIG. 7 is the view of FIG. 3 showing the embodiment of FIG. 6;
  • FIG. 8 is a cross-sectional view of the implant of FIG. 6;
  • FIG. 9 is a first modification of the implant of FIG. 8 having a tissue in-growth layer
  • FIG. 10 is a second modification of the implant of FIG. 8 having a smooth outer layer
  • FIG. 11 is the view of FIG. 6 with the soft palate containing an implant according to a second embodiment of the present invention.
  • FIG. 12 is the view of FIG. 7 showing the embodiment of FIG. 11;
  • FIG. 13 is a perspective view of the implant of FIG. 11;
  • FIG. 14 is a cross-sectional view of the implant of FIG. 13;
  • FIG. 15 is a view of the implant of FIG. 14 with the implant pre-formed to assume the shape of a soft palate in a relaxed state;
  • FIG. 16 is the view of FIG. 14 with the implant constructed to have greater flexion in a downward direction;
  • FIG. 17 is an exploded perspective view of first modification of the implant of FIG. 13;
  • FIG. 18 is a perspective view of a modification of a housing of the embodiment of FIG. 17;
  • FIG. 19 is a side section view of a second modification of the implant of FIG. 13;
  • FIG. 20 is a cross-sectional view of an implant that is another embodiment of the present invention, the implant is shown in a flattened orientation;
  • FIG. 21 is a cross-sectional view of the implant of FIG. 20 in an expanded orientation
  • FIG. 22 shows the implant of FIG. 20 in the flattened orientation and implanted in the soft palate
  • FIG. 23 shows the implant in FIG. 21 in the expanded orientation and implanted in the soft palate
  • FIG. 24 is a top plan view, shown partially broken away, of a still further embodiment of the present invention.
  • FIG. 25 is a view taken along line 25 — 25 in FIG. 24;
  • FIG. 26 is a side sectional view of the implant of FIG. 24 collapsed and placed within a delivery tool;
  • FIG. 27 is the view of FIG. 26 with the implant in the process of being ejected from the delivery tool;
  • FIG. 28 is a view taken along line 28 — 28 in FIG. 26;
  • FIG. 29 is a side sectional view of the soft palate showing a palatal muscle in the soft palate
  • FIG. 30 is the view of FIG. 29 showing the delivery tool of FIG. 26 being advanced through an incision into the soft palate;
  • FIG. 31 is the view of FIG. 30 following delivery of the implant and removal of the delivery tool.
  • FIG. 32 is a view taken along line 32 — 32 in FIG. 31 .
  • FIG. 33 is a perspective view of an implant according to a still further embodiment of the present invention showing only a bio-resorbable, first component;
  • FIG. 34 is a perspective view of the implant of FIG. 33 showing both a first component and a second component;
  • FIG. 35 is a perspective of the implant of FIG. 33 showing only the second component following bio-resorption of the first component
  • FIG. 36 is a graph showing decrease of palatal stiffening attributable to the first component and increase of palatal stiffening attributable to the first component;
  • FIG. 37 is a perspective view of an implant for use in the delivery system of FIGS. 38-39;
  • FIG. 38 is a side-sectional view of a delivery system for placing an implant in the soft palate
  • FIG. 39 is the view of FIG. 38 following delivery of the implant from the delivery system
  • FIG. 40 is a perspective view of a braided implant
  • FIG. 41 is an end view of the implant of FIG. 40;
  • FIG. 42 is a side sectional view of an implant with an anchor
  • FIG. 43 shows an implant in a perforated needle tip
  • FIG. 44 is a cross-sectional view of the implant and needle tip of FIG. 43;
  • FIG. 45 is a view of a compliant implant in a soft palate
  • FIG. 46 is a side view of an embodiment of an implant which contracts in a longitudinal dimension and shown in an extended state
  • FIG. 47 is the view of FIG. 46 with the implant shown in a contracted state
  • FIG. 48 is a perspective view of an embodiment of an implant which contracts in multiple dimensions and shown in an extended state
  • FIG. 49 is a view of the implant of FIG. 48 shown contracted.
  • the hard palate HP overlies the tongue T and forms the roof of the mouth M.
  • the hard palate HP includes a bone support B and does not materially deform during breathing.
  • the soft palate SP is soft and is made up of mucous membrane, fibrous and muscle tissue extending rearward from the hard palate HP.
  • a leading end LE of the soft palate SP is anchored to the trailing end of the hard palate HP.
  • a trailing end TE of the soft palate SP is unattached. Since the soft palate SP is not structurally supported by bone or hard cartilage, the soft palate SP droops down from the plane of the hard palate HP in an arcuate geometry of repose.
  • the pharyngeal airway passes air from the mouth M and the nasal passages N into the trachea TR.
  • the portion of the pharyngeal airway defined between opposing surfaces of the upper surface of the soft palate SP and the wall of the throat is the nasopharynx NP.
  • the soft palate SP is in the relaxed state shown in FIG. 1 with the nasopharynx NP unobstructed and with air free to flow into the trachea TR from both the mouth M and the nostrils N.
  • the soft palate SP flexes and extends (as shown in FIG. 2) to close the nasopharynx NP thereby preventing fluid flow from the mouth M to the nasal passages N.
  • the epiglottis EP closes the trachea TR so that food and drink pass only into the esophagus ES and not the trachea TR.
  • the soft palate SP is a valve to prevent regurgitation of food into the nose N.
  • the soft palate SP also regulates airflow through the nose N while talking. Since the soft palate SP performs such important functions, prior art techniques for surgically altering the soft palate SP can compromise these functions.
  • Huang, et al. analogize the shortening of the soft palate SP in uvulopalatopharyngoplasty as effectively raising the critical air flow speed at which soft palate flutter will occur.
  • the shaded area SA in FIG. 3 shows the area of the trailing end TE of the soft palate SP to be removed during this procedure.
  • the alternative procedure proposed by Huang, et al. reduces the flexibility of the soft palate SP through surface scarring which is asserted as effecting the critical flow speed.
  • the shaded area SA′ in FIG. 4 shows the area to be scarred by this alternate procedure.
  • dashed line L shows the demarcation between the soft and hard palates.
  • the present invention is directed to a surgical implant into the soft palate SP to alter the elements of the model and thereby alter the dynamic response of the soft palate SP to airflow.
  • the implant can alter the mass of the model (the ball B of FIG. 5 ), the spring constant of the spring S, the dampening of the spring S or any combination of these elements.
  • the implants that will be described are easy to insert in a small incision resulting in reduced patient discomfort and are not exposed to the interior of the mouth (such as the surface scarring of Huang, et al.) as a patient irritant.
  • the degree of dynamic remodeling can be fine tuned avoiding the need for excessive anatomical modification and are reversible in the event of adverse consequences.
  • FIGS. 6-7 illustrate a first embodiment of the present invention where individual units 10 of mass (in the form of implantable modular devices such as spheres or implants of other geometry) are imbedded in the soft palate SP in close proximity to the trailing end TE.
  • the spheres add mass to the mass-spring system thereby altering dynamic response to airflow and adding resistance to displacement and accelerating.
  • the placement of the units 10 of mass also alter the location of the soft palate's center of mass further altering the model and dynamic response.
  • FIGS. 6-10 is tunable to a particular patient in that multiple modules 10 can be implanted (as illustrated in FIG. 7 ). This permits the surgeon to progressively increase the number of implanted modules 10 until the altered dynamic response is such that snoring inducing oscillation is abated at normal airflow.
  • the individual modules 10 may be placed into the soft palate SP through small individual incisions closed by sutures which is much less traumatic than the gross anatomical destruction of uvulopalatopharyngoplasty or the large surface area scarring proposed by Huang, et al.
  • modules 10 of mass are solid modules such as spheres of biocompatible material which are radiopaque (or radio-marked) and compatible with magnetic resonance imaging (MRI). Titanium is such a material.
  • the modules 10 of mass may be about 2-4 mm in diameter. In the case of pure, non-sintered titanium, each such sphere 10 would add 0.15-1.22 gm of mass to the trailing end TE of the soft palate SP and contribute to re-modeling the mass distribution of the soft palate SP.
  • An example of an alternative material is any biocompatible ceramic.
  • the spheres may be sintered throughout or otherwise provided with tissue growth inducing material 12 on their outer surface.
  • tissue growth inducing material 12 may be a sintered outer layer or a coating or covering such as a polyester fabric jacket.
  • tissue growth inducing material 12 permits and encourages tissue in-growth to secure the implant 10 ′ in place.
  • placement of an implant 10 or 10 ′ will induce a fibrotic response acting to stiffen the soft palate SP (and further alter the dynamic response and resistance to displacement and acceleration).
  • a sintered or coated sphere 10 ′ will enhance the fibrotic response and resulting stiffening.
  • the implant 10 ′ may make the implant 10 ′ more difficult to remove in the event reversal of the procedure is desired. Therefore, as shown in FIG. 10 as an alternative, the spheres (labeled 10 ′′ to distinguish from the implants 10 , 10 ′) may be coated with smooth coating 14 (such as parylene or PTFE) to reduce fibrosis.
  • smooth coating 14 such as parylene or PTFE
  • FIGS. 6-10 add to and relocate the mass of the spring-mass system of FIG. 5 to remodel the dynamic response.
  • the amount of mass is selected to alter the dynamic response but not preclude the soft palate SP being moved to close off nasal passages N during swallowing. Through fibrotic response and incision healing, the spring S of the model is stiffened.
  • FIG. 11-16 illustrate an implant 20 in the form of a flexible strip for placement in the soft palate.
  • the use of the term “strip” herein is not intended to be limited to long, narrow implants but can also include plates or other geometries implanted to alter the dynamic model of the soft palate SP. Elongated strips are presently anticipated as a preferred geometry to facilitate ease of implant.
  • the strip 20 has a transverse dimension less than a longitudinal dimension.
  • the strip may have a length L S of about 20-30 mm, a thickness T S of about 2-4 mm and a width W S of 5-10 mm.
  • the strip 20 is embedded in the soft palate SP with the longitudinal dimension L S extending from adjacent the hard palate HP toward the trailing end TE of the soft palate SP.
  • multiple strips 20 may be embedded in the soft palate SP extending either straight rearward or angled to the sides while extending rearward.
  • the strips 20 may be formed straight (FIG. 14) or pre-shaped (FIG. 15) to have a rest shape approximate to the side-cross section shape of the soft palate in a relaxed state.
  • the strips 20 may be any flexible, biocompatible material and are preferably radiopaque or radio-marked as well as MRI compatible.
  • the strips 20 need not be elastic and having a material spring constant biasing them to their original shape.
  • Such strips 20 could simply be flexible, plastically deformable strips which are stiffer than the soft palate SP to reinforce the soft palate SP and assist the soft palate SP in resisting deflection due to airflow.
  • Such stiffening of the soft palate SP stiffens and dampens the spring S in the spring-mass system of FIG. 5 and alters the dynamic response of the soft palate SP.
  • the strip 20 may be a spring having a spring constant to further resist deflection of the soft palate SP as well as urging the soft palate SP to the relaxed state of FIG. 5 .
  • the stiffness of the strip 20 , a spring constant of the strip 20 , and the number of strips 20 are selected to avoid preclusion of closure of the soft palate SP during swallowing.
  • suitable materials include titanium and nitinol (a well-known nickel-titanium alloy).
  • the strips 20 may be provided with tissue in-growth surfaces or may be coated as desired. Also, the strips may be structurally modified to control their flexibility.
  • the bottom 22 of the strip 20 (facing the tongue after placement) is provided with transverse notches 24 to enhance downward flexion of the strip 20 relative to upward flexion of the strip 20 following placement.
  • FIG. 17 provides an alternative to the strips 20 of FIG. 13 .
  • the strip 20 ′ includes a housing 26 having an interior space 28 with an access opening 25 .
  • the interior space 28 extends in the longitudinal dimension of the housing 26 .
  • the strip 20 ′ further includes a longitudinal insert 32 sized to be passed through the access opening 25 and into the space 28 .
  • the housing 26 could be silicone rubber (with radio-markers, not shown, to indicate placement) and the inserts 32 could be titanium rods or other flexible member.
  • the housing 26 (without an insert) may be embedded in the soft palate SP.
  • the housing 26 acts independently as a stiffening strip to add stiffness to the soft palate SP to alter the soft palate's dynamic response.
  • the implant 20 ′ can be selectively tuned to the patient's unique dynamic model by placing the insert 32 into the space 28 at the time of initial surgery or during a subsequent procedure.
  • the embodiment of FIG. 17 permits selection of an insert 32 from a wide variety of materials and construction so that an insert 32 of desired characteristics (e.g., stiffness and spring action) can be selected to be inserted in the space 28 and alter the dynamic response as desired.
  • the embodiment of FIG. 17 also permits later removal of the insert 32 and replacement with a different insert 32 of different properties for post-surgery modification of the soft palate's dynamic response.
  • FIG. 18 is similar to that of FIG. 17 .
  • the housing 26 ′ is provided with multiple, parallel-aligned interior spaces 28 ′ and access openings 25 ′.
  • the number of inserts 32 may be varied to alter and adjust the dynamic response of the soft palate SP.
  • FIG. 19 illustrates a still further embodiment of the strip implant.
  • the strip 20 ′′′ is a bladder having a housing 26 ′′ in the form of a completely sealed envelope of flexible synthetic material defining an interior space 28 ′′.
  • the envelope 26 ′′ is preferably self-sealing following needle injection. Fluid is injected into the housing 26 ′′ (e.g., through hypodermic needle 40 injection) to stiffen the strip 20 ′′′. Addition of fluid further stiffens the strip 20 ′′′ and further alters the dynamic response of the soft palate SP. Removal of fluid increases the flexibility.
  • the embodiment of FIG. 19 permits selectively varying flexibility of the soft palate SP through needle injection.
  • An alternative to FIG. 19 is to fill the space 28 ′′ with a so-called phase change polymer and inject a stiffening agent into the space 28 ′′ to alter the flexibility of the polymer.
  • FIGS. 20-23 illustrate a still further embodiment of the present invention.
  • the spring-mass system of FIG. 5 is altered by altering the mass of the soft palate SP or the spring characteristics of the soft palate SP.
  • the dynamic response can also be altered by altering the force acting on the spring-mass system. Namely, the force acting on the soft palate SP is generated by airflow over the surface of the soft palate.
  • the soft palate acts as an airfoil which generates lift in response to such airflow.
  • the aerodynamic response and, accordingly, the dynamic response are altered.
  • the implant 30 is inserted into the soft palate SP through an incision.
  • the implant 30 has an oval shape to cause deformation of the geometry of the soft palate SP.
  • the implant 30 Prior to implantation, the implant 30 is preferably formed as a flat oval (FIGS. 20 and 22) for ease of insertion. After implantation, the implant 30 expands to an enlarged oval (FIG. 21 and 23 ). While such expansion could be accomplished mechanically (i.e., through balloon expansion), the implant 30 is preferably formed as a shape-memory alloy (such as nitinol) which expands to the enlarged shape in response to the warmth of the body.
  • the implant 30 can be constructed with a mass and stiffness as desired to alter the spring and mass components of the spring-mass system of FIG. 5 .
  • FIGS. 24-32 illustrate an expandable implant 50 and a delivery tool 60 for placing the implant 50 in the soft palate SP through a small incision.
  • the implant 50 is best illustrated as a flexible rim 52 with a fibrosis-inducing agent in the form of a flexible material, for example polyester fabric 54 , retained on the rim 52 .
  • the rim 52 may be titanium or other material and resiliently biased to a rest geometry shown as an oval in FIG. 24 having a fully expanded width W and a length L. An oval is illustrated as a preferred geometry but other geometries may suffice.
  • the geometries may include geometries selected to alter the shape of the soft palate SP.
  • the polyester fabric 54 (such as Dacron® or the like) contains interstitial spaces for fibrosis and tissue integration to impart a stiffening to the soft palate SP.
  • the soft palate SP is schematically shown in FIGS. 29-32 with a palatal muscle PM extending distally from the bone B of the hard palate and surrounded by the soft tissue ST of the soft palate SP.
  • the implant 50 is placed by compressing the implant 50 against the bias of the rim 52 into a compact cylindrical shape of length L and placing the compressed implant 50 in a distal end of a cylindrical delivery tool 60 .
  • the distal tip 62 of tool 60 is a blunt beveled end to follow an incision and to separate tissue as the tip 62 is advanced.
  • a rod 64 is positioned proximal to the implant 50 .
  • the distal tip 62 comprises a severable flap 68 such that pushing rod 64 urges the implant 50 out of the distal tip 62 .
  • the implant 50 springs back to an oval geometry.
  • the implant 50 is placed by forming a small incision 56 in the soft palate.
  • the incision is made on the lower surface of the soft palate.
  • the procedure could also be performed through the upper surface of the soft palate.
  • the incision is sized to pass the distal tip 62 of tool 60 which is substantially smaller than the full width W of the expanded implant 50 .
  • Any suitable blunt dissecting tool may be inserted into incision 56 to separate the soft tissue ST from the palatal muscle PM by an amount sufficient to receive the expanded implant 50 .
  • the distal tip 62 is placed through the incision 56 and advanced through the soft palate SP with the distal tip 62 separating the soft tissue ST and the palatal muscle PM (FIG. 30 ).
  • the tool 60 can be advanced by the physician tactilely noting position of the tool 60 or through any visualization technique (e.g., an endoscope on the distal tip 62 ).
  • the outer tube 66 of tool 60 is retracted while holding rod 64 in place causing the implant 50 to be expelled through the distal tip 62 .
  • tool 60 is removed through incision 56 .
  • the released implant 50 then expands into the oval shape and residing between the palatal muscle PM and the soft tissue ST (FIGS. 31 and 32 ).
  • the fabric 54 of implant 50 encourages fibrosis and stiffening of the soft palate SP.
  • a collapsed implant 50 By inserting a collapsed implant 50 through a small incision 56 , a large surface area of fibrosis (and greater stiffening) can be achieved with a minimized incision 56 (resulting in reduced patient discomfort).
  • the implant 50 is illustrated as being resiliently expandable, the implant 50 could expand or swell in response to other factors such as shape memory alloys (e.g., nitinol), smart polymers and balloon expandable and plastically deformable metals.
  • a catheter (not shown) can be passed through incision 56 and passed through the soft palate SP.
  • the delivery tool 60 can be passed through the catheter.
  • a coring tool (not shown) can be passed through the catheter to remove tissue from the soft palate SP prior to placing the implant 50 (or any implant of the previous embodiments).
  • an implant can be placed through any short tube inserted into the soft palate through a needle poke and need not include a pre-incision.
  • FIGS. 33-36 a still further embodiment of the invention is described.
  • an implant 80 is shown having a cylindrical shape. The shape is illustrative only. The implant 80 may be deployed through a delivery tool 60 as previously described.
  • the implant 80 includes two stiffening components.
  • a first component 82 is a base of a bio-resorbable material such as bio-resorbable suture formed into a woven cylindrical shape. Such material has a stiffness greater than soft tissue and is absorbed into the body over time.
  • a bio-resorbable material such as bio-resorbable suture formed into a woven cylindrical shape.
  • Such material has a stiffness greater than soft tissue and is absorbed into the body over time.
  • An example of such material is synthetic absorbable suture such as polydioxanone suture sold by Ethicon, Inc. under the trademark PDS II.
  • Alternative materials could include absorbable bio-adhesives.
  • a first component as described provides immediate post-operative stiffening to reduce or eliminate snoring immediately following placement of the implant 80 in the soft palate.
  • the second component 84 is any fibrosis inducing material combined with the first component 82 .
  • the second component may be filaments of polyester or polyester fabric (such as Dacron®) intertwined in the interstitial spaces of the first component 82 .
  • the presence of the second component 84 in the soft tissue of the soft palate SP induces fibrosis which stiffens the soft palate to reduce or eliminate snoring.
  • the stiffening increases with time following implantation until the fibrotic response is steady state.
  • the polyester second component 84 is permanent and does not bio-resorb. Therefore, the fibrosis effect (and, hence, the snoring reducing stiffening) remains permanently following implantation and following complete absorption of the first component 82 .
  • the first component 82 and the second component 84 cooperate for the implant 80 to provide effective stiffening immediately post-operatively and chronically thereafter.
  • the first component has a stiff material which stiffens the soft palate SP upon placement. However, over time, the first component is absorbed and the stiffening influence reduces and is eliminated.
  • the second component 84 is formed of very floppy material which does not materially stiffen the soft palate immediately upon implantation of implant 80 . However, with time, fibrosis induced by the material of the second component 84 stiffens the soft palate. This phenomena is illustrated in the graph of FIG. 36 in which the horizontal axis represents time and the vertical axis represents stiffening provided by the implant 80 .
  • Line A is stiffening attributable to the first component 82 (which decays to zero as the first component is absorbed).
  • Line B represents stiffening attributable to the second component (which is at near zero at implantation and increases to a maximum representing a steady-state level of fibrosis).
  • Line C represents stiffening of the soft palate SP which is a sum of the stiffening of lines A and B.
  • implant 80 immediate post-operative stiffening (and snoring abatement) is achieved.
  • Chronic stiffening is provided by fibrotic response which is permanent.
  • Total stiffening is controlled since the first component 82 is being absorbed as the fibrosis at the second component 84 increases.
  • FIGS. 37-39 show an alternative delivery system 100 for placing an implant in the soft palate SP.
  • FIGS. 37-39 illustrate use of the novel delivery system 100 with a cylindrical implant 102 (such as implant 80 of FIG. 34 ).
  • a cylindrical implant 102 such as implant 80 of FIG. 34
  • the method and apparatus described with reference to FIGS. 37-39 could also be used with other geometries (e.g., the spherical implants of FIG. 7 or rectangular cross-section implants of FIG. 13) as well as an expandable implant as such implant 50 of FIG. 24 .
  • a needle 66 ′ is provided having a ground beveled distal tip 61 ′ for piercing tissue of the soft palate.
  • the needle 66 ′ is hollow and carries the implant 102 in sliding close tolerance.
  • a rod 64 ′ is slidably positioned in the needle 66 ′ proximal to the implant 102 .
  • the implant 102 is carried by the needle 66 ′ to a desired implant site within the soft palate. At the desired site, the implant 102 is deployed by retracting the needle 66 ′ while holding the rod 64 ′ in place. Relative movement between the rod 64 ′ and needle 66 ′ causes the rod 64 ′ to dispel the implant 102 from the needle 66 ′ without need for moving the implant 102 relative to the soft palate.
  • tissue and body fluids may be inclined to enter the needle 66 ′ and later interfere with discharge of the implant 102 from the needle 66 ′.
  • the embodiment of FIGS. 26-27 avoids such introduction of tissue and fluids into needle 60 by use of a flap 68 on the distal tip 62 of the needle 66 .
  • the embodiment of FIGS. 38-39 provides an alternative technique to prevent admission of tissue into the needle 66 ′.
  • the needle 66 ′ is provided with a plug 104 at the distal tip 61 ′.
  • the plug 104 is a bio-resorbable material (such as the material of the first component 82 of the implant 80 of FIG. 34 .).
  • the distal tip 61 ′ may be ground to a final bevel resulting in the plug 104 assuming the shape of the distal tip of 61 ′ as shown in FIGS. 38-39.
  • the rod 64 ′ (due to retraction of the needle 66 ′) urges both the plug 104 and implant 102 out of the needle 66 ′. Since the plug 104 is bio-resorbable, it resorbs into the patient's body over time.
  • the implant 102 provides the therapeutic effect described above with reference to altering the dynamic response of the soft palate.
  • the needle 66 ′ includes a first bore 66 a ′ having a diameter approximate to that of the rod 64 ′ and implant 102 and a second bore 66 b ′ at the distal tip 61 ′.
  • the second bore 66 b ′ is coaxial with the first bore 66 a ′ and is larger than the first bore 66 a ′ so that an annular retaining edge 65 ′ is defined within the needle 66 ′.
  • the plug 104 abuts the retaining edge 65 ′ and is restricted from being urged into the needle 66 ′ as the needle 66 ′ is advanced through the tissue of the soft palate.
  • the needle 66 ′ may be porous at the distal tip 61 ′ so the needle with a loaded implant 102 may be soaked for sterilization.
  • FIGS. 43-44 illustrate an implant in a perforated needle tip having through-holes 69 ′ for perforations. No plug (such as plug 104 ) is shown in FIGS. 43-44 to illustrate the needle 66 ′ can be used with or without a plug (in which case the needle 66 ′ has a constant diameter bore 67 ′).
  • the implant 102 With the perforated needle, the implant 102 can be pre-loaded into the distal tip of the needle at time of assembly. This frees a physician from the cumbersome task of loading the implant into a needle.
  • the physician may soak the needle distal tip in a solution of antibiotic (such as well known antibiotics Gentamycin or Betadine).
  • antibiotic such as well known antibiotics Gentamycin or Betadine.
  • the fluid antibiotic flows through perforations 69 ′ in the needle and soaks the implant 102 .
  • a combined needle and implant can be fabricated economically with the combination readily treatable with antibiotic and with the needle disposable following placement of the implant.
  • the implant may be sized larger than the needle bore 67 ′. Therefore, the implant expands following discharge.
  • FIGS. 40-41 illustrate an implant 102 ′ formed of twisted or braided fibers 103 a , 103 b . While a single type fiber could be used, the embodiment is preferably formed of two different fibers 103 a , 103 b braided or twisted together. One fiber 103 a may be provided for encouraging fibrotic response. Such a fiber 103 a may be polyester or silk suture material (in which individual fibers 103 a may be formed of braided or twisted elements). The other fiber 103 b may be a bio-resorbable fiber as in FIG. 33 (e.g., bio-resorbable suture material which may include natural materials such as collagen or synthetic materials such as the PDS suture material previously described).
  • bio-resorbable suture material which may include natural materials such as collagen or synthetic materials such as the PDS suture material previously described.
  • the second fiber 103 b may be a non-resorbable material such as polypropylene suture material to provide added stiffness to the implant.
  • the fibers 103 a , 103 b may be bonded together along the axial length of the implant 102 ′ to provide added stiffness.
  • a distal end 102 a of the implant 102 may be scored or otherwise provided with an anchor 103 to flair outwardly following discharge from the needle 66 ′.
  • Such flaring aids to anchor the implant 102 in place while tissue in-growth matures.
  • Such flaring can also be provided by radially extending fibers on the implant 102 which are folded down in the needle and which would radially project in the event the implant were to follow the needle 66 ′ during needle retraction.
  • a braiding operation as described with reference to FIGS. 40-41 provides enhanced design flexibility.
  • Such braiding can incorporate many different types of fibers for various functions.
  • radio-opaque fibers may be provided in the braid to permit visualization of the implant under fluoroscopy.
  • the structure (and flexibility) of the braided implant can be varied by adding a core material to the braid or varying tightness of the braid.
  • FIGS. 40 and 41 show a core or central fiber 105 .
  • the central fiber 105 may be the same material as either of fibers 103 a , 103 b or may be a different material to add stiffness or other mechanical property.
  • the fibers 103 a , 103 b may be non-bio-resorbable while core 105 is resorbable.
  • Core 105 may be metal to add stiffness or be radio-opaque. Core 105 may be a coil or spring-shape core. In the construction of the braided implant 102 ′, all fibers 103 a , 103 b and core 105 are preferably co-terminus with the implant 102 ′. In other words, the ends of the fibers 103 a , 103 b and core 105 are positioned at the axial ends of the implant 102 ′. The ends may be heat treated or otherwise adhered to prevent unraveling of the braided implant 102 ′.
  • FIG. 45 illustrates an embodiment where the implant 102 ′′ is a compliant implant to permit unimpeded stretching of the soft palate SP.
  • a compliant implant may be a coil with a length aligned with the anterior-posterior axis of the soft palate SP.
  • the implant 102 ′′ is compliant and stretches in response to tensile forces along its length.
  • the implant 102 ′′ may be a nitinol coil or may be any other material formed in a compliant geometry (e.g., a coil).
  • Such materials may be a tissue growth-inducing material selected to induce tissue growth such as expanded polytetraflouroethylene, polyester fabric or a woven material or felt, or any other suitable material having a plurality of spaces for accepting tissue growth.
  • FIGS. 46-49 illustrate embodiments of a contracting implant.
  • the implant 102 1 includes a resilient coil 102 a 1 with tissue growth inducing material 102 b 1 at its ends.
  • the coil 102 a 1 may be nitinol and the tissue growth inducing material 102 b 1 may be balls of polyester fabric.
  • a bio-resorbable material 102 c 1 (such as any of those described above) surrounds the coil 102 a 1 and opposes the material 102 b 1 .
  • the coil 102 a 1 is stretched for the implant 102 1 to have a length L 1 .
  • the implant 102 1 in the expanded state is placed in the soft palate with the length L 1 aligned with the anterior-posterior axis of the soft palate. Tissue grows into the balls 102 b 1 to attach to the balls 102 b 1 .
  • the extension material 102 c 1 resorbs. As a result, the implant 102 1 contracts toward the relaxed length L 2 of FIG. 47 . This urges the tissue of the soft palate to contract.
  • FIGS. 46-47 contracts in one dimension (length).
  • the embodiment of FIGS. 48-49 contracts in three dimensions (length, width and thickness).
  • the implant 102 2 is sown as a block of fibrous material (e.g., polyester fabric or a felt) having fibers defining a plurality of interstitial spaces. Any bio-compatible material having interior spaces which may be enlarged to expand the material against a resilient bias is suitable.
  • the interstitial spaces are filled with a bioresorbable material (such as those described above or a hydrogel). The filling of the spaces causes the spaces to expand against the natural resilient bias of the material for the implant 102 2 to assume an expanded state having dimensions of length L, width W and thickness T.
  • the implant 102 2 in the expanded state is placed in the soft palate with the length L aligned with the anterior-posterior axis of the soft palate. Tissue grows into the material of the implant 102 2 . Over time, the extension material within the interstitial spaces resorbs. As a result, the implant 102 2 contracts toward the relaxed dimensions of the reduced length L′, width W′ and thickness T′ shown in FIG. 49 . This urges the tissue of the soft palate to contract in three dimensions.
  • the implant can have a stiffness and dampening in response to flexing along its length to alter a dynamic response of the soft palate to airflow.
  • the material of the implant can be selected for a fibrotic response of tissue of the soft palate to stiffen the soft palate.

Abstract

A method and apparatus for treating snoring include selecting an implant formed of a bio-compatible material having dimensions including a longitudinal length, a thickness and a width. The material is sized to be inserted into the soft palate with the longitudinal length extending aligned with an anterior-posterior axis of the palate and with the thickness contained within a thickness of the soft palate. The implant includes a tissue growth-inducing material having a plurality of spaces for accepting tissue growth from the soft palate into the spaces. The material is contractible in at least one of the dimensions in response to implantation of the implant in a body tissue.

Description

CROSS-REFERENCE TO RELATED APPLICATION
The present application is a continuation-in-part of U.S. patent application Ser. No. 09/602,141 filed Jun. 23, 2000 now U.S. Pat. No. 6,390,096 which is a continuation-in-part of U.S. Ser. Nos. 09/513,432 and 09/513,039 filed Feb. 25, 2000, now U.S. Pat. Nos. 6,450,169 and 6,415,796, respectively, which are continuations-in-part of U.S. patent application Ser. No. 09/434,653 filed on Nov. 5, 1999 now U.S. Pat. No. 6,401,717 which is a continuation-in-part of U.S. patent application Ser. No. 09/398,991 filed Sep. 17, 1999, now U.S. Pat. No. 6,250,307 and with priority being claimed to all of the fore-going.
BACKGROUND
1. Field of the Invention
This invention is directed to methods and apparatuses for treating snoring. More particularly, this invention is directed such a method and apparatus incorporating a contracting implant.
2. Description of the Prior Art
Snoring has received increased scientific and academic attention. One publication estimates that up to 20% of the adult population snores habitually. Huang, et al., “Biomechanics of Snoring”, Endeavour, p. 96-100, Vol. 19, No. 3 (1995). Snoring can be a serious cause of marital discord. In addition, snoring can present a serious health risk to the snorer. In 10% of habitual snorers, collapse of the airway during sleep can lead to obstructive sleep apnea syndrome. Id.
Notwithstanding numerous efforts to address snoring, effective treatment of snoring has been elusive. Such treatment may include mouth guards or other appliances worn by the snorer during sleep. However, patients find such appliances uncomfortable and frequently discontinue use (presumably adding to marital stress).
Electrical stimulation of the soft palate has been suggested to treat snoring and obstructive sleep apnea. See, e.g., Schwartz, et al., “Effects of electrical stimulation to the soft palate on snoring and obstructive sleep apnea”, J. Prosthetic Dentistry, pp. 273-281 (1996). Devices to apply such stimulation are described in U.S. Pat. Nos. 5,284,161 and 5,792,067. Such devices are appliances requiring patient adherence to a regimen of use as well as subjecting the patient to discomfort during sleep. Electrical stimulation to treat sleep apnea is discussed in Wiltfang, et al., “First results on daytime submandibular electrostimulation of suprahyoidal muscles to prevent night-time hypopharyngeal collapse in obstructive sleep apnea syndrome”, International Journal of Oral & Maxillofacial Surgery, pp. 21-25 (1999).
Surgical treatments have been employed. One such treatment is uvulopalatopharyngoplasty. In this procedure, so-called laser ablation is used to remove about 2 cm of the trailing edge of the soft palate thereby reducing the soft palate's ability to flutter between the tongue and the pharyngeal wall of the throat. The procedure is frequently effective to abate snoring but is painful and frequently results in undesirable side effects. Namely, removal of the soft palate trailing edge comprises the soft palate's ability to seal off nasal passages during swallowing and speech. In an estimated 25% of uvulopalatopharyngoplasty patients, fluid escapes from the mouth into the nose while drinking. Huang, et al., supra at 99. Uvulopalatopharyngoplasty (UPPP) is also described in Harries, et al., “The Surgical treatment of snoring”, Journal of Laryngology and Otology, pp. 1105-1106 (1996) which describes removal of up to 1.5 cm of the soft palate. Assessment of snoring treatment is discussed in Cole, et al., “Snoring: A review and a Reassessment”, Journal of Otolaryngology, pp. 303-306 (1995).
Huang, et al., supra, describe the soft palate and palatal snoring as an oscillating system which responds to airflow over the soft palate. Resulting flutter of the soft palate (rapidly opening and closing air passages) is a dynamic response generating sounds associated with snoring. Huang, et al., propose an alternative to uvulopalatopharyngoplasty. The proposal includes using a surgical laser to create scar tissue on the surface of the soft palate. The scar is to reduce flexibility of the soft palate to reduce palatal flutter. Huang, et al., report initial results of complete or nearcomplete reduction in snoring and reduced side effects.
Surgical procedures such as uvulopalatopharyngoplasty and those proposed by Huang, et al., continue to have problems. The area of surgical treatment (i.e., removal of palatal tissue or scarring of palatal tissue) may be more than is necessary to treat the patient's condition. Surgical lasers are expensive. The proposed procedures are painful with drawn out and uncomfortable healing periods. The procedures have complications and side effects and variable efficacy (e.g., Huang, et al., report promising results in 75% of patients suggesting a full quarter of patients are not effectively treated after painful surgery). The procedures may involve lasting discomfort. For example, scar tissue on the soft palate may present a continuing irritant to the patient. Importantly, the procedures are not reversible in the event they happen to induce adverse side effects not justified by the benefits of the surgery.
SUMMARY OF THE INVENTION
According to a preferred embodiment of the present invention, a method and apparatus are disclosed for treating snoring of a patient attributable at least in part to motion of a soft palate of the patient. The method and apparatus include selecting an implant formed of a bio-compatible material having dimensions including a longitudinal length, a thickness and a width. The material is sized to be inserted into the soft palate with the longitudinal length extending aligned with an anterior-posterior axis of the palate and with the thickness contained within a thickness of the soft palate. The implant includes a tissue growth-inducing material having a plurality of spaces for accepting tissue growth from the soft palate into the spaces. The material is contractible in at least one of the dimensions in response to implantation of the implant in a body tissue.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side sectional view of a portion of a human head showing a soft palate in a relaxed state and in relation in adjacent anatomical features;
FIG. 2 is a portion of the view of FIG. 1 showing the soft palate in a flexed state;
FIG. 3 is a front view of an interior of the mouth shown in FIG. 1 and showing an area to be ablated according to a first prior art surgical procedure;
FIG. 4 is the view of FIG. 3 and showing an area to be scarred according to a second prior art surgical procedure;
FIG. 5 is a schematic representation of a spring-mass system model of the soft palate;
FIG. 6 is the view of FIG. 1 with the soft palate containing an implant according to a first embodiment of the present invention;
FIG. 7 is the view of FIG. 3 showing the embodiment of FIG. 6;
FIG. 8 is a cross-sectional view of the implant of FIG. 6;
FIG. 9 is a first modification of the implant of FIG. 8 having a tissue in-growth layer;
FIG. 10 is a second modification of the implant of FIG. 8 having a smooth outer layer;
FIG. 11 is the view of FIG. 6 with the soft palate containing an implant according to a second embodiment of the present invention;
FIG. 12 is the view of FIG. 7 showing the embodiment of FIG. 11;
FIG. 13 is a perspective view of the implant of FIG. 11;
FIG. 14 is a cross-sectional view of the implant of FIG. 13;
FIG. 15 is a view of the implant of FIG. 14 with the implant pre-formed to assume the shape of a soft palate in a relaxed state;
FIG. 16 is the view of FIG. 14 with the implant constructed to have greater flexion in a downward direction;
FIG. 17 is an exploded perspective view of first modification of the implant of FIG. 13;
FIG. 18 is a perspective view of a modification of a housing of the embodiment of FIG. 17;
FIG. 19 is a side section view of a second modification of the implant of FIG. 13;
FIG. 20 is a cross-sectional view of an implant that is another embodiment of the present invention, the implant is shown in a flattened orientation;
FIG. 21 is a cross-sectional view of the implant of FIG. 20 in an expanded orientation;
FIG. 22 shows the implant of FIG. 20 in the flattened orientation and implanted in the soft palate;
FIG. 23 shows the implant in FIG. 21 in the expanded orientation and implanted in the soft palate;
FIG. 24 is a top plan view, shown partially broken away, of a still further embodiment of the present invention;
FIG. 25 is a view taken along line 2525 in FIG. 24;
FIG. 26 is a side sectional view of the implant of FIG. 24 collapsed and placed within a delivery tool;
FIG. 27 is the view of FIG. 26 with the implant in the process of being ejected from the delivery tool;
FIG. 28 is a view taken along line 2828 in FIG. 26;
FIG. 29 is a side sectional view of the soft palate showing a palatal muscle in the soft palate;
FIG. 30 is the view of FIG. 29 showing the delivery tool of FIG. 26 being advanced through an incision into the soft palate;
FIG. 31 is the view of FIG. 30 following delivery of the implant and removal of the delivery tool; and
FIG. 32 is a view taken along line 3232 in FIG. 31.
FIG. 33 is a perspective view of an implant according to a still further embodiment of the present invention showing only a bio-resorbable, first component;
FIG. 34 is a perspective view of the implant of FIG. 33 showing both a first component and a second component;
FIG. 35 is a perspective of the implant of FIG. 33 showing only the second component following bio-resorption of the first component;
FIG. 36 is a graph showing decrease of palatal stiffening attributable to the first component and increase of palatal stiffening attributable to the first component;
FIG. 37 is a perspective view of an implant for use in the delivery system of FIGS. 38-39;
FIG. 38 is a side-sectional view of a delivery system for placing an implant in the soft palate;
FIG. 39 is the view of FIG. 38 following delivery of the implant from the delivery system;
FIG. 40 is a perspective view of a braided implant;
FIG. 41 is an end view of the implant of FIG. 40;
FIG. 42 is a side sectional view of an implant with an anchor;
FIG. 43 shows an implant in a perforated needle tip;
FIG. 44 is a cross-sectional view of the implant and needle tip of FIG. 43;
FIG. 45 is a view of a compliant implant in a soft palate;
FIG. 46 is a side view of an embodiment of an implant which contracts in a longitudinal dimension and shown in an extended state;
FIG. 47 is the view of FIG. 46 with the implant shown in a contracted state;
FIG. 48 is a perspective view of an embodiment of an implant which contracts in multiple dimensions and shown in an extended state;
FIG. 49 is a view of the implant of FIG. 48 shown contracted.
DESCRIPTION OF THE PREFERRED EMBODIMENT
For ease of understanding the present invention, the dynamics of snoring are explained with reference to FIGS. 1-4. The hard palate HP overlies the tongue T and forms the roof of the mouth M. The hard palate HP includes a bone support B and does not materially deform during breathing. The soft palate SP is soft and is made up of mucous membrane, fibrous and muscle tissue extending rearward from the hard palate HP. A leading end LE of the soft palate SP is anchored to the trailing end of the hard palate HP. A trailing end TE of the soft palate SP is unattached. Since the soft palate SP is not structurally supported by bone or hard cartilage, the soft palate SP droops down from the plane of the hard palate HP in an arcuate geometry of repose.
The pharyngeal airway passes air from the mouth M and the nasal passages N into the trachea TR. The portion of the pharyngeal airway defined between opposing surfaces of the upper surface of the soft palate SP and the wall of the throat is the nasopharynx NP.
During normal breathing, the soft palate SP is in the relaxed state shown in FIG. 1 with the nasopharynx NP unobstructed and with air free to flow into the trachea TR from both the mouth M and the nostrils N.
During swallowing, the soft palate SP flexes and extends (as shown in FIG. 2) to close the nasopharynx NP thereby preventing fluid flow from the mouth M to the nasal passages N. Simultaneously, the epiglottis EP closes the trachea TR so that food and drink pass only into the esophagus ES and not the trachea TR. The soft palate SP is a valve to prevent regurgitation of food into the nose N. The soft palate SP also regulates airflow through the nose N while talking. Since the soft palate SP performs such important functions, prior art techniques for surgically altering the soft palate SP can compromise these functions.
The majority of snoring is caused by the soft palate SP flapping back and forth. If breathing is solely through the nose N with the mouth closed, the trailing edge TE of the soft palate SP is sucked into the nasopharyngeal space NP obstructing the airway and subsequently falls opening the airway in a repeating cycle. When the mouth is open, air flows over the upper and lower surfaces of the soft palate SP causing the soft palate SP to flap up and down alternating in obstructing the oral and nasal passageways M, N. The snoring sound is generated by impulses caused by rapid obstruction and opening of airways. Huang, et al., state the airway passage opening and closing occurs 50 times per second during a snore. Huang, et al., utilize a spring-mass model (FIG. 5) to illustrate oscillation of the soft palate in response to airflow (where the soft palate is the ball B of mass depending by a spring S from a fixed anchor A).
Huang, et al., analogize the shortening of the soft palate SP in uvulopalatopharyngoplasty as effectively raising the critical air flow speed at which soft palate flutter will occur. The shaded area SA in FIG. 3 shows the area of the trailing end TE of the soft palate SP to be removed during this procedure. The alternative procedure proposed by Huang, et al., reduces the flexibility of the soft palate SP through surface scarring which is asserted as effecting the critical flow speed. The shaded area SA′ in FIG. 4 shows the area to be scarred by this alternate procedure. In FIG. 4, dashed line L shows the demarcation between the soft and hard palates.
Using the spring-mass model of FIG. 5 as a convenient model of the soft palate SP, the present invention is directed to a surgical implant into the soft palate SP to alter the elements of the model and thereby alter the dynamic response of the soft palate SP to airflow. The implant can alter the mass of the model (the ball B of FIG. 5), the spring constant of the spring S, the dampening of the spring S or any combination of these elements. Unlike the prior art surgical techniques, the implants that will be described are easy to insert in a small incision resulting in reduced patient discomfort and are not exposed to the interior of the mouth (such as the surface scarring of Huang, et al.) as a patient irritant. Also, as will be described, the degree of dynamic remodeling can be fine tuned avoiding the need for excessive anatomical modification and are reversible in the event of adverse consequences.
FIGS. 6-7 illustrate a first embodiment of the present invention where individual units 10 of mass (in the form of implantable modular devices such as spheres or implants of other geometry) are imbedded in the soft palate SP in close proximity to the trailing end TE. With reference to the model of FIG. 5, the spheres add mass to the mass-spring system thereby altering dynamic response to airflow and adding resistance to displacement and accelerating. The placement of the units 10 of mass also alter the location of the soft palate's center of mass further altering the model and dynamic response.
The embodiment of FIGS. 6-10 is tunable to a particular patient in that multiple modules 10 can be implanted (as illustrated in FIG. 7). This permits the surgeon to progressively increase the number of implanted modules 10 until the altered dynamic response is such that snoring inducing oscillation is abated at normal airflow. The individual modules 10 may be placed into the soft palate SP through small individual incisions closed by sutures which is much less traumatic than the gross anatomical destruction of uvulopalatopharyngoplasty or the large surface area scarring proposed by Huang, et al.
Preferably, such modules 10 of mass are solid modules such as spheres of biocompatible material which are radiopaque (or radio-marked) and compatible with magnetic resonance imaging (MRI). Titanium is such a material. By way of non-limiting example, the modules 10 of mass may be about 2-4 mm in diameter. In the case of pure, non-sintered titanium, each such sphere 10 would add 0.15-1.22 gm of mass to the trailing end TE of the soft palate SP and contribute to re-modeling the mass distribution of the soft palate SP. An example of an alternative material is any biocompatible ceramic.
As shown in FIG. 9, the spheres (labeled 10′ to distinguish from the version 10 of FIG. 8) may be sintered throughout or otherwise provided with tissue growth inducing material 12 on their outer surface. Such material may be a sintered outer layer or a coating or covering such as a polyester fabric jacket. Such material permits and encourages tissue in-growth to secure the implant 10′ in place. Also, placement of an implant 10 or 10′ will induce a fibrotic response acting to stiffen the soft palate SP (and further alter the dynamic response and resistance to displacement and acceleration). A sintered or coated sphere 10′ will enhance the fibrotic response and resulting stiffening.
While tissue in-growth and enhanced fibrotic response have the benefits described above, such embodiments may make the implant 10′ more difficult to remove in the event reversal of the procedure is desired. Therefore, as shown in FIG. 10 as an alternative, the spheres (labeled 10″ to distinguish from the implants 10, 10′) may be coated with smooth coating 14 (such as parylene or PTFE) to reduce fibrosis.
The embodiments of FIGS. 6-10 add to and relocate the mass of the spring-mass system of FIG. 5 to remodel the dynamic response. The amount of mass is selected to alter the dynamic response but not preclude the soft palate SP being moved to close off nasal passages N during swallowing. Through fibrotic response and incision healing, the spring S of the model is stiffened.
In addition to modifying the mass profile of the spring-mass system, the spring component S of FIG. 5 can be modified (alone or in combination with mass modification) to alter dynamic response. FIG. 11-16 illustrate an implant 20 in the form of a flexible strip for placement in the soft palate. The use of the term “strip” herein is not intended to be limited to long, narrow implants but can also include plates or other geometries implanted to alter the dynamic model of the soft palate SP. Elongated strips are presently anticipated as a preferred geometry to facilitate ease of implant.
The strip 20 has a transverse dimension less than a longitudinal dimension. By way of non-limiting example, the strip may have a length LS of about 20-30 mm, a thickness TS of about 2-4 mm and a width WS of 5-10 mm. As shown in FIG. 11, the strip 20 is embedded in the soft palate SP with the longitudinal dimension LS extending from adjacent the hard palate HP toward the trailing end TE of the soft palate SP. As shown in FIG. 12, multiple strips 20 may be embedded in the soft palate SP extending either straight rearward or angled to the sides while extending rearward. The strips 20 may be formed straight (FIG. 14) or pre-shaped (FIG. 15) to have a rest shape approximate to the side-cross section shape of the soft palate in a relaxed state.
The strips 20 may be any flexible, biocompatible material and are preferably radiopaque or radio-marked as well as MRI compatible. The strips 20 need not be elastic and having a material spring constant biasing them to their original shape. Such strips 20 could simply be flexible, plastically deformable strips which are stiffer than the soft palate SP to reinforce the soft palate SP and assist the soft palate SP in resisting deflection due to airflow. Such stiffening of the soft palate SP stiffens and dampens the spring S in the spring-mass system of FIG. 5 and alters the dynamic response of the soft palate SP. The strip 20 may be a spring having a spring constant to further resist deflection of the soft palate SP as well as urging the soft palate SP to the relaxed state of FIG. 5. The stiffness of the strip 20, a spring constant of the strip 20, and the number of strips 20, are selected to avoid preclusion of closure of the soft palate SP during swallowing. Examples of suitable materials include titanium and nitinol (a well-known nickel-titanium alloy). As with the examples of FIGS. 9 and 10, the strips 20 may be provided with tissue in-growth surfaces or may be coated as desired. Also, the strips may be structurally modified to control their flexibility. In FIG. 16, the bottom 22 of the strip 20 (facing the tongue after placement) is provided with transverse notches 24 to enhance downward flexion of the strip 20 relative to upward flexion of the strip 20 following placement.
FIG. 17 provides an alternative to the strips 20 of FIG. 13. In FIG. 17, the strip 20′ includes a housing 26 having an interior space 28 with an access opening 25. The interior space 28 extends in the longitudinal dimension of the housing 26. The strip 20′ further includes a longitudinal insert 32 sized to be passed through the access opening 25 and into the space 28. By way of non-limiting example, the housing 26 could be silicone rubber (with radio-markers, not shown, to indicate placement) and the inserts 32 could be titanium rods or other flexible member. With the embodiment of FIG. 17, the housing 26 (without an insert) may be embedded in the soft palate SP. The housing 26 acts independently as a stiffening strip to add stiffness to the soft palate SP to alter the soft palate's dynamic response. In the event further stiffening or a spring action is desired, the implant 20′ can be selectively tuned to the patient's unique dynamic model by placing the insert 32 into the space 28 at the time of initial surgery or during a subsequent procedure. The embodiment of FIG. 17, permits selection of an insert 32 from a wide variety of materials and construction so that an insert 32 of desired characteristics (e.g., stiffness and spring action) can be selected to be inserted in the space 28 and alter the dynamic response as desired. The embodiment of FIG. 17 also permits later removal of the insert 32 and replacement with a different insert 32 of different properties for post-surgery modification of the soft palate's dynamic response.
The embodiment of FIG. 18 is similar to that of FIG. 17. The housing 26′ is provided with multiple, parallel-aligned interior spaces 28′ and access openings 25′. In addition to the function and benefits of the embodiment of FIG. 17, the number of inserts 32 may be varied to alter and adjust the dynamic response of the soft palate SP.
FIG. 19 illustrates a still further embodiment of the strip implant. In FIG. 19, the strip 20′″ is a bladder having a housing 26″ in the form of a completely sealed envelope of flexible synthetic material defining an interior space 28″. The envelope 26″ is preferably self-sealing following needle injection. Fluid is injected into the housing 26″ (e.g., through hypodermic needle 40 injection) to stiffen the strip 20′″. Addition of fluid further stiffens the strip 20′″ and further alters the dynamic response of the soft palate SP. Removal of fluid increases the flexibility. Unlike the embodiments of FIG. 17 (where inserts 32 are most effectively replaced post-operatively through incision to alter flexibility), the embodiment of FIG. 19 permits selectively varying flexibility of the soft palate SP through needle injection. An alternative to FIG. 19 is to fill the space 28″ with a so-called phase change polymer and inject a stiffening agent into the space 28″ to alter the flexibility of the polymer.
FIGS. 20-23 illustrate a still further embodiment of the present invention. In the foregoing embodiments, the spring-mass system of FIG. 5 is altered by altering the mass of the soft palate SP or the spring characteristics of the soft palate SP. The dynamic response can also be altered by altering the force acting on the spring-mass system. Namely, the force acting on the soft palate SP is generated by airflow over the surface of the soft palate. The soft palate acts as an airfoil which generates lift in response to such airflow. By modifying the longitudinal (i.e., anterior to posterior) cross-sectional geometry of the soft palate SP, the aerodynamic response and, accordingly, the dynamic response are altered.
In the embodiments of FIGS. 20-23, the implant 30 is inserted into the soft palate SP through an incision. The implant 30 has an oval shape to cause deformation of the geometry of the soft palate SP. Prior to implantation, the implant 30 is preferably formed as a flat oval (FIGS. 20 and 22) for ease of insertion. After implantation, the implant 30 expands to an enlarged oval (FIG. 21 and 23). While such expansion could be accomplished mechanically (i.e., through balloon expansion), the implant 30 is preferably formed as a shape-memory alloy (such as nitinol) which expands to the enlarged shape in response to the warmth of the body. In addition to changing the aerodynamics of the soft palate SP, the implant 30 can be constructed with a mass and stiffness as desired to alter the spring and mass components of the spring-mass system of FIG. 5.
FIGS. 24-32 illustrate an expandable implant 50 and a delivery tool 60 for placing the implant 50 in the soft palate SP through a small incision. In FIGS. 24 and 25, the implant 50 is best illustrated as a flexible rim 52 with a fibrosis-inducing agent in the form of a flexible material, for example polyester fabric 54, retained on the rim 52. The rim 52 may be titanium or other material and resiliently biased to a rest geometry shown as an oval in FIG. 24 having a fully expanded width W and a length L. An oval is illustrated as a preferred geometry but other geometries may suffice. The geometries may include geometries selected to alter the shape of the soft palate SP. The polyester fabric 54 (such as Dacron® or the like) contains interstitial spaces for fibrosis and tissue integration to impart a stiffening to the soft palate SP.
The soft palate SP is schematically shown in FIGS. 29-32 with a palatal muscle PM extending distally from the bone B of the hard palate and surrounded by the soft tissue ST of the soft palate SP. The implant 50 is placed by compressing the implant 50 against the bias of the rim 52 into a compact cylindrical shape of length L and placing the compressed implant 50 in a distal end of a cylindrical delivery tool 60. The distal tip 62 of tool 60 is a blunt beveled end to follow an incision and to separate tissue as the tip 62 is advanced. A rod 64 is positioned proximal to the implant 50. The distal tip 62 comprises a severable flap 68 such that pushing rod 64 urges the implant 50 out of the distal tip 62. When removed from the delivery tool 60, the implant 50 springs back to an oval geometry.
The implant 50 is placed by forming a small incision 56 in the soft palate. In FIG. 29, the incision is made on the lower surface of the soft palate. The procedure could also be performed through the upper surface of the soft palate. The incision is sized to pass the distal tip 62 of tool 60 which is substantially smaller than the full width W of the expanded implant 50.
Any suitable blunt dissecting tool may be inserted into incision 56 to separate the soft tissue ST from the palatal muscle PM by an amount sufficient to receive the expanded implant 50. The distal tip 62 is placed through the incision 56 and advanced through the soft palate SP with the distal tip 62 separating the soft tissue ST and the palatal muscle PM (FIG. 30). The tool 60 can be advanced by the physician tactilely noting position of the tool 60 or through any visualization technique (e.g., an endoscope on the distal tip 62). When the distal tip 62 is fully advanced, the outer tube 66 of tool 60 is retracted while holding rod 64 in place causing the implant 50 to be expelled through the distal tip 62. After full expulsion of the implant 50, tool 60 is removed through incision 56. The released implant 50 then expands into the oval shape and residing between the palatal muscle PM and the soft tissue ST (FIGS. 31 and 32).
In place, the fabric 54 of implant 50, encourages fibrosis and stiffening of the soft palate SP. By inserting a collapsed implant 50 through a small incision 56, a large surface area of fibrosis (and greater stiffening) can be achieved with a minimized incision 56 (resulting in reduced patient discomfort). Also, while the implant 50 is illustrated as being resiliently expandable, the implant 50 could expand or swell in response to other factors such as shape memory alloys (e.g., nitinol), smart polymers and balloon expandable and plastically deformable metals.
As an alternative to the foregoing, a catheter (not shown) can be passed through incision 56 and passed through the soft palate SP. The delivery tool 60 can be passed through the catheter. If desired, a coring tool (not shown) can be passed through the catheter to remove tissue from the soft palate SP prior to placing the implant 50 (or any implant of the previous embodiments). Also, for small implants, an implant can be placed through any short tube inserted into the soft palate through a needle poke and need not include a pre-incision.
With reference to FIGS. 33-36, a still further embodiment of the invention is described. In FIGS. 33-36, an implant 80 is shown having a cylindrical shape. The shape is illustrative only. The implant 80 may be deployed through a delivery tool 60 as previously described.
The implant 80 includes two stiffening components. A first component 82 is a base of a bio-resorbable material such as bio-resorbable suture formed into a woven cylindrical shape. Such material has a stiffness greater than soft tissue and is absorbed into the body over time. An example of such material is synthetic absorbable suture such as polydioxanone suture sold by Ethicon, Inc. under the trademark PDS II. Alternative materials could include absorbable bio-adhesives. A first component as described provides immediate post-operative stiffening to reduce or eliminate snoring immediately following placement of the implant 80 in the soft palate.
The second component 84 is any fibrosis inducing material combined with the first component 82. By way of non-limiting example, the second component may be filaments of polyester or polyester fabric (such as Dacron®) intertwined in the interstitial spaces of the first component 82. The presence of the second component 84 in the soft tissue of the soft palate SP induces fibrosis which stiffens the soft palate to reduce or eliminate snoring. The stiffening increases with time following implantation until the fibrotic response is steady state. The polyester second component 84 is permanent and does not bio-resorb. Therefore, the fibrosis effect (and, hence, the snoring reducing stiffening) remains permanently following implantation and following complete absorption of the first component 82.
The first component 82 and the second component 84 cooperate for the implant 80 to provide effective stiffening immediately post-operatively and chronically thereafter. The first component has a stiff material which stiffens the soft palate SP upon placement. However, over time, the first component is absorbed and the stiffening influence reduces and is eliminated. The second component 84 is formed of very floppy material which does not materially stiffen the soft palate immediately upon implantation of implant 80. However, with time, fibrosis induced by the material of the second component 84 stiffens the soft palate. This phenomena is illustrated in the graph of FIG. 36 in which the horizontal axis represents time and the vertical axis represents stiffening provided by the implant 80. Line A is stiffening attributable to the first component 82 (which decays to zero as the first component is absorbed). Line B represents stiffening attributable to the second component (which is at near zero at implantation and increases to a maximum representing a steady-state level of fibrosis). Line C represents stiffening of the soft palate SP which is a sum of the stiffening of lines A and B.
Therefore, with the embodiment of implant 80, immediate post-operative stiffening (and snoring abatement) is achieved. Chronic stiffening is provided by fibrotic response which is permanent. Total stiffening is controlled since the first component 82 is being absorbed as the fibrosis at the second component 84 increases.
FIGS. 37-39 show an alternative delivery system 100 for placing an implant in the soft palate SP. FIGS. 37-39 illustrate use of the novel delivery system 100 with a cylindrical implant 102 (such as implant 80 of FIG. 34). However, the method and apparatus described with reference to FIGS. 37-39 could also be used with other geometries (e.g., the spherical implants of FIG. 7 or rectangular cross-section implants of FIG. 13) as well as an expandable implant as such implant 50 of FIG. 24.
A needle 66′ is provided having a ground beveled distal tip 61′ for piercing tissue of the soft palate. The needle 66′ is hollow and carries the implant 102 in sliding close tolerance. A rod 64′ is slidably positioned in the needle 66′ proximal to the implant 102. As described above with reference to FIGS. 26-32, the implant 102 is carried by the needle 66′ to a desired implant site within the soft palate. At the desired site, the implant 102 is deployed by retracting the needle 66′ while holding the rod 64′ in place. Relative movement between the rod 64′ and needle 66′ causes the rod 64′ to dispel the implant 102 from the needle 66′ without need for moving the implant 102 relative to the soft palate.
While advancing the needle 66′ through the soft palate, tissue and body fluids may be inclined to enter the needle 66′ and later interfere with discharge of the implant 102 from the needle 66′. The embodiment of FIGS. 26-27 avoids such introduction of tissue and fluids into needle 60 by use of a flap 68 on the distal tip 62 of the needle 66. The embodiment of FIGS. 38-39 provides an alternative technique to prevent admission of tissue into the needle 66′.
In FIGS. 38-39, the needle 66′ is provided with a plug 104 at the distal tip 61′. Preferably, the plug 104 is a bio-resorbable material (such as the material of the first component 82 of the implant 80 of FIG. 34.). After placing the plug 104 in the needle 66′ at the distal tip 61′, the distal tip 61′ may be ground to a final bevel resulting in the plug 104 assuming the shape of the distal tip of 61′ as shown in FIGS. 38-39.
During discharge, the rod 64′ (due to retraction of the needle 66′) urges both the plug 104 and implant 102 out of the needle 66′. Since the plug 104 is bio-resorbable, it resorbs into the patient's body over time. The implant 102 provides the therapeutic effect described above with reference to altering the dynamic response of the soft palate.
To avoid the plug 104 being urged proximally into the needle 66′, the needle 66′ includes a first bore 66 a′ having a diameter approximate to that of the rod 64′ and implant 102 and a second bore 66 b′ at the distal tip 61′. The second bore 66 b′ is coaxial with the first bore 66 a′ and is larger than the first bore 66 a′ so that an annular retaining edge 65′ is defined within the needle 66′. The plug 104 abuts the retaining edge 65′ and is restricted from being urged into the needle 66′ as the needle 66′ is advanced through the tissue of the soft palate.
The needle 66′ may be porous at the distal tip 61′ so the needle with a loaded implant 102 may be soaked for sterilization. FIGS. 43-44 illustrate an implant in a perforated needle tip having through-holes 69′ for perforations. No plug (such as plug 104) is shown in FIGS. 43-44 to illustrate the needle 66′ can be used with or without a plug (in which case the needle 66′ has a constant diameter bore 67′). With the perforated needle, the implant 102 can be pre-loaded into the distal tip of the needle at time of assembly. This frees a physician from the cumbersome task of loading the implant into a needle. At or shortly before the implantation in the palate, the physician may soak the needle distal tip in a solution of antibiotic (such as well known antibiotics Gentamycin or Betadine). The fluid antibiotic flows through perforations 69′ in the needle and soaks the implant 102. As a result, a combined needle and implant can be fabricated economically with the combination readily treatable with antibiotic and with the needle disposable following placement of the implant. During loading, the implant may be sized larger than the needle bore 67′. Therefore, the implant expands following discharge.
FIGS. 40-41 illustrate an implant 102′ formed of twisted or braided fibers 103 a, 103 b. While a single type fiber could be used, the embodiment is preferably formed of two different fibers 103 a, 103 b braided or twisted together. One fiber 103 a may be provided for encouraging fibrotic response. Such a fiber 103 a may be polyester or silk suture material (in which individual fibers 103 a may be formed of braided or twisted elements). The other fiber 103 b may be a bio-resorbable fiber as in FIG. 33 (e.g., bio-resorbable suture material which may include natural materials such as collagen or synthetic materials such as the PDS suture material previously described). Alternatively, the second fiber 103 b may be a non-resorbable material such as polypropylene suture material to provide added stiffness to the implant. The fibers 103 a, 103 b may be bonded together along the axial length of the implant 102′ to provide added stiffness.
Referring to FIG. 42 and using implant 102 of FIG. 37 as an example, a distal end 102 a of the implant 102 (i.e., the first end of the implant 102 to be discharged from needle 66′) may be scored or otherwise provided with an anchor 103 to flair outwardly following discharge from the needle 66′. Such flaring aids to anchor the implant 102 in place while tissue in-growth matures. Such flaring can also be provided by radially extending fibers on the implant 102 which are folded down in the needle and which would radially project in the event the implant were to follow the needle 66′ during needle retraction.
A braiding operation as described with reference to FIGS. 40-41 provides enhanced design flexibility. Such braiding can incorporate many different types of fibers for various functions. For example, radio-opaque fibers may be provided in the braid to permit visualization of the implant under fluoroscopy. The structure (and flexibility) of the braided implant can be varied by adding a core material to the braid or varying tightness of the braid. FIGS. 40 and 41 show a core or central fiber 105. The central fiber 105 may be the same material as either of fibers 103 a, 103 b or may be a different material to add stiffness or other mechanical property. For example, the fibers 103 a, 103 b may be non-bio-resorbable while core 105 is resorbable. Core 105 may be metal to add stiffness or be radio-opaque. Core 105 may be a coil or spring-shape core. In the construction of the braided implant 102′, all fibers 103 a, 103 b and core 105 are preferably co-terminus with the implant 102′. In other words, the ends of the fibers 103 a, 103 b and core 105 are positioned at the axial ends of the implant 102′. The ends may be heat treated or otherwise adhered to prevent unraveling of the braided implant 102′.
FIG. 45 illustrates an embodiment where the implant 102″ is a compliant implant to permit unimpeded stretching of the soft palate SP. Such a compliant implant may be a coil with a length aligned with the anterior-posterior axis of the soft palate SP. The implant 102″ is compliant and stretches in response to tensile forces along its length. The implant 102″ may be a nitinol coil or may be any other material formed in a compliant geometry (e.g., a coil). Such materials may be a tissue growth-inducing material selected to induce tissue growth such as expanded polytetraflouroethylene, polyester fabric or a woven material or felt, or any other suitable material having a plurality of spaces for accepting tissue growth.
FIGS. 46-49 illustrate embodiments of a contracting implant. In FIG. 46, the implant 102 1 includes a resilient coil 102 a 1 with tissue growth inducing material 102 b 1 at its ends. By way of non-limiting example, the coil 102 a 1 may be nitinol and the tissue growth inducing material 102 b 1 may be balls of polyester fabric. In an expanded state (FIG. 46), a bio-resorbable material 102 c 1 (such as any of those described above) surrounds the coil 102 a 1 and opposes the material 102 b 1. Since the length of the bio-resorbable material 102 c 1 is greater than the length of the relaxed coil 102 a 1, the coil 102 a 1 is stretched for the implant 102 1 to have a length L1. The implant 102 1 in the expanded state is placed in the soft palate with the length L1 aligned with the anterior-posterior axis of the soft palate. Tissue grows into the balls 102 b 1 to attach to the balls 102 b 1. Over time, the extension material 102 c 1 resorbs. As a result, the implant 102 1 contracts toward the relaxed length L2 of FIG. 47. This urges the tissue of the soft palate to contract.
The embodiment of FIGS. 46-47 contracts in one dimension (length). The embodiment of FIGS. 48-49 contracts in three dimensions (length, width and thickness). In FIG. 48, the implant 102 2 is sown as a block of fibrous material (e.g., polyester fabric or a felt) having fibers defining a plurality of interstitial spaces. Any bio-compatible material having interior spaces which may be enlarged to expand the material against a resilient bias is suitable. The interstitial spaces are filled with a bioresorbable material (such as those described above or a hydrogel). The filling of the spaces causes the spaces to expand against the natural resilient bias of the material for the implant 102 2 to assume an expanded state having dimensions of length L, width W and thickness T.
The implant 102 2 in the expanded state is placed in the soft palate with the length L aligned with the anterior-posterior axis of the soft palate. Tissue grows into the material of the implant 102 2. Over time, the extension material within the interstitial spaces resorbs. As a result, the implant 102 2 contracts toward the relaxed dimensions of the reduced length L′, width W′ and thickness T′ shown in FIG. 49. This urges the tissue of the soft palate to contract in three dimensions.
With all of the implants of FIGS. 45-49, the implant can have a stiffness and dampening in response to flexing along its length to alter a dynamic response of the soft palate to airflow. Also, the material of the implant can be selected for a fibrotic response of tissue of the soft palate to stiffen the soft palate. By fabricating a soft or floppy implant of high tissue-in-growth material, such fibrotic response can be the dominant contributor to palatal stiffening (relative to the natural stiffness of the implant material.
The foregoing describes numerous embodiments of an invention for an implant for the soft palate to alter a dynamic response of the soft palate. The invention is much less traumatic than prior surgical treatments. Further, the invention permits use of reversible procedures as well as procedures which can be selectively tuned both during surgery and post-operatively. Having described the invention, alternatives and embodiments may occur to one of skill in the art.

Claims (7)

What is claimed is:
1. A method for treating snoring of a patient attributable at least in part to motion of a soft palate of the patient, the method comprising:
selecting an implant having dimensions including a longitudinal length, a width and a thickness, said material sized to be inserted into said soft palate with said longitudinal length extending aligned with an anterior-posterior axis of said soft palate and with a thickness of said implant contained within a thickness of said soft palate, a tissue growth-inducing material having a plurality of spaces for accepting tissue growth from said soft palate into said spaces, said material selected to contract in at least one of said dimensions in response to implantation;
inserting said implant into said soft palate with said longitudinal length extending aligned with an anterior-posterior axis of said soft palate and with said thickness contained within said thickness of said soft palate;
permitting tissue in-growth into said material followed by contraction of said material to contract said palate in at least one dimension.
2. A method according to claim 1 wherein said implant is contractible in multiple ones of said dimensions.
3. An implant for treating snoring of a patient attributable at least in part to motion of a soft palate of the patient, the implant comprising:
a bio-compatible material having dimensions including a longitudinal length, a thickness and a width;
said material sized to be inserted into said soft palate with said longitudinal length extending aligned with an anterior-posterior axis of said palate and with said thickness contained within a thickness of said soft palate;
a tissue growth-inducing material having a plurality of spaces for accepting tissue growth from said soft palate into said spaces, said material contractible in at least one of said dimensions in response to implantation of said implant in a body tissue.
4. An implant according to claim 3 wherein said implant includes:
first and second ends having said tissue growth-inducing material;
a resilient connecting member connecting said first and second ends;
an extending member for stretching said connecting member with said extending member selected to relax following implantation in a body tissue.
5. An implant according to claim 4 wherein said extending member is resorbable in body tissue.
6. An implant according to claim 3 wherein said tissue growth-inducing material is stretchable in said dimensions and restrained against a collapsing bias in a stretched dimension; said implant further including a restraining material connected to said stretched tissue growth-inducing material for restraining said tissue growth-inducing material in a stretched state following implantation and tissue in-growth.
7. An implant according to claim 6 wherein said tissue growth-inducing material includes a plurality of interstitial spaces, said restraining material disposed within said spaces urging fibers of said tissue growth-inducing material apart, said restraining material selected to dissolve in response to prolonged contact with body fluids.
US09/814,459 1999-09-17 2001-03-21 Contracting snoring treatment implant Expired - Lifetime US6601584B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/814,459 US6601584B2 (en) 1999-09-17 2001-03-21 Contracting snoring treatment implant
PCT/US2002/007975 WO2002076354A1 (en) 2001-03-21 2002-03-14 Contracting snoring treatment implant
EP02753781A EP1379204A1 (en) 2001-03-21 2002-03-14 Contracting snoring treatment implant

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US09/398,991 US6250307B1 (en) 1999-09-17 1999-09-17 Snoring treatment
US09/434,653 US6401717B1 (en) 1999-09-17 1999-11-05 Snoring treatment
US09/513,432 US6450169B1 (en) 1999-09-17 2000-02-25 Braided implant for snoring treatment
US09/513,039 US6415796B1 (en) 1999-09-17 2000-02-25 Placement tool for snoring treatment
US09/602,141 US6390096B1 (en) 1999-09-17 2000-06-23 Needle with pre-loaded implant for snoring treatment
US09/814,459 US6601584B2 (en) 1999-09-17 2001-03-21 Contracting snoring treatment implant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/602,141 Continuation-In-Part US6390096B1 (en) 1999-09-17 2000-06-23 Needle with pre-loaded implant for snoring treatment

Publications (2)

Publication Number Publication Date
US20010050085A1 US20010050085A1 (en) 2001-12-13
US6601584B2 true US6601584B2 (en) 2003-08-05

Family

ID=25215113

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/814,459 Expired - Lifetime US6601584B2 (en) 1999-09-17 2001-03-21 Contracting snoring treatment implant

Country Status (3)

Country Link
US (1) US6601584B2 (en)
EP (1) EP1379204A1 (en)
WO (1) WO2002076354A1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040020498A1 (en) * 1999-09-17 2004-02-05 Restore Medical, Inc. Stiff snoring implant
US20040112390A1 (en) * 2002-10-04 2004-06-17 Brooks Stephen Nelson System and method for preventing closure of passageways
US20050059599A1 (en) * 1998-03-13 2005-03-17 Connective Tissue Imagineering Llc. Elastin peptide analogs and uses thereof
US20050092334A1 (en) * 2003-10-31 2005-05-05 Restore Medical, Inc. Airway implant
US20050092332A1 (en) * 2003-10-31 2005-05-05 Restore Medical, Inc. Airway implant
US20050115572A1 (en) * 2002-10-04 2005-06-02 Brooks Stephen N. Electrically activated alteration of body tissue stiffness for breathing disorders
EP1604625A1 (en) 2004-06-10 2005-12-14 John A. Macken Method and apparatus for treatment of snoring and sleep apnea
US20060090762A1 (en) * 2004-09-21 2006-05-04 Hegde Anant V Airway implant and methods of making and using
US20060150986A1 (en) * 2004-12-15 2006-07-13 Aspire Medical, Inc. System and method for hyoidplasty
US20060235380A1 (en) * 2005-04-15 2006-10-19 Restore Medical, Inc. Tissue incision tool
US20060235264A1 (en) * 2005-04-15 2006-10-19 Restore Medical, Inc. Implant for tongue
EP1797846A1 (en) 2005-12-13 2007-06-20 John A. Macken Method and apparatus for treatment of snoring and sleep apnea
US20070261701A1 (en) * 2004-02-26 2007-11-15 Ira Sanders Methods and Devices for Treating Sleep Apnea and Snoring
US20070295340A1 (en) * 2006-06-23 2007-12-27 Buscemi Paul J Stiffening Procedure for Sleep Apnea
US20080078411A1 (en) * 2006-10-03 2008-04-03 Restore Medical, Inc. Tongue implant for sleep apnea
US20080078412A1 (en) * 2006-10-03 2008-04-03 Restore Medical, Inc. Tongue implant
US20080188947A1 (en) * 2004-02-26 2008-08-07 Ira Sanders Methods and devices for treating sleep apnea and snoring
WO2008156746A1 (en) * 2007-06-18 2008-12-24 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20090014012A1 (en) * 2004-02-26 2009-01-15 Ira Sanders Method And Device For The Treatment Of Obstructive Sleep Apnea And Snoring
US20090044814A1 (en) * 2007-06-18 2009-02-19 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20090177027A1 (en) * 2008-01-03 2009-07-09 Gillis Edward M Partially erodable systems for treatment of obstructive sleep apnea
WO2009140197A1 (en) * 2008-05-12 2009-11-19 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US7882842B2 (en) 2004-09-21 2011-02-08 Pavad Medical, Inc. Airway implant sensors and methods of making and using the same
US7954494B1 (en) 2008-03-26 2011-06-07 Connor Robert A Device with actively-moving members that hold or move the tongue
US7992566B2 (en) 2002-12-30 2011-08-09 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US20110226262A1 (en) * 2010-03-19 2011-09-22 Gillis Edward M Systems and methods for treatment of sleep apnea
US20110230727A1 (en) * 2008-10-16 2011-09-22 Linguaflex , Inc. Methods and Devices for Treating Sleep Apnea
US20110226263A1 (en) * 2010-03-19 2011-09-22 Gillis Edward M Systems and methods for treatment of sleep apnea
US20110308530A1 (en) * 2010-05-21 2011-12-22 Gillis Edward M Systems and methods for treatment of sleep apnea
US8146600B2 (en) 2003-07-22 2012-04-03 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US20120138069A1 (en) * 2010-12-03 2012-06-07 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US8578937B2 (en) 2004-09-21 2013-11-12 Medtronic Xomed, Inc. Smart mandibular repositioning system
US20140000631A1 (en) * 2012-06-29 2014-01-02 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US20160030147A1 (en) * 2006-05-19 2016-02-04 Ams Research Corporation Method and articles for treatment of stress urinary incontinence
US9265649B2 (en) 2010-12-13 2016-02-23 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US9707122B2 (en) 2010-07-26 2017-07-18 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US10390857B1 (en) 2018-04-26 2019-08-27 The Snoring Center Airway implant delivery device
US10842653B2 (en) 2007-09-19 2020-11-24 Ability Dynamics, Llc Vacuum system for a prosthetic foot

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096303B2 (en) 2005-02-08 2012-01-17 Koninklijke Philips Electronics N.V Airway implants and methods and devices for insertion and retrieval
US8371307B2 (en) 2005-02-08 2013-02-12 Koninklijke Philips Electronics N.V. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US20070102010A1 (en) * 2005-10-07 2007-05-10 Lemperle Stefan M Naso-pharyngeal tissue engineering
US7909037B2 (en) * 2006-04-20 2011-03-22 Pavad Medical Tethered airway implants and methods of using the same
US7780730B2 (en) 2006-09-25 2010-08-24 Iyad Saidi Nasal implant introduced through a non-surgical injection technique
US9597220B2 (en) 2008-11-19 2017-03-21 Spirox, Inc. Apparatus and methods for correcting nasal valve collapse
WO2012075186A2 (en) * 2010-11-30 2012-06-07 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
EP2731561B1 (en) 2011-07-14 2016-03-23 Cook Medical Technologies LLC A sling to be used in the treatment of obstructive sleep apnea
US9321581B2 (en) 2012-10-12 2016-04-26 Eli Lilly And Company Process and device for delivery of fluid by chemical reaction
KR101723319B1 (en) 2012-10-12 2017-04-04 일라이 릴리 앤드 캄파니 Chemical engines and methods for their use, especially in the injection of highly viscous fluids
WO2014189540A1 (en) 2012-10-16 2014-11-27 Catalano Peter J Method and apparatus for treating obstructive sleep apnea (osa)
PL2961350T3 (en) 2013-02-27 2018-07-31 Spirox, Inc. Nasal implants and systems
US10123900B2 (en) 2013-03-15 2018-11-13 Cook Medical Technologies Llc Devices, kits, and methods for the treatment of obstructive sleep apnea
CA2902438C (en) * 2013-03-15 2021-06-29 Fabian Hermann Urban Fuglister Tongue deformation implant
CA2919504A1 (en) 2013-08-01 2015-02-05 Christine BRONIKOWSKI Tissue adjustment implant
US10166017B2 (en) 2013-08-05 2019-01-01 Cook Medical Technologies Llc Medical devices having a releasable tubular member and methods of using the same
US9956384B2 (en) 2014-01-24 2018-05-01 Cook Medical Technologies Llc Articulating balloon catheter and method for using the same
US9974563B2 (en) 2014-05-28 2018-05-22 Cook Medical Technologies Llc Medical devices having a releasable member and methods of using the same
WO2016022454A1 (en) 2014-08-04 2016-02-11 Darin Schaeffer Medical devices having a releasable tubular member and methods of using the same
WO2016033196A1 (en) 2014-08-26 2016-03-03 Spirox, Inc. Nasal implants and systems and method of use
CN113349985A (en) 2015-09-25 2021-09-07 斯贝洛克斯公司 Nasal implants and systems and methods of use
JP6934889B2 (en) 2016-05-02 2021-09-15 エンテラス メディカル インコーポレイテッドEntellus Medical,Inc. Nasal flap implant and its transplant method
WO2018152018A1 (en) 2017-02-17 2018-08-23 Eli Lilly And Company Processes and devices for delivery of fluid by chemical reaction
EP3644911A1 (en) 2017-06-29 2020-05-06 Cook Medical Technologies, LLC Implantable medical devices for tissue repositioning

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998209A (en) 1975-12-16 1976-12-21 Macvaugh Gilbert S Snoring deconditioning system and method
US4830008A (en) 1987-04-24 1989-05-16 Meer Jeffrey A Method and system for treatment of sleep apnea
DE3830481A1 (en) 1988-09-08 1990-03-22 Ethicon Gmbh Tubular implant and method of producing it
SU1553140A1 (en) 1988-06-15 1990-03-30 Пермский государственный медицинский институт Method of electric stimulation of soft palate muscles
US4978323A (en) 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
US5046512A (en) 1989-03-10 1991-09-10 Murchie John A Method and apparatus for treatment of snoring
US5052409A (en) 1989-05-08 1991-10-01 Tepper Harry W Oral appliance for tongue thrust correction
US5133354A (en) 1990-11-08 1992-07-28 Medtronic, Inc. Method and apparatus for improving muscle tone
US5176618A (en) 1989-08-10 1993-01-05 George Freedman System for preventing closure of passageways
US5178156A (en) 1989-06-20 1993-01-12 Chest Corporation Apnea preventive stimulating device
US5190053A (en) 1991-02-28 1993-03-02 Jeffrey A. Meer, Revocable Living Trust Method and apparatus for electrical sublingual stimulation
US5281219A (en) 1990-11-23 1994-01-25 Medtronic, Inc. Multiple stimulation electrodes
US5284161A (en) 1992-11-12 1994-02-08 Karell Manuel L Snopper-the snoring stopper anti-snoring mouth device
US5456662A (en) 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
EP0706808A1 (en) 1994-09-21 1996-04-17 Medtronic, Inc. Apparatus for synchronized treatment of obstructive sleep apnea
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5540733A (en) 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for detecting and treating obstructive sleep apnea
US5591216A (en) 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US5630833A (en) 1992-07-16 1997-05-20 Sherwood Medical Company Device for sealing hemostatic incisions
US5674191A (en) 1994-05-09 1997-10-07 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US5792067A (en) 1995-11-21 1998-08-11 Karell; Manuel L. Apparatus and method for mitigating sleep and other disorders through electromuscular stimulation
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5897579A (en) 1994-09-15 1999-04-27 Mount Sinai School Of Medicine Method of relieving airway obstruction in patients with bilateral vocal impairment
WO1999033414A1 (en) 1997-12-29 1999-07-08 Ivan Vesely System for minimally invasive insertion of a bioprosthetic heart valve
US5922006A (en) 1996-08-12 1999-07-13 Sugerman; Joseph H. Nasal appliance
US6098629A (en) 1999-04-07 2000-08-08 Endonetics, Inc. Submucosal esophageal bulking device
WO2000059398A1 (en) 1999-04-07 2000-10-12 Endonetics, Inc. Submucosal prosthesis delivery device
DE20015980U1 (en) 1999-09-17 2001-02-22 Pi Medical Inc Implants for the treatment of snoring
US6250307B1 (en) * 1999-09-17 2001-06-26 Pi Medical, Inc. Snoring treatment

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998209A (en) 1975-12-16 1976-12-21 Macvaugh Gilbert S Snoring deconditioning system and method
US4830008A (en) 1987-04-24 1989-05-16 Meer Jeffrey A Method and system for treatment of sleep apnea
SU1553140A1 (en) 1988-06-15 1990-03-30 Пермский государственный медицинский институт Method of electric stimulation of soft palate muscles
DE3830481A1 (en) 1988-09-08 1990-03-22 Ethicon Gmbh Tubular implant and method of producing it
US5046512A (en) 1989-03-10 1991-09-10 Murchie John A Method and apparatus for treatment of snoring
US5052409A (en) 1989-05-08 1991-10-01 Tepper Harry W Oral appliance for tongue thrust correction
US5178156A (en) 1989-06-20 1993-01-12 Chest Corporation Apnea preventive stimulating device
US4978323A (en) 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
US5176618A (en) 1989-08-10 1993-01-05 George Freedman System for preventing closure of passageways
US5133354A (en) 1990-11-08 1992-07-28 Medtronic, Inc. Method and apparatus for improving muscle tone
US5281219A (en) 1990-11-23 1994-01-25 Medtronic, Inc. Multiple stimulation electrodes
US5190053A (en) 1991-02-28 1993-03-02 Jeffrey A. Meer, Revocable Living Trust Method and apparatus for electrical sublingual stimulation
US5630833A (en) 1992-07-16 1997-05-20 Sherwood Medical Company Device for sealing hemostatic incisions
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5718702A (en) 1992-08-12 1998-02-17 Somnus Medical Technologies, Inc. Uvula, tonsil, adenoid and sinus tissue treatment device and method
US5284161A (en) 1992-11-12 1994-02-08 Karell Manuel L Snopper-the snoring stopper anti-snoring mouth device
USRE36120E (en) 1992-11-12 1999-03-02 Karell; Manuel L. Snopper--the snoring stopper anti-snoring mouth device
US5456662A (en) 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5674191A (en) 1994-05-09 1997-10-07 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US5897579A (en) 1994-09-15 1999-04-27 Mount Sinai School Of Medicine Method of relieving airway obstruction in patients with bilateral vocal impairment
EP0706808A1 (en) 1994-09-21 1996-04-17 Medtronic, Inc. Apparatus for synchronized treatment of obstructive sleep apnea
US5540733A (en) 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for detecting and treating obstructive sleep apnea
US5591216A (en) 1995-05-19 1997-01-07 Medtronic, Inc. Method for treatment of sleep apnea by electrical stimulation
US5792067A (en) 1995-11-21 1998-08-11 Karell; Manuel L. Apparatus and method for mitigating sleep and other disorders through electromuscular stimulation
US5922006A (en) 1996-08-12 1999-07-13 Sugerman; Joseph H. Nasal appliance
WO1999033414A1 (en) 1997-12-29 1999-07-08 Ivan Vesely System for minimally invasive insertion of a bioprosthetic heart valve
US6098629A (en) 1999-04-07 2000-08-08 Endonetics, Inc. Submucosal esophageal bulking device
WO2000059398A1 (en) 1999-04-07 2000-10-12 Endonetics, Inc. Submucosal prosthesis delivery device
DE20015980U1 (en) 1999-09-17 2001-02-22 Pi Medical Inc Implants for the treatment of snoring
US6250307B1 (en) * 1999-09-17 2001-06-26 Pi Medical, Inc. Snoring treatment

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
Boot, H. et al., "Long-Term Results of Uvulapalatopharyngoplasty for Obstructive Sleep Apnea Syndrome", The Laryngoscope, pp. 469-475 (Mar. 2000).
Brochure, "Haven't you suffered from Snoring long enough", SomnoplastySM, 2 pgs.
Brochure, "Our Diagnostic Procedures are a Snap(R)!", Snap Laboratories, 4 pgs.
Brochure, "Snore-Free Nights-Guaranteed !", Your Health News, 2 pgs.
Brochure, "Snoreless(TM)", Nutrition for Life International, 2 pgs. (Dec. 1999).
Brochure, "Our Diagnostic Procedures are a Snap®!", Snap Laboratories, 4 pgs.
Brochure, "Snore-Free Nights—Guaranteed !", Your Health News, 2 pgs.
Brochure, "Snoreless™", Nutrition for Life International, 2 pgs. (Dec. 1999).
C. Lorenz, "If he Snores-what can you do about it?", Today's Woman, Jul. 1948, p.112.
C. Lorenz, "If he Snores—what can you do about it?", Today's Woman, Jul. 1948, p.112.
Cole, P. et al., "Snoring: A Review and a Reassessment", The Journal of Otoaryngology, vol. 24, No. 5, pp. 303-306 (1995).
Coleman, S. et al., "Midline Radiofrequency Tissue Reduction of the Palate for Bothersome Snoring and Sleep-Disordered Breathing:A Clinical Trial", Otolaryngology-Head and Neck Surgery, pp. 387-394 (Mar. 2000).
Dalmasso, F. et al., "Snoring: analysis, measurement, clinical implications and applications", Eur. Respir. J., vol. 9, pp. 146-159 (1996).
Du, G. et al., "Geometric Modeling of 3-D Braided Preforms for Composites", Textile Structural Composites Symposium, Drexel University, Philadelphia, Pennsylvania, 25 pages, (1991).
Ellis, P. D. M. et al., "Surgical relief of snoring due to palatal flutter: a preliminary report", Annals of the Royal College of Surgeons of England, vol. 75, No. 4, pp. 286-290 (1993).
Fischer, Y. et al., "Die Radiofrequenzablation des weichen Gaumens (Somnoplastik)", Redaktion, pp. 33-40 (2000).
Harries, P.G. et al., "Review Article: The surgical treatment of snoring", The Journal of Laryngology and Otology, vol. 110, pp. 1105-1106 (Dec. 1996).
Huang, L. et al., "Biomechanics of snoring", Endeavour, vol. 19, No. 3, pp. 96-100 (1995).
Huang, L., "Flutter of Cantilevered Plates in Axial Flow", Journal of Fluids and Structures, vol. 9, pp. 127-147 (1995).
International Search Report for Application No. PCT/US00/26616 dated Dec. 14, 2000.
International Search Report for Application No. PCT/US00/40830 dated Feb. 06, 2001.
Kasey, K. et al., "Radiofrequency Volumetric Reduction of the Palate: An Extended Follow-Up Study", Otolaryngology-Head and Neck Surgery, vol. 122, No. 3, pp. 410-414 (Mar. 2000).
Ko, F., "Braiding", Engineering Materials Handbook, vol. 1, Composites, Reinhart, T.J. Editor, ASM International, Metal Park, Ohio, pp. 519-528 (1988).
LaFrentz et al., "Palatal Stiffening Techniques for Snoring in a Novel Canine Model", Abstracts of the Twenty-Second Annual MidWinter Meeting of the Association for Research in Otolaryngology, Abstract No. 499, vol. 22, pp. 125-126 (Feb. 13-18, 1999).
Schwartz, R.S. et al., "Effects of electrical stimulation to the soft palate on snoring and obstructive sleep apnea", J. Prosthet. Dent., vol. 76, No. 3, pp. 273-281 (1996).
Search Report from PCT/US02/07914, Aug. 5, 2002.
Wiltfang, J. et al., "First results on daytime submadibular electrostimulation of suprahyoidal muscles to prevent night-time hypopharyngeal collapse in obstructive sleep apnea syndrome", Int. J. Oral Maxillofac. Surg., vol. 28, pp. 21-25 (1999).

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050059599A1 (en) * 1998-03-13 2005-03-17 Connective Tissue Imagineering Llc. Elastin peptide analogs and uses thereof
US20050268922A1 (en) * 1999-09-17 2005-12-08 Restore Medical, Inc. Injectable snoring implant
US20040020498A1 (en) * 1999-09-17 2004-02-05 Restore Medical, Inc. Stiff snoring implant
US7063089B2 (en) * 1999-09-17 2006-06-20 Restore Medical Inc. Airway stiffening implant
US7107992B2 (en) 2002-10-04 2006-09-19 Pavad Medical, Inc. System and method for preventing closure of passageways
US20050121039A1 (en) * 2002-10-04 2005-06-09 Brooks Stephen N. Altering the stiffness, size and/or shape of tissues for breathing disorders and other conditions
US20050115572A1 (en) * 2002-10-04 2005-06-02 Brooks Stephen N. Electrically activated alteration of body tissue stiffness for breathing disorders
US20040112390A1 (en) * 2002-10-04 2004-06-17 Brooks Stephen Nelson System and method for preventing closure of passageways
US7992566B2 (en) 2002-12-30 2011-08-09 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US8578938B2 (en) 2002-12-30 2013-11-12 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US8939145B2 (en) 2002-12-30 2015-01-27 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US8104478B2 (en) 2002-12-30 2012-01-31 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US8146600B2 (en) 2003-07-22 2012-04-03 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US7213599B2 (en) 2003-10-31 2007-05-08 Restore Medical, Inc. Airway implant
US7401611B2 (en) 2003-10-31 2008-07-22 Restore Medical, Inc. Airway implant
US20050092334A1 (en) * 2003-10-31 2005-05-05 Restore Medical, Inc. Airway implant
EP1691738B1 (en) 2003-10-31 2013-11-13 Medtronic Xomed, Inc. Airway implant
US7237554B2 (en) 2003-10-31 2007-07-03 Restore Medical, Inc. Airway implant
US20070204866A1 (en) * 2003-10-31 2007-09-06 Restore Medical, Inc. Airway implant
US20070227545A1 (en) * 2003-10-31 2007-10-04 Restore Medical, Inc. Soft palate implant
US20070233276A1 (en) * 2003-10-31 2007-10-04 Restore Medical, Inc. Tongue implant
US20050092332A1 (en) * 2003-10-31 2005-05-05 Restore Medical, Inc. Airway implant
EP1691738B2 (en) 2003-10-31 2017-04-05 Medtronic Xomed, Inc. Airway implant
US7703460B2 (en) 2003-10-31 2010-04-27 Medtronic Xomed, Inc. Tongue implant
US7673635B2 (en) 2003-10-31 2010-03-09 Medtronix Xomed, Inc. Soft palate implant
US9211210B2 (en) 2003-12-15 2015-12-15 Koninklijke Philips N.V. System and method for hyoidplasty
US8925551B2 (en) 2004-02-26 2015-01-06 Linguaflex, Inc. Method and device for the treatment of obstructive sleep apnea and snoring
US20080188947A1 (en) * 2004-02-26 2008-08-07 Ira Sanders Methods and devices for treating sleep apnea and snoring
US20070261701A1 (en) * 2004-02-26 2007-11-15 Ira Sanders Methods and Devices for Treating Sleep Apnea and Snoring
US20090014012A1 (en) * 2004-02-26 2009-01-15 Ira Sanders Method And Device For The Treatment Of Obstructive Sleep Apnea And Snoring
US8408213B2 (en) 2004-02-26 2013-04-02 Linguaflex, Inc. Method and device for the treatment of obstructive sleep apnea and snoring
US11666476B2 (en) 2004-02-26 2023-06-06 Linguaflex, Inc. Method and device for the treatment of obstructive sleep apnea and snoring
US8074655B2 (en) 2004-02-26 2011-12-13 Linguaflex, Inc. Methods and devices for treating sleep apnea and snoring
US10195010B2 (en) 2004-02-26 2019-02-05 Linguaflex, Inc. Methods and devices for treating sleep apnea and snoring
US8220467B2 (en) 2004-02-26 2012-07-17 Linguaflex, Inc. Method and device for the treatment of obstructive sleep apnea and snoring
US10524954B2 (en) 2004-02-26 2020-01-07 Linguaflex, Inc. Methods and devices for treating sleep apnea and snoring
EP1604625A1 (en) 2004-06-10 2005-12-14 John A. Macken Method and apparatus for treatment of snoring and sleep apnea
US7882842B2 (en) 2004-09-21 2011-02-08 Pavad Medical, Inc. Airway implant sensors and methods of making and using the same
US20080047566A1 (en) * 2004-09-21 2008-02-28 Pavad Medical Airway Implant Sensors and Methods of Making and Using Same
US7836888B2 (en) 2004-09-21 2010-11-23 Pavad Medical, Incorporated Airway implant and methods of making and using
US8578937B2 (en) 2004-09-21 2013-11-12 Medtronic Xomed, Inc. Smart mandibular repositioning system
US20060090762A1 (en) * 2004-09-21 2006-05-04 Hegde Anant V Airway implant and methods of making and using
US8080014B2 (en) * 2004-12-15 2011-12-20 Koninklijke Philips Electronics N.V. System and method for hyoidplasty
US8777958B2 (en) * 2004-12-15 2014-07-15 Koninklijke Philips N.V. System and method for hyoidplasty
US20120296340A1 (en) * 2004-12-15 2012-11-22 Roue Chad C System and method for hyoidplasty
US20060150986A1 (en) * 2004-12-15 2006-07-13 Aspire Medical, Inc. System and method for hyoidplasty
US20060235380A1 (en) * 2005-04-15 2006-10-19 Restore Medical, Inc. Tissue incision tool
US7337781B2 (en) 2005-04-15 2008-03-04 Restore Medical, Inc. Implant for tongue
US20060235264A1 (en) * 2005-04-15 2006-10-19 Restore Medical, Inc. Implant for tongue
EP1797846A1 (en) 2005-12-13 2007-06-20 John A. Macken Method and apparatus for treatment of snoring and sleep apnea
US20160030147A1 (en) * 2006-05-19 2016-02-04 Ams Research Corporation Method and articles for treatment of stress urinary incontinence
US20070295340A1 (en) * 2006-06-23 2007-12-27 Buscemi Paul J Stiffening Procedure for Sleep Apnea
US8517028B2 (en) 2006-06-23 2013-08-27 Medtronic Xomed, Inc. Stiffening procedure for sleep apnea
US20100059066A1 (en) * 2006-10-03 2010-03-11 Restore Medical, Inc. Tongue implant
US20080078412A1 (en) * 2006-10-03 2008-04-03 Restore Medical, Inc. Tongue implant
US20100059065A1 (en) * 2006-10-03 2010-03-11 Buscemi Paul J Tongue Implant for Sleep Apnea
US8381735B2 (en) 2006-10-03 2013-02-26 Medtronic Xomed, Inc. Tongue implant
US7845357B2 (en) 2006-10-03 2010-12-07 Medtronic Xomed, Inc. Tongue implant for sleep apnea
US20080078411A1 (en) * 2006-10-03 2008-04-03 Restore Medical, Inc. Tongue implant for sleep apnea
EP2157940A4 (en) * 2007-06-18 2014-10-29 Koninkl Philips Nv Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
EP2157940A1 (en) * 2007-06-18 2010-03-03 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20090044814A1 (en) * 2007-06-18 2009-02-19 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
WO2008156746A1 (en) * 2007-06-18 2008-12-24 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US10842653B2 (en) 2007-09-19 2020-11-24 Ability Dynamics, Llc Vacuum system for a prosthetic foot
US8747296B2 (en) 2008-01-03 2014-06-10 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US8167787B2 (en) 2008-01-03 2012-05-01 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US20090177027A1 (en) * 2008-01-03 2009-07-09 Gillis Edward M Partially erodable systems for treatment of obstructive sleep apnea
US8523760B2 (en) 2008-01-03 2013-09-03 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US7954494B1 (en) 2008-03-26 2011-06-07 Connor Robert A Device with actively-moving members that hold or move the tongue
US20110144421A1 (en) * 2008-05-12 2011-06-16 Gillis Edward M Partially erodable systems for treatment of obstructive sleep apnea
JP2015164627A (en) * 2008-05-12 2015-09-17 レベント メディカル インコーポレイテッド Partially erodable systems for treatment of obstructive sleep apnea
WO2009140197A1 (en) * 2008-05-12 2009-11-19 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US8327854B2 (en) 2008-05-12 2012-12-11 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US8707960B2 (en) * 2008-05-12 2014-04-29 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
JP2011519710A (en) * 2008-05-12 2011-07-14 レベント メディカル インコーポレイテッド Partially erosive system for the treatment of obstructive sleep apnea
US8991398B2 (en) 2008-05-12 2015-03-31 Revent Medical, Inc. Partially erodable systems for treatment of obstructive sleep apnea
US9925086B2 (en) 2008-10-16 2018-03-27 Linguaflex, Inc. Methods and devices for treating sleep apnea
US11717436B2 (en) 2008-10-16 2023-08-08 Linguaflex, Inc. Methods and devices for treating sleep apnea
US20110230727A1 (en) * 2008-10-16 2011-09-22 Linguaflex , Inc. Methods and Devices for Treating Sleep Apnea
US10736771B2 (en) 2008-10-16 2020-08-11 Linguaflex, Inc. Methods and devices for treating sleep apnea
US20110226262A1 (en) * 2010-03-19 2011-09-22 Gillis Edward M Systems and methods for treatment of sleep apnea
US9381109B2 (en) 2010-03-19 2016-07-05 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US8776799B2 (en) 2010-03-19 2014-07-15 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US20110226263A1 (en) * 2010-03-19 2011-09-22 Gillis Edward M Systems and methods for treatment of sleep apnea
US8733363B2 (en) 2010-03-19 2014-05-27 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US20110308530A1 (en) * 2010-05-21 2011-12-22 Gillis Edward M Systems and methods for treatment of sleep apnea
US9510922B2 (en) * 2010-05-21 2016-12-06 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US9707122B2 (en) 2010-07-26 2017-07-18 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US20120138069A1 (en) * 2010-12-03 2012-06-07 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US9265649B2 (en) 2010-12-13 2016-02-23 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US9439801B2 (en) * 2012-06-29 2016-09-13 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US20140000631A1 (en) * 2012-06-29 2014-01-02 Revent Medical, Inc. Systems and methods for treatment of sleep apnea
US10390857B1 (en) 2018-04-26 2019-08-27 The Snoring Center Airway implant delivery device

Also Published As

Publication number Publication date
EP1379204A1 (en) 2004-01-14
US20010050085A1 (en) 2001-12-13
WO2002076354A1 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US6601584B2 (en) Contracting snoring treatment implant
US6516806B2 (en) Compliant snoring treatment implant
US7047979B2 (en) Soft palate implant with fiber construction
US6390096B1 (en) Needle with pre-loaded implant for snoring treatment
CA2381904C (en) Implants and methods for snoring treatment
US6415796B1 (en) Placement tool for snoring treatment
US6453905B1 (en) Multi-component snoring treatment
US6513530B2 (en) Braided palatal implant for snoring treatment
US6513531B2 (en) Proximal placement of snoring treatment implant
US6523542B2 (en) Snoring treatment implant and method
US6523541B2 (en) Delivery system for snoring treatment implant and method
US6401717B1 (en) Snoring treatment

Legal Events

Date Code Title Description
AS Assignment

Owner name: PI MEDICAL, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNUDSON, MARK B.;CONRAD, TIMOTHY R.;REEL/FRAME:011980/0386

Effective date: 20010606

AS Assignment

Owner name: RESTORE MEDICAL INC., MINNESOTA

Free format text: MERGER AND CHANGE OF NAME;ASSIGNOR:PI MEDICAL INC.;REEL/FRAME:013706/0220

Effective date: 20021209

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MEDTRONIC RESTORE MEDICAL, INC., FLORIDA

Free format text: MERGER;ASSIGNOR:RESTORE MEDICAL, INC.;REEL/FRAME:023427/0092

Effective date: 20080716

Owner name: MEDTRONIC RESTORE MEDICAL, INC.,FLORIDA

Free format text: MERGER;ASSIGNOR:RESTORE MEDICAL, INC.;REEL/FRAME:023427/0092

Effective date: 20080716

AS Assignment

Owner name: MEDTRONIC XOMED, INC., FLORIDA

Free format text: MERGER;ASSIGNOR:MEDTRONIC RESTORE MEDICAL, INC.;REEL/FRAME:023427/0840

Effective date: 20090424

Owner name: MEDTRONIC XOMED, INC.,FLORIDA

Free format text: MERGER;ASSIGNOR:MEDTRONIC RESTORE MEDICAL, INC.;REEL/FRAME:023427/0840

Effective date: 20090424

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: SNORING CENTER USA, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC XOMED, INC.;REEL/FRAME:032321/0402

Effective date: 20140225

Owner name: PILLAR PALATAL, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC XOMED, INC.;REEL/FRAME:032328/0127

Effective date: 20140117

AS Assignment

Owner name: PROVIDENCE BANK D/B/A PREMIER BANK TEXAS, MISSOURI

Free format text: SECURITY INTEREST;ASSIGNOR:PILLAR PALATAL, LLC, A TEXAS LIMITED LIABILITY COMPANY, AND SNORING CENTER USA, LLC, A TEXAS LIMITED LIABILITY COMPANY;REEL/FRAME:032452/0474

Effective date: 20140117

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11