US6572933B1 - Forming adherent coatings using plasma processing - Google Patents

Forming adherent coatings using plasma processing Download PDF

Info

Publication number
US6572933B1
US6572933B1 US09/160,227 US16022798A US6572933B1 US 6572933 B1 US6572933 B1 US 6572933B1 US 16022798 A US16022798 A US 16022798A US 6572933 B1 US6572933 B1 US 6572933B1
Authority
US
United States
Prior art keywords
substrate
coating
forming
plasma
adherent coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/160,227
Inventor
Michael A. Nastasi
Kevin C. Walter
Donald J. Rej
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Los Alamos National Security LLC
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to US09/160,227 priority Critical patent/US6572933B1/en
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NASTASI, MICHAEL A., REJ, DONALD J., WALTER, KEVIN C.
Application granted granted Critical
Publication of US6572933B1 publication Critical patent/US6572933B1/en
Assigned to LOS ALAMOS NATIONAL SECURITY, LLC reassignment LOS ALAMOS NATIONAL SECURITY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation

Definitions

  • the present invention relates generally to the formation of adherent coatings on substrates and, more particularly, to the formation of adherent coatings on substrates receptive to carbon, nitrogen or boron ion implantation.
  • This invention was made with government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy to The Regents of the University of California. The government has certain rights in the invention.
  • Plasma Source Ion Implantation is discussed by John R. Conrad in U.S. Pat. No. 4,764,394 for “Method And Apparatus For Plasma Source Ion Implantation,” which issued on Aug. 16, 1988. Therein the implantation of ions into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber, whereby ions from the plasma are driven into the target object surfaces simultaneously from all sides.
  • Plasma Source Ion Implantation has overcome many of the disadvantages of the conventional technologies, but in its present state, is limited to but a few gas sources.
  • Boron carbide and boron nitride thin films have been deposited on surfaces using plasma techniques. See, e.g., “The Structural Homogeneity Of Boron Carbide Thin Films Fabricated Using Plasma-Enhanced Chemical Vapor Deposition From B 5 H 9 +CH 4 ,” by Sunwoo Lee et al., J. Appl. Phys. 74, 6919 (1993), and “Boron Nitride Thin Film Deposition Using Electron Cyclotron Resonance Microwave Plasmas,” by S. M. Gorbatkin et al., J. Vac. Sci. Technol. A 11, 1863 (1993), respectively.
  • the method for forming an adherent coating on a substrate of this invention includes: applying a first, negative-pulsed bias voltage to the substrate; immersing the biased substrate in a plasma containing atoms which strongly bond to the coating, such that ions of the binding atoms are injected into the surface of the substrate, forming thereby a compositionally graded surface thereon; subsequently applying a second, negative-pulsed bias voltage to the substrate; immersing the substrate having the compositionally graded surface in a plasma containing gaseous precursor species which will form the desired coating on the surface thereof; applying a third pulsed, negative bias voltage to the coated substrate; and immersing the coated substrate in a plasma containing inert gas ions such that the stress experienced by the coating is reduced, whereby the coating strongly adheres to the surface of said substrate.
  • the coating is boron carbide and that the gaseous precursor species which generates the boron carbide coating on the surface of the substrate surface includes acetylene and diborane.
  • the binding atoms injected into the surface of said substrate, forming thereby a compositionally graded surface thereon are selected from the group consisting of carbon and boron.
  • the first, negative-pulse bias voltage is between 10 kV and 100 kV
  • the second, negative-pulse voltage is between 50 V and 10 kV
  • the third, negative-pulse bias voltage is between 10 kV and 100 kV.
  • the process steps are repeated, perhaps using different coating precursor species until a coating having the desired thickness and composition is achieved.
  • Benefits and advantages of the present invention include the deposition of a substantial variety of coatings having greater adherence than those generated by other techniques on numerous substrates. Additionally, the coating thickness and density can be controlled.
  • FIGS. 1 a and 1 b illustrate the composition of the surface coating when the substrate is immersed in a plasma containing the precursor gaseous boron carbide species acetylene and diborane, FIG. 1 a showing the atomic concentrations of the coating as a function of diborane flow relative to the total flow of reactant species, while FIG. 1 b shows the boron to carbon ratio of the coating as a function of diborane flow rate relative to the total flow of reactant species.
  • FIGS. 2 a and 2 b illustrate the friction characteristics of the boron carbide coating for several boron-to-carbon ratios using the pin-on-disk testing procedure (FIG. 2 a ), and several pin pressures for a boron-to-carbon ratio of 2.2 (FIG. 2 b ) as a function of the number of wear cycles.
  • the present invention includes the use of Plasma Immersion Ion Processing (PIIP), where energetic (hundreds of eV to many tens of keV) metallic and metalloid ions derived from high-vapor-pressure organometallic compounds in a plasma environment deposit coatings on suitable substrates, which coatings are subsequently relieved of stress using inert or other ion bombardment, also in a plasma environment, producing thereby strongly adherent coatings having chosen composition, thickness and density.
  • Targets are placed directly in a plasma and pulse biased to generate a non-line-of-sight deposition without the need for complex fixturing. If the bias is a relatively high negative potential (20 kV-100 kV) ion implantation will result.
  • Plasma Immersion Ion Processing consists of four plasma-based processes for producing novel, adherent and conformal coatings on surfaces with complex shapes and/or materials and components that cannot be treated by conventional techniques because of size, lack of chemical reactivity, or temperature sensitivity.
  • the four principal processes are sputter cleaning, ion implantation, material deposition, and coating stress relief, are described hereinbelow for a typical, yet generic, PIIP scenario.
  • a fifth step of sputter cleaning the ion-implanted surface before a coating is deposited may also be introduced if the ion implantation step results in unwanted material being deposited on the surface.
  • steps 1 and 2 can be applied alone to provide ion implantation of non-typical ions (other than nitrogen, oxygen, hydrocarbons, or inert gases) for generating novel surface modifications that may not result in a coating.
  • Step 1 Sputter-cleaning of the surface.
  • a component is first inserted into a vacuum chamber and the chamber evacuated to a suitable pressure (10 ⁇ 6 to 10 ⁇ 5 Torr).
  • Argon, or another inert gas is introduced (10 ⁇ 4 to 100 mTorr) and a plasma generated (by any means).
  • the component is then negatively biased by imposing either rf-power or pulsed-power to the component.
  • the described conditions result in ion bombardment of the component surface which causes sputtering (removal) of atoms and molecules on the surface of the component.
  • the negative bias can have a range of magnitudes (from a few volts to a few tens of kilovolts), but is adjusted such that removal of surface atoms is accomplished and injection of the ions into the surface is minimized. The process is continued until the surface is in a condition such that the following steps can be successful. That is, Step 1 cleans the surface of contaminants that may inhibit, or otherwise interfere, with Step 2.
  • Step 2 Ion implantation to create a compositionally graded surface and promote coating adhesion, or to create a surface implanted with non-typical ions.
  • the inert gas is evacuated from the vacuum chamber and the working gas, or mixture of gases, is introduced into the chamber.
  • the total gas pressure can range from 10 ⁇ 5 to 10 ⁇ 2 Torr.
  • the gas, or gas mixture will contain atoms, or molecules containing atoms, that will bond strongly to the coating to be deposited in Step 4.
  • the gas will be composed of organometallic compounds alone, or a mixture of one or more organometallic compounds and/or other gases.
  • a plasma is generated in the gas by any means.
  • the component is negatively pulsed biased to a sufficiently high magnitude (10-100 kV) that the ions are injected into the component's surface and generate a compositionally graded surface as a result of the variation of ion energies in the plasma. This step is continued until the component bears a compositionally graded surface that will promote enhanced adhesion for the coating to be deposited in Step 4.
  • Step 3 Sputter-cleaning to remove undesirable surface contamination from Step 2.
  • An undesirable side-effect of Step 2 may be the deposition of a thin surface coating that will interfere with the deposition and/or adhesion of the coating deposited in Step 4.
  • This surface contamination can be removed using a sputter-cleaning process similar to Step 1. This process is continued until the surface is in a condition such that the following step can be successful. That is, Step 3 cleans the surface of contaminants that may inhibit, or otherwise interfere, with Step 4, but is not always required.
  • Step 4 Deposition of the coating.
  • the inert gas is evacuated from the vacuum chamber and the working gas, or mixture of gases, is introduced into the chamber.
  • This gas may have some components in common with the gas used in Step 2, but may have entirely new species.
  • the total gas pressure for Step 4 can range from 0.1 to 100 mTorr.
  • the gas, or gas mixture contains atoms, or molecules containing atoms, that will produce a coating with the desired composition. In some situations the gas may be composed of organometallic compounds alone, or a mixture of one or more organometallic compounds and/or gases.
  • a plasma is generated in the gas by any means.
  • Step 5 Ion implantation to reduce the stress in a coating. If the thickness of an adherent coating is limited by tensile or compressive stress, such stress can be relieved by an ion implantation process, thereby permitting coating deposition to continue until the desired coating thickness is achieved. This ion implantation process is similar to that of Step 2. Once the ion implantation reduces the coating's stress to a tolerable level, Step 4 can be repeated. Steps 4 and 5 can be repeated until the coating thickness reaches the desired value.
  • Example illustrates in more detail the generation of a boron carbide coating on an untreated silicon substrate using immersion of the substrate in a plasma containing diborane and acetylene precursor species.
  • Boron carbide coatings were generated on a silicon substrate by immersing the substrate in a pulsed, glow-discharge plasma generated in a flowing mixture of diborane diluted in helium and acetylene at a pressure of 20 mTorr.
  • the power supply for the substrate applied a 4 kV, negatively biased 4 kHz square wave having a 30 ⁇ s pulsewidth. This permitted generation of the plasma during the on cycle.
  • FIGS. 1 a and 1 b illustrate the composition of the surface coating when the substrate is immersed in a plasma containing the precursor gaseous species acetylene and diborane, FIG. 1 a showing the atomic concentrations of the coating as a function of diborane flow relative to the total flow of reactant species, while FIG. 1 b shows the boron to carbon ratio of the coating as a function of diborane flow rate relative to the total flow of reactant species. It can be observed from FIG. 1 a that there is a significant quantity of hydrogen incorporated in the coating.
  • the horizontal line in FIG. 1 b shows the, location of the boron to carbon ratio of 4 on the graph. This is the stoichiometrically correct ratio for boron carbide (B 4 C). This condition is achieved when the flowing gas mixture is about 14% diborane.
  • FIGS. 2 a and 2 b illustrate the wear characteristics of the boron carbide coating for several boron-to-carbon ratios using the pin-on-disk testing procedure (FIG. 2 a ), and several pin pressures for a boron-to-carbon ratio of 2.2 (FIG. 2 b ) as a function of the number of wear cycles.
  • the values for ⁇ Hz shown in the Figures represent the Herzian contact pressure of the pin on the coating surface.
  • FIG. 2 a shows the effect of various pin weightings on the wear properties of the coating for this boron to carbon ratio.
  • precursor species are chosen to provide optimum tribological and/or corrosion properties for a variety of applications.
  • Many metal-organic precursors are commercially available.
  • PECVD plasma-enhanced chemical vapor deposition
  • these complexes are ideal for the growth of conformal metal-nitride or metal-carbonitride coatings.
  • PSII can be used to produce adherent diamond-like coatings on a wide range of metal substrates including Mg, Al, Si, Ti, Cr, Fe, Ni, Cu-Zn (brass) and W without the use of interlayers.
  • metal substrates including Mg, Al, Si, Ti, Cr, Fe, Ni, Cu-Zn (brass) and W without the use of interlayers.
  • PIIP can be used with numerous coating precursor species on numerous target substrates.
  • the tandem process of first performing an ion implantation of a particular group of metal organic compounds followed by energetic deposition of the same ion species, will give rise to a functionally graded interface which will have superior adhesion and reduced sensitivity to thermal expansion mismatches between substrate and coating.
  • metal organic precursors are their high volatility, which translates into high chamber fill pressures and plasma densities which, in turn, enables high ion currents and growth rates.
  • PIIP plasma-based processes
  • PIIP plasma-based processes
  • Such cleaning processes provide an additional environmental benefit by serving as alternatives to cleaning using solvents.
  • components are placed directly in a plasma and then pulse-biased to produce a non-line-of-sight process capable of treating intricate target geometries without complicated fixturing and manipulation of the components.
  • the bias is a relatively high negative potential (10 kV-100 kV) resulting in ion implantation and the formation of a compositionally and functionally graded layer at the substrate surface.
  • This ion-modified surface layer may stand alone, or might serve to enhance adhesion of subsequently deposited coatings.

Abstract

Process for forming adherent coatings using plasma processing. Plasma Immersion Ion Processing (PIIP) is a process where energetic (hundreds of eV to many tens of keV) metallic and metalloid ions derived from high-vapor-pressure organometallic compounds in a plasma environment are employed to deposit coatings on suitable substrates, which coatings are subsequently relieved of stress using inert ion bombardment, also in a plasma environment, producing thereby strongly adherent coatings having chosen composition, thickness and density. Four processes are utilized: sputter-cleaning, ion implantation, material deposition, and coating stress relief. Targets are placed directly in a plasma and pulse biased to generate a non-line-of-sight deposition without the need for complex fixturing. If the bias is a relatively high negative potential (20 kV-100 kV) ion implantation will result. At lower voltages (50 V-10 kV), deposition occurs, and the extent of the surface modification can routinely be extended between 1 μm and 10 μm. By combining plasma based implantation and film deposition, coatings with greatly reduced stress are possible, allowing the ultimate coating thickness to be expanded to tens of microns.

Description

This application claims priority from U.S. Provisional Application No. 60/059,928, filed Sep. 24, 1997.
FIELD OF THE INVENTION
The present invention relates generally to the formation of adherent coatings on substrates and, more particularly, to the formation of adherent coatings on substrates receptive to carbon, nitrogen or boron ion implantation. This invention was made with government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy to The Regents of the University of California. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION
Processing by plasma assisted techniques is increasingly used in various areas of production. One of the most promising uses is in the deposition of coatings. Such applications are expanding in response to requirements for lower processing temperatures, reduced environmental impact, and enhanced performance. To meet the needs of the civil and military industrial complexes, new and novel synthesis approaches must be scaleable, produce conformal coatings, be environmentally benign, and be economical to implement.
Many industries routinely utilize coatings and other surface treatments to reduce wear and improve corrosion resistance. A critical issue in traditional coatings is delamination or separation at interfaces due to poor chemical bonding and/or from excessive compressive stress that often accompanies thick coatings. Additionally, since molten metal and wet chemical baths are usually employed in conventional methods, presently used coating techniques generate dangerous vapors, utilize toxic materials, and pose environmental hazards related to the disposal of generated wastes. As a result, a new, innovative, and highly versatile implementation approach is required.
Potentially environmentally benign coating technologies (e.g., PVD, CVD, plasma sprays, and line-of-sight ion implantation) have been available for decades. In spite of their perceived flexibility and promise, traditional line-of-sight surface modification techniques are generally considered to be too expensive, too slow, and too complicated for mass production applications. For example, the deposit of diamond-like carbon coatings using line-of-sight implantation is described in U.S. Pat. No. 5,391,407 for “Process For Forming Protective Diamond-Like Carbon Coatings On Metallic Surfaces,” which issued to Geoffrey Dearnaley on Feb. 21, 1995, and in U.S. Pat. No. 5,393,572 for “Ion Beam Assisted Method Of Producing A Diamond Like Carbon Coating,” which issued to Geoffrey Dearnaley on Feb. 28, 1995.
Plasma Source Ion Implantation (PSII) is discussed by John R. Conrad in U.S. Pat. No. 4,764,394 for “Method And Apparatus For Plasma Source Ion Implantation,” which issued on Aug. 16, 1988. Therein the implantation of ions into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber, whereby ions from the plasma are driven into the target object surfaces simultaneously from all sides. Plasma Source Ion Implantation has overcome many of the disadvantages of the conventional technologies, but in its present state, is limited to but a few gas sources. However, PSII technology has been successfully applied to improve the tribological properties of automotive parts in U.S. Pat. No. 5,458,927 for “Process For The Formation Of Wear- And Scuff- Resistant Carbon Coatings,” which issued to Gerald W. Malaczynski et al. on Oct. 17, 1995. Therein, an adherent diamond-like carbon coating is formed on an aluminum substrate. However, there is no discussion in Malaczynski et al. concerning relieving the stress between the coating and the substrate which results from the coating process.
It is well known that plasma-generated coatings are intrinsically stressed. See, e.g., “Intrinsic Stress Scaling Law For Polycrystalline Thin Films Prepared By Ion Beam Sputtering,” by H. Windischmann, J. Appl. Phys. 62, 1800 (1987), and “Intrinsic Stress In Sputtered Thin Films,” by H. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991). Such stress is expected to be in part responsible for poor film adhesion to substrates. However, in “Ion Beam Induced Modifications In DC Sputtered TiN/B-C-N Multilayers,” by S. Fayeulle et al., Nucl. Instr. and Meth. in Phys. Res. B 127/128, 198 (1997), and in “Thermal And Ion Irradiation Stability Of Direct Current Sputtered TiN/B-C-N Multilayers,” by S. Fayeulle et al., Appl. Phys. Lett. 70, 1098 (1997), ion beam irradiation of deposited surfaces using Ar ions has been found to relax the highly compressive stress initially present in multilayered, sputtered thin films of TiN/B-C-N to a small tensile stress. This should greatly improve the film adherence properties.
Boron carbide and boron nitride thin films have been deposited on surfaces using plasma techniques. See, e.g., “The Structural Homogeneity Of Boron Carbide Thin Films Fabricated Using Plasma-Enhanced Chemical Vapor Deposition From B5H9+CH4,” by Sunwoo Lee et al., J. Appl. Phys. 74, 6919 (1993), and “Boron Nitride Thin Film Deposition Using Electron Cyclotron Resonance Microwave Plasmas,” by S. M. Gorbatkin et al., J. Vac. Sci. Technol. A 11, 1863 (1993), respectively.
Accordingly, it is an object of the present invention to overcome two fundamental limitations to the widespread use of environmentally friendly coating technologies by: (1) reducing the time and expense of treating complex shapes and large areas, and (2) extending the capabilities of deposition technologies to provide novel coatings with enhanced adherence and superior performance.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, the method for forming an adherent coating on a substrate of this invention includes: applying a first, negative-pulsed bias voltage to the substrate; immersing the biased substrate in a plasma containing atoms which strongly bond to the coating, such that ions of the binding atoms are injected into the surface of the substrate, forming thereby a compositionally graded surface thereon; subsequently applying a second, negative-pulsed bias voltage to the substrate; immersing the substrate having the compositionally graded surface in a plasma containing gaseous precursor species which will form the desired coating on the surface thereof; applying a third pulsed, negative bias voltage to the coated substrate; and immersing the coated substrate in a plasma containing inert gas ions such that the stress experienced by the coating is reduced, whereby the coating strongly adheres to the surface of said substrate.
It is preferred that the coating is boron carbide and that the gaseous precursor species which generates the boron carbide coating on the surface of the substrate surface includes acetylene and diborane.
Preferably, the binding atoms injected into the surface of said substrate, forming thereby a compositionally graded surface thereon, are selected from the group consisting of carbon and boron.
It is also preferred that the first, negative-pulse bias voltage is between 10 kV and 100 kV, that the second, negative-pulse voltage is between 50 V and 10 kV, and that the third, negative-pulse bias voltage is between 10 kV and 100 kV.
Preferably also, the process steps are repeated, perhaps using different coating precursor species until a coating having the desired thickness and composition is achieved.
Benefits and advantages of the present invention include the deposition of a substantial variety of coatings having greater adherence than those generated by other techniques on numerous substrates. Additionally, the coating thickness and density can be controlled.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate an embodiment of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
FIGS. 1a and 1 b illustrate the composition of the surface coating when the substrate is immersed in a plasma containing the precursor gaseous boron carbide species acetylene and diborane, FIG. 1a showing the atomic concentrations of the coating as a function of diborane flow relative to the total flow of reactant species, while FIG. 1b shows the boron to carbon ratio of the coating as a function of diborane flow rate relative to the total flow of reactant species.
FIGS. 2a and 2 b illustrate the friction characteristics of the boron carbide coating for several boron-to-carbon ratios using the pin-on-disk testing procedure (FIG. 2a), and several pin pressures for a boron-to-carbon ratio of 2.2 (FIG. 2b) as a function of the number of wear cycles.
DETAILED DESCRIPTION
Briefly, the present invention includes the use of Plasma Immersion Ion Processing (PIIP), where energetic (hundreds of eV to many tens of keV) metallic and metalloid ions derived from high-vapor-pressure organometallic compounds in a plasma environment deposit coatings on suitable substrates, which coatings are subsequently relieved of stress using inert or other ion bombardment, also in a plasma environment, producing thereby strongly adherent coatings having chosen composition, thickness and density. Targets are placed directly in a plasma and pulse biased to generate a non-line-of-sight deposition without the need for complex fixturing. If the bias is a relatively high negative potential (20 kV-100 kV) ion implantation will result. At lower voltages (50 V-10 kV), deposition occurs, and the extent of the surface modification can routinely be extended between 1 μm and 10 μm. By combining plasma based implantation and film deposition, coatings with greatly reduced stress are possible, allowing the ultimate coating thickness to be expanded to tens of microns.
Plasma Immersion Ion Processing consists of four plasma-based processes for producing novel, adherent and conformal coatings on surfaces with complex shapes and/or materials and components that cannot be treated by conventional techniques because of size, lack of chemical reactivity, or temperature sensitivity. The four principal processes are sputter cleaning, ion implantation, material deposition, and coating stress relief, are described hereinbelow for a typical, yet generic, PIIP scenario. A fifth step of sputter cleaning the ion-implanted surface before a coating is deposited may also be introduced if the ion implantation step results in unwanted material being deposited on the surface. Note that steps 1 and 2 can be applied alone to provide ion implantation of non-typical ions (other than nitrogen, oxygen, hydrocarbons, or inert gases) for generating novel surface modifications that may not result in a coating.
Step 1. Sputter-cleaning of the surface. A component is first inserted into a vacuum chamber and the chamber evacuated to a suitable pressure (10−6 to 10−5 Torr). Argon, or another inert gas, is introduced (10−4 to 100 mTorr) and a plasma generated (by any means). The component is then negatively biased by imposing either rf-power or pulsed-power to the component. The described conditions result in ion bombardment of the component surface which causes sputtering (removal) of atoms and molecules on the surface of the component. The negative bias can have a range of magnitudes (from a few volts to a few tens of kilovolts), but is adjusted such that removal of surface atoms is accomplished and injection of the ions into the surface is minimized. The process is continued until the surface is in a condition such that the following steps can be successful. That is, Step 1 cleans the surface of contaminants that may inhibit, or otherwise interfere, with Step 2.
Step 2. Ion implantation to create a compositionally graded surface and promote coating adhesion, or to create a surface implanted with non-typical ions. After Step 1 is complete, the inert gas is evacuated from the vacuum chamber and the working gas, or mixture of gases, is introduced into the chamber. The total gas pressure can range from 10−5 to 10−2 Torr. The gas, or gas mixture, will contain atoms, or molecules containing atoms, that will bond strongly to the coating to be deposited in Step 4. In some situations, the gas will be composed of organometallic compounds alone, or a mixture of one or more organometallic compounds and/or other gases. A plasma is generated in the gas by any means. The component is negatively pulsed biased to a sufficiently high magnitude (10-100 kV) that the ions are injected into the component's surface and generate a compositionally graded surface as a result of the variation of ion energies in the plasma. This step is continued until the component bears a compositionally graded surface that will promote enhanced adhesion for the coating to be deposited in Step 4.
Step 3. Sputter-cleaning to remove undesirable surface contamination from Step 2. An undesirable side-effect of Step 2 may be the deposition of a thin surface coating that will interfere with the deposition and/or adhesion of the coating deposited in Step 4. This surface contamination can be removed using a sputter-cleaning process similar to Step 1. This process is continued until the surface is in a condition such that the following step can be successful. That is, Step 3 cleans the surface of contaminants that may inhibit, or otherwise interfere, with Step 4, but is not always required.
Step 4. Deposition of the coating. After Step 3, if necessary, is complete, the inert gas is evacuated from the vacuum chamber and the working gas, or mixture of gases, is introduced into the chamber. This gas may have some components in common with the gas used in Step 2, but may have entirely new species. The total gas pressure for Step 4 can range from 0.1 to 100 mTorr. The gas, or gas mixture, contains atoms, or molecules containing atoms, that will produce a coating with the desired composition. In some situations the gas may be composed of organometallic compounds alone, or a mixture of one or more organometallic compounds and/or gases. A plasma is generated in the gas by any means. The component is either rf-biased or pulsed biased to a magnitude (0.01-50 kV) such that the ions are deposited onto the component's surface, bond with the implanted atoms from Step 2, and/or the component atoms, and generate an adherent coating. The coating composition, density and other materials properties can be tailored by using different combinations of gas pressure and bias magnitude. Deposition is continued until a coating with sufficient thickness is created. In addition to simple homogenous coatings, the gas composition can be changed during deposition to produce multicomponent, or multilayered, composite coatings. If the compressive stress of the coating limits the thickness of an adherent coating to below a desired level, the following Step 5 can be used to reduce the coating stress. In many tribological and corrosion applications, thick coatings (>5 μm) are required.
Step 5. Ion implantation to reduce the stress in a coating. If the thickness of an adherent coating is limited by tensile or compressive stress, such stress can be relieved by an ion implantation process, thereby permitting coating deposition to continue until the desired coating thickness is achieved. This ion implantation process is similar to that of Step 2. Once the ion implantation reduces the coating's stress to a tolerable level, Step 4 can be repeated. Steps 4 and 5 can be repeated until the coating thickness reaches the desired value.
Having generally described the present invention, the following Example illustrates in more detail the generation of a boron carbide coating on an untreated silicon substrate using immersion of the substrate in a plasma containing diborane and acetylene precursor species.
EXAMPLE
Reference will now be made to the present preferred embodiments of the present invention examples of which are illustrated in the accompanying drawings. Boron carbide coatings were generated on a silicon substrate by immersing the substrate in a pulsed, glow-discharge plasma generated in a flowing mixture of diborane diluted in helium and acetylene at a pressure of 20 mTorr. The power supply for the substrate applied a 4 kV, negatively biased 4 kHz square wave having a 30 μs pulsewidth. This permitted generation of the plasma during the on cycle. A deposition rate of between 0.1 and 0.4 μm/hr, depending on the gas mixture, was observed. The resulting boron carbide coating had a hardness of between 12 and 13 GPa, and an elastic modulus between 115 and 140 GPa. Turning now to the Figures, FIGS. 1a and 1 b illustrate the composition of the surface coating when the substrate is immersed in a plasma containing the precursor gaseous species acetylene and diborane, FIG. 1a showing the atomic concentrations of the coating as a function of diborane flow relative to the total flow of reactant species, while FIG. 1b shows the boron to carbon ratio of the coating as a function of diborane flow rate relative to the total flow of reactant species. It can be observed from FIG. 1a that there is a significant quantity of hydrogen incorporated in the coating. However, it is at present unknown how the hydrogen atoms are bound and what effect this has, on the overall properties of the coatings. The horizontal line in FIG. 1b shows the, location of the boron to carbon ratio of 4 on the graph. This is the stoichiometrically correct ratio for boron carbide (B4C). This condition is achieved when the flowing gas mixture is about 14% diborane.
FIGS. 2a and 2 b illustrate the wear characteristics of the boron carbide coating for several boron-to-carbon ratios using the pin-on-disk testing procedure (FIG. 2a), and several pin pressures for a boron-to-carbon ratio of 2.2 (FIG. 2b) as a function of the number of wear cycles. The values for σHz shown in the Figures represent the Herzian contact pressure of the pin on the coating surface. When the coefficient of friction is observed to suddenly increase, the coating is worn through. It may be seen from FIG. 2a that the coefficient of friction is relatively constant for a boron to carbon ratio of 2.2. FIG. 2b shows the effect of various pin weightings on the wear properties of the coating for this boron to carbon ratio.
In general, precursor species are chosen to provide optimum tribological and/or corrosion properties for a variety of applications. Many metal-organic precursors are commercially available. For example, M(NR2)4 (M=Ti, Zr, Hf) have been used as single source precursors for the plasma-enhanced chemical vapor deposition (PECVD) of MCxNy materials. For PIIP, these complexes are ideal for the growth of conformal metal-nitride or metal-carbonitride coatings. The present inventors have determined that PSII can be used to produce adherent diamond-like coatings on a wide range of metal substrates including Mg, Al, Si, Ti, Cr, Fe, Ni, Cu-Zn (brass) and W without the use of interlayers. This strongly suggests that PIIP can be used with numerous coating precursor species on numerous target substrates. The tandem process of first performing an ion implantation of a particular group of metal organic compounds followed by energetic deposition of the same ion species, will give rise to a functionally graded interface which will have superior adhesion and reduced sensitivity to thermal expansion mismatches between substrate and coating. An advantage of metal organic precursors is their high volatility, which translates into high chamber fill pressures and plasma densities which, in turn, enables high ion currents and growth rates. Many precursors currently exist and are listed in the TABLE. It should be mentioned at this point that other atomic or molecular species may be utilized to generate the compositionally graded surface than are used for the coating deposition.
TABLE
Volatile Organometallic Complexes for PIIP Processing
Implanted Species
Complex or Film Deposited
AlH3.N(CH3)3, AlH3.N(CH2CH3)3, Al, AlN
M[CH2C(CH3)3]4 (M = Ti, Zr, Hf, Cr) metal carbides
M[NC(CH3)2]4 (M = Ti, Zr, Hf, Sn, Si) metal carbonitrides
M[OCH(CH3)2]4 (M = Ti, Zr, Hf) metal oxycarbides
B3N3H6 BN
Cr(CO)6 chromium oxycarbide
V(C2H3O2)3 vanadium oxycarbide
When a component is initially placed into the PIIP chamber, plasma-based processes will be used for sputter and plasma cleaning of surfaces. Such cleaning processes provide an additional environmental benefit by serving as alternatives to cleaning using solvents. In PIIP, components are placed directly in a plasma and then pulse-biased to produce a non-line-of-sight process capable of treating intricate target geometries without complicated fixturing and manipulation of the components. Initially, the bias is a relatively high negative potential (10 kV-100 kV) resulting in ion implantation and the formation of a compositionally and functionally graded layer at the substrate surface. This ion-modified surface layer may stand alone, or might serve to enhance adhesion of subsequently deposited coatings. Second, lower voltages (10 V-50 kV) will be applied for deposition to occur. The coating thickness is limited by adhesion to the substrate, and the magnitude of intrinsic stress in coating. Finally, and if necessary, additional ion implantation (at between 10 kV-100 kV) into the coatings will relieve the intrinsic stress to acceptable levels and allow additional deposition. By this unique combination of plasma-based implantation and coating deposition processes, coatings with superior adhesion and greatly reduced stress will be possible, allowing the ultimate coating thickness to extend into the many tens of microns range.
The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.

Claims (15)

What is claimed is:
1. A method for forming an adherent coating on a substrate comprising the steps of:
(a) applying a first, negative-pulsed bias voltage to the substrate and immersing the biased substrate in a plasma containing atoms which bond to the coating, such that ions of the atoms which bond to the coating are formed in the plasma and are injected into the surface of the substrate, forming thereby a compositionally graded surface thereon;
(b) thereafter applying a second, negative-pulsed bias voltage to the substrate having the compositionally graded surface and immersing the substrate having the compositionally graded surface in a plasma containing gaseous precursor species, thereby forming an initial coating on the surface thereof; and
(c) thereafter applying a third pulsed, negative bias voltage to the initial coated substrate and immersing the initial coated substrate in a plasma containing inert gas ions such that intrinsic stress experienced by the initial coating is reduced, whereby the adherent coating is formed on the surface of the substrate.
2. The method for forming an adherent coating on a substrate as described in claim 1, wherein the coating is boron carbide and wherein the gaseous precursor species which give rise to said boron carbide coating on the surface of the substrate having the compositionally graded surface comprises acetylene and diborane.
3. The method for forming an adherent coating on a substrate as described in claim 2, wherein the binding atoms injected into the surface of the substrate, forming thereby the compositionally graded surface thereon, are selected from the group consisting of carbon and boron.
4. The method for forming an adherent coating on a substrate as described in claim 1, wherein the first, negative-pulse bias voltage is between 10 kV and 100 kV and the second, negative-pulse bias voltage is between 50 V and 10 kV.
5. The method for forming an adherent coating on a substrate as described in claim 1, further comprising the steps of continuously, negatively biasing the substrate having the compositionally graded surface at a fourth voltage and immersing the substrate in an inert gas plasma after said step of injecting the ions of the atoms which bond to the coating into the surface of said substrate and before said step of forming the coating on the surface thereof, whereby any surface contamination resulting from said step of forming the compositionally graded surface is removed by sputter cleaning.
6. The method for forming an adherent coating on a substrate as described in claim 5, wherein the fourth negative biasing voltage is between 1 V and 50 kV.
7. The method for forming an adherent coating on a substrate as described in claim 1, further comprising the steps of continuously, negatively biasing the untreated substrate at a fifth voltage and immersing the substrate in an inert gas plasma before said step of injecting the ions of the atoms which bond to the coating into the surface of the substrate, whereby the surface is sputter cleaned.
8. The method for forming an adherent coating on a substrate as described in claim 7, wherein the fifth negative biasing voltage is between 1 V and 50 kV.
9. The method for forming an adherent coating on a substrate as described in claim 1, wherein the substrate is silicon.
10. The method for forming an adherent coating on a substrate as described in claim 1, wherein the substrate is maintained at a temperature between 0° C. and 350° C. during said steps (a)-(c).
11. The method for forming an adherent coating on a substrate as described in claim 1, wherein the coating is boron nitride and wherein the gaseous precursor species which deposit the boron nitride coating on the surface of the substrate having the compositionally graded surface are selected from the group consisting of B3N3H6, B3N3H6 plus NH3, B3N3H6 plus N2, B2H6 plus N2, and B2H6 plus NH3.
12. The method for forming an adherent coating on a substrate as described in claim 11, wherein the ions of the atoms which bond to the coating injected into the surface of the substrate, forming thereby the compositionally graded surface thereon, are selected from the group consisting of nitrogen and boron.
13. The method for forming an adherent coating on a substrate as described in claim 1, wherein the third pulsed, negative bias voltage is between 10 kV and 100 kV.
14. The method for forming an adherent coating on a substrate as described in claim 1, wherein the inert gas ions include argon.
15. The method for forming an adherent coating on a substrate as described in claim 1, wherein said steps a-c are repeated until a final coating having a desired thickness is obtained.
US09/160,227 1997-09-24 1998-09-24 Forming adherent coatings using plasma processing Expired - Fee Related US6572933B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/160,227 US6572933B1 (en) 1997-09-24 1998-09-24 Forming adherent coatings using plasma processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5992897P 1997-09-24 1997-09-24
US09/160,227 US6572933B1 (en) 1997-09-24 1998-09-24 Forming adherent coatings using plasma processing

Publications (1)

Publication Number Publication Date
US6572933B1 true US6572933B1 (en) 2003-06-03

Family

ID=22026193

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/160,227 Expired - Fee Related US6572933B1 (en) 1997-09-24 1998-09-24 Forming adherent coatings using plasma processing

Country Status (3)

Country Link
US (1) US6572933B1 (en)
AU (1) AU2305199A (en)
WO (1) WO1999020086A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030175444A1 (en) * 1999-12-23 2003-09-18 Nan Huang Method for forming a tioss(2-x) film on a material surface by using plasma immersion ion implantation and the use thereof
US20040058088A1 (en) * 2002-09-25 2004-03-25 Young-Whoan Beag Processing method for forming thick film having improved adhesion to surface-modified substrate and apparatus thereof
US20050147767A1 (en) * 2001-11-28 2005-07-07 Peter Choi Method for coating a support with a material
WO2006083363A2 (en) * 2004-11-29 2006-08-10 Advanced Technology Materials, Inc. Pentaborane(9) storage and delivery
US20080292806A1 (en) * 2007-05-23 2008-11-27 Southwest Research Institute Plasma Immersion Ion Processing For Coating Of Hollow Substrates
US20100006421A1 (en) * 2008-07-09 2010-01-14 Southwest Research Institute Processing Tubular Surfaces Using Double Glow Discharge
US20100166981A1 (en) * 2008-12-31 2010-07-01 Dominguez Juan E Surface charge enhanced atomic layer deposition of pure metallic films
US8753725B2 (en) 2011-03-11 2014-06-17 Southwest Research Institute Method for plasma immersion ion processing and depositing coatings in hollow substrates using a heated center electrode
US9121540B2 (en) 2012-11-21 2015-09-01 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410254A (en) * 2004-01-21 2005-07-27 Nanofilm Technologies Int Method of reducing stress in coatings produced by physical vapour deposition
RU2559606C1 (en) * 2014-02-14 2015-08-10 Николай Константинович Криони Method of chemical heat treatment of part from alloyed steel
RU2605395C1 (en) * 2015-06-29 2016-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Method for chemical-thermal treatment of parts made from nickel-based alloy
CN112376031B (en) * 2020-11-27 2021-07-13 中国科学院兰州化学物理研究所 Method for preparing low-friction high-wear-resistance silicone rubber surface by injecting low-temperature electron beam excited plasma into carbon nanoclusters

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764394A (en) 1987-01-20 1988-08-16 Wisconsin Alumni Research Foundation Method and apparatus for plasma source ion implantation
US4957773A (en) * 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US5198263A (en) * 1991-03-15 1993-03-30 The United States Of America As Represented By The United States Department Of Energy High rate chemical vapor deposition of carbon films using fluorinated gases
US5289010A (en) 1992-12-08 1994-02-22 Wisconsin Alumni Research Foundation Ion purification for plasma ion implantation
US5296272A (en) 1990-10-10 1994-03-22 Hughes Aircraft Company Method of implanting ions from a plasma into an object
US5310452A (en) * 1989-04-27 1994-05-10 Fujitsu Limited Plasma process apparatus and plasma processing method
US5316804A (en) * 1990-08-10 1994-05-31 Sumitomo Electric Industries, Ltd. Process for the synthesis of hard boron nitride
US5330800A (en) 1992-11-04 1994-07-19 Hughes Aircraft Company High impedance plasma ion implantation method and apparatus
US5374456A (en) 1992-12-23 1994-12-20 Hughes Aircraft Company Surface potential control in plasma processing of materials
US5391407A (en) 1994-03-18 1995-02-21 Southwest Research Institute Process for forming protective diamond-like carbon coatings on metallic surfaces
US5393572A (en) 1994-07-11 1995-02-28 Southwest Research Institute Ion beam assisted method of producing a diamond like carbon coating
US5458927A (en) 1995-03-08 1995-10-17 General Motors Corporation Process for the formation of wear- and scuff-resistant carbon coatings
US5518780A (en) * 1994-06-16 1996-05-21 Ford Motor Company Method of making hard, transparent amorphous hydrogenated boron nitride films
US5576071A (en) * 1994-11-08 1996-11-19 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
US5654043A (en) 1996-10-10 1997-08-05 Eaton Corporation Pulsed plate plasma implantation system and method
US5661115A (en) * 1994-11-08 1997-08-26 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
US5747116A (en) * 1994-11-08 1998-05-05 Micron Technology, Inc. Method of forming an electrical contact to a silicon substrate
US5750210A (en) * 1989-04-28 1998-05-12 Case Western Reserve University Hydrogenated carbon composition

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764394A (en) 1987-01-20 1988-08-16 Wisconsin Alumni Research Foundation Method and apparatus for plasma source ion implantation
US4957773A (en) * 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US5310452A (en) * 1989-04-27 1994-05-10 Fujitsu Limited Plasma process apparatus and plasma processing method
US5750210A (en) * 1989-04-28 1998-05-12 Case Western Reserve University Hydrogenated carbon composition
US5316804A (en) * 1990-08-10 1994-05-31 Sumitomo Electric Industries, Ltd. Process for the synthesis of hard boron nitride
US5296272A (en) 1990-10-10 1994-03-22 Hughes Aircraft Company Method of implanting ions from a plasma into an object
US5198263A (en) * 1991-03-15 1993-03-30 The United States Of America As Represented By The United States Department Of Energy High rate chemical vapor deposition of carbon films using fluorinated gases
US5330800A (en) 1992-11-04 1994-07-19 Hughes Aircraft Company High impedance plasma ion implantation method and apparatus
US5289010A (en) 1992-12-08 1994-02-22 Wisconsin Alumni Research Foundation Ion purification for plasma ion implantation
US5374456A (en) 1992-12-23 1994-12-20 Hughes Aircraft Company Surface potential control in plasma processing of materials
US5391407A (en) 1994-03-18 1995-02-21 Southwest Research Institute Process for forming protective diamond-like carbon coatings on metallic surfaces
US5518780A (en) * 1994-06-16 1996-05-21 Ford Motor Company Method of making hard, transparent amorphous hydrogenated boron nitride films
US5393572A (en) 1994-07-11 1995-02-28 Southwest Research Institute Ion beam assisted method of producing a diamond like carbon coating
US5576071A (en) * 1994-11-08 1996-11-19 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
US5661115A (en) * 1994-11-08 1997-08-26 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
US5747116A (en) * 1994-11-08 1998-05-05 Micron Technology, Inc. Method of forming an electrical contact to a silicon substrate
US5458927A (en) 1995-03-08 1995-10-17 General Motors Corporation Process for the formation of wear- and scuff-resistant carbon coatings
US5654043A (en) 1996-10-10 1997-08-05 Eaton Corporation Pulsed plate plasma implantation system and method

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Boyen et al, "Ion Beam assisted growth of C-BN films on top of C-BN substrates-a HRTEM Study" Diamond and Related Materials 11; p. 38-42, 2002-no month.* *
Checchetto et al, "BN Coating adhesion on ion-implanted polymer surfaces" Thin Solid Films, 398-399; p. 222-227, 2001-no month.* *
Franceschini et al "Structural modifications in a-C:H films doped & Implanted with Nitrogen" Diamond & Related Materials, 3; p. 88-93, 1993-no month.* *
H. Windischmann, "Intrinsic Stress in Sputtered Thin Films," J. Vac. Sci. Technol. A9(4) (Jul./Aug. 1991), p. 2431-2436.
H. Windischmann, "Intrinsic Stress Scaling Law for Polycrystalline Thin Films Prepared by Ion Beam Sputtering," J. Appl. Phys. 62, 1800 (Sep. 1987), p. 1800-1807.
Kulisch et al, "A Concept for the deposition of adherent cubic boron nitride films", Thin Solid Films; 377-378; p. 170-176, 2000-no month.* *
Lee et al "Inhomogeneous structure in hydrogenated tetrahedral amorphous carbon thin films"; Phys. Rev. B, vol. 59, No. 19; p. 12, 283-12,285, May 15, 1999.* *
Lee et al "Internal stress reduction in diamond like Carbon Thin Films by Ion irradiation", Nuclear Instruments & Meth. in Phys. Research B 148; p. 216-220, 1999 no month.* *
Nathan W. Cheung, "Plasma Immersion Ion Implantation for ULSI Processing," Nuclear Instruments and Methods in Physics Research, B55, 811-820 (1991), no month.
S. Fayeulle et al., "Ion Beam Induced Modifications in DC Sputtered TiN/B-C-N Multilayers," Nucl. Instr. and Meth. in Phys. Res. B 127/128, 198 (1997), no month, p. 198-202.
S. Fayeulle et al., "Thermal and Ion Irradiation Stability of Direct Current Sputtered TiN/B-C-N Multilayers," Appl. Phys. Lett. 70, 1098 (Mar. 1997), p. 1098-1100.
S. M. Gorbatkin et al., "Boron Nitride Thin Film Deposition Using Electron Cyclotron Resonance Microwave Plasmas," J. Vac. Sci. Technol. A11, 1863 (Jul./Aug. 1993), p. 1863-1869.
Sunwoo Lee et al., "The Structural Homogeneity of Boron Carbide Thin Films Fabricated Using Plasma-Enhanced Chemical Vapor Deposition from B5H9+CH4," J. Appl. Phys. 74, 6919 (Dec. 1993), p. 6919-6924.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030175444A1 (en) * 1999-12-23 2003-09-18 Nan Huang Method for forming a tioss(2-x) film on a material surface by using plasma immersion ion implantation and the use thereof
US20050147767A1 (en) * 2001-11-28 2005-07-07 Peter Choi Method for coating a support with a material
US7767269B2 (en) * 2001-11-28 2010-08-03 Eppra Method for coating a support with a material
US20040058088A1 (en) * 2002-09-25 2004-03-25 Young-Whoan Beag Processing method for forming thick film having improved adhesion to surface-modified substrate and apparatus thereof
WO2006083363A3 (en) * 2004-11-29 2007-04-12 Advanced Tech Materials Pentaborane(9) storage and delivery
WO2006083363A2 (en) * 2004-11-29 2006-08-10 Advanced Technology Materials, Inc. Pentaborane(9) storage and delivery
US20080292806A1 (en) * 2007-05-23 2008-11-27 Southwest Research Institute Plasma Immersion Ion Processing For Coating Of Hollow Substrates
US8029875B2 (en) * 2007-05-23 2011-10-04 Southwest Research Institute Plasma immersion ion processing for coating of hollow substrates
US20100006421A1 (en) * 2008-07-09 2010-01-14 Southwest Research Institute Processing Tubular Surfaces Using Double Glow Discharge
US9175381B2 (en) 2008-07-09 2015-11-03 Southwest Research Institute Processing tubular surfaces using double glow discharge
US20100166981A1 (en) * 2008-12-31 2010-07-01 Dominguez Juan E Surface charge enhanced atomic layer deposition of pure metallic films
US8425987B2 (en) * 2008-12-31 2013-04-23 Intel Corporation Surface charge enhanced atomic layer deposition of pure metallic films
US8753725B2 (en) 2011-03-11 2014-06-17 Southwest Research Institute Method for plasma immersion ion processing and depositing coatings in hollow substrates using a heated center electrode
US9121540B2 (en) 2012-11-21 2015-09-01 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures
US9701869B2 (en) 2012-11-21 2017-07-11 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures
US9926467B2 (en) 2012-11-21 2018-03-27 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures

Also Published As

Publication number Publication date
WO1999020086A2 (en) 1999-04-22
AU2305199A (en) 1999-05-03
WO1999020086A3 (en) 1999-06-24

Similar Documents

Publication Publication Date Title
Weissmantel et al. Preparation of hard coatings by ion beam methods
US6416820B1 (en) Method for forming carbonaceous hard film
US5824198A (en) Process for barrier coating of plastic objects
US6764714B2 (en) Method for depositing coatings on the interior surfaces of tubular walls
US5518780A (en) Method of making hard, transparent amorphous hydrogenated boron nitride films
US6572933B1 (en) Forming adherent coatings using plasma processing
CN100467664C (en) Method for manufacturing diamond-like film and part with coating manufactured thereby
Haberland et al. Energetic cluster impact (ECI): A new method for thin-film formation.
EP0474369B1 (en) Diamond-like carbon coatings
US20090314633A1 (en) Electron beam enhanced large area deposition system
US7351480B2 (en) Tubular structures with coated interior surfaces
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
Deshpandey et al. Plasma assisted deposition techniques and synthesis of novel materials
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
US11072850B2 (en) Process for coating a conductive component and conductive component coating
Wolf et al. Ion beam assisted deposition for metal finishing
JPH02125861A (en) Formation of coating film on surface of material to be treated
US20140255286A1 (en) Method for manufacturing cubic boron nitride thin film with reduced compressive residual stress and cubic boron nitride thin film manufactured using the same
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
Nastasi et al. Forming adherent coatings using plasma processing
GB2227755A (en) Improving the wear resistance of metallic components by coating and diffusion treatment
Manory Some principles for understanding surface modification of metals by glow discharge processes
Lee et al. Processing of diamondlike carbon using plasma immersion ion deposition
Bolt et al. Gradient metal—aC: H coatings deposited from dense plasma by a combined PVD/CVD process
JP3199395B2 (en) Ceramic coating and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASTASI, MICHAEL A.;WALTER, KEVIN C.;REJ, DONALD J.;REEL/FRAME:009486/0593

Effective date: 19980923

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: LOS ALAMOS NATIONAL SECURITY, LLC, NEW MEXICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE;REEL/FRAME:017906/0382

Effective date: 20060410

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150603