US6475311B1 - Alloy materials - Google Patents

Alloy materials Download PDF

Info

Publication number
US6475311B1
US6475311B1 US09/283,775 US28377599A US6475311B1 US 6475311 B1 US6475311 B1 US 6475311B1 US 28377599 A US28377599 A US 28377599A US 6475311 B1 US6475311 B1 US 6475311B1
Authority
US
United States
Prior art keywords
alloy
substrate
cube
superconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/283,775
Inventor
Leslie G. Fritzemeier
Cornelis Leo Hans Thieme
Elliott D. Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Superconductor Corp
Original Assignee
American Superconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Superconductor Corp filed Critical American Superconductor Corp
Priority to US09/283,775 priority Critical patent/US6475311B1/en
Assigned to AMERICAN SUPERCONDUCTOR CORPORATION reassignment AMERICAN SUPERCONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRITZEMEIER, LESLIE G., THIEME, CORNELIS LEO HANS, THOMPSON, ELLIOTT D.
Priority to EP00937512A priority patent/EP1165849A4/en
Priority to NZ514581A priority patent/NZ514581A/en
Priority to PCT/US2000/008573 priority patent/WO2000058530A1/en
Priority to AU52665/00A priority patent/AU758847B2/en
Priority to CA002365880A priority patent/CA2365880A1/en
Priority to JP2000608807A priority patent/JP2002540295A/en
Publication of US6475311B1 publication Critical patent/US6475311B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the invention relates to alloys that can be used as substrates for superconductors, to superconductors including such substrates, and to methods of making these alloys and superconductors.
  • Superconductors including oxide superconductors, are used in a variety of applications. Some superconductors can demonstrate limited mechanical strength. Often, the mechanical strength of a superconductor can be enhanced by forming a multilayer article that includes a layer of superconductor material and a substrate layer, but the substrate should exhibit certain properties.
  • the substrate should have a low Curie temperature so that the substrate is not ferromagnetic below the superconductor's critical temperature. Furthermore, chemical species within the substrate should not be able to diffuse into the layer of superconductor material, and the coefficient of thermal expansion of the substrate should be about the same as or somewhat higher than the superconductor material. Moreover, if the substrate is used for an oxide superconductor, the substrate material should be relatively resistant to oxidation.
  • the ability of the material to act as a superconductor depends upon the crystallographic orientation of the material.
  • the substrate should have a crystallographic orientation that allows the material to act as a superconductor.
  • good superconducting properties are observed in these materials when the substrate has a biaxially textured surface.
  • One type of biaxial texture is cube texture, in which the lattice is oriented such that the cube texture, in which the lattice is oriented such that the cube face is parallel to the surface.
  • the cube edge in each crystallite is parallel to the cube edge in all neighboring crystallites.
  • Examples of cube textured surfaces include the ( 100 )[ 001 ] and ( 100 )[ 011 ] surfaces, and an example of a biaxially textured surface is the ( 113 )[ 211 ] surface.
  • buffer layers can be disposed between the substrate and the superconductor layer.
  • the buffer layer(s) can be comparatively resistant to oxidation, and reduce the diffusion of chemical species between the substrate and the superconductor layer.
  • the buffer layer(s) can have a coefficient of thermal expansion and a crystallographic orientation that is well matched with the superconductor material.
  • Buffer layers are commonly formed using epitaxy.
  • An epitaxial layer is a layer of material that is grown on a surface such that the crystallographic orientation of the layer of material is determined by the lattice structure of the surface on which the layer is grown.
  • the crystallographic orientation of the epitaxial layer is determined by the lattice structure of the surface of the substrate layer.
  • Techniques used to grow epitaxial buffer layers include chemical vapor deposition and physical vapor deposition.
  • Some pure metals such as copper and nickel, can be prepared to have a desirable crystallographic orientation (e.g, a biaxial texture or cube texture) by a process that involves first rolling the metal and then annealing the metal.
  • these pure metals may exhibit certain properties that are inappropriate for a substrate.
  • the invention relates to alloys that can be used as substrates for superconductors, to superconductors including such substrates, and to methods of making these alloys and superconductors.
  • the alloys can exhibit a variety of advantages, including good oxidation resistance, low Curie temperature, good homogeneity, and/or good surface texture.
  • the invention features a substantially homogeneous alloy including nickel and chromium.
  • the alloy has a cube texture surface. At least about 65 volume percent of the alloy has a cube texture.
  • the alloy can be made by a process that includes rolling the alloy, and then annealing the alloy.
  • the invention features an article that includes a substrate and a layer.
  • the substrate is formed of a substantially homogeneous alloy including nickel and chromium.
  • the alloy has a cube texture surface, and the layer is supported by the cube texture surface.
  • the alloy can be made by a process that includes rolling the alloy, and then annealing the alloy.
  • the alloys preferably have a Curie temperature of less than about 80 K (e.g., less than about 40 K or less than about 20 K).
  • the alloys can be homogeneous alloys.
  • the alloys can be relatively resistant to oxidation.
  • the alloys can have a surface that is biaxially textured or cube textured.
  • a relatively large volume percent of the alloys can be cube textured.
  • FIG. 1 is a block diagram illustrating the process of forming a cube-textured alloy substrate.
  • FIG. 2 illustrates a partial cross-sectional view of a superconductor composite formed with a cube-textured alloy substrate.
  • FIG. 3 illustrates a partial cross-sectional view of a superconductor composite formed with a cube-textured alloy substrate and a textured buffer layer.
  • FIGS. 3A and 3B illustrate partial cross-sectional views of superconductor composites formed with multiple buffer layers.
  • FIG. 4 illustrates a partial cross-sectional view of a superconductor composite having both sides coated with a buffer layer and a superconducting layer.
  • FIG. 5 illustrates a cross-sectional view of a superconductor composite in which the coated layers surround the substrate.
  • FIGS. 6-9 are pole figures of cube-textured alloys.
  • FIG. 10 is a pole figure of a 89 atomic percent nickel-11 atomic percent chromium alloy.
  • the invention relates to alloys that can be used as substrates for superconductors.
  • the alloys have a cube textured surface and include a first metal and a second metal that is different than the first metal.
  • the alloys can include additional metals, or the alloys can include only the first and second metals (i.e., no more than trace amounts of any other metals).
  • Examples of metals from which the first and second metals can be selected include copper, nickel, chromium, vanadium, aluminum, silver, iron, palladium, molybdenum, gold and zinc.
  • the alloys include from about 5 atomic percent to about 45 atomic percent of the first metal (e.g., from about 10 atomic percent to about 40 atomic percent).
  • the alloy includes chromium as the first metal and nickel as the second metal. If the amount of chromium is too small, the Curie temperature of the alloy may be too high for use as a superconductor substrate. However, if the amount of chromium is too large, the alloy may not be able to form a biaxial or cube textured surface.
  • the alloy contains nickel and at most about 20 atomic percent chromium (e.g., from about 5 atomic percent to about 18 atomic percent chromium or from about 10 atomic percent to about 15 atomic percent chromium).
  • the alloy includes nickel as the first metal and copper as the second metal. If the amount of copper is too low, the Curie temperature of the alloy may be too high. However, if the amount of copper is too high, there may not be a good lattice match with the superconductor material.
  • the alloy contains nickel and from about 5 atomic percent to about 45 atomic percent copper (e.g., from about 10 atomic percent to about 40 atomic percent copper or from about 25 atomic percent to about 35 atomic percent copper).
  • the alloy has a biaxially textured surface (e.g., a ( 113 )[ 211 ] surface), more preferably a cube textured surface (e.g., a ( 100 )[ 001 ] surface or a ( 100 )[ 011 ] surface).
  • a biaxially textured surface e.g., a ( 113 )[ 211 ] surface
  • a cube textured surface e.g., a ( 100 )[ 001 ] surface or a ( 100 )[ 011 ] surface.
  • the critical current density can depend upon the grain boundary angle.
  • annealing twins which are narrow regions inside and/or across a grain having a high angle grain boundary with biaxial or cube texture grains, can result in a region with poor electrical current transport. The region in which an annealing twin is present can effectively be closed for superconducting currents.
  • the volume percent of the alloy having grains with biaxial texture is preferably at least about about 65 volume percent (e.g., at least about 80 volume percent or at least about 85 volume percent) as measured using X-ray diffraction pole figures.
  • the volume percent of the alloy with grains having a cube texture is preferably at least about 65 volume percent (e.g., at least about 80 volume percent or at least about 85 volume percent) as measured using X-ray diffraction pole figures.
  • the peaks in an X-ray diffraction pole figure of the alloy have a Full Width Half Maximum (FWHM) less than about 20° (e.g., less than about 15°, less than about 10° or from about 5° to about 10°).
  • FWHM Full Width Half Maximum
  • the alloy preferably has a Curie temperature of less than about 80 K (e.g., less than about 40 K or less than about 20 K).
  • the alloy is preferably homogeneous.
  • the amount by which the concentration of constituents in the alloy varies across the cross section of the alloy is preferably less than about 15 percent (e.g, less than about five percent or less than about two percent).
  • the preferred alloys can be used as a substrate for a superconductor.
  • the superconductor material can be disposed directly onto a surface of the substrate, or one or more buffer layers can be disposed between the substrate and the superconductor material.
  • superconductor materials include oxide superconductor materials, such as yttrium-barium-copper-oxides, rare earth barium copper oxides, and mixtures of these two classes, wherein the YBCO yttrium is partially or completely replaced by rare earth elements such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and thorium.
  • Other possible superconductor oxides include the mercury, bismuth, and thallium families.
  • the superconductor material can be applied by any of a variety of methods, including electroplating, non-vacuum solution deposition, chemical vapor deposition, physical vapor deposition techniques such as sputtering, laser ablation, thermal evaporation, electron beam evaporation, metallorganic and/or sol-gel solution precursor methods.
  • a preferred precursor approach uses a metallorganic triflouroacetate precursor solution.
  • high temperature superconductor films are spun or dip coated onto substrates and then reacted to form the superconducting YBCO phase.
  • the as-coated precursor includes an oxy-fluoride film containing BaF 2 .
  • Heat treatment in a controlled atmosphere such as that disclosed in U.S. Pat. No. 5,231,074 issued to Cima, et al., fully incorporated herein by reference, decomposes the BaF 2 phase and thereby crystallizes the film. This allows the nucleation and growth of an epitaxial YBCO film.
  • Superconductor oxide films characterized by highly textured morphologies and fully dense, homogenous microstructures are capable of sustaining critical current densities in excess of 10 4 A/cm 2 at 77 degrees Kelvin when prepared on non-lattice matched substrates, and critical current densities in excess of 10 6 A/cm 2 at 77 degrees Kelvin when prepared on lattice matched substrates.
  • the superconductor material has a thickness of from about 0.2 micrometers to about 20 micrometer (e.g., from about 1 micrometer to about 20 micrometers).
  • the superconductor material can be deposited directly onto a surface of the alloy substrate, or onto a buffer layer that is disposed on a surface of the alloy substrate.
  • One or more buffer layers can be disposed between the alloy substrate and the superconductor material.
  • the buffer layer can be formed using any of the standard techniques, including epitaxial deposition (e.g., chemical vapor deposition or physical vapor deposition), or by growing a native oxide of the alloy via exposure of the alloy to an environment containing sufficient oxygen. This native oxide can be grown epitaxially.
  • the native oxide can have a biaxially textured surface (e.g., a ( 113 )[ 211 ] surface), or a cube textured surface (e.g., a ( 100 )[ 001 ] surface or a ( 100 )[ 011 ] surface).
  • a biaxially textured surface e.g., a ( 113 )[ 211 ] surface
  • a cube textured surface e.g., a ( 100 )[ 001 ] surface or a ( 100 )[ 011 ] surface.
  • buffer layers include noble metals, alloys of noble metals and oxides, such as oxides with a cubic structure (e.g, MgO, Al 2 O 3 , yttria, YSZ, SrTiO 3 , LaAlO 3 , YAlO 3 or rare earth oxides such as CeO 2 , Yb 2 O 3 , or yttria-stabilized zirconia (YSZ)).
  • noble metal is meant a metal which is thermodynamically stable under the reaction conditions employed relative to the desired superconductor material, and/or which does not react with the superconductor material or its precursors under the conditions of manufacture of the superconductor.
  • a noble metal can be a metal different from the metallic matrix elements of the desired superconducting ceramic.
  • a noble metal can be silver or a silver/gold alloy, but it can also be a stoichiometric excess of one of the metallic elements of the desired superconducting ceramic, such as yttrium.
  • Silver (Ag) and silver alloys are the most preferred noble metals.
  • Other noble metals which can be used are platinum, gold, palladium, rhodium, iridium, ruthenium, rhenium, rhenium or alloys thereof.
  • Suitable oxides such as MgO, cubic Al 2 O 3 , yttria, YSZ, or rare earth oxides such as CeO 2 , Yb 2 O 3 etc. or mixtures of these are typically stable oxides with a cubic structure. These materials can be used alone or in combination.
  • the total thickness of the buffer layer(s) is preferably from about 0.05 micrometers to about 10 micrometers (e.g., from about 0.2 to about 0.8 micrometers).
  • the superconductor is a multilayer structure including a textured (e.g., biaxially textured or cube textured) substrate, on which a textured (e.g., biaxially textured or cube textured) epitaxial buffer layer is disposed, and onto which a textured (e.g., biaxially textured or cube textured) epitaxial superconducting layer is disposed.
  • a textured epitaxial buffer can be disposed between the textured epitaxial and the textured substrate.
  • the buffer layer and/or superconducting layer can be on one side or both sides of the substrate, and can partially or entirely surround the substrate.
  • a cap layer (e.g., a metal cap layer) can be provided on top of the superconducting layer.
  • Materials that can be used in the cap layer include noble metals and alloys of noble metals, which can be complemented with an additional layer of a less noble metal such as copper or aluminum to reduce cost.
  • the alloys can be formed by creating a homogenous solid solution of the alloying elements.
  • the constituents of the alloy are weighed, mixed, and melted together to form an alloy.
  • the melt is then cooled to room temperature.
  • the rate of cooling can be slow or fast, with a rapid quench preferred for giving a fine grain size.
  • the solidified alloy is further homogenized by a heat treatment.
  • the alloy is then processed into tape by mechanical means, such as rolling, after which a suitable heat treatment produces the desired cube texture.
  • An optional recrystallization step after the homogenization and partial deformation of the alloy induces a refined grain size of, for example, from about 5 micrometers to about 70 micrometers, which obtains a cube texture in the rolled and heat treated tapes.
  • a block diagram illustrates the process 100 for forming a cube-textured alloy.
  • the constituent metals (Step 101 ) are selected, weighed and mixed.
  • the solid solution is melted (Step 102 ) by various processes known in the art, such as arc melting, induction melting, plasma torch melting, or melting in an electrical resistance furnace or a furnace heated by gas or coal. Melting temperatures range, for example, from about 1100° C. to about 1250° C. A certain level of homogenization is achieved during the melt process due to convection, mechanical stirring, or stirring induced by the melting techniques such as the induction melter.
  • the melting can be performed in air, under vacuum, or under a protective inert atmosphere, such as nitrogen, argon or helium.
  • the melting can be repeated several times to further increase homogenization (Step 103 ).
  • the melt is cooled with the furnace.
  • the solidified melt is shaped, preferably, into a bar.
  • the bar is reduced in diameter by rod rolling, swaging, drawing or extrusion (e.g., by a factor of from about 1.3 to about 5) and heat treated to further homogenize the alloy (Step 104 ).
  • a further mechanical reduction in diameter by similar mechanical means follows, to a size where the planar deformation process will commence (Step 105 ).
  • a heat treatment can be applied to recrystallize the alloy and obtain a fine grain size of (e.g., from about 5 micrometers to 70 micrometers or from about 10 micrometers to about 40 micrometers) (also Step 105 ).
  • other methods can be utilized to achieve a fine grain size, such as the rapid solidification of the alloy after melting.
  • An example is the atomization of a melt into an alloy powder, which is subsequently consolidated by (hot) pressing or extrusion into a bar, and which is processed subsequently similar to a cast alloy.
  • the alloy sample is subsequently deformed in an axially symmetric manner, such as extrusion, swaging, drawing, or rod rolling to a smaller size which can be round, square or rectangular (Step 106 ).
  • the melt can be cast and rolled. This cast can be further homogenized with a suitable heat treatment, rolled to a thinner size, and recrystallized to induce a fine grain size.
  • the alloy is deformed further by various planar rolling methods known in the art (Step 107 ), to reduce the thickness of the stock by, for example, at least about 85% and up to about 99.8%.
  • the planar deformation is performed at temperatures between, for example, ⁇ 200° C. and 600° C., and preferably at room temperature.
  • a recrystallization anneal (Step 108 ) at a temperature exceeding about 250° C., but not more than 95% of the melting temperature, and preferably at temperatures between 400 and 1190° C., produces the desired single cube texture ( 100 )[ 001 ].
  • FIG. 6 shows a ( 200 ) and a ( 111 ) pole figure, of a Cu-26.5% Ni alloy. A single and high quality ( 100 )[ 001 ] cube texture is shown. This alloy was made by extrusion of the homogenized alloy to tape, rolling the tape to a reduction in thickness of 96%, and heat treating the final tape at 850° C. for 4 hours in a protective atmosphere. (See Example 3).
  • Rolling is typically performed at room temperature, with rolling between, for example, about 0.10 meters per minute and about 100 meters per minute.
  • the reduction schedule can be a constant reduction per pass, or a varied reduction per pass, with reduction steps chosen to be, for example, between about 5% and 40% per pass.
  • the tape can be lubricated during rolling, or rolled without any lubricant.
  • the tapes can be rolled with various size rolls, including large diameter rolls (e.g., from about 3.5′′ to about 8′′ or larger in diameter) or preferably with small diameter rolls (e.g., from about 0.75′′ to about 2′′ in diameter) which can be backed up by larger rolls, in a so-called four-high arrangement.
  • Alternatives to the four-high arrangement are cluster and planetary rolling mills.
  • a partial cross section of a superconducting composite 200 is shown.
  • the above described substrates 201 of cube-textured alloys have at least one surface 202 coated with a superconducting oxide 203 , such as yttrium-barium-copper-oxide (YBCO) or a rare earth barium copper oxide (REBCO) or mixtures of these.
  • YBCO yttrium-barium-copper-oxide
  • REBCO rare earth barium copper oxide
  • the REBCO's are formed by partial or complete substitution of yttrium (Y) in the YBCO with rare earth elements such as neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, lanthenum, cerium, or praesodium.
  • the coating of the superconducting oxide 203 is preferably from about 0.2 micrometers to about 10 micrometers thick, more preferably from about 1 micrometer to about 10 micrometers thick.
  • the coating is applied by any deposition technique, such as a non-vacuum solution deposition, electroplating, chemical vapor deposition, or physical vapor deposition techniques, such as sputtering, laser ablation, thermal evaporation, electron beam evaporation.
  • deposition techniques can require a heat treatment, such as that disclosed in U.S. Pat. No. 5,231,074 issued to Cima et al., fully incorporated herein by reference, to form the YBCO in an epitaxial manner, and optimize its superconducting properties.
  • FIG. 3 shows a different superconductor structure 300 , having a substrate 301 , a buffer layer (or multiple buffer layers) 302 , and a layer of superconductor material 303 . Any of the deposition processes listed above, among others, can be used for depositing the buffer layer 302 . A heat treatment can be included to form the buffer layer in an epitaxial manner (e.g., by forming a native oxide of the alloy).
  • FIG. 3A A structure in which the buffer layer has two layers is shown in FIG. 3A where the substrate 301 is covered with a buffer layer 304 and subsequently a second buffer layer 305 , where the combination of layers 304 and 305 form the buffer layer.
  • the multiple buffer layers 304 and 305 can include any combination of layers, such as a metal layer 304 with an oxide layer 305 on top, or an oxide layer 304 with another oxide layer 305 on top.
  • the buffer layer can include three or even more layers.
  • the substrate 301 is coated with a metal or oxide buffer layer 306 which in turn is coated with additional metal or oxide buffer layers 307 and 308 before deposition of the superconducting layer 303 .
  • FIG. 3 shows a substrate with this optional buffer layer 309 on the bottom side of the substrate.
  • superconductor structure 300 can optionally include a cap layer 310 .
  • the composite 400 has a substrate 401 with a pair of surfaces that are each coated with a buffer layer 402 .
  • a superconducting oxide 403 is coated on each of the buffer layers 402 .
  • the composite 500 has a substrate 501 which is fully surrounded by a buffer layer 502 . Furthermore, a superconducting oxide layer 503 fully coats the buffer layers 502 on all surfaces of the composite 500 .
  • a cube-textured copper-nickel alloy was produced as follows. Ni and Cu pieces (pellets mixed with coarse powders) were weighed in a ratio of 68 at % Cu and 32 at % Ni. The pieces were mixed and loaded in a water cooled copper hearth of an arc melter which operates under a protective atmosphere. The Cu and Ni mixture was melted and solidified several times, to ensure adequate mixing, at a temperature well above the melting temperatures for several minutes. The solidified and cooled alloy was mechanically formed in the shape of a solid cylinder, and was swaged to a smaller diameter of approximately 3 mm. No homogenization anneal was applied in this example.
  • the swaged cylinder was rolled, using 10% deformation per pass, to a total reduction of 98% without any intermediate stress anneal process.
  • the resulting tape was heat treated at 850° C. for 4 hrs using a protective gas of 95% argon and 5% hydrogen.
  • This tape showed mainly a single, bi-axial cube texture, which can be seen in the ⁇ 111 ⁇ pole figure of FIG. 7 .
  • a 32 mm diameter oxygen free copper can was loaded with a mixture of Cu and Ni pieces, and the overall exact stoichiometry (including the weight of the copper can) was further adjusted with Cu powder, to a mixture of 16 at % Ni, 84 at % Cu.
  • This can was placed inside a 38 mm diameter thin-walled alumina crucible and heated under vacuum using a ALLOY MATERIALS induction melter at about 1170° C., for up to 5 minutes. After solidification, the alloy was removed from the crucible. To enhance homogeneity, the cast was remelted using a similar crucible and the same induction melter, again under a protective atmosphere and at the same conditions.
  • the cast alloy which had a cylindrical shape, was machined to a diameter of 31 mm and swaged to a 17 mm diameter bar. This bar was homogenized at 950° C. for 8 hrs. It was machined to a 16 mm diameter billet, suitable for hydrostatic extrusion. It was extruded to a 3 mm diameter ire and subsequently rolled using a reversible direction rolling technique, with a four-high rolling mill at a rolling speed of 6 m/min, and reduction per pass of 10%. The total reduction in thickness is 98.8%. Subsequently, it was heat treated at 850° C. for 4 hrs under a 95% argon—5% hydrogen gas mixture. This tape had a single bi-axial cube texture and a FWHM value of 9°. A ⁇ 111 ⁇ and ⁇ 200 ⁇ pole figure is shown of this alloy in FIG. 8 . The pole figures demonstrate a single, high quality cube texture.
  • Example 2 A similar process was followed as in Example 2, but the mixture was 26.5 at % Ni and 73.5 at % Cu.
  • the alloy was extruded to a tape, which was rolled to a reduction in thickness of 96%.
  • the tape was heat treated for 4 hours at 850 degrees Celcius.
  • the final tape made with this alloy had a single bi-axial cube texture. A ⁇ 111 ⁇ and ⁇ 200 ⁇ pole figure of this alloy is shown in FIG. 6 .
  • Example 2 A similar process was followed as in Example 2, but the mixture was 37 at % Ni and 63 at % Cu.
  • the final foil made with this alloy had a single bi-axial ( 100 )[ 001 ] cube texture.
  • a ⁇ 111 ⁇ and ⁇ 200 ⁇ pole figure of this alloy is shown in FIG. 9 .
  • FIG. 10 shows a ( 111 ) pole figure for the alloy rolled to 0.1 millimeters, annealed at 1000° C. in 95% Ar/5% H 2 for four hours and subsequently polished to a thickness of 0.075 millimeters. A well developed cube texture is shown with some remnant of the rolling texture observable near the center.

Abstract

An alloy having a cube textured substrate is disclosed. The alloy includes two different metals. The alloy can be used as a substrate for a superconductor. Optionally, one or more buffer layers can be disposed between the substrate and the superconductor material. The alloy can be prepared using a process that includes rolling the alloy and annealing the alloy. The alloy can have a relatively large volume percent that is formed of grains with cube texture.

Description

BACKGROUND OF THE INVENTION
The invention relates to alloys that can be used as substrates for superconductors, to superconductors including such substrates, and to methods of making these alloys and superconductors.
Superconductors, including oxide superconductors, are used in a variety of applications. Some superconductors can demonstrate limited mechanical strength. Often, the mechanical strength of a superconductor can be enhanced by forming a multilayer article that includes a layer of superconductor material and a substrate layer, but the substrate should exhibit certain properties.
The substrate should have a low Curie temperature so that the substrate is not ferromagnetic below the superconductor's critical temperature. Furthermore, chemical species within the substrate should not be able to diffuse into the layer of superconductor material, and the coefficient of thermal expansion of the substrate should be about the same as or somewhat higher than the superconductor material. Moreover, if the substrate is used for an oxide superconductor, the substrate material should be relatively resistant to oxidation.
For some materials, such as YBa2Cu3Ox (YBCO), the ability of the material to act as a superconductor depends upon the crystallographic orientation of the material. For these superconductors, the substrate should have a crystallographic orientation that allows the material to act as a superconductor. Often, good superconducting properties are observed in these materials when the substrate has a biaxially textured surface. One type of biaxial texture is cube texture, in which the lattice is oriented such that the cube texture, in which the lattice is oriented such that the cube face is parallel to the surface. In addition, the cube edge in each crystallite is parallel to the cube edge in all neighboring crystallites. Examples of cube textured surfaces include the (100)[001] and (100)[011] surfaces, and an example of a biaxially textured surface is the (113)[211] surface.
Some substrates do not readily meet all these requirements, so one or more buffer layers can be disposed between the substrate and the superconductor layer. The buffer layer(s) can be comparatively resistant to oxidation, and reduce the diffusion of chemical species between the substrate and the superconductor layer. Moreover, the buffer layer(s) can have a coefficient of thermal expansion and a crystallographic orientation that is well matched with the superconductor material.
Buffer layers are commonly formed using epitaxy. An epitaxial layer is a layer of material that is grown on a surface such that the crystallographic orientation of the layer of material is determined by the lattice structure of the surface on which the layer is grown. For example, for an epitaxial buffer layer grown on the surface of a substrate layer, the crystallographic orientation of the epitaxial layer is determined by the lattice structure of the surface of the substrate layer. Techniques used to grow epitaxial buffer layers include chemical vapor deposition and physical vapor deposition.
Some pure metals, such as copper and nickel, can be prepared to have a desirable crystallographic orientation (e.g, a biaxial texture or cube texture) by a process that involves first rolling the metal and then annealing the metal. However, these pure metals may exhibit certain properties that are inappropriate for a substrate. For
Attempts have been made to provide substrates for superconductors that are crystallographically oriented alloys. These substrates have been formed by first rolling and annealing a metal, then diffusing a different metal into the pure metal to form the alloy. This can result in a nonhomogeneous alloy.
SUMMARY OF THE INVENTION
The invention relates to alloys that can be used as substrates for superconductors, to superconductors including such substrates, and to methods of making these alloys and superconductors. The alloys can exhibit a variety of advantages, including good oxidation resistance, low Curie temperature, good homogeneity, and/or good surface texture.
In one aspect, the invention features a substantially homogeneous alloy including nickel and chromium. The alloy has a cube texture surface. At least about 65 volume percent of the alloy has a cube texture. The alloy can be made by a process that includes rolling the alloy, and then annealing the alloy.
In another aspect, the invention features an article that includes a substrate and a layer. The substrate is formed of a substantially homogeneous alloy including nickel and chromium. The alloy has a cube texture surface, and the layer is supported by the cube texture surface. The alloy can be made by a process that includes rolling the alloy, and then annealing the alloy.
The alloys preferably have a Curie temperature of less than about 80 K (e.g., less than about 40 K or less than about 20 K).
The alloys can be homogeneous alloys.
The alloys can be relatively resistant to oxidation.
The alloys can have a surface that is biaxially textured or cube textured.
A relatively large volume percent of the alloys can be cube textured.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram illustrating the process of forming a cube-textured alloy substrate.
FIG. 2 illustrates a partial cross-sectional view of a superconductor composite formed with a cube-textured alloy substrate.
FIG. 3 illustrates a partial cross-sectional view of a superconductor composite formed with a cube-textured alloy substrate and a textured buffer layer.
FIGS. 3A and 3B illustrate partial cross-sectional views of superconductor composites formed with multiple buffer layers.
FIG. 4 illustrates a partial cross-sectional view of a superconductor composite having both sides coated with a buffer layer and a superconducting layer.
FIG. 5 illustrates a cross-sectional view of a superconductor composite in which the coated layers surround the substrate.
FIGS. 6-9 are pole figures of cube-textured alloys.
FIG. 10 is a pole figure of a 89 atomic percent nickel-11 atomic percent chromium alloy.
DESCRIPTION OF THE EMBODIMENTS
The invention relates to alloys that can be used as substrates for superconductors. The alloys have a cube textured surface and include a first metal and a second metal that is different than the first metal. The alloys can include additional metals, or the alloys can include only the first and second metals (i.e., no more than trace amounts of any other metals).
Examples of metals from which the first and second metals can be selected include copper, nickel, chromium, vanadium, aluminum, silver, iron, palladium, molybdenum, gold and zinc.
Generally, the alloys include from about 5 atomic percent to about 45 atomic percent of the first metal (e.g., from about 10 atomic percent to about 40 atomic percent).
In one embodiment, the alloy includes chromium as the first metal and nickel as the second metal. If the amount of chromium is too small, the Curie temperature of the alloy may be too high for use as a superconductor substrate. However, if the amount of chromium is too large, the alloy may not be able to form a biaxial or cube textured surface. Preferably, the alloy contains nickel and at most about 20 atomic percent chromium (e.g., from about 5 atomic percent to about 18 atomic percent chromium or from about 10 atomic percent to about 15 atomic percent chromium).
In another embodiment, the alloy includes nickel as the first metal and copper as the second metal. If the amount of copper is too low, the Curie temperature of the alloy may be too high. However, if the amount of copper is too high, there may not be a good lattice match with the superconductor material. Preferably, the alloy contains nickel and from about 5 atomic percent to about 45 atomic percent copper (e.g., from about 10 atomic percent to about 40 atomic percent copper or from about 25 atomic percent to about 35 atomic percent copper).
Preferably, the alloy has a biaxially textured surface (e.g., a (113)[211] surface), more preferably a cube textured surface (e.g., a (100)[001] surface or a (100)[011] surface).
In some superconductors (e.g., YBCO), the critical current density can depend upon the grain boundary angle. For example, the presence of annealing twins, which are narrow regions inside and/or across a grain having a high angle grain boundary with biaxial or cube texture grains, can result in a region with poor electrical current transport. The region in which an annealing twin is present can effectively be closed for superconducting currents.
To minimize the effect of annealing twins, the volume percent of the alloy having grains with biaxial texture is preferably at least about about 65 volume percent (e.g., at least about 80 volume percent or at least about 85 volume percent) as measured using X-ray diffraction pole figures.
In certain embodiments, the volume percent of the alloy with grains having a cube texture is preferably at least about 65 volume percent (e.g., at least about 80 volume percent or at least about 85 volume percent) as measured using X-ray diffraction pole figures.
Preferably, the peaks in an X-ray diffraction pole figure of the alloy have a Full Width Half Maximum (FWHM) less than about 20° (e.g., less than about 15°, less than about 10° or from about 5° to about 10°).
The alloy preferably has a Curie temperature of less than about 80 K (e.g., less than about 40 K or less than about 20 K).
The alloy is preferably homogeneous. The amount by which the concentration of constituents in the alloy varies across the cross section of the alloy is preferably less than about 15 percent (e.g, less than about five percent or less than about two percent).
The preferred alloys can be used as a substrate for a superconductor. The superconductor material can be disposed directly onto a surface of the substrate, or one or more buffer layers can be disposed between the substrate and the superconductor material.
Examples of superconductor materials include oxide superconductor materials, such as yttrium-barium-copper-oxides, rare earth barium copper oxides, and mixtures of these two classes, wherein the YBCO yttrium is partially or completely replaced by rare earth elements such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and thorium. Other possible superconductor oxides include the mercury, bismuth, and thallium families. The superconductor material can be applied by any of a variety of methods, including electroplating, non-vacuum solution deposition, chemical vapor deposition, physical vapor deposition techniques such as sputtering, laser ablation, thermal evaporation, electron beam evaporation, metallorganic and/or sol-gel solution precursor methods.
A preferred precursor approach uses a metallorganic triflouroacetate precursor solution. With this approach, high temperature superconductor films are spun or dip coated onto substrates and then reacted to form the superconducting YBCO phase. The as-coated precursor includes an oxy-fluoride film containing BaF2. Heat treatment in a controlled atmosphere, such as that disclosed in U.S. Pat. No. 5,231,074 issued to Cima, et al., fully incorporated herein by reference, decomposes the BaF2 phase and thereby crystallizes the film. This allows the nucleation and growth of an epitaxial YBCO film. Superconductor oxide films characterized by highly textured morphologies and fully dense, homogenous microstructures are capable of sustaining critical current densities in excess of 104 A/cm2 at 77 degrees Kelvin when prepared on non-lattice matched substrates, and critical current densities in excess of 106A/cm2 at 77 degrees Kelvin when prepared on lattice matched substrates.
Preferably, the superconductor material has a thickness of from about 0.2 micrometers to about 20 micrometer (e.g., from about 1 micrometer to about 20 micrometers).
The superconductor material can be deposited directly onto a surface of the alloy substrate, or onto a buffer layer that is disposed on a surface of the alloy substrate. One or more buffer layers can be disposed between the alloy substrate and the superconductor material. The buffer layer can be formed using any of the standard techniques, including epitaxial deposition (e.g., chemical vapor deposition or physical vapor deposition), or by growing a native oxide of the alloy via exposure of the alloy to an environment containing sufficient oxygen. This native oxide can be grown epitaxially. Thus, the native oxide can have a biaxially textured surface (e.g., a (113)[211] surface), or a cube textured surface (e.g., a (100)[001] surface or a (100)[011] surface). Methods of epitaxially depositing buffer layers are disclosed in commonly assigned U.S. patent applications Ser. No. 09/007,375, filed Jan. 15, 1998, now U.S. Pat. No. 6,007,564, Ser. No. 09/007,367, now U.S. Pat. No. 6,022,832, filed Jan. 15, 1998, Ser. No. 09/007,372, filed Jan. 15, 1998, now abandoned and Ser. No. 09/007,373, filed Jan. 15, 1998, now abandoned all of which are hereby incorporated by reference in their entirety.
Examples of buffer layers include noble metals, alloys of noble metals and oxides, such as oxides with a cubic structure (e.g, MgO, Al2O3, yttria, YSZ, SrTiO3, LaAlO3, YAlO3 or rare earth oxides such as CeO2, Yb2O3, or yttria-stabilized zirconia (YSZ)). By “noble metal” is meant a metal which is thermodynamically stable under the reaction conditions employed relative to the desired superconductor material, and/or which does not react with the superconductor material or its precursors under the conditions of manufacture of the superconductor. A noble metal can be a metal different from the metallic matrix elements of the desired superconducting ceramic. A noble metal can be silver or a silver/gold alloy, but it can also be a stoichiometric excess of one of the metallic elements of the desired superconducting ceramic, such as yttrium. Silver (Ag) and silver alloys are the most preferred noble metals. Other noble metals which can be used are platinum, gold, palladium, rhodium, iridium, ruthenium, rhenium, rhenium or alloys thereof. Suitable oxides such as MgO, cubic Al2O3, yttria, YSZ, or rare earth oxides such as CeO2, Yb2O3 etc. or mixtures of these are typically stable oxides with a cubic structure. These materials can be used alone or in combination.
The total thickness of the buffer layer(s) is preferably from about 0.05 micrometers to about 10 micrometers (e.g., from about 0.2 to about 0.8 micrometers).
In certain embodiments, the superconductor is a multilayer structure including a textured (e.g., biaxially textured or cube textured) substrate, on which a textured (e.g., biaxially textured or cube textured) epitaxial buffer layer is disposed, and onto which a textured (e.g., biaxially textured or cube textured) epitaxial superconducting layer is disposed. In these embodiments, more than one textured epitaxial buffer can be disposed between the textured epitaxial and the textured substrate.
The buffer layer and/or superconducting layer can be on one side or both sides of the substrate, and can partially or entirely surround the substrate.
A cap layer (e.g., a metal cap layer) can be provided on top of the superconducting layer. Materials that can be used in the cap layer include noble metals and alloys of noble metals, which can be complemented with an additional layer of a less noble metal such as copper or aluminum to reduce cost.
The alloys can be formed by creating a homogenous solid solution of the alloying elements. The constituents of the alloy are weighed, mixed, and melted together to form an alloy. The melt is then cooled to room temperature. The rate of cooling can be slow or fast, with a rapid quench preferred for giving a fine grain size. The solidified alloy is further homogenized by a heat treatment. The alloy is then processed into tape by mechanical means, such as rolling, after which a suitable heat treatment produces the desired cube texture. An optional recrystallization step after the homogenization and partial deformation of the alloy induces a refined grain size of, for example, from about 5 micrometers to about 70 micrometers, which obtains a cube texture in the rolled and heat treated tapes.
Referring to FIG. 1, a block diagram illustrates the process 100 for forming a cube-textured alloy. The constituent metals (Step 101) are selected, weighed and mixed.
The solid solution is melted (Step 102) by various processes known in the art, such as arc melting, induction melting, plasma torch melting, or melting in an electrical resistance furnace or a furnace heated by gas or coal. Melting temperatures range, for example, from about 1100° C. to about 1250° C. A certain level of homogenization is achieved during the melt process due to convection, mechanical stirring, or stirring induced by the melting techniques such as the induction melter. The melting can be performed in air, under vacuum, or under a protective inert atmosphere, such as nitrogen, argon or helium.
The melting can be repeated several times to further increase homogenization (Step 103).
The melt is cooled with the furnace. The solidified melt is shaped, preferably, into a bar. The bar is reduced in diameter by rod rolling, swaging, drawing or extrusion (e.g., by a factor of from about 1.3 to about 5) and heat treated to further homogenize the alloy (Step 104).
A further mechanical reduction in diameter by similar mechanical means follows, to a size where the planar deformation process will commence (Step 105). Before or at this stage a heat treatment can be applied to recrystallize the alloy and obtain a fine grain size of (e.g., from about 5 micrometers to 70 micrometers or from about 10 micrometers to about 40 micrometers) (also Step 105). Alternatively, other methods can be utilized to achieve a fine grain size, such as the rapid solidification of the alloy after melting. An example is the atomization of a melt into an alloy powder, which is subsequently consolidated by (hot) pressing or extrusion into a bar, and which is processed subsequently similar to a cast alloy. The alloy sample is subsequently deformed in an axially symmetric manner, such as extrusion, swaging, drawing, or rod rolling to a smaller size which can be round, square or rectangular (Step 106). In yet another alternate process step, the melt can be cast and rolled. This cast can be further homogenized with a suitable heat treatment, rolled to a thinner size, and recrystallized to induce a fine grain size.
The alloy is deformed further by various planar rolling methods known in the art (Step 107), to reduce the thickness of the stock by, for example, at least about 85% and up to about 99.8%. The planar deformation is performed at temperatures between, for example, −200° C. and 600° C., and preferably at room temperature.
A recrystallization anneal (Step 108) at a temperature exceeding about 250° C., but not more than 95% of the melting temperature, and preferably at temperatures between 400 and 1190° C., produces the desired single cube texture (100)[001].
FIG. 6 shows a (200) and a (111) pole figure, of a Cu-26.5% Ni alloy. A single and high quality (100)[001] cube texture is shown. This alloy was made by extrusion of the homogenized alloy to tape, rolling the tape to a reduction in thickness of 96%, and heat treating the final tape at 850° C. for 4 hours in a protective atmosphere. (See Example 3).
Rolling is typically performed at room temperature, with rolling between, for example, about 0.10 meters per minute and about 100 meters per minute. The reduction schedule can be a constant reduction per pass, or a varied reduction per pass, with reduction steps chosen to be, for example, between about 5% and 40% per pass. The tape can be lubricated during rolling, or rolled without any lubricant. The tapes can be rolled with various size rolls, including large diameter rolls (e.g., from about 3.5″ to about 8″ or larger in diameter) or preferably with small diameter rolls (e.g., from about 0.75″ to about 2″ in diameter) which can be backed up by larger rolls, in a so-called four-high arrangement. Alternatives to the four-high arrangement are cluster and planetary rolling mills.
Referring to FIG. 2, a partial cross section of a superconducting composite 200 is shown. To form a superconducting composite 200, the above described substrates 201 of cube-textured alloys have at least one surface 202 coated with a superconducting oxide 203, such as yttrium-barium-copper-oxide (YBCO) or a rare earth barium copper oxide (REBCO) or mixtures of these. The REBCO's are formed by partial or complete substitution of yttrium (Y) in the YBCO with rare earth elements such as neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, lanthenum, cerium, or praesodium. The coating of the superconducting oxide 203 is preferably from about 0.2 micrometers to about 10 micrometers thick, more preferably from about 1 micrometer to about 10 micrometers thick. The coating is applied by any deposition technique, such as a non-vacuum solution deposition, electroplating, chemical vapor deposition, or physical vapor deposition techniques, such as sputtering, laser ablation, thermal evaporation, electron beam evaporation. These deposition techniques can require a heat treatment, such as that disclosed in U.S. Pat. No. 5,231,074 issued to Cima et al., fully incorporated herein by reference, to form the YBCO in an epitaxial manner, and optimize its superconducting properties.
FIG. 3 shows a different superconductor structure 300, having a substrate 301, a buffer layer (or multiple buffer layers) 302, and a layer of superconductor material 303. Any of the deposition processes listed above, among others, can be used for depositing the buffer layer 302. A heat treatment can be included to form the buffer layer in an epitaxial manner (e.g., by forming a native oxide of the alloy).
A structure in which the buffer layer has two layers is shown in FIG. 3A where the substrate 301 is covered with a buffer layer 304 and subsequently a second buffer layer 305, where the combination of layers 304 and 305 form the buffer layer. The multiple buffer layers 304 and 305 can include any combination of layers, such as a metal layer 304 with an oxide layer 305 on top, or an oxide layer 304 with another oxide layer 305 on top.
Alternatively, referring to FIG. 3B, the buffer layer can include three or even more layers. In this arrangement, the substrate 301 is coated with a metal or oxide buffer layer 306 which in turn is coated with additional metal or oxide buffer layers 307 and 308 before deposition of the superconducting layer 303.
FIG. 3 shows a substrate with this optional buffer layer 309 on the bottom side of the substrate. As shown in FIG. 3, superconductor structure 300 can optionally include a cap layer 310.
Referring to FIG. 4, there is shown a partial cross section of a superconducting composite 400. In this embodiment, the composite 400 has a substrate 401 with a pair of surfaces that are each coated with a buffer layer 402. A superconducting oxide 403 is coated on each of the buffer layers 402.
In an alternate arrangement, as shown in FIG. 5, the composite 500 has a substrate 501 which is fully surrounded by a buffer layer 502. Furthermore, a superconducting oxide layer 503 fully coats the buffer layers 502 on all surfaces of the composite 500.
Other alloys that can be used as substrates for superconductors, superconductors including such substrates, and methods of making these substrates and superconductors are disclosed in commonly assigned U.S. patent applications Ser. No. 09/283,777, filed on even date herewith and entitled “Alloy Materials”, Ser. No. 08/943,047, filed Oct. 1, 1997, and Ser. No. 08/942,038, filed Oct. 1, 1997 are hereby incorporated by reference in their entirety.
EXAMPLE 1
A cube-textured copper-nickel alloy was produced as follows. Ni and Cu pieces (pellets mixed with coarse powders) were weighed in a ratio of 68 at % Cu and 32 at % Ni. The pieces were mixed and loaded in a water cooled copper hearth of an arc melter which operates under a protective atmosphere. The Cu and Ni mixture was melted and solidified several times, to ensure adequate mixing, at a temperature well above the melting temperatures for several minutes. The solidified and cooled alloy was mechanically formed in the shape of a solid cylinder, and was swaged to a smaller diameter of approximately 3 mm. No homogenization anneal was applied in this example. Subsequently, the swaged cylinder was rolled, using 10% deformation per pass, to a total reduction of 98% without any intermediate stress anneal process. The resulting tape was heat treated at 850° C. for 4 hrs using a protective gas of 95% argon and 5% hydrogen. This tape showed mainly a single, bi-axial cube texture, which can be seen in the {111} pole figure of FIG. 7.
EXAMPLE 2
A 32 mm diameter oxygen free copper can was loaded with a mixture of Cu and Ni pieces, and the overall exact stoichiometry (including the weight of the copper can) was further adjusted with Cu powder, to a mixture of 16 at % Ni, 84 at % Cu. This can was placed inside a 38 mm diameter thin-walled alumina crucible and heated under vacuum using a ALLOY MATERIALS induction melter at about 1170° C., for up to 5 minutes. After solidification, the alloy was removed from the crucible. To enhance homogeneity, the cast was remelted using a similar crucible and the same induction melter, again under a protective atmosphere and at the same conditions. The cast alloy, which had a cylindrical shape, was machined to a diameter of 31 mm and swaged to a 17 mm diameter bar. This bar was homogenized at 950° C. for 8 hrs. It was machined to a 16 mm diameter billet, suitable for hydrostatic extrusion. It was extruded to a 3 mm diameter ire and subsequently rolled using a reversible direction rolling technique, with a four-high rolling mill at a rolling speed of 6 m/min, and reduction per pass of 10%. The total reduction in thickness is 98.8%. Subsequently, it was heat treated at 850° C. for 4 hrs under a 95% argon—5% hydrogen gas mixture. This tape had a single bi-axial cube texture and a FWHM value of 9°. A {111} and {200} pole figure is shown of this alloy in FIG. 8. The pole figures demonstrate a single, high quality cube texture.
EXAMPLE 3
A similar process was followed as in Example 2, but the mixture was 26.5 at % Ni and 73.5 at % Cu. The alloy was extruded to a tape, which was rolled to a reduction in thickness of 96%. The tape was heat treated for 4 hours at 850 degrees Celcius. The final tape made with this alloy had a single bi-axial cube texture. A {111} and {200} pole figure of this alloy is shown in FIG. 6.
EXAMPLE 4
A similar process was followed as in Example 2, but the mixture was 37 at % Ni and 63 at % Cu. The final foil made with this alloy had a single bi-axial (100)[001] cube texture. A {111} and {200} pole figure of this alloy is shown in FIG. 9.
EXAMPLE 5
An 89 atomic percent nickel-11 atomic percent chromium alloy were rolled using 10% deformation per pass, and room temperature deformation. The foils were annealed at 1000° C., and their texture was determined using X-ray pole figures.
FIG. 10 shows a (111) pole figure for the alloy rolled to 0.1 millimeters, annealed at 1000° C. in 95% Ar/5% H2 for four hours and subsequently polished to a thickness of 0.075 millimeters. A well developed cube texture is shown with some remnant of the rolling texture observable near the center.
Other embodiments are in the claims.

Claims (14)

What is claimed is:
1. A method, comprising:
forming a substantially homogeneous alloy comprising nickel and chromium, the alloy having a cube textured surface, wherein at least about 65 volume percent of the alloy comprises grains having a cube texture, and wherein the alloy has an X-ray diffraction pole figure with a full width at half maximum of less than about 20°,
wherein the method includes rolling the alloy to obtain the cube texture.
2. The method of claim 1, wherein the method further includes annealing the alloy.
3. The method of claim 2, wherein the alloy is rolled after it is annealed.
4. The method of claim 1, wherein the alloy comprises at most about 20 atomic percent chromium.
5. The method of claim 1, wherein at least about 65% of the area of the surface has a cube texture.
6. The method of claim 1, wherein the alloy has a Curie temperature of at most about 80 K.
7. The method of claim 1, wherein the alloy has a Curie temperature of at most about 40 K.
8. The method of claim 1, wherein the alloy has a Curie temperature of at most about 10 K.
9. The method of claim 1, wherein the full width at half maximum of the X-ray diffraction pole figure is less than about 15°.
10. The method of claim 1, wherein the full width at half maximum of the X-ray diffraction pole figure is less than about 10°.
11. The method of claim 1 wherein the full width at half maximum of the X-ray diffraction pole figure is from about 5° to about 10°.
12. The method of claim 1, wherein a concentration of constituents varies across a cross-section of the alloy by less than about 15 percent.
13. The method of claim 1, wherein a concentration of constituents varies across a cross-section of the alloy by less than about five percent.
14. The method of claim 1, wherein a concentration of constituents varies across a cross-section of the alloy by less than about two percent.
US09/283,775 1999-03-31 1999-03-31 Alloy materials Expired - Fee Related US6475311B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/283,775 US6475311B1 (en) 1999-03-31 1999-03-31 Alloy materials
AU52665/00A AU758847B2 (en) 1999-03-31 2000-03-31 Alloy materials
NZ514581A NZ514581A (en) 1999-03-31 2000-03-31 Alloy materials
PCT/US2000/008573 WO2000058530A1 (en) 1999-03-31 2000-03-31 Alloy materials
EP00937512A EP1165849A4 (en) 1999-03-31 2000-03-31 Alloy materials
CA002365880A CA2365880A1 (en) 1999-03-31 2000-03-31 Alloy materials
JP2000608807A JP2002540295A (en) 1999-03-31 2000-03-31 Alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/283,775 US6475311B1 (en) 1999-03-31 1999-03-31 Alloy materials

Publications (1)

Publication Number Publication Date
US6475311B1 true US6475311B1 (en) 2002-11-05

Family

ID=23087497

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/283,775 Expired - Fee Related US6475311B1 (en) 1999-03-31 1999-03-31 Alloy materials

Country Status (7)

Country Link
US (1) US6475311B1 (en)
EP (1) EP1165849A4 (en)
JP (1) JP2002540295A (en)
AU (1) AU758847B2 (en)
CA (1) CA2365880A1 (en)
NZ (1) NZ514581A (en)
WO (1) WO2000058530A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020170460A1 (en) * 2000-10-24 2002-11-21 Goodrich Gary D. Chrome coating composition
US20030056858A1 (en) * 2000-05-15 2003-03-27 Amit Goyal Biaxially textured articles formed by powder metallurgy
US6610414B2 (en) * 2001-08-16 2003-08-26 Ut-Battelle, Llc Biaxially textured articles formed by power metallurgy
US20030211948A1 (en) * 2001-06-22 2003-11-13 Paranthaman M. Parans Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
US6670308B2 (en) * 2002-03-19 2003-12-30 Ut-Battelle, Llc Method of depositing epitaxial layers on a substrate
US20050092253A1 (en) * 2003-11-04 2005-05-05 Venkat Selvamanickam Tape-manufacturing system having extended operational capabilites
US20050123186A1 (en) * 2003-12-09 2005-06-09 Reeves Jodi L. Tape manufacturing system
US20050217568A1 (en) * 2004-03-30 2005-10-06 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
US20050223984A1 (en) * 2004-04-08 2005-10-13 Hee-Gyoun Lee Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20050223983A1 (en) * 2004-04-08 2005-10-13 Venkat Selvamanickam Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20060062900A1 (en) * 2004-09-21 2006-03-23 Venkat Selvamanickam Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20080274371A1 (en) * 2007-04-06 2008-11-06 American Superconductor Corporation Composite substrates for high temperature superconductors having improved properties
US20150031548A1 (en) * 2013-07-24 2015-01-29 Bruker Hts Gmbh Band-Shaped superconducting element with improved self-protection in case of quenching

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821338B2 (en) 2000-12-15 2004-11-23 The Regents Of The University Of California Particle beam biaxial orientation of a substrate for epitaxial crystal growth
US6809066B2 (en) 2001-07-30 2004-10-26 The Regents Of The University Of California Ion texturing methods and articles
US6745059B2 (en) 2001-11-28 2004-06-01 American Superconductor Corporation Superconductor cables and magnetic devices
US20040266628A1 (en) * 2003-06-27 2004-12-30 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
US7774035B2 (en) 2003-06-27 2010-08-10 Superpower, Inc. Superconducting articles having dual sided structures
US7463915B2 (en) 2004-08-20 2008-12-09 American Superconductor Corporation Stacked filamentary coated superconductors
US7582328B2 (en) 2004-08-20 2009-09-01 American Superconductor Corporation Dropwise deposition of a patterned oxide superconductor
US7496390B2 (en) 2004-08-20 2009-02-24 American Superconductor Corporation Low ac loss filamentary coated superconductors
WO2006137898A2 (en) 2004-10-01 2006-12-28 American Superconductor Corp. Thick superconductor films with improved performance
US7816303B2 (en) 2004-10-01 2010-10-19 American Superconductor Corporation Architecture for high temperature superconductor wire
WO2006110382A2 (en) 2005-03-31 2006-10-19 American Superconductor Corporation Mesh-type stabilizer for filamentary coated superconductors
KR100691061B1 (en) * 2005-08-30 2007-03-09 엘에스전선 주식회사 Substrate for superconducting wire and fabrication method thereof and superconducting wire
US7674751B2 (en) 2006-01-10 2010-03-09 American Superconductor Corporation Fabrication of sealed high temperature superconductor wires
WO2008118127A1 (en) 2006-07-21 2008-10-02 American Superconductor Corporation Low resistance splice for high temperature superconductor wires
US7902120B2 (en) 2006-07-24 2011-03-08 American Superconductor Corporation High temperature superconductors having planar magnetic flux pinning centers and methods for making the same
US7893006B2 (en) 2007-03-23 2011-02-22 American Superconductor Corporation Systems and methods for solution-based deposition of metallic cap layers for high temperature superconductor wires
US8195260B2 (en) 2008-07-23 2012-06-05 American Superconductor Corporation Two-sided splice for high temperature superconductor laminated wires
US8716188B2 (en) 2010-09-15 2014-05-06 Superpower, Inc. Structure to reduce electroplated stabilizer content

Citations (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1823938A (en) 1928-12-11 1931-09-22 M H Wilkens & Sohne Akt Ges Process for the production of silver plated metal articles such as table requisites
US2585613A (en) * 1949-08-16 1952-02-12 Driver Co Wilbur B Method of heat-treating electrical resistance alloy
US2739907A (en) 1950-07-20 1956-03-27 Nowak Rudolf Process for imparting an improved finish to the surface of metals by means of diffusion treatment
US3109331A (en) 1961-05-05 1963-11-05 Republic Steel Corp Method of texturing metal sheets
US3615917A (en) 1969-07-11 1971-10-26 Bethlehem Steel Corp Process for diffusing silicon into sheet steel
US3648355A (en) 1969-07-02 1972-03-14 Matsushita Electric Ind Co Ltd Method for making an electric contact material
US3692596A (en) * 1971-03-02 1972-09-19 Robert William Fraser Dispersion strengthened nickel-chromium alloys
US3700427A (en) 1969-07-11 1972-10-24 Gen Electric Powder for diffusion bonding of superalloy members
US3713211A (en) 1971-05-03 1973-01-30 Union Carbide Corp Method of fabricating a superconducting magnet
US3770497A (en) 1970-03-26 1973-11-06 Siemens Ag Method of producing a two layer contact piece
US3778237A (en) 1972-03-29 1973-12-11 Olin Corp Plated copper base alloy article
US3845543A (en) 1972-03-17 1974-11-05 Sprecher & Schuh Ag Method of producing a vacuum switch contact
CA967916A (en) 1972-07-11 1975-05-20 Frank P. Pendleton Vacuum and gravity feed and discharge system for a vibrating screen
US3982973A (en) * 1975-12-11 1976-09-28 The International Nickel Company, Inc. Cube textured nickel
US4024617A (en) 1973-03-06 1977-05-24 Ramsey Corporation Method of applying a refractory coating to metal substrate
US4105828A (en) 1976-02-02 1978-08-08 Siemens Aktiengesellschaft Low-current contact construction
US4145481A (en) 1977-08-03 1979-03-20 Howmet Turbine Components Corporation Process for producing elevated temperature corrosion resistant metal articles
US4148973A (en) * 1976-12-15 1979-04-10 Allied Chemical Corporation Homogeneous, ductile brazing foils
US4246321A (en) 1978-12-20 1981-01-20 Chugai Denki Kogya Kabushiki-Kaisha Ag-SnO Alloy composite electrical contact
US4283225A (en) * 1978-06-05 1981-08-11 Allied Chemical Corporation Process for fabricating homogeneous, ductile brazing foils and products produced thereby
US4367102A (en) 1980-01-22 1983-01-04 Siemens Aktiengesellschaft Method for the manufacture of a superconductor containing an intermetallic compounds
US4416916A (en) 1982-03-04 1983-11-22 Engelhard Corporation Thin film solar energy collector
US4431462A (en) 1982-06-07 1984-02-14 Engelhard Corporation Method of making multi-bonded silver-cadmium oxide material
US4537642A (en) 1983-01-19 1985-08-27 Sumitomo Electric Industries, Ltd. Method of manufacturing Al-stabilized superconductor
US4578320A (en) 1984-03-09 1986-03-25 Olin Corporation Copper-nickel alloys for brazed articles
US4640816A (en) 1984-08-31 1987-02-03 California Institute Of Technology Metastable alloy materials produced by solid state reaction of compacted, mechanically deformed mixtures
US4749628A (en) 1986-04-29 1988-06-07 International Business Machines Corporation Multilayered vertical magnetic recording medium
US4788082A (en) 1984-02-13 1988-11-29 Schmitt Jerome J Method and apparatus for the deposition of solid films of a material from a jet stream entraining the gaseous phase of said material
US4909859A (en) 1985-03-15 1990-03-20 Bbc Brown, Boveri & Company, Limited Process for increasing the oxidation resistance and corrosion resistance of a component made of a dispersion strengthened superalloy by a surface treatment
US4917967A (en) 1989-01-13 1990-04-17 Avon Products, Inc. Multiple-layered article and method of making same
US4927788A (en) 1987-04-08 1990-05-22 Dowa Mining Co., Ltd. Monolithic female connector
US4939308A (en) 1988-04-29 1990-07-03 Allied-Signal Inc. Method of forming crystallite-oriented superconducting ceramics by electrodeposition and thin film superconducting ceramic made thereby
EP0392659A2 (en) 1989-04-14 1990-10-17 General Atomics Nickel-based substrate for ceramic superconductor
US4980341A (en) 1988-02-26 1990-12-25 The General Electric Company, P.L.C. Method of fabricating grain boundary Josephson junction
US4990492A (en) 1989-01-03 1991-02-05 General Atomics Stress controlling superconductor wire
US4994435A (en) 1987-10-16 1991-02-19 The Furukawa Electric Co., Ltd. Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor
US4994633A (en) 1988-12-22 1991-02-19 General Atomics Bend-tolerant superconductor cable
US5019552A (en) 1990-02-20 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Long-laser-pulse method of producing thin films
US5047389A (en) 1988-10-31 1991-09-10 General Atomics Substrate for ceramic superconductor
US5057489A (en) 1990-09-21 1991-10-15 General Atomics Multifilamentary superconducting cable with transposition
US5059582A (en) 1989-03-22 1991-10-22 The Research Foundation Of State University Of Ny Superconductor-metal laminates and method of making
US5063200A (en) 1987-08-12 1991-11-05 Hitachi, Ltd. Ceramic superconductor article
US5074907A (en) 1989-08-16 1991-12-24 General Electric Company Method for developing enhanced texture in titanium alloys, and articles made thereby
US5089057A (en) 1989-09-15 1992-02-18 At&T Bell Laboratories Method for treating copper-based alloys and articles produced therefrom
US5102865A (en) 1988-10-31 1992-04-07 General Atomics Substrate for ceramic superconductor with improved barrier
US5108982A (en) 1988-12-22 1992-04-28 General Atomics Apparatus and method for manufacturing a ceramic superconductor coated metal fiber
US5110790A (en) 1988-11-10 1992-05-05 Martin Marietta Energy Systems, Inc. Superconducting thin films on potassium tantalate substrates
US5114087A (en) 1990-09-21 1992-05-19 General Atomics Fiber combiner for aligning filaments in a planar filament array
US5118663A (en) 1990-09-21 1992-06-02 General Atomics Fabrication of silver coated high temperature ceramic superconductor fiber with metal substrate
US5123586A (en) 1990-09-21 1992-06-23 General Atomics Process for soldering superconducting fibers into a copper channel
US5147849A (en) 1989-09-20 1992-09-15 Sumitomo Electric Industries, Ltd. Electrode for electrical connection to oxide superconductor and method for forming the same
US5149684A (en) 1991-04-09 1992-09-22 General Atomics Production of a superconductor powder having a narrow melting transition width using a controlled oxygen atmosphere
US5149681A (en) 1990-05-14 1992-09-22 General Atomics Melt texturing of long superconductor fibers
US5164360A (en) 1989-04-14 1992-11-17 General Atomics Nickel-based substrate for ceramic superconductor
US5198043A (en) 1991-07-22 1993-03-30 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Making amorphous and crystalline alloys by solid state interdiffusion
US5200391A (en) 1990-09-24 1993-04-06 General Atomics Method and apparatus for fabricating a multifilamentary wire
US5204313A (en) 1990-12-07 1993-04-20 Eastman Kodak Company Process of forming a high temperature superconductor on a metal substrate surface
US5206216A (en) 1989-05-19 1993-04-27 Sumitomo Electric Industries, Ltd. Method for fabricating oxide superconducting wires by laser ablation
US5212148A (en) 1988-05-11 1993-05-18 Siemens Aktiengesellschaft Method for manufacturing oxide superconducting films by laser evaporation
US5225031A (en) 1991-04-10 1993-07-06 Martin Marietta Energy Systems, Inc. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process
US5231074A (en) 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
EP0341788B1 (en) 1988-05-13 1993-08-11 ENICHEM S.p.A. High-current-density superconductor thin films and methods for their production
US5238752A (en) 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5248662A (en) 1991-01-31 1993-09-28 Sumitomo Electric Industries Laser ablation method of preparing oxide superconducting films on elongated substrates
US5256205A (en) 1990-05-09 1993-10-26 Jet Process Corporation Microwave plasma assisted supersonic gas jet deposition of thin film materials
US5258364A (en) 1987-10-07 1993-11-02 Semiconductor Energy Laboratory Co., Ltd. Method of shaping superconducting oxide material
US5270294A (en) 1991-12-27 1993-12-14 The United States Of America As Represented By The United States Department Of Energy Free-standing oxide superconducting articles
US5273959A (en) 1992-11-04 1993-12-28 National Research Council Of Canada Alloy for HTSC composite conductors made of Au-Ag-Pd
US5290761A (en) 1992-10-19 1994-03-01 E. I. Du Pont De Nemours And Company Process for making oxide superconducting films by pulsed excimer laser ablation
US5312804A (en) 1991-10-29 1994-05-17 Alcatel Cable Method of fabricating a superconductive flexible ceramic conductor having a high critical temperature
US5330966A (en) 1990-03-08 1994-07-19 Sumitomo Electric Industries, Inc. Method of preparing 2223 phase (Bi,Pb)-Sr-Ca-Cu-O superconducting films
US5340792A (en) 1987-07-28 1994-08-23 Energy Conversion Devices, Inc. Method of aligning the discrete grains of a multi-grained super-conducting material
US5356672A (en) 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
US5356673A (en) 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
US5360784A (en) 1991-08-23 1994-11-01 Mitsubishi Materials Corporation Method for manufacturing an oxide superconducting tape
US5372089A (en) 1992-07-30 1994-12-13 Sumitomo Electric Industries, Ltd. Method of forming single-crystalline thin film
US5378683A (en) 1991-04-23 1995-01-03 Thomson-Csf Josephson junction structure
US5379019A (en) 1993-10-12 1995-01-03 General Electric Company Apparatus for embossing superconducting tape for use in a superconducting magnet
EP0410373B1 (en) 1989-07-24 1995-01-04 The Furukawa Electric Co., Ltd. Method for forming a superconducting circuit
US5426092A (en) 1990-08-20 1995-06-20 Energy Conversion Devices, Inc. Continuous or semi-continuous laser ablation method for depositing fluorinated superconducting thin film having basal plane alignment of the unit cells deposited on non-lattice-matched substrates
US5427866A (en) 1994-03-28 1995-06-27 General Electric Company Platinum, rhodium, or palladium protective coatings in thermal barrier coating systems
US5432151A (en) 1993-07-12 1995-07-11 Regents Of The University Of California Process for ion-assisted laser deposition of biaxially textured layer on substrate
US5434130A (en) 1991-03-20 1995-07-18 Sumitomo Electric Industries, Ltd. Method of preparing oxide superconducting wire
US5439877A (en) 1990-12-07 1995-08-08 E. I. Du Pont De Nemours And Company Process for depositing high temperature superconducting oxide thin films
US5470668A (en) 1994-03-31 1995-11-28 The Regents Of The University Of Calif. Metal oxide films on metal
US5482578A (en) 1992-04-29 1996-01-09 Walbar Inc. Diffusion coating process
US5516484A (en) 1991-07-09 1996-05-14 Mitsubishi Denki Kabushiki Kaisha Copper-nickel-tin based alloy
US5527765A (en) 1993-01-29 1996-06-18 Illinois Superconductor Corporation Superconducting YBa2 Cu3 O7-x produced at low temperatures
US5545612A (en) 1987-10-27 1996-08-13 Kabushiki Kaisha Toshiba Superconductor element and method of manufacturing the same
US5571332A (en) 1995-02-10 1996-11-05 Jet Process Corporation Electron jet vapor deposition system
US5629268A (en) 1991-03-28 1997-05-13 Sumitomo Electric Industries, Ltd. Process for preparing a layered superconducting structure
US5645893A (en) 1994-12-24 1997-07-08 Rolls-Royce Plc Thermal barrier coating for a superalloy article and method of application
US5648321A (en) 1992-09-11 1997-07-15 International Business Machines Corporation Process for manufacturing thin films by multi-layer deposition
US5650378A (en) 1992-10-02 1997-07-22 Fujikura Ltd. Method of making polycrystalline thin film and superconducting oxide body
US5660746A (en) 1994-10-24 1997-08-26 University Of South Florida Dual-laser process for film deposition
US5667663A (en) 1994-12-24 1997-09-16 Chromalloy United Kingdom Limited Method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating
US5672569A (en) 1990-10-31 1997-09-30 Sumitomo Electric Industries, Ltd. Process for fabricating a superconducting circuit
US5693140A (en) 1993-07-30 1997-12-02 Lockheed Martin Energy Systems, Inc. Process for growing a film epitaxially upon a MgO surface
US5696392A (en) 1992-09-14 1997-12-09 Conductus, Inc. Barrier layers for oxide superconductor devices and circuits
US5703341A (en) 1993-11-23 1997-12-30 Lockheed Martin Energy Systems, Inc. Method for adhesion of metal films to ceramics
US5739086A (en) 1995-04-10 1998-04-14 Lockheed Martin Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5872081A (en) 1995-04-07 1999-02-16 General Atomics Compositions for melt processing high temperature superconductor
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
DE19501223C2 (en) 1995-01-17 1999-12-30 Korea Machinery & Metal Inst Use of a copper-chrome-zirconium-cer-lanthanum alloy for welding electrodes
US6022832A (en) * 1997-09-23 2000-02-08 American Superconductor Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6027564A (en) 1997-09-23 2000-02-22 American Superconductor Corporation Low vacuum vapor process for producing epitaxial layers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965841B2 (en) * 1993-11-13 1999-10-18 株式会社神戸製鋼所 Method of manufacturing forged Ni-base superalloy product
FR2745298B1 (en) * 1996-02-27 1998-04-24 Imphy Sa IRON-NICKEL ALLOY AND COLD-ROLLED TAPE WITH CUBIC TEXTURE
AU740508B2 (en) * 1997-10-01 2001-11-08 American Superconductor Corporation Substrates with improved oxidation resistance
US6458223B1 (en) * 1997-10-01 2002-10-01 American Superconductor Corporation Alloy materials

Patent Citations (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1823938A (en) 1928-12-11 1931-09-22 M H Wilkens & Sohne Akt Ges Process for the production of silver plated metal articles such as table requisites
US2585613A (en) * 1949-08-16 1952-02-12 Driver Co Wilbur B Method of heat-treating electrical resistance alloy
US2739907A (en) 1950-07-20 1956-03-27 Nowak Rudolf Process for imparting an improved finish to the surface of metals by means of diffusion treatment
US3109331A (en) 1961-05-05 1963-11-05 Republic Steel Corp Method of texturing metal sheets
US3648355A (en) 1969-07-02 1972-03-14 Matsushita Electric Ind Co Ltd Method for making an electric contact material
US3615917A (en) 1969-07-11 1971-10-26 Bethlehem Steel Corp Process for diffusing silicon into sheet steel
US3700427A (en) 1969-07-11 1972-10-24 Gen Electric Powder for diffusion bonding of superalloy members
US3770497A (en) 1970-03-26 1973-11-06 Siemens Ag Method of producing a two layer contact piece
US3692596A (en) * 1971-03-02 1972-09-19 Robert William Fraser Dispersion strengthened nickel-chromium alloys
US3713211A (en) 1971-05-03 1973-01-30 Union Carbide Corp Method of fabricating a superconducting magnet
US3845543A (en) 1972-03-17 1974-11-05 Sprecher & Schuh Ag Method of producing a vacuum switch contact
US3778237A (en) 1972-03-29 1973-12-11 Olin Corp Plated copper base alloy article
CA967916A (en) 1972-07-11 1975-05-20 Frank P. Pendleton Vacuum and gravity feed and discharge system for a vibrating screen
US4024617A (en) 1973-03-06 1977-05-24 Ramsey Corporation Method of applying a refractory coating to metal substrate
US3982973A (en) * 1975-12-11 1976-09-28 The International Nickel Company, Inc. Cube textured nickel
US4105828A (en) 1976-02-02 1978-08-08 Siemens Aktiengesellschaft Low-current contact construction
US4148973A (en) * 1976-12-15 1979-04-10 Allied Chemical Corporation Homogeneous, ductile brazing foils
US4145481A (en) 1977-08-03 1979-03-20 Howmet Turbine Components Corporation Process for producing elevated temperature corrosion resistant metal articles
US4283225A (en) * 1978-06-05 1981-08-11 Allied Chemical Corporation Process for fabricating homogeneous, ductile brazing foils and products produced thereby
US4246321A (en) 1978-12-20 1981-01-20 Chugai Denki Kogya Kabushiki-Kaisha Ag-SnO Alloy composite electrical contact
US4367102A (en) 1980-01-22 1983-01-04 Siemens Aktiengesellschaft Method for the manufacture of a superconductor containing an intermetallic compounds
US4416916A (en) 1982-03-04 1983-11-22 Engelhard Corporation Thin film solar energy collector
US4431462A (en) 1982-06-07 1984-02-14 Engelhard Corporation Method of making multi-bonded silver-cadmium oxide material
US4537642A (en) 1983-01-19 1985-08-27 Sumitomo Electric Industries, Ltd. Method of manufacturing Al-stabilized superconductor
US4788082A (en) 1984-02-13 1988-11-29 Schmitt Jerome J Method and apparatus for the deposition of solid films of a material from a jet stream entraining the gaseous phase of said material
US4578320A (en) 1984-03-09 1986-03-25 Olin Corporation Copper-nickel alloys for brazed articles
US4640816A (en) 1984-08-31 1987-02-03 California Institute Of Technology Metastable alloy materials produced by solid state reaction of compacted, mechanically deformed mixtures
US4909859A (en) 1985-03-15 1990-03-20 Bbc Brown, Boveri & Company, Limited Process for increasing the oxidation resistance and corrosion resistance of a component made of a dispersion strengthened superalloy by a surface treatment
US4749628A (en) 1986-04-29 1988-06-07 International Business Machines Corporation Multilayered vertical magnetic recording medium
US4927788A (en) 1987-04-08 1990-05-22 Dowa Mining Co., Ltd. Monolithic female connector
US5340792A (en) 1987-07-28 1994-08-23 Energy Conversion Devices, Inc. Method of aligning the discrete grains of a multi-grained super-conducting material
US5063200A (en) 1987-08-12 1991-11-05 Hitachi, Ltd. Ceramic superconductor article
US5258364A (en) 1987-10-07 1993-11-02 Semiconductor Energy Laboratory Co., Ltd. Method of shaping superconducting oxide material
US4994435A (en) 1987-10-16 1991-02-19 The Furukawa Electric Co., Ltd. Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor
US5545612A (en) 1987-10-27 1996-08-13 Kabushiki Kaisha Toshiba Superconductor element and method of manufacturing the same
US4980341A (en) 1988-02-26 1990-12-25 The General Electric Company, P.L.C. Method of fabricating grain boundary Josephson junction
US4939308A (en) 1988-04-29 1990-07-03 Allied-Signal Inc. Method of forming crystallite-oriented superconducting ceramics by electrodeposition and thin film superconducting ceramic made thereby
US5212148A (en) 1988-05-11 1993-05-18 Siemens Aktiengesellschaft Method for manufacturing oxide superconducting films by laser evaporation
EP0341788B1 (en) 1988-05-13 1993-08-11 ENICHEM S.p.A. High-current-density superconductor thin films and methods for their production
US5102865A (en) 1988-10-31 1992-04-07 General Atomics Substrate for ceramic superconductor with improved barrier
US5047389A (en) 1988-10-31 1991-09-10 General Atomics Substrate for ceramic superconductor
US5110790A (en) 1988-11-10 1992-05-05 Martin Marietta Energy Systems, Inc. Superconducting thin films on potassium tantalate substrates
US5108982A (en) 1988-12-22 1992-04-28 General Atomics Apparatus and method for manufacturing a ceramic superconductor coated metal fiber
US4994633A (en) 1988-12-22 1991-02-19 General Atomics Bend-tolerant superconductor cable
US4990492A (en) 1989-01-03 1991-02-05 General Atomics Stress controlling superconductor wire
US4917967A (en) 1989-01-13 1990-04-17 Avon Products, Inc. Multiple-layered article and method of making same
US5059582A (en) 1989-03-22 1991-10-22 The Research Foundation Of State University Of Ny Superconductor-metal laminates and method of making
US5006507A (en) 1989-04-14 1991-04-09 General Atomics Nickel-based substrate for ceramic superconductor
EP0392659A2 (en) 1989-04-14 1990-10-17 General Atomics Nickel-based substrate for ceramic superconductor
US5164360A (en) 1989-04-14 1992-11-17 General Atomics Nickel-based substrate for ceramic superconductor
US5206216A (en) 1989-05-19 1993-04-27 Sumitomo Electric Industries, Ltd. Method for fabricating oxide superconducting wires by laser ablation
EP0410373B1 (en) 1989-07-24 1995-01-04 The Furukawa Electric Co., Ltd. Method for forming a superconducting circuit
US5074907A (en) 1989-08-16 1991-12-24 General Electric Company Method for developing enhanced texture in titanium alloys, and articles made thereby
US5089057A (en) 1989-09-15 1992-02-18 At&T Bell Laboratories Method for treating copper-based alloys and articles produced therefrom
US5147849A (en) 1989-09-20 1992-09-15 Sumitomo Electric Industries, Ltd. Electrode for electrical connection to oxide superconductor and method for forming the same
US5240905A (en) 1989-09-20 1993-08-31 Sumitomo Electric Industries, Ltd. Method for forming electrode for electrical connections to oxide super-conductor
US5019552A (en) 1990-02-20 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Long-laser-pulse method of producing thin films
US5330966A (en) 1990-03-08 1994-07-19 Sumitomo Electric Industries, Inc. Method of preparing 2223 phase (Bi,Pb)-Sr-Ca-Cu-O superconducting films
US5231074A (en) 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
US5238752A (en) 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US5356672A (en) 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
US5256205A (en) 1990-05-09 1993-10-26 Jet Process Corporation Microwave plasma assisted supersonic gas jet deposition of thin film materials
US5149681A (en) 1990-05-14 1992-09-22 General Atomics Melt texturing of long superconductor fibers
US5426092A (en) 1990-08-20 1995-06-20 Energy Conversion Devices, Inc. Continuous or semi-continuous laser ablation method for depositing fluorinated superconducting thin film having basal plane alignment of the unit cells deposited on non-lattice-matched substrates
US5123586A (en) 1990-09-21 1992-06-23 General Atomics Process for soldering superconducting fibers into a copper channel
US5057489A (en) 1990-09-21 1991-10-15 General Atomics Multifilamentary superconducting cable with transposition
US5114087A (en) 1990-09-21 1992-05-19 General Atomics Fiber combiner for aligning filaments in a planar filament array
US5118663A (en) 1990-09-21 1992-06-02 General Atomics Fabrication of silver coated high temperature ceramic superconductor fiber with metal substrate
US5200391A (en) 1990-09-24 1993-04-06 General Atomics Method and apparatus for fabricating a multifilamentary wire
US5672569A (en) 1990-10-31 1997-09-30 Sumitomo Electric Industries, Ltd. Process for fabricating a superconducting circuit
US5439877A (en) 1990-12-07 1995-08-08 E. I. Du Pont De Nemours And Company Process for depositing high temperature superconducting oxide thin films
US5204313A (en) 1990-12-07 1993-04-20 Eastman Kodak Company Process of forming a high temperature superconductor on a metal substrate surface
US5248662A (en) 1991-01-31 1993-09-28 Sumitomo Electric Industries Laser ablation method of preparing oxide superconducting films on elongated substrates
US5356673A (en) 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
US5434130A (en) 1991-03-20 1995-07-18 Sumitomo Electric Industries, Ltd. Method of preparing oxide superconducting wire
US5629268A (en) 1991-03-28 1997-05-13 Sumitomo Electric Industries, Ltd. Process for preparing a layered superconducting structure
US5149684A (en) 1991-04-09 1992-09-22 General Atomics Production of a superconductor powder having a narrow melting transition width using a controlled oxygen atmosphere
US5225031A (en) 1991-04-10 1993-07-06 Martin Marietta Energy Systems, Inc. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process
US5378683A (en) 1991-04-23 1995-01-03 Thomson-Csf Josephson junction structure
US5516484A (en) 1991-07-09 1996-05-14 Mitsubishi Denki Kabushiki Kaisha Copper-nickel-tin based alloy
US5198043A (en) 1991-07-22 1993-03-30 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Making amorphous and crystalline alloys by solid state interdiffusion
US5360784A (en) 1991-08-23 1994-11-01 Mitsubishi Materials Corporation Method for manufacturing an oxide superconducting tape
US5312804A (en) 1991-10-29 1994-05-17 Alcatel Cable Method of fabricating a superconductive flexible ceramic conductor having a high critical temperature
US5270294A (en) 1991-12-27 1993-12-14 The United States Of America As Represented By The United States Department Of Energy Free-standing oxide superconducting articles
US5482578A (en) 1992-04-29 1996-01-09 Walbar Inc. Diffusion coating process
US5372089A (en) 1992-07-30 1994-12-13 Sumitomo Electric Industries, Ltd. Method of forming single-crystalline thin film
US5648321A (en) 1992-09-11 1997-07-15 International Business Machines Corporation Process for manufacturing thin films by multi-layer deposition
US5696392A (en) 1992-09-14 1997-12-09 Conductus, Inc. Barrier layers for oxide superconductor devices and circuits
US5650378A (en) 1992-10-02 1997-07-22 Fujikura Ltd. Method of making polycrystalline thin film and superconducting oxide body
US5290761A (en) 1992-10-19 1994-03-01 E. I. Du Pont De Nemours And Company Process for making oxide superconducting films by pulsed excimer laser ablation
US5273959A (en) 1992-11-04 1993-12-28 National Research Council Of Canada Alloy for HTSC composite conductors made of Au-Ag-Pd
US5527765A (en) 1993-01-29 1996-06-18 Illinois Superconductor Corporation Superconducting YBa2 Cu3 O7-x produced at low temperatures
US5432151A (en) 1993-07-12 1995-07-11 Regents Of The University Of California Process for ion-assisted laser deposition of biaxially textured layer on substrate
US5693140A (en) 1993-07-30 1997-12-02 Lockheed Martin Energy Systems, Inc. Process for growing a film epitaxially upon a MgO surface
US5379019A (en) 1993-10-12 1995-01-03 General Electric Company Apparatus for embossing superconducting tape for use in a superconducting magnet
US5703341A (en) 1993-11-23 1997-12-30 Lockheed Martin Energy Systems, Inc. Method for adhesion of metal films to ceramics
US5427866A (en) 1994-03-28 1995-06-27 General Electric Company Platinum, rhodium, or palladium protective coatings in thermal barrier coating systems
US5470668A (en) 1994-03-31 1995-11-28 The Regents Of The University Of Calif. Metal oxide films on metal
US5660746A (en) 1994-10-24 1997-08-26 University Of South Florida Dual-laser process for film deposition
US5667663A (en) 1994-12-24 1997-09-16 Chromalloy United Kingdom Limited Method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating
US5645893A (en) 1994-12-24 1997-07-08 Rolls-Royce Plc Thermal barrier coating for a superalloy article and method of application
DE19501223C2 (en) 1995-01-17 1999-12-30 Korea Machinery & Metal Inst Use of a copper-chrome-zirconium-cer-lanthanum alloy for welding electrodes
US5571332A (en) 1995-02-10 1996-11-05 Jet Process Corporation Electron jet vapor deposition system
US5872081A (en) 1995-04-07 1999-02-16 General Atomics Compositions for melt processing high temperature superconductor
US5739086A (en) 1995-04-10 1998-04-14 Lockheed Martin Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5741377A (en) 1995-04-10 1998-04-21 Martin Marietta Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5968877A (en) 1995-04-10 1999-10-19 Lockheed Martin Energy Research Corp High Tc YBCO superconductor deposited on biaxially textured Ni substrate
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
US6022832A (en) * 1997-09-23 2000-02-08 American Superconductor Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6027564A (en) 1997-09-23 2000-02-22 American Superconductor Corporation Low vacuum vapor process for producing epitaxial layers

Non-Patent Citations (33)

* Cited by examiner, † Cited by third party
Title
ASM Handbook vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ed. by Davis et al, pub. by ASM International, 1992, p. 436.* *
Baxter et al., "Artifacts in Transmission Electron Microscope Images of Artificially Layered Metallic Superlattices," Applied Physics Letters 48: 1202-1204 (1986).
Brick et al., "Effects of Various Solute Elements on the Hardness and Rolling Textures of Copper," Transactions of the A.S.M. 31:675-699 (1943).
Budai et al., "In-Plane Alignment of YbaCuO Films on Metal Substrates and Buffer Layers,"H13.52, p. 272.
Budai et al., "In-Plane Epitaxial Alignment of Yba2Cu3 O 7-x Films Grown on Silver Crystals and Buffer Layers," Appl. Phys. Letter. 62: 1836-1838 (1993).
Christen et al., "Transport Critical Currents in Epitaxial Y1Ba2Cu3O 7-x Thin Films," Proceedings of International Conference on Materials and Mechanisms of Superconductivity High-Temperature Superconductors, Stanford, CA (Jul. 1989).
Detert et al., Zeitschrift fur Metalkunde, vol. 54, pp. 263-270 (1963) (English Translation).
Detert et al., Zeitschrift fur Metallkunde, vol. 54, pp. 263-270 (1963) (German Version).
Dillamore and Roberts, Metallurgic Reviews vol. 10, pp. 271-377 (1965).
Dionne et al., "Magnetic and Stress Characterization of Nickel Ferrite Ceramic Films Grown by Jet Vapor Deposition,".
Doi et al., "A New Type of Superconducting Wire; Biaxially Oriented T11 (Ba08Sr0.2)2 Ca2Cu3O9 on [100] <100> Textured Silver Tape," Advances in Superconductivity VII, 817-820.
Eom et al., "Frequency Stabilization of a 612 nm He-Ne Laser in a Transverse Magnetic Field," Appl. Phys. Lett. 57: 739-740 (1990).
Feldman et al., "Epitaxial Growth of A15 Nb3Si," IEEE Transactions on Magnetics 1: 545-548 (1981).
Final Report dated Apr. 22, 1996.
Ginsbach et al., "Electrical and Structural Properties of Yba2Cu3O7 Films on PO and Single Crystalline Oxides of Cu and Ni2" Physica 185-189: 2111-2112 (1991).
Ginsbach et al., "Growth of C-Axis Oriented YbaCuO Films on Oxidized Textured Ni Sheets and on (100) and (110) Oriented NiO Single Crystals," IEEE Transactions on Magnetics 27: 1410-1413 (1991).
Goldbacker et al., "Biaxially Textured Substrate Tapes of Cu, Ni, Alloyed Ni, (Ag) for YBCO Films," Applied Superconductivity, The Netherlands, Jun. 30, 1997.
Goler and Sachs, Zeitschrift fur Physik, vol. 59, pp. 477-484 (1929) (English Translation).
Goler and Sachs, Zeitschrift fur Physik, vol. 59, pp. 477-484 (1929) (German Version).
Goler and Sachs, Zeitschrift fur Physik, vol. 59, pp. 485-494 (1929) (English Translation).
Goler and Sachs, Zeitschrift fur Physik, vol. 59, pp. 485-494 (1929) (German Version).
Goyal, A., "Advances in Processing High-Tc Superconductors for Bulk Applications," JOM 11 (1994).
Goyal, A., "Progress Toward Bulk Application of High-Tc Superconductors," JOM 55 (1995).
Norton et al., "Epitaxial Yba2Cu3O7 on Biaxially Textured Nickel (001): An Approach to Superconducting Tapes with High Critical Current Density," Science 274: 755-757 (1996).
Norton et al., "Superconducting Transport Properties and Surface Microstructure for Yba2Cu3O7-8-Based Superlattices Grown by Pulsed Laser Deposition," Workshop on Laser Ablation Mechanism and Applications, May 1991.
Norton et al., "Yba2Cu3)7-x Thin Film Growth on Single Crystal and Polycrystalline Yttria-Stabilized Zirconia," Conference on Science and Technology of Thin-Film Superconductors, Apr. 1990.
Sadakata et al., "Preparation of Aligned High Tc Superconducting composite Tape by Laser Deposition Process on Metallic Substrate," Symposium on Superconductor Stability, Yokohama, Japan, Nov. 13-15, 1990.
Schlom et al., "Origin of the PHIsquare±9° Peaks in Yba2Cu3O7-8 Films Grown on Cubic Zicronia Substrates," H13.49, p. 272.
Schlom et al., "Origin of the Φ□±9° Peaks in Yba2Cu3O7-8 Films Grown on Cubic Zicronia Substrates," H13.49, p. 272.
Smallman et al., "Advances in the Theory of Deformation and Recrystallization Texture Formation," Materials Science and Engineering A184: 97-112 (1994).
Undated Report, JVD Process Nickel Ferrite, Date unavailable.
Yoshida et al., "Y-Ba-Cu-O Films Grown on Flexible Polycrystalline Substrates by Excimer Laser Ablation," Advances in Superconductivity III, Proceedings of the 3rd International Symposium on Superconductivity (ISS '90), Nov. 6-9, 1990, Sendai.
Yoshino et al., "Improvement of In-Plane Aligment of Grains in YBCO Films on Ag Tapes," Advances in Superconductivity VI, pp. 759-762.

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607839B2 (en) * 2000-05-15 2003-08-19 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6846344B2 (en) 2000-05-15 2005-01-25 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US20030066388A1 (en) * 2000-05-15 2003-04-10 Amit Goyal Biaxially textured articles formed by powder metallurgy
US6599346B2 (en) 2000-05-15 2003-07-29 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6602313B2 (en) * 2000-05-15 2003-08-05 Ut Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6607838B2 (en) * 2000-05-15 2003-08-19 Amit Goyal Biaxially textured articles formed by powder metallurgy
US20030056858A1 (en) * 2000-05-15 2003-03-27 Amit Goyal Biaxially textured articles formed by powder metallurgy
US6797030B2 (en) 2000-05-15 2004-09-28 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6902600B2 (en) 2000-05-15 2005-06-07 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6635097B2 (en) 2000-05-15 2003-10-21 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6610413B2 (en) * 2000-05-15 2003-08-26 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6890369B2 (en) 2000-05-15 2005-05-10 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US6790253B2 (en) 2000-05-15 2004-09-14 Ut-Battelle, Llc Biaxially textured articles formed by powder metallurgy
US20020170460A1 (en) * 2000-10-24 2002-11-21 Goodrich Gary D. Chrome coating composition
US20030211948A1 (en) * 2001-06-22 2003-11-13 Paranthaman M. Parans Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
US6956012B2 (en) * 2001-06-22 2005-10-18 Ut-Battelle, Llc Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
US6610414B2 (en) * 2001-08-16 2003-08-26 Ut-Battelle, Llc Biaxially textured articles formed by power metallurgy
US6670308B2 (en) * 2002-03-19 2003-12-30 Ut-Battelle, Llc Method of depositing epitaxial layers on a substrate
US20050092253A1 (en) * 2003-11-04 2005-05-05 Venkat Selvamanickam Tape-manufacturing system having extended operational capabilites
US7914848B2 (en) 2003-11-04 2011-03-29 Superpower, Inc. Tape-manufacturing system having extended operational capabilities
US20060231033A1 (en) * 2003-11-04 2006-10-19 Superpower, Inc. Tape-manufacturing system having extended operational capabilities
US20050123186A1 (en) * 2003-12-09 2005-06-09 Reeves Jodi L. Tape manufacturing system
US7805173B2 (en) 2003-12-09 2010-09-28 Superpower, Inc. Tape manufacturing system
US7146034B2 (en) 2003-12-09 2006-12-05 Superpower, Inc. Tape manufacturing system
US20070093376A1 (en) * 2003-12-09 2007-04-26 Superpower, Inc. Tape manufacturing system
US7261776B2 (en) 2004-03-30 2007-08-28 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
US20050217568A1 (en) * 2004-03-30 2005-10-06 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
US20100009064A1 (en) * 2004-04-08 2010-01-14 Superpower, Inc. Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20050223983A1 (en) * 2004-04-08 2005-10-13 Venkat Selvamanickam Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20050223984A1 (en) * 2004-04-08 2005-10-13 Hee-Gyoun Lee Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US7910155B2 (en) 2004-04-08 2011-03-22 Superpower, Inc. Method for manufacturing high temperature superconducting conductor
US8268386B2 (en) 2004-04-08 2012-09-18 Superpower Inc. Method for manufacturing high-temperature superconducting conductors
US7387811B2 (en) 2004-09-21 2008-06-17 Superpower, Inc. Method for manufacturing high temperature superconducting conductors using chemical vapor deposition (CVD)
US20060062900A1 (en) * 2004-09-21 2006-03-23 Venkat Selvamanickam Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20080274371A1 (en) * 2007-04-06 2008-11-06 American Superconductor Corporation Composite substrates for high temperature superconductors having improved properties
US8114526B2 (en) 2007-04-06 2012-02-14 American Superconductor Corporation Composite substrates for high temperature superconductors having improved properties
US20150031548A1 (en) * 2013-07-24 2015-01-29 Bruker Hts Gmbh Band-Shaped superconducting element with improved self-protection in case of quenching
US9640979B2 (en) * 2013-07-24 2017-05-02 Bruker H I S GmbH Band-shaped superconducting element with improved self-protection in case of quenching

Also Published As

Publication number Publication date
AU758847B2 (en) 2003-04-03
WO2000058530A1 (en) 2000-10-05
JP2002540295A (en) 2002-11-26
AU5266500A (en) 2000-10-16
CA2365880A1 (en) 2000-10-05
EP1165849A1 (en) 2002-01-02
NZ514581A (en) 2003-03-28
EP1165849A4 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
US6475311B1 (en) Alloy materials
US6428635B1 (en) Substrates for superconductors
US6458223B1 (en) Alloy materials
AU740508B2 (en) Substrates with improved oxidation resistance
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
US6730410B1 (en) Surface control alloy substrates and methods of manufacture therefor
JP5415696B2 (en) Thick film superconducting film with improved functions
JP5799081B2 (en) Thick oxide film with single layer coating
JP2008514545A5 (en)
EP0977283B1 (en) Substrate materials for oxide superconductors
WO2004088677A1 (en) Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
US5273959A (en) Alloy for HTSC composite conductors made of Au-Ag-Pd
RU2451766C1 (en) Method for biaxial textured substrate production from binary alloy on basis of nickel for epitaxial application of buffer and high-temperature superconductive layers for ribbon superconductors to substrate
Bellingeri et al. Electrodeposition of biaxially aligned Tl-based superconductors on Ag tapes
Goyal Epitaxial superconductors on rolling-assisted-biaxially-textured-substrates (RABiTS)
Bellingeri et al. Electrodeposition of biaxially aligned TL-based superconductors on AG tapes
Genoud et al. Material developments in Ag/Bi, Pb (2223), Ag/RE (123) and Ag/Tl (1223) tapes: texture in HTS

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMERICAN SUPERCONDUCTOR CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRITZEMEIER, LESLIE G.;THIEME, CORNELIS LEO HANS;THOMPSON, ELLIOTT D.;REEL/FRAME:010011/0334

Effective date: 19990604

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20141105