US6258285B1 - Method of manufacture of a pump action refill ink jet printer - Google Patents

Method of manufacture of a pump action refill ink jet printer Download PDF

Info

Publication number
US6258285B1
US6258285B1 US09/113,123 US11312398A US6258285B1 US 6258285 B1 US6258285 B1 US 6258285B1 US 11312398 A US11312398 A US 11312398A US 6258285 B1 US6258285 B1 US 6258285B1
Authority
US
United States
Prior art keywords
ink
actuator
nozzle
layer
ink jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/113,123
Inventor
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zamtec Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPO7991A external-priority patent/AUPO799197A0/en
Priority claimed from AUPO8078A external-priority patent/AUPO807897A0/en
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Assigned to SILVERBROOK RESEARCH PTY LTD reassignment SILVERBROOK RESEARCH PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK, KIA
Application granted granted Critical
Publication of US6258285B1 publication Critical patent/US6258285B1/en
Assigned to ZAMTEC LIMITED reassignment ZAMTEC LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVERBROOK RESEARCH PTY. LIMITED AND CLAMATE PTY LIMITED
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1635Manufacturing processes dividing the wafer into individual chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1637Manufacturing processes molding
    • B41J2/1639Manufacturing processes molding sacrificial molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1642Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1648Production of print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2002/041Electromagnetic transducer

Definitions

  • the present invention relates to the manufacture of ink jet print heads and, in particular, discloses a method of manufacture of a Pump Action Refill Ink Jet Printer.
  • esoteric techniques are also often utilised. These can include electroforming of nickel stage (Hewlett-Packard Journal, Vol. 36 no 5, pp33-37 (1985)), electro-discharge machining, laser ablation (U.S. Pat. No. 5,208,604), micro-punching, etc.
  • a method of manufacturing a pump action refill ink jet print head wherein an array of nozzles are formed on a substrate utilising planar monolithic deposition, lithographic and etching processes.
  • multiple ink jet heads are formed simultaneously on a single planar substrate such as a silicon wafer.
  • the print heads can be formed utilising standard vlsi/ulsi processing and can include integrated drive electronics formed on the same substrate.
  • the drive electronics preferably are of a CMOS type.
  • ink can be ejected from the substrate substantially normal to the substrate.
  • FIG. 1 is a cross-sectional schematic diagram of the inkjet nozzle chamber in its quiescent state
  • FIG. 2 is a cross-sectional schematic diagram of the inkjet nozzle chamber during activation of the first actuator to eject ink;
  • FIG. 3 is a cross-sectional schematic diagram of the inkjet nozzle chamber after deactivation of the first actuator
  • FIG. 4 is a cross-sectional schematic diagram of the inkjet nozzle chamber during activation of the second actuator to refill the chamber;
  • FIG. 5 is a cross-sectional schematic diagram of the inkjet nozzle chamber after deactivation of the actuator to refill the chamber;
  • FIG. 6 is a cross-sectional schematic diagram of the inkjet nozzle chamber during simultaneous activation of the ejection actuator and deactivation of the pump actuator;
  • FIG. 7 is a top view cross-sectional diagram of the inkjet nozzle chamber
  • FIG. 8 is an exploded perspective view illustrating the construction of the inkjet nozzle chamber in accordance with the preferred embodiment
  • FIG. 9 provides a legend of the materials indicated in FIGS. 10 to 22 ;
  • FIG. 10 shows a sectional side view of an initial manufacturing step of an ink jet printhead nozzle showing a silicon wafer with a buried epitaxial layer and an electrical circuitry layer;
  • FIG. 11 shows a step of etching the electrical circuitry layer
  • FIG. 12 shows a step of crystallographically etching the exposed silicon layer
  • FIG. 13 shows a step of depositing a barrier layer
  • FIG. 14 shows a step of depositing a sacrificial layer
  • FIG. 15 shows a step of etching the sacrificial layer and a subsequently deposited polymer layer
  • FIG. 16 shows a step of depositing a thermally conductive layer and patterning thereof
  • FIG. 17 shows a step of etching the first polymer layer and a subsequently deposited, second polymer layer
  • FIG. 18 shows a step of back-etching the wafer
  • FIG. 19 shows a step of back-etching the boron doped silicon layer
  • FIG. 20 shows a step of back-etching through the boron doped silicon layer
  • FIG. 21 shows a step of etching sacrificial material
  • FIG. 22 shows a step of filling the completed ink jet nozzle with ink.
  • each nozzle chamber has a nozzle ejection port and further includes two thermal actuators.
  • the first thermal actuator is utilised for the ejection of ink from the nozzle chamber while a second thermal actuator is utilised for pumping ink into the nozzle chamber for rapid ejection of subsequent drops.
  • ink chamber refill is a result of surface tension effects of drawing ink into a nozzle chamber.
  • the nozzle chamber refill is assisted by an actuator which pumps ink into the nozzle chamber so as to allow for a rapid refill of the chamber and therefore a more rapid operation of the nozzle chamber in ejecting ink drops.
  • FIGS. 1-6 represent various schematic cross sectional views of the operation of a single nozzle chamber, the operation of the preferred embodiment will now be discussed.
  • the nozzle arrangement 10 includes a nozzle chamber 11 filled with ink and a nozzle ink ejection port 12 having an ink meniscus 13 in a quiescent position.
  • the nozzle chamber 11 is interconnected to an ink reservoir 15 for the supply of ink to the nozzle chamber.
  • Two paddle-type thermal actuators 16 , 17 are provided for the control of the ejection of ink from nozzle port 12 and the refilling of chamber 11 .
  • Both of the thermal actuators 16 , 17 are controlled by means of passing an electrical current through a resistor so as to actuate the actuator.
  • the structure of the thermal actuators 16 , 17 will be discussed further herein after.
  • the arrangement of FIG. 1 illustrates the nozzle arrangement when it is in its quiescent or idle position.
  • the actuator 16 When it is desired to eject a drop of ink via the port 12 , the actuator 16 is activated, as shown in FIG. 2 .
  • the activation of activator 16 results in it bending downwards forcing the ink within the nozzle chamber out of the port 12 , thereby resulting in a rapid growth of the ink meniscus 13 . Further, ink flows into the nozzle chamber 11 as indicated by arrow 19 .
  • the main actuator 16 is then retracted as illustrated in FIG. 3, which results in a collapse of the ink meniscus so as to form ink drop 20 .
  • the ink drop 20 eventually breaks off from the main body of ink within the nozzle chamber 11 .
  • the actuator 17 is activated so as to cause rapid refill in the area around the nozzle port 12 .
  • the refill comes generally from ink flows 21 , 22 .
  • FIG. 5 basically comprises the return of actuator 17 to its quiescent position with the nozzle port area refilling by means of surface tension effects drawing ink into the nozzle chamber 11 .
  • the actuator 16 is activated simultaneously, which is illustrated in FIG. 6, with the return of the actuator 17 to its quiescent position. This results in more rapid refilling of the nozzle chamber 11 in addition to simultaneous drop ejection from the ejection nozzle 12 .
  • FIG. 7 there is a illustrated a sectional perspective view of a single nozzle arrangement 10 of the preferred embodiment.
  • the preferred embodiment can be constructed on a silicon wafer with a large number of nozzles 10 being constructed at any one time.
  • the nozzle chambers can be constructed through back etching a silicon wafer to a boron doped epitaxial layer 30 using the boron doping as an etchant stop.
  • the boron doped layer is then further etched utilising the relevant masks to form the nozzle port 12 and nozzle rim 31 .
  • the nozzle chamber proper is formed from a crystallographic etch of the portion of the silicon wafer 32 .
  • the silicon wafer can include a two level metal standard CMOS layer 33 which includes the interconnect and drive circuitry for the actuator devices.
  • the CMOS layer 33 is interconnected to the actuators via appropriate vias.
  • On top of the CMOS layer 33 is placed a nitride layer 34 .
  • the nitride layer is provided to passivate the lower CMOS layer 33 from any sacrificial etchant which is utilised to etch sacrificial material in construction of the actuators 16 , 17 .
  • the actuators 16 , 17 can be constructed by filling the nozzle chamber 11 with a sacrificial material, such as sacrificial glass and depositing the actuator layers utilising standard micro-electro-mechanical systems (MEMS) processing techniques.
  • MEMS micro-electro-mechanical systems
  • a first PTFE layer 35 On top of the nitride layer 34 is deposited a first PTFE layer 35 followed by a copper layer 36 and a second PTFE layer 37 . These layers are utilised with appropriate masks so as to form the actuators 16 , 17 .
  • the copper layer 36 is formed near the top surface of the corresponding actuators and is in a serpentine shape. Upon passing a current through the copper layer 36 , the copper layer is heated. The copper layer 36 is encased in the PTFE layers 35 , 37 .
  • PTFE has a much greater coefficient of thermal expansion than copper (770 ⁇ 10 ⁇ 6) and hence is caused to expand more rapidly than the copper layer 36 , such that, upon heating, the copper serpentine shaped layer 36 expands via concertinaing at the same rate as the surrounding teflon layers.
  • the copper layer 36 is formed near the top of each actuator and hence, upon heating of the copper element, the lower PTFE layer 35 remains cooler than the upper PTFE layer 37 . This results in a bending of the actuator so as to achieve its actuation effects.
  • the copper layer 36 is interconnected to the lower CMOS layer 34 by means of vias eg 39 .
  • the PTFE layers 35 / 37 which are normally hydrophobic, undergo treatment so as to be hydrophilic. Many suitable treatments exist such as plasma damaging in an ammonia atmosphere. In addition, other materials having considerable properties can be utilised.
  • FIG. 8 there is illustrated an exploded perspective of the various layers of an ink jet nozzle 10 as constructed in accordance with a single nozzle arrangement 10 of the preferred embodiment.
  • the layers include the lower boron layer 30 , the silicon and anisotropically etched layer 32 , CMOS glass layer 33 , nitride passivation layer 34 , copper heater layer 36 and PTFE layers 35 / 37 , which are illustrated in one layer but formed with an upper and lower teflon layer embedding copper layer 36 .
  • FIG. 10 Complete a 0.5 micron, one poly, 2 metal CMOS process.
  • the metal layers are copper instead of aluminum, due to high current densities and subsequent high temperature processing. This step is shown in FIG. 10 .
  • FIG. 9 is a key to representations of various materials in these manufacturing diagrams, and those of other cross referenced ink jet configurations.
  • sacrificial layer 52 e.g. low stress glass
  • the print heads in their packaging, which may be a molded plastic former incorporating ink channels which supply different colors of ink to the appropriate regions of the front surface of the wafer.
  • the presently disclosed ink jet printing technology is potentially suited to a wide range of printing systems including: color and monochrome office printers, short run digital printers, high speed digital printers, offset press supplemental printers, low cost scanning printers, high speed pagewidth printers, notebook computers with in-built pagewidth printers, portable color and monochrome printers, color and monochrome copiers, colour and monochrome facsimile machines, combined printer, facsimile and copying machines, label printers, large format plotters, photograph copiers, printers for digital photographic ‘minilabs’, video printers, PHOTO CD (PHOTO CD is a registered trade mark of the Eastman Kodak Company) printers, portable printers for PDAs, wallpaper printers, indoor sign printers, billboard printers, fabric printers, camera printers and fault tolerant commercial printer arrays.
  • PHOTO CD a registered trade mark of the Eastman Kodak Company
  • the embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
  • thermal ink jet The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
  • piezoelectric ink jet The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewidth print heads with 19,200 nozzles.
  • the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications.
  • new ink jet technologies have been created.
  • the target features include:
  • ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems
  • the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing.
  • the print head is 100 mm long, with a width which depends upon the ink jet type.
  • the smallest print head designed is covered in U.S. patent application Ser. No. 09/112,764, which is 0.35 mm wide, giving a chip area of 35 square mm.
  • the print heads each contain 19,200 nozzles plus data and control circuitry.
  • Ink is supplied to the back of the print head by injection molded plastic ink channels.
  • the molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool.
  • Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer.
  • the print head is connected to the camera circuitry by tape automated bonding.
  • ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the forty-five examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.
  • Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
  • Perovskite ( ⁇ 1 ⁇ s) PLZSnT are materials such as tin Relatively high required modified lead longitudinal strain Actuators require lanthanum zirconate High efficiency a large area titanate (PLZSnT) Electric field exhibit large strains of strength of around 3 up to 1% associated V/ ⁇ m can be readily with the AFE to FE provided phase transition.
  • Electro- Conductive plates are Low power Difficult to IJ02, IJ04 static plates separated by a consumption operate electrostatic compressible or fluid Many ink types devices in an dielectric (usually air). can be used aqueous Upon application of a Fast operation environment voltage, the plates The electrostatic attract each other and actuator will displace ink, causing normally need to be drop ejection.
  • the separated from the conductive plates may ink be in a comb or Very large area honeycomb structure, required to achieve or stacked to increase high forces the surface area and High voltage therefore the force.
  • drive transistors may be required Full pagewidth print heads are not competitive due to actuator size
  • An electromagnet Low power Complex IJ07, IJ10 magnet directly attracts a consumption fabrication electro- permanent magnet, Many ink types Permanent magnetic displacing ink and can be used magnetic material causing drop ejection.
  • Fast operation such as Neodymium Rare earth magnets High efficiency Iron Boron (NdFeB) with a field strength Easy extension required. around 1 Tesla can be from single nozzles High local used.
  • the to pagewidth print currents required soft magnetic material heads Copper is in two parts, which metalization should are normally held be used for long apart by a spring. electromigration When the solenoid is lifetime and low actuated, the two parts resistivity attract, displacing the Electroplating is ink. required High saturation flux density is required (2.0-2.1 T is achievable with CoNiFe [1]) Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13, force acting on a current consumption twisting motion IJ16 carrying wire in a Many ink types Typically, only a magnetic field is can be used quarter of the utilized.
  • the surface construction separation applications tension of the ink is No unusual Requires special reduced below the materials required in ink surfactants bubble threshold, fabrication Speed may be causing the ink to High efficiency limited by surfactant egress from the Easy extension properties nozzle. from single nozzles to pagewidth print heads Viscosity
  • the ink viscosity is Simple Requires Silverbrook, EP reduction locally reduced to construction supplementary force 0771 658 A2 and select which drops are No unusual to effect drop related patent to be ejected.
  • a materials required in separation applications viscosity reduction can fabrication Requires special be achieved Easy extension ink viscosity electrothermally with from single nozzles properties most inks, but special to pagewidth print High speed is inks can be engineered heads difficult to achieve for a 100:1 viscosity Requires reduction.
  • oscillating ink pressure A high temperature difference (typically 80 degrees) is required Acoustic An acoustic wave is Can operate Complex drive 1993 Hadimioglu generated and without a nozzle circuitry et al, EUP 550,192 focussed upon the plate Complex 1993 Elrod et al. drop ejection region.
  • Simple planar Corrosion IJ29, IJ30, IJ31, fabrication prevention can be IJ32, IJ33, IJ34, Small chip area difficult IJ35, IJ36, IJ37, required for each Pigmented inks IJ38 ,IJ39, IJ40, actuator may be infeasible, IJ41 Fast operation as pigment particles High efficiency may jam the bend CMOS actuator compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads High CTE A material with a very High force can Requires special IJ09, IJ17, IJ18, thermo- high coefficient of be generated material (e.g.
  • PTFE PTFE
  • IJ20 IJ21, IJ22
  • elastic thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27, actuator (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30, polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43, (PTFE) is used.
  • CTE actuator
  • PTFE deposition process IJ28, IJ29, IJ30
  • polytetrafluoroethylene under development which is not yet IJ31, IJ42, IJ43, (PTFE) is used.
  • CVD high CTE materials deposition
  • fabs are usually non- spin coating
  • PTFE deposition conductive a heater evaporation cannot be followed fabricated from a PTFE is a with high conductive material is candidate for low temperature (above incorporated.
  • a 50 ⁇ m dielectric constant 350° C.) processing long PTFE bend insulation in ULSI Pigmented inks actuator with Very low power may be infeasible, polysilicon heater and consumption as pigment particles 15 mW power input
  • Many ink types may jam the bend can provide 180 ⁇ N can be used actuator force and 10 ⁇ m Simple planar deflection.
  • Actuator fabrication motions include: Small chip area Bend required for each Push actuator Buckle Fast operation Rotate High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads Conductive A polymer with a high High force can Requires special IJ24 polymer coefficient of thermal be generated materials thermo- expansion (such as Very low power development (High elastic PTFE) is doped with consumption CTE conductive actuator conducting substances Many ink types polymer) to increase its can be used Requires a PTFE conductivity to about 3 Simple planar deposition process, orders of magnitude fabrication which is not yet below that of copper. Small chip area standard in ULSI The conducting required for each fabs polymer expands actuator PTFE deposition when resistively Fast operation cannot be followed heated.
  • IJ24 polymer coefficient of thermal be generated materials thermo- expansion such as Very low power development (High elastic PTFE) is doped with consumption CTE conductive actuator conducting substances Many ink types polymer
  • CMOS temperature (above conducting dopants compatible voltages 350° C.) processing include: and currents Evaporation and Carbon nanotubes Easy extension CVD deposition Metal fibers from single nozzles techniques cannot Conductive polymers to pagewidth print be used such as doped heads Pigmented inks polythiophene may be infeasible, as pigment particles Carbon granules may jam the bend actuator Shape A shape memory alloy High force is Fatigue limits IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa) of cycles Nickel Titanium alloy Large strain is Low strain (1%) is developed at the Naval available (more than required to extend Ordnance Laboratory) 3%) fatigue resistance is thermally switched High corrosion Cycle rate between its weak resistance limited by heat martensitic state and Simple removal its high stiffness construction Requires unusual austenic state.
  • IJ26 memory such as TiNi (also available (stresses maximum number alloy known as Nitinol - of hundreds of MPa
  • the Easy extension materials (TiNi) shape of the actuator from single nozzles The latent heat of in its martensitic state to pagewidth print transformation must is deformed relative to heads be provided the austenic shape. Low voltage High current
  • the shape change operation operation causes ejection of a Requires pre- drop. stressing to distort the martensitic state
  • Linear Linear magnetic Linear Magnetic Requires unusual IJ12 Magnetic actuators include the actuators can be semiconductor Actuator Linear Induction constructed with materials such as Actuator (LIA), Linear high thrust, long soft magnetic alloys Permanent Magnet travel, and high (e.g.
  • LMSA Linear planar also require Reluctance semiconductor permanent magnetic Synchronous Actuator fabrication materials such as (LRSA), Linear techniques Neodymium iron Switched Reluctance Long actuator boron (NdFeB) Actuator (LSRA), and travel is available Requires the Linear Stepper Medium force is complex multi- Actuator (LSA). available phase drive circuitry Low voltage High current operation operation
  • provide the energy print heads printing Selected drops are required to separate alternate rows of the separated from the ink the drop from the image in the nozzle by nozzle Monolithic color contact with the print print heads are medium or a transfer difficult roller.
  • Electro- The drops to be Very simple print Requires very Silverbrook, EP static pull printed are selected by head fabrication can high electrostatic 0771 658 A2 and on ink some manner (e.g. be used field related patent thermally induced
  • the drop Electrostatic field applications surface tension selection means for small nozzle Tone-Jet reduction of does not need to sizes is above air pressurized ink).
  • the actuator moves a High speed (>50 Moving parts are IJ13, IJ17, IJ21 shutter to block ink kHz) operation can required flow to the nozzle.
  • the be achieved due to Requires ink ink pressure is pulsed reduced refill time pressure modulator at a multiple of the Drop timing can Friction and wear drop ejection be very accurate must be considered frequency.
  • the actuator Stiction is energy can be very possible low Shuttered
  • the actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18 grill shutter to block ink small travel can be required IJ19 flow through a grill to used Requires ink the nozzle.
  • the shutter Actuators with pressure modulator movement need only small force can be Friction and wear be equal to the width used must be considered of the grill holes.
  • High speed (>50 Stiction is kHz) operation can possible be achieved
  • An No heat Requires special actuator controls a dissipation materials for both catch, which prevents problems the actuator and the the ink pusher from ink pusher moving when a drop is Complex not to be ejected. construction
  • the allowing higher Ink pressure applications stimulation) actuator selects which operating speed phase and amplitude IJ08, IJ13, IJ15, IJ17, drops are to be fired
  • the actuators must be carefully IJ18, IJ19, IJ21 by selectively may operate with controlled blocking or enabling much lower energy Acoustic nozzles.
  • the ink Acoustic lenses reflections in the ink pressure oscillation can be used to focus chamber must be may be achieved by the sound on the designed for vibrating the print nozzles head, or preferably by an actuator in the ink supply.
  • Media The print head is Low power Precision Silverbrook, EP proximity placed in close High accuracy assembly required 0771 658 A2 and proximity to the print Simple print head Paper fibers may related patent medium.
  • Transfer Drops are printed to a High accuracy Bulky Silverbrook, EP roller transfer roller instead Wide range of Expensive 0771 658 A2 and of straight to the print print substrates can Complex related patent medium.
  • a transfer be used construction applications roller can also be used Ink can be dried Tektronix hot melt for proximity drop on the transfer roller piezoelectric ink jet separation. Any of the IJ series Electro- An electric field is Low power Field strength Silverbrook, EP static used to accelerate Simple print head required for 0771 658 A2 and selected drops towards construction separation of small related patent the print medium.
  • a magnetic field is Low power Requires Silverbrook, EP magnetic used to accelerate Simple print head magnetic ink 0771 658 A2 and field selected drops of construction Requires strong related patent magnetic ink towards magnetic field applications the print medium.
  • Cross The print head is Does not require Requires external IJ06, IJ16 magnetic placed in a constant magnetic materials magnet field magnetic field.
  • the to be integrated in Current densities Lorenz force in a the print head may be high, current carrying wire manufacturing resulting in is used to move the process electromigration actuator. problems
  • Pulsed A pulsed magnetic Very low power Complex print IJ10 magnetic field is used to operation is possible head construction field cyclically attract a Small print head Magnetic paddle, which pushes size materials required in on the ink.
  • a small print head actuator moves a catch, which selectively prevents the paddle from moving.
  • print head area Care must be IJ18, IJ19, IJ20, actuator
  • the expansion may be taken that the IJ21, IJ22, IJ23, thermal, piezoelectric, materials do not IJ24, IJ27, IJ29, magnetostrictive, or delaminate IJ30, IJ31, IJ32, other mechanism.
  • the Residual bend IJ33, IJ34, IJ35, bend actuator converts resulting from high IJ36, IJ37, IJ38, a high force low travel temperature or high IJ39, IJ42, IJ43, actuator mechanism to stress during IJ44 high travel, lower formation force mechanism.
  • Flexure A bend actuator has a Simple means of Care must be IJ10, IJ19, IJ33 bend small region near the increasing travel of taken not to exceed actuator fixture point, which a bend actuator the elastic limit in flexes much more the flexure area readily than the Stress remainder of the distribution is very actuator.
  • the actuator uneven flexing is effectively Difficult to converted from an accurately model even coiling to an with finite element angular bend, resulting analysis in greater travel of the actuator tip.
  • Catch The actuator controls a Very low Complex IJ10 small catch.
  • the catch actuator energy construction either enables or Very small Requires external disables movement of actuator size force an ink pusher that is Unsuitable for controlled in a bulk pigmented inks manner.
  • Gears Gears can be used to Low force, low Moving parts are IJ13 increase travel at the travel actuators can required expense of duration.
  • actuator Circular gears, rack Can be fabricated cycles are required and pinion, ratchets, using standard More complex and other gearing surface MEMS drive electronics methods can be used.
  • Process Complex construction Friction, friction, and wear are possible Buckle plate
  • a buckle plate can be Very fast Must stay within S. Hirata et al, used to change a slow movement elastic limits of the “An Ink-jet Head actuator into a fast achievable materials for long Using Diaphragm motion. It can also device life Microactuator”, convert a high force; High stresses Proc. IEEE MEMS, low travel actuator involved Feb.
  • the volume of the Simple High energy is Hewlett-Packard expansion actuator changes, construction in the typically required to Thermal Ink jet pushing the ink in all case of thermal ink achieve volume Canon Bubblejet directions. jet expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations Linear,
  • the actuator moves in Efficient High fabrication IJ01, IJ02, IJ04, normal to a direction normal to coupling to ink complexity may be IJ07, IJ11, IJ14 chip surface the print head surface. drops ejected required to achieve The nozzle is typically normal to the perpendicular in the line of surface motion movement.
  • Rotary levers Device IJ05, IJ08, IJ13 the rotation of some may be used to complexity IJ28 element, such a grill or increase travel May have impeller Small chip area friction at a pivot requirements point Bend
  • the actuator bends A very small Requires the 1970 Kyser et al when energized.
  • This change in actuator to be made U.S. Pat. No. 3,946,398 may be due to dimensions can be from at least two 1973 Stemme differential thermal converted to a large distinct layers, or to U.S. Pat. No. 3,747,120 expansion, motion.
  • the actuator is Can be used with Requires careful IJ26, IJ32 normally bent, and shape memory balance of stresses straightens when alloys where the to ensure that the energized. austenic phase is quiescent bend is planar accurate Double
  • the actuator bends in One actuator can Difficult to make IJ36, IJ37, IJ38 bend one direction when be used to power the drops ejected by one element is two nozzles. both bend directions energized, and bends Reduced chip identical. the other way when size. A small another element is Not sensitive to efficiency loss energized. ambient temperature compared to equivalent single bend actuators. Shear Energizing the Can increase the Not readily 1985 Fishbeck actuator causes a shear effective travel of applicable to other U.S. Pat. No.
  • Curl A set of actuators curl Relatively simple Relatively large IJ43 outwards outwards, pressurizing construction chip area ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.
  • Iris Multiple vanes enclose High efficiency High fabrication IJ22 a volume of ink. These Small chip area complexity simultaneously rotate, Not suitable for reducing the volume pigmented inks between the vanes.
  • the ink is under a Drop selection Requires a Silverbrook, EP pressure positive pressure, so and separation method (such as a 0771 658 A2 and that in the quiescent forces can be nozzle rim or related patent state some of the ink reduced effective applications drop already protrudes Fast refill time hydrophobizing, or Possible from the nozzle. both) to prevent operation of the This reduces the flooding of the following: IJ01-IJ07, pressure in the nozzle ejection surface of IJ09-IJ12, IJ14, chamber which is the print head. IJ16, IJ20, IJ22, required to eject a IJ23-IJ34, certain volume of ink.
  • the ink inlet channel Design simplicity Restricts refill IJ02, IJ37, IJ44 compared to the nozzle chamber rate to nozzle has a substantially May result in a smaller cross section relatively large chip than that of the nozzle, area resulting in easier ink Only partially egress out of the effective nozzle than out of the inlet.
  • Inlet shutter A secondary actuator Increases speed Requires separate IJ09 controls the position of of the ink-jet print refill actuator and a shutter, closing off head operation drive circuit the ink inlet when the main actuator is energized.
  • the inlet is The method avoids the Back-flow problem Requires careful IJ01, IJ03, IJ05, IJ06, located problem of inlet back- is eliminated design to minimize IJ07, IJ10, IJ11, IJ14, behind the flow by arranging the negative IJ16, IJ22, IJ23, IJ25, ink-pushing ink-pushing surface of pressure behind the IJ28, IJ31, IJ32, IJ33, surface the actuator between the paddle IJ34, IJ35, IJ36, IJ39, inlet and the nozzle.
  • IJ40, IJ41 Part of the The actuator and a Significant Small increase in IJ07, IJ20, IJ26, actuator wall of the ink reductions in back- fabrication IJ38 moves to chamber are arranged flow can be complexity shut off the so that the motion of achieved inlet the actuator closes off Compact designs the inlet.
  • the nozzle firing is IJ28, IJ29, IJ30, IJ31, usually performed during IJ32, IJ33, IJ34, IJ36, a special clearing IJ37, IJ38, IJ39, IJ40, cycle, after first IJ41, IJ42, IJ43, IJ44, moving the print head IJ45 to a cleaning station.
  • extra drive circuits depends substantially with: IJ01, IJ02, IJ03, of actuator some configurations, on the print head upon the configuration IJ04, IJ05, IJ06, IJ07, pulses this may cause heat Can be readily of the ink jet nozzle IJ09, IJ10, IJ11, IJ14, build-up at the nozzle controlled and IJ16, IJ20, IJ22, IJ23, which boils the ink, initiated by digital IJ24, IJ25, IJ27, IJ28, clearing the nozzle.
  • IJ29, IJ30, IJ31, IJ32, other situations it may IJ33, IJ34, IJ36, IJ37, cause sufficient IJ38, IJ39, IJ40, IJ41, vibrations to dislodge IJ42, IJ43, IJ44, IJ45 clogged nozzles.
  • actuator nozzle clearing may be IJ27, IJ29, IJ30, IJ31, assisted by providing IJ32, IJ39, IJ40, IJ41, an enhanced drive IJ42, IJ43, IJ44, IJ45 signal to the actuator.
  • Acoustic An ultrasonic wave is A high nozzle High implementation IJ08, IJ13, IJ15, IJ17, resonance applied to the ink clearing capability cost if system does IJ18, IJ19, IJ21 chamber.
  • This wave is can be achieved not already include of an appropriate May be an acoustic actuator amplitude and implemented at very frequency to cause low cost in systems sufficient force at the which already nozzle to clear include acoustic blockages.
  • This is actuators easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.
  • Nozzle A microfabricated Can clear Accurate Silverbrook, EP clearing plate is pushed against severely clogged mechanical 0771 658 A2 and plate the nozzles.
  • the plate nozzles alignment is related patent has a post for every required applications nozzle. A post moves Moving parts are through each nozzle, required displacing dried ink.
  • a separate heater is Can be effective Fabrication Can be used with ink boiling provided at the nozzle where other nozzle complexity many IJ series ink heater although the normal clearing methods jets drop ejection mechanism cannot be used does not require it. Can be The heaters do not implemented at no require individual additional cost in drive circuits, as some ink jet many nozzles can be configurations cleared simultaneously, and no imaging is required.
  • Electro- A nozzle plate is Fabrication High Hewlett Packard formed separately fabricated simplicity temperatures and Thermal Ink jet nickel from electroformed pressures are nickel, and bonded to required to bond the print head chip.
  • nozzle plate Minimum thickness constraints Differential thermal expansion Laser Individual nozzle No masks Each hole must Canon Bubblejet ablated or holes are ablated by an required be individually 1988 Sercel et drilled intense UV laser in a Can be quite fast formed al., SPIE, Vol. 998 polymer nozzle plate, which is Some control Special Excimer Beam typically a polymer over nozzle profile equipment required Applications, pp.
  • Low cost plate to form the applications using VLSI Nozzles are etched in Existing nozzle chamber IJ01, IJ02, 1104, IJ11, litho- the nozzle plate using processes can be Surface may be IJ12, IJ17, IJ18, IJ20, graphic VLSI lithography and used fragile to the touch IJ22, IJ24, IJ27, 1128, processes etching.
  • the nozzle plate is a High accuracy Requires long IJ03, IJ05, IJ06, IJ07, etched buried etch stop in the ( ⁇ 1 ⁇ m) etch times IJ08, IJ09, IJ10, IJ13, through wafer.
  • Nozzle Monolithic Requires a IJ14, IJ15, IJ16, IJ19, substrate chambers are etched in Low cost support wafer IJ21, IJ23, IJ25, IJ26 the front of the wafer, No differential and the wafer is thinned expansion from the back side. Nozzles are then etched in the etch stop layer. No nozzle Various methods have No nozzles to Difficult to Ricoh 1995 plate been tried to eliminate become clogged control drop Sekiya et al U.S. the nozzles entirely, to position accurately Pat. No. 5,412,413 prevent nozzle Crosstalk 1993 Hadimioglu clogging.
  • Edge Ink flow is along the Simple Nozzles limited Canon Bubblejet (‘edge surface of the chip, construction to edge 1979 Endo et al GB shooter’) and ink drops are No silicon High resolution patent 2,007,162 ejected from the chip etching required is difficult Xerox heater-in-pit edge. Good heat Fast color 1990 Hawkins et al sinking via substrate printing requires U.S. Pat. No.
  • Ink flow is through the High ink flow Requires wafer IJ01, IJ03, IJ05, chip, chip, and ink drops are Suitable for thinning IJ06, IJ07, IJ08, reverse ejected from the rear pagewidth print Requires special IJ09, IJ10, IJ13, (‘down surface of the chip.
  • INKTYPE Description Advantages Disadvantages Examples Aqueous, Water based ink which Environmentally Slow drying Most existing ink dye typically contains: friendly Corrosive jets water, dye, surfactant, No odor Bleeds on paper All IJ series ink humectant, and May strikethrough jets biocide.
  • Reduced wicking Pigment may related patent Pigments have an Reduced clog actuator applications advantage in reduced strikethrough mechanisms Piezoelectric ink- bleed, wicking and Cockles paper jets strikethrough.
  • Methyl MEK is a highly Very fast drying Odorous All IJ series ink Ethyl volatile solvent used Prints on various Flammable jets Ketone for industrial printing substrates such as (MEK) on difficult surfaces metals and plastics such as aluminum cans.
  • Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink (ethanol, 2- can be used where the Operates at sub- Flammable jets butanol, printer must operate at freezing and others) temperatures below temperatures the freezing point of Reduced paper water.
  • An example of cockle this is in-camera Low cost consumer photographic printing.
  • Oil Oil based inks are High solubility High viscosity: All IJ series ink extensively used in medium for some this is a significant jets offset printing. They dyes limitation for use in have advantages in Does not cockle ink jets, which improved paper usually require a characteristics on Does not wick low viscosity. Some paper (especially no through paper short chain and wicking or cockle). multi-branched oils Oil soluble dies and have a sufficiently pigments are required. low viscosity.
  • Micro- A microemulsion is a Stops ink bleed Viscosity higher All IJ series ink emulsion stable, self forming High dye than water jets emulsion of oil, water, solubility Cost is slightly and surfactant.
  • the Water, oil, and higher than water characteristic drop size amphiphilic soluble based ink is less than 100 nm, dies can be used High surfactant and is determined by Can stabilize concentration the preferred curvature pigment required (around of the surfactant. suspensions 5%)

Abstract

A method of manufacturing an ink jet printhead includes providing a substrate. A doped layer is deposited on the substrate and is etched to create an array of nozzles on the substrate with a nozzle chamber in communication with each nozzle. Planar monolithic deposition, lithographic and etching processes are used to form a first actuator displaceably arranged relative to the nozzle chamber such that, upon activation, it is displaced towards a nozzle opening of the nozzle to effect ink ejection from the nozzle opening and a second actuator, also displaceably arranged relative to the nozzle chamber, for assisting in refilling of the nozzle chamber after ejection of ink under the action of the first actuator.

Description

CROSS REFERENCES TO RELATED APPLICATIONS
The following Australian provisional patent applications are hereby incorporated by cross-reference. For the purposes of location and identification, U.S. patent applications identified by their U.S. patent application Ser. Nos. (USSN) are listed alongside the Australian applications from which the U.S. patent applications claim the right of priority.
CROSS- U.S. Pat No./
REFERENCED PATENT APPLICATION
AUSTRALIAN (CLAIMING RIGHT
PROVISIONAL OF PRIORITY FROM
PATENT AUSTRALIAN PROVISIONAL
APPLICATION NO. APPLICATION) DOCKET NO.
PO7991 09/113,060 ART01
PO8505 09/113,070 ART02
PO7988 09/113,073 ART03
PO9395 09/112,748 ART04
PO8017 09/112,747 ART06
PO8014 09/112,776 ART07
PO8025 09/112,750 ART08
PO8032 09/112,746 ART09
PO7999 09/112,743 ART10
PO7998 09/112,742 ART11
PO8031 09/112,741 ART12
PO8030 09/112,740; 6,196,541 ART13
PO7997 09/112,739; 6,195,150 ART15
PO7979 09/113/053 ART16
PO8015 09/112,738 ART17
PO7978 09/113,067 ART18
PO7982 09/113,063 ART19
PO7989 09/113,069 ART20
PO8019 09/112,744 ART21
PO7980 09/113,058 ART22
PO8018 09/112,777 ART24
PO7938 09/113,224 ART25
PO8O16 09/112,804 ART16
PO8024 09/112,805 ART27
PO7940 09/113,072 ART28
PO7939 09/112,785 ART29
PO8501 09/112,797; 6,137,500 ART30
PO8500 09/112,796 ART31
PO7987 09/113,071 ART32
PO8022 09/112,824 ART33
PO8497 09/113,090 ART34
PO8020 09/112,823 ART38
PO8023 09/113,222 ART39
PO8504 09/112,786 ART42
PO8000 09/113,051 ART43
PO7977 09/112,782 ART44
PO7934 09/113,056 ART45
PO7990 09/113,059 ART46
PO8499 09/113,091 ART47
PO8502 09/112,753 ART48
PO7981 09/113,055 ART50
PO7986 09/113,057 ART51
PO7983 09/113,054 ART52
PO8026 09/112,752 ART53
PO8027 09/112,759 ART54
PO8028 09/112,757 ART56
PO9394 09/112,758 ART57
PO9396 09/113,107 ART58
PO9397 09/112,829 ART59
PO9398 09/112,792 ART60
PO9399 6,106,147 ART61
PO9400 09/112,790 ART62
PO9401 09/112,789 ART63
PO9402 09/112,788 ART64
PO9403 09/112,795 ART65
PO9405 09/112,749 ART66
PP0959 09/112,784 ART68
PP1397 09/112,783 ART69
PP2370 09/112,781 DOT01
PP2371 09/113,052 DOT02
PO8003 09/112,834 Fluid01
PO8005 09/113,103 Fluid02
PO9404 09/113,101 Fluid03
PO8066 09/112,751 IJ01
PO8072 09/112,787 IJ02
PO8040 09/112,802 IJ03
PO8071 09/112,803 IJ04
PO8047 09/113,097 IJ05
PO8035 09/113,099 IJ06
PO8044 09/113,084 IJ07
PO8063 09/113,066 IJ08
PO8057 09/112,778 IJ09
PO8056 09/112,779 IJ10
PO8069 09/113,077 IJ11
PO8049 09/113,061 IJ12
PO8036 09/112,818 IJ13
PO8048 09/112,816 IJ14
PO8070 09/112,772 IJ15
PO8067 09/112,819 IJ16
PO8001 09/112,815 IJ17
PO8038 09/113,096 IJ18
PO8033 09/113,068 IJ19
PO8002 09/113,095 IJ20
PO8068 09/112,808 IJ21
PO8062 09/112,809 IJ22
PO8034 09/112,780 IJ23
PO8039 09/113,083 IJ24
PO8041 09/113,121 IJ25
PO8004 09/113,122 IJ26
PO8037 09/112,793 IJ27
PO8043 09/112,794 IJ28
PO8042 09/113,128 IJ29
PO8064 09/113,127 IJ30
PO9389 09/112,756 IJ31
PO9391 09/112,755 IJ32
PP0888 09/112,754 IJ33
PP0891 09/112,811; 6,188,415 IJ34
PP0890 09/112,812 IJ35
PP0873 09/112,813 IJ36
PP0993 09/112,814 IJ37
PP0890 09/112,764 IJ38
PP1398 09/112,765 IJ39
PP2592 09/112,767 IJ40
PP2593 09/112,768 IJ41
PP3991 09/112,807 IJ42
PP3987 09/112,806 IJ43
PP3985 09/112,820 IJ44
PP3983 09/112,821 1J45
PO7935 09/112,822 IJM01
PO7936 09/112,825 IJM02
PO7937 09/112,826 IJM03
PO8061 09/112,827 IJM04
PO8054 09/112,828 IJM05
PO8065 6,071,750 IJM06
PO8055 09/113,108 IJM07
PO8053 09/113,109 IJM08
PO8078 09/113,123 IJM09
PO7933 09/113,114 IJM10
PO7950 09/113,115 IJM11
PO7949 09/113,129 IJM12
PO8060 09/113,124 IJM13
PO8059 09/113,125 IJM14
PO8073 09/113,126; 6,190,931 IJM15
PO8076 09/113/119 IJM16
PO8075 09/113,120 IJM17
PO8079 09/113,221 IJM18
PO8050 09/113,116 IJM19
PO8052 09/113,118 IJM20
PO7948 09/113,117 IJM21
PO7951 09/113,113 IJM22
PO8074 09/113,130 IJM23
PO7941 09/113,110 IJM24
PO8077 09/113,112 IJM25
PO8058 09/113,087 IJM26
PO8051 09/113,074 IJM27
PO8045 6,110,754 IJM28
PO7952 09/113,088 IJM29
PO8046 09/112,771 IJM30
PO9390 09/112,769 IJM31
PO9392 09/112,770 IJM32
PP0889 09/112,798 IJM35
PP0887 09/112,801 IJM36
PP0882 09/112,800 IJM37
PP0874 09/112,799 IJM38
PP1396 09/113,098 IJM39
PP3989 09/112,833 IJM40
PP2591 09/112,832; 6,180,427 IJM41
PP3990 09/112,831; 6,171,875 IJM42
PP3986 09/112,830 IJM43
PP3984 09/112,836 IJM44
PP3982 09/112,835 IJM45
PP0895 09/113,102 IR01
PP0870 09/113,106 IR02
PP0869 09/113,105 IR04
PP0887 09/113,104 IR05
PP0885 09/112,810 IR06
PP0884 09/112,766 IR10
PP0886 09/113,085 IR12
PP0871 09/113,086 IR13
PP0876 09/113,094 IR14
PP0877 09/112,760 IR16
PP0878 09/112,773 IR17
PP0879 09/112,774 IR18
PP0883 09/112,775 IR19
PP0880 6,152,619 IR20
PP0881 09/113,092 IR21
PO8006 6,087,638 MEMS02
PO8007 09/113,093 MEMS03
PO8008 09/113,062 MEMS04
PO8010 6,041,600 MEMS05
PO8011 09/113,082 MEMS06
PO7947 6,067,797 MEMS07
PO7944 09/113,080 MEMS09
PO7946 6,044,646 MEMS10
PO9393 09/113,065 MEMS11
PP0875 09/113,078 MEMS12
PP0894 09/113,075 MEMS13
FIELD OF THE INVENTION
The present invention relates to the manufacture of ink jet print heads and, in particular, discloses a method of manufacture of a Pump Action Refill Ink Jet Printer.
BACKGROUND OF THE INVENTION
Many ink jet printing mechanisms are known. Unfortunately, in mass production techniques, the production of ink jet heads is quite difficult. For example, often, the orifice or nozzle plate is constructed separately from the ink supply and ink ejection mechanism and bonded to the mechanism at a later stage (Hewlett-Packard Journal, Vol. 36 no 5, pp33-37 (1985)). These separate material processing steps required in handling such precision devices often add a substantial expense in manufacturing.
Additionally, side shooting ink jet technologies (U.S. Pat. No. 4,899,181) are often used but again, this limits the amount of mass production throughput given any particular capital investment.
Additionally, more esoteric techniques are also often utilised. These can include electroforming of nickel stage (Hewlett-Packard Journal, Vol. 36 no 5, pp33-37 (1985)), electro-discharge machining, laser ablation (U.S. Pat. No. 5,208,604), micro-punching, etc.
The utilisation of the above techniques is likely to add substantial expense to the mass production of ink jet print heads and therefore add substantially to their final cost.
It would therefore be desirable if an efficient system for the mass production of ink jet print heads could be developed.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an alternative form of ink jet printing based around ink jet nozzles which utilised a pump action so as to rapidly refill a nozzle chamber for ejection of subsequent ink drops.
In accordance with a first aspect of the present invention, there is provided a method of manufacturing a pump action refill ink jet print head wherein an array of nozzles are formed on a substrate utilising planar monolithic deposition, lithographic and etching processes. Preferably, multiple ink jet heads are formed simultaneously on a single planar substrate such as a silicon wafer.
The print heads can be formed utilising standard vlsi/ulsi processing and can include integrated drive electronics formed on the same substrate. The drive electronics preferably are of a CMOS type. In the final construction, ink can be ejected from the substrate substantially normal to the substrate.
BRIEF DESCRIPTION OF THE DRAWINGS
Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
FIG. 1 is a cross-sectional schematic diagram of the inkjet nozzle chamber in its quiescent state;
FIG. 2 is a cross-sectional schematic diagram of the inkjet nozzle chamber during activation of the first actuator to eject ink;
FIG. 3 is a cross-sectional schematic diagram of the inkjet nozzle chamber after deactivation of the first actuator;
FIG. 4 is a cross-sectional schematic diagram of the inkjet nozzle chamber during activation of the second actuator to refill the chamber;
FIG. 5 is a cross-sectional schematic diagram of the inkjet nozzle chamber after deactivation of the actuator to refill the chamber;
FIG. 6 is a cross-sectional schematic diagram of the inkjet nozzle chamber during simultaneous activation of the ejection actuator and deactivation of the pump actuator;
FIG. 7 is a top view cross-sectional diagram of the inkjet nozzle chamber;
FIG. 8 is an exploded perspective view illustrating the construction of the inkjet nozzle chamber in accordance with the preferred embodiment;
FIG. 9 provides a legend of the materials indicated in FIGS. 10 to 22;
FIG. 10 shows a sectional side view of an initial manufacturing step of an ink jet printhead nozzle showing a silicon wafer with a buried epitaxial layer and an electrical circuitry layer;
FIG. 11 shows a step of etching the electrical circuitry layer;
FIG. 12 shows a step of crystallographically etching the exposed silicon layer;
FIG. 13 shows a step of depositing a barrier layer;
FIG. 14 shows a step of depositing a sacrificial layer;
FIG. 15 shows a step of etching the sacrificial layer and a subsequently deposited polymer layer;
FIG. 16 shows a step of depositing a thermally conductive layer and patterning thereof;
FIG. 17 shows a step of etching the first polymer layer and a subsequently deposited, second polymer layer;
FIG. 18 shows a step of back-etching the wafer;
FIG. 19 shows a step of back-etching the boron doped silicon layer;
FIG. 20 shows a step of back-etching through the boron doped silicon layer;
FIG. 21 shows a step of etching sacrificial material, and
FIG. 22 shows a step of filling the completed ink jet nozzle with ink.
DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS
In the preferred embodiment, each nozzle chamber has a nozzle ejection port and further includes two thermal actuators. The first thermal actuator is utilised for the ejection of ink from the nozzle chamber while a second thermal actuator is utilised for pumping ink into the nozzle chamber for rapid ejection of subsequent drops.
Normally, ink chamber refill is a result of surface tension effects of drawing ink into a nozzle chamber. In the preferred embodiment, the nozzle chamber refill is assisted by an actuator which pumps ink into the nozzle chamber so as to allow for a rapid refill of the chamber and therefore a more rapid operation of the nozzle chamber in ejecting ink drops.
Turning to FIGS. 1-6 which represent various schematic cross sectional views of the operation of a single nozzle chamber, the operation of the preferred embodiment will now be discussed. In FIG. 1, a single nozzle chamber is schematically illustrated in section. The nozzle arrangement 10 includes a nozzle chamber 11 filled with ink and a nozzle ink ejection port 12 having an ink meniscus 13 in a quiescent position. The nozzle chamber 11 is interconnected to an ink reservoir 15 for the supply of ink to the nozzle chamber. Two paddle-type thermal actuators 16, 17 are provided for the control of the ejection of ink from nozzle port 12 and the refilling of chamber 11. Both of the thermal actuators 16, 17 are controlled by means of passing an electrical current through a resistor so as to actuate the actuator. The structure of the thermal actuators 16, 17 will be discussed further herein after. The arrangement of FIG. 1 illustrates the nozzle arrangement when it is in its quiescent or idle position.
When it is desired to eject a drop of ink via the port 12, the actuator 16 is activated, as shown in FIG. 2. The activation of activator 16 results in it bending downwards forcing the ink within the nozzle chamber out of the port 12, thereby resulting in a rapid growth of the ink meniscus 13. Further, ink flows into the nozzle chamber 11 as indicated by arrow 19.
The main actuator 16 is then retracted as illustrated in FIG. 3, which results in a collapse of the ink meniscus so as to form ink drop 20. The ink drop 20 eventually breaks off from the main body of ink within the nozzle chamber 11.
Next, as illustrated in FIG. 4, the actuator 17 is activated so as to cause rapid refill in the area around the nozzle port 12. The refill comes generally from ink flows 21, 22.
Next, two alternative procedures are utilised depending on whether the nozzle chamber is to be fired in a next ink ejection cycle or whether no drop is to be fired. The case where no drop is to be fired is illustrated in FIG. 5 and basically comprises the return of actuator 17 to its quiescent position with the nozzle port area refilling by means of surface tension effects drawing ink into the nozzle chamber 11.
Where it is desired to fire another drop in the next ink drop ejection cycle, the actuator 16 is activated simultaneously, which is illustrated in FIG. 6, with the return of the actuator 17 to its quiescent position. This results in more rapid refilling of the nozzle chamber 11 in addition to simultaneous drop ejection from the ejection nozzle 12.
Hence, it can be seen that the arrangement as illustrated in FIGS. 1 to 6 results in a rapid refilling of the nozzle chamber 11 and therefore the more rapid cycling of ejecting drops from the nozzle chamber 11. This leads to higher speed and improved operation of the preferred embodiment.
Turning now to FIG. 7, there is a illustrated a sectional perspective view of a single nozzle arrangement 10 of the preferred embodiment. The preferred embodiment can be constructed on a silicon wafer with a large number of nozzles 10 being constructed at any one time. The nozzle chambers can be constructed through back etching a silicon wafer to a boron doped epitaxial layer 30 using the boron doping as an etchant stop. The boron doped layer is then further etched utilising the relevant masks to form the nozzle port 12 and nozzle rim 31. The nozzle chamber proper is formed from a crystallographic etch of the portion of the silicon wafer 32. The silicon wafer can include a two level metal standard CMOS layer 33 which includes the interconnect and drive circuitry for the actuator devices. The CMOS layer 33 is interconnected to the actuators via appropriate vias. On top of the CMOS layer 33 is placed a nitride layer 34. The nitride layer is provided to passivate the lower CMOS layer 33 from any sacrificial etchant which is utilised to etch sacrificial material in construction of the actuators 16, 17. The actuators 16, 17 can be constructed by filling the nozzle chamber 11 with a sacrificial material, such as sacrificial glass and depositing the actuator layers utilising standard micro-electro-mechanical systems (MEMS) processing techniques.
On top of the nitride layer 34 is deposited a first PTFE layer 35 followed by a copper layer 36 and a second PTFE layer 37. These layers are utilised with appropriate masks so as to form the actuators 16, 17. The copper layer 36 is formed near the top surface of the corresponding actuators and is in a serpentine shape. Upon passing a current through the copper layer 36, the copper layer is heated. The copper layer 36 is encased in the PTFE layers 35, 37. PTFE has a much greater coefficient of thermal expansion than copper (770×10−6) and hence is caused to expand more rapidly than the copper layer 36, such that, upon heating, the copper serpentine shaped layer 36 expands via concertinaing at the same rate as the surrounding teflon layers. Further, the copper layer 36 is formed near the top of each actuator and hence, upon heating of the copper element, the lower PTFE layer 35 remains cooler than the upper PTFE layer 37. This results in a bending of the actuator so as to achieve its actuation effects. The copper layer 36 is interconnected to the lower CMOS layer 34 by means of vias eg 39. Further, the PTFE layers 35/37, which are normally hydrophobic, undergo treatment so as to be hydrophilic. Many suitable treatments exist such as plasma damaging in an ammonia atmosphere. In addition, other materials having considerable properties can be utilised.
Turning to FIG. 8, there is illustrated an exploded perspective of the various layers of an ink jet nozzle 10 as constructed in accordance with a single nozzle arrangement 10 of the preferred embodiment. The layers include the lower boron layer 30, the silicon and anisotropically etched layer 32, CMOS glass layer 33, nitride passivation layer 34, copper heater layer 36 and PTFE layers 35/37, which are illustrated in one layer but formed with an upper and lower teflon layer embedding copper layer 36.
One form of detailed manufacturing process which can be used to fabricate monolithic ink jet print heads operating in accordance with the principles taught by the present embodiment can proceed utilizing the following steps:
1. Using a double sided polished wafer 50 deposit 3 microns of epitaxial silicon heavily doped with boron 30.
2. Deposit 10 microns of epitaxial silicon 32, either p-type or n-type, depending upon the CMOS process used.
3. Complete a 0.5 micron, one poly, 2 metal CMOS process. The metal layers are copper instead of aluminum, due to high current densities and subsequent high temperature processing. This step is shown in FIG. 10. For clarity, these diagrams may not be to scale, and may not represent a cross section though any single plane of the nozzle. FIG. 9 is a key to representations of various materials in these manufacturing diagrams, and those of other cross referenced ink jet configurations.
4. Etch the CMOS oxide layers down to silicon or second level metal using Mask 1. This mask defines the nozzle cavity and the bend actuator electrode contact vias 39. This step is shown in FIG. 11.
5. Crystallographically etch the exposed silicon using KOH. This etch stops on (111) crystallographic planes 51, and on the boron doped silicon buried layer. This step is shown in FIG. 12.
6. Deposit 0.5 microns of low stress PECVD silicon nitride 34 (Si3N4). The nitride acts as an ion diffusion barrier. This step is shown in FIG. 13.
7. Deposit a thick sacrificial layer 52 (e.g. low stress glass), filling the nozzle cavity. Planarize the sacrificial layer down to the nitride surface. This step is shown in FIG. 14.
8. Deposit 1.5 microns of polytetrafluoroethylene 35 (PTFE).
9. Etch the PTFE using Mask 2. This mask defines the contact vias 39 for the heater electrodes.
10. Using the same mask, etch down through the nitride and CMOS oxide layers to second level metal. This step is shown in FIG. 15.
11. Deposit and pattern 0.5 microns of gold 53 using a lift-off process using Mask 3. This mask defines the heater pattern. This step is shown in FIG. 16.
12. Deposit 0.5 microns of PTFE 37.
13. Etch both layers of PTFE down to sacrificial glass using Mask 4. This mask defines the gap 54 at the edges of the main actuator paddle and the refill actuator paddle. This step is shown in FIG. 17.
14. Mount the wafer on a glass blank 55 and back-etch the wafer using KOH, with no mask. This etch thins the wafer and stops at the buried boron doped silicon layer. This step is shown in FIG. 18.
15. Plasma back-etch the boron doped silicon layer to a depth of 1 micron using Mask 5. This mask defines the nozzle rim 31. This step is shown in FIG. 19.
16. Plasma back-etch through the boron doped layer using Mask 6. This mask defines the nozzle 12, and the edge of the chips.
17. Plasma back-etch nitride up to the glass sacrificial layer through the holes in the boron doped silicon layer. At this stage, the chips are separate, but are still mounted on the glass blank. This step is shown in FIG. 20.
18. Strip the adhesive layer to detach the chips from the glass blank.
19. Etch the sacrificial glass layer in buffered HF. This step is shown in FIG. 21.
20. Mount the print heads in their packaging, which may be a molded plastic former incorporating ink channels which supply different colors of ink to the appropriate regions of the front surface of the wafer.
21. Connect the print heads to their interconnect systems.
22. Hydrophobize the front surface of the print heads.
23. Fill the completed print heads with ink 56 and test them. A filled nozzle is shown in FIG. 22.
The presently disclosed ink jet printing technology is potentially suited to a wide range of printing systems including: color and monochrome office printers, short run digital printers, high speed digital printers, offset press supplemental printers, low cost scanning printers, high speed pagewidth printers, notebook computers with in-built pagewidth printers, portable color and monochrome printers, color and monochrome copiers, colour and monochrome facsimile machines, combined printer, facsimile and copying machines, label printers, large format plotters, photograph copiers, printers for digital photographic ‘minilabs’, video printers, PHOTO CD (PHOTO CD is a registered trade mark of the Eastman Kodak Company) printers, portable printers for PDAs, wallpaper printers, indoor sign printers, billboard printers, fabric printers, camera printers and fault tolerant commercial printer arrays.
It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the preferred embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.
Ink Jet Technologies
The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewidth print heads with 19,200 nozzles.
Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include:
low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)
photographic quality output
low manufacturing cost
small size (pagewidth times minimum cross section)
high speed (<2 seconds per page).
All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the list under the heading Cross References to Related Applications.
The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems
For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the ink jet type. The smallest print head designed is covered in U.S. patent application Ser. No. 09/112,764, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.
Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.
Tables of Drop-on-Demand Ink Jets
Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.
The following tables form the axes of an eleven dimensional table of ink jet types.
Actuator mechanism (18 types)
Basic operation mode (7 types)
Auxiliary mechanism (8 types)
Actuator amplification or modification method (17 types)
Actuator motion (19 types)
Nozzle refill method (4 types)
Method of restricting back-flow through inlet (10 types)
Nozzle clearing method (9 types)
Nozzle plate construction (9 types)
Drop ejection direction (5 types)
Ink type (7 types)
The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. Forty-five such inkjet types were filed simultaneously to the present application.
Other ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the forty-five examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.
Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The simultaneously filed patent applications by the present applicant are listed by USSN numbers. In some cases, a print technology may be listed more than once in a table, where it shares characteristics with more than one entry.
Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.
ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)
Description Advantages Disadvantages Examples
Thermal An electrothermal Large force High power Canon Bubblejet
bubble heater heats the ink to generated Ink carrier 1979 Endo et al GB
above boiling point, Simple limited to water patent 2,007,162
transferring significant construction Low efficiency Xerox heater-in-
heat to the aqueous No moving parts High pit 1990 Hawkins et al
ink. A bubble Fast operation temperatures U.S. Pat. No. 4,899,181
nucleates and quickly Small chip area required Hewlett-Packard
forms, expelling the required for actuator High mechanical TIJ 1982 Vaught et al
ink. stress U.S. Pat. No. 4,490,728
The efficiency of the Unusual materials
process is low, with required
typically less than Large drive
0.05% of the electrical transistors
energy being Cavitation causes
transformed into actuator failure
kinetic energy of the Kogation reduces
drop. bubble formation
Large print heads
are difficult to
fabricate
Piezo- A piezoelectric crystal Low power Very large area Kyser et al U.S. Pat. No.
electric such as lead consumption required for actuator 3,946,398
lanthanum zirconate Many ink types Difficult to Zoltan U.S. Pat. No.
(PZT) is electrically can be used integrate with 3,683,212
activated, and either Fast operation electronics 1973 Stemme
expands, shears, or High efficiency High voltage U.S. Pat. No. 3,747,120
bends to apply drive transistors Epson Stylus
pressure to the ink, required Tektronix
ejecting drops. Full pagewidth IJ04
print heads
impractical due to
actuator size
Requires
electrical poling in
high field strengths
during manufacture
Electro- An electric field is Low power Low maximum Seiko Epson,
strictive used to activate consumption strain (approx. Usui et all JP
electrostriction in Many ink types 0.01%) 253401/96
relaxor materials such can be used Large area IJ04
as lead lanthanum Low thermal required for actuator
zirconate titanate expansion due to low strain
(PLZT) or lead Electric field Response speed
magnesium niobate strength required is marginal (˜10
(PMN). (approx. 3.5 V/μm) μs)
can be generated High voltage
without difficulty drive transistors
Does not require required
electrical poling Full pagewidth
print heads
impractical due to
actuator site
Ferro- An electric field is Low power Difficult to IJ04
electric used to induce a phase consumption integrate with
transition between the Many ink types electronics
antiferroelectric (AFE) can be used Unusual
and ferroelectric (FE) Fast operation materials such as
phase. Perovskite (<1 μs) PLZSnT are
materials such as tin Relatively high required
modified lead longitudinal strain Actuators require
lanthanum zirconate High efficiency a large area
titanate (PLZSnT) Electric field
exhibit large strains of strength of around 3
up to 1% associated V/μm can be readily
with the AFE to FE provided
phase transition.
Electro- Conductive plates are Low power Difficult to IJ02, IJ04
static plates separated by a consumption operate electrostatic
compressible or fluid Many ink types devices in an
dielectric (usually air). can be used aqueous
Upon application of a Fast operation environment
voltage, the plates The electrostatic
attract each other and actuator will
displace ink, causing normally need to be
drop ejection. The separated from the
conductive plates may ink
be in a comb or Very large area
honeycomb structure, required to achieve
or stacked to increase high forces
the surface area and High voltage
therefore the force. drive transistors
may be required
Full pagewidth
print heads are not
competitive due to
actuator size
Electro- A strong electric field Low current High voltage 1989 Saito et al,
static pull is applied to the ink, consumption required U.S. Pat. No. 4,799,068
on ink whereupon Low temperature May be damaged 1989 Miura et al,
electrostatic attraction by sparks due to air U.S. Pat. No. 4,810,954
accelerates the ink breakdown Tone-jet
towards the print Required field
medium. strength increases
as the drop size
decreases
High voltage
drive transistors
required
Electrostatic field
attracts dust
Permanent An electromagnet Low power Complex IJ07, IJ10
magnet directly attracts a consumption fabrication
electro- permanent magnet, Many ink types Permanent
magnetic displacing ink and can be used magnetic material
causing drop ejection. Fast operation such as Neodymium
Rare earth magnets High efficiency Iron Boron (NdFeB)
with a field strength Easy extension required.
around 1 Tesla can be from single nozzles High local
used. Examples are: pagewidth print currents required
Samarium Cobalt heads Copper
(SaCo) and magnetic metalization should
materials in the be used for long
neodymium iron boron electromigration
family (NdFeB, lifetime and low
NdDyFeBNb, resistivity
NdDyFeB, etc) Pigmented inks
are usually
infeasible
Operating
temperature limited
to the Curie
temperature (around
540 K.)
Soft A solenoid induced a Low power Complex IJ01, IJ05, IJ08,
magnetic magnetic field in a soft consumption fabrication IJ10, IJ12, IJ14,
core electro- magnetic core or yoke Many ink types Materials not IJ15, IJ17
magnetic fabricated from a can be used usually present in a
ferrous material such Fast operation CMOS fab such as
as electroplated iron High efficiency NiFe, CoNiFe, or
alloys such as CoNiFe Easy extension CoFe are required
[1], CoFe, or NiFe from single nozzles High local
alloys. Typically, the to pagewidth print currents required
soft magnetic material heads Copper
is in two parts, which metalization should
are normally held be used for long
apart by a spring. electromigration
When the solenoid is lifetime and low
actuated, the two parts resistivity
attract, displacing the Electroplating is
ink. required
High saturation
flux density is
required (2.0-2.1 T
is achievable with
CoNiFe [1])
Lorenz The Lorenz force Low power Force acts as a IJ06, IJ11, IJ13,
force acting on a current consumption twisting motion IJ16
carrying wire in a Many ink types Typically, only a
magnetic field is can be used quarter of the
utilized. Fast operation solenoid length
This allows the High efficiency provides force in a
magnetic field to be Easy extension useful direction
supplied externally to from single nozzles High local
the print head, for to pagewidth print currents required
example with rare heads Copper
earth permanent metalization should
magnets. be used for long
Only the current electromigration
carrying wire need be lifetime and low
fabricated on the print- resistivity
head, simplifying Pigmented inks
materials are usually
requirements. infeasible
Magneto- The actuator uses the Many ink types Force acts as a Fischenbeck,
striction giant magnetostrictive can be used twisting motion U.S. Pat. No. 4,032,929
effect of materials Fast operation Unusual IJ25
such as Terfenol-D (an Easy extension materials such as
alloy of terbium, from single nozzles Terfenol-D are
dysprosium and iron to pagewidth print required
developed at the Naval heads High local
Ordnance Laboratory, High force is currents required
hence Ter-Fe-NOL). available Copper
For best efficiency, the metalization should
actuator should be pre- be used for long
stressed to approx. 8 electromigration
MPa. lifetime and low
resistivity
Pre-stressing
may be required
Surface Ink under positive Low power Requires Silverbrook, EP
tension pressure is held in a consumption supplementary force 0771 658 A2 and
reduction nozzle by surface Simple to effect drop related patent
tension. The surface construction separation applications
tension of the ink is No unusual Requires special
reduced below the materials required in ink surfactants
bubble threshold, fabrication Speed may be
causing the ink to High efficiency limited by surfactant
egress from the Easy extension properties
nozzle. from single nozzles
to pagewidth print
heads
Viscosity The ink viscosity is Simple Requires Silverbrook, EP
reduction locally reduced to construction supplementary force 0771 658 A2 and
select which drops are No unusual to effect drop related patent
to be ejected. A materials required in separation applications
viscosity reduction can fabrication Requires special
be achieved Easy extension ink viscosity
electrothermally with from single nozzles properties
most inks, but special to pagewidth print High speed is
inks can be engineered heads difficult to achieve
for a 100:1 viscosity Requires
reduction. oscillating ink
pressure
A high
temperature
difference (typically
80 degrees) is
required
Acoustic An acoustic wave is Can operate Complex drive 1993 Hadimioglu
generated and without a nozzle circuitry et al, EUP 550,192
focussed upon the plate Complex 1993 Elrod et al.
drop ejection region. fabrication EUP 572,220
Low efficiency
Poor control of
drop position
Poor control of
drop volume
Thermo- An actuator which Low power Efficient aqueous 1103, IJ09, IJ17,
elastic bend relies upon differential consumption operation requires a IJ18, IJ19, IJ20,
actuator thermal expansion Many ink types thermal insulator on IJ21, IJ22, IJ23,
upon Joule heating is can be used the hot side IJ24, IJ27, IJ28,
used. Simple planar Corrosion IJ29, IJ30, IJ31,
fabrication prevention can be IJ32, IJ33, IJ34,
Small chip area difficult IJ35, IJ36, IJ37,
required for each Pigmented inks IJ38 ,IJ39, IJ40,
actuator may be infeasible, IJ41
Fast operation as pigment particles
High efficiency may jam the bend
CMOS actuator
compatible voltages
and currents
Standard MEMS
processes can be
used
Easy extension
from single nozzles
to pagewidth print
heads
High CTE A material with a very High force can Requires special IJ09, IJ17, IJ18,
thermo- high coefficient of be generated material (e.g. PTFE) IJ20, IJ21, IJ22,
elastic thermal expansion Three methods of Requires a PTFE IJ23, IJ24, IJ27,
actuator (CTE) such as PTFE deposition are deposition process, IJ28, IJ29, IJ30,
polytetrafluoroethylene under development: which is not yet IJ31, IJ42, IJ43,
(PTFE) is used. As chemical vapor standard in ULSI IJ44
high CTE materials deposition (CVD), fabs
are usually non- spin coating, and PTFE deposition
conductive, a heater evaporation cannot be followed
fabricated from a PTFE is a with high
conductive material is candidate for low temperature (above
incorporated. A 50 μm dielectric constant 350° C.) processing
long PTFE bend insulation in ULSI Pigmented inks
actuator with Very low power may be infeasible,
polysilicon heater and consumption as pigment particles
15 mW power input Many ink types may jam the bend
can provide 180 μN can be used actuator
force and 10 μm Simple planar
deflection. Actuator fabrication
motions include: Small chip area
Bend required for each
Push actuator
Buckle Fast operation
Rotate High efficiency
CMOS
compatible voltages
and currents
Easy extension
from single nozzles
to pagewidth print
heads
Conductive A polymer with a high High force can Requires special IJ24
polymer coefficient of thermal be generated materials
thermo- expansion (such as Very low power development (High
elastic PTFE) is doped with consumption CTE conductive
actuator conducting substances Many ink types polymer)
to increase its can be used Requires a PTFE
conductivity to about 3 Simple planar deposition process,
orders of magnitude fabrication which is not yet
below that of copper. Small chip area standard in ULSI
The conducting required for each fabs
polymer expands actuator PTFE deposition
when resistively Fast operation cannot be followed
heated. High efficiency with high
Examples of CMOS temperature (above
conducting dopants compatible voltages 350° C.) processing
include: and currents Evaporation and
Carbon nanotubes Easy extension CVD deposition
Metal fibers from single nozzles techniques cannot
Conductive polymers to pagewidth print be used
such as doped heads Pigmented inks
polythiophene may be infeasible,
as pigment particles
Carbon granules may jam the bend
actuator
Shape A shape memory alloy High force is Fatigue limits IJ26
memory such as TiNi (also available (stresses maximum number
alloy known as Nitinol - of hundreds of MPa) of cycles
Nickel Titanium alloy Large strain is Low strain (1%) is
developed at the Naval available (more than required to extend
Ordnance Laboratory) 3%) fatigue resistance
is thermally switched High corrosion Cycle rate
between its weak resistance limited by heat
martensitic state and Simple removal
its high stiffness construction Requires unusual
austenic state. The Easy extension materials (TiNi)
shape of the actuator from single nozzles The latent heat of
in its martensitic state to pagewidth print transformation must
is deformed relative to heads be provided
the austenic shape. Low voltage High current
The shape change operation operation
causes ejection of a Requires pre-
drop. stressing to distort
the martensitic state
Linear Linear magnetic Linear Magnetic Requires unusual IJ12
Magnetic actuators include the actuators can be semiconductor
Actuator Linear Induction constructed with materials such as
Actuator (LIA), Linear high thrust, long soft magnetic alloys
Permanent Magnet travel, and high (e.g. CoNiFe)
Synchronous Actuator efficiency using Some varieties
(LPMSA), Linear planar also require
Reluctance semiconductor permanent magnetic
Synchronous Actuator fabrication materials such as
(LRSA), Linear techniques Neodymium iron
Switched Reluctance Long actuator boron (NdFeB)
Actuator (LSRA), and travel is available Requires
the Linear Stepper Medium force is complex multi-
Actuator (LSA). available phase drive circuitry
Low voltage High current
operation operation
BASIC OPERATION MODE
Description Advantages Disadvantages Examples
Actuator This is the simplest Simple operation Drop repetition Thermal ink jet
directly mode of operation: the No external rate is usually Piezoelectric ink
pushes ink actuator directly fields required limited to around 10 jet
supplies sufficient Satellite drops kHz. However, this IJ01, IJ02, IJ03,
kinetic energy to expel can be avoided if is not fundamental IJ04, IJ05, IJ06,
the drop. The drop drop velocity is less to the method, but is IJ07, IJ09, IJ11,
must have a sufficient than 4 m/s related to the refill IJ12, IJ14, IJ16,
velocity to overcome Can be efficient, method normally IJ20, IJ22, IJ23,
the surface tension. depending upon the used IJ24, IJ25, IJ26,
actuator used All of the drop IJ27, IJ28, IJ29,
kinetic energy must IJ30, IJ31, IJ32,
be provided by the IJ33, IJ34, IJ35,
actuator IJ36, IJ37, IJ38,
Satellite drops IJ39, IJ40, IJ41,
usually form if drop IJ42, IJ43, IJ44
velocity is greater
than 4.5 m/s
Proximity The drops to be Very simple print Requires close Silverbrook, EP
printed are selected by head fabrication can proximity between 0771 658 A2 and
some manner (e.g. be used the print head and related patent
thermally induced The drop the print media or applications
surface tension selection means transfer roller
reduction of does not need to May require two
pressurized ink). provide the energy print heads printing
Selected drops are required to separate alternate rows of the
separated from the ink the drop from the image
in the nozzle by nozzle Monolithic color
contact with the print print heads are
medium or a transfer difficult
roller.
Electro- The drops to be Very simple print Requires very Silverbrook, EP
static pull printed are selected by head fabrication can high electrostatic 0771 658 A2 and
on ink some manner (e.g. be used field related patent
thermally induced The drop Electrostatic field applications
surface tension selection means for small nozzle Tone-Jet
reduction of does not need to sizes is above air
pressurized ink). provide the energy breakdown
Selected drops are required to separate Electrostatic field
separated from the ink the drop from the may attract dust
in the nozzle by a nozzle
strong electric field.
Magnetic The drops to be Very simple print Requires Silverbrook, EP
pull on ink printed are selected by. head fabrication can magnetic ink 0771 658 A2 and
some manner (e.g. be used Ink colors other related patent
thermally induced The drop than black are applications
surface tension selection means difficult
reduction of does not need to Requires very
pressurized ink). provide the energy high magnetic fields
Selected drops are required to separate
separated from the ink the drop from the
in the nozzle by a nozzle
strong magnetic field
acting on the magnetic
ink.
Shutter The actuator moves a High speed (>50 Moving parts are IJ13, IJ17, IJ21
shutter to block ink kHz) operation can required
flow to the nozzle. The be achieved due to Requires ink
ink pressure is pulsed reduced refill time pressure modulator
at a multiple of the Drop timing can Friction and wear
drop ejection be very accurate must be considered
frequency. The actuator Stiction is
energy can be very possible
low
Shuttered The actuator moves a Actuators with Moving parts are IJ08, IJ15, IJ18
grill shutter to block ink small travel can be required IJ19
flow through a grill to used Requires ink
the nozzle. The shutter Actuators with pressure modulator
movement need only small force can be Friction and wear
be equal to the width used must be considered
of the grill holes. High speed (>50 Stiction is
kHz) operation can possible
be achieved
Pulsed A pulsed magnetic Extremely low Requires an IJ10
magnetic field attracts an ‘ink energy operation is external pulsed
pull on ink pusher’ at the drop possible magnetic field
pusher ejection frequency. An No heat Requires special
actuator controls a dissipation materials for both
catch, which prevents problems the actuator and the
the ink pusher from ink pusher
moving when a drop is Complex
not to be ejected. construction
AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)
Description Advantages Disadvantages Examples
None The actuator directly Simplicity of Drop ejection Most ink jets,
fires the ink drop, and construction energy must be including
there is no external Simplicity of supplied by piezoelectric and
field or other operation individual nozzle thermal bubble.
mechanism required. Small physical actuator IJ01, IJ02, IJ03, IJ04,
size IJ05, IJ07, IJ09, IJ11,
IJ12, IJ14, IJ20, IJ22,
IJ23, IJ24, IJ25, IJ26,
IJ27, IJ28, IJ29, IJ30,
IJ31, IJ32, IJ33, IJ34,
IJ35, IJ36, IJ37, IJ38,
IJ39, IJ40, IJ41, IJ42,
IJ43, IJ44
Oscillating The ink pressure Oscillating ink Requires external Silverbrook, EP
ink pressure oscillates, providing pressure can provide ink pressure 0771 658 A2 and
(including much of the drop a refill pulse, oscillator related patent
acoustic ejection energy. The allowing higher Ink pressure applications
stimulation) actuator selects which operating speed phase and amplitude IJ08, IJ13, IJ15, IJ17,
drops are to be fired The actuators must be carefully IJ18, IJ19, IJ21
by selectively may operate with controlled
blocking or enabling much lower energy Acoustic
nozzles. The ink Acoustic lenses reflections in the ink
pressure oscillation can be used to focus chamber must be
may be achieved by the sound on the designed for
vibrating the print nozzles
head, or preferably by
an actuator in the ink
supply.
Media The print head is Low power Precision Silverbrook, EP
proximity placed in close High accuracy assembly required 0771 658 A2 and
proximity to the print Simple print head Paper fibers may related patent
medium. Selected construction cause problems applications
drops protrude from Cannot print on
the print head further rough substrates
than unselected drops,
and contact the print
medium. The drop
soaks into the medium
fast enough to cause
drop separation.
Transfer Drops are printed to a High accuracy Bulky Silverbrook, EP
roller transfer roller instead Wide range of Expensive 0771 658 A2 and
of straight to the print print substrates can Complex related patent
medium. A transfer be used construction applications
roller can also be used Ink can be dried Tektronix hot melt
for proximity drop on the transfer roller piezoelectric ink jet
separation. Any of the IJ series
Electro- An electric field is Low power Field strength Silverbrook, EP
static used to accelerate Simple print head required for 0771 658 A2 and
selected drops towards construction separation of small related patent
the print medium. drops is near or applications
above air Tone-Jet
breakdown
Direct A magnetic field is Low power Requires Silverbrook, EP
magnetic used to accelerate Simple print head magnetic ink 0771 658 A2 and
field selected drops of construction Requires strong related patent
magnetic ink towards magnetic field applications
the print medium.
Cross The print head is Does not require Requires external IJ06, IJ16
magnetic placed in a constant magnetic materials magnet
field magnetic field. The to be integrated in Current densities
Lorenz force in a the print head may be high,
current carrying wire manufacturing resulting in
is used to move the process electromigration
actuator. problems
Pulsed A pulsed magnetic Very low power Complex print IJ10
magnetic field is used to operation is possible head construction
field cyclically attract a Small print head Magnetic
paddle, which pushes size materials required in
on the ink. A small print head
actuator moves a catch,
which selectively
prevents the paddle
from moving.
ACTUATOR AMPLIFICATION OR MODIFICATION METHOD
Description Advantages Disadvantages Examples
None No actuator Operational Many actuator Thermal Bubble
mechanical simplicity mechanisms have Ink jet
amplification is used. insufficient travel, IJ01, IJ02, IJ06,
The actuator directly or insufficient force, IJ07, IJ16, IJ25,
drives the drop to efficiently drive IJ26
ejection process. the drop ejection
process
Differential An actuator material Provides greater High stresses are Piezoelectric
expansion expands more on one travel in a reduced involved IJ03, IJ09, IJ17,
bend side than on the other. print head area Care must be IJ18, IJ19, IJ20,
actuator The expansion may be taken that the IJ21, IJ22, IJ23,
thermal, piezoelectric, materials do not IJ24, IJ27, IJ29,
magnetostrictive, or delaminate IJ30, IJ31, IJ32,
other mechanism. The Residual bend IJ33, IJ34, IJ35,
bend actuator converts resulting from high IJ36, IJ37, IJ38,
a high force low travel temperature or high IJ39, IJ42, IJ43,
actuator mechanism to stress during IJ44
high travel, lower formation
force mechanism.
Transient A trilayer bend Very good High stresses are IJ40, IJ41
bend actuator where the two temperature stability involved
actuator outside layers are High speed, as a Care must be
identical. This cancels new drop can be taken that the
bend due to ambient fired before heat materials do not
temperature and dissipates delaminate
residual stress. The Cancels residual
actuator only responds stress of formation
to transient heating of
one side or the other.
Reverse The actuator loads a Better coupling Fabrication IJ05, IJ11
spring spring. When the to the ink complexity
actuator is turned off, High stress in the
the spring releases. spring
This can reverse the
force/distance curve of
the actuator to make it
compatible with the
force/time
requirements of the
drop ejection.
Actuator A series of thin Increased travel Increased Some
stack actuators are stacked. Reduced drive fabrication piezoelectric ink jets
This can be voltage complexity IJ04
appropriate where Increased
actuators require high possibility of short
electric field strength, circuits due to
such as electrostatic pinholes
and piezoelectric
actuators.
Multiple Multiple smaller Increases the Actuator forces IJ12, IJ13, IJ18,
actuators actuators are used force available from may not add IJ20, IJ22, IJ28,
simultaneously to an actuator linearly, reducing IJ42, IJ43
move the ink. Each Multiple efficiency
actuator need provide actuators can be
only a portion of the positioned to control
force required. ink flow accurately
Linear A linear spring is used Matches low Requires print IJ15
Spring to transform a motion travel actuator with head area for the
with small travel and higher travel spring
high force into a requirements
longer travel, lower Non-contact
force motion. method of motion
transformation
Coiled A bend actuator is Increases travel Generally IJ17, IJ21, 1134,
actuator coiled to provide Reduces chip restricted to planar IJ35
greater travel in a area implementations
reduced chip area. Planar due to extreme
implementations are fabrication difficulty
relatively easy to in other orientations.
fabricate.
Flexure A bend actuator has a Simple means of Care must be IJ10, IJ19, IJ33
bend small region near the increasing travel of taken not to exceed
actuator fixture point, which a bend actuator the elastic limit in
flexes much more the flexure area
readily than the Stress
remainder of the distribution is very
actuator. The actuator uneven
flexing is effectively Difficult to
converted from an accurately model
even coiling to an with finite element
angular bend, resulting analysis
in greater travel of the
actuator tip.
Catch The actuator controls a Very low Complex IJ10
small catch. The catch actuator energy construction
either enables or Very small Requires external
disables movement of actuator size force
an ink pusher that is Unsuitable for
controlled in a bulk pigmented inks
manner.
Gears Gears can be used to Low force, low Moving parts are IJ13
increase travel at the travel actuators can required
expense of duration. be used Several actuator
Circular gears, rack Can be fabricated cycles are required
and pinion, ratchets, using standard More complex
and other gearing surface MEMS drive electronics
methods can be used. processes Complex
construction
Friction, friction,
and wear are
possible
Buckle plate A buckle plate can be Very fast Must stay within S. Hirata et al,
used to change a slow movement elastic limits of the “An Ink-jet Head
actuator into a fast achievable materials for long Using Diaphragm
motion. It can also device life Microactuator”,
convert a high force; High stresses Proc. IEEE MEMS,
low travel actuator involved Feb. 1996, pp 418-
into a high travel, Generally high 423.
medium force motion. power requirement IJ18, IJ27
Tapered A tapered magnetic Linearizes the Complex IJ14
magnetic pole can increase magnetic construction
pole travel at the expense force/distance curve
of force.
Lever A lever and fulcrum is Matches low High stress 1132, IJ36, IJ37
used to transform a travel actuator with around the fulcrum
motion with small higher travel
travel and high force requirements
into a motion with Fulcrum area has
longer travel and no linear movement,
lower force. The lever and can be used for
can also reverse the a fluid seal
direction of travel.
Rotary The actuator is High mechanical Complex IJ28
impeller connected to a rotary advantage construction:
impeller. A small The ratio of force Unsuitable for
angular deflection of to travel of the pigmented inks
the actuator results in actuator can be
a rotation of the matched to the
impeller vanes, which nozzle requirements
push the ink against by varying the
stationary vanes and number of impeller
out of the nozzle. vanes
Acoustic A refractive or No moving parts Large area 1993 Hadimioglu
lens diffractive (e.g. zone required et al, EUP 550,192
plate) acoustic lens is Only relevant for 1993 Elrod et al,
used to concentrate acoustic ink jets EUP 572,220
sound waves.
Sharp A sharp point is used Simple Difficult to Tone-jet
conductive to concentrate an construction fabricate using
point electrostatic field. standard VLSI
processes for a
surface ejecting ink-
jet
Only relevant for
electrostatic ink jets
ACTUATOR MOTION
Description Advantages Disadvantages Examples
Volume The volume of the Simple High energy is Hewlett-Packard
expansion actuator changes, construction in the typically required to Thermal Ink jet
pushing the ink in all case of thermal ink achieve volume Canon Bubblejet
directions. jet expansion. This
leads to thermal
stress, cavitation,
and kogation in
thermal ink jet
implementations
Linear, The actuator moves in Efficient High fabrication IJ01, IJ02, IJ04,
normal to a direction normal to coupling to ink complexity may be IJ07, IJ11, IJ14
chip surface the print head surface. drops ejected required to achieve
The nozzle is typically normal to the perpendicular
in the line of surface motion
movement.
Parallel to The actuator,moves Suitable for Fabrication IJ12, IJ13, IJ15,
chip surface parallel to the print planar fabrication complexity IJ33, IJ34, IJ35,
head surface. Drop Friction IJ36
ejection may still be Stiction
normal to the surface.
Membrane An actuator with a The effective Fabrication 1982 Howkins
push high force but small area of the actuator complexity U.S. Pat. No. 4,459,601
area is used to push a becomes the Actuator size
stiff membrane that is membrane area Difficulty of
in contact with the ink. integration in a
VLSI process
Rotary The actuator causes Rotary levers Device IJ05, IJ08, IJ13,
the rotation of some may be used to complexity IJ28
element, such a grill or increase travel May have
impeller Small chip area friction at a pivot
requirements point
Bend The actuator bends A very small Requires the 1970 Kyser et al
when energized. This change in actuator to be made U.S. Pat. No. 3,946,398
may be due to dimensions can be from at least two 1973 Stemme
differential thermal converted to a large distinct layers, or to U.S. Pat. No. 3,747,120
expansion, motion. have a thermal IJ03, IJ09, IJ10, IJ19,
piezoelectric difference across the IJ23, IJ24, IJ25, IJ29,
expansion, actuator IJ30, IJ31, IJ33, IJ34,
magnetostriction, or IJ35
other form of relative
dimensional change.
Swivel The actuator swivels Allows operation Inefficient IJ06
around a central pivot. where the net linear coupling to the ink
This motion is suitable force on the paddle motion
where there are is zero
opposite forces Small chip area
applied to opposite requirements
sides of the paddle,
e.g. Lorenz force.
Straighten The actuator is Can be used with Requires careful IJ26, IJ32
normally bent, and shape memory balance of stresses
straightens when alloys where the to ensure that the
energized. austenic phase is quiescent bend is
planar accurate
Double The actuator bends in One actuator can Difficult to make IJ36, IJ37, IJ38
bend one direction when be used to power the drops ejected by
one element is two nozzles. both bend directions
energized, and bends Reduced chip identical.
the other way when size. A small
another element is Not sensitive to efficiency loss
energized. ambient temperature compared to
equivalent single
bend actuators.
Shear Energizing the Can increase the Not readily 1985 Fishbeck
actuator causes a shear effective travel of applicable to other U.S. Pat. No. 4,584,590
motion in the actuator piezoelectric actuator
material. actuators mechanisms
Radial con- The actuator squeezes Relatively easy High force 1970 Zoltan U.S. Pat.
striction an ink reservoir, to fabricate single required No. 3,683,212
forcing ink from a nozzles from glass Inefficient
constricted nozzle. tubing as Difficult to
macroscopic integrate with VLSI
structures processes
Coil/uncoil A coiled actuator Easy to fabricate Difficult to IJ17, IJ21, 1J34, IJ35
uncoils or coils more as a planar VLSI fabricate for non-
tightly. The motion of process planar devices
the free end of the Small area Poor out-of-plane
actuator ejects the ink. required, therefore stiffness
low cost
Bow The actuator bows (or Can increase the Maximum travel IJ16, IJ18, IJ27
buckles) in the middle speed of travel is constrained
when energized. Mechanically High force
rigid required
Push-Pull Two actuators control The structure is Not readily IJ18
a shutter. One actuator pinned at both ends, suitable for ink jets
pulls the shutter, and so has a high out-of- which directly push
the other pushes it. plane rigidity the ink
Curl A Set of actuators curl Good fluid flow Design IJ20, IJ42
inwards inwards to reduce the to the region behind complexity
volume of ink that the actuator
they enclose. increases efficiency
Curl A set of actuators curl Relatively simple Relatively large IJ43
outwards outwards, pressurizing construction chip area
ink in a chamber
surrounding the
actuators, and
expelling ink from a
nozzle in the chamber.
Iris Multiple vanes enclose High efficiency High fabrication IJ22
a volume of ink. These Small chip area complexity
simultaneously rotate, Not suitable for
reducing the volume pigmented inks
between the vanes.
Acoustic The actuator vibrates The actuator can Large area 1993 Hadimioglu
vibration at a high frequency. be physically distant required for et al, EUP 550,192
from the ink efficient operation 1993 Elrod et al,
at useful frequencies EUP 572,220
Acoustic coupling
and crosstalk
Complex drive
circuitry
Poor control of
drop volume and
position
None In various ink jet No moving parts Various other Silverbrook, EP
designs the actuator tradeoffs are 0771 658 A2 and
does not move. required to related patent
eliminate moving applications
parts Tone-jet
NOZZLE REFILL METHOD
Description Advantages Disadvantages Examples
Surface This is the normal way Fabrication Low speed. Thermal ink jet
tension that ink jets are simplicity Surface tension Piezoelectric ink
refilled. After the Operational force relatively jet
actuator is energized, simplicity small compared to IJ01-IJ07, IJ10-
it typically returns actuator force IJ14, IJ16, IJ20,
rapidly to its normal Long refill time IJ22, IJ45
position. This rapid usually dominates
return sucks in air the total repetition
through the nozzle rate
opening. The ink
surface tension at the
nozzle then exerts a
small force restoring
the meniscus to a
minimum area. This
force refills the nozzle.
Shuttered Ink to the nozzle High speed Requires IJ08, IJ13, IJ15,
oscillating chamber is provided at Low actuator common ink IJ17, IJ18, IJ19,
ink pressure a pressure that energy, as the pressure oscillator IJ21
oscillates at twice the actuator need only May not be
drop ejection open or close the suitable for
frequency. When a shutter, instead of pigmented inks
drop is to be ejected, ejecting the ink drop
the shutter is opened
for 3 half cycles: drop
ejection, actuator
return, and refill. The
shutter is then closed
to prevent the nozzle
chamber emptying
during the next
negative pressure
cycle.
Refill After the main High speed, as Requires two IJ09
actuator actuator has ejected a the nozzle is independent
drop a second (refill) actively refilled actuators per nozzle
actuator is energized.
The refill actuator
pushes ink into the
nozzle chamber. The
refill actuator returns
slowly, to prevent its.
return from emptying
the chamber again.
Positive ink The ink is held a slight High refill rate, Surface spill Silverbrook, EP
pressure positive pressure. therefore a high must be prevented 0771 658 A2 and
After the ink drop is drop repetition rate Highly related patent
ejected, the nozzle is possible hydrophobic print applications
chamber fills quickly head surfaces are Alternative for:,
as surface tension and required IJ01-IJ07, IJ10-IJ14,
ink pressure both IJ16, IJ20, IJ22-IJ45
operate to refill the
nozzle.
METHOD OF RESTRICTING BACK-FLOW THROUGH INLET
Description Advantages Disadvantages Examples
Long inlet The ink inlet channel Design simplicity Restricts refill Thermal ink jet
channel to the nozzle chamber Operational rate Piezoelectric ink
is made long and simplicity May result in a jet
relatively narrow, Reduces crosstalk relatively large chip IJ42, IJ43
relying on viscous area
drag to reduce inlet Only partially
back-flow. effective
Positive ink The ink is under a Drop selection Requires a Silverbrook, EP
pressure positive pressure, so and separation method (such as a 0771 658 A2 and
that in the quiescent forces can be nozzle rim or related patent
state some of the ink reduced effective applications
drop already protrudes Fast refill time hydrophobizing, or Possible
from the nozzle. both) to prevent operation of the
This reduces the flooding of the following: IJ01-IJ07,
pressure in the nozzle ejection surface of IJ09-IJ12, IJ14,
chamber which is the print head. IJ16, IJ20, IJ22,
required to eject a IJ23-IJ34,
certain volume of ink. IJ36-IJ41, IJ44
The reduction in
chamber pressure
results in a reduction
in ink pushed out
through the inlet.
Baffle One or more baffles The refill rate is Design HP Thermal Ink
are placed in the inlet not as restricted as complexity Jet
ink flow. When the the long inlet May increase Tektronix
actuator is energized, method. fabrication piezoelectric ink jet
the rapid ink Reduces crosstalk complexity (e.g.
movement creates Tektronix hot melt
eddies which restrict Piezoelectric print
the flow through the heads).
inlet. The slower refill
process is unrestricted,
and does not result in
eddies.
Flexible flap In this method recently Significantly Not applicable to Canon
restricts disclosed by Canon, reduces back-flow most ink jet
inlet the expanding actuator for edge-shooter configurations
(bubble) pushes on a thermal ink jet Increased
flexible flap that devices fabrication
restricts the inlet. complexity
Inelastic
deformation of
polymer flap results
in creep over
extended use
Inlet filter A filter is located Additional Restricts refill IJ04, IJ12, IJ24, IJ27,
between the ink inlet advantage of ink rate IJ29, IJ30
and the nozzle filtration May result in
chamber. The filter Ink filter may be complex
has a multitude of fabricated with no construction
small holes or slots, additional process
restricting ink flow. steps
The filter also removes
particles which may
block the nozzle.
Small inlet The ink inlet channel Design simplicity Restricts refill IJ02, IJ37, IJ44
compared to the nozzle chamber rate
to nozzle has a substantially May result in a
smaller cross section relatively large chip
than that of the nozzle, area
resulting in easier ink Only partially
egress out of the effective
nozzle than out of the
inlet.
Inlet shutter A secondary actuator Increases speed Requires separate IJ09
controls the position of of the ink-jet print refill actuator and
a shutter, closing off head operation drive circuit
the ink inlet when the
main actuator is
energized.
The inlet is The method avoids the Back-flow problem Requires careful IJ01, IJ03, IJ05, IJ06,
located problem of inlet back- is eliminated design to minimize IJ07, IJ10, IJ11, IJ14,
behind the flow by arranging the the negative IJ16, IJ22, IJ23, IJ25,
ink-pushing ink-pushing surface of pressure behind the IJ28, IJ31, IJ32, IJ33,
surface the actuator between the paddle IJ34, IJ35, IJ36, IJ39,
inlet and the nozzle. IJ40, IJ41
Part of the The actuator and a Significant Small increase in IJ07, IJ20, IJ26,
actuator wall of the ink reductions in back- fabrication IJ38
moves to chamber are arranged flow can be complexity
shut off the so that the motion of achieved
inlet the actuator closes off Compact designs
the inlet. possible
Nozzle In some configurations Ink back-flow None related to Silverbrook, EP
actuator of ink jet, there is no problem is ink back-flow on 0771 658 A2 and
does not expansion or movement eliminated actuation related patent
result in ink of an actuator which applications
back-flow may cause ink back-flow Valve-jet
through the inlet. Tone-jet
NOZZLE CLEARING METHOD
Description Advantages Disadvantages Examples
Normal All of the nozzles are No added May not be Most ink jet
nozzle firing fired periodically, complexity on the sufficient to systems
before the ink has a print head displace dried ink IJ01, 1302, IJ03, IJ04,
chance to dry. When IJ05, IJ06, IJ07, IJ09,
not in use the nozzles IJ10, IJ11, IJ12, IJ14,
are sealed (capped) IJ16, IJ20, IJ22, IJ23,
against air. IJ24, IJ25, IJ26, IJ27,
The nozzle firing is IJ28, IJ29, IJ30, IJ31,
usually performed during IJ32, IJ33, IJ34, IJ36,
a special clearing IJ37, IJ38, IJ39, IJ40,
cycle, after first IJ41, IJ42, IJ43, IJ44,
moving the print head IJ45
to a cleaning station.
Extra In systems which heat Can be highly Requires higher Silverbrook, EP
power to the ink, but do not boil effective if the drive voltage for 0771 658 A2 and
ink heater it under normal heater is adjacent to clearing related patent
situations, nozzle the nozzle May require larger applications
clearing can be drive transistors
achieved by over-
powering the heater
and boiling ink at the
nozzle.
Rapid The actuator is fired in Does not require Effectiveness May be used
succession rapid succession. In extra drive circuits depends substantially with: IJ01, IJ02, IJ03,
of actuator some configurations, on the print head upon the configuration IJ04, IJ05, IJ06, IJ07,
pulses this may cause heat Can be readily of the ink jet nozzle IJ09, IJ10, IJ11, IJ14,
build-up at the nozzle controlled and IJ16, IJ20, IJ22, IJ23,
which boils the ink, initiated by digital IJ24, IJ25, IJ27, IJ28,
clearing the nozzle. In logic IJ29, IJ30, IJ31, IJ32,
other situations, it may IJ33, IJ34, IJ36, IJ37,
cause sufficient IJ38, IJ39, IJ40, IJ41,
vibrations to dislodge IJ42, IJ43, IJ44, IJ45
clogged nozzles.
Extra Where an actuator is A simple Not suitable where May be used
power to not normally driven to solution where there is a hard limit with: IJ03, IJ09, IJ16,
ink pushing the limit of its motion, applicable to actuator movement IJ20, IJ23, IJ24, IJ25,
actuator nozzle clearing may be IJ27, IJ29, IJ30, IJ31,
assisted by providing IJ32, IJ39, IJ40, IJ41,
an enhanced drive IJ42, IJ43, IJ44, IJ45
signal to the actuator.
Acoustic An ultrasonic wave is A high nozzle High implementation IJ08, IJ13, IJ15, IJ17,
resonance applied to the ink clearing capability cost if system does IJ18, IJ19, IJ21
chamber. This wave is can be achieved not already include
of an appropriate May be an acoustic actuator
amplitude and implemented at very
frequency to cause low cost in systems
sufficient force at the which already
nozzle to clear include acoustic
blockages. This is actuators
easiest to achieve if
the ultrasonic wave is
at a resonant
frequency of the ink
cavity.
Nozzle A microfabricated Can clear Accurate Silverbrook, EP
clearing plate is pushed against severely clogged mechanical 0771 658 A2 and
plate the nozzles. The plate nozzles alignment is related patent
has a post for every required applications
nozzle. A post moves Moving parts are
through each nozzle, required
displacing dried ink. There is risk of
damage to the nozzles
Accurate fabrication
is required
Ink The pressure of the ink May be effective Requires pressure May be used with
pressure is temporarily where other pump or other with all IJ series ink
pulse increased so that ink methods cannot be pressure actuator jets
streams from all of the used Expensive
nozzles. This may be Wasteful of ink
used in conjunction
with actuator energizing.
Print head A flexible ‘blade’ is Effective for Difficult to use if Many ink jet systems
wiper wiped across the print planar print head print head surface is
head surface. The surfaces non-planar or very
blade is usually Low cost fragile
fabricated from a Requires
flexible polymer, e.g. mechanical parts
rubber or synthetic Blade can wear
elastomer. out in high volume
print systems
Separate A separate heater is Can be effective Fabrication Can be used with
ink boiling provided at the nozzle where other nozzle complexity many IJ series ink
heater although the normal clearing methods jets
drop ejection mechanism cannot be used
does not require it. Can be
The heaters do not implemented at no
require individual additional cost in
drive circuits, as some ink jet
many nozzles can be configurations
cleared simultaneously,
and no imaging is
required.
NOZZLE PLATE CONSTRUCTION
Description Advantages Disadvantages Examples
Electro- A nozzle plate is Fabrication High Hewlett Packard
formed separately fabricated simplicity temperatures and Thermal Ink jet
nickel from electroformed pressures are
nickel, and bonded to required to bond
the print head chip. nozzle plate
Minimum
thickness constraints
Differential
thermal expansion
Laser Individual nozzle No masks Each hole must Canon Bubblejet
ablated or holes are ablated by an required be individually 1988 Sercel et
drilled intense UV laser in a Can be quite fast formed al., SPIE, Vol. 998
polymer nozzle plate, which is Some control Special Excimer Beam
typically a polymer over nozzle profile equipment required Applications, pp.
such as polyimide or is possible Slow where there 76-83
polysulphone Equipment are many thousands 1993 Watanabe
required is relatively of nozzles per print et al., U.S. Pat. No.
low cost head 5,208,604
May produce thin
burrs at exit holes
Silicon A separate nozzle High accuracy is Two part K. Bean, IEEE
micro- plate is micromachined attainable construction Transactions on
machined from single crystal High cost Electron Devices,
silicon, and bonded to Requires Vol. ED-25, No. 10,
the print head wafer. precision alignment 1978, pp 1185-1195
Nozzles may be Xerox 1990
clogged by adhesive Hawkins et al., U.S.
Pat. No. 4,899,181
Glass Fine glass capillaries No expensive Very small 1970 Zoltan U.S.
capillaries are drawn from glass equipment required nozzle sizes are Pat. No. 3,683,212
tubing. This method Simple to make difficult to form
has been used for single nozzles Not suited for
making individual mass production
nozzles, but is difficult
to use for bulk
manufacturing of print
heads with thousands
of nozzles.
Monolithic, The nozzle plate is High accuracy Requires Silverbrook, EP
surface deposited as a layer (<1 μm) sacrificial layer 0771 658 A2 and
micro- using standard VLSI Monolithic under the nozzle related patent
machined deposition techniques. Low cost plate to form the applications
using VLSI Nozzles are etched in Existing nozzle chamber IJ01, IJ02, 1104, IJ11,
litho- the nozzle plate using processes can be Surface may be IJ12, IJ17, IJ18, IJ20,
graphic VLSI lithography and used fragile to the touch IJ22, IJ24, IJ27, 1128,
processes etching. IJ29, IJ30, IJ31, IJ32,
IJ33, IJ34, IJ36, IJ37,
IJ38, IJ39, IJ40, IJ41,
IJ42, IJ43, IJ44
Monolithic, The nozzle plate is a High accuracy Requires long IJ03, IJ05, IJ06, IJ07,
etched buried etch stop in the (<1 μm) etch times IJ08, IJ09, IJ10, IJ13,
through wafer. Nozzle Monolithic Requires a IJ14, IJ15, IJ16, IJ19,
substrate chambers are etched in Low cost support wafer IJ21, IJ23, IJ25, IJ26
the front of the wafer, No differential
and the wafer is thinned expansion
from the back side.
Nozzles are then etched
in the etch stop layer.
No nozzle Various methods have No nozzles to Difficult to Ricoh 1995
plate been tried to eliminate become clogged control drop Sekiya et al U.S.
the nozzles entirely, to position accurately Pat. No. 5,412,413
prevent nozzle Crosstalk 1993 Hadimioglu
clogging. These problems et al EUP 550,192
include thermal bubble 1993 Elrod et al
mechanisms and EUP 572,220
acoustic lens mechanisms
Trough Each drop ejector has Reduced Drop firing IJ35
a trough through manufacturing direction is sensitive
which a paddle moves. complexity to wicking.
There is no nozzle Monolithic
plate.
Nozzle slit The elimination of No nozzles to Difficult to 1989 Saito et al U.S.
instead of nozzle holes and become clogged control drop Pat. No. 4,799,068
individual replacement by a slit position accurately
nozzles encompassing many Crosstalk problems
actuator positions
reduces nozzle clogging,
but increases crosstalk
due to ink surface waves
DROP EJECTION DIRECTION
Description Advantages Disadvantages Examples
Edge Ink flow is along the Simple Nozzles limited Canon Bubblejet
(‘edge surface of the chip, construction to edge 1979 Endo et al GB
shooter’) and ink drops are No silicon High resolution patent 2,007,162
ejected from the chip etching required is difficult Xerox heater-in-pit
edge. Good heat Fast color 1990 Hawkins et al
sinking via substrate printing requires U.S. Pat. No.
Mechanically one print head per 4,899,181
strong color Tone-jet
Ease of chip
handing
Surface Ink flow is along the No bulk Silicon Maximum ink Hewlett-Packard TIJ
(‘roof surface of the chip, etching required flow is severely 1982 Vaught et al U.S.
shooter’) and ink drops are Silicon can make restricted Pat. No. 4,490,728
ejected from the chip an effective heat IJ02, IJ11, IJ12,
surface, normal to the sink IJ20, IJ22
plane of the chip. Mechanical
strength
Through Ink flow is through the High ink flow Requires bulk Silverbrook, EP
chip, chip, and ink drops are Suitable for silicon etching 0771 658 A2 and
forward ejected from the front pagewidth print related patent
(‘up surface of the chip. heads applications
shooter’) High nozzle IJ04, IJ17, IJ18,
packing density IJ24, IJ27-IJ45
therefore low
manufacturing cost
Through Ink flow is through the High ink flow Requires wafer IJ01, IJ03, IJ05,
chip, chip, and ink drops are Suitable for thinning IJ06, IJ07, IJ08,
reverse ejected from the rear pagewidth print Requires special IJ09, IJ10, IJ13,
(‘down surface of the chip. heads handling during IJ14, IJ15, IJ16,
shooter’) High nozzle manufacture IJ19, IJ21, IJ23,
packing density IJ25, IJ26
therefore low
manufacturing cost
Through Ink flow is through the Suitable for Pagewidth print Epson Stylus
actuator actuator, which is not piezoelectric print heads require Tektronix hot
fabricated as part of heads several thousand melt piezoelectric
the same substrate as connections to drive ink jets
the drive transistors. circuits
Cannot be
manufactured in
standard CMOS
fabs
Complex
assembly required
INKTYPE
Description Advantages Disadvantages Examples
Aqueous, Water based ink which Environmentally Slow drying Most existing ink
dye typically contains: friendly Corrosive jets
water, dye, surfactant, No odor Bleeds on paper All IJ series ink
humectant, and May strikethrough jets
biocide. Cockles paper Silverbrook, EP
Modern ink dyes have 0771 658 A2 and
high water-fastness, related patent
light fastness applications
Aqueous, Water based ink which Environmentally Slow drying IJ02, IJ04, IJ21,
pigment typically contains: friendly Corrosive IJ26, IJ27, IJ30
water, pigment, No odor Pigment may Silverbrook, EP
surfactant, humectant, Reduced bleed clog nozzles 0771 658 A2 and
and biocide. Reduced wicking Pigment may related patent
Pigments have an Reduced clog actuator applications
advantage in reduced strikethrough mechanisms Piezoelectric ink-
bleed, wicking and Cockles paper jets
strikethrough. Thermal ink jets
(with significant
restrictions)
Methyl MEK is a highly Very fast drying Odorous All IJ series ink
Ethyl volatile solvent used Prints on various Flammable jets
Ketone for industrial printing substrates such as
(MEK) on difficult surfaces metals and plastics
such as aluminum cans.
Alcohol Alcohol based inks Fast drying Slight odor All IJ series ink
(ethanol, 2- can be used where the Operates at sub- Flammable jets
butanol, printer must operate at freezing
and others) temperatures below temperatures
the freezing point of Reduced paper
water. An example of cockle
this is in-camera Low cost
consumer photographic
printing.
Phase The ink is solid at No drying time- High viscosity Tektronix hot
change room temperature, and ink instantly freezes Printed ink melt piezoelectric
(hot melt) is melted in the print on the print medium typically has a ink jets
head before jetting. Almost any print ‘waxy’ feel 1989 Nowak U.S.
Hot melt inks are medium can be used Printed pages Pat. No. 4,820,346
usually wax based, No paper cockle may ‘block’ All IJ series ink
with a melting point occurs Ink temperature jets
around 80° C. After No wicking may be above the
jetting the ink freezes occurs curie point of
almost instantly upon No bleed occurs permanent magnets
contacting the print No strikethrough Ink heaters
medium or a transfer occurs consume power
roller. Long warm-up
time
Oil Oil based inks are High solubility High viscosity: All IJ series ink
extensively used in medium for some this is a significant jets
offset printing. They dyes limitation for use in
have advantages in Does not cockle ink jets, which
improved paper usually require a
characteristics on Does not wick low viscosity. Some
paper (especially no through paper short chain and
wicking or cockle). multi-branched oils
Oil soluble dies and have a sufficiently
pigments are required. low viscosity.
Slow drying
Micro- A microemulsion is a Stops ink bleed Viscosity higher All IJ series ink
emulsion stable, self forming High dye than water jets
emulsion of oil, water, solubility Cost is slightly
and surfactant. The Water, oil, and higher than water
characteristic drop size amphiphilic soluble based ink
is less than 100 nm, dies can be used High surfactant
and is determined by Can stabilize concentration
the preferred curvature pigment required (around
of the surfactant. suspensions 5%)

Claims (15)

We claim:
1. A method of manufacturing an ink jet printhead which includes:
providing a substrate;
etching said substrate to form a nozzle chamber;
depositing a sacrificial layer in said nozzle chamber;
depositing a permanent layer containing at least one thermally conductive layer on the sacrificial layer;
etching said permanent layer to form a first actuator, containing a first part of said at least one thermally conductive layer, displaceably arranged relative to the nozzle chamber and a second actuator, containing a second part of said at least one thermally conductive layer, also displaceably arranged relative to the nozzle chamber;
etching said substrate to form a nozzle opening with said nozzle chamber in communication with said nozzle opening, wherein the first actuator is displaced towards the nozzle opening to effect ink ejection from the nozzle opening and the second actuator assists in refill of the nozzle chamber after ejection of ink under the action of the first actuator; and
removing said sacrificial layer, thereby forming said printhead.
2. A method of manufacturing an ink jet printhead as claimed in claim 1 wherein multiple ink jet printheads are formed simultaneously on the substrate.
3. A method of manufacturing an ink jet printhead as claimed in claim 1 wherein said substrate is a silicon wafer.
4. A method of manufacturing an ink jet printhead as claimed in claim 1 wherein integrated drive electronics are formed on the substrate.
5. A method of manufacturing an ink jet printhead as claimed in claim 4 wherein said integrated drive electronics are formed using a CMOS fabrication process.
6. A method of manufacturing an ink jet printhead as claimed in claim 1 wherein ink is ejected from said substrate normal to said substrate.
7. A method of manufacture of an ink jet printhead arrangement including a series of nozzle chambers, said method comprising the steps of:
(a) providing an initial semiconductor wafer having an electrical circuitry layer and a buried epitaxial layer formed thereon;
(b) etching a nozzle chamber aperture in said electrical circuitry layer in communication with a nozzle chamber in said semiconductor wafer;
(c) depositing a sacrificial layer filling said nozzle chamber;
(d) depositing a first expansion layer of material having a coefficient of thermal expansion over said nozzle chamber;
(e) depositing and etching a conductive material layer on said first layer to form at least two conductive heater elements over said first expansion layer, said heater elements being conductively connected to said electrical circuitry layer;
(f) depositing and etching a second expansion layer of material having a coefficient of thermal expansion over at least said conductive material layer, said etching including etching at least two leaf portions over said nozzle chamber;
(g) back etching said wafer to said buried epitaxial layer;
(h) etching a nozzle aperture in said epitaxial layer; and
(i) etching away said sacrificial layer.
8. A method as claimed in claim 7 wherein said epitaxial layer is utilized as an etch stop in said step (b).
9. A method as claimed in claim 7 wherein said step (b) comprises a crystallographic etch of said wafer.
10. A method as claimed in claim 7 wherein said conductive layer comprises substantially gold.
11. A method as claimed in claim 7 further including the step of depositing corrosion barriers over portions of said arrangement so as to reduce corrosion effects.
12. A method as claimed in claim 7 wherein said wafer comprises a double side polished CMOS wafer.
13. A method as claimed in claim 7 wherein at least step (i) is also utilised to simultaneously separate said wafer into separate printheads.
14. A method of manufacturing an ink jet printhead as claimed in claim 1 which includes fabricating the actuators to be thermally responsive by forming a heater element in each actuator.
15. A method of manufacturing an ink jet printhead as claimed in claim 1 which includes forming each actuator as a substantially planar element, the actuators lying in a common plane.
US09/113,123 1997-07-15 1998-07-10 Method of manufacture of a pump action refill ink jet printer Expired - Fee Related US6258285B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPO7991 1997-07-15
AUPO7991A AUPO799197A0 (en) 1997-07-15 1997-07-15 Image processing method and apparatus (ART01)
AUPO8078A AUPO807897A0 (en) 1997-07-15 1997-07-15 A method of manufacture of an image creation apparatus (IJM09)
AUPO8078 1997-07-15

Publications (1)

Publication Number Publication Date
US6258285B1 true US6258285B1 (en) 2001-07-10

Family

ID=25645522

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/113,123 Expired - Fee Related US6258285B1 (en) 1997-07-15 1998-07-10 Method of manufacture of a pump action refill ink jet printer

Country Status (1)

Country Link
US (1) US6258285B1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010040605A1 (en) * 1997-07-15 2001-11-15 Kia Silverbrook Ink jet printhead that incorporates an etch stop layer
US20020040887A1 (en) * 1998-06-08 2002-04-11 Kia Silverbrook Ink jet fabrication method
US6417757B1 (en) * 2000-06-30 2002-07-09 Silverbrook Research Pty Ltd Buckle resistant thermal bend actuators
US6451216B1 (en) * 1997-07-15 2002-09-17 Silverbrook Research Pty Ltd Method of manufacture of a thermal actuated ink jet printer
US7950777B2 (en) 1997-07-15 2011-05-31 Silverbrook Research Pty Ltd Ejection nozzle assembly
US20110141204A1 (en) * 2009-12-15 2011-06-16 Xerox Corporation Print Head Having a Polymer Layer to Facilitate Assembly of the Print Head
US7988247B2 (en) 2007-01-11 2011-08-02 Fujifilm Dimatix, Inc. Ejection of drops having variable drop size from an ink jet printer
US8020970B2 (en) 1997-07-15 2011-09-20 Silverbrook Research Pty Ltd Printhead nozzle arrangements with magnetic paddle actuators
US8025366B2 (en) 1997-07-15 2011-09-27 Silverbrook Research Pty Ltd Inkjet printhead with nozzle layer defining etchant holes
US8029102B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Printhead having relatively dimensioned ejection ports and arms
US8029101B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Ink ejection mechanism with thermal actuator coil
US8061812B2 (en) 1997-07-15 2011-11-22 Silverbrook Research Pty Ltd Ejection nozzle arrangement having dynamic and static structures
US8075104B2 (en) 1997-07-15 2011-12-13 Sliverbrook Research Pty Ltd Printhead nozzle having heater of higher resistance than contacts
US8083326B2 (en) 1997-07-15 2011-12-27 Silverbrook Research Pty Ltd Nozzle arrangement with an actuator having iris vanes
US8113629B2 (en) 1997-07-15 2012-02-14 Silverbrook Research Pty Ltd. Inkjet printhead integrated circuit incorporating fulcrum assisted ink ejection actuator
US8123336B2 (en) 1997-07-15 2012-02-28 Silverbrook Research Pty Ltd Printhead micro-electromechanical nozzle arrangement with motion-transmitting structure
US8162466B2 (en) 2002-07-03 2012-04-24 Fujifilm Dimatix, Inc. Printhead having impedance features
US8459768B2 (en) 2004-03-15 2013-06-11 Fujifilm Dimatix, Inc. High frequency droplet ejection device and method
US8491076B2 (en) 2004-03-15 2013-07-23 Fujifilm Dimatix, Inc. Fluid droplet ejection devices and methods
US8708441B2 (en) 2004-12-30 2014-04-29 Fujifilm Dimatix, Inc. Ink jet printing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654676A (en) * 1984-04-18 1987-03-31 Nec Corporation Valve element for use in an ink-jet printer head
US4997521A (en) * 1987-05-20 1991-03-05 Massachusetts Institute Of Technology Electrostatic micromotor
US5733433A (en) * 1994-12-29 1998-03-31 Qnix Computer Co Ltd Heat generating type ink-jet print head
US5872582A (en) * 1996-07-02 1999-02-16 Hewlett-Packard Company Microfluid valve for modulating fluid flow within an ink-jet printer
US5889541A (en) * 1996-10-09 1999-03-30 Xerox Corporation Two-dimensional print cell array apparatus and method for delivery of toner for printing images
US5897789A (en) * 1995-10-26 1999-04-27 Hewlett-Packard Company Valve assembly for controlling fluid flow within an ink-jet pen
US6000787A (en) * 1996-02-07 1999-12-14 Hewlett-Packard Company Solid state ink jet print head

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654676A (en) * 1984-04-18 1987-03-31 Nec Corporation Valve element for use in an ink-jet printer head
US4997521A (en) * 1987-05-20 1991-03-05 Massachusetts Institute Of Technology Electrostatic micromotor
US5733433A (en) * 1994-12-29 1998-03-31 Qnix Computer Co Ltd Heat generating type ink-jet print head
US5897789A (en) * 1995-10-26 1999-04-27 Hewlett-Packard Company Valve assembly for controlling fluid flow within an ink-jet pen
US6000787A (en) * 1996-02-07 1999-12-14 Hewlett-Packard Company Solid state ink jet print head
US5872582A (en) * 1996-07-02 1999-02-16 Hewlett-Packard Company Microfluid valve for modulating fluid flow within an ink-jet printer
US5889541A (en) * 1996-10-09 1999-03-30 Xerox Corporation Two-dimensional print cell array apparatus and method for delivery of toner for printing images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Krause, P. et al "A micromachined single-chip inkjet printhead" Sensors and Actuators A 53, 405-409, Jul. 1996. *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075104B2 (en) 1997-07-15 2011-12-13 Sliverbrook Research Pty Ltd Printhead nozzle having heater of higher resistance than contacts
US8113629B2 (en) 1997-07-15 2012-02-14 Silverbrook Research Pty Ltd. Inkjet printhead integrated circuit incorporating fulcrum assisted ink ejection actuator
US8123336B2 (en) 1997-07-15 2012-02-28 Silverbrook Research Pty Ltd Printhead micro-electromechanical nozzle arrangement with motion-transmitting structure
US7637595B2 (en) 1997-07-15 2009-12-29 Silverbrook Research Pty Ltd Nozzle arrangement for an inkjet printhead having an ejection actuator and a refill actuator
US8025366B2 (en) 1997-07-15 2011-09-27 Silverbrook Research Pty Ltd Inkjet printhead with nozzle layer defining etchant holes
US7950777B2 (en) 1997-07-15 2011-05-31 Silverbrook Research Pty Ltd Ejection nozzle assembly
US8020970B2 (en) 1997-07-15 2011-09-20 Silverbrook Research Pty Ltd Printhead nozzle arrangements with magnetic paddle actuators
US7381340B2 (en) * 1997-07-15 2008-06-03 Silverbrook Research Pty Ltd Ink jet printhead that incorporates an etch stop layer
US6451216B1 (en) * 1997-07-15 2002-09-17 Silverbrook Research Pty Ltd Method of manufacture of a thermal actuated ink jet printer
US8029102B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Printhead having relatively dimensioned ejection ports and arms
US8083326B2 (en) 1997-07-15 2011-12-27 Silverbrook Research Pty Ltd Nozzle arrangement with an actuator having iris vanes
US8029101B2 (en) 1997-07-15 2011-10-04 Silverbrook Research Pty Ltd Ink ejection mechanism with thermal actuator coil
US20010040605A1 (en) * 1997-07-15 2001-11-15 Kia Silverbrook Ink jet printhead that incorporates an etch stop layer
US20080204515A1 (en) * 1997-07-15 2008-08-28 Silverbrook Research Pty Ltd Nozzle Arrangement For An Inkjet Printhead Having An Ejection Actuator And A Refill Actuator
US8061812B2 (en) 1997-07-15 2011-11-22 Silverbrook Research Pty Ltd Ejection nozzle arrangement having dynamic and static structures
US20040179067A1 (en) * 1998-06-08 2004-09-16 Kia Silverbrook Ink jet printhead with moveable ejection nozzles
US20080094449A1 (en) * 1998-06-08 2008-04-24 Silverbrook Research Pty Ltd Printhead integrated circuit with an ink ejecting surface.
US20060227176A1 (en) * 1998-06-08 2006-10-12 Silverbrook Research Pty Ltd Printhead having multiple thermal actuators for ink ejection
US20020040887A1 (en) * 1998-06-08 2002-04-11 Kia Silverbrook Ink jet fabrication method
US20050200656A1 (en) * 1998-06-08 2005-09-15 Kia Silverbrook Moveable ejection nozzles in an inkjet printhead
US20050134650A1 (en) * 1998-06-08 2005-06-23 Kia Silverbrook Printer with printhead having moveable ejection port
US20030112296A1 (en) * 1998-06-08 2003-06-19 Kia Silverbrook Method of fabricating an ink jet nozzle arrangement
US7086721B2 (en) 1998-06-09 2006-08-08 Silverbrook Research Pty Ltd Moveable ejection nozzles in an inkjet printhead
US6998062B2 (en) * 1998-06-09 2006-02-14 Silverbrook Research Pty Ltd Method of fabricating an ink jet nozzle arrangement
US7934809B2 (en) 1998-06-09 2011-05-03 Silverbrook Research Pty Ltd Printhead integrated circuit with petal formation ink ejection actuator
US6712986B2 (en) * 1998-06-09 2004-03-30 Silverbrook Research Pty Ltd Ink jet fabrication method
US6886918B2 (en) 1998-06-09 2005-05-03 Silverbrook Research Pty Ltd Ink jet printhead with moveable ejection nozzles
US20090267993A1 (en) * 1998-06-09 2009-10-29 Silverbrook Research Pty Ltd Printhead Integrated Circuit With Petal Formation Ink Ejection Actuator
US7568790B2 (en) 1998-06-09 2009-08-04 Silverbrook Research Pty Ltd Printhead integrated circuit with an ink ejecting surface
US7325904B2 (en) 1998-06-09 2008-02-05 Silverbrook Research Pty Ltd Printhead having multiple thermal actuators for ink ejection
US7093928B2 (en) 1998-06-09 2006-08-22 Silverbrook Research Pty Ltd Printer with printhead having moveable ejection port
US6417757B1 (en) * 2000-06-30 2002-07-09 Silverbrook Research Pty Ltd Buckle resistant thermal bend actuators
US8162466B2 (en) 2002-07-03 2012-04-24 Fujifilm Dimatix, Inc. Printhead having impedance features
US8459768B2 (en) 2004-03-15 2013-06-11 Fujifilm Dimatix, Inc. High frequency droplet ejection device and method
US8491076B2 (en) 2004-03-15 2013-07-23 Fujifilm Dimatix, Inc. Fluid droplet ejection devices and methods
US8708441B2 (en) 2004-12-30 2014-04-29 Fujifilm Dimatix, Inc. Ink jet printing
US9381740B2 (en) 2004-12-30 2016-07-05 Fujifilm Dimatix, Inc. Ink jet printing
US7988247B2 (en) 2007-01-11 2011-08-02 Fujifilm Dimatix, Inc. Ejection of drops having variable drop size from an ink jet printer
US20110141204A1 (en) * 2009-12-15 2011-06-16 Xerox Corporation Print Head Having a Polymer Layer to Facilitate Assembly of the Print Head
US8303093B2 (en) 2009-12-15 2012-11-06 Xerox Corporation Print head having a polymer layer to facilitate assembly of the print head
US8491747B2 (en) 2009-12-15 2013-07-23 Xerox Corporation Method for facilitating assembly of a printhead having a polymer layer

Similar Documents

Publication Publication Date Title
US6712986B2 (en) Ink jet fabrication method
US6938990B2 (en) Fluid ejecting actuator for multiple nozzles of a printhead
US6274056B1 (en) Method of manufacturing of a direct firing thermal bend actuator ink jet printer
US6213589B1 (en) Planar thermoelastic bend actuator ink jet printing mechanism
US6245247B1 (en) Method of manufacture of a surface bend actuator vented ink supply ink jet printer
US6855264B1 (en) Method of manufacture of an ink jet printer having a thermal actuator comprising an external coil spring
US6416168B1 (en) Pump action refill ink jet printing mechanism
US6245246B1 (en) Method of manufacture of a thermally actuated slotted chamber wall ink jet printer
US6886917B2 (en) Inkjet printhead nozzle with ribbed wall actuator
US6331258B1 (en) Method of manufacture of a buckle plate ink jet printer
US6247796B1 (en) Magnetostrictive ink jet printing mechanism
US6306671B1 (en) Method of manufacture of a shape memory alloy ink jet printer
US6235212B1 (en) Method of manufacture of an electrostatic ink jet printer
US6280643B1 (en) Method of manufacture of a planar thermoelastic bend actuator ink jet printer
US6258285B1 (en) Method of manufacture of a pump action refill ink jet printer
US6241906B1 (en) Method of manufacture of a buckle strip grill oscillating pressure ink jet printer
US6267904B1 (en) Method of manufacture of an inverted radial back-curling thermoelastic ink jet
US6315914B1 (en) Method of manufacture of a coil actuated magnetic plate ink jet printer
US6491833B1 (en) Method of manufacture of a dual chamber single vertical actuator ink jet printer
US6290862B1 (en) Method of manufacture of a PTFE surface shooting shuttered oscillating pressure ink jet printer
US6312615B1 (en) Single bend actuator cupped paddle inkjet printing device
US6267905B1 (en) Method of manufacture of a permanent magnet electromagnetic ink jet printer
US6416679B1 (en) Method of manufacture of a thermoelastic bend actuator using PTFE and corrugated copper ink jet printer
US6248249B1 (en) Method of manufacture of a Lorenz diaphragm electromagnetic ink jet printer
US6241904B1 (en) Method of manufacture of a two plate reverse firing electromagnetic ink jet printer

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILVERBROOK RESEARCH PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK, KIA;REEL/FRAME:009512/0054

Effective date: 19980702

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: ZAMTEC LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK RESEARCH PTY. LIMITED AND CLAMATE PTY LIMITED;REEL/FRAME:028535/0836

Effective date: 20120503

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20130710