US6175454B1 - Panoramic imaging arrangement - Google Patents

Panoramic imaging arrangement Download PDF

Info

Publication number
US6175454B1
US6175454B1 US09/229,807 US22980799A US6175454B1 US 6175454 B1 US6175454 B1 US 6175454B1 US 22980799 A US22980799 A US 22980799A US 6175454 B1 US6175454 B1 US 6175454B1
Authority
US
United States
Prior art keywords
light
revolution
imaging arrangement
panoramic imaging
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/229,807
Inventor
Jan Hoogland
Edward C. Driscoll
Willard C. Lomax
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BeHere Corp
Chartoleaux KG LLC
Hanger Solutions LLC
Original Assignee
BeHere Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BeHere Corp filed Critical BeHere Corp
Priority to US09/229,807 priority Critical patent/US6175454B1/en
Assigned to BE HERE CORPORATION reassignment BE HERE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOOGLAND, JAN
Assigned to BE HERE CORPORATION reassignment BE HERE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOMAX, WILLARD C., DRISCOLL, EDWARD C., JR.
Priority to US09/629,034 priority patent/US6222683B1/en
Assigned to VENTURE BANKING GROUP, A DIVISION OF CUPERTINO NATIONAL BANK reassignment VENTURE BANKING GROUP, A DIVISION OF CUPERTINO NATIONAL BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BE HERE CORPORATION
Application granted granted Critical
Publication of US6175454B1 publication Critical patent/US6175454B1/en
Priority to US09/837,750 priority patent/US20020003673A1/en
Priority to US10/119,106 priority patent/US6597520B2/en
Assigned to WASSERSTEIN ADELSON VENTURES, L>P> reassignment WASSERSTEIN ADELSON VENTURES, L>P> SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BE HERE CORPORATION, A CALIFORNIA CORPORATION
Assigned to BEHERE CORPORATION reassignment BEHERE CORPORATION REASSIGNMENT AND RELEASE OF SECURITY INTEREST Assignors: VENTURE BANKING GROUP
Assigned to BE HERE CORPORATION reassignment BE HERE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WALTER KLIP GROUP, WASSON LIVING TRUST, VON RUMP, STEPHEN, BIRCHMERE VENTURES II, L.P., BURFINE, EDWARD, GLAUSSER, GARY, RENZI, NED, SEBASTIAN, SEAN, CHOI, GARRETT, DIETRICK, CHARLES, DRISCOLL, DAVID, DRISCOLL, EDWARD
Assigned to BE HERE CORPORATION reassignment BE HERE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WASSERSTEIN ADELSON VENTURES, L.P.
Assigned to B. H. IMAGE CO. LLC reassignment B. H. IMAGE CO. LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BE HERE CORPORATION
Anticipated expiration legal-status Critical
Assigned to HANGER SOLUTIONS, LLC reassignment HANGER SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTELLECTUAL VENTURES ASSETS 161 LLC
Assigned to INTELLECTUAL VENTURES ASSETS 161 LLC reassignment INTELLECTUAL VENTURES ASSETS 161 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHARTOLEAUX KG LIMITED LIABILITY COMPANY
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • This invention relates to a panoramic imaging arrangement of the kind capable of capturing, focusing, correcting aberrations and otherwise manipulating light received from a 360° surrounding panoramic scene.
  • Panoramic imaging arrangements have become popular in recent years for purposes of viewing 360° surrounding panoramic scenes. Older generations of panoramic imaging arrangements generally consisted of revolving periscope-like constructions having relatively complex mechanisms for revolving them. More recently, stationary panoramic imaging arrangements have been developed.
  • a stationary panoramic imaging arrangement generally has one or more lenses, each having a vertical axis of revolution, which are used to refract or reflect light received from a 360° surrounding panoramic scene. The lenses alter the direction of the light, whereafter the light passes through a series of lenses which are located vertically one above the other and which further manipulate the light by, for example, focusing the light or altering the intensity of the light.
  • the task of receiving light in a sideways direction and altering the direction of the light so that the light then proceeds in a vertical direction is a difficult one. Altering the direction of light to such a degree, especially when coming from a 360° surrounding scene, oftentimes leads to aberrations in the resulting light. These aberrations may include astigmatism of the light, defects in color of the light, a loss of image plane flatness, and other defects, some of which are discussed in more detail herein below.
  • a panoramic imaging arrangement comprising a transparent component and a reflective material.
  • the transparent component has a first surface about a vertical axis of revolution, a second, substantially spherical, surface about the axis of revolution, and an opening formed therein to define a third, internal surface about the axis of revolution.
  • the third surface has a concave profile in a plane of the axis of revolution.
  • the reflective material is located on the second surface to provide a reflective surface against the second surface.
  • the first surface, the reflective surface and the third surface are positioned relative to one another so that light from a 360° surrounding panoramic scene enters the transparent component through the first surface, whereafter the light is reflected from the reflective surface, whereafter the light exits the transparent component through the third surface.
  • the first surface may have a convex profile in a plane of the axis of revolution and is preferably substantially spherical.
  • the first surface and the reflective surface are preferably located on opposing sides of the transparent component and the reflective surface preferably has a convex profile in plane of the axis of revolution.
  • At least extensions of the first surface and the reflective surface intersect one another.
  • the third surface is preferably substantially spherical.
  • the first surface, the reflective surface and the third surface are all substantially spherical and have a radiuses which are in the relationship of about 21 units for the first surface, about 40 units for the reflective surface, and about 7 units for the third surface.
  • At least extensions of the first surface and the reflective surface may intersect the axis of revolution at respectively first and second locations which may be about 9 units displaced from one another.
  • At least an extension of the third surface may intersect the axis of revolution at a third location which is about 0.5 units displaced from the second location.
  • the panoramic imaging arrangement may further comprise a system of lenses positioned to receive the light after exiting the transparent component, the system of lenses at least focusing the light.
  • the light is preferably focused in a plane which is substantially flat.
  • the light passes through a total of less than five lenses from exiting the transparent component until being focused.
  • the panoramic imaging arrangement may further comprise a mirror which reflects the light after exiting the transparent component.
  • a hole may be formed through the transparent component with the opening forming at least part of the hole. The light may at least partially pass through the hole after being reflected by the mirror and before passing through the system of lenses.
  • the mirror may be curved and preferably has a concave reflective area.
  • a panoramic imaging arrangement comprising a transparent component and a reflective material.
  • the transparent component has first and second surfaces, both about a vertical axis of revolution.
  • the first surface has a convex profile in a plane of the axis of revolution.
  • the second surface has a concave profile in a plane of the axis of revolution. At least extensions of the first and second surfaces intersect one another.
  • the reflective material is located on the second surface to provide a reflective surface against the second surface.
  • the first surface and the reflective surface are positioned relative to one another so that light from a 360° surrounding panoramic scene enters the transparent component through the first surface, whereafter the light is reflected from the reflective surface.
  • the second surface may be substantially spherical.
  • FIG. 1 of the accompanying drawings illustrates a panoramic imaging arrangement 10 , according to an embodiment of the invention, in a plane of a vertical axis of revolution 12 thereof.
  • the panoramic imaging arrangement 10 includes a lens block 14 , a mirror 16 , and a system of lenses 18 .
  • the lens block 14 includes a transparent component 20 having a first, upper, convex surface 22 symmetrically about the axis of revolution 12 and a second, lower, concave surface 24 also symmetrically about the axis of revolution 12 .
  • a reflective material 26 is formed on the lower, concave surface 24 .
  • a hole 28 is formed vertically through the transparent component 20 .
  • the upper, convex surface 22 of the transparent component 20 is spherical and has a radius of about 21.310 mm.
  • An extension of the upper, convex surface 22 intersects the axis of revolution 12 and a first location 32 .
  • the lower, concave surface 24 of the transparent component 20 is spherical and has a radius of about 40.200 mm. Extensions of the upper, convex surface 22 and of the lower, concave surface 24 intersect one another due to the larger radius of the lower, convex surface 24 with respect to the radius of the upper, convex surface 22 . An extension of the lower, concave surface 24 intersects the axis of revolution 12 and a second location 36 which is located about 9 mm below the first location 32 where the extension of the upper, convex surface 22 intersects the axis of revolution 12 .
  • the reflective material 26 By forming the reflective material 26 on the lower, concave surface 24 , the reflective material 26 provides a convex reflective surface 38 against the lower, concave surface 24 and conforming in shape thereto.
  • An upper portion of the hole 28 is formed by an opening defining a third, internal surface 40 of the transparent component 20 .
  • the internal surface 40 is located symmetrically about the axis of revolution 12 .
  • the internal surface 40 is spherical and has a concave profile with a radius of about 7.650 mm.
  • An extension of the internal surface 40 intersects the axis of revolution 12 at a third location 44 which is located about 0.5 mm above the second location 36 where the extension of the lower, concave surface 24 (and therefore also of the reflective surface 38 ) intersects the axis of revolution 12 .
  • the mirror 16 is secured to the transparent component 20 at a location over the hole 28 .
  • the mirror 16 has a concave reflective area 46 which is spherical and is located symmetrically about the axis of revolution 12 .
  • the reflective area 46 has a radius of about 87.750 mm and intersects to the axis of revolution 12 at a fourth location 48 which is located about 8.115 mm above the third location 44 where an extension of the internal surface 40 intersects the axis of revolution 12 .
  • the system of lenses includes a first, upper lens 50 located within a lower portion of the hole 28 , a second, intermediate lens 52 located below the upper lens 50 , and a third, lower lens 54 located below the intermediate lens 52 .
  • the upper lens 50 has a convex upper surface 56 with a radius of about 18.000 mm and a lower surface with a radius of about 20.475 mm.
  • the intermediate lens 52 has an upper, convex surface 60 with a radius of about 6.060 mm and a lower, concave surface 62 with a radius of about 4.700 mm.
  • the lower lens 54 has an upper, concave surface 64 with a radius of about 10.550 mm and a lower, convex surface 66 with a radius of about 5.325 mm.
  • Other features of the upper, intermediate and lower lenses 50 , 52 and 54 are not discussed further in detail herein as these features would be evident to one of ordinary skill in the art.
  • the light from a 360° surrounding panoramic scene enters the transparent component 20 through the upper, convex surface 22 .
  • Light is received from the surrounding panoramic scene for an unbroken included angle 72 , in a vertical plane of the axis of revolution 12 , extending from an angle 74 which is located about 30° below the horizon to an angle 76 which is located about 30° above the horizon.
  • the angle 76 below the horizon may be increased.
  • the angle of the light with respect to vertical is further reduced after reflection from the reflective surface 38 .
  • the light then passes through the transparent component 20 and exits the transparent component through the internal surface 40 .
  • Due to the concave shape of the internal surface 40 the light is refracted slightly upwardly when exiting the transparent component 20 through the internal surface 40 , thus further reducing the angle of the light with respect to vertical.
  • the light After leaving the transparent component, the light passes upwardly through the hole 28 and is reflected downwardly by the reflective area 46 of the mirror 16 . The light then passes downwardly through the hole 28 and whereafter it is refracted respectively by the upper lens 50 , the intermediate lens 52 , and the lower lens 54 . The light, after leaving the lower lens 54 , is focused by creating a flat image on a flat focal plane 78 .
  • the panoramic imaging arrangement 10 includes only five components namely the lens block 14 , the mirror 16 and the upper, intermediate and lower lenses 50 , 52 and 54 . Moreover, all the surfaces of the panoramic imaging arrangement 10 which manipulate light are spherical or substantially spherical so as to be easily manufacturable.
  • a final image is created which is corrected for image flatness and astigmatism. It could be noted that no particular surface or surfaces correct for image flatness and astigmatism, but rather that the sizes, positioning and orientations of all the surfaces cooperate to produce a final image which is corrected for image flatness and astigmatism. It has been found that the panoramic imaging arrangement 10 is particularly suitable for creating a monochromatic image of the surrounding panoramic scene. One of ordinary skill in the art would appreciate that the panoramic imaging arrangement 10 may be modified or may be complemented by additional lenses which would make it more suitable for capturing color images of a surrounding panoramic scene.

Abstract

According to one aspect of the invention there is provided a panoramic imaging arrangement comprising a transparent component and a reflective material. The transparent component has a first surface about a vertical axis of revolution, a second surface about the axis of revolution, and an opening formed therein to define a third, internal surface about the axis of revolution. The third surface has a concave profile in a plane of the axis of revolution. The reflective material is located on the second surface to provide a reflective surface against the second surface. The first surface, the reflective surface and the third surface are positioned relative to one another so that light from a 360° surrounding panoramic scene enters the transparent component through the first surface, whereafter the light is reflected from the reflective surface, whereafter the light exits the transparent component through the third surface.

Description

BACKGROUND OF THE INVENTION
1). Field of the Invention
This invention relates to a panoramic imaging arrangement of the kind capable of capturing, focusing, correcting aberrations and otherwise manipulating light received from a 360° surrounding panoramic scene.
2). Discussion of Related Art
Panoramic imaging arrangements have become popular in recent years for purposes of viewing 360° surrounding panoramic scenes. Older generations of panoramic imaging arrangements generally consisted of revolving periscope-like constructions having relatively complex mechanisms for revolving them. More recently, stationary panoramic imaging arrangements have been developed. A stationary panoramic imaging arrangement generally has one or more lenses, each having a vertical axis of revolution, which are used to refract or reflect light received from a 360° surrounding panoramic scene. The lenses alter the direction of the light, whereafter the light passes through a series of lenses which are located vertically one above the other and which further manipulate the light by, for example, focusing the light or altering the intensity of the light.
The task of receiving light in a sideways direction and altering the direction of the light so that the light then proceeds in a vertical direction is a difficult one. Altering the direction of light to such a degree, especially when coming from a 360° surrounding scene, oftentimes leads to aberrations in the resulting light. These aberrations may include astigmatism of the light, defects in color of the light, a loss of image plane flatness, and other defects, some of which are discussed in more detail herein below.
Relatively complex lenses and lens arrangements have been developed in order to overcome these aberrations and produce an acceptable image. These lens arrangements usually include a large number of lenses and oftentimes have lenses with surfaces which are aspherical (see for example U.S. Pat. No. 5,473,474 issued to Powell). Aspherical lenses are difficult to manufacture and therefore less practical to manufacture than for example spherical lenses.
SUMMARY OF THE INVENTION
According to one aspect of the invention there is provided a panoramic imaging arrangement comprising a transparent component and a reflective material. The transparent component has a first surface about a vertical axis of revolution, a second, substantially spherical, surface about the axis of revolution, and an opening formed therein to define a third, internal surface about the axis of revolution. The third surface has a concave profile in a plane of the axis of revolution. The reflective material is located on the second surface to provide a reflective surface against the second surface. The first surface, the reflective surface and the third surface are positioned relative to one another so that light from a 360° surrounding panoramic scene enters the transparent component through the first surface, whereafter the light is reflected from the reflective surface, whereafter the light exits the transparent component through the third surface.
The first surface may have a convex profile in a plane of the axis of revolution and is preferably substantially spherical.
The first surface and the reflective surface are preferably located on opposing sides of the transparent component and the reflective surface preferably has a convex profile in plane of the axis of revolution.
Preferably, at least extensions of the first surface and the reflective surface intersect one another.
The third surface is preferably substantially spherical.
In one embodiment the first surface, the reflective surface and the third surface are all substantially spherical and have a radiuses which are in the relationship of about 21 units for the first surface, about 40 units for the reflective surface, and about 7 units for the third surface.
At least extensions of the first surface and the reflective surface may intersect the axis of revolution at respectively first and second locations which may be about 9 units displaced from one another.
At least an extension of the third surface may intersect the axis of revolution at a third location which is about 0.5 units displaced from the second location.
The panoramic imaging arrangement may further comprise a system of lenses positioned to receive the light after exiting the transparent component, the system of lenses at least focusing the light. The light is preferably focused in a plane which is substantially flat.
Preferably, the light passes through a total of less than five lenses from exiting the transparent component until being focused.
The panoramic imaging arrangement may further comprise a mirror which reflects the light after exiting the transparent component. A hole may be formed through the transparent component with the opening forming at least part of the hole. The light may at least partially pass through the hole after being reflected by the mirror and before passing through the system of lenses. The mirror may be curved and preferably has a concave reflective area.
According to a further aspect of the invention a panoramic imaging arrangement is provided comprising a transparent component and a reflective material. The transparent component has first and second surfaces, both about a vertical axis of revolution. The first surface has a convex profile in a plane of the axis of revolution. The second surface has a concave profile in a plane of the axis of revolution. At least extensions of the first and second surfaces intersect one another. The reflective material is located on the second surface to provide a reflective surface against the second surface. The first surface and the reflective surface are positioned relative to one another so that light from a 360° surrounding panoramic scene enters the transparent component through the first surface, whereafter the light is reflected from the reflective surface.
The second surface may be substantially spherical.
BRIEF DESCRIPTION OF THE DRAWING
The invention is further described by way of example with reference to the accompanying drawing which is a sectioned side view of a panoramic imaging arrangement, according to an embodiment of the invention, in a plane of a vertical axis of revolution thereof.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 of the accompanying drawings illustrates a panoramic imaging arrangement 10, according to an embodiment of the invention, in a plane of a vertical axis of revolution 12 thereof. The panoramic imaging arrangement 10 includes a lens block 14, a mirror 16, and a system of lenses 18.
The lens block 14 includes a transparent component 20 having a first, upper, convex surface 22 symmetrically about the axis of revolution 12 and a second, lower, concave surface 24 also symmetrically about the axis of revolution 12. A reflective material 26 is formed on the lower, concave surface 24. A hole 28 is formed vertically through the transparent component 20.
The upper, convex surface 22 of the transparent component 20 is spherical and has a radius of about 21.310 mm. An extension of the upper, convex surface 22 intersects the axis of revolution 12 and a first location 32.
The lower, concave surface 24 of the transparent component 20 is spherical and has a radius of about 40.200 mm. Extensions of the upper, convex surface 22 and of the lower, concave surface 24 intersect one another due to the larger radius of the lower, convex surface 24 with respect to the radius of the upper, convex surface 22. An extension of the lower, concave surface 24 intersects the axis of revolution 12 and a second location 36 which is located about 9 mm below the first location 32 where the extension of the upper, convex surface 22 intersects the axis of revolution 12.
By forming the reflective material 26 on the lower, concave surface 24, the reflective material 26 provides a convex reflective surface 38 against the lower, concave surface 24 and conforming in shape thereto.
An upper portion of the hole 28 is formed by an opening defining a third, internal surface 40 of the transparent component 20. The internal surface 40 is located symmetrically about the axis of revolution 12. The internal surface 40 is spherical and has a concave profile with a radius of about 7.650 mm. An extension of the internal surface 40 intersects the axis of revolution 12 at a third location 44 which is located about 0.5 mm above the second location 36 where the extension of the lower, concave surface 24 (and therefore also of the reflective surface 38) intersects the axis of revolution 12.
The mirror 16 is secured to the transparent component 20 at a location over the hole 28. The mirror 16 has a concave reflective area 46 which is spherical and is located symmetrically about the axis of revolution 12. The reflective area 46 has a radius of about 87.750 mm and intersects to the axis of revolution 12 at a fourth location 48 which is located about 8.115 mm above the third location 44 where an extension of the internal surface 40 intersects the axis of revolution 12.
The system of lenses includes a first, upper lens 50 located within a lower portion of the hole 28, a second, intermediate lens 52 located below the upper lens 50, and a third, lower lens 54 located below the intermediate lens 52. The upper lens 50 has a convex upper surface 56 with a radius of about 18.000 mm and a lower surface with a radius of about 20.475 mm. The intermediate lens 52 has an upper, convex surface 60 with a radius of about 6.060 mm and a lower, concave surface 62 with a radius of about 4.700 mm. The lower lens 54 has an upper, concave surface 64 with a radius of about 10.550 mm and a lower, convex surface 66 with a radius of about 5.325 mm. Other features of the upper, intermediate and lower lenses 50, 52 and 54 are not discussed further in detail herein as these features would be evident to one of ordinary skill in the art.
In use, the light from a 360° surrounding panoramic scene enters the transparent component 20 through the upper, convex surface 22. Light is received from the surrounding panoramic scene for an unbroken included angle 72, in a vertical plane of the axis of revolution 12, extending from an angle 74 which is located about 30° below the horizon to an angle 76 which is located about 30° above the horizon. By extending the upper, convex lens 22 or altering its shape, the angle 76 below the horizon may be increased. When the light enters the transparent component 20, the light is refracted slightly downwardly by the upper, convex surface 22, thus reducing the angle of the light with respect to vertical. The light then passes through the transparent component 20 and is then reflected upwardly by the reflective surface 38. Due to be convex shape of the reflective surface 38, the angle of the light with respect to vertical is further reduced after reflection from the reflective surface 38. The light then passes through the transparent component 20 and exits the transparent component through the internal surface 40. Due to the concave shape of the internal surface 40, the light is refracted slightly upwardly when exiting the transparent component 20 through the internal surface 40, thus further reducing the angle of the light with respect to vertical.
After leaving the transparent component, the light passes upwardly through the hole 28 and is reflected downwardly by the reflective area 46 of the mirror 16. The light then passes downwardly through the hole 28 and whereafter it is refracted respectively by the upper lens 50, the intermediate lens 52, and the lower lens 54. The light, after leaving the lower lens 54, is focused by creating a flat image on a flat focal plane 78.
It can be seen from the aforegoing description that a simple, compact arrangement is provided which is capable of capturing a view of a 360° surrounding panoramic scene. In particular, the panoramic imaging arrangement 10 includes only five components namely the lens block 14, the mirror 16 and the upper, intermediate and lower lenses 50, 52 and 54. Moreover, all the surfaces of the panoramic imaging arrangement 10 which manipulate light are spherical or substantially spherical so as to be easily manufacturable.
A final image is created which is corrected for image flatness and astigmatism. It could be noted that no particular surface or surfaces correct for image flatness and astigmatism, but rather that the sizes, positioning and orientations of all the surfaces cooperate to produce a final image which is corrected for image flatness and astigmatism. It has been found that the panoramic imaging arrangement 10 is particularly suitable for creating a monochromatic image of the surrounding panoramic scene. One of ordinary skill in the art would appreciate that the panoramic imaging arrangement 10 may be modified or may be complemented by additional lenses which would make it more suitable for capturing color images of a surrounding panoramic scene.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative and not restrictive of the current invention, and that this invention is not restricted to the specific constructions and arrangements shown and described, since modifications may occur to those ordinarily skilled in the art.

Claims (14)

What is claimed:
1. A panoramic imaging arrangement comprising:
a transparent component having:
a first surface, about an axis of revolution, having a convex profile with a first curvature in a plane of the axis of revolution;
a second, substantially spherical surface, about the axis of revolution, having a concave profile with a second curvature in a plane of the axis of revolution; and
an opening formed therein to define a third internal surface, about the axis of revolution, having a concave profile with a third curvature in a plane of the axis of revolution the first curvature being larger than the third curvature; and
a reflective material on the second surface to provide a convex reflective surface against the second surface, wherein the first surface and the reflective surface are positioned relative to one another so that light from a 360° surrounding panoramic scene enters the transparent component through the first surface, whereafter the light is reflected from the reflective surface, whereafter the light leaves the transparent component through the third surface.
2. A panoramic imaging arrangement according to claim 1 wherein the first surface is substantially spherical.
3. A panoramic imaging arrangement according to claim 2 wherein the first surface and the reflective surface are located on opposing sides of the transparent component and the reflective surface has a convex profile in a plane of the axis of revolution.
4. A panoramic imaging arrangement according to claim 3 wherein at least extensions of the first surface and the reflective surface intersect one another.
5. A panoramic imaging arrangement according to claim 1 wherein the third surface is substantially spherical.
6. A panoramic imaging arrangement of claim 1 wherein the first surface, the reflective surface and the third surface are all substantially spherical and have radiuses which are in the relationship of about 21 units for the first surface, about 40 units for the reflective surface, and about 7 units for the third surface.
7. A panoramic imaging arrangement according to claim 6 wherein at least extensions of the first surface and the reflective surface intersect the axis of revolution at respectively first and second locations which are about 9 units displaced from one another.
8. A panoramic imaging arrangement according to claim 7 wherein at least an extension of the third surface intersects the axis of revolution at a third location which is about 0.5 units displaced from the second location.
9. A panoramic imaging arrangement according to claim 1 wherein the light passes through a total of less than five lenses from exiting the transparent component until being focused.
10. A panoramic imaging arrangement according to claim 9 wherein the light passes through a total of three lenses from exiting the transparent component until being focused.
11. A panoramic imaging arrangement according to claim 1, further comprising a system of lenses positioned to receive light after exiting the transparent component, the system of lenses at least focusing the light, the light being focused in a plane which is substantially flat.
12. A panoramic imaging arrangement according to claim 11 further comprising a mirror which reflects the light after exiting the transparent component, wherein a hole is formed through the transparent component, the opening forming at least part of the hole, through which the light at least partially passes after being reflected by the mirror and before passing through the system of lenses.
13. A panoramic imaging arrangement according to claim 12 wherein the mirror is curved.
14. A panoramic imaging arrangement according to claim 13 wherein the mirror has a concave reflective area.
US09/229,807 1999-01-13 1999-01-13 Panoramic imaging arrangement Expired - Fee Related US6175454B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/229,807 US6175454B1 (en) 1999-01-13 1999-01-13 Panoramic imaging arrangement
US09/629,034 US6222683B1 (en) 1999-01-13 2000-07-31 Panoramic imaging arrangement
US09/837,750 US20020003673A1 (en) 1999-01-13 2001-04-17 Panoramic imaging arrangement
US10/119,106 US6597520B2 (en) 1999-01-13 2002-04-09 Panoramic imaging arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/229,807 US6175454B1 (en) 1999-01-13 1999-01-13 Panoramic imaging arrangement

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/629,034 Continuation US6222683B1 (en) 1999-01-13 2000-07-31 Panoramic imaging arrangement
US09629034 Continuation 2001-07-31

Publications (1)

Publication Number Publication Date
US6175454B1 true US6175454B1 (en) 2001-01-16

Family

ID=22862747

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/229,807 Expired - Fee Related US6175454B1 (en) 1999-01-13 1999-01-13 Panoramic imaging arrangement
US09/629,034 Expired - Lifetime US6222683B1 (en) 1999-01-13 2000-07-31 Panoramic imaging arrangement
US09/837,750 Abandoned US20020003673A1 (en) 1999-01-13 2001-04-17 Panoramic imaging arrangement

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/629,034 Expired - Lifetime US6222683B1 (en) 1999-01-13 2000-07-31 Panoramic imaging arrangement
US09/837,750 Abandoned US20020003673A1 (en) 1999-01-13 2001-04-17 Panoramic imaging arrangement

Country Status (1)

Country Link
US (3) US6175454B1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020012059A1 (en) * 1996-06-24 2002-01-31 Wallerstein Edward P. Imaging arrangement which allows for capturing an image of a view at different resolutions
US6388820B1 (en) * 1996-06-24 2002-05-14 Be Here Corporation Panoramic imaging arrangement
US6424470B1 (en) * 2000-07-28 2002-07-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Panoramic refracting optic
US20020122113A1 (en) * 1999-08-09 2002-09-05 Foote Jonathan T. Method and system for compensating for parallax in multiple camera systems
US20020159166A1 (en) * 2001-02-24 2002-10-31 Herman Herman Panoramic mirror and system for producing enhanced panoramic images
US20020196327A1 (en) * 2001-06-14 2002-12-26 Yong Rui Automated video production system and method using expert video production rules for online publishing of lectures
US20030068098A1 (en) * 2001-09-27 2003-04-10 Michael Rondinelli System and method for panoramic imaging
US20030095338A1 (en) * 2001-10-29 2003-05-22 Sanjiv Singh System and method for panoramic imaging
US6597520B2 (en) * 1999-01-13 2003-07-22 Be Here Corporation Panoramic imaging arrangement
US20030234866A1 (en) * 2002-06-21 2003-12-25 Ross Cutler System and method for camera color calibration and image stitching
US20040001137A1 (en) * 2002-06-27 2004-01-01 Ross Cutler Integrated design for omni-directional camera and microphone array
US6754614B1 (en) * 1999-02-25 2004-06-22 Interscience, Inc. Linearized static panoramic optical mirror
US6795090B2 (en) 2001-11-13 2004-09-21 Eastman Kodak Company Method and system for panoramic image morphing
US20040263646A1 (en) * 2003-06-24 2004-12-30 Microsoft Corporation Whiteboard view camera
US20040263636A1 (en) * 2003-06-26 2004-12-30 Microsoft Corporation System and method for distributed meetings
US20040263611A1 (en) * 2003-06-26 2004-12-30 Ross Cutler Omni-directional camera design for video conferencing
US20040267521A1 (en) * 2003-06-25 2004-12-30 Ross Cutler System and method for audio/video speaker detection
US20050018687A1 (en) * 2003-06-16 2005-01-27 Microsoft Corporation System and process for discovery of network-connected devices at remote sites using audio-based discovery techniques
US20050018069A1 (en) * 2003-07-26 2005-01-27 Bodenseewerk Geratetechnik Gmbh Camera system
US20050180656A1 (en) * 2002-06-28 2005-08-18 Microsoft Corporation System and method for head size equalization in 360 degree panoramic images
US20050190768A1 (en) * 2003-06-16 2005-09-01 Ross Cutler System and process for discovery of network-connected devices
US20050206659A1 (en) * 2002-06-28 2005-09-22 Microsoft Corporation User interface for a system and method for head size equalization in 360 degree panoramic images
US20050243167A1 (en) * 2004-04-30 2005-11-03 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video using delta frames
US20050243168A1 (en) * 2004-04-30 2005-11-03 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video using audio watermarking techniques
US20050243166A1 (en) * 2004-04-30 2005-11-03 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video
US20050280700A1 (en) * 2001-06-14 2005-12-22 Microsoft Corporation Automated online broadcasting system and method using an omni-directional camera system for viewing meetings over a computer network
US20060023074A1 (en) * 2004-07-28 2006-02-02 Microsoft Corporation Omni-directional camera with calibration and up look angle improvements
US20060023106A1 (en) * 2004-07-28 2006-02-02 Microsoft Corporation Multi-view integrated camera system
US20060103723A1 (en) * 2004-11-18 2006-05-18 Advanced Fuel Research, Inc. Panoramic stereoscopic video system
US20060114575A1 (en) * 2004-08-17 2006-06-01 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US20060114576A1 (en) * 2004-08-18 2006-06-01 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US20060146177A1 (en) * 2004-12-30 2006-07-06 Microsoft Corp. Camera lens shuttering mechanism
US20060227842A1 (en) * 2005-04-11 2006-10-12 Ronald Lacomb Scalable spherical laser
US7260257B2 (en) 2002-06-19 2007-08-21 Microsoft Corp. System and method for whiteboard and audio capture
US20070299710A1 (en) * 2006-06-26 2007-12-27 Microsoft Corporation Full collaboration breakout rooms for conferencing
US20070300165A1 (en) * 2006-06-26 2007-12-27 Microsoft Corporation, Corporation In The State Of Washington User interface for sub-conferencing
US20070299912A1 (en) * 2006-06-26 2007-12-27 Microsoft Corporation, Corporation In The State Of Washington Panoramic video in a live meeting client
US20080008458A1 (en) * 2006-06-26 2008-01-10 Microsoft Corporation Interactive Recording and Playback for Network Conferencing
WO2009008536A1 (en) 2007-07-09 2009-01-15 Olympus Corp. Optical element, optical system equipped with same and endoscope using same
WO2009008530A1 (en) 2007-07-09 2009-01-15 Olympus Corp. Optical element, optical system equipped with same and endoscope using same
US7598975B2 (en) 2002-06-21 2009-10-06 Microsoft Corporation Automatic face extraction for use in recorded meetings timelines
US20100045774A1 (en) * 2008-08-22 2010-02-25 Promos Technologies Inc. Solid-state panoramic image capture apparatus
US20100201781A1 (en) * 2008-08-14 2010-08-12 Remotereality Corporation Three-mirror panoramic camera
US7782357B2 (en) 2002-06-21 2010-08-24 Microsoft Corporation Minimizing dead zones in panoramic images
US20160077315A1 (en) * 2014-09-15 2016-03-17 Remotereality Corporation Compact panoramic camera: optical system, apparatus, image forming method
WO2016206002A1 (en) * 2015-06-23 2016-12-29 博立多媒体控股有限公司 Catadioptric lens assembly and panoramic image acquisition device
CN106292165A (en) * 2014-07-24 2017-01-04 威视恩移动有限公司 Optical assembly for panoramic optical device
US10951859B2 (en) 2018-05-30 2021-03-16 Microsoft Technology Licensing, Llc Videoconferencing device and method
CN113009679A (en) * 2019-12-20 2021-06-22 长春理工大学 Panoramic imaging optical system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841621B2 (en) * 2000-07-13 2006-11-01 シャープ株式会社 Omnidirectional visual sensor
US20050030643A1 (en) * 2001-01-26 2005-02-10 Ehud Gal Spherical view imaging apparatus and method
EP1440562A4 (en) * 2001-09-18 2009-05-06 Wave Group Ltd Panoramic imaging system with optical zoom capability
US6636258B2 (en) 2001-10-19 2003-10-21 Ford Global Technologies, Llc 360° vision system for a vehicle
US7253969B2 (en) * 2002-05-14 2007-08-07 O.D.F. Medical Ltd. Spherical and nearly spherical view imaging assembly
JP2003344773A (en) * 2002-05-22 2003-12-03 Matsushita Electric Ind Co Ltd Photographing device
FR2841000A1 (en) * 2002-06-17 2003-12-19 Egg Solution Optronics Wide angle photography/panoramic video lens connection system having object model same ray curvature reflector/refractor with trials finding lens correction parameters and lens model central axis revolved.
IL150746A0 (en) 2002-07-15 2003-02-12 Odf Optronics Ltd Optical lens providing omni-directional coverage and illumination
IL152628A0 (en) * 2002-11-04 2004-02-08 Odf Optronics Ltd Omni-directional imaging assembly
US7027219B2 (en) * 2003-02-03 2006-04-11 Gatton Averell S Method and system for mirror telescope configuration
US7210009B2 (en) * 2003-09-04 2007-04-24 Advanced Micro Devices, Inc. Computer system employing a trusted execution environment including a memory controller configured to clear memory
IL159977A0 (en) * 2004-01-21 2004-09-27 Odf Optronics Ltd Ommi directional lens
JP2006047776A (en) * 2004-08-05 2006-02-16 Sony Corp Wide-angle image pickup device and optical device
WO2006120690A2 (en) * 2005-05-13 2006-11-16 G.I. View Ltd. Endoscopic measurement techniques
US20070045522A1 (en) * 2005-09-01 2007-03-01 Yi-Tsung Chien Omnidirectional electromagnetic sensing device
WO2008087646A2 (en) 2007-01-17 2008-07-24 G.I. View Ltd. Diagnostic or treatment tool for colonoscopy
WO2009039512A1 (en) * 2007-09-21 2009-03-26 The Trustees Of Columbia University In The City Of New York Systems and methods for panoramic imaging
US8692867B2 (en) * 2010-03-05 2014-04-08 DigitalOptics Corporation Europe Limited Object detection and rendering for wide field of view (WFOV) image acquisition systems
US8723959B2 (en) 2011-03-31 2014-05-13 DigitalOptics Corporation Europe Limited Face and other object tracking in off-center peripheral regions for nonlinear lens geometries
US8493459B2 (en) 2011-09-15 2013-07-23 DigitalOptics Corporation Europe Limited Registration of distorted images
US8928730B2 (en) 2012-07-03 2015-01-06 DigitalOptics Corporation Europe Limited Method and system for correcting a distorted input image
CN102928962A (en) * 2012-12-01 2013-02-13 上海臻恒光电系统有限公司 Double-concave double-reflection type omnidirectional annular view filed imaging lens
US9858798B2 (en) 2013-05-28 2018-01-02 Aai Corporation Cloud based command and control system integrating services across multiple platforms
US9810887B1 (en) * 2014-09-05 2017-11-07 Hoyos Integrity Corporation Overhang enclosure of a panoramic optical device to eliminate double reflection
CN106908935B (en) * 2015-12-22 2019-11-26 博立码杰通讯(深圳)有限公司 Panoramic optical camera lens and image acquisition device
TWI754877B (en) * 2020-01-02 2022-02-11 財團法人國家實驗研究院 Catadioptric optical system
US20240069424A1 (en) * 2022-08-23 2024-02-29 Applied Physics, Inc. Light sphere dome

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638033A (en) * 1950-12-19 1953-05-12 Buchele Donald Robert Unitary catadioptric objective lens system
US3203328A (en) * 1963-02-21 1965-08-31 Marquardt Corp Full circumferential viewing system
US3209073A (en) * 1961-09-18 1965-09-28 Barnes Eng Co Extreme wide angle television photography
US3229576A (en) 1962-11-21 1966-01-18 Donald W Rees Hyperbolic ellipsoidal real time display panoramic viewing installation for vehicles
US3998532A (en) 1974-04-08 1976-12-21 The United States Of America As Represented By The Secretary Of The Navy Wide angle single channel projection apparatus
US4566763A (en) * 1983-02-08 1986-01-28 Budapesti Muszaki Egyetem Panoramic imaging block for three-dimensional space
US4662726A (en) * 1983-12-01 1987-05-05 Sanders Associates, Inc. Reflective optical element
US5115266A (en) * 1989-11-08 1992-05-19 Troje Gerald J Optical system for recording or projecting a panoramic image
US5473474A (en) * 1993-07-16 1995-12-05 National Research Council Of Canada Panoramic lens
US5502309A (en) * 1994-09-06 1996-03-26 Rockwell International Corporation Staring sensor
US5627675A (en) * 1995-05-13 1997-05-06 Boeing North American Inc. Optics assembly for observing a panoramic scene
US5631778A (en) * 1995-04-05 1997-05-20 National Research Council Of Canda Panoramic fish-eye imaging system
US5710661A (en) * 1996-06-27 1998-01-20 Hughes Electronics Integrated panoramic and high resolution sensor optics
US5841589A (en) * 1995-09-26 1998-11-24 Boeing North American, Inc. Panoramic optics assembly having an initial flat reflective element
US5877801A (en) 1991-05-13 1999-03-02 Interactive Pictures Corporation System for omnidirectional image viewing at a remote location without the transmission of control signals to select viewing parameters
US5920376A (en) * 1996-08-30 1999-07-06 Lucent Technologies, Inc. Method and system for panoramic viewing with curved surface mirrors

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304434A (en) 1928-09-03 1942-12-08 Ibm Projecting device
US2146662A (en) 1936-09-05 1939-02-07 Lieuwe E W Van Albada Sighting instrument
US2244235A (en) 1938-09-03 1941-06-03 Ibm Cycloramic optical system
US2628529A (en) 1948-09-25 1953-02-17 Lawrence E Braymer Reflecting telescope with auxiliary optical system
US2654286A (en) 1950-07-14 1953-10-06 Jorge M Cesar Optical viewing device for night driving
FR1234341A (en) 1958-07-02 1960-10-17 Additional lens for taking and projecting photographic views of moving and still subjects
US3205777A (en) 1961-11-08 1965-09-14 Brenner Arthur Telescopic mounting for convex mirrors
US3692934A (en) 1971-02-11 1972-09-19 Us Navy Roll and pitch simulator utilizing 360{20 {0 display
US3723805A (en) 1971-05-12 1973-03-27 Us Navy Distortion correction system
US3785715A (en) 1972-05-17 1974-01-15 Singer Co Panoramic infinity image display
US3832046A (en) 1972-11-13 1974-08-27 Singer Co Panoramic projector and camera
US3846809A (en) 1973-10-18 1974-11-05 G Troje Reflectors and mounts for panoramic optical systems
CH589309A5 (en) 1974-03-11 1977-06-30 Infra Vision Ag
US3872238A (en) 1974-03-11 1975-03-18 Us Navy 360 Degree panoramic television system
US4012126A (en) 1974-04-08 1977-03-15 The United States Of America As Represented By The Secretary Of The Navy Optical system for 360° annular image transfer
NL7406227A (en) 1974-05-09 1975-11-11 Stichting Internationaal Insti DEVICE IN A VESSEL FOR RECORDING DATA OF AN OBJECT LOCATED OUTSIDE.
US3934259A (en) 1974-12-09 1976-01-20 The United States Of America As Represented By The Secretary Of The Navy All-sky camera apparatus for time-resolved lightning photography
US4058831A (en) 1976-09-08 1977-11-15 Lectrolarm Custom Systems, Inc. Panoramic camera scanning system
US4078860A (en) 1976-10-27 1978-03-14 Globus Ronald P Cycloramic image projection system
GB1553525A (en) 1976-10-30 1979-09-26 Luknar A Security system
US4157218A (en) 1977-04-14 1979-06-05 The Perkin-Elmer Corporation Wide angle scan camera
US4241985A (en) 1978-11-27 1980-12-30 Globus Richard D Panoramic camera
USD263716S (en) 1979-02-06 1982-04-06 Globuscope, Inc. Panoramic camera
US4326775A (en) 1979-02-07 1982-04-27 King Don G Method for operating a panoramic optical system
GB2315944B (en) 1979-05-16 1998-06-24 British Aerospace Improvements relating to surveillance apparatus
EP0200282B1 (en) 1980-04-11 1992-02-05 Ampex Corporation Transposing memory for an image transformation system
US4395093A (en) 1981-05-21 1983-07-26 The United States Of America As Represented By The Secretary Of The Navy Lens system for panoramic imagery
US4429957A (en) 1981-07-30 1984-02-07 King-Bell Optics, Inc. Panoramic zoom lens assembly
US4463380A (en) 1981-09-25 1984-07-31 Vought Corporation Image processing system
US4835532A (en) 1982-07-30 1989-05-30 Honeywell Inc. Nonaliasing real-time spatial transform image processing system
US4484801A (en) 1982-09-20 1984-11-27 The United States Of America As Represented By The Secretary Of The Navy Panoramic lens
JPS59115677A (en) 1982-12-22 1984-07-04 Hitachi Ltd Picture processor
US4602857A (en) 1982-12-23 1986-07-29 James H. Carmel Panoramic motion picture camera and method
US4761641A (en) 1983-01-21 1988-08-02 Vidcom Rentservice B.V. Information display system
US4518898A (en) 1983-02-22 1985-05-21 Image Graphics, Incorporated Method and apparatus for correcting image distortions
US4656506A (en) 1983-02-25 1987-04-07 Ritchey Kurtis J Spherical projection system
IT1195600B (en) 1983-10-26 1988-10-19 Ivo Rosset DEVICE FOR MAKING PANORAMIC PHOTOGRAPHS WITH NORMAL USE CAMERA
JPS60186967A (en) 1984-03-05 1985-09-24 Fanuc Ltd Image display method
US4578682A (en) 1984-03-20 1986-03-25 Raydx Satellite Systems, Ltd. Antenna dish
US4736436A (en) 1984-04-13 1988-04-05 Fujitsu Limited Information extraction by mapping
US4561733A (en) 1984-04-17 1985-12-31 Recon/Optical, Inc. Panoramic unity vision system
DE3422752A1 (en) 1984-06-19 1985-12-19 Krauss-Maffei AG, 8000 München ELEVATIBLE OBSERVATION AND TARGET SYSTEM FOR COMBAT VEHICLES
US4670648A (en) 1985-03-06 1987-06-02 University Of Cincinnati Omnidirectional vision system for controllng mobile machines
JPH0681275B2 (en) 1985-04-03 1994-10-12 ソニー株式会社 Image converter
GB2177278A (en) 1985-07-05 1987-01-14 Hunger Ibak H Gmbh & Co Kg Variable sight line television camera
GB2177871B (en) 1985-07-09 1989-02-08 Sony Corp Methods of and circuits for video signal processing
GB2185360B (en) 1986-01-11 1989-10-25 Pilkington Perkin Elmer Ltd Display system
GB2188205B (en) 1986-03-20 1990-01-04 Rank Xerox Ltd Imaging apparatus
US5038225A (en) 1986-04-04 1991-08-06 Canon Kabushiki Kaisha Image reading apparatus with black-level and/or white level correction
JP2515101B2 (en) 1986-06-27 1996-07-10 ヤマハ株式会社 Video and audio space recording / playback method
GB2194656B (en) 1986-09-03 1991-10-09 Ibm Method and system for solid modelling
US4807158A (en) 1986-09-30 1989-02-21 Daleco/Ivex Partners, Ltd. Method and apparatus for sampling images to simulate movement within a multidimensional space
US4728839A (en) 1987-02-24 1988-03-01 Remote Technology Corporation Motorized pan/tilt head for remote control
US4797942A (en) 1987-03-02 1989-01-10 General Electric Pyramid processor for building large-area, high-resolution image by parts
DE3712453A1 (en) 1987-04-11 1988-10-20 Wolf Gmbh Richard WIDE-ANGLE LENS FOR ENDOSCOPES
USD312263S (en) 1987-08-03 1990-11-20 Charles Jeffrey R Wide angle reflector attachment for a camera or similar article
JPS6446875A (en) 1987-08-17 1989-02-21 Toshiba Corp Object discriminating device
JPS6437174U (en) 1987-08-28 1989-03-06
FR2620544B1 (en) 1987-09-16 1994-02-11 Commissariat A Energie Atomique INTERPOLATION PROCESS
JPH01101061A (en) 1987-10-14 1989-04-19 Canon Inc Picture reader
US4918473A (en) 1988-03-02 1990-04-17 Diamond Electronics, Inc. Surveillance camera system
US4945367A (en) 1988-03-02 1990-07-31 Blackshear David M Surveillance camera system
EP0342419B1 (en) 1988-05-19 1992-10-28 Siemens Aktiengesellschaft Method for the observation of a scene and apparatus therefor
JP3138264B2 (en) 1988-06-21 2001-02-26 ソニー株式会社 Image processing method and apparatus
US5083389A (en) 1988-07-15 1992-01-28 Arthur Alperin Panoramic display device and method of making the same
US4864335A (en) 1988-09-12 1989-09-05 Corrales Richard C Panoramic camera
JPH0286266A (en) 1988-09-21 1990-03-27 Fuji Xerox Co Ltd Picture reader
US5157491A (en) 1988-10-17 1992-10-20 Kassatly L Samuel A Method and apparatus for video broadcasting and teleconferencing
US4899293A (en) 1988-10-24 1990-02-06 Honeywell Inc. Method of storage and retrieval of digital map data based upon a tessellated geoid system
US5040055A (en) 1988-12-14 1991-08-13 Horizonscan Inc. Panoramic interactive system
GB8829135D0 (en) 1988-12-14 1989-01-25 Smith Graham T Panoramic interactive system
US5153716A (en) 1988-12-14 1992-10-06 Horizonscan Inc. Panoramic interactive system
US4943821A (en) 1989-01-23 1990-07-24 Janet Louise Gelphman Topological panorama camera
US4991020A (en) 1989-02-17 1991-02-05 Hughes Aircraft Company Imaging system for providing separate simultaneous real time images from a singel image sensor
US4943851A (en) 1989-03-07 1990-07-24 Gold Stake 360 degree viewing system having a liquid crystal display screen encircling a rotatable projection screen
US4901140A (en) 1989-03-07 1990-02-13 Gold Stake Solid state 360 degree viewing system having a liquid crystal display (LCD) screen that encircles the rotating real image in space and functions as a multi-color filter system
US5067019A (en) 1989-03-31 1991-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Programmable remapper for image processing
NL8900867A (en) 1989-04-07 1990-11-01 Theo Jogchum Poelstra A SYSTEM OF "IMAGETRY" FOR THE OBTAINMENT OF DIGITAL, 3D TOPOGRAPHIC INFORMATION.
JPH0378373A (en) 1989-08-22 1991-04-03 Fuji Photo Optical Co Ltd Television camera operating device
US5175808A (en) 1989-09-12 1992-12-29 Pixar Method and apparatus for non-affine image warping
US5023725A (en) 1989-10-23 1991-06-11 Mccutchen David Method and apparatus for dodecahedral imaging system
FR2655503B1 (en) 1989-12-01 1992-02-21 Thomson Csf OPTOELECTRONIC SYSTEM FOR AIDING ATTACK AND NAVIGATION MISSIONS.
JPH0771290B2 (en) 1989-12-27 1995-07-31 富士写真光機株式会社 Signal processing circuit
US5130794A (en) 1990-03-29 1992-07-14 Ritchey Kurtis J Panoramic display system
NL9000766A (en) 1990-04-02 1991-11-01 Koninkl Philips Electronics Nv DEVICE FOR GEOMETRIC CORRECTION OF A DISTRIBUTED IMAGE.
FR2662831B1 (en) 1990-05-29 1992-08-07 Cit Alcatel METHOD FOR MANAGING A DATABASE NETWORK.
JP3021556B2 (en) 1990-06-20 2000-03-15 ソニー株式会社 Video information processing apparatus and method
US5259584A (en) 1990-07-05 1993-11-09 Wainwright Andrew G Camera mount for taking panoramic pictures having an electronic protractor
FR2665600A1 (en) 1990-08-03 1992-02-07 Thomson Csf METHOD OF DETECTION FOR PANORAMIC CAMERA, CAMERA FOR ITS IMPLEMENTATION, AND SLEEPING SYSTEM EQUIPPED WITH SUCH A CAMERA
US5021813A (en) 1990-08-29 1991-06-04 Corrales Richard C Manually operated handle for panoramic camera
US5315331A (en) 1990-11-09 1994-05-24 Nikon Corporation Optical apparatus capable of performing a panoramic photographing
US5097325A (en) 1990-12-17 1992-03-17 Eol3 Company, Inc. Circular scanning system for an integrated camera and panoramic catadioptric display
US5187571A (en) 1991-02-01 1993-02-16 Bell Communications Research, Inc. Television system for displaying multiple views of a remote location
US5200818A (en) 1991-03-22 1993-04-06 Inbal Neta Video imaging system with interactive windowing capability
US5173948A (en) 1991-03-29 1992-12-22 The Grass Valley Group, Inc. Video image mapping system
JP3047927B2 (en) 1991-04-09 2000-06-05 三菱電機株式会社 Video signal clamp circuit
US5764276A (en) 1991-05-13 1998-06-09 Interactive Pictures Corporation Method and apparatus for providing perceived video viewing experiences using still images
US6002430A (en) 1994-01-31 1999-12-14 Interactive Pictures Corporation Method and apparatus for simultaneous capture of a spherical image
US5359363A (en) 1991-05-13 1994-10-25 Telerobotics International, Inc. Omniview motionless camera surveillance system
US5903319A (en) 1991-05-13 1999-05-11 Interactive Pictures Corporation Method for eliminating temporal and spacial distortion from interlaced video signals
US5185667A (en) 1991-05-13 1993-02-09 Telerobotics International, Inc. Omniview motionless camera orientation system
US5313306A (en) 1991-05-13 1994-05-17 Telerobotics International, Inc. Omniview motionless camera endoscopy system
US5990941A (en) 1991-05-13 1999-11-23 Interactive Pictures Corporation Method and apparatus for the interactive display of any portion of a spherical image
JP2719056B2 (en) 1991-08-20 1998-02-25 富士通株式会社 3D object drawing device
JP3085481B2 (en) 1991-09-28 2000-09-11 株式会社ニコン Catadioptric reduction projection optical system, and exposure apparatus having the optical system
US5311572A (en) 1991-10-03 1994-05-10 At&T Bell Laboratories Cooperative databases call processing system
US5280540A (en) 1991-10-09 1994-01-18 Bell Communications Research, Inc. Video teleconferencing system employing aspect ratio transformation
JP3302715B2 (en) 1992-04-20 2002-07-15 キヤノン株式会社 Video camera equipment
WO1993023835A1 (en) 1992-05-08 1993-11-25 Apple Computer, Inc. Textured sphere and spherical environment map rendering using texture map double indirection
DE4226286A1 (en) 1992-08-08 1994-02-10 Kamerawerke Noble Gmbh Panorama camera with a lens drum
US5490239A (en) 1992-10-01 1996-02-06 University Corporation For Atmospheric Research Virtual reality imaging system
US5396583A (en) 1992-10-13 1995-03-07 Apple Computer, Inc. Cylindrical to planar image mapping using scanline coherence
US5530650A (en) 1992-10-28 1996-06-25 Mcdonnell Douglas Corp. Computer imaging system and method for remote in-flight aircraft refueling
JPH07504285A (en) 1992-11-24 1995-05-11 フランク・データ・インターナショナル・ナムローゼ・フェンノートシャップ Panoramic image formation method and device, and panoramic image search method and device
US5854713A (en) 1992-11-30 1998-12-29 Mitsubishi Denki Kabushiki Kaisha Reflection type angle of view transforming optical apparatus
US5444476A (en) 1992-12-11 1995-08-22 The Regents Of The University Of Michigan System and method for teleinteraction
US5495576A (en) 1993-01-11 1996-02-27 Ritchey; Kurtis J. Panoramic image based virtual reality/telepresence audio-visual system and method
US5432871A (en) 1993-08-04 1995-07-11 Universal Systems & Technology, Inc. Systems and methods for interactive image data acquisition and compression
US5550646A (en) 1993-09-13 1996-08-27 Lucent Technologies Inc. Image communication system and method
CA2129942C (en) 1993-09-30 1998-08-25 Steven Todd Kaish Telecommunication network with integrated network-wide automatic call distribution
US5796426A (en) 1994-05-27 1998-08-18 Warp, Ltd. Wide-angle image dewarping method and apparatus
US5508734A (en) 1994-07-27 1996-04-16 International Business Machines Corporation Method and apparatus for hemispheric imaging which emphasizes peripheral content
US5610391A (en) 1994-08-25 1997-03-11 Owens-Brockway Glass Container Inc. Optical inspection of container finish dimensional parameters
US5649032A (en) 1994-11-14 1997-07-15 David Sarnoff Research Center, Inc. System for automatically aligning images to form a mosaic image
US5612533A (en) 1994-12-27 1997-03-18 Siemens Corporate Research, Inc. Low-profile horizon-sampling light sensor
US5920337A (en) 1994-12-27 1999-07-06 Siemens Corporate Research, Inc. Omnidirectional visual image detector and processor
US5714997A (en) 1995-01-06 1998-02-03 Anderson; David P. Virtual reality television system
US5606365A (en) 1995-03-28 1997-02-25 Eastman Kodak Company Interactive camera for network processing of captured images
US5729471A (en) 1995-03-31 1998-03-17 The Regents Of The University Of California Machine dynamic selection of one video camera/image of a scene from multiple video cameras/images of the scene in accordance with a particular perspective on the scene, an object in the scene, or an event in the scene
US5850352A (en) 1995-03-31 1998-12-15 The Regents Of The University Of California Immersive video, including video hypermosaicing to generate from multiple video views of a scene a three-dimensional video mosaic from which diverse virtual video scene images are synthesized, including panoramic, scene interactive and stereoscopic images
US5682511A (en) 1995-05-05 1997-10-28 Microsoft Corporation Graphical viewer interface for an interactive network system
US5539483A (en) 1995-06-30 1996-07-23 At&T Corp. Panoramic projection apparatus
US5633810A (en) 1995-12-14 1997-05-27 Sun Microsystems, Inc. Method and apparatus for distributing network bandwidth on a media server
US5601353A (en) 1995-12-20 1997-02-11 Interval Research Corporation Panoramic display with stationary display device and rotating support structure
US5748194A (en) 1996-05-08 1998-05-05 Live Picture, Inc. Rendering perspective views of a scene using a scanline-coherent look-up table
US5760826A (en) 1996-05-10 1998-06-02 The Trustees Of Columbia University Omnidirectional imaging apparatus
US6043837A (en) * 1997-05-08 2000-03-28 Be Here Corporation Method and apparatus for electronically distributing images from a panoptic camera system
US6034716A (en) 1997-12-18 2000-03-07 Whiting; Joshua B. Panoramic digital camera system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638033A (en) * 1950-12-19 1953-05-12 Buchele Donald Robert Unitary catadioptric objective lens system
US3209073A (en) * 1961-09-18 1965-09-28 Barnes Eng Co Extreme wide angle television photography
US3229576A (en) 1962-11-21 1966-01-18 Donald W Rees Hyperbolic ellipsoidal real time display panoramic viewing installation for vehicles
US3203328A (en) * 1963-02-21 1965-08-31 Marquardt Corp Full circumferential viewing system
US3998532A (en) 1974-04-08 1976-12-21 The United States Of America As Represented By The Secretary Of The Navy Wide angle single channel projection apparatus
US4566763A (en) * 1983-02-08 1986-01-28 Budapesti Muszaki Egyetem Panoramic imaging block for three-dimensional space
US4662726A (en) * 1983-12-01 1987-05-05 Sanders Associates, Inc. Reflective optical element
US5115266A (en) * 1989-11-08 1992-05-19 Troje Gerald J Optical system for recording or projecting a panoramic image
US5877801A (en) 1991-05-13 1999-03-02 Interactive Pictures Corporation System for omnidirectional image viewing at a remote location without the transmission of control signals to select viewing parameters
US5473474A (en) * 1993-07-16 1995-12-05 National Research Council Of Canada Panoramic lens
US5502309A (en) * 1994-09-06 1996-03-26 Rockwell International Corporation Staring sensor
US5631778A (en) * 1995-04-05 1997-05-20 National Research Council Of Canda Panoramic fish-eye imaging system
US5627675A (en) * 1995-05-13 1997-05-06 Boeing North American Inc. Optics assembly for observing a panoramic scene
US5841589A (en) * 1995-09-26 1998-11-24 Boeing North American, Inc. Panoramic optics assembly having an initial flat reflective element
US5710661A (en) * 1996-06-27 1998-01-20 Hughes Electronics Integrated panoramic and high resolution sensor optics
US5920376A (en) * 1996-08-30 1999-07-06 Lucent Technologies, Inc. Method and system for panoramic viewing with curved surface mirrors

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388820B1 (en) * 1996-06-24 2002-05-14 Be Here Corporation Panoramic imaging arrangement
US6885509B2 (en) * 1996-06-24 2005-04-26 Be Here Corporation Imaging arrangement which allows for capturing an image of a view at different resolutions
US20020012059A1 (en) * 1996-06-24 2002-01-31 Wallerstein Edward P. Imaging arrangement which allows for capturing an image of a view at different resolutions
US6597520B2 (en) * 1999-01-13 2003-07-22 Be Here Corporation Panoramic imaging arrangement
US6754614B1 (en) * 1999-02-25 2004-06-22 Interscience, Inc. Linearized static panoramic optical mirror
US20020122113A1 (en) * 1999-08-09 2002-09-05 Foote Jonathan T. Method and system for compensating for parallax in multiple camera systems
US7710463B2 (en) 1999-08-09 2010-05-04 Fuji Xerox Co., Ltd. Method and system for compensating for parallax in multiple camera systems
US20060125921A1 (en) * 1999-08-09 2006-06-15 Fuji Xerox Co., Ltd. Method and system for compensating for parallax in multiple camera systems
US6424470B1 (en) * 2000-07-28 2002-07-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Panoramic refracting optic
US20020159166A1 (en) * 2001-02-24 2002-10-31 Herman Herman Panoramic mirror and system for producing enhanced panoramic images
US6856472B2 (en) 2001-02-24 2005-02-15 Eyesee360, Inc. Panoramic mirror and system for producing enhanced panoramic images
US7580054B2 (en) 2001-06-14 2009-08-25 Microsoft Corporation Automated online broadcasting system and method using an omni-directional camera system for viewing meetings over a computer network
US7349005B2 (en) 2001-06-14 2008-03-25 Microsoft Corporation Automated video production system and method using expert video production rules for online publishing of lectures
US20050280700A1 (en) * 2001-06-14 2005-12-22 Microsoft Corporation Automated online broadcasting system and method using an omni-directional camera system for viewing meetings over a computer network
US7515172B2 (en) 2001-06-14 2009-04-07 Microsoft Corporation Automated online broadcasting system and method using an omni-directional camera system for viewing meetings over a computer network
US20020196327A1 (en) * 2001-06-14 2002-12-26 Yong Rui Automated video production system and method using expert video production rules for online publishing of lectures
US20050285933A1 (en) * 2001-06-14 2005-12-29 Microsoft Corporation Automated online broadcasting system and method using an omni-directional camera system for viewing meetings over a computer network
US7123777B2 (en) 2001-09-27 2006-10-17 Eyesee360, Inc. System and method for panoramic imaging
US20030068098A1 (en) * 2001-09-27 2003-04-10 Michael Rondinelli System and method for panoramic imaging
US7058239B2 (en) 2001-10-29 2006-06-06 Eyesee360, Inc. System and method for panoramic imaging
US20030095338A1 (en) * 2001-10-29 2003-05-22 Sanjiv Singh System and method for panoramic imaging
US6795090B2 (en) 2001-11-13 2004-09-21 Eastman Kodak Company Method and system for panoramic image morphing
US7260257B2 (en) 2002-06-19 2007-08-21 Microsoft Corp. System and method for whiteboard and audio capture
US20030234866A1 (en) * 2002-06-21 2003-12-25 Ross Cutler System and method for camera color calibration and image stitching
US7936374B2 (en) 2002-06-21 2011-05-03 Microsoft Corporation System and method for camera calibration and images stitching
US7259784B2 (en) 2002-06-21 2007-08-21 Microsoft Corporation System and method for camera color calibration and image stitching
US7598975B2 (en) 2002-06-21 2009-10-06 Microsoft Corporation Automatic face extraction for use in recorded meetings timelines
US7782357B2 (en) 2002-06-21 2010-08-24 Microsoft Corporation Minimizing dead zones in panoramic images
US7852369B2 (en) 2002-06-27 2010-12-14 Microsoft Corp. Integrated design for omni-directional camera and microphone array
US20040001137A1 (en) * 2002-06-27 2004-01-01 Ross Cutler Integrated design for omni-directional camera and microphone array
US20050206659A1 (en) * 2002-06-28 2005-09-22 Microsoft Corporation User interface for a system and method for head size equalization in 360 degree panoramic images
US20050180656A1 (en) * 2002-06-28 2005-08-18 Microsoft Corporation System and method for head size equalization in 360 degree panoramic images
US7149367B2 (en) 2002-06-28 2006-12-12 Microsoft Corp. User interface for a system and method for head size equalization in 360 degree panoramic images
US7184609B2 (en) 2002-06-28 2007-02-27 Microsoft Corp. System and method for head size equalization in 360 degree panoramic images
US20050190768A1 (en) * 2003-06-16 2005-09-01 Ross Cutler System and process for discovery of network-connected devices
US7525928B2 (en) 2003-06-16 2009-04-28 Microsoft Corporation System and process for discovery of network-connected devices at remote sites using audio-based discovery techniques
US20050018687A1 (en) * 2003-06-16 2005-01-27 Microsoft Corporation System and process for discovery of network-connected devices at remote sites using audio-based discovery techniques
US7443807B2 (en) 2003-06-16 2008-10-28 Microsoft Corporation System and process for discovery of network-connected devices
US20040263646A1 (en) * 2003-06-24 2004-12-30 Microsoft Corporation Whiteboard view camera
US7397504B2 (en) 2003-06-24 2008-07-08 Microsoft Corp. Whiteboard view camera
US20040267521A1 (en) * 2003-06-25 2004-12-30 Ross Cutler System and method for audio/video speaker detection
US7343289B2 (en) 2003-06-25 2008-03-11 Microsoft Corp. System and method for audio/video speaker detection
US20040263636A1 (en) * 2003-06-26 2004-12-30 Microsoft Corporation System and method for distributed meetings
US20040263611A1 (en) * 2003-06-26 2004-12-30 Ross Cutler Omni-directional camera design for video conferencing
US7428000B2 (en) 2003-06-26 2008-09-23 Microsoft Corp. System and method for distributed meetings
US20050018069A1 (en) * 2003-07-26 2005-01-27 Bodenseewerk Geratetechnik Gmbh Camera system
US7400347B2 (en) * 2003-07-26 2008-07-15 BODENSEEWERK GERäTETECHNIK GMBH Camera system for monitoring a solid angle region and for detection of detailed information from the solid angle region
US20050243166A1 (en) * 2004-04-30 2005-11-03 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video
US20050243167A1 (en) * 2004-04-30 2005-11-03 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video using delta frames
US20050243168A1 (en) * 2004-04-30 2005-11-03 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video using audio watermarking techniques
US7355623B2 (en) 2004-04-30 2008-04-08 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video using audio watermarking techniques
US7355622B2 (en) 2004-04-30 2008-04-08 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video using delta frames
US7362350B2 (en) 2004-04-30 2008-04-22 Microsoft Corporation System and process for adding high frame-rate current speaker data to a low frame-rate video
US7593057B2 (en) 2004-07-28 2009-09-22 Microsoft Corp. Multi-view integrated camera system with housing
US20060023074A1 (en) * 2004-07-28 2006-02-02 Microsoft Corporation Omni-directional camera with calibration and up look angle improvements
US7495694B2 (en) 2004-07-28 2009-02-24 Microsoft Corp. Omni-directional camera with calibration and up look angle improvements
US20060023106A1 (en) * 2004-07-28 2006-02-02 Microsoft Corporation Multi-view integrated camera system
US20060114575A1 (en) * 2004-08-17 2006-06-01 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US7245443B2 (en) * 2004-08-17 2007-07-17 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US20060114576A1 (en) * 2004-08-18 2006-06-01 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US7403343B2 (en) * 2004-08-18 2008-07-22 Olympus Corporation Panoramic attachment optical system, and panoramic optical system
US20060103723A1 (en) * 2004-11-18 2006-05-18 Advanced Fuel Research, Inc. Panoramic stereoscopic video system
US7812882B2 (en) 2004-12-30 2010-10-12 Microsoft Corporation Camera lens shuttering mechanism
US20060146177A1 (en) * 2004-12-30 2006-07-06 Microsoft Corp. Camera lens shuttering mechanism
US7492805B2 (en) * 2005-04-11 2009-02-17 Lacomb Ronald Scalable spherical laser
US20060227842A1 (en) * 2005-04-11 2006-10-12 Ronald Lacomb Scalable spherical laser
US8572183B2 (en) 2006-06-26 2013-10-29 Microsoft Corp. Panoramic video in a live meeting client
US7653705B2 (en) 2006-06-26 2010-01-26 Microsoft Corp. Interactive recording and playback for network conferencing
US20070299710A1 (en) * 2006-06-26 2007-12-27 Microsoft Corporation Full collaboration breakout rooms for conferencing
US20070300165A1 (en) * 2006-06-26 2007-12-27 Microsoft Corporation, Corporation In The State Of Washington User interface for sub-conferencing
US20080008458A1 (en) * 2006-06-26 2008-01-10 Microsoft Corporation Interactive Recording and Playback for Network Conferencing
US20070299912A1 (en) * 2006-06-26 2007-12-27 Microsoft Corporation, Corporation In The State Of Washington Panoramic video in a live meeting client
US20100110564A1 (en) * 2007-07-09 2010-05-06 Takayoshi Togino Optical element, optical system having the same and endoscope using the same
WO2009008536A1 (en) 2007-07-09 2009-01-15 Olympus Corp. Optical element, optical system equipped with same and endoscope using same
WO2009008530A1 (en) 2007-07-09 2009-01-15 Olympus Corp. Optical element, optical system equipped with same and endoscope using same
US8254038B2 (en) 2007-07-09 2012-08-28 Olympus Corporation Optical element, optical system having the same and endoscope using the same
US8289630B2 (en) 2007-07-09 2012-10-16 Olympus Corporation Optical element, optical system having the same and endoscope using the same
US8451318B2 (en) 2008-08-14 2013-05-28 Remotereality Corporation Three-mirror panoramic camera
CN102177468A (en) * 2008-08-14 2011-09-07 远程保真公司 Three-mirror panoramic camera
US20100201781A1 (en) * 2008-08-14 2010-08-12 Remotereality Corporation Three-mirror panoramic camera
US8305425B2 (en) 2008-08-22 2012-11-06 Promos Technologies, Inc. Solid-state panoramic image capture apparatus
US20100045774A1 (en) * 2008-08-22 2010-02-25 Promos Technologies Inc. Solid-state panoramic image capture apparatus
CN106292165A (en) * 2014-07-24 2017-01-04 威视恩移动有限公司 Optical assembly for panoramic optical device
US20160077315A1 (en) * 2014-09-15 2016-03-17 Remotereality Corporation Compact panoramic camera: optical system, apparatus, image forming method
US11061208B2 (en) 2014-09-15 2021-07-13 Remotereality Corporation Compact panoramic camera: optical system, apparatus, image forming method
WO2016206002A1 (en) * 2015-06-23 2016-12-29 博立多媒体控股有限公司 Catadioptric lens assembly and panoramic image acquisition device
US10951859B2 (en) 2018-05-30 2021-03-16 Microsoft Technology Licensing, Llc Videoconferencing device and method
CN113009679A (en) * 2019-12-20 2021-06-22 长春理工大学 Panoramic imaging optical system

Also Published As

Publication number Publication date
US6222683B1 (en) 2001-04-24
US20020003673A1 (en) 2002-01-10

Similar Documents

Publication Publication Date Title
US6175454B1 (en) Panoramic imaging arrangement
US6373642B1 (en) Panoramic imaging arrangement
US6341044B1 (en) Panoramic imaging arrangement
US6597520B2 (en) Panoramic imaging arrangement
EP1099969B1 (en) Multiple resolution image capture arrangement
US6575643B2 (en) Camera apparatus
US6856466B2 (en) Multiple imaging system
US7182469B2 (en) High contrast projection
US6181470B1 (en) Optical element having a plurality of decentered reflecting curved surfaces, and optical instrument including the same
EP0215566B1 (en) Wide angle lens system having flare rejection properties
US7001031B2 (en) Image-forming optical system, projection type image display apparatus and image pickup apparatus
JPH0376442B2 (en)
EP1014159B1 (en) Illumination apparatus and projection apparatus
CN100447666C (en) Illumination optical system and image display apparatus including the same
US6603603B2 (en) Real image viewfinder optical system
US6351338B2 (en) Image pickup optical system
US6252729B1 (en) Real image type finder optical system
JP2007504515A (en) Fresnel lens, projection screen, corresponding projection device and projection system
JP2003532914A (en) Stereoscopic panoramic camera arrangement for recording useful panoramic images in stereoscopic panoramic image pairs
US20020141083A1 (en) Prism for portable optical device for producing wide-angle big-size virtual image of a picture from mini-size display
US3630604A (en) Optical projection apparatus
US20010001250A1 (en) Real image type finder optical system
JP4574301B2 (en) Focus detection device
JP3493949B2 (en) Scanning optical device
JP3866352B2 (en) Imaging optics

Legal Events

Date Code Title Description
AS Assignment

Owner name: BE HERE CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRISCOLL, EDWARD C., JR.;LOMAX, WILLARD C.;REEL/FRAME:009714/0805;SIGNING DATES FROM 19981222 TO 19981223

Owner name: BE HERE CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOOGLAND, JAN;REEL/FRAME:009714/0814

Effective date: 19990106

AS Assignment

Owner name: VENTURE BANKING GROUP, A DIVISION OF CUPERTINO NAT

Free format text: SECURITY INTEREST;ASSIGNOR:BE HERE CORPORATION;REEL/FRAME:011059/0126

Effective date: 20000609

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: WASSERSTEIN ADELSON VENTURES, L>P>, CALIFORN

Free format text: SECURITY INTEREST;ASSIGNOR:BE HERE CORPORATION, A CALIFORNIA CORPORATION;REEL/FRAME:013169/0933

Effective date: 20020701

AS Assignment

Owner name: BEHERE CORPORATION, CALIFORNIA

Free format text: REASSIGNMENT AND RELEASE OF SECURITY INTEREST;ASSIGNOR:VENTURE BANKING GROUP;REEL/FRAME:013231/0264

Effective date: 20020821

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BE HERE CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:BIRCHMERE VENTURES II, L.P.;DIETRICK, CHARLES;DRISCOLL, DAVID;AND OTHERS;REEL/FRAME:020125/0852;SIGNING DATES FROM 20071113 TO 20071116

Owner name: BE HERE CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WASSERSTEIN ADELSON VENTURES, L.P.;REEL/FRAME:020125/0676

Effective date: 20071116

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: B. H. IMAGE CO. LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BE HERE CORPORATION;REEL/FRAME:020325/0452

Effective date: 20071117

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20130116

AS Assignment

Owner name: HANGER SOLUTIONS, LLC, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTELLECTUAL VENTURES ASSETS 161 LLC;REEL/FRAME:052159/0509

Effective date: 20191206

AS Assignment

Owner name: INTELLECTUAL VENTURES ASSETS 161 LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHARTOLEAUX KG LIMITED LIABILITY COMPANY;REEL/FRAME:051873/0323

Effective date: 20191126