US6022802A - Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines - Google Patents

Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines Download PDF

Info

Publication number
US6022802A
US6022802A US09/270,592 US27059299A US6022802A US 6022802 A US6022802 A US 6022802A US 27059299 A US27059299 A US 27059299A US 6022802 A US6022802 A US 6022802A
Authority
US
United States
Prior art keywords
layers
pair
patterned
layer
microelectronics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/270,592
Inventor
Syun-Ming Jang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US09/270,592 priority Critical patent/US6022802A/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JANG, SYUN-MING
Application granted granted Critical
Publication of US6022802A publication Critical patent/US6022802A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to methods for the fabrication of dielectric separation layers between conductor layers in microelectronics fabrications. More particularly, the invention relates to methods for fabrication of relatively low dielectric constant dielectric layers between conductor layers in microelectronics fabrications.
  • Microelectronics fabrications are formed from microelectronics substrates over which are formed patterned microelectronics conductor layers which are separated by dielectric layers.
  • the relative dielectric constant of a dielectric material is the ratio between the dielectric constant of the material and the dielectric constant of empty space, which is taken as unity; thus the relative dielectric constant will be numerically equal to that ratio, and will be referred to as the dielectric constant of the material.
  • methods which provide dielectric layers which in turn define vacuum evacuated or gas filled (such as but not limited to air filled) voids interposed between the patterns of patterned microelectronics conductor layers are particularly desirable within the art of microelectronics fabrication. Such methods are desirable since vacuum evacuated or gas filled voids typically yield within a microelectronics fabrication a dielectric layer possessing in the pertinent locations interposed between a series of patterns which comprises a patterned microelectronics conductor layer a dielectric constant approaching the theoretical lower limit of 1.0.
  • conventional silicon containing dielectric layers formed of silicon containing dielectric materials such as but not limited to silicon oxide dielectric materials, silicon nitride dielectric materials and silicon oxynitride dielectric materials typically exhibit homogeneous dielectric constants within a range of from about 4.0 to about 9.0.
  • low dielectric constant dielectric layers formed from low dielectric constant dielectric materials such as but not limited to organic polymer spin-on-polymer (SOP) dielectric materials (such as but not limited to polyimide organic polymer spin-on-polymer (SOP) dielectric materials, poly (arylene ether) organic polymer spin-on-polymer (SOP) dielectric materials and fluorinated poly (arylene ether)organic polymer spin-on-polymer (SOP) dielectric materials), amorphous carbon dielectric materials and silsesquioxane spin-on-glass (SOG) dielectric materials (such as but not limited to hydrogen silsesquioxane (HSQ) spin-on-glass (SOG) dielectric materials, carbon bonded hydrocarbon (MSQ) silsesquioxane spin-on-glass (SOG) dielectric materials and carbon bonded fluorocarbon silsesquioxane (FSQ) spin-on-glass (SOG) dielectric materials) typically exhibit somewhat lower homo
  • microelectronics fabrication for forming upon patterned microelectronics conductor layers within microelectronics fabrications microelectronics dielectric layers which at least in part define vacuum evacuated or gas filled voids interposed between the patterns which comprise patterned conductor layers within microelectronics fabrications.
  • Graven et al. in U.S. Pat. No. 5,641,712, disclose a method for forming a dielectric layer which define a series of voids between conducting lines thus reducing capacitance between the conducting lines.
  • the voids are formed when a silane oxide layer is deposited over the lines to form a nearly closed trench-like gap in the oxide between the lines which is subsequently closed off at the top and sealed by resputtering the top surface of the oxide.
  • Stoltz et al. in U.S. Pat. No. 5,407,860, disclose a method for defining a series of voids interposed between a series of patterns which comprises a patterned conductor layer within an integrated circuit microelectronics fabrication when forming upon the patterned conductor layer within the integrated circuit microelectronics fabrication a dielectric layer.
  • the method employs a non-wetting material formed upon at least the sidewalls of the series of patterns which comprises the patterned conductor layer but not completely occupying the spaces between the series of patterns which comprises the patterned conductor layer nor upon the top surfaces of the series of patterns which comprises the patterned conductor layer.
  • a series of vacuum evacuated or gas filled voids is defined interposed between a series of patterns which comprises the patterned microelectronics layer when forming the dielectric layer over the patterned microelectronics layer.
  • More particularly desirable in the art of integrated circuit microelectronics fabrication are additional methods and materials which may be employed for forming a dielectric layer over a patterned conductor layer within an integrated circuit microelectronics fabrication, such that a series of vacuum evacuated or gas filled voids is formed interposed between a series of patterns which comprises the patterned conductor layer when forming the dielectric layer over the patterned conductor layer.
  • a first object of the present invention is to provide a method for forming a dielectric layer over a patterned microelectronics conductor layer within a microelectronics fabrication.
  • a second object of the present invention is to provide a method in accord with the first object of the present invention, where a series of voids is defined interposed between a series of patterns which comprises the patterned microelectronics conductor layer when forming the dielectric layer over the patterned microelectronics conductor layer.
  • a third object of the present invention is to provide a method in accord with the first object of the present invention or the second object of the present invention, where the microelectronics fabrication is an integrated circuit microelectronics fabrication and the patterned conductor layer is a patterned conductor metal layer formed within the integrated circuit microelectronics fabrication.
  • a fourth object of the present invention is to provide a method in accord with the first object of the present invention, the second object of the present invention or the third object of the present invention, which method is readily commercially implemented.
  • the present invention a method for forming a dielectric layer within a microelectronics fabrication.
  • a substrate employed within a microelectronics fabrication.
  • a substrate layer There is then formed upon the substrate a substrate layer.
  • a gap filling dielectric layer formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • the present invention provides a method for forming a dielectric layer over a patterned microelectronics conductor layer within a microelectronics fabrication, where a series of voids is formed interposed between a series of conductive patterns which comprises the patterned microelectronics conductor layer.
  • the present invention realizes the foregoing objects by employing when forming the patterned microelectronics conductor layer a pair of patterned conductor metal stack layers formed upon a substrate layer, where the pair of patterned conductor metal stack layers comprises a pair of patterned titanium nitride layers having formed and aligned thereupon a pair of patterned aluminum containing conductor layers.
  • the pair of patterned conductor metal stack layers gives rise to the inhibition of the initial rate of deposition of the gap filing dielectric layer formed thereupon employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range such that upon completion of the dielectric layer, there is formed a void interposed between the pair of patterned conductor metal stack layers.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • the present invention may be employed where the microelectronics fabrication is an integrated circuit microelectronics fabrication and where the patterned microelectronics conductor layer is a patterned conductor metal layer formed within the integrated circuit microelectronics fabrication.
  • the method of the present invention does not discriminate with respect to the nature of a microelectronics fabrication within which there may be formed a series of voids interposed between a series of patterns which comprises a patterned microelectronics conductor layer in accord with the method of the present invention, provided that the patterned microelectronics conductor layer comprises a pair of patterned titanium nitride layers having formed thereupon a pair of patterned aluminum containing conductor layers.
  • the method of the present invention is most likely to provide value when forming a series of voids interposed between a series of patterns which comprises a patterned conductor layer within an integrated circuit microelectronics fabrication
  • the method of the present invention may also be employed when forming a series of voids interposed between a series of patterns which comprises a patterned microelectronics conductor layer, within microelectronics fabrications including but not limited to integrated circuit microelectronics fabrications, charge coupled device microelectronics fabrications, solar cell microelectronics fabrications, ceramic substrate microelectronics fabrications and flat panel display microelectronics fabrications.
  • the method of the present invention is readily commercially implemented.
  • the method of the present invention employs an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range to deposit a silicon oxide dielectric layer with inhibited rates of initial formation upon and between the series of patterned microelectronics conductor layers which comprises the patterned microelectronics conductor layer due to an enhanced surface sensitivity, followed by subsequent deposition of the dielectric layer at an uninhibited rate to produce the voids within the dielectric layer which are closed off at the top of the voids. Since methods for forming the dielectric layer employed within the method of the present invention are generally known within the art of microelectronics fabrication, the method of the present invention is readily commercially implemented.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • FIG. 1, FIG. 2 and FIG. 3 show a series of schematic cross-sectional diagrams illustrating the results of forming within a microelectronics fabrication in accord with a general embodiment of the present invention which comprises a first preferred embodiment of the present invention a dielectric layer over a patterned microelectronics conductor layer within the microelectronics fabrication to define a series of voids interposed between a series of patterns which comprises the patterned microelectronics conductor layer.
  • FIG. 4, FIG. 5 and FIG. 6 show a series of schematic cross-sectional diagrams illustrating the results of forming within an integrated circuit microelectronics fabrication in accord with a more specific embodiment of the present invention which comprises a second preferred embodiment of the present invention a dielectric layer over a patterned metal conductor layer within the integrated circuit microelectronics fabrication to form a series of voids interposed between a series of patterns which comprises the patterned metal conductor layer.
  • FIG. 7 is a graph of the thicknesses of silicon oxide dielectric layers deposited upon various surfaces as a function of time of deposition.
  • the present invention provides a method for forming a dielectric layer over a patterned microelectronics conductor layer within a microelectronics fabrication, where a series of voids is formed interposed between a series of patterns which comprises the patterned microelectronics conductor layer when forming the dielectric layer over the patterned microelectronics conductor layer.
  • the method of the present invention realizes this object by forming a silicon oxide dielectric layer over the patterned microelectronics conductor layer employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range which provides an initially hindered rate of deposition due to an enhanced surface sensitivity, so that during subsequent deposition of the silicon oxide dielectric layer, there is formed a series of apertures defined at least in part by the silicon oxide dielectric layer, where the series of apertures is formed interposed between the patterns which comprise the patterned metal conductor layer, and where the series of voids is formed when the deposited silicon oxide dielectric material closes off the tops of the apertures to form a series of voids.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • FIG. 1 to FIG. 3 there is shown a series of schematic cross-sectional diagrams illustrating the results of forming within a microelectronics fabrication in accord with a general embodiment of the present invention which comprises a first preferred embodiment of the present invention a dielectric layer over a patterned microelectronics conductor layer within the microelectronics fabrication to define a series of voids interposed between a series of patterns which comprises the patterned microelectronics conductor layer.
  • Shown in FIG. 1 is a schematic cross-sectional diagram of the microelectronics fabrication at an early stage in its fabrication in accord with the first preferred embodiment of the present invention.
  • FIG. 1 Shown in FIG. 1 is a substrate 10 employed within a microelectronics fabrication, where the substrate has formed thereupon a substrate layer 12.
  • a series of patterned microelectronics conductor stack layers are formed upon the substrate layer 12, comprising a first series of patterned conductor layers 14a, 14b and 14c upon which are formed and aligned a second series of patterned conductor layers 16a, 16b and 16c to form a series of patterned microelectronics conductor stack layers 17a, 17b and 17c of height H1 upon the substrate layer 12.
  • the substrate 10 may be a substrate employed within a microelectronics fabrication selected from the group including but not limited to integrated circuit microelectronics fabrications, charge coupled device microelectronics fabrications, solar cell microelectronics fabrications, ceramic substrate microelectronics fabrications and flat panel display microelectronics fabrications.
  • the substrate 10 may be the substrate itself employed within the microelectronics fabrication, or in the alternative, the substrate 10 may be the substrate employed within the microelectronics fabrication, where the substrate has any of several additional microelectronics layers such as the substrate layer 12 formed thereupon or thereover.
  • additional microelectronics substrate layers may include, but are not limited to microelectronics conductor substrate layers, microelectronics semiconductor substrate layers and microelectronics dielectric substrate layers.
  • the substrate layer 12 is a microelectronics dielectric layer formed of silicon containing dielectric materials including but not limited to silicon oxide dielectric material, silicon nitride dielectric material and silicon oxynitride dielectric material, employing methods including but not limited to thermal oxidation methods, chemical vapor deposition (CVD) methods, physical vapor deposition (PVD) sputtering methods and reactive sputtering methods.
  • the microelectronics dielectric layer 12 is a silicon nitride dielectric layer formed employing chemical vapor deposition (CVD) methods.
  • the patterned first conductor layers 14a, 14b and 14c are formed from titanium nitride.
  • the second patterned conductor layer or layers 16a, 16b and 16c may be formed from any of several types of microelectronics conductive materials as are known in the art of microelectronics fabrication, including but not limited to aluminum, copper, gold, tungsten, nickel and conductive compounds and alloys and mixtures thereof, preferably the patterned second conductor layers 16a, 16b and 16c are formed from aluminum containing material.
  • the patterned first conductor layers 14a, 14b and 14c may each have a thickness upon the substrate layer 12 of from about 200 to about 500 angstroms and a linewidth W2 upon the substrate layer 12 of from about 0.2 to about 1.0 microns.
  • each patterned microelectronics conductor stack layer 17a, 17b and 17c is preferably separated by a pitch width W1 of from about 0.35 to about 0.6 microns over the substrate layer 12.
  • the patterned second conductor layer 16a, 16b and 16c is formed to a thickness of from about 3000 to about 8000 angstroms.
  • FIG. 2 there is shown a schematic cross-sectional diagram illustrating the results of further processing of the microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG. 1. Shown in FIG. 2 is a schematic cross-sectional diagram of a microelectronics fabrication otherwise equivalent to the microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG.
  • a silicon oxide dielectric layer 18 formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method employing tetra-ethyl-ortho-silicate (TEOS) as a silicon source material.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • TEOS tetra-ethyl-ortho-silicate
  • Formed within the silicon oxide dielectric layer 18 is shows a pair of voids 20a and 20b formed interposed between the patterned microelectronics conductor stack layers 17a, 17b and 17c, where the pair of voids 20a and 20b is defined at least in part by the silicon oxide dielectric layer 18.
  • the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method employs: (1) a reactor chamber pressure of from about 450 to about 600 torr (which typically inherently precludes plasma activation); (2) a substrate temperature of from about 440 to about 480 degrees centigrade; (3) an ozone concentration of from about 10 to about 16 weight percent in an oxygen carrier gas flow rate of from about 4000 to about 6000 standard cubic centimeters per minute (sccm); (4) a tetra-ethyl-ortho-silicate (TEOS) concentration of from about 30 to about 40 standard cubic centimeters per minute (sccm) gas flow rate of TEOS in a helium carrier gas flow rate of from about 1500 to about 2500 standard cubic centimeters per minute (sccm).
  • the silicon oxide dielectric layer is formed to a thickness of from about 4000 to about 6000 angstroms.
  • FIG. 2 a pair of voids 20a and 20b formed interposed between the patterned microelectronics conductor stack layers 17a, 17b and 17c, where the pair of voids 20a and 20b is defined at least in part by the silicon oxide dielectric layer 18.
  • the deposition rate of the silicon oxide dielectric layer 18 is initially inhibited when the silicon oxide dielectric layer 18 is formed directly on titanium nitride first patterned conductor layer surfaces due to an enhanced surface sensitivity, hence the formation of voids 20a and 20b is most likely to occur at the beginning of deposition of the silicon oxide dielectric layer 18, and the width of the voids decreases as deposition of the silicon oxide dielectric layer 18 progresses, until the voids 20a and 20b are closed over at the top below the height H1 of the patterned microelectronics conductor stack layers 17a, 17b and 17c.
  • FIG. 3 there is shown a schematic cross-sectional diagram illustrating the results of a further stage in the fabrication of the microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 2.
  • Shown in FIG. 3 is a schematic cross-sectional diagram of a microelectronics fabrication otherwise equivalent to the microelectronics fabrication shown in FIG. 2, but wherein the microelectronics fabrication has been planarized by chemical mechanical polish (CMP) planarization method to render essentially co-planar the tops of the remaining silicon oxide dielectric layer 18' and the tops of the series of patterned microelectronics conductor stack layers 17a, 17b and 17c.
  • CMP chemical mechanical polish
  • the size of the series of voids 20a and 20b has been determined by the choice of the height H1 of the patterned microelectronics conductor stack layers 17a, 17b and 17c and the gaps W1 between the patterned microelectronics metal layers 17a, 17b and 17c and the process parameters for forming the silicon oxide dielectric layer employing the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range such that the tops of the voids 20a and 20b are closed off below the height H1 of the patterned microelectronics conductor stack layers 17a, 17b and 17c, so that voids 20a and 20b are not uncovered or exposed due to the chemical mechanical polish (CMP) planarization processing.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • the size and positioning of the pair of voids 20a and 20b formed interposed between the patterned microelectronics conductor stack layers 17a, 17b and 17c are related to the gap height H1 and the gap widths W1 separating adjoining patterned microelectronics conductor stack layers 17a, 17b and 17c, as illustrated within the schematic cross-sectional diagram of FIG. 1, in conjunction with the values of parameters employed in forming the silicon oxide dielectric layer 18 as illustrated in FIG. 2.
  • the thickness of the patterned first conductor layer 14a, 14b and 14c of titanium nitride determines the sizes of the voids 20a and 20b which are formed.
  • the voids 20a and 20b are formed larger as the thickness of the patterned first conductor layer 14a, 14b and 14c of titanium nitride increases due to the greater degree of inhibition of the deposition rate of the silicon oxide layer 18 caused by the greater thickness of the titanium nitride layer.
  • the diminished portion of the silicon oxide layer due to the inhibition of the first conductive layer of titanium nitride eventually decreases and the voids 20a and 20b close over below the height H1 of the patterned microelectronics conductor stack layer 17a, 17b and 17c.
  • microelectronics fabrication Upon forming the microelectronics fabrication whose schematic cross-sectional diagram is illustrated within FIG. 3, there is formed a microelectronics fabrication having formed therein a series of voids interposed between a series of patterns which comprises a patterned microelectronics metal layer, when forming over the patterned microelectronics metal layer a dielectric layer.
  • FIG. 4 to FIG. 6 there is shown a series of schematic cross-sectional diagrams illustrating the results of forming within an integrated circuit microelectronics fabrication in accord with a more specific embodiment of the present invention which comprises a second preferred embodiment of the present invention a dielectric layer over a patterned conductor metal layer within the integrated circuit microelectronics fabrication to define a series of voids interposed between a series of patterns which comprises the patterned conductor metal layer.
  • FIG. 4 Shown in FIG. 4 is a schematic cross-sectional diagram of an integrated circuit microelectronics fabrication at an early stage in its fabrication in accord with the second preferred embodiment of the present invention. Shown in FIG. 4 is a semiconductor substrate 30 having formed within and upon its surface a pair of isolation regions 32a and 32b which define an active region of the semiconductor substrate 30. Although it is known in the art of integrated circuit microelectronics fabrication that semiconductor substrates are available with either dopant polarity, various dopant concentrations and several crystallographic orientations, for the second preferred embodiment of the present invention the semiconductor substrate is preferably a (100) silicon semiconductor substrate having an N- or P-doping.
  • isolation regions may be formed within and/or upon semiconductor substrates to define active regions of those semiconductor substrates employing methods including but not limited to isolation region thermal growth methods and isolation region deposition/patterning methods
  • the isolation regions 32a and 32b are preferably formed within and upon the semiconductor substrate 30 to define the active region of the semiconductor substrate 30 employing an isolation region thermal growth method at a temperature of from about 800 to about 1000 degrees centigrade to form the isolation regions 32a and 32b of silicon oxide within and upon the semiconductor substrate 30.
  • a field effect transistor which comprises a series of structures including: (1) a gate dielectric layer 34 formed upon the active region of the semiconductor substrate 30, the gate dielectric layer 34 having formed and aligned thereupon; (2) a gate electrode 36; and (3) a pair of source/drain regions 38a and 38b formed within the active region of the semiconductor substrate 30 at areas not covered by the gate dielectric layer 34 and the gate electrode 36.
  • Each of the structures within the series of structures which comprises the field effect transistor (FET) may be formed employing methods and materials which are conventional in the art of field effect transistor (FET) fabrication.
  • gate dielectric layers may be formed through patterning, employing methods as are conventional in the art, of blanket gate dielectric layers formed upon active regions of semiconductor substrates employing methods including but not limited to blanket gate dielectric layer thermal growth methods and blanket gate dielectric layer deposition/patterning methods
  • the gate dielectric layer 34 is preferably formed through patterning, employing methods as are conventional in the art of a blanket gate dielectric layer formed employing a blanket gate dielectric layer thermal growth method at a temperature of from about 700 to about 900 degrees centigrade to form the gate dielectric layer 34 of silicon oxide of thickness from about 30 to about 50 angstroms upon the active region of the semiconductor substrate 30.
  • gate electrodes may be formed through patterning, employing methods as are conventional in the art, of blanket gate electrode material layers formed of gate electrode materials including but not limited to metals, metal alloys, doped polysilicon or polycides (doped polysilicon/metal silicide stacks), for the second preferred embodiment of the present invention the gate electrode 36 is preferably formed through patterning, employing methods as are conventional in the art, of a blanket layer of a doped polysilicon or a polycide gate electrode material formed upon the blanket gate dielectric layer 34 to a thickness of from about 1600 to about 2200 angstroms.
  • FET field effect transistor
  • source/drain regions are typically formed into active regions of a semiconductor substrate employing ion implantation methods which employ dopant ions of polarity opposite the polarity of the semiconductor substrate within which is formed those source/drain regions.
  • the source/drain regions 38a and 38b are preferably formed within the active region of the semiconductor substrate 30 employing a high dose ion implant at an ion implant dose of from about 1 ⁇ 10 15 to about 5 ⁇ 10 15 dopant ions per square centimeter and at an ion implantation energy of from about 5 to about 60 keV while employing at least the gate electrode 36 and the gate dielectric layer 34 as an ion implantation mask.
  • the high dose ion implant is of P
  • PMD planarized pre-metal dielectric layer
  • Planarized pre-metal dielectric (PMD) layers may be formed within microelectronics fabrications employing methods including but not limited to chemical vapor deposition (CVD) methods, plasma enhanced chemical vapor deposition (PECVD) methods and physical vapor deposition (PVD) sputtering methods, along with reactive ion etch (RIE) etchback planarizing methods and chemical mechanical polish (CMP) planarizing methods, through which may be formed planarized pre-metal dielectric(PMD) layers of dielectric materials including but not limited to silicon oxide dielectric materials, silicon nitride dielectric materials and silicon oxynitride dielectric materials.
  • CVD chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • PVD physical vapor deposition
  • CMP chemical mechanical polish
  • the planarized pre-metal dielectric (PMD) layer 40 is preferably formed of a silicon oxide dielectric material deposited employing a plasma enhanced chemical vapor deposition (PECVD) method and subsequently planarized employing a chemical mechanical polish (CMP) planarizing method, as is common in the art of integrated circuit microelectronics fabrication.
  • PECVD plasma enhanced chemical vapor deposition
  • CMP chemical mechanical polish
  • Other methods and materials may, however, also be employed in forming the planarized pre-metal dielectric (PMD) layer 40.
  • the planarized pre-metal dielectric (PMD) layer 40 so formed is formed to a thickness of from about 7000 to about 9000 angstroms over the semiconductor substrate 30 and the series of structures which forms the field effect transistor (FET).
  • first conductor barrier layers 42a, 42b and 42c formed upon the blanket planarized pre-metal dielectric (PMD) layer 40.
  • PMD pre-metal dielectric
  • Patterned conductor barrier layers are typically formed within integrated circuit microelectronics fabrications employing methods including but not limited to thermally assisted evaporation methods, electron beam assisted evaporation methods, chemical vapor deposition (CVD) methods and physical vapor deposition (PVD) sputtering methods, in conjunction with photolithographic and etching methods, through which may be formed patterned conductor barrier layers of conductor barrier materials including but not limited to metal compounds, metal alloys, highly doped polysilicon and polycides (highly doped polysilicon/metal silicide stacks).
  • the patterned first conductor barrier layers 42a, 42b and 42c are preferably each formed of a titanium nitride conductor layer, above which is then formed a co-extensive conductor layer 43a, 43b and 43c.
  • Patterned conductor layers are typically formed within integrated circuit microelectronics fabrications employing methods including but not limited to thermally assisted evaporation methods, electron beam assisted evaporation methods, chemical vapor deposition (CVD) methods and physical vapor deposition (PVD) sputtering methods, in conjunction with photolithographic and etching methods.
  • thermally assisted evaporation methods electron beam assisted evaporation methods
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the patterned first metal conductor layers 43a, 43b and 43c are each formed from an aluminum containing conductor material, above each of which may be formed an optional co-extensive barrier layer 44a, 44b and 44c analogous or equivalent to the conductor barrier layers 42a, 42b and 42c.
  • the formation of the series of patterned barrier conductor layers 42a, 42b and 43c, the series of first conductor layers 43a, 43b and 43c and the optional series of patterned barrier conductor layers 44a, 44b and 44c altogether constitute a series of patterned microelectronics conductor stack layers 45a, 45b and 45c of height H2.
  • each of the series of patterned microelectronics conductor stack layers 45a, 45b and 45c is formed to, and separated by, dimensions analogous or equivalent to the dimensions employed when forming and separating the series of patterned microelectronics conductor stack layers 17a, 17b and 17c within the first preferred embodiment of the present invention as illustrated within the schematic cross-sectional diagram of FIG. 1.
  • FIG. 5 there is shown a schematic cross-sectional diagram illustrating the results of further processing of the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 4.
  • Shown in FIG. 5 is a schematic cross-sectional diagram of an integrated circuit microelectronics fabrication otherwise equivalent to the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 4, but wherein there is formed upon and over the patterned microelectronics conductor stack layers conductor layers 45a, 45b and 45c a silicon oxide dielectric layer 46, where the silicon oxide dielectric layer 46 defines a pair of voids 48a and 48b formed interposed between the patterned microelectronics conductor stack layers 45a, 45b and 45c.
  • the silicon oxide dielectric layer 46 is preferably formed employing materials, methods and dimensions analogous or equivalent to the materials, methods and dimensions employed in forming the silicon oxide dielectric layer 18 within the first preferred embodiment of the present invention as illustrated within the schematic cross-sectional diagram of FIG. 2.
  • the pair of voids 48a and 48b defined by the silicon oxide dielectric layer 46 as illustrated within the schematic cross-sectional diagram of FIG. 5 is formed for reasons analogous or equivalent to the reasons for which are formed the pair of voids 20a and 20b defined at least in part by the silicon oxide dielectric layer 14 as illustrated within the schematic cross-sectional diagram of FIG. 2.
  • FIG. 6 there is shown a schematic cross-sectional diagram illustrating the results of further processing of the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 5.
  • Shown in FIG. 6 is a schematic cross-sectional diagram of an integrated circuit microelectronics fabrication otherwise equivalent to the integrated circuit microelectronics fabrication shown in FIG. 5, but wherein the silicon oxide dielectric layer 46' has been planarized by chemical mechanical polish (CMP) planarization method to produce a series of patterned planarized dielectric layers 46a', 46b', 46c' and 46d'.
  • CMP chemical mechanical polish
  • the silicon oxide dielectric layer 46' as illustrated within the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG. 6 may be planarized, typically employing chemical mechanical polish (CMP) planarizing methods as are conventional in the art of integrated circuit microelectronics fabrication, to provide a planarized silicon oxide dielectric layer 46' upon which may be formed additional upper level patterned conductor layers and inter-metal dielectric (IMD) layers within the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG. 6, in accord with the method of the present invention.
  • CMP chemical mechanical polish
  • CMP planarizing methods will typically not disturb voids, such as the pair of voids 48a and 48b formed interposed between the series of patterned microelectronics conductor stack layers 45a, 45b and 45c as illustrated within the schematic cross-sectional diagram of FIG. 6, since the conditions of silicon oxide dielectric layer deposition and the dimensions of the patterned microelectronics conductor stack layers 45a, 45b and 45c have formed the pair of voids 48a and 48b such that the tops of the voids are below the height H2 of the series of the patterned microelectronics conductor stack layers 45a, 45b and 45c.
  • CMP chemical mechanical polish
  • the low dielectric constant dielectric character provided by the silicon oxide dielectric layer 46' employed within the preferred second embodiment of the present invention or, by analogy, the silicon oxide dielectric layer 18' within the first preferred embodiment of the present invention is preserved even when planarized employing methods as are conventional in the art of microelectronics fabrication.
  • the silicon oxide insulator substrate layers were formed through a plasma enhanced chemical vapor deposition (PECVD) method employing tetra-ethyl-ortho-silicate (TEOS) as the silicon source material.
  • PECVD plasma enhanced chemical vapor deposition
  • TEOS tetra-ethyl-ortho-silicate
  • titanium nitride barrier layers employing a physical vapor deposition (PVD) sputtering method from a titanium nitride sputtering target.
  • PVD physical vapor deposition
  • patterned titanium nitride barrier layers were formed co-extensive patterned aluminum containing metal conductor layers employing a physical vapor deposition (PVD) sputtering method.
  • the aluminum containing conductor layers were each formed to a thickness of about 4000 angstroms.
  • a patterned titanium nitride upper barrier layer co-extensive with the aluminum containing conductor layers.
  • the patterned titanium nitride upper barrier layers were formed employing a physical vapor deposition (PVD) sputtering method from a titanium nitride target to a thickness of about 1000 angstroms.
  • PVD physical vapor deposition
  • a silicon oxide dielectric layer in accord with the parameters preferred for the present invention.
  • the silicon oxide dielectric layers were formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range employing tetra-ethyl-ortho-silicate (TEOS) as the silicon source material.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • TEOS tetra-ethyl-ortho-silicate
  • Additional parameters under which the silicon oxide dielectric layers were formed includes: (1) an ozone: tetra-ethyl-ortho-silicate molar ratio of from about 15:1 to about 30 1; (2) a reactor chamber pressure of from about 450 to about 600 torr; (3) a tetra-ethyl-ortho-silicate gas flow rate of from about 30 to about 40 standard cubic centimeters per minute (sccm); (4) a background helium gas flow rate of from about 4000 to about 6000 standard cubic centimeters per minute (sccm); (5) a substrate temperature of from about 440 to about 480 degrees centigrade; and (6) an oxygen (ozone carrier gas) flow rate of from about 4000 to about 6000 standard cubic centimeters per minute (sccm).
  • Each of the three individual silicon oxide dielectric layers were formed upon the three equivalent silicon semiconductor substrates for a different time interval. The time intervals were 50 seconds, 150 seconds and 300 seconds.
  • line 40 corresponds to the thicknesses of the three silicon oxide dielectric layers formed over the silicon oxide substrate layers.
  • Line 50 corresponds to the thicknesses of the three silicon oxide dielectric layers adjoining the exposed edges of the patterned aluminum contraining conductor stack layers.
  • line 60 corresponds to the thicknesses of the three silicon oxide dielectric layers over the patterned titanium nitride upper barrier layers. From lines 40, 50 and 60 were calculated: (1) the slopes which correspond to the deposition rates of the silicon oxide dielectric layers upon the individual substrate materials; and, (2) the x-axis intercepts which correspond to the induction times for forming the silicon oxide dielectric layers upon those individual substrate materials. The deposition rates and incubation times are reported in TABLE I
  • the deposition rate of the silicon oxide dielectric layer formed employing the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method upon the titanium nitride barrier layers is exceedingly low in comparison with the deposition rate for the silicon oxide dielectric layers upon either the aluminum containing conductor layer or the silicon oxide substrate layer.
  • SACVD ozone assisted sub-atmospheric pressure thermal chemical vapor deposition
  • the silicon oxide dielectric layers of the present invention may be readily formed elsewhere on microelectronics fabrication substrates but not upon or adjacent to patterned conductor stack layers within which are contained titanium nitride layers employed as lower barrier layers.
  • Example 2 Upon the surfaces of four (100) silicon semiconductor substrates were formed silicon oxide substrate layers and three-layer patterned conductor stack layers in accord with the schematic cross-sectional diagram of FIG. 4 and the methods employed in the description of the silicon semiconductor substrates produced for Example 1. Upon the surface of one of the four silicon semiconductor substrates, designated as No. 1 in this Example, there was formed a conformal silicon oxide dielectric layer employing plasma assisted chemical vapor deposition (PECVD) method which is conventionally known in the art of microelectronics fabrication.
  • PECVD plasma assisted chemical vapor deposition
  • TEOS tetra-ethyl-ortho-silicate
  • the silicon oxide dielectric layer was formed not in accord with the general method of the present invention, but with the following differences in method: (1) an ozone:TEOS molar ratio of 12; and (2) a silicon semiconductor substrate temperature of 400 degrees centigrade.
  • an ozone:TEOS molar ratio of 12 On the surface of the third of the four silicon semiconductor substrates, designated as No. 3 within this Example, there was formed a silicon oxide dielectric layer not in accord with the general method of the present invention, but with the following differences in method: (1) an ozone:TEOS molar ratio of 29; and (2) a silicon semiconductor substrate temperature of 400 degrees centigrade.
  • the fourth of the four silicon semiconductor substrates designated as No. 4 within this Example, there was formed a silicon oxide dielectric layer in accord with the general method of the present invention.
  • the four silicon semiconductor substrates which constitute the Example 2 were sectioned, polished and scanned by electron microscopy, and the regions between and adjoining the edges of the patterned conductor stack layers were examined for voids. The results are reported in TABLE II.
  • a void between patterned conductor stack lasers is not observed for the silicon semiconductor substrate No. 1 for which a silicon oxide dielectric underlayer was deposited employing plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the method does result in voids located in the upper portions of the silicon oxide dielectric layer, in which portion of the silicon oxide layer the voids are not positioned interposed between the patterned conductor stack layers, as is desired for a lower dielectric constant, but also the tops of the voids are above the tops of the patterned conductor stack layers.
  • the preferred embodiments of the present invention are illustrative of the present invention rather than limiting of the present invention. Revisions and modifications may be made to methods, materials, structures and dimensions through which are formed microelectronics fabrications in accord with the first preferred embodiment of the present invention and integrated circuit microelectronics fabrications in accord with the second preferred embodiment of the present invention while still providing microelectronics fabrications, including but not limited to integrated circuit microelectronics fabrications, in accord with the methods of the present invention, as defined by the appended claims.

Abstract

A method for forming a dielectric layer within a microelectronics fabrication. There is first provided a substrate layer formed upon a substrate employed within a microelectronics fabrication. There is then formed upon the substrate layer a pair of patterned titanium nitride conductor layers upon which is formed a pair of aluminum containing conductor layers to provide a pair of patterned conductor stack layers. There is then formed over the patterned conductor stack layers a silicon oxide dielectric layer formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method employing tetra-ethyl-ortho-silicate (TEOS) as the silicon source material, where the silicon oxide dielectric layer defines at least in part a series of voids formed interposed between the patterned conductor stack layers. The substrate layer composition, the patterned conductor stack layer separation, the titanium nitride layer thickness, and at least one of the SACVD method parameters of deposition pressure or deposition temperature are selected such that the series of voids within the silicon oxide gap filling dielectric layer are interposed between the pair of patterned conductor stack layers.

Description

CROSS-REFERENCE TO RELATED APPLICATION
The present application is related to co-assigned application Ser. No. 08/518,706, filed Aug. 24, 1995, now U.S. Pat. No. 5,518,959.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to methods for the fabrication of dielectric separation layers between conductor layers in microelectronics fabrications. More particularly, the invention relates to methods for fabrication of relatively low dielectric constant dielectric layers between conductor layers in microelectronics fabrications.
2. Description of the Related Art
Microelectronics fabrications are formed from microelectronics substrates over which are formed patterned microelectronics conductor layers which are separated by dielectric layers.
As the level of integration of microelectronics devices has increased and the dimensions of microelectronics devices have decreased, the spacing between adjacent conductor layers carrying current has correspondingly decreased.
Similarly, in accord with the desire for higher performance, speeds of electrical circuit operation have increased greatly. Such higher speeds typically require minimization of parasitic capacitance in conductor layers adjacent to signal carrying layers to decrease time required for charging of stray capacitances, and capacitive coupling between adjacent signal conductor lines minimized in order to attenuate cross-talk and distortion due to excessive capacitive coupling. For these reasons, it has become common to employ low relative dielectric constant dielectric layers formed interposed between patterned microelectronics conductor layers within microelectronics fabrications. As is understood by persons skilled in the art, the relative dielectric constant of a dielectric material is the ratio between the dielectric constant of the material and the dielectric constant of empty space, which is taken as unity; thus the relative dielectric constant will be numerically equal to that ratio, and will be referred to as the dielectric constant of the material.
Of the methods and materials which may be employed for forming low dielectric constant dielectric layers interposed between the patterns of patterned microelectronics conductor layers within microelectronics fabrications, methods which provide dielectric layers which in turn define vacuum evacuated or gas filled (such as but not limited to air filled) voids interposed between the patterns of patterned microelectronics conductor layers are particularly desirable within the art of microelectronics fabrication. Such methods are desirable since vacuum evacuated or gas filled voids typically yield within a microelectronics fabrication a dielectric layer possessing in the pertinent locations interposed between a series of patterns which comprises a patterned microelectronics conductor layer a dielectric constant approaching the theoretical lower limit of 1.0. For comparison purposes, conventional silicon containing dielectric layers formed of silicon containing dielectric materials such as but not limited to silicon oxide dielectric materials, silicon nitride dielectric materials and silicon oxynitride dielectric materials typically exhibit homogeneous dielectric constants within a range of from about 4.0 to about 9.0. Similarly, alternative low dielectric constant dielectric layers formed from low dielectric constant dielectric materials such as but not limited to organic polymer spin-on-polymer (SOP) dielectric materials (such as but not limited to polyimide organic polymer spin-on-polymer (SOP) dielectric materials, poly (arylene ether) organic polymer spin-on-polymer (SOP) dielectric materials and fluorinated poly (arylene ether)organic polymer spin-on-polymer (SOP) dielectric materials), amorphous carbon dielectric materials and silsesquioxane spin-on-glass (SOG) dielectric materials (such as but not limited to hydrogen silsesquioxane (HSQ) spin-on-glass (SOG) dielectric materials, carbon bonded hydrocarbon (MSQ) silsesquioxane spin-on-glass (SOG) dielectric materials and carbon bonded fluorocarbon silsesquioxane (FSQ) spin-on-glass (SOG) dielectric materials) typically exhibit somewhat lower homogeneous dielectric constants in a range of from about 2.5 to about 3.3.
It is therefore towards the goal of forming within microelectronics fabrications low dielectric constant dielectric layers which define, at least in part, vacuum evacuated or gas filled voids interposed between the patterns of patterned conductor layers upon which are formed those low dielectric constant dielectric layers, that the present invention is more generally directed.
Various methods and associated microelectronics structures have been disclosed within the art of microelectronics fabrication for forming upon patterned microelectronics conductor layers within microelectronics fabrications microelectronics dielectric layers which at least in part define vacuum evacuated or gas filled voids interposed between the patterns which comprise patterned conductor layers within microelectronics fabrications.
For example, Graven et al., in U.S. Pat. No. 5,641,712, disclose a method for forming a dielectric layer which define a series of voids between conducting lines thus reducing capacitance between the conducting lines. The voids are formed when a silane oxide layer is deposited over the lines to form a nearly closed trench-like gap in the oxide between the lines which is subsequently closed off at the top and sealed by resputtering the top surface of the oxide.
Further, Havemann et al., in U.S. Pat. No. 5,461,003, disclose another method which employs a dielectric layer for forming voids between metal layer leads of a semiconductor device. The voids are formed by depositing first a disposable solid layer between the metal layer leads, covering said leads and disposable layer with a porous dielectric layer, and removing the disposable layer through the porous covering dielectric layer.
Still further, Stoltz et al., in U.S. Pat. No. 5,407,860, disclose a method for defining a series of voids interposed between a series of patterns which comprises a patterned conductor layer within an integrated circuit microelectronics fabrication when forming upon the patterned conductor layer within the integrated circuit microelectronics fabrication a dielectric layer. The method employs a non-wetting material formed upon at least the sidewalls of the series of patterns which comprises the patterned conductor layer but not completely occupying the spaces between the series of patterns which comprises the patterned conductor layer nor upon the top surfaces of the series of patterns which comprises the patterned conductor layer. Thus, when a dielectric layer is subsequently formed upon the patterned conductor layer having the non-wetting material selectively formed upon portions of its patterns there is formed a series of voids beneath the dielectric layer, where the series of voids is formed interposed between the series of patterns which comprises the patterned conductor layer.
Finally, Sliwa et al., in U.S. Pat. No. 5,192,715, disclose a method for producing voids selectively at the sidewalls of aluminum lines within a microelectronics fabrication coated with tungsten. The method employs a selective deposition and dissolution of a sacrificial tungsten layer upon the sidewalls of the aluminum lines.
Desirable in the art of microelectronics fabrication are additional methods and materials which may be employed for forming a dielectric layer over a patterned microelectronics layer within a microelectronics fabrication, such that a series of vacuum evacuated or gas filled voids is defined interposed between a series of patterns which comprises the patterned microelectronics layer when forming the dielectric layer over the patterned microelectronics layer. More particularly desirable in the art of integrated circuit microelectronics fabrication are additional methods and materials which may be employed for forming a dielectric layer over a patterned conductor layer within an integrated circuit microelectronics fabrication, such that a series of vacuum evacuated or gas filled voids is formed interposed between a series of patterns which comprises the patterned conductor layer when forming the dielectric layer over the patterned conductor layer.
It is towards the foregoing goals that the present invention is both generally and more specifically directed.
SUMMARY OF THE INVENTION
A first object of the present invention is to provide a method for forming a dielectric layer over a patterned microelectronics conductor layer within a microelectronics fabrication.
A second object of the present invention is to provide a method in accord with the first object of the present invention, where a series of voids is defined interposed between a series of patterns which comprises the patterned microelectronics conductor layer when forming the dielectric layer over the patterned microelectronics conductor layer.
A third object of the present invention is to provide a method in accord with the first object of the present invention or the second object of the present invention, where the microelectronics fabrication is an integrated circuit microelectronics fabrication and the patterned conductor layer is a patterned conductor metal layer formed within the integrated circuit microelectronics fabrication.
A fourth object of the present invention is to provide a method in accord with the first object of the present invention, the second object of the present invention or the third object of the present invention, which method is readily commercially implemented.
In accord with the objects of the present invention, there is provided by the present invention a method for forming a dielectric layer within a microelectronics fabrication. To practice the method of the present invention, there is first provided a substrate employed within a microelectronics fabrication. There is then formed upon the substrate a substrate layer. There is then formed over the substrate layer a pair of patterned conductor stack layers, the pair of patterned conductor stack layers comprising a pair of patterned titanium nitride layers formed upon the substrate layer, and a pair of patterned aluminum containing conductor layers formed upon the pair of patterned titanium nitride layers. There is then formed upon the pair of patterned conductor stack layers and a portion of the substrate layer exposed interposed between the pair of patterned conductor stack layers a gap filling dielectric layer formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method. Within the aforesaid method of deposition of the gap filling dielectric layer, there are selected a substrate layer composition, a patterned conductor stack layer separation, a titanium nitride layer thickness and at least one of the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method parameters of temperature and pressure such that there is formed within the gap filling dielectric layer a void interposed between the pair of patterned conductor stack layers.
The present invention provides a method for forming a dielectric layer over a patterned microelectronics conductor layer within a microelectronics fabrication, where a series of voids is formed interposed between a series of conductive patterns which comprises the patterned microelectronics conductor layer. The present invention realizes the foregoing objects by employing when forming the patterned microelectronics conductor layer a pair of patterned conductor metal stack layers formed upon a substrate layer, where the pair of patterned conductor metal stack layers comprises a pair of patterned titanium nitride layers having formed and aligned thereupon a pair of patterned aluminum containing conductor layers. Thereafter, the pair of patterned conductor metal stack layers gives rise to the inhibition of the initial rate of deposition of the gap filing dielectric layer formed thereupon employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range such that upon completion of the dielectric layer, there is formed a void interposed between the pair of patterned conductor metal stack layers.
The present invention may be employed where the microelectronics fabrication is an integrated circuit microelectronics fabrication and where the patterned microelectronics conductor layer is a patterned conductor metal layer formed within the integrated circuit microelectronics fabrication. The method of the present invention does not discriminate with respect to the nature of a microelectronics fabrication within which there may be formed a series of voids interposed between a series of patterns which comprises a patterned microelectronics conductor layer in accord with the method of the present invention, provided that the patterned microelectronics conductor layer comprises a pair of patterned titanium nitride layers having formed thereupon a pair of patterned aluminum containing conductor layers. Thus, although the method of the present invention is most likely to provide value when forming a series of voids interposed between a series of patterns which comprises a patterned conductor layer within an integrated circuit microelectronics fabrication, the method of the present invention may also be employed when forming a series of voids interposed between a series of patterns which comprises a patterned microelectronics conductor layer, within microelectronics fabrications including but not limited to integrated circuit microelectronics fabrications, charge coupled device microelectronics fabrications, solar cell microelectronics fabrications, ceramic substrate microelectronics fabrications and flat panel display microelectronics fabrications.
The method of the present invention is readily commercially implemented. The method of the present invention employs an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range to deposit a silicon oxide dielectric layer with inhibited rates of initial formation upon and between the series of patterned microelectronics conductor layers which comprises the patterned microelectronics conductor layer due to an enhanced surface sensitivity, followed by subsequent deposition of the dielectric layer at an uninhibited rate to produce the voids within the dielectric layer which are closed off at the top of the voids. Since methods for forming the dielectric layer employed within the method of the present invention are generally known within the art of microelectronics fabrication, the method of the present invention is readily commercially implemented.
BRIEF DESCRIPTION OF THE DRAWINGS
The objects, features and advantages of the present invention are understood within the context of the Description of the Preferred Embodiments, as set forth below. The Description of the Preferred Embodiments is understood within the context of the accompanying drawings, which form a material part of this disclosure, wherein:
FIG. 1, FIG. 2 and FIG. 3 show a series of schematic cross-sectional diagrams illustrating the results of forming within a microelectronics fabrication in accord with a general embodiment of the present invention which comprises a first preferred embodiment of the present invention a dielectric layer over a patterned microelectronics conductor layer within the microelectronics fabrication to define a series of voids interposed between a series of patterns which comprises the patterned microelectronics conductor layer.
FIG. 4, FIG. 5 and FIG. 6 show a series of schematic cross-sectional diagrams illustrating the results of forming within an integrated circuit microelectronics fabrication in accord with a more specific embodiment of the present invention which comprises a second preferred embodiment of the present invention a dielectric layer over a patterned metal conductor layer within the integrated circuit microelectronics fabrication to form a series of voids interposed between a series of patterns which comprises the patterned metal conductor layer.
FIG. 7 is a graph of the thicknesses of silicon oxide dielectric layers deposited upon various surfaces as a function of time of deposition.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention provides a method for forming a dielectric layer over a patterned microelectronics conductor layer within a microelectronics fabrication, where a series of voids is formed interposed between a series of patterns which comprises the patterned microelectronics conductor layer when forming the dielectric layer over the patterned microelectronics conductor layer. The method of the present invention realizes this object by forming a silicon oxide dielectric layer over the patterned microelectronics conductor layer employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range which provides an initially hindered rate of deposition due to an enhanced surface sensitivity, so that during subsequent deposition of the silicon oxide dielectric layer, there is formed a series of apertures defined at least in part by the silicon oxide dielectric layer, where the series of apertures is formed interposed between the patterns which comprise the patterned metal conductor layer, and where the series of voids is formed when the deposited silicon oxide dielectric material closes off the tops of the apertures to form a series of voids.
First Preferred Embodiment
Referring now to FIG. 1 to FIG. 3, there is shown a series of schematic cross-sectional diagrams illustrating the results of forming within a microelectronics fabrication in accord with a general embodiment of the present invention which comprises a first preferred embodiment of the present invention a dielectric layer over a patterned microelectronics conductor layer within the microelectronics fabrication to define a series of voids interposed between a series of patterns which comprises the patterned microelectronics conductor layer. Shown in FIG. 1 is a schematic cross-sectional diagram of the microelectronics fabrication at an early stage in its fabrication in accord with the first preferred embodiment of the present invention.
Shown in FIG. 1 is a substrate 10 employed within a microelectronics fabrication, where the substrate has formed thereupon a substrate layer 12. A series of patterned microelectronics conductor stack layers are formed upon the substrate layer 12, comprising a first series of patterned conductor layers 14a, 14b and 14c upon which are formed and aligned a second series of patterned conductor layers 16a, 16b and 16c to form a series of patterned microelectronics conductor stack layers 17a, 17b and 17c of height H1 upon the substrate layer 12.
Within the first preferred embodiment of the present invention, the substrate 10 may be a substrate employed within a microelectronics fabrication selected from the group including but not limited to integrated circuit microelectronics fabrications, charge coupled device microelectronics fabrications, solar cell microelectronics fabrications, ceramic substrate microelectronics fabrications and flat panel display microelectronics fabrications. Although not specifically illustrated within the schematic cross-sectional diagram of FIG. 1, the substrate 10 may be the substrate itself employed within the microelectronics fabrication, or in the alternative, the substrate 10 may be the substrate employed within the microelectronics fabrication, where the substrate has any of several additional microelectronics layers such as the substrate layer 12 formed thereupon or thereover. Such additional microelectronics substrate layers (similarly with the substrate 10 itself) may include, but are not limited to microelectronics conductor substrate layers, microelectronics semiconductor substrate layers and microelectronics dielectric substrate layers.
With respect to the substrate layer 12 shown in FIG. 1, the substrate layer 12 is a microelectronics dielectric layer formed of silicon containing dielectric materials including but not limited to silicon oxide dielectric material, silicon nitride dielectric material and silicon oxynitride dielectric material, employing methods including but not limited to thermal oxidation methods, chemical vapor deposition (CVD) methods, physical vapor deposition (PVD) sputtering methods and reactive sputtering methods. Preferably, the microelectronics dielectric layer 12 is a silicon nitride dielectric layer formed employing chemical vapor deposition (CVD) methods.
With respect to the patterned microelectronics conductor stack layer, the patterned first conductor layers 14a, 14b and 14c are formed from titanium nitride. Although the second patterned conductor layer or layers 16a, 16b and 16c may be formed from any of several types of microelectronics conductive materials as are known in the art of microelectronics fabrication, including but not limited to aluminum, copper, gold, tungsten, nickel and conductive compounds and alloys and mixtures thereof, preferably the patterned second conductor layers 16a, 16b and 16c are formed from aluminum containing material. The patterned first conductor layers 14a, 14b and 14c may each have a thickness upon the substrate layer 12 of from about 200 to about 500 angstroms and a linewidth W2 upon the substrate layer 12 of from about 0.2 to about 1.0 microns. As is specifically illustrated within the schematic cross-sectional diagram of FIG. 1 each patterned microelectronics conductor stack layer 17a, 17b and 17c is preferably separated by a pitch width W1 of from about 0.35 to about 0.6 microns over the substrate layer 12. Preferably the patterned second conductor layer 16a, 16b and 16c is formed to a thickness of from about 3000 to about 8000 angstroms.
Referring now to FIG. 2, there is shown a schematic cross-sectional diagram illustrating the results of further processing of the microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG. 1. Shown in FIG. 2 is a schematic cross-sectional diagram of a microelectronics fabrication otherwise equivalent to the microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG. 1, but wherein there is formed over and upon the substrate 10 and the patterned microelectronics conductor stack layers 17a, 17b and 17c a silicon oxide dielectric layer 18 formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method employing tetra-ethyl-ortho-silicate (TEOS) as a silicon source material. Formed within the silicon oxide dielectric layer 18 is shows a pair of voids 20a and 20b formed interposed between the patterned microelectronics conductor stack layers 17a, 17b and 17c, where the pair of voids 20a and 20b is defined at least in part by the silicon oxide dielectric layer 18. Preferably, the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method employs: (1) a reactor chamber pressure of from about 450 to about 600 torr (which typically inherently precludes plasma activation); (2) a substrate temperature of from about 440 to about 480 degrees centigrade; (3) an ozone concentration of from about 10 to about 16 weight percent in an oxygen carrier gas flow rate of from about 4000 to about 6000 standard cubic centimeters per minute (sccm); (4) a tetra-ethyl-ortho-silicate (TEOS) concentration of from about 30 to about 40 standard cubic centimeters per minute (sccm) gas flow rate of TEOS in a helium carrier gas flow rate of from about 1500 to about 2500 standard cubic centimeters per minute (sccm). Preferably, the silicon oxide dielectric layer is formed to a thickness of from about 4000 to about 6000 angstroms.
As noted above, there is shown in FIG. 2 a pair of voids 20a and 20b formed interposed between the patterned microelectronics conductor stack layers 17a, 17b and 17c, where the pair of voids 20a and 20b is defined at least in part by the silicon oxide dielectric layer 18. The deposition rate of the silicon oxide dielectric layer 18 is initially inhibited when the silicon oxide dielectric layer 18 is formed directly on titanium nitride first patterned conductor layer surfaces due to an enhanced surface sensitivity, hence the formation of voids 20a and 20b is most likely to occur at the beginning of deposition of the silicon oxide dielectric layer 18, and the width of the voids decreases as deposition of the silicon oxide dielectric layer 18 progresses, until the voids 20a and 20b are closed over at the top below the height H1 of the patterned microelectronics conductor stack layers 17a, 17b and 17c.
Referring now to FIG. 3, there is shown a schematic cross-sectional diagram illustrating the results of a further stage in the fabrication of the microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 2. Shown in FIG. 3 is a schematic cross-sectional diagram of a microelectronics fabrication otherwise equivalent to the microelectronics fabrication shown in FIG. 2, but wherein the microelectronics fabrication has been planarized by chemical mechanical polish (CMP) planarization method to render essentially co-planar the tops of the remaining silicon oxide dielectric layer 18' and the tops of the series of patterned microelectronics conductor stack layers 17a, 17b and 17c. The size of the series of voids 20a and 20b has been determined by the choice of the height H1 of the patterned microelectronics conductor stack layers 17a, 17b and 17c and the gaps W1 between the patterned microelectronics metal layers 17a, 17b and 17c and the process parameters for forming the silicon oxide dielectric layer employing the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range such that the tops of the voids 20a and 20b are closed off below the height H1 of the patterned microelectronics conductor stack layers 17a, 17b and 17c, so that voids 20a and 20b are not uncovered or exposed due to the chemical mechanical polish (CMP) planarization processing. The size and positioning of the pair of voids 20a and 20b formed interposed between the patterned microelectronics conductor stack layers 17a, 17b and 17c are related to the gap height H1 and the gap widths W1 separating adjoining patterned microelectronics conductor stack layers 17a, 17b and 17c, as illustrated within the schematic cross-sectional diagram of FIG. 1, in conjunction with the values of parameters employed in forming the silicon oxide dielectric layer 18 as illustrated in FIG. 2.
The thickness of the patterned first conductor layer 14a, 14b and 14c of titanium nitride determines the sizes of the voids 20a and 20b which are formed. The voids 20a and 20b are formed larger as the thickness of the patterned first conductor layer 14a, 14b and 14c of titanium nitride increases due to the greater degree of inhibition of the deposition rate of the silicon oxide layer 18 caused by the greater thickness of the titanium nitride layer. As the deposition of silicon oxide layer 18 progresses, the diminished portion of the silicon oxide layer due to the inhibition of the first conductive layer of titanium nitride eventually decreases and the voids 20a and 20b close over below the height H1 of the patterned microelectronics conductor stack layer 17a, 17b and 17c.
Upon forming the microelectronics fabrication whose schematic cross-sectional diagram is illustrated within FIG. 3, there is formed a microelectronics fabrication having formed therein a series of voids interposed between a series of patterns which comprises a patterned microelectronics metal layer, when forming over the patterned microelectronics metal layer a dielectric layer.
Second Preferred Embodiment
Referring now to FIG. 4 to FIG. 6, there is shown a series of schematic cross-sectional diagrams illustrating the results of forming within an integrated circuit microelectronics fabrication in accord with a more specific embodiment of the present invention which comprises a second preferred embodiment of the present invention a dielectric layer over a patterned conductor metal layer within the integrated circuit microelectronics fabrication to define a series of voids interposed between a series of patterns which comprises the patterned conductor metal layer.
Shown in FIG. 4 is a schematic cross-sectional diagram of an integrated circuit microelectronics fabrication at an early stage in its fabrication in accord with the second preferred embodiment of the present invention. Shown in FIG. 4 is a semiconductor substrate 30 having formed within and upon its surface a pair of isolation regions 32a and 32b which define an active region of the semiconductor substrate 30. Although it is known in the art of integrated circuit microelectronics fabrication that semiconductor substrates are available with either dopant polarity, various dopant concentrations and several crystallographic orientations, for the second preferred embodiment of the present invention the semiconductor substrate is preferably a (100) silicon semiconductor substrate having an N- or P-doping.
Similarly, although it is also known in the art of integrated circuit microelectronics fabrication that isolation regions may be formed within and/or upon semiconductor substrates to define active regions of those semiconductor substrates employing methods including but not limited to isolation region thermal growth methods and isolation region deposition/patterning methods, for the second preferred embodiment of the present invention the isolation regions 32a and 32b are preferably formed within and upon the semiconductor substrate 30 to define the active region of the semiconductor substrate 30 employing an isolation region thermal growth method at a temperature of from about 800 to about 1000 degrees centigrade to form the isolation regions 32a and 32b of silicon oxide within and upon the semiconductor substrate 30.
Shown also within FIG. 4 formed within and upon the active region of the semiconductor substrate 30 is a field effect transistor (FET) which comprises a series of structures including: (1) a gate dielectric layer 34 formed upon the active region of the semiconductor substrate 30, the gate dielectric layer 34 having formed and aligned thereupon; (2) a gate electrode 36; and (3) a pair of source/drain regions 38a and 38b formed within the active region of the semiconductor substrate 30 at areas not covered by the gate dielectric layer 34 and the gate electrode 36. Each of the structures within the series of structures which comprises the field effect transistor (FET) may be formed employing methods and materials which are conventional in the art of field effect transistor (FET) fabrication.
For example, although it is known in the art of field effect transistor (FET) fabrication that gate dielectric layers may be formed through patterning, employing methods as are conventional in the art, of blanket gate dielectric layers formed upon active regions of semiconductor substrates employing methods including but not limited to blanket gate dielectric layer thermal growth methods and blanket gate dielectric layer deposition/patterning methods, for the second preferred embodiment of the present invention the gate dielectric layer 34 is preferably formed through patterning, employing methods as are conventional in the art of a blanket gate dielectric layer formed employing a blanket gate dielectric layer thermal growth method at a temperature of from about 700 to about 900 degrees centigrade to form the gate dielectric layer 34 of silicon oxide of thickness from about 30 to about 50 angstroms upon the active region of the semiconductor substrate 30.
Similarly, although it is also known in the art of field effect transistor (FET) fabrication that gate electrodes may be formed through patterning, employing methods as are conventional in the art, of blanket gate electrode material layers formed of gate electrode materials including but not limited to metals, metal alloys, doped polysilicon or polycides (doped polysilicon/metal silicide stacks), for the second preferred embodiment of the present invention the gate electrode 36 is preferably formed through patterning, employing methods as are conventional in the art, of a blanket layer of a doped polysilicon or a polycide gate electrode material formed upon the blanket gate dielectric layer 34 to a thickness of from about 1600 to about 2200 angstroms.
Finally, it is also known in the art of field effect transistor (FET) fabrication that source/drain regions are typically formed into active regions of a semiconductor substrate employing ion implantation methods which employ dopant ions of polarity opposite the polarity of the semiconductor substrate within which is formed those source/drain regions. For the second preferred embodiment of the present invention, the source/drain regions 38a and 38b are preferably formed within the active region of the semiconductor substrate 30 employing a high dose ion implant at an ion implant dose of from about 1×1015 to about 5×1015 dopant ions per square centimeter and at an ion implantation energy of from about 5 to about 60 keV while employing at least the gate electrode 36 and the gate dielectric layer 34 as an ion implantation mask. The high dose ion implant is of P| or N| polarity appropriate to the field effect transistor (FET) and the semiconductor substrate 30.
There is also shown within FIG. 4 formed over the semiconductor substrate 30 and the series of structures which forms the field effect transistor (FET) a planarized pre-metal dielectric layer (PMD) 40. Methods and materials through which planarized pre-metal dielectric (PMD) layers may be formed within integrated circuit microelectronics fabrications are known in the art of microelectronics fabrications. Planarized pre-metal dielectric (PMD) layers may be formed within microelectronics fabrications employing methods including but not limited to chemical vapor deposition (CVD) methods, plasma enhanced chemical vapor deposition (PECVD) methods and physical vapor deposition (PVD) sputtering methods, along with reactive ion etch (RIE) etchback planarizing methods and chemical mechanical polish (CMP) planarizing methods, through which may be formed planarized pre-metal dielectric(PMD) layers of dielectric materials including but not limited to silicon oxide dielectric materials, silicon nitride dielectric materials and silicon oxynitride dielectric materials. For the second preferred embodiment of the present invention, the planarized pre-metal dielectric (PMD) layer 40 is preferably formed of a silicon oxide dielectric material deposited employing a plasma enhanced chemical vapor deposition (PECVD) method and subsequently planarized employing a chemical mechanical polish (CMP) planarizing method, as is common in the art of integrated circuit microelectronics fabrication. Other methods and materials may, however, also be employed in forming the planarized pre-metal dielectric (PMD) layer 40. Preferably, the planarized pre-metal dielectric (PMD) layer 40 so formed is formed to a thickness of from about 7000 to about 9000 angstroms over the semiconductor substrate 30 and the series of structures which forms the field effect transistor (FET).
There is also shown in FIG. 4 a series of patterned first conductor barrier layers 42a, 42b and 42c formed upon the blanket planarized pre-metal dielectric (PMD) layer 40. Methods and materials through which patterned conductor barrier layers may be formed within integrated circuit microelectronics fabrications are known in the art of microelectronics fabrications. Patterned conductor barrier layers are typically formed within integrated circuit microelectronics fabrications employing methods including but not limited to thermally assisted evaporation methods, electron beam assisted evaporation methods, chemical vapor deposition (CVD) methods and physical vapor deposition (PVD) sputtering methods, in conjunction with photolithographic and etching methods, through which may be formed patterned conductor barrier layers of conductor barrier materials including but not limited to metal compounds, metal alloys, highly doped polysilicon and polycides (highly doped polysilicon/metal silicide stacks). For the second preferred embodiment of the present invention, the patterned first conductor barrier layers 42a, 42b and 42c are preferably each formed of a titanium nitride conductor layer, above which is then formed a co-extensive conductor layer 43a, 43b and 43c.
Methods and materials through which patterned conductor layers may be formed within integrated circuit microelectronics fabrications are known in the art of integrated circuit microelectronics fabrication. Patterned conductor layers are typically formed within integrated circuit microelectronics fabrications employing methods including but not limited to thermally assisted evaporation methods, electron beam assisted evaporation methods, chemical vapor deposition (CVD) methods and physical vapor deposition (PVD) sputtering methods, in conjunction with photolithographic and etching methods. For the second preferred embodiment of the present invention, the patterned first metal conductor layers 43a, 43b and 43c are each formed from an aluminum containing conductor material, above each of which may be formed an optional co-extensive barrier layer 44a, 44b and 44c analogous or equivalent to the conductor barrier layers 42a, 42b and 42c. The formation of the series of patterned barrier conductor layers 42a, 42b and 43c, the series of first conductor layers 43a, 43b and 43c and the optional series of patterned barrier conductor layers 44a, 44b and 44c altogether constitute a series of patterned microelectronics conductor stack layers 45a, 45b and 45c of height H2. Preferably, each of the series of patterned microelectronics conductor stack layers 45a, 45b and 45c is formed to, and separated by, dimensions analogous or equivalent to the dimensions employed when forming and separating the series of patterned microelectronics conductor stack layers 17a, 17b and 17c within the first preferred embodiment of the present invention as illustrated within the schematic cross-sectional diagram of FIG. 1.
Referring now to FIG. 5, there is shown a schematic cross-sectional diagram illustrating the results of further processing of the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 4. Shown in FIG. 5 is a schematic cross-sectional diagram of an integrated circuit microelectronics fabrication otherwise equivalent to the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 4, but wherein there is formed upon and over the patterned microelectronics conductor stack layers conductor layers 45a, 45b and 45c a silicon oxide dielectric layer 46, where the silicon oxide dielectric layer 46 defines a pair of voids 48a and 48b formed interposed between the patterned microelectronics conductor stack layers 45a, 45b and 45c.
Within the preferred second embodiment of the present invention, the silicon oxide dielectric layer 46 is preferably formed employing materials, methods and dimensions analogous or equivalent to the materials, methods and dimensions employed in forming the silicon oxide dielectric layer 18 within the first preferred embodiment of the present invention as illustrated within the schematic cross-sectional diagram of FIG. 2. Thus, the pair of voids 48a and 48b defined by the silicon oxide dielectric layer 46 as illustrated within the schematic cross-sectional diagram of FIG. 5 is formed for reasons analogous or equivalent to the reasons for which are formed the pair of voids 20a and 20b defined at least in part by the silicon oxide dielectric layer 14 as illustrated within the schematic cross-sectional diagram of FIG. 2.
Referring now to FIG. 6, there is shown a schematic cross-sectional diagram illustrating the results of further processing of the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is shown in FIG. 5. Shown in FIG. 6 is a schematic cross-sectional diagram of an integrated circuit microelectronics fabrication otherwise equivalent to the integrated circuit microelectronics fabrication shown in FIG. 5, but wherein the silicon oxide dielectric layer 46' has been planarized by chemical mechanical polish (CMP) planarization method to produce a series of patterned planarized dielectric layers 46a', 46b', 46c' and 46d'. The surfaces of the planarized dielectric layers 46a', 46b', 46c' and 46d' are formed higher than the tops of the pair of voids 48a and 48b.
As is understood by a person skilled in the art, the silicon oxide dielectric layer 46' as illustrated within the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG. 6 may be planarized, typically employing chemical mechanical polish (CMP) planarizing methods as are conventional in the art of integrated circuit microelectronics fabrication, to provide a planarized silicon oxide dielectric layer 46' upon which may be formed additional upper level patterned conductor layers and inter-metal dielectric (IMD) layers within the integrated circuit microelectronics fabrication whose schematic cross-sectional diagram is illustrated in FIG. 6, in accord with the method of the present invention. Such chemical mechanical polish (CMP) planarizing methods will typically not disturb voids, such as the pair of voids 48a and 48b formed interposed between the series of patterned microelectronics conductor stack layers 45a, 45b and 45c as illustrated within the schematic cross-sectional diagram of FIG. 6, since the conditions of silicon oxide dielectric layer deposition and the dimensions of the patterned microelectronics conductor stack layers 45a, 45b and 45c have formed the pair of voids 48a and 48b such that the tops of the voids are below the height H2 of the series of the patterned microelectronics conductor stack layers 45a, 45b and 45c. Thus, the low dielectric constant dielectric character provided by the silicon oxide dielectric layer 46' employed within the preferred second embodiment of the present invention or, by analogy, the silicon oxide dielectric layer 18' within the first preferred embodiment of the present invention, is preserved even when planarized employing methods as are conventional in the art of microelectronics fabrication.
EXAMPLE 1
Upon the surfaces of three (100) silicon semiconductor substrates were formed silicon oxide substrate layers and three-layer patterned microelectronics conductor stacks in accord with the schematic cross-sectional diagram illustrated in FIG. 4 to FIG. 6 and the accompanying description.
The silicon oxide insulator substrate layers were formed through a plasma enhanced chemical vapor deposition (PECVD) method employing tetra-ethyl-ortho-silicate (TEOS) as the silicon source material. The process parameters included: (1) a tetra-ethyl-ortho-silicate (TEOS) flow rate of from about 20 to about 50 standard cubic centimeters per minute (sccm); (2) an oxygen gas flow rate of from about 400 to about 800 standard cubic centimeters per minute (sccm); (3) a helium gas flow rate of from about 600 to about 1000 standard cubic centimeters per minute; and (4) a radio frequency power of from about 600 to about 800 watts at a frequency of 13.56 mHz.
Upon the silicon oxide dielectric layers were formed patterned titanium nitride barrier layers employing a physical vapor deposition (PVD) sputtering method from a titanium nitride sputtering target. The patterned titanium nitride layers were each formed to a thickness of about 1000 angstroms.
Upon the patterned titanium nitride barrier layers were formed co-extensive patterned aluminum containing metal conductor layers employing a physical vapor deposition (PVD) sputtering method. The aluminum containing conductor layers were each formed to a thickness of about 4000 angstroms.
Upon the patterned aluminum containing conductor layers were formed a patterned titanium nitride upper barrier layer co-extensive with the aluminum containing conductor layers. The patterned titanium nitride upper barrier layers were formed employing a physical vapor deposition (PVD) sputtering method from a titanium nitride target to a thickness of about 1000 angstroms.
Upon each of the three silicon semiconductor substrates having the equivalent silicon oxide dielectric layers and the equivalent patterned three-layer conductor layer stacks was then formed a silicon oxide dielectric layer in accord with the parameters preferred for the present invention. The silicon oxide dielectric layers were formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method within a preferred pressure range employing tetra-ethyl-ortho-silicate (TEOS) as the silicon source material. Additional parameters under which the silicon oxide dielectric layers were formed includes: (1) an ozone: tetra-ethyl-ortho-silicate molar ratio of from about 15:1 to about 30 1; (2) a reactor chamber pressure of from about 450 to about 600 torr; (3) a tetra-ethyl-ortho-silicate gas flow rate of from about 30 to about 40 standard cubic centimeters per minute (sccm); (4) a background helium gas flow rate of from about 4000 to about 6000 standard cubic centimeters per minute (sccm); (5) a substrate temperature of from about 440 to about 480 degrees centigrade; and (6) an oxygen (ozone carrier gas) flow rate of from about 4000 to about 6000 standard cubic centimeters per minute (sccm). Each of the three individual silicon oxide dielectric layers were formed upon the three equivalent silicon semiconductor substrates for a different time interval. The time intervals were 50 seconds, 150 seconds and 300 seconds.
After the three silicon oxide dielectric layers were formed upon the three equivalent silicon semiconductor substrates at the three different time intervals, there was measured: (1) the thicknesses of the silicon oxide dielectric layers over the silicon oxide substrate layers; (2) the thicknesses of the silicon oxide dielectric layers adjoining the exposed edges of the patterned conductor metal stack layers; and (3) the thicknesses of the three silicon oxide dielectric layers over the titanium nitride upper barrier layers.
The measured thicknesses described above were plotted to yield the graph of FIG. 7. Within FIG. 7, line 40 corresponds to the thicknesses of the three silicon oxide dielectric layers formed over the silicon oxide substrate layers. Line 50 corresponds to the thicknesses of the three silicon oxide dielectric layers adjoining the exposed edges of the patterned aluminum contraining conductor stack layers. Finally, line 60 corresponds to the thicknesses of the three silicon oxide dielectric layers over the patterned titanium nitride upper barrier layers. From lines 40, 50 and 60 were calculated: (1) the slopes which correspond to the deposition rates of the silicon oxide dielectric layers upon the individual substrate materials; and, (2) the x-axis intercepts which correspond to the induction times for forming the silicon oxide dielectric layers upon those individual substrate materials. The deposition rates and incubation times are reported in TABLE I
              TABLE I                                                     
______________________________________                                    
Ozone-TEOS Layer Formation Rates and Induction Times                      
Substrate Layer                                                           
              Deposition Rate Induction Time                              
______________________________________                                    
Titanium Nitride                                                          
              513 angstroms/minute                                        
                              52.7 seconds                                
Aluminum 1% Copper                                                        
              1442 angstroms/minute                                       
                              0.0 seconds                                 
PECVD TEOS     2280 angstroms/minute                                      
                              15.6 seconds                                
______________________________________                                    
From review of the data in TABLE I it is seen that the deposition rate of the silicon oxide dielectric layer formed employing the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method upon the titanium nitride barrier layers is exceedingly low in comparison with the deposition rate for the silicon oxide dielectric layers upon either the aluminum containing conductor layer or the silicon oxide substrate layer. Given this ordering of deposition rates, and the presence of a substantial incubation time for forming the silicon oxide dielectric layers upon titanium nitride barrier layers, the silicon oxide dielectric layers of the present invention may be readily formed elsewhere on microelectronics fabrication substrates but not upon or adjacent to patterned conductor stack layers within which are contained titanium nitride layers employed as lower barrier layers. The incubation time during which no silicon oxide deposition occurs on the exposed titanium nitride layer edges and the subsequent reduced deposition rate of silicon oxide on those edges result in the formation of voids at or adjacent to those edges which are eventually closed over at the top by subsequent silicon oxide deposition.
EXAMPLE 2
Upon the surfaces of four (100) silicon semiconductor substrates were formed silicon oxide substrate layers and three-layer patterned conductor stack layers in accord with the schematic cross-sectional diagram of FIG. 4 and the methods employed in the description of the silicon semiconductor substrates produced for Example 1. Upon the surface of one of the four silicon semiconductor substrates, designated as No. 1 in this Example, there was formed a conformal silicon oxide dielectric layer employing plasma assisted chemical vapor deposition (PECVD) method which is conventionally known in the art of microelectronics fabrication. Upon the surface of the other three silicon semiconductor wafers there was formed a silicon oxide dielectric layer employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method wherein tetra-ethyl-ortho-silicate (TEOS) was the silicon source material.
Upon the surface of the second of the four silicon semiconductor substrates, designated as No. 2 within this Example, the silicon oxide dielectric layer was formed not in accord with the general method of the present invention, but with the following differences in method: (1) an ozone:TEOS molar ratio of 12; and (2) a silicon semiconductor substrate temperature of 400 degrees centigrade. On the surface of the third of the four silicon semiconductor substrates, designated as No. 3 within this Example, there was formed a silicon oxide dielectric layer not in accord with the general method of the present invention, but with the following differences in method: (1) an ozone:TEOS molar ratio of 29; and (2) a silicon semiconductor substrate temperature of 400 degrees centigrade. Upon the surface of the fourth of the four silicon semiconductor substrates, designated as No. 4 within this Example, there was formed a silicon oxide dielectric layer in accord with the general method of the present invention.
The four silicon semiconductor substrates which constitute the Example 2 were sectioned, polished and scanned by electron microscopy, and the regions between and adjoining the edges of the patterned conductor stack layers were examined for voids. The results are reported in TABLE II.
              TABLE II                                                    
______________________________________                                    
Sample                                                                    
      SACVD Method Void Size                                              
                            Void Location                                 
                                     Reliability                          
______________________________________                                    
1     PECVD underlayer                                                    
                   none     --       good                                 
2     ratio 12; T 400 C                                                   
                   none      --       --                                  
3     ratio 29; T 400 C                                                   
                   small     irregular                                    
                                     --                                   
4     ratio 12; T 400 C                                                   
                   large     between lines                                
                                     good                                 
______________________________________                                    
The formation of a void between patterned conductor stack lasers is not observed for the silicon semiconductor substrate No. 1 for which a silicon oxide dielectric underlayer was deposited employing plasma enhanced chemical vapor deposition (PECVD). However, the method does result in voids located in the upper portions of the silicon oxide dielectric layer, in which portion of the silicon oxide layer the voids are not positioned interposed between the patterned conductor stack layers, as is desired for a lower dielectric constant, but also the tops of the voids are above the tops of the patterned conductor stack layers. This location of the tops of the voids in the upper portion of the deposited silicon oxide dielectric layer will adversely affect subsequent planarization of the surface of the silicon oxide dielectric layer, since such planarization will open the voids and create pores or fissures in the planarized silicon oxide dielectric layer surface. Similarly, the voids in the silicon oxide dielectric layers formed upon the silicon semiconductor substrates No. 2 are nonexistent, and the voids formed in the silicon oxide layers formed upon silicon semiconductor substrate No. 3 employing ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) methods are inadequate in size because the silicon semiconductor substrate temperatures were below the lower limit of the method of the present invention. In these cases the differences between the incubation periods and the differences between deposition rates of silicon oxide on the various surfaces are not significant enough to allow the formation of voids of significant size, since the overall deposition rates are lowered by the reduced substrate temperatures.
As is understood by a person skilled in the art, the preferred embodiments of the present invention are illustrative of the present invention rather than limiting of the present invention. Revisions and modifications may be made to methods, materials, structures and dimensions through which are formed microelectronics fabrications in accord with the first preferred embodiment of the present invention and integrated circuit microelectronics fabrications in accord with the second preferred embodiment of the present invention while still providing microelectronics fabrications, including but not limited to integrated circuit microelectronics fabrications, in accord with the methods of the present invention, as defined by the appended claims.

Claims (11)

What is claimed is:
1. A method for forming a dielectric layer comprising:
providing a substrate;
forming over the substrate a substrate layer;
forming upon the substrate layer a pair of patterned conductor stack layers, the pair of patterned conductor stack layers comprising:
a pair of patterned titanium nitride layers formed upon the substrate layer; and
a pair of patterned aluminum containing conductor layers formed upon the pair of patterned titanium nitride layers; and
forming upon the pair of patterned conductor stack layers and a portion of the substrate layer exposed interposed between the pair of patterned conductor stack layers a gap filling dielectric layer formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method, wherein:
a substrate layer composition, a patterned conductor stack layer separation, a titanium nitride layer thickness and at least one of an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method deposition temperature and an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method deposition pressure are selected such that there is formed within the gap filling dielectric layer a void interposed between the pair of patterned conductor stack layers.
2. The method of claim 1 wherein the substrate is employed within a microelectronics fabrication selected from the group consisting of integrated circuit microelectronics fabrications, charge coupled device microelectronics fabrications, solar cell microelectronics fabrications, ceramic substrate microelectronics fabrications and flat panel display microelectronics fabrications.
3. The method of claim 1 wherein the substrate layer is selected from the group consisting of dielectric substrate layers, semiconductor substrate layers and conductor substrate layers.
4. The method of claim 1 wherein:
the patterned conductor stack layer separation is from about 0.2 to about 1.0 microns;
the titanium nitride layer thickness is from about 800 to about 1200 angstroms;
the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method deposition temperature is from about 440 to about 480 degrees centigrade; and
the ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method deposition pressure is from about 450 to about 600 torr.
5. The method of claim 1 wherein the void does not extend above a pair of top surfaces of the pair of patterned conductor stack layers.
6. The method of claim 1 wherein there is not formed a pair of titanium nitride layers upon a pair of top surfaces of the pair of patterned conductor metal stack layers.
7. A method for forming a dielectric layer within an integrated circuit microelectronics fabrication comprising:
providing a semiconductor substrate;
forming over the semiconductor substrate a dielectric substrate layer;
forming upon the dielectric substrate layer a pair of patterned conductor stack layers, the pair of conductor stack layers comprising:
a pair of patterned titanium nitride layers formed upon the substrate layer;
a pair of patterned aluminum containing conductor layers formed upon the pair of patterned titanium nitride layers; and
forming upon the pair of patterned conductor stack layers and a portion of the substrate layer exposed interposed between the pair of patterned conductor stack layers a gap filling silicon oxide dielectric layer formed employing an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method wherein:
a substrate layer composition, a patterned conductor stack layer separation, a titanium nitride layer thickness and at least one of an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method deposition temperature and an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method deposition pressure are selected such that there is formed within the gap filling silicon oxide dielectric layer a void interposed between the pair of patterned conductor stack layers.
8. The method of claim 7 wherein the semiconductor substrate is a silicon semiconductor substrate and the integrated circuit microelectronics fabrication is a field effect transistor (FET) integrated circuit.
9. The method of claim 7 wherein the dielectric substrate layer is selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride.
10. The method of claim 7 wherein the void does not extend above a pair of top surfaces of the pair of patterned conductor stack layers.
11. The method of claim 7 wherein there is not formed a pair of titanium nitride layers upon a pair of top surfaces of the pair of patterned conductor metal stack layers.
US09/270,592 1999-03-18 1999-03-18 Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines Expired - Lifetime US6022802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/270,592 US6022802A (en) 1999-03-18 1999-03-18 Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/270,592 US6022802A (en) 1999-03-18 1999-03-18 Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines

Publications (1)

Publication Number Publication Date
US6022802A true US6022802A (en) 2000-02-08

Family

ID=23031950

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/270,592 Expired - Lifetime US6022802A (en) 1999-03-18 1999-03-18 Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines

Country Status (1)

Country Link
US (1) US6022802A (en)

Cited By (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130151A (en) * 1999-05-07 2000-10-10 Taiwan Semiconductor Manufacturing Company Method of manufacturing air gap in multilevel interconnection
US6150232A (en) * 1999-02-05 2000-11-21 Chartered Semiconductor Manufacturing Ltd. Formation of low k dielectric
US6174797B1 (en) * 1999-11-08 2001-01-16 Taiwan Semiconductor Manufacturing Company Silicon oxide dielectric material with excess silicon as diffusion barrier layer
US6255232B1 (en) * 1999-02-11 2001-07-03 Taiwan Semiconductor Manufacturing Company Method for forming low dielectric constant spin-on-polymer (SOP) dielectric layer
US6291030B1 (en) 1999-12-21 2001-09-18 Promos Technologies, Inc. Method for reducing capacitance in metal lines using air gaps
US6297150B1 (en) * 1999-02-05 2001-10-02 Nec Corporation Methods of manufacturing a semiconductor device with pores formed between and over wiring patterns of an interlevel insulating layer
US6297554B1 (en) * 2000-03-10 2001-10-02 United Microelectronics Corp. Dual damascene interconnect structure with reduced parasitic capacitance
US6437441B1 (en) * 1997-07-10 2002-08-20 Kawasaki Microelectronics, Inc. Wiring structure of a semiconductor integrated circuit and a method of forming the wiring structure
US20020177302A1 (en) * 2000-01-18 2002-11-28 Micron Technology, Inc. Structures and methods to enhance copper metallization
WO2002095820A2 (en) * 2001-05-22 2002-11-28 Infineon Technologies Ag Hollow structure in an integrated circuit
US6503818B1 (en) * 1999-04-02 2003-01-07 Taiwan Semiconductor Manufacturing Company Delamination resistant multi-layer composite dielectric layer employing low dielectric constant dielectric material
DE10201178A1 (en) * 2002-01-15 2003-06-26 Infineon Technologies Ag Process for masking first recesses of a structure comprises applying a filler layer on a structure so that a hollow space is formed in the first recesses, and removing the filler layer up to the region of the hollow space by etching
US6693355B1 (en) 2003-05-27 2004-02-17 Motorola, Inc. Method of manufacturing a semiconductor device with an air gap formed using a photosensitive material
US6753270B1 (en) * 2000-08-04 2004-06-22 Applied Materials Inc. Process for depositing a porous, low dielectric constant silicon oxide film
US20040164419A1 (en) * 2000-05-31 2004-08-26 Micron Technology, Inc. Multilevel copper interconnects with low-k dielectrics and air gaps
US20040169213A1 (en) * 2000-01-18 2004-09-02 Micron Technology, Inc. Integrated circuit and seed layers
US20050023697A1 (en) * 2000-01-18 2005-02-03 Micron Technology, Inc. Methods for making integrated-circuit wiring from copper, silver, gold, and other metals
US20050023699A1 (en) * 2000-01-18 2005-02-03 Micron Technology, Inc. Selective electroless-plated copper metallization
US20050275085A1 (en) * 2004-05-27 2005-12-15 Axel Brintzinger Arrangement for reducing the electrical crosstalk on a chip
US20080260266A1 (en) * 2006-10-23 2008-10-23 Fujitsu Limited Encoding apparatus, encoding method, and computer product
US20100027650A1 (en) * 2002-04-18 2010-02-04 Takeshi Chujoh Video encoding/ decoding method and apparatus
US7670469B2 (en) 2000-01-18 2010-03-02 Micron Technology, Inc. Methods and apparatus for making integrated-circuit wiring from copper, silver, gold, and other metals
US20110266689A1 (en) * 2009-05-06 2011-11-03 Micron Technology, Inc. Methods Of Forming A Plurality Of Conductive Lines In The Fabrication Of Integrated Circuitry, Methods Of Forming An Array Of Conductive Lines, And Integrated Circuitry
US20120126306A1 (en) * 2010-11-18 2012-05-24 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method of nonvolatile semiconductor memory device
US9293547B2 (en) 2010-11-18 2016-03-22 Kabushiki Kaisha Toshiba NAND EEPROM with perpendicular sets of air gaps and method for manufacturing NAND EEPROM with perpendicular sets of air gaps
CN113223997A (en) * 2020-01-21 2021-08-06 夏泰鑫半导体(青岛)有限公司 Semiconductor component, manufacturing method thereof and electronic device
US11094582B2 (en) * 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US20220037389A1 (en) * 2015-03-31 2022-02-03 Sony Semiconductor Solutions Corporation Solid-state image-capturing element and electronic device
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11956977B2 (en) 2021-08-31 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192715A (en) * 1989-07-25 1993-03-09 Advanced Micro Devices, Inc. Process for avoiding spin-on-glass cracking in high aspect ratio cavities
US5407860A (en) * 1994-05-27 1995-04-18 Texas Instruments Incorporated Method of forming air gap dielectric spaces between semiconductor leads
US5461003A (en) * 1994-05-27 1995-10-24 Texas Instruments Incorporated Multilevel interconnect structure with air gaps formed between metal leads
US5559055A (en) * 1994-12-21 1996-09-24 Advanced Micro Devices, Inc. Method of decreased interlayer dielectric constant in a multilayer interconnect structure to increase device speed performance
US5641712A (en) * 1995-08-07 1997-06-24 Motorola, Inc. Method and structure for reducing capacitance between interconnect lines
US5708303A (en) * 1994-09-15 1998-01-13 Texas Instruments Incorporated Semiconductor device having damascene interconnects
US5880026A (en) * 1996-12-23 1999-03-09 Texas Instruments Incorporated Method for air gap formation by plasma treatment of aluminum interconnects
US5904566A (en) * 1997-06-09 1999-05-18 Taiwan Semiconductor Manufacturing Company, Ltd. Reactive ion etch method for forming vias through nitrogenated silicon oxide layers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192715A (en) * 1989-07-25 1993-03-09 Advanced Micro Devices, Inc. Process for avoiding spin-on-glass cracking in high aspect ratio cavities
US5407860A (en) * 1994-05-27 1995-04-18 Texas Instruments Incorporated Method of forming air gap dielectric spaces between semiconductor leads
US5461003A (en) * 1994-05-27 1995-10-24 Texas Instruments Incorporated Multilevel interconnect structure with air gaps formed between metal leads
US5708303A (en) * 1994-09-15 1998-01-13 Texas Instruments Incorporated Semiconductor device having damascene interconnects
US5559055A (en) * 1994-12-21 1996-09-24 Advanced Micro Devices, Inc. Method of decreased interlayer dielectric constant in a multilayer interconnect structure to increase device speed performance
US5641712A (en) * 1995-08-07 1997-06-24 Motorola, Inc. Method and structure for reducing capacitance between interconnect lines
US5880026A (en) * 1996-12-23 1999-03-09 Texas Instruments Incorporated Method for air gap formation by plasma treatment of aluminum interconnects
US5904566A (en) * 1997-06-09 1999-05-18 Taiwan Semiconductor Manufacturing Company, Ltd. Reactive ion etch method for forming vias through nitrogenated silicon oxide layers

Cited By (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437441B1 (en) * 1997-07-10 2002-08-20 Kawasaki Microelectronics, Inc. Wiring structure of a semiconductor integrated circuit and a method of forming the wiring structure
US6150232A (en) * 1999-02-05 2000-11-21 Chartered Semiconductor Manufacturing Ltd. Formation of low k dielectric
US6297150B1 (en) * 1999-02-05 2001-10-02 Nec Corporation Methods of manufacturing a semiconductor device with pores formed between and over wiring patterns of an interlevel insulating layer
US6255232B1 (en) * 1999-02-11 2001-07-03 Taiwan Semiconductor Manufacturing Company Method for forming low dielectric constant spin-on-polymer (SOP) dielectric layer
US6503818B1 (en) * 1999-04-02 2003-01-07 Taiwan Semiconductor Manufacturing Company Delamination resistant multi-layer composite dielectric layer employing low dielectric constant dielectric material
US6130151A (en) * 1999-05-07 2000-10-10 Taiwan Semiconductor Manufacturing Company Method of manufacturing air gap in multilevel interconnection
US6174797B1 (en) * 1999-11-08 2001-01-16 Taiwan Semiconductor Manufacturing Company Silicon oxide dielectric material with excess silicon as diffusion barrier layer
US6291030B1 (en) 1999-12-21 2001-09-18 Promos Technologies, Inc. Method for reducing capacitance in metal lines using air gaps
US7670469B2 (en) 2000-01-18 2010-03-02 Micron Technology, Inc. Methods and apparatus for making integrated-circuit wiring from copper, silver, gold, and other metals
US20040169213A1 (en) * 2000-01-18 2004-09-02 Micron Technology, Inc. Integrated circuit and seed layers
US20020182859A1 (en) * 2000-01-18 2002-12-05 Micron Technology, Inc. Structures and methods to enhance copper metallization
US7253521B2 (en) 2000-01-18 2007-08-07 Micron Technology, Inc. Methods for making integrated-circuit wiring from copper, silver, gold, and other metals
US8779596B2 (en) 2000-01-18 2014-07-15 Micron Technology, Inc. Structures and methods to enhance copper metallization
US7745934B2 (en) 2000-01-18 2010-06-29 Micron Technology, Inc. Integrated circuit and seed layers
US7394157B2 (en) 2000-01-18 2008-07-01 Micron Technology, Inc. Integrated circuit and seed layers
US20070085213A1 (en) * 2000-01-18 2007-04-19 Micron Technology, Inc. Selective electroless-plated copper metallization
US20060255462A1 (en) * 2000-01-18 2006-11-16 Micron Technology, Inc. Structures and methods to enhance copper metallization
US20020177302A1 (en) * 2000-01-18 2002-11-28 Micron Technology, Inc. Structures and methods to enhance copper metallization
US20040217481A1 (en) * 2000-01-18 2004-11-04 Micron Technology, Inc. Structures and methods to enhance copper metallization
US20050023697A1 (en) * 2000-01-18 2005-02-03 Micron Technology, Inc. Methods for making integrated-circuit wiring from copper, silver, gold, and other metals
US20050023699A1 (en) * 2000-01-18 2005-02-03 Micron Technology, Inc. Selective electroless-plated copper metallization
US20090243106A1 (en) * 2000-01-18 2009-10-01 Farrar Paul A Structures and methods to enhance copper metallization
US20090001586A1 (en) * 2000-01-18 2009-01-01 Micron Technology, Inc. Integrated circuit and seed layers
US20060246733A1 (en) * 2000-01-18 2006-11-02 Micron Technology, Inc. Method for making integrated circuits
US6297554B1 (en) * 2000-03-10 2001-10-02 United Microelectronics Corp. Dual damascene interconnect structure with reduced parasitic capacitance
US7091611B2 (en) * 2000-05-31 2006-08-15 Micron Technology, Inc. Multilevel copper interconnects with low-k dielectrics and air gaps
US20040164419A1 (en) * 2000-05-31 2004-08-26 Micron Technology, Inc. Multilevel copper interconnects with low-k dielectrics and air gaps
US6753270B1 (en) * 2000-08-04 2004-06-22 Applied Materials Inc. Process for depositing a porous, low dielectric constant silicon oxide film
WO2002095820A3 (en) * 2001-05-22 2003-02-06 Infineon Technologies Ag Hollow structure in an integrated circuit
WO2002095820A2 (en) * 2001-05-22 2002-11-28 Infineon Technologies Ag Hollow structure in an integrated circuit
US7261829B2 (en) 2002-01-15 2007-08-28 Infineon Technologies Ag Method for masking a recess in a structure having a high aspect ratio
US20050224451A1 (en) * 2002-01-15 2005-10-13 Dirk Efferenn Method for masking a recess in a structure with a large aspect ratio
DE10201178A1 (en) * 2002-01-15 2003-06-26 Infineon Technologies Ag Process for masking first recesses of a structure comprises applying a filler layer on a structure so that a hollow space is formed in the first recesses, and removing the filler layer up to the region of the hollow space by etching
US20100027650A1 (en) * 2002-04-18 2010-02-04 Takeshi Chujoh Video encoding/ decoding method and apparatus
US6693355B1 (en) 2003-05-27 2004-02-17 Motorola, Inc. Method of manufacturing a semiconductor device with an air gap formed using a photosensitive material
US20050275085A1 (en) * 2004-05-27 2005-12-15 Axel Brintzinger Arrangement for reducing the electrical crosstalk on a chip
US20080260266A1 (en) * 2006-10-23 2008-10-23 Fujitsu Limited Encoding apparatus, encoding method, and computer product
US9064935B2 (en) * 2009-05-06 2015-06-23 Micron Technology, Inc. Methods of forming a plurality of conductive lines in the fabrication of integrated circuitry, methods of forming an array of conductive lines, and integrated circuitry
US20110266689A1 (en) * 2009-05-06 2011-11-03 Micron Technology, Inc. Methods Of Forming A Plurality Of Conductive Lines In The Fabrication Of Integrated Circuitry, Methods Of Forming An Array Of Conductive Lines, And Integrated Circuitry
US20120126306A1 (en) * 2010-11-18 2012-05-24 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method of nonvolatile semiconductor memory device
US9293547B2 (en) 2010-11-18 2016-03-22 Kabushiki Kaisha Toshiba NAND EEPROM with perpendicular sets of air gaps and method for manufacturing NAND EEPROM with perpendicular sets of air gaps
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US20220037389A1 (en) * 2015-03-31 2022-02-03 Sony Semiconductor Solutions Corporation Solid-state image-capturing element and electronic device
US20220149103A1 (en) * 2015-03-31 2022-05-12 Sony Semiconductor Solutions Corporation Solid-state image-capturing element and electronic device
US11929380B2 (en) * 2015-03-31 2024-03-12 Sony Semiconductor Solutions Corporation Solid-state image-capturing element having floation diffusion and hollow regions
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US20210343580A1 (en) * 2016-07-08 2021-11-04 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094582B2 (en) * 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) * 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
CN113223997A (en) * 2020-01-21 2021-08-06 夏泰鑫半导体(青岛)有限公司 Semiconductor component, manufacturing method thereof and electronic device
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11956977B2 (en) 2021-08-31 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11952658B2 (en) 2022-10-24 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material

Similar Documents

Publication Publication Date Title
US6022802A (en) Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines
US6004883A (en) Dual damascene patterned conductor layer formation method without etch stop layer
US6326300B1 (en) Dual damascene patterned conductor layer formation method
US6287961B1 (en) Dual damascene patterned conductor layer formation method without etch stop layer
US6329717B1 (en) Integrated circuit having selectivity deposited silicon oxide spacer layer formed therein
US6211040B1 (en) Two-step, low argon, HDP CVD oxide deposition process
US7714325B2 (en) Trench isolation structure
US5599740A (en) Deposit-etch-deposit ozone/teos insulator layer method
JP3201967B2 (en) Insulator and interconnect structure including low dielectric constant amorphous fluorinated carbon layer
US6383951B1 (en) Low dielectric constant material for integrated circuit fabrication
US6057226A (en) Air gap based low dielectric constant interconnect structure and method of making same
US6020254A (en) Method of fabricating semiconductor devices with contact holes
US6503818B1 (en) Delamination resistant multi-layer composite dielectric layer employing low dielectric constant dielectric material
US6174808B1 (en) Intermetal dielectric using HDP-CVD oxide and SACVD O3-TEOS
JP4731670B2 (en) Low-K dielectric composite layer for integrated circuit structures providing void-free low-k dielectric material between metal lines while mitigating via poisoning
US6294476B1 (en) Plasma surface treatment method for forming patterned TEOS based silicon oxide layer with reliable via and interconnection formed therethrough
US6770501B2 (en) Deuterium reservoirs and ingress paths
US6576508B2 (en) Formation of a frontside contact on silicon-on-insulator substrate
US5071789A (en) Method for forming a metal electrical connector to a surface of a semiconductor device adjacent a sidewall of insulation material with metal creep-up extending up that sidewall, and related device
US20070238254A1 (en) Method of etching low dielectric constant films
US8324061B2 (en) Method for manufacturing semiconductor device
JP2007110119A (en) Method for forming electrical isolation related to wiring lines arranged on semiconductor wafer
US6551915B2 (en) Thermal annealing/hydrogen containing plasma method for forming structurally stable low contact resistance damascene conductor structure
US5849625A (en) Planar field oxide isolation process for semiconductor integrated circuit devices using liquid phase deposition
US6165897A (en) Void forming method for fabricating low dielectric constant dielectric layer

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JANG, SYUN-MING;REEL/FRAME:009837/0095

Effective date: 19990308

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12