US6001095A - Catheter system having closely spaced distal bipolar electrodes - Google Patents

Catheter system having closely spaced distal bipolar electrodes Download PDF

Info

Publication number
US6001095A
US6001095A US09/066,274 US6627498A US6001095A US 6001095 A US6001095 A US 6001095A US 6627498 A US6627498 A US 6627498A US 6001095 A US6001095 A US 6001095A
Authority
US
United States
Prior art keywords
catheter
stem
catheter system
electrode
tip electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/066,274
Inventor
Alan de la Rama
Weng-Kwen Raymond Chia
Hosheng Tu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Irvine Biomedical Inc
Original Assignee
Irvine Biomedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Irvine Biomedical Inc filed Critical Irvine Biomedical Inc
Priority to US09/066,274 priority Critical patent/US6001095A/en
Application granted granted Critical
Publication of US6001095A publication Critical patent/US6001095A/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IRVINE BIOMEDICAL, INC.
Assigned to IRVINE BIOMEDICAL, INC. reassignment IRVINE BIOMEDICAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Assigned to IRVINE BIOMEDICAL, INC. reassignment IRVINE BIOMEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIA, WENG-KWEN RAYMOND, DE LA RAMA, ALAN, TU, HOSHENG
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG

Definitions

  • the present invention generally relates to improved constructions for a catheter system. More particularly, this invention relates to the methods and apparatus for diagnosing and treating cardiac arrhythmias via a cardiovascular catheter system having safety means to maintain the integrity of a closely spaced distal bipolar catheter system.
  • Symptoms of abnormal heart rhythms are generally referred to as cardiac arrhythmias, with an abnormally rapid rhythm being referred to as a tachycardia.
  • the present invention is concerned with the treatment of tachycardias which are frequently caused by the presence of an "arrhythmogenic region" or "accessory atrioventricular pathway” close to the inner surface of the chambers of a heart.
  • the heart includes a number of normal pathways for the propagation of electrical signals from the upper to the lower chamber of the heart, which are necessary for performing normal function.
  • the presence of arrhythmogenic region or accessory pathways can bypass or short circuit the normal pathways, potentially resulting in very rapid heart contractions, referred to here as tachycardias.
  • Cardiac mapping is used to locate aberrant electrical pathways and currents emanating within the heart.
  • the aberrant pathways cause the heart muscle contractions to take on abnormal and life threatening dysrhythmias.
  • Intracardiac mapping requires careful positioning of a plurality of catheters of multiple electrodes within the heart.
  • Webster, Jr. in U.S. Pat. No. 4,960,134 shows the general use of a catheter. It is important for a catheter to move into and out of the heart chamber freely without any obstruction or potential complications of components disengagement from the catheter shaft.
  • Treatment of tachycardias may be accomplished by a variety of approaches, including drugs, surgery, implantable pacemakers/defibrillators, and catheter ablation. While drugs may be the treatment of choice for many patients, they only mask the symptoms and do not cure the underlying cause. Implantable devices only correct the arrhythmia after it occurs. Surgical and catheter-based treatments, in contrast, will actually cure the problem, usually by ablating the abnormal arrhythmogenic tissue or accessory pathway responsible for the tachycardia. It is important for a clinician to be able to accurately steer the catheter to the region for ablation. Once at the region, it is important for a catheter to intimately contact the tissue site to effectively control the emission of energy to ablate the tissue within the heart.
  • mapping means or ablation means the clinician is called upon to remotely move, rotate, push, pull, and manipulate the catheters in various ways.
  • a catheter is inserted into a major vein or artery, usually in the neck or groin area. It is then guided into the chambers of the heart by appropriate manipulation through the vein or artery.
  • the distal section of a catheter must be maneuverable by a user from the proximal end of the catheter, so that the electrodes at the distal section can be positioned against the tissue at the desired location to assure that all aberrant electrical pathways are mapped and later ablated.
  • a conducting wire is soldered to the long tip electrode or the band electrode.
  • the electrode with a conducting wire is thereafter placed and secured onto the catheter shaft, mostly by adhesives.
  • the adhering force between a long tip electrode and the catheter shaft is proportional to the contact surface area. It has been reported that the long tip electrode might sometimes disengage from the distal section of the catheter shaft.
  • the frequency of the tip electrode disengagement becomes more often when a longer electrode is used for atrial flutter applications.
  • a long tip electrode of 8 mm length or longer is generally required.
  • the contact area for gluing between the stem of the electrode and the inner surface of the catheter shaft is not proportionally increased.
  • the electrode is generally prone to separating from its main catheter shaft body because of inadequate contact area and subsequently gluing strength.
  • the long tip electrode might inadvertently be separated from the catheter shaft and left behind in a patient's heart or in a circulation system.
  • the prior development has overlooked the important need to provide a safe, intact catheter system having safety means in addition to the gluing force. It is the objective of this invention to provide the needed safety means for the electrophysiology cardiovascular catheter system having a long tip electrode.
  • a catheter system of this invention comprises a catheter shaft having a distal section, a distal end, a proximal end, and at least one lumen extending therebetween; a handle attached to the proximal end of the shaft; a plurality of electrodes disposed at the distal section, wherein a long tip electrode is secured at the distal end of the catheter; and an extended stem of the long tip electrode having a proximal end, a distal end, and at least one open groove or slot in the axial direction on the surface of the stem, wherein the open groove or slot is extended over the whole length of the stem.
  • the extended stem of the long tip electrode is a flexible stem
  • the open groove or slot on the stem is to provide adequate clearance for at least one conducting wire to enter from the adjacent band electrode into the lumen.
  • the extended flexible stem may be composed of the material such as the braided metal mesh in a spiral-convoluted form.
  • the length of the extended stem is equal to or longer than the length of the exterior surface of the long tip electrode.
  • the proximal end of the stem having at least one open groove or slot extends proximally beyond the distal edge of a first band electrode. The purpose is to make a catheter system having closely separated bipolar electrodes at the catheter tip.
  • the distal section of the catheter system of this invention can be either a fixed curve type or a deflectable curve type.
  • the means for deflecting the distal section of the steerable catheter comprises at least two pull wires along with a support wire.
  • the pull wires are attached to radially offset locations at the distal end of the deflectable section of the catheter shaft whereas at least a support wire radially in-between the pull wires, and means at the proximal end of the shaft for selectively applying tension to the pull wires to cause deflection of the deflectable portion.
  • the function of a support wire can be substituted by a spring coil which is stationary at its proximal end with respect to the shaft.
  • the catheter system further comprises a steering mechanism at the handle, wherein the steering mechanism provides a plurality of deflectable curves on the tip section of the catheter assembly. The incorporation of the steering mechanism in a catheter is well known to those who are skilled in the art.
  • the distal section of the shaft may include at least three radially offset lumens, and wherein the two pull wires and one support wire are disposed in the central lumen of the catheter shaft over a proximal section thereof; the two pull wires are disposed in the radially offset lumens over the distal section thereof, and the support wire is disposed in the central lumen.
  • the means for selectively applying tension comprises a steering mechanism in the handle, and the means for applying torque to the core wire comprises a rotatable ring or push-pull button disposed on the handle, the ring or button being coupled to the proximal end of the core wire.
  • tension applying mechanisms such as joy sticks, may also be employed.
  • Signal conducting electrodes are placed on the distal section while their insulated conducting wires are passed through the shaft lumen to the connector secured at the proximal end of the handle.
  • the main purpose of the conducting wires is to transmit the electric signal and to provide means for RF energy delivery.
  • the extended flexible stem on the long tip electrode reinforces the adhesive strength of the long tip electrode.
  • a method for positioning a catheter system having a safety means at its distal section within a heart chamber, comprises percutaneously introducing the distal end of a catheter through an artery or vein to the heart chamber. Once the catheter long tip is at the desired location, the handle at the proximal end is connected to the EKG monitor. And the electrical signal from the electrodes on the distal section can be transmitted to the exterior EKG monitor for cardiac mapping. Alternately, the radio frequency energy can be supplied to one or more of the electrodes on the distal section once an intimate contact with the tissue is achieved, using the catheter of this invention.
  • the method and apparatus of the present invention have several significant safety advantages over known catheters.
  • the extended flexible stem with an open groove or slot on the long tip electrode maintains the integrity of the catheter system from potential complications of undesired component disengagement.
  • FIG. 1 is an overall view of the catheter system, including safety means, constructed in accordance with the principles of the present invention.
  • FIG. 2 is a perspective view of the distal section of the catheter system with an extended flexible stem as a safety means.
  • FIG. 3 is a close-up view of the distal section of the catheter system of FIG. 2.
  • FIG. 4 is a cross-sectional view, section A--A, of the distal section of the catheter system of FIG. 3.
  • FIG. 1 shows a catheter system constructed in accordance with the principles of the present invention comprising: a catheter shaft 1 having a distal tip section 2, a distal end 6, a proximal end 3 and at least one lumen extending therebetween.
  • a handle 4 is attached to the proximal end 3 of the catheter shaft 1.
  • the tip section 2 may be a fixed curve type or a deflectable type by employing a steering mechanism 5 at the handle 4.
  • a push-pull plunger 7 is employed to deflect the tip section 2 of the catheter shaft 1.
  • a connector 8 is secured at the proximal end of the handle 4.
  • At least one electrode available for electrophysiology use, is disposed on the tip section 2.
  • FIG. 2 shows a perspective view of the distal section of a catheter system with an extended flexible stem as a safety means.
  • the long tip electrode 9 which has a long stem 10 and has at least one open groove 11 or slot 12 on the stem 10 is to be fitted into the catheter shaft 13 of the catheter system.
  • the stem 10 has a hollow center 19.
  • At least one band electrode 14 is secured at the distal tip section 2 of the catheter system.
  • a conducting wire 17 from the band electrode 14 passes through the catheter shaft 13 through a small opening 18 on the catheter shaft and enters into the lumen 15 and is thereafter secured to the connector 8 at the proximal end of the handle 4.
  • a band electrode 14 can be located very close to the long tip electrode 9 to form a distal bipolar electrode system without concern for the obstruction of the long stem extending from the long tip electrode.
  • the length of the stem can therefore be as long as one wishes and the open groove or slot can be any length.
  • the stem may be composed of the material such as the braided metal mesh 20 in a spiral-convoluted form.
  • FIG. 3 shows a close-up view of the distal section of the catheter system of FIG. 2.
  • a long tip electrode 9 with a long stem 10 is attached to the catheter shaft 13 using either epoxy or glue type adhesive.
  • a conducting wire 16 for the long tip electrode 9 is used for EKG signal monitoring and for RF energy transmission.
  • At least one other conducting wire 17 for the band electrode 14 is used for EKG signal monitoring.
  • the distal tip 26 of the long electrode 9 is generally smooth for contacting the tissue.
  • FIG. 4 shows a cross-sectional view, section A--A, of the distal section of the catheter system of FIG. 3.
  • the band electrode 14 overlays the top of the catheter shaft 13.
  • the stem 10 of the long tip electrode 9 lies tightly underneath the catheter shaft 13.
  • the conducting wire 17 from the band electrode 14 stays without any obstruction in the space provided by the open groove 11 or slot 12 of the stem 10.
  • another open groove 11 or slot 12 is provided at an appropriate orientation of the stem 10.
  • the stem can be made of a flexible material. This flexible stem, which has a hollow center 19, is especially useful in the distal tip section of a deflectable catheter.
  • a temperature sensor 21 with transmission means 22 is secured about the surface of the tip electrode 9.
  • the steerable catheter of the present invention comprises a handle and a catheter shaft, wherein a long tip electrode and at least one band electrode are disposed at the distal section of the catheter shaft.
  • the steerable catheter has a push-pull plunger as a steering mechanism to deflect the long tip of the catheter to a desired curve type.
  • the material of electrodes may be selected from the group of platinum, iridium, silver, gold or stainless steel.
  • the spacing between the electrodes is in the range of 1 mm to 10 mm, preferably 2 to 5 mm.
  • the length of the stem is in the range of 2 mm to 20 mm, preferably 2 to 10 mm.

Abstract

A catheter system suitable for electrophysiology mapping and radiofrequency ablation of cardiac tissue comprises a catheter shaft having a distal end, a proximal handle, and at least a lumen extending therebetween, wherein a distal section of the shaft is either a fixed curve type or a deflectable type; and safety means being provided to maintain the integrity of the catheter by holding the long tip electrode in place, wherein the safety means is a long tip electrode with an extended flexible stem having at least one open groove or slot on the stem.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This is a division of Ser. No. 08/880,837, filed Jun. 23, 1997, now U.S. Pat. No. 5,782,900.
FIELD OF THE INVENTION
The present invention generally relates to improved constructions for a catheter system. More particularly, this invention relates to the methods and apparatus for diagnosing and treating cardiac arrhythmias via a cardiovascular catheter system having safety means to maintain the integrity of a closely spaced distal bipolar catheter system.
BACKGROUND OF THE INVENTION
Symptoms of abnormal heart rhythms are generally referred to as cardiac arrhythmias, with an abnormally rapid rhythm being referred to as a tachycardia. The present invention is concerned with the treatment of tachycardias which are frequently caused by the presence of an "arrhythmogenic region" or "accessory atrioventricular pathway" close to the inner surface of the chambers of a heart. The heart includes a number of normal pathways for the propagation of electrical signals from the upper to the lower chamber of the heart, which are necessary for performing normal function. The presence of arrhythmogenic region or accessory pathways can bypass or short circuit the normal pathways, potentially resulting in very rapid heart contractions, referred to here as tachycardias.
Cardiac mapping is used to locate aberrant electrical pathways and currents emanating within the heart. The aberrant pathways cause the heart muscle contractions to take on abnormal and life threatening dysrhythmias. Intracardiac mapping requires careful positioning of a plurality of catheters of multiple electrodes within the heart. For example, Webster, Jr. in U.S. Pat. No. 4,960,134 shows the general use of a catheter. It is important for a catheter to move into and out of the heart chamber freely without any obstruction or potential complications of components disengagement from the catheter shaft.
Treatment of tachycardias may be accomplished by a variety of approaches, including drugs, surgery, implantable pacemakers/defibrillators, and catheter ablation. While drugs may be the treatment of choice for many patients, they only mask the symptoms and do not cure the underlying cause. Implantable devices only correct the arrhythmia after it occurs. Surgical and catheter-based treatments, in contrast, will actually cure the problem, usually by ablating the abnormal arrhythmogenic tissue or accessory pathway responsible for the tachycardia. It is important for a clinician to be able to accurately steer the catheter to the region for ablation. Once at the region, it is important for a catheter to intimately contact the tissue site to effectively control the emission of energy to ablate the tissue within the heart.
Regardless of the type of mapping means or ablation means used, the clinician is called upon to remotely move, rotate, push, pull, and manipulate the catheters in various ways. First, a catheter is inserted into a major vein or artery, usually in the neck or groin area. It is then guided into the chambers of the heart by appropriate manipulation through the vein or artery. The distal section of a catheter must be maneuverable by a user from the proximal end of the catheter, so that the electrodes at the distal section can be positioned against the tissue at the desired location to assure that all aberrant electrical pathways are mapped and later ablated.
Development of prior catheters has focused upon the requirements of electrical continuity and interference problems. However, the mechanical and safety considerations have been overlooked. A conducting wire is soldered to the long tip electrode or the band electrode. The electrode with a conducting wire is thereafter placed and secured onto the catheter shaft, mostly by adhesives. The adhering force between a long tip electrode and the catheter shaft is proportional to the contact surface area. It has been reported that the long tip electrode might sometimes disengage from the distal section of the catheter shaft.
The frequency of the tip electrode disengagement becomes more often when a longer electrode is used for atrial flutter applications. In an atrial flutter procedure, a long tip electrode of 8 mm length or longer is generally required. In this case, the contact area for gluing between the stem of the electrode and the inner surface of the catheter shaft is not proportionally increased. The electrode is generally prone to separating from its main catheter shaft body because of inadequate contact area and subsequently gluing strength. The long tip electrode might inadvertently be separated from the catheter shaft and left behind in a patient's heart or in a circulation system. The prior development has overlooked the important need to provide a safe, intact catheter system having safety means in addition to the gluing force. It is the objective of this invention to provide the needed safety means for the electrophysiology cardiovascular catheter system having a long tip electrode.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved catheter system which can be used in mapping and ablating the arrhythmogenic region. It is another object of the present invention to provide a safety means to the catheter system so that the integrity of the catheter is maintained throughout clinical procedures.
In one embodiment, a catheter system of this invention comprises a catheter shaft having a distal section, a distal end, a proximal end, and at least one lumen extending therebetween; a handle attached to the proximal end of the shaft; a plurality of electrodes disposed at the distal section, wherein a long tip electrode is secured at the distal end of the catheter; and an extended stem of the long tip electrode having a proximal end, a distal end, and at least one open groove or slot in the axial direction on the surface of the stem, wherein the open groove or slot is extended over the whole length of the stem. In an alternate embodiment, the extended stem of the long tip electrode is a flexible stem
The open groove or slot on the stem is to provide adequate clearance for at least one conducting wire to enter from the adjacent band electrode into the lumen. The extended flexible stem may be composed of the material such as the braided metal mesh in a spiral-convoluted form. In one embodiment, the length of the extended stem is equal to or longer than the length of the exterior surface of the long tip electrode. In a preferred embodiment, the proximal end of the stem having at least one open groove or slot extends proximally beyond the distal edge of a first band electrode. The purpose is to make a catheter system having closely separated bipolar electrodes at the catheter tip.
The distal section of the catheter system of this invention can be either a fixed curve type or a deflectable curve type. In an exemplary embodiment, the means for deflecting the distal section of the steerable catheter comprises at least two pull wires along with a support wire. The pull wires are attached to radially offset locations at the distal end of the deflectable section of the catheter shaft whereas at least a support wire radially in-between the pull wires, and means at the proximal end of the shaft for selectively applying tension to the pull wires to cause deflection of the deflectable portion. In certain cases, the function of a support wire can be substituted by a spring coil which is stationary at its proximal end with respect to the shaft. The catheter system further comprises a steering mechanism at the handle, wherein the steering mechanism provides a plurality of deflectable curves on the tip section of the catheter assembly. The incorporation of the steering mechanism in a catheter is well known to those who are skilled in the art.
Usually, in another embodiment for a steerable catheter of this invention, the distal section of the shaft may include at least three radially offset lumens, and wherein the two pull wires and one support wire are disposed in the central lumen of the catheter shaft over a proximal section thereof; the two pull wires are disposed in the radially offset lumens over the distal section thereof, and the support wire is disposed in the central lumen.
The means for selectively applying tension comprises a steering mechanism in the handle, and the means for applying torque to the core wire comprises a rotatable ring or push-pull button disposed on the handle, the ring or button being coupled to the proximal end of the core wire. A variety of other tension applying mechanisms, such as joy sticks, may also be employed.
Signal conducting electrodes are placed on the distal section while their insulated conducting wires are passed through the shaft lumen to the connector secured at the proximal end of the handle. The main purpose of the conducting wires is to transmit the electric signal and to provide means for RF energy delivery. The extended flexible stem on the long tip electrode reinforces the adhesive strength of the long tip electrode.
A method for positioning a catheter system, having a safety means at its distal section within a heart chamber, comprises percutaneously introducing the distal end of a catheter through an artery or vein to the heart chamber. Once the catheter long tip is at the desired location, the handle at the proximal end is connected to the EKG monitor. And the electrical signal from the electrodes on the distal section can be transmitted to the exterior EKG monitor for cardiac mapping. Alternately, the radio frequency energy can be supplied to one or more of the electrodes on the distal section once an intimate contact with the tissue is achieved, using the catheter of this invention.
The method and apparatus of the present invention have several significant safety advantages over known catheters. In particular, the extended flexible stem with an open groove or slot on the long tip electrode maintains the integrity of the catheter system from potential complications of undesired component disengagement.
BRIEF DESCRIPTION OF THE DRAWINGS
Additional objects and features of the present invention will become more apparent and the invention itself will be best understood from the following Detailed Description of the Preferred Embodiments, when read with reference to the accompanying drawings.
FIG. 1 is an overall view of the catheter system, including safety means, constructed in accordance with the principles of the present invention.
FIG. 2 is a perspective view of the distal section of the catheter system with an extended flexible stem as a safety means.
FIG. 3 is a close-up view of the distal section of the catheter system of FIG. 2.
FIG. 4 is a cross-sectional view, section A--A, of the distal section of the catheter system of FIG. 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows a catheter system constructed in accordance with the principles of the present invention comprising: a catheter shaft 1 having a distal tip section 2, a distal end 6, a proximal end 3 and at least one lumen extending therebetween. A handle 4 is attached to the proximal end 3 of the catheter shaft 1. The tip section 2 may be a fixed curve type or a deflectable type by employing a steering mechanism 5 at the handle 4. A push-pull plunger 7 is employed to deflect the tip section 2 of the catheter shaft 1. A connector 8 is secured at the proximal end of the handle 4. At least one electrode available for electrophysiology use, is disposed on the tip section 2.
FIG. 2 shows a perspective view of the distal section of a catheter system with an extended flexible stem as a safety means. The long tip electrode 9 which has a long stem 10 and has at least one open groove 11 or slot 12 on the stem 10 is to be fitted into the catheter shaft 13 of the catheter system. In one embodiment, the stem 10 has a hollow center 19. At least one band electrode 14 is secured at the distal tip section 2 of the catheter system. A conducting wire 17 from the band electrode 14 passes through the catheter shaft 13 through a small opening 18 on the catheter shaft and enters into the lumen 15 and is thereafter secured to the connector 8 at the proximal end of the handle 4. When inserting the long tip electrode 9 into the catheter shaft 13, The open groove 11 or slot 12 of the stem 10 by-passes the conducting wire 17 entering from the band electrode 14. Therefore, a band electrode 14 can be located very close to the long tip electrode 9 to form a distal bipolar electrode system without concern for the obstruction of the long stem extending from the long tip electrode. The length of the stem can therefore be as long as one wishes and the open groove or slot can be any length. The stem may be composed of the material such as the braided metal mesh 20 in a spiral-convoluted form.
FIG. 3 shows a close-up view of the distal section of the catheter system of FIG. 2. During a catheter fabrication process, a long tip electrode 9 with a long stem 10 is attached to the catheter shaft 13 using either epoxy or glue type adhesive. A conducting wire 16 for the long tip electrode 9 is used for EKG signal monitoring and for RF energy transmission. At least one other conducting wire 17 for the band electrode 14 is used for EKG signal monitoring. The distal tip 26 of the long electrode 9 is generally smooth for contacting the tissue.
FIG. 4 shows a cross-sectional view, section A--A, of the distal section of the catheter system of FIG. 3. The band electrode 14 overlays the top of the catheter shaft 13. The stem 10 of the long tip electrode 9 lies tightly underneath the catheter shaft 13. The conducting wire 17 from the band electrode 14 stays without any obstruction in the space provided by the open groove 11 or slot 12 of the stem 10. In one embodiment, another open groove 11 or slot 12 is provided at an appropriate orientation of the stem 10. The stem can be made of a flexible material. This flexible stem, which has a hollow center 19, is especially useful in the distal tip section of a deflectable catheter. In an alternate embodiment, a temperature sensor 21 with transmission means 22 is secured about the surface of the tip electrode 9.
In another embodiment, the steerable catheter of the present invention comprises a handle and a catheter shaft, wherein a long tip electrode and at least one band electrode are disposed at the distal section of the catheter shaft. The steerable catheter has a push-pull plunger as a steering mechanism to deflect the long tip of the catheter to a desired curve type.
The material of electrodes may be selected from the group of platinum, iridium, silver, gold or stainless steel. The spacing between the electrodes is in the range of 1 mm to 10 mm, preferably 2 to 5 mm. The length of the stem is in the range of 2 mm to 20 mm, preferably 2 to 10 mm.
From the foregoing, it should now be appreciated that an improved catheter system has been disclosed, herein comprised of safety means to render a catheter less prone to disengagement. While the invention has been described with reference to a specific embodiment, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as described by the appended claims.

Claims (4)

What is claimed is:
1. A catheter system comprising:
(a) a catheter shaft having a distal section, a distal end, a proximal end, and at least one lumen extending therebetween;
(b) a handle attached to the proximal end of the catheter shaft;
(c) a plurality of electrodes disposed at the distal section, each of the plurality of electrodes having an electrical conductor, wherein a long tip electrode is secured at the distal end of the catheter; and
(d) a flexible extended stem of the long tip electrode having a proximal end, a distal end, and at least one open slot in the axial direction on the surface of said stem, wherein the open slot is extended over a portion of the length of said stem.
2. The catheter system of claim 1, wherein the flexible extended stem is a braided metal mesh in a spiral-convoluted form.
3. The catheter system of claim 1, wherein the length of the flexible extended stem is longer than the length of an outer surface of the long tip electrode.
4. The catheter system as in claim 1 further comprising a first band electrode on the catheter shaft, having a proximal end and a distal end, wherein the proximal end of the flexible extended stem extends beyond the distal end of the first band electrode.
US09/066,274 1997-06-23 1998-04-24 Catheter system having closely spaced distal bipolar electrodes Expired - Lifetime US6001095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/066,274 US6001095A (en) 1997-06-23 1998-04-24 Catheter system having closely spaced distal bipolar electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/880,837 US5782900A (en) 1997-06-23 1997-06-23 Catheter system having safety means
US09/066,274 US6001095A (en) 1997-06-23 1998-04-24 Catheter system having closely spaced distal bipolar electrodes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/880,837 Division US5782900A (en) 1997-06-23 1997-06-23 Catheter system having safety means

Publications (1)

Publication Number Publication Date
US6001095A true US6001095A (en) 1999-12-14

Family

ID=25377217

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/880,837 Expired - Lifetime US5782900A (en) 1997-06-23 1997-06-23 Catheter system having safety means
US09/066,265 Expired - Lifetime US5992418A (en) 1997-06-23 1998-04-24 Catheter system having safety means and methods thereof
US09/066,274 Expired - Lifetime US6001095A (en) 1997-06-23 1998-04-24 Catheter system having closely spaced distal bipolar electrodes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/880,837 Expired - Lifetime US5782900A (en) 1997-06-23 1997-06-23 Catheter system having safety means
US09/066,265 Expired - Lifetime US5992418A (en) 1997-06-23 1998-04-24 Catheter system having safety means and methods thereof

Country Status (1)

Country Link
US (3) US5782900A (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405067B1 (en) * 2000-07-07 2002-06-11 Biosense Webster, Inc. Catheter with tip electrode having a recessed ring electrode mounted thereon
US6477396B1 (en) 2000-07-07 2002-11-05 Biosense Webster, Inc. Mapping and ablation catheter
US6671562B2 (en) * 2001-11-09 2003-12-30 Oscor Inc. High impedance drug eluting cardiac lead
US20040039429A1 (en) * 2002-08-21 2004-02-26 Daniel Steven A. Apparatus and method for tissue resection
US6740083B2 (en) * 2001-07-09 2004-05-25 Scimed Life Systems, Inc. Distal catheter assembly with proximal mounting member
US20040116793A1 (en) * 2002-12-12 2004-06-17 Scimed Life Systems, Inc. La placian electrode
US6766203B2 (en) * 2001-04-05 2004-07-20 Pacesetter, Inc. Body implantable lead with improved tip electrode assembly
US6945978B1 (en) 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US6964274B1 (en) 2004-06-07 2005-11-15 Ethicon, Inc. Tubal sterilization device having expanding electrodes and method for performing sterilization using the same
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US20060184219A1 (en) * 2001-01-11 2006-08-17 Heinrich Pajunk Catheter for neural blockades
US7250050B2 (en) 2004-06-07 2007-07-31 Ethicon, Inc. Tubal sterilization device having sesquipolar electrodes and method for performing sterilization using the same
US7331972B1 (en) 2002-11-15 2008-02-19 Abbott Cardiovascular Systems Inc. Heart valve chord cutter
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7429261B2 (en) 2004-11-24 2008-09-30 Ablation Frontiers, Inc. Atrial ablation catheter and method of use
US20080249522A1 (en) * 2007-04-04 2008-10-09 Carlo Pappone Irrigated Catheter with Improved fluid flow
US20080294158A1 (en) * 2007-05-23 2008-11-27 Carlo Pappone Ablation catheter with flexible tip and methods of making the same
US7468062B2 (en) 2004-11-24 2008-12-23 Ablation Frontiers, Inc. Atrial ablation catheter adapted for treatment of septal wall arrhythmogenic foci and method of use
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US20090166913A1 (en) * 2007-12-30 2009-07-02 Xiaoping Guo Catheter Shaft and Method of its Manufacture
US20090171319A1 (en) * 2007-12-30 2009-07-02 Xiaoping Guo Catheter Shaft with Multiple Reinforcing Layers and Method of its Manufacture
US20090165881A1 (en) * 2007-12-31 2009-07-02 Tegg Troy T Catheter shaft and method of manufacture
US20100152731A1 (en) * 2007-04-04 2010-06-17 Irvine Biomedical, Inc. Flexible tip catheter with extended fluid lumen
US20100174177A1 (en) * 2007-07-03 2010-07-08 Kirk Wu Magnetically guided catheter
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US20100286684A1 (en) * 2009-05-07 2010-11-11 Cary Hata Irrigated ablation catheter with multiple segmented ablation electrodes
US7850685B2 (en) 2005-06-20 2010-12-14 Medtronic Ablation Frontiers Llc Ablation catheter
US7857808B2 (en) 2002-10-25 2010-12-28 The Regents Of The University Of Michigan Ablation catheters
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US8187266B2 (en) 2006-09-29 2012-05-29 Quantumcor, Inc. Surgical probe and methods for targeted treatment of heart structures
US8328798B2 (en) 1999-10-02 2012-12-11 Quantumcor, Inc Method for treating and repairing mitral valve annulus
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US8372033B2 (en) 2008-12-31 2013-02-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having proximal heat sensitive deflection mechanism and related methods of use and manufacturing
US8414571B2 (en) 2010-01-07 2013-04-09 Relievant Medsystems, Inc. Vertebral bone navigation systems
US8419730B2 (en) 2008-09-26 2013-04-16 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US8425507B2 (en) 2002-09-30 2013-04-23 Relievant Medsystems, Inc. Basivertebral nerve denervation
US8483841B2 (en) 2008-12-12 2013-07-09 Cameron Health, Inc. Electrode spacing in a subcutaneous implantable cardiac stimulus device
US8486063B2 (en) 2004-10-14 2013-07-16 Medtronic Ablation Frontiers Llc Ablation catheter
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
US8641704B2 (en) 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US8715279B2 (en) 2007-07-03 2014-05-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheter
US8715280B2 (en) 2010-08-04 2014-05-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
US8834461B2 (en) 2005-07-11 2014-09-16 Medtronic Ablation Frontiers Llc Low power tissue ablation system
US8876819B2 (en) 2010-08-04 2014-11-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
US8882764B2 (en) 2003-03-28 2014-11-11 Relievant Medsystems, Inc. Thermal denervation devices
US8945118B2 (en) 2010-08-04 2015-02-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter with flexible tether and introducer for a catheter
US8974454B2 (en) 2009-12-31 2015-03-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Kit for non-invasive electrophysiology procedures and method of its use
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US9504398B2 (en) 2002-08-24 2016-11-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and apparatus for locating the fossa ovalis and performing transseptal puncture
USRE46356E1 (en) 2002-09-30 2017-04-04 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
US9615760B2 (en) 2013-06-17 2017-04-11 Biosense Webster (Israel), Ltd. Multiple bipolar sampling
US9724107B2 (en) 2008-09-26 2017-08-08 Relievant Medsystems, Inc. Nerve modulation systems
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US9775627B2 (en) 2012-11-05 2017-10-03 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone and modulating nerves within the bone
US10118015B2 (en) 2010-06-16 2018-11-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having flexible tip with multiple flexible segments
US10390877B2 (en) 2011-12-30 2019-08-27 Relievant Medsystems, Inc. Systems and methods for treating back pain
US10433903B2 (en) 2007-04-04 2019-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US10765473B2 (en) 2010-11-08 2020-09-08 Baylis Medical Company Inc. Electrosurgical device having a lumen
US11007010B2 (en) 2019-09-12 2021-05-18 Relevant Medsysterns, Inc. Curved bone access systems
WO2021192168A1 (en) * 2020-03-26 2021-09-30 日本ライフライン株式会社 Catheter
US11246658B2 (en) 2016-10-04 2022-02-15 St. Jude Medical, Cardiology Division, Inc. Ablation catheter tip
US11350986B2 (en) 2015-03-31 2022-06-07 St. Jude Medical, Cardiology Division, Inc. High-thermal-sensitivity ablation catheters and catheter tips
US11369301B2 (en) * 2017-01-27 2022-06-28 Medtronic Cryocath Lp Highly flexible mapping and treatment device
US11937873B2 (en) 2013-03-12 2024-03-26 Boston Scientific Medical Device Limited Electrosurgical device having a lumen

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409722B1 (en) * 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6719755B2 (en) * 1996-10-22 2004-04-13 Epicor Medical, Inc. Methods and devices for ablation
US5782900A (en) * 1997-06-23 1998-07-21 Irvine Biomedical, Inc. Catheter system having safety means
US6240320B1 (en) * 1998-06-05 2001-05-29 Intermedics Inc. Cardiac lead with zone insulated electrodes
US6134478A (en) * 1998-06-05 2000-10-17 Intermedics Inc. Method for making cardiac leads with zone insulated electrodes
US6018684A (en) * 1998-07-30 2000-01-25 Cardiac Pacemakers, Inc. Slotted pacing/shocking electrode
US6052625A (en) * 1998-11-09 2000-04-18 Medtronic, Inc. Extractable implantable medical lead
US6183305B1 (en) 1998-12-04 2001-02-06 Pacesetter, Inc. High strength connector design for passive fixation pacing lead
US6338731B1 (en) * 1999-03-17 2002-01-15 Ntero Surgical, Inc. Method and systems for reducing surgical complications
US6645198B1 (en) 1999-03-17 2003-11-11 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
ES2643763T3 (en) * 2000-03-06 2017-11-24 Salient Surgical Technologies, Inc. Fluid supply system and controller for electrosurgical devices
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6689131B2 (en) 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
WO2002067798A1 (en) 2001-02-26 2002-09-06 Ntero Surgical, Inc. System and method for reducing post-surgical complications
DE60223794T2 (en) * 2001-04-27 2008-10-30 C.R. Bard, Inc. ELECTROPHYSIOLOGY CATHETERS FOR MAPPING AND ABLATION
US6730082B2 (en) * 2001-07-09 2004-05-04 Scimed Life Systems, Inc. Two-piece distal catheter assembly
US6733497B2 (en) * 2001-07-09 2004-05-11 Scimed Life Systems, Inc. Clamshell distal catheter assembly
US20040092806A1 (en) * 2001-12-11 2004-05-13 Sagon Stephen W Microelectrode catheter for mapping and ablation
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
EP1572020A4 (en) 2002-10-29 2006-05-03 Tissuelink Medical Inc Fluid-assisted electrosurgical scissors and methods
US20060241366A1 (en) * 2002-10-31 2006-10-26 Gary Falwell Electrophysiology loop catheter
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
CN101879347A (en) * 2004-08-05 2010-11-10 导管治疗有限公司 Be used to make the method for electric lead
US7918851B2 (en) * 2005-02-14 2011-04-05 Biosense Webster, Inc. Irrigated tip catheter and method for manufacturing therefor
US8932208B2 (en) 2005-05-26 2015-01-13 Maquet Cardiovascular Llc Apparatus and methods for performing minimally-invasive surgical procedures
WO2007070361A2 (en) 2005-12-06 2007-06-21 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9492226B2 (en) 2005-12-06 2016-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Graphical user interface for real-time RF lesion depth display
US10362959B2 (en) 2005-12-06 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the proximity of an electrode to tissue in a body
US8403925B2 (en) 2006-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US9254163B2 (en) 2005-12-06 2016-02-09 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
EP1962710B1 (en) 2005-12-06 2015-08-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Apparatus for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US8406866B2 (en) 2005-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US8603084B2 (en) 2005-12-06 2013-12-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the formation of a lesion in tissue
EP2209517A4 (en) 2007-10-05 2011-03-30 Maquet Cardiovascular Llc Devices and methods for minimally-invasive surgical procedures
US8290578B2 (en) 2007-12-28 2012-10-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for complex impedance compensation
US9204927B2 (en) 2009-05-13 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US20090306651A1 (en) * 2008-06-09 2009-12-10 Clint Schneider Catheter assembly with front-loaded tip
US8206385B2 (en) * 2008-06-09 2012-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter assembly with front-loaded tip and multi-contact connector
US8974445B2 (en) 2009-01-09 2015-03-10 Recor Medical, Inc. Methods and apparatus for treatment of cardiac valve insufficiency
US8086293B2 (en) * 2009-04-14 2011-12-27 Medtronic Ablation Frontiers Llc Catheter
WO2010133578A2 (en) * 2009-05-20 2010-11-25 Sonion A/S Electroporation device with improved tip and electrode support
WO2012116265A2 (en) * 2011-02-24 2012-08-30 MRI Interventions, Inc. Mri-guided catheters
US9827036B2 (en) 2012-11-13 2017-11-28 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
CN102908191A (en) 2012-11-13 2013-02-06 陈绍良 Multipolar synchronous pulmonary artery radiofrequency ablation catheter
US11241267B2 (en) 2012-11-13 2022-02-08 Pulnovo Medical (Wuxi) Co., Ltd Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9044156B2 (en) 2012-12-28 2015-06-02 Biosense Webster (Israel) Ltd. Catheter with improved safety line for distal tip and related method
US9724154B2 (en) * 2014-11-24 2017-08-08 Biosense Webster (Israel) Ltd. Irrigated ablation catheter with multiple sensors
EP4179991A1 (en) * 2016-05-03 2023-05-17 St. Jude Medical, Cardiology Division, Inc. Irrigated high density electrode catheter
KR20190062419A (en) 2016-10-04 2019-06-05 아벤트, 인크. The cooled RF probe
WO2022001588A1 (en) * 2020-06-30 2022-01-06 上海微创电生理医疗科技股份有限公司 Medical catheter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592372A (en) * 1984-05-22 1986-06-03 Cordis Corporation Pacing/sensing electrode sleeve and method of forming same
US4832048A (en) * 1987-10-29 1989-05-23 Cordis Corporation Suction ablation catheter
US4960134A (en) * 1988-11-18 1990-10-02 Webster Wilton W Jr Steerable catheter
US5324324A (en) * 1992-10-13 1994-06-28 Siemens Pacesetter, Inc. Coated implantable stimulation electrode and lead
US5697927A (en) * 1992-12-01 1997-12-16 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode and apparatus for use therewith
US5782900A (en) * 1997-06-23 1998-07-21 Irvine Biomedical, Inc. Catheter system having safety means

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673695A (en) * 1995-08-02 1997-10-07 Ep Technologies, Inc. Methods for locating and ablating accessory pathways in the heart

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592372A (en) * 1984-05-22 1986-06-03 Cordis Corporation Pacing/sensing electrode sleeve and method of forming same
US4832048A (en) * 1987-10-29 1989-05-23 Cordis Corporation Suction ablation catheter
US4960134A (en) * 1988-11-18 1990-10-02 Webster Wilton W Jr Steerable catheter
US5324324A (en) * 1992-10-13 1994-06-28 Siemens Pacesetter, Inc. Coated implantable stimulation electrode and lead
US5697927A (en) * 1992-12-01 1997-12-16 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode and apparatus for use therewith
US5782900A (en) * 1997-06-23 1998-07-21 Irvine Biomedical, Inc. Catheter system having safety means

Cited By (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328798B2 (en) 1999-10-02 2012-12-11 Quantumcor, Inc Method for treating and repairing mitral valve annulus
US6477396B1 (en) 2000-07-07 2002-11-05 Biosense Webster, Inc. Mapping and ablation catheter
US6405067B1 (en) * 2000-07-07 2002-06-11 Biosense Webster, Inc. Catheter with tip electrode having a recessed ring electrode mounted thereon
US20060184219A1 (en) * 2001-01-11 2006-08-17 Heinrich Pajunk Catheter for neural blockades
US6766203B2 (en) * 2001-04-05 2004-07-20 Pacesetter, Inc. Body implantable lead with improved tip electrode assembly
US6740083B2 (en) * 2001-07-09 2004-05-25 Scimed Life Systems, Inc. Distal catheter assembly with proximal mounting member
US6671562B2 (en) * 2001-11-09 2003-12-30 Oscor Inc. High impedance drug eluting cardiac lead
US7008421B2 (en) * 2002-08-21 2006-03-07 Resect Medical, Inc. Apparatus and method for tissue resection
US20040039429A1 (en) * 2002-08-21 2004-02-26 Daniel Steven A. Apparatus and method for tissue resection
US9504398B2 (en) 2002-08-24 2016-11-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and apparatus for locating the fossa ovalis and performing transseptal puncture
US8425507B2 (en) 2002-09-30 2013-04-23 Relievant Medsystems, Inc. Basivertebral nerve denervation
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US8992522B2 (en) 2002-09-30 2015-03-31 Relievant Medsystems, Inc. Back pain treatment methods
US8628528B2 (en) 2002-09-30 2014-01-14 Relievant Medsystems, Inc. Vertebral denervation
US8613744B2 (en) 2002-09-30 2013-12-24 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US9017325B2 (en) 2002-09-30 2015-04-28 Relievant Medsystems, Inc. Nerve modulation systems
USRE46356E1 (en) 2002-09-30 2017-04-04 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
US9023038B2 (en) 2002-09-30 2015-05-05 Relievant Medsystems, Inc. Denervation methods
US8419731B2 (en) 2002-09-30 2013-04-16 Relievant Medsystems, Inc. Methods of treating back pain
US9173676B2 (en) 2002-09-30 2015-11-03 Relievant Medsystems, Inc. Nerve modulation methods
US9421064B2 (en) 2002-09-30 2016-08-23 Relievant Medsystems, Inc. Nerve modulation systems
US8992523B2 (en) 2002-09-30 2015-03-31 Relievant Medsystems, Inc. Vertebral treatment
US11596468B2 (en) 2002-09-30 2023-03-07 Relievant Medsystems, Inc. Intraosseous nerve treatment
USRE48460E1 (en) 2002-09-30 2021-03-09 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
US10478246B2 (en) 2002-09-30 2019-11-19 Relievant Medsystems, Inc. Ablation of tissue within vertebral body involving internal cooling
US8623014B2 (en) 2002-09-30 2014-01-07 Relievant Medsystems, Inc. Systems for denervation of basivertebral nerves
US9486279B2 (en) 2002-09-30 2016-11-08 Relievant Medsystems, Inc. Intraosseous nerve treatment
US9848944B2 (en) 2002-09-30 2017-12-26 Relievant Medsystems, Inc. Thermal denervation devices and methods
US10111704B2 (en) 2002-09-30 2018-10-30 Relievant Medsystems, Inc. Intraosseous nerve treatment
US8133272B2 (en) 2002-10-15 2012-03-13 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US7740638B2 (en) 2002-10-15 2010-06-22 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US7993333B2 (en) 2002-10-25 2011-08-09 The Regents Of The University Of Michigan Ablation catheters
US7857808B2 (en) 2002-10-25 2010-12-28 The Regents Of The University Of Michigan Ablation catheters
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US8579967B2 (en) 2002-11-15 2013-11-12 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7331972B1 (en) 2002-11-15 2008-02-19 Abbott Cardiovascular Systems Inc. Heart valve chord cutter
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7828819B2 (en) 2002-11-15 2010-11-09 Advanced Cardiovascular Systems, Inc. Cord locking mechanism for use in small systems
US7914577B2 (en) 2002-11-15 2011-03-29 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US7927370B2 (en) 2002-11-15 2011-04-19 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7942928B2 (en) 2002-11-15 2011-05-17 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US6945978B1 (en) 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US8070804B2 (en) 2002-11-15 2011-12-06 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US20070135700A1 (en) * 2002-12-12 2007-06-14 Boston Scientific Scimed, Inc. La placian electrode
US7519410B2 (en) 2002-12-12 2009-04-14 Boston Scientific Scimed, Inc. La placian electrode
US6922579B2 (en) 2002-12-12 2005-07-26 Scimed Life Systems, Inc. La placian electrode
US7197349B2 (en) 2002-12-12 2007-03-27 Scimed Life Systems, Inc. La placian electrode
US20050245800A1 (en) * 2002-12-12 2005-11-03 Scimed Life Systems, Inc. La placian electrode
US20040116793A1 (en) * 2002-12-12 2004-06-17 Scimed Life Systems, Inc. La placian electrode
US10463423B2 (en) 2003-03-28 2019-11-05 Relievant Medsystems, Inc. Thermal denervation devices and methods
US8882764B2 (en) 2003-03-28 2014-11-11 Relievant Medsystems, Inc. Thermal denervation devices
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US8016784B1 (en) 2003-09-30 2011-09-13 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly having compression compensation mechanism
US6964274B1 (en) 2004-06-07 2005-11-15 Ethicon, Inc. Tubal sterilization device having expanding electrodes and method for performing sterilization using the same
US20050268918A1 (en) * 2004-06-07 2005-12-08 Ryan Thomas P Tubal sterilization device having expanding electrodes and method for performing sterilization using the same
US7250050B2 (en) 2004-06-07 2007-07-31 Ethicon, Inc. Tubal sterilization device having sesquipolar electrodes and method for performing sterilization using the same
US9642675B2 (en) 2004-10-14 2017-05-09 Medtronic Ablation Frontiers Llc Ablation catheter
US8486063B2 (en) 2004-10-14 2013-07-16 Medtronic Ablation Frontiers Llc Ablation catheter
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
US9005194B2 (en) 2004-11-24 2015-04-14 Medtronic Ablation Frontiers Llc Atrial ablation catheter adapted for treatment of septal wall arrhythmogenic foci and method of use
US7429261B2 (en) 2004-11-24 2008-09-30 Ablation Frontiers, Inc. Atrial ablation catheter and method of use
US7468062B2 (en) 2004-11-24 2008-12-23 Ablation Frontiers, Inc. Atrial ablation catheter adapted for treatment of septal wall arrhythmogenic foci and method of use
US8273084B2 (en) 2004-11-24 2012-09-25 Medtronic Ablation Frontiers Llc Atrial ablation catheter and method of use
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US9950144B2 (en) 2005-04-22 2018-04-24 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US8771267B2 (en) 2005-06-20 2014-07-08 Medtronic Ablation Frontiers Llc Ablation catheter
US8979841B2 (en) 2005-06-20 2015-03-17 Medtronic Ablation Frontiers Llc Ablation catheter
US8337492B2 (en) 2005-06-20 2012-12-25 Medtronic Ablation Frontiers Llc Ablation catheter
US9468495B2 (en) 2005-06-20 2016-10-18 Medtronic Ablation Frontiers Llc Ablation catheter
US7850685B2 (en) 2005-06-20 2010-12-14 Medtronic Ablation Frontiers Llc Ablation catheter
US8834461B2 (en) 2005-07-11 2014-09-16 Medtronic Ablation Frontiers Llc Low power tissue ablation system
US9566113B2 (en) 2005-07-11 2017-02-14 Medtronic Ablation Frontiers Llc Low power tissue ablation system
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US8364253B2 (en) 2006-05-17 2013-01-29 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US8187266B2 (en) 2006-09-29 2012-05-29 Quantumcor, Inc. Surgical probe and methods for targeted treatment of heart structures
US9561075B2 (en) 2007-04-04 2017-02-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter with improved fluid flow
US20100152731A1 (en) * 2007-04-04 2010-06-17 Irvine Biomedical, Inc. Flexible tip catheter with extended fluid lumen
US10433903B2 (en) 2007-04-04 2019-10-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter
US9724492B2 (en) 2007-04-04 2017-08-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Flexible tip catheter with extended fluid lumen
US9962224B2 (en) 2007-04-04 2018-05-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter with improved fluid flow
US10576244B2 (en) 2007-04-04 2020-03-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Flexible tip catheter with extended fluid lumen
US11559658B2 (en) 2007-04-04 2023-01-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Flexible tip catheter with extended fluid lumen
US11596470B2 (en) 2007-04-04 2023-03-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter
US8517999B2 (en) 2007-04-04 2013-08-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter with improved fluid flow
US20080249522A1 (en) * 2007-04-04 2008-10-09 Carlo Pappone Irrigated Catheter with Improved fluid flow
US8979837B2 (en) 2007-04-04 2015-03-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Flexible tip catheter with extended fluid lumen
US8771269B2 (en) 2007-05-11 2014-07-08 Medtronic Ablation Frontiers Llc RF energy delivery system and method
US10219857B2 (en) 2007-05-11 2019-03-05 Medtronic Ablation Frontiers Llc RF energy delivery system
US8641704B2 (en) 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US8480669B2 (en) 2007-05-23 2013-07-09 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip
WO2008147599A1 (en) * 2007-05-23 2008-12-04 Irvine Biomedical, Inc. Ablation catheter with flexible tip
US9510903B2 (en) 2007-05-23 2016-12-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated flexible ablation catheter
US8827910B2 (en) 2007-05-23 2014-09-09 St. Jude Medical, Atrial Fibrillation Divsion, Inc. Magnetically guided catheter with flexible tip
US8187267B2 (en) 2007-05-23 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip and methods of making the same
US8790341B2 (en) 2007-05-23 2014-07-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip
US20080294158A1 (en) * 2007-05-23 2008-11-27 Carlo Pappone Ablation catheter with flexible tip and methods of making the same
US20100174177A1 (en) * 2007-07-03 2010-07-08 Kirk Wu Magnetically guided catheter
US10039598B2 (en) 2007-07-03 2018-08-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheter
US8715279B2 (en) 2007-07-03 2014-05-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheter
US8734440B2 (en) 2007-07-03 2014-05-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheter
US11511076B2 (en) 2007-12-30 2022-11-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
US20090171319A1 (en) * 2007-12-30 2009-07-02 Xiaoping Guo Catheter Shaft with Multiple Reinforcing Layers and Method of its Manufacture
US9352116B2 (en) 2007-12-30 2016-05-31 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
US9987463B2 (en) 2007-12-30 2018-06-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
US10960180B2 (en) 2007-12-30 2021-03-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
US8431057B2 (en) 2007-12-30 2013-04-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
US20090166913A1 (en) * 2007-12-30 2009-07-02 Xiaoping Guo Catheter Shaft and Method of its Manufacture
US8647323B2 (en) 2007-12-30 2014-02-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft with multiple reinforcing layers and method of its manufacture
US10485948B2 (en) 2007-12-31 2019-11-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of manufacture
US11376397B2 (en) 2007-12-31 2022-07-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of manufacture
US8684999B2 (en) 2007-12-31 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of manufacture
US20090165881A1 (en) * 2007-12-31 2009-07-02 Tegg Troy T Catheter shaft and method of manufacture
US10905440B2 (en) 2008-09-26 2021-02-02 Relievant Medsystems, Inc. Nerve modulation systems
US8808284B2 (en) 2008-09-26 2014-08-19 Relievant Medsystems, Inc. Systems for navigating an instrument through bone
US9259241B2 (en) 2008-09-26 2016-02-16 Relievant Medsystems, Inc. Methods of treating nerves within bone using fluid
US9724107B2 (en) 2008-09-26 2017-08-08 Relievant Medsystems, Inc. Nerve modulation systems
US8419730B2 (en) 2008-09-26 2013-04-16 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US9039701B2 (en) 2008-09-26 2015-05-26 Relievant Medsystems, Inc. Channeling paths into bone
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
US11471171B2 (en) 2008-09-26 2022-10-18 Relievant Medsystems, Inc. Bipolar radiofrequency ablation systems for treatment within bone
US9265522B2 (en) 2008-09-26 2016-02-23 Relievant Medsystems, Inc. Methods for navigating an instrument through bone
US10265099B2 (en) 2008-09-26 2019-04-23 Relievant Medsystems, Inc. Systems for accessing nerves within bone
US8483841B2 (en) 2008-12-12 2013-07-09 Cameron Health, Inc. Electrode spacing in a subcutaneous implantable cardiac stimulus device
US9079035B2 (en) 2008-12-12 2015-07-14 Cameron Health, Inc. Electrode spacing in a subcutaneous implantable cardiac stimulus device
US8372033B2 (en) 2008-12-31 2013-02-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having proximal heat sensitive deflection mechanism and related methods of use and manufacturing
US8647297B2 (en) 2008-12-31 2014-02-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having proximal heat sensitive deflection mechanism and related methods of use and manufacture
US11395694B2 (en) 2009-05-07 2022-07-26 St. Jude Medical, Llc Irrigated ablation catheter with multiple segmented ablation electrodes
US20100286684A1 (en) * 2009-05-07 2010-11-11 Cary Hata Irrigated ablation catheter with multiple segmented ablation electrodes
US8974454B2 (en) 2009-12-31 2015-03-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Kit for non-invasive electrophysiology procedures and method of its use
US8414571B2 (en) 2010-01-07 2013-04-09 Relievant Medsystems, Inc. Vertebral bone navigation systems
US8535309B2 (en) 2010-01-07 2013-09-17 Relievant Medsystems, Inc. Vertebral bone channeling systems
US10220187B2 (en) 2010-06-16 2019-03-05 St. Jude Medical, Llc Ablation catheter having flexible tip with multiple flexible electrode segments
US10118015B2 (en) 2010-06-16 2018-11-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having flexible tip with multiple flexible segments
US11419675B2 (en) 2010-06-16 2022-08-23 St. Jude Medical, Llc Ablation catheter having flexible tip with multiple flexible electrode segments
US11457974B2 (en) 2010-06-16 2022-10-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having flexible tip with multiple flexible segments
US8945118B2 (en) 2010-08-04 2015-02-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter with flexible tether and introducer for a catheter
US9023033B2 (en) 2010-08-04 2015-05-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
US10052152B2 (en) 2010-08-04 2018-08-21 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter electrode assembly
US9545498B2 (en) 2010-08-04 2017-01-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
US8876819B2 (en) 2010-08-04 2014-11-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
US8715280B2 (en) 2010-08-04 2014-05-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheters
US10792096B2 (en) 2010-11-08 2020-10-06 Baylis Medical Company Inc. Medical device having a support structure
US10765473B2 (en) 2010-11-08 2020-09-08 Baylis Medical Company Inc. Electrosurgical device having a lumen
US10390877B2 (en) 2011-12-30 2019-08-27 Relievant Medsystems, Inc. Systems and methods for treating back pain
US11471210B2 (en) 2011-12-30 2022-10-18 Relievant Medsystems, Inc. Methods of denervating vertebral body using external energy source
US11690667B2 (en) 2012-09-12 2023-07-04 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US11737814B2 (en) 2012-09-12 2023-08-29 Relievant Medsystems, Inc. Cryotherapy treatment for back pain
US11701168B2 (en) 2012-09-12 2023-07-18 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US11234764B1 (en) 2012-11-05 2022-02-01 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
US11160563B2 (en) 2012-11-05 2021-11-02 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
US11291502B2 (en) 2012-11-05 2022-04-05 Relievant Medsystems, Inc. Methods of navigation and treatment within a vertebral body
US10517611B2 (en) 2012-11-05 2019-12-31 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
US9775627B2 (en) 2012-11-05 2017-10-03 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone and modulating nerves within the bone
US10357258B2 (en) 2012-11-05 2019-07-23 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone
US11937873B2 (en) 2013-03-12 2024-03-26 Boston Scientific Medical Device Limited Electrosurgical device having a lumen
US9615760B2 (en) 2013-06-17 2017-04-11 Biosense Webster (Israel), Ltd. Multiple bipolar sampling
US11065046B2 (en) 2013-08-08 2021-07-20 Relievant Medsystems, Inc. Modulating nerves within bone
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US10456187B2 (en) 2013-08-08 2019-10-29 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US11419674B2 (en) 2015-03-31 2022-08-23 St. Jude Medical, Cardiology Division, Inc. Methods and devices for delivering pulsed RF energy during catheter ablation
US11350986B2 (en) 2015-03-31 2022-06-07 St. Jude Medical, Cardiology Division, Inc. High-thermal-sensitivity ablation catheters and catheter tips
US11246658B2 (en) 2016-10-04 2022-02-15 St. Jude Medical, Cardiology Division, Inc. Ablation catheter tip
US11369301B2 (en) * 2017-01-27 2022-06-28 Medtronic Cryocath Lp Highly flexible mapping and treatment device
US11202655B2 (en) 2019-09-12 2021-12-21 Relievant Medsystems, Inc. Accessing and treating tissue within a vertebral body
US11426199B2 (en) 2019-09-12 2022-08-30 Relievant Medsystems, Inc. Methods of treating a vertebral body
US11207100B2 (en) 2019-09-12 2021-12-28 Relievant Medsystems, Inc. Methods of detecting and treating back pain
US11123103B2 (en) 2019-09-12 2021-09-21 Relievant Medsystems, Inc. Introducer systems for bone access
US11007010B2 (en) 2019-09-12 2021-05-18 Relevant Medsysterns, Inc. Curved bone access systems
WO2021192168A1 (en) * 2020-03-26 2021-09-30 日本ライフライン株式会社 Catheter

Also Published As

Publication number Publication date
US5992418A (en) 1999-11-30
US5782900A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
US6001095A (en) Catheter system having closely spaced distal bipolar electrodes
US5935063A (en) Electrode catheter system and methods thereof
US6029091A (en) Catheter system having lattice electrodes
US5782828A (en) Ablation catheter with multiple flexible curves
US5897554A (en) Steerable catheter having a loop electrode
US5779699A (en) Slip resistant field focusing ablation catheter electrode
US5891138A (en) Catheter system having parallel electrodes
USRE42724E1 (en) Method and apparatus for performing cardiac ablations
US5951471A (en) Catheter-based coronary sinus mapping and ablation
EP0634907B1 (en) Intracardiac electrical potential reference catheter
JP5123665B2 (en) Pre-shaped ablation catheter for excising the pulmonary vein opening of the heart
US5868741A (en) Ablation catheter system having fixation tines
US6066126A (en) Precurved, dual curve cardiac introducer sheath
US8007462B2 (en) Articulated catheter
EP0861676B1 (en) Electrode array catheter
US5849028A (en) Catheter and method for radiofrequency ablation of cardiac tissue
EP0634941B1 (en) Steerable electrode catheter
US6221070B1 (en) Steerable ablation catheter system having disposable shaft
EP1326550B1 (en) Heart wall ablation/mapping catheter
US6200315B1 (en) Left atrium ablation catheter
EP2364118B1 (en) Loop structures for supporting diagnostic and/or therapeutic elements in contact with tissue
US5797842A (en) Steerable electrophysiology catheter
JP2002531164A (en) Endocardial grasping catheter
US20040147828A1 (en) Telescoping tip electrode catheter
US20220192740A1 (en) Multi-use endocardial ablation catheter

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:IRVINE BIOMEDICAL, INC.;REEL/FRAME:013625/0352

Effective date: 20021112

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: IRVINE BIOMEDICAL, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:015886/0107

Effective date: 20041007

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: IRVINE BIOMEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE LA RAMA, ALAN;CHIA, WENG-KWEN RAYMOND;TU, HOSHENG;REEL/FRAME:020299/0469

Effective date: 19970623

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12