US5980593A - Silent fluorescent petroleum markers - Google Patents

Silent fluorescent petroleum markers Download PDF

Info

Publication number
US5980593A
US5980593A US09/023,729 US2372998A US5980593A US 5980593 A US5980593 A US 5980593A US 2372998 A US2372998 A US 2372998A US 5980593 A US5980593 A US 5980593A
Authority
US
United States
Prior art keywords
marker
petroleum
product
branched
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/023,729
Inventor
Michael R. Friswell
Alejandro Zimin, Sr.
Peter A. Caputo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Chemicals LLC
Original Assignee
Morton International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morton International LLC filed Critical Morton International LLC
Priority to US09/023,729 priority Critical patent/US5980593A/en
Assigned to MORTON INTERNATIONAL, INC. reassignment MORTON INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZIMIN, ALEJANDRO, SR., CAPUTO, PETER A., FRISWELL, MICHAEL W.
Application granted granted Critical
Publication of US5980593A publication Critical patent/US5980593A/en
Assigned to ROHM AND HAAS CHEMICALS LLC reassignment ROHM AND HAAS CHEMICALS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORTON INTERNATIONAL, INC.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/003Marking, e.g. coloration by addition of pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/02Coumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0083Solutions of dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1608Well defined compounds, e.g. hexane, benzene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring

Definitions

  • This invention is directed to the tagging of petroleum products, such as fuels, and various other industrial products with silent markers and to the detection of such markers.
  • tag petroleum fuels such as gasoline, diesel fuel, heating oil, kerosene, etc.
  • dyes and markers collectively referred herein as "taggants”
  • taggants Aside from price and tax matters, identification of particular production batches of bulk liquids for protection against theft is another valuable function of taggants, particularly for identifying fuels owned by large government, military or commercial consumers. Fuels are also dyed to provide visually distinguishable brand and grade denominations for commercial and safety reasons. Finally, marketers of brand name products in many industries use taggants to detect substitution of products of others in their distribution system and product adulteration, or to identify their brand name products from others', particularly when subjected to product warranty, product liability, and toxic waste claims.
  • Dyes are the easiest of the taggants to detect, since identification is dependent simply upon color recognition by visual inspection.
  • a "dye” is defined herein as a material lending visible color when dissolved in the dyed product. Examples of dyes which have been employed for coloring petroleum fuels, include C.l. Solvent Red 24, C.l. Solvent Red 19, C.l. Solvent Yellow 14, C.l. Solvent Blue 36, and C.l. Solvent Green 3.
  • dyes alone are not always adequate to securely and reliably identify fuels. Many dyes are easily removed by unauthorized persons to evade taxation. For instance, in those countries where tax laws provide that a lightly taxed heating oil be dyed a specific color, one form of deception is to decolorize the lower priced colored heating oil with common absorbents, such as charcoal, carbon black, and various clays, and then sell the colorless product as higher priced diesel fuel. Furthermore, dyes can be obscured by natural substances or additives present in the fuels, particularly when present at low concentrations in a mixture of fuels. Because dyes alone have these shortcomings, a combination of a dye and a marker, a marker alone, or multiple markers which do not obscure each other are often used to tag fuels.
  • a “marker” is defined herein as a substance which can be dissolved in a liquid to be identified in visually undetectable quantities, and then subsequently detected by performing a simple chemical or physical test on the tagged liquid.
  • Markers that have been proposed include radioactive substances, fluorescent substances, and a variety of lightly colored or virtually colorless compounds which react with selected agents to provide intensely colored derivatives. Radioactive markers, in particular, have not gained wide acceptance due to the necessity for special equipment and handling measures to prevent harmful physiological disturbances to personnel.
  • the ones traditionally employed include furfural, quinizarin, diphenylamine, various naphthol derivatives, diazo compounds, phenylazophenols, etc.
  • fluorescent markers have a number of advantages over the other markers. For instance, they are environmentally friendly and relatively safe to handle, in comparison to radioactive substances. They also exhibit improved light fastness and, therefore, last much longer in the tagged product than color developable markers which fade much quicker. Moreover, fluorescent markers are truly "silent" when mixed with the tagged product and upon later detection.
  • the term "silent” as used herein means that at the levels at which the markers are used, they impart virtually no visible coloration to the tagged product, and which, upon detection, fluoresce rather than undergo a visible color producing reaction.
  • fluorescent markers can provide quantitative determinations of the extent of adulteration. Most markers are adequate for detection qualitatively of their presence in petroleum product; however, many available markers do not provide a good quantitative measurement of their levels in liquid petroleum products. Quantitative determinations are particularly important in cases where dilution is suspected, e.g., dilution of a higher-taxed fuel with a lower-taxed fuel. With fluorescent markers, quantitative determinations may be done by matching the intensity of fluorescence given off by the sample being tested with a set of standards which will indicate approximately the degree of dilution or adulteration.
  • coumarine (1,2-benzopyrone) which is commonly used to tag kerosene.
  • U.S. Pat. No. 2,392,620 (Sparks) discloses certain other fluorescent coumarine derivatives, such as umbelliferone (7-hydroxycoumarin) and 4-methylumbelliferone (7-hydroxy-4-methylcoumarin), for use as petroleum markers.
  • umbelliferone (7-hydroxycoumarin
  • 4-methylumbelliferone (7-hydroxy-4-methylcoumarin
  • markers that are provided in concentrated liquid form in either a petroleum product or a petroleum-miscible solvent. This allows for use of existing storage tanks, pipeline and metering equipment. The liquid form further encourages rapid and complete marker dissolution in the petroleum product to be tagged. Yet, the poor fuel solubility of the currently proposed coumarine based markers (i.e., generally of the order of magnitude of less 0.1% in commonly used petroleum solvents) means that they must be transported and used in dry state which creates attendant handling problems due to dusting and difficulties in metering. Furthermore, the poor fuel solubility precludes the possibility of providing highly concentrated solutions in petroleum or petroleum-miscible solvents containing about 20 wt. % or more active marker. The use of relatively dilute marker solutions requires handling, storage and metering of large volumes to mark a given volume of fuel, a situation which is highly undesirable from an economic point of view.
  • the assay employs certain linear fatty acid esters of 4-methylumbelliferone, namely 4-methylumbelliferone butyrate or 4-methylumbelliferone palmitate. None of these compounds are disclosed to be useful as markers for industrial liquids or petroleum fuels.
  • the linear or branched C 1 -C 18 alkyl acid esters that are especially desirable, with the branched C 5 -C 10 alkyl acid esters being even more preferred.
  • Markers at levels of about 0.25 parts per million (ppm) or above are added to liquid petroleum products. Since these markers have relative high solubilities in organic liquids, such as petroleum and petroleum-miscible solvents, they advantageously can be added as concentrated liquids, rather than pure solid compounds, to the liquids to be tagged.
  • the markers may be detected in the products by extraction with an alkaline aqueous solution. This alkaline aqueous solution not only extracts the marker from the tagged product, but causes the marker to react and fluoresce, which when tested under a suitable source of light identifies the product as to source, permitted use, etc.
  • the present invention further provides novel compounds and novel highly concentrated liquid solutions of such compounds that are particularly suitable as markers for industrial and petroleum products.
  • the markers of the present invention have the general formula: ##STR2## where the R is a radical selected from a linear or branched C 1 -C 18 alkylcarboxy, preferably a linear or branched C 5 -C 10 alkylcarboxy, most preferably a branched C 8 alkylcarboxy.
  • These compounds are conveniently synthesized by esterification of an appropriately selected linear or branched C 1 -C 18 alkyl carboxylic acid, preferably a C 5 -C 10 alkyl carboxylic acid, or acid halides thereof, such as acid chlorides, with 7-hydroxy-4-methylcoumarin. Esterification can be carried out by standard techniques well known in the art. Examples of suitable linear alkyl carboxylic acids (or acid halides) useful herein include, without limitation, n-hexanoyl chloride, n-octanoyl chloride, and the like.
  • Suitable branched alkyl carboxylic acids include, without limitation, 2-methyl propanoyl chloride, 2-ethyl hexanoyl chloride, and the like, with 2-ethyl hexanoyl chloride being most preferred. It should be understood that whether acids or acid halides are listed above, any of these forms are contemplated for use herein.
  • the C 5 -C 10 alkyl carboxylic acids are particularly preferred due to easier detection in fuels as a result of reduced interference from background fluorescence.
  • Branched acids are also highly preferred due to their relatively higher solubility in organic liquids, such as petroleum fractions and petroleum-miscible solvents.
  • the alkyl acids may be substituted or unsubstituted.
  • carboxylic acids other than alkyl acids may be used to form the ester moiety, with R then being a linear or branched, C 1 -C 18 , substituted or unsubstituted, arylcarboxy, arylalkylcarboxy, cycloalkylcarboxy, alkenylcarboxy radical, or the like, although markers formulated with the above alkyl acids and having the above general formula are most preferred.
  • the markers of the above general formula display a surprisingly high solubility in organic liquids, such as petroleum fractions and petroleum-miscible solvents, in comparison to the currently available coumarine based fluorescent markers which are relatively fuel insoluble. Due to the high fuel solubility, the markers of the present invention can now be provided as stable homogeneous concentrated liquid solutions in petroleum fractions or petroleum-miscible solvents, which have the most commercial utility for the above mentioned reasons.
  • solvents can serve as the liquid carrier for the markers of the above general formula.
  • suitable solvent carriers include, without limitation, non-ionic surfactants, such as aromatic, aliphatic, and ethoxylated nonyl phenols, such as Igepal CO-720 sold by Rhone Poulenc, and the like.
  • suitable solvent carriers are organic solvents including, without limitation, aromatic hydrocarbons, such as toluene and xylene, various petroleum fractions, fatty alcohols, such as n-hexyl alcohol, and pyrrolidones, such as n-methyl-2-pyrrolidone, and the like. Still other suitable solvents will be apparent to those skilled in the art depending on the particular end-use application.
  • concentrations will vary depending on the particular end-use application.
  • Stable homogenous liquid solutions in the aforesaid carriers have been achieved at concentrations ranging from about 1 to about 80 wt. % active marker without the marker falling out of solution.
  • Petroleum markers in particular, are desirably provided in highly concentrated solutions, e.g., 20 wt. % or above. These concentrated liquid solutions are miscible with the petroleum fractions in all proportions and disperse within the petroleum products rapidly. Such liquids are also easily metered into a pipeline or storage tank at any dosage rate desired.
  • the compounds of the general formula above have a number of other desirable characteristics.
  • these compounds are generally colorless and at the end use levels, e.g., 0.25-100 ppm, in for example a petroleum product, do not impart any color to the fuel or otherwise indicates their presence to the naked eye.
  • a suitable source of light such as an ultraviolet light emitting at a 365 nm wavelength.
  • the final amount of marker in a tagged liquid petroleum product will depend upon a variety of factors. It is generally necessary to have at least about 0.25 ppm in the finally tagged liquid petroleum product. Usually, however, a somewhat greater amount will be provided, e.g., 5-40 ppm, but seldom over 100 ppm, enabling the marker to be detected, should the tagged petroleum product be diluted with untagged petroleum product. In industrial applications, higher marker concentrations, e.g., 200-300 ppm, are not unusual. It is generally desirable to provide an amount of marker that might be detected in a simple field test. Of course, where sophisticated testing equipment is available, it may be possible to use even less marker.
  • Extraction of the marker from the tagged petroleum product for detection purposes may conveniently be carried out with solutions typically composed of 5-60 vol.% of a water-miscible, petroleum-immiscible bridging solvent, water, a mineral alkaline source, such as KOH, and/or an alkyl or alkoxy amine.
  • suitable bridging solvents include, without limitation, alcohols, such as methanol and ethanol, glycols, such as ethylene glycol, diethylene glycol, polyethylene glycol and polypropylene glycol, pyrrolidones, such as n-methyl-2-pyrrolidone, and the like.
  • the alkali extractant is believed to hydrolyze the ester moiety, resulting in development of a coumarine extract, particularly 7-hydroxy-4-methylcoumarin, that highly fluoresces, and also changing the solubility of the marker so that it is substantially less soluble in petroleum and substantially more soluble in aqueous extraction medium and thus easily extracted into the aqueous phase.
  • a suitable volume of the aqueous extractant mixture is mixed with a suitable volume of the liquid petroleum to be tested.
  • the volume ratio of extraction mixture to liquid petroleum is between about 1:1 and about 1:40.
  • marker is present in the petroleum product, it will be extracted by the aqueous layer and caused to fluoresce by reaction with the extraction mixture.
  • a simple hand-held ultraviolet light source can be used to qualitatively detect the marker.
  • Another advantage of this invention is the simplicity of the qualitative test afforded by the markers and extraction/development solutions. Experience has indicated that inspectors in the field are often adverse to performing all but the most simple tests.
  • the test as indicated above is a quick and simple test. Convenience can be enhanced by providing an inspector a pre-measured amount of extractant solution in an extraction vial and, preferably, means to measure an appropriate amount of petroleum product. For a rough estimate of marker level, the inspector might even be provided with a chart against which to compare the developed fluorescence intensity.
  • More sophisticated fluorometric equipment may also be used to quantify the amount of marker in the aqueous layer. As long as similar conditions, e.g., volume-to-volume, ratios are used for similar liquid petroleum products, the fluorescence that is produced is relatively quantitative. The test is not "quantitative" in the strict sense that exact levels of marker can be tested in tagged petroleum. This is due in large part to the nature of petroleum products which are mixtures of a wide variety of compounds. Depending upon the particular batch of petroleum product, the level of impurities extractable by the extraction solution may vary. However, in tests conducted according to the present invention, it is generally possible to determine marker levels to within about 5%.
  • a simple surface spot test may be used to determine positive source identification of the product rather than using the above extraction methods.
  • an alkali developing solution is applied over a small area of the product and then passed under an ultraviolet light for detection of fluorescence.
  • the spot test area will appear unaffected under normal lighting and not disturb the visual appearance of the tested area.
  • Other end-use applications can include tagging cement mixes, asphalt mixes, powder coatings, etc.
  • the ester product isolated formed a stable 33 wt. % marker solution in xylene, a petroleum-miscible solvent.
  • Example 1 0.3 ppm of the 33% marker solution of Example 1 was dissolved in isooctane to tag the fuel. Thereafter, the marker was extracted with 1 part alkaline aqueous extractant and 2 parts marked fuel. When the extractant portion of the mixture was isolated and tested under a U.V. lamp (365 nm), a deep blue fluorescent glow was obtained indicating the presence of the marker.
  • a latex flat paint was marked with of 0.1 wt. % of MortraceTM 20169 marker as described in Example 3.
  • the marker did not add any background color to the paint, nor did it show any signs of precipitation or separation.
  • a drop of alkaline aqueous extractant was applied onto and allowed to penetrate the substrate for about 10 minutes. Then the substrate was exposed to a fluorescent light which revealed a bright blue spot indicating presence of the marker.
  • An invisible, i.e., clear, security ink for ink jet printing was prepared from a mixture of 10% n-propanol, 5% propylene glycol, 8.3% alkaline water soluble styrene-acrylic resin, 1% MortraceTM 20166 marker (33% marker of Example 1 in Aromatic 200 Solvent), and balance water. After being filtered through a 5 micron bag, the ink was observed for any signs of precipitation. After about 10 days, a slight ring of precipitate was noticed which would require some further ink improvement to assure proper ink stability. In any event, the marker added no background color to the ink.
  • a felt tip marker containing the alkaline aqueous extractant was moved across a small area of the dried ink and allowed to penetrate the substrate for about ten minutes. Then the substrate was exposed to a fluorescent light which revealed a bright blue spot indicating the presence of the marker.
  • This ink may be formulated with up to 5% Aquamate® dye to impart the desired color to the ink for printing brand labels.

Abstract

Liquid petroleum products and industrial liquids are marked with highly soluble silent fluorescent markers having the formula: ##STR1## where R is selected from a linear or branched C1 -C18 alkylcarboxy radical.

Description

FIELD OF THE INVENTION
This invention is directed to the tagging of petroleum products, such as fuels, and various other industrial products with silent markers and to the detection of such markers.
BACKGROUND OF THE INVENTION
It is well known to tag petroleum fuels, such as gasoline, diesel fuel, heating oil, kerosene, etc., with dyes and markers (collectively referred herein as "taggants"), as for example, as taught in U.S. Pat. Nos. 4,009,008; 4,209,302; and, 4,735,631 (all of Orelup), the teachings of each of which are incorporated by reference.
The need to tag fuels to distinguish them from otherwise identical but unmarked products exists for a number of reasons. It primarily arises from the differing price or tax structures of different grades of fuel or even of the same fuel used for different purposes. For example, diesel fuel used for off-highway non-vehicular purposes, such as mining, lumbering or fishing, is commonly taxed at lower rates than for highway vehicular use. Further, certain grades of oil are used interchangeably for heating oil or diesel fuel, while heating oil is commonly taxed much less. These situations can lead to cheating by unscrupulous persons who purchase lower taxed fuels and substitute or blend them together with higher taxed fuels to avoid the payment of higher taxes. In an effort to thwart these tax evaders, it is common for governments to require tagging of lower taxed fuels to provide field inspectors with the means to identify them from similar fuels subject to higher taxes. Certain fuels are also tagged to deter fraudulent adulteration of higher priced premium grade products with lower priced products, such as by blending kerosene, stove oil, or diesel fuel into regular grade gasoline or blending regular grade gasoline into premium grade gasoline.
Aside from price and tax matters, identification of particular production batches of bulk liquids for protection against theft is another valuable function of taggants, particularly for identifying fuels owned by large government, military or commercial consumers. Fuels are also dyed to provide visually distinguishable brand and grade denominations for commercial and safety reasons. Finally, marketers of brand name products in many industries use taggants to detect substitution of products of others in their distribution system and product adulteration, or to identify their brand name products from others', particularly when subjected to product warranty, product liability, and toxic waste claims.
It is, of course, necessary for the added taggant, whether dye or chemical marker, to be capable of quick and relatively simple identification by non-scientific field personnel. Dyes are the easiest of the taggants to detect, since identification is dependent simply upon color recognition by visual inspection. A "dye" is defined herein as a material lending visible color when dissolved in the dyed product. Examples of dyes which have been employed for coloring petroleum fuels, include C.l. Solvent Red 24, C.l. Solvent Red 19, C.l. Solvent Yellow 14, C.l. Solvent Blue 36, and C.l. Solvent Green 3.
Yet, dyes alone are not always adequate to securely and reliably identify fuels. Many dyes are easily removed by unauthorized persons to evade taxation. For instance, in those countries where tax laws provide that a lightly taxed heating oil be dyed a specific color, one form of deception is to decolorize the lower priced colored heating oil with common absorbents, such as charcoal, carbon black, and various clays, and then sell the colorless product as higher priced diesel fuel. Furthermore, dyes can be obscured by natural substances or additives present in the fuels, particularly when present at low concentrations in a mixture of fuels. Because dyes alone have these shortcomings, a combination of a dye and a marker, a marker alone, or multiple markers which do not obscure each other are often used to tag fuels.
A "marker" is defined herein as a substance which can be dissolved in a liquid to be identified in visually undetectable quantities, and then subsequently detected by performing a simple chemical or physical test on the tagged liquid. Markers that have been proposed include radioactive substances, fluorescent substances, and a variety of lightly colored or virtually colorless compounds which react with selected agents to provide intensely colored derivatives. Radioactive markers, in particular, have not gained wide acceptance due to the necessity for special equipment and handling measures to prevent harmful physiological disturbances to personnel. Regarding the visible color developable markers, the ones traditionally employed include furfural, quinizarin, diphenylamine, various naphthol derivatives, diazo compounds, phenylazophenols, etc. Specific examples and detection methods therefore can be found in the Orelup patents previously incorporated and also in U.S. Pat. Nos. 5,156,653 (Friswell et al.) and 5,252,106 (Hallisy), the teachings of each of which are incorporated by reference.
Regarding the fluorescent markers, they have a number of advantages over the other markers. For instance, they are environmentally friendly and relatively safe to handle, in comparison to radioactive substances. They also exhibit improved light fastness and, therefore, last much longer in the tagged product than color developable markers which fade much quicker. Moreover, fluorescent markers are truly "silent" when mixed with the tagged product and upon later detection. The term "silent" as used herein means that at the levels at which the markers are used, they impart virtually no visible coloration to the tagged product, and which, upon detection, fluoresce rather than undergo a visible color producing reaction. Thus, in all phases of use, they are visually undetectable to the naked eye under normal lighting conditions, even with commonly employed reactive extraction systems, making misuse or dilution of a tagged petroleum product almost impossible. The silent nature makes them desirable for use in non-dyed products. They are suitable as well in dyed products, since the markers do not alter the color imparted by the dyes.
Furthermore, fluorescent markers can provide quantitative determinations of the extent of adulteration. Most markers are adequate for detection qualitatively of their presence in petroleum product; however, many available markers do not provide a good quantitative measurement of their levels in liquid petroleum products. Quantitative determinations are particularly important in cases where dilution is suspected, e.g., dilution of a higher-taxed fuel with a lower-taxed fuel. With fluorescent markers, quantitative determinations may be done by matching the intensity of fluorescence given off by the sample being tested with a set of standards which will indicate approximately the degree of dilution or adulteration.
Yet, because the currently proposed fluorescent markers also suffer from shortcomings, they only have limited use in fuels. Exemplary of the current alkali extractable fluorescent markers is coumarine (1,2-benzopyrone) which is commonly used to tag kerosene. U.S. Pat. No. 2,392,620 (Sparks) discloses certain other fluorescent coumarine derivatives, such as umbelliferone (7-hydroxycoumarin) and 4-methylumbelliferone (7-hydroxy-4-methylcoumarin), for use as petroleum markers. Such coumarine based markers all suffer from having extremely poor fuel solubility, which makes them less than ideal for tagging bulk liquids.
In general, users of petroleum markers prefer markers that are provided in concentrated liquid form in either a petroleum product or a petroleum-miscible solvent. This allows for use of existing storage tanks, pipeline and metering equipment. The liquid form further encourages rapid and complete marker dissolution in the petroleum product to be tagged. Yet, the poor fuel solubility of the currently proposed coumarine based markers (i.e., generally of the order of magnitude of less 0.1% in commonly used petroleum solvents) means that they must be transported and used in dry state which creates attendant handling problems due to dusting and difficulties in metering. Furthermore, the poor fuel solubility precludes the possibility of providing highly concentrated solutions in petroleum or petroleum-miscible solvents containing about 20 wt. % or more active marker. The use of relatively dilute marker solutions requires handling, storage and metering of large volumes to mark a given volume of fuel, a situation which is highly undesirable from an economic point of view.
It would be desirable and is, therefore, an object of the present invention to provide silent fluorescent markers based on coumarine derivatives which are highly soluble in petroleum fractions and petroleum-compatible solvents, and which can be provided in a stable highly concentrated liquid form and readily used to tag industrial liquid products and petroleum fuels.
The article Roberts, I. M., Lipids 20: 243-247 (1985), discloses a fluorescent medical assay to screen for lipase activity which is essential to normal fat digestion in physiological systems. The assay employs certain linear fatty acid esters of 4-methylumbelliferone, namely 4-methylumbelliferone butyrate or 4-methylumbelliferone palmitate. None of these compounds are disclosed to be useful as markers for industrial liquids or petroleum fuels.
SUMMARY OF THE INVENTION
In accordance with the present invention, industrial and petroleum products, are tagged with a silent fluorescent marker of the general class of chemicals described as linear or branched chain alkyl acid esters of 7-hydroxy-4-methylcoumarin (4-methylumbelliferone).
More particularly, it is the linear or branched C1 -C18 alkyl acid esters that are especially desirable, with the branched C5 -C10 alkyl acid esters being even more preferred. Markers at levels of about 0.25 parts per million (ppm) or above (usually at least about 1 ppm) are added to liquid petroleum products. Since these markers have relative high solubilities in organic liquids, such as petroleum and petroleum-miscible solvents, they advantageously can be added as concentrated liquids, rather than pure solid compounds, to the liquids to be tagged. The markers may be detected in the products by extraction with an alkaline aqueous solution. This alkaline aqueous solution not only extracts the marker from the tagged product, but causes the marker to react and fluoresce, which when tested under a suitable source of light identifies the product as to source, permitted use, etc.
The present invention further provides novel compounds and novel highly concentrated liquid solutions of such compounds that are particularly suitable as markers for industrial and petroleum products.
DETAILED DESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS
The markers of the present invention have the general formula: ##STR2## where the R is a radical selected from a linear or branched C1 -C18 alkylcarboxy, preferably a linear or branched C5 -C10 alkylcarboxy, most preferably a branched C8 alkylcarboxy.
These compounds are conveniently synthesized by esterification of an appropriately selected linear or branched C1 -C18 alkyl carboxylic acid, preferably a C5 -C10 alkyl carboxylic acid, or acid halides thereof, such as acid chlorides, with 7-hydroxy-4-methylcoumarin. Esterification can be carried out by standard techniques well known in the art. Examples of suitable linear alkyl carboxylic acids (or acid halides) useful herein include, without limitation, n-hexanoyl chloride, n-octanoyl chloride, and the like. Examples of suitable branched alkyl carboxylic acids (or acid halides) useful herein include, without limitation, 2-methyl propanoyl chloride, 2-ethyl hexanoyl chloride, and the like, with 2-ethyl hexanoyl chloride being most preferred. It should be understood that whether acids or acid halides are listed above, any of these forms are contemplated for use herein.
In this invention, the C5 -C10 alkyl carboxylic acids are particularly preferred due to easier detection in fuels as a result of reduced interference from background fluorescence. Branched acids are also highly preferred due to their relatively higher solubility in organic liquids, such as petroleum fractions and petroleum-miscible solvents. Those skilled in the art will understand that the alkyl acids may be substituted or unsubstituted. It should also be understood that carboxylic acids other than alkyl acids may be used to form the ester moiety, with R then being a linear or branched, C1 -C18, substituted or unsubstituted, arylcarboxy, arylalkylcarboxy, cycloalkylcarboxy, alkenylcarboxy radical, or the like, although markers formulated with the above alkyl acids and having the above general formula are most preferred.
Due to the presence of the ester moiety, the markers of the above general formula display a surprisingly high solubility in organic liquids, such as petroleum fractions and petroleum-miscible solvents, in comparison to the currently available coumarine based fluorescent markers which are relatively fuel insoluble. Due to the high fuel solubility, the markers of the present invention can now be provided as stable homogeneous concentrated liquid solutions in petroleum fractions or petroleum-miscible solvents, which have the most commercial utility for the above mentioned reasons.
A wide variety of solvents can serve as the liquid carrier for the markers of the above general formula. Examples of suitable solvent carriers include, without limitation, non-ionic surfactants, such as aromatic, aliphatic, and ethoxylated nonyl phenols, such as Igepal CO-720 sold by Rhone Poulenc, and the like. Other suitable solvent carriers are organic solvents including, without limitation, aromatic hydrocarbons, such as toluene and xylene, various petroleum fractions, fatty alcohols, such as n-hexyl alcohol, and pyrrolidones, such as n-methyl-2-pyrrolidone, and the like. Still other suitable solvents will be apparent to those skilled in the art depending on the particular end-use application.
Those skilled in the art will further understand that concentrations will vary depending on the particular end-use application. Stable homogenous liquid solutions in the aforesaid carriers have been achieved at concentrations ranging from about 1 to about 80 wt. % active marker without the marker falling out of solution. Petroleum markers, in particular, are desirably provided in highly concentrated solutions, e.g., 20 wt. % or above. These concentrated liquid solutions are miscible with the petroleum fractions in all proportions and disperse within the petroleum products rapidly. Such liquids are also easily metered into a pipeline or storage tank at any dosage rate desired.
While the major advantage of the compounds of this invention is high fuel solubility, the compounds of the general formula above have a number of other desirable characteristics. For instance, these compounds are generally colorless and at the end use levels, e.g., 0.25-100 ppm, in for example a petroleum product, do not impart any color to the fuel or otherwise indicates their presence to the naked eye. On the other hand, when extracted from petroleum in alkaline aqueous solution, they produce extracts that strongly fluoresce blue when tested under a suitable source of light, such as an ultraviolet light emitting at a 365 nm wavelength. Although it is true that certain petroleum products contain naturally fluorescing materials which could mask or obscure the fluorescence of the markers of this invention or provide a false positive, upon extraction under alkaline conditions, the natural compounds generally do not fluoresce while the marker compounds do. Furthermore, while being present in fuels only in minute parts-per-million (ppm) quantities, the compounds of this invention are easily extracted from the fuel specimen being tested and detected by a simple on-site field test. They further have identities which can be confirmed by laboratory methods. In addition, they are stable at least over the anticipated storage life of the tagged fuels (usually three to six months) and due to their excellent light fastness usually last much longer.
The final amount of marker in a tagged liquid petroleum product will depend upon a variety of factors. It is generally necessary to have at least about 0.25 ppm in the finally tagged liquid petroleum product. Usually, however, a somewhat greater amount will be provided, e.g., 5-40 ppm, but seldom over 100 ppm, enabling the marker to be detected, should the tagged petroleum product be diluted with untagged petroleum product. In industrial applications, higher marker concentrations, e.g., 200-300 ppm, are not unusual. It is generally desirable to provide an amount of marker that might be detected in a simple field test. Of course, where sophisticated testing equipment is available, it may be possible to use even less marker.
Extraction of the marker from the tagged petroleum product for detection purposes may conveniently be carried out with solutions typically composed of 5-60 vol.% of a water-miscible, petroleum-immiscible bridging solvent, water, a mineral alkaline source, such as KOH, and/or an alkyl or alkoxy amine. Examples of suitable bridging solvents include, without limitation, alcohols, such as methanol and ethanol, glycols, such as ethylene glycol, diethylene glycol, polyethylene glycol and polypropylene glycol, pyrrolidones, such as n-methyl-2-pyrrolidone, and the like.
Although not wishing to be bound by theory, the alkali extractant is believed to hydrolyze the ester moiety, resulting in development of a coumarine extract, particularly 7-hydroxy-4-methylcoumarin, that highly fluoresces, and also changing the solubility of the marker so that it is substantially less soluble in petroleum and substantially more soluble in aqueous extraction medium and thus easily extracted into the aqueous phase.
As a simple field test, a suitable volume of the aqueous extractant mixture is mixed with a suitable volume of the liquid petroleum to be tested. Typically the volume ratio of extraction mixture to liquid petroleum is between about 1:1 and about 1:40. If marker is present in the petroleum product, it will be extracted by the aqueous layer and caused to fluoresce by reaction with the extraction mixture. A simple hand-held ultraviolet light source can be used to qualitatively detect the marker.
Another advantage of this invention is the simplicity of the qualitative test afforded by the markers and extraction/development solutions. Experience has indicated that inspectors in the field are often adverse to performing all but the most simple tests. The test as indicated above is a quick and simple test. Convenience can be enhanced by providing an inspector a pre-measured amount of extractant solution in an extraction vial and, preferably, means to measure an appropriate amount of petroleum product. For a rough estimate of marker level, the inspector might even be provided with a chart against which to compare the developed fluorescence intensity.
More sophisticated fluorometric equipment may also be used to quantify the amount of marker in the aqueous layer. As long as similar conditions, e.g., volume-to-volume, ratios are used for similar liquid petroleum products, the fluorescence that is produced is relatively quantitative. The test is not "quantitative" in the strict sense that exact levels of marker can be tested in tagged petroleum. This is due in large part to the nature of petroleum products which are mixtures of a wide variety of compounds. Depending upon the particular batch of petroleum product, the level of impurities extractable by the extraction solution may vary. However, in tests conducted according to the present invention, it is generally possible to determine marker levels to within about 5%.
In non-petroleum applications, such as where the markers are used to tag various solvent and water borne liquid coatings that form dry films after application, e.g., paints, floor finishes, and security inks used to print brand name labels, such as blue jean labels, a simple surface spot test may be used to determine positive source identification of the product rather than using the above extraction methods. In this method, an alkali developing solution is applied over a small area of the product and then passed under an ultraviolet light for detection of fluorescence. The spot test area will appear unaffected under normal lighting and not disturb the visual appearance of the tested area. Other end-use applications can include tagging cement mixes, asphalt mixes, powder coatings, etc.
The invention will now be described in greater detail by way of specific non-limiting examples. All parts and percentages specified herein are by weight unless otherwise stated.
EXAMPLE 1 Preparation of 2-Ethyl Hexanoic Acid Ester of 7-Hydroxy-4-Methyl Coumarine ##STR3##
To a 2 liter flask, a reaction mixture of 55 g (0.5 mole) resorcinol, 71.5 g (1.3 mole) ethyl acetoacetate, 200 g xylene, and 10 g Amberlyst 15 (Rohm and Haas) ion exchange resin catalyst was charged. With heating to a strong reflux at 110-130° C., a Von Pechman condensation reaction was carried out between resorcinol and ethyl acetoacetate to yield 7-hydroxy-4-methyl coumarine product.
When the reaction was complete (no water of condensation in azeotrope), the product was then reacted in the same flask with excess 2-ethyl hexanoyl chloride at a molar ratio of 1 to 1.3. With heating to a gentle reflux at 105° C., an esterification reaction was carried out and the final product was formed. Upon completion of the reaction (no more exotherm), the organic layer was cooled, washed free of excess hydrochloric acid, stripped from xylene, and filtered and dried. The 156 g ester residue isolated was a colorless wax-like semi-solid material. The yield was determined to be about 88-92% of theoretical.
The ester product isolated formed a stable 33 wt. % marker solution in xylene, a petroleum-miscible solvent.
EXAMPLE 2 Extraction of Compound Prepared in Example 1 from Fuel
0.3 ppm of the 33% marker solution of Example 1 was dissolved in isooctane to tag the fuel. Thereafter, the marker was extracted with 1 part alkaline aqueous extractant and 2 parts marked fuel. When the extractant portion of the mixture was isolated and tested under a U.V. lamp (365 nm), a deep blue fluorescent glow was obtained indicating the presence of the marker.
EXAMPLE 3 Spot Test Detection of Compound Prepared in Example 1 in Dried Floor Finish
Two liquid floor finishes, one being a urethane and the other being an acrylic, were each marked at a level of 0.1 wt. % with a liquid fluorescent marker solution known as Mortrace™ 20169 (33% marker of Example 1 in Igepal CO-720) and used to coat six different types of floor boards. No visible effect was observed on the floor finishes tested, nor was there evidence of precipitation or separation after one week of storage. The coated wood panels were submitted to ambient light and temperature conditions for about 6 months and then checked for a positive result. The test method used was a simple drop test using alkaline aqueous extractant. After the drop was allowed to penetrate the surface area contacted (approximately 10 minutes), a fluorescent light was used to observe the resulting bright blue fluorescent dot in all coated wood panels.
EXAMPLE 4 Spot Test Detection of Compound Prepared in Example 1 in Dried Paint
A latex flat paint was marked with of 0.1 wt. % of Mortrace™ 20169 marker as described in Example 3. The marker did not add any background color to the paint, nor did it show any signs of precipitation or separation. After the paint was coated onto a aluminum foil substrate and allowed to dry, a drop of alkaline aqueous extractant was applied onto and allowed to penetrate the substrate for about 10 minutes. Then the substrate was exposed to a fluorescent light which revealed a bright blue spot indicating presence of the marker.
EXAMPLE 5 Spot Test Detection of Compound Prepared in Example 1 in Brand Name Labels
An invisible, i.e., clear, security ink for ink jet printing was prepared from a mixture of 10% n-propanol, 5% propylene glycol, 8.3% alkaline water soluble styrene-acrylic resin, 1% Mortrace™ 20166 marker (33% marker of Example 1 in Aromatic 200 Solvent), and balance water. After being filtered through a 5 micron bag, the ink was observed for any signs of precipitation. After about 10 days, a slight ring of precipitate was noticed which would require some further ink improvement to assure proper ink stability. In any event, the marker added no background color to the ink. After the ink was printed onto a porous substrate and allowed to dry, a felt tip marker containing the alkaline aqueous extractant was moved across a small area of the dried ink and allowed to penetrate the substrate for about ten minutes. Then the substrate was exposed to a fluorescent light which revealed a bright blue spot indicating the presence of the marker. This ink may be formulated with up to 5% Aquamate® dye to impart the desired color to the ink for printing brand labels.
From the foregoing it will be seen that this invention is one well adapted to attain all ends and objects hereinabove set forth together with the other advantages which are apparent and inherent. Since many possible variations may be made of the invention without departing from the scope thereof, the invention is not intended to be limited to the embodiments and examples disclosed, which are considered to be purely exemplary. Accordingly, reference should be made to the appended claims to assess the true spirit and scope of the invention, in which exclusive rights are claimed.

Claims (24)

What is claimed is:
1. A composition comprising a liquid product selected from the group consisting of paints, coatings, inks, and petroleum products, and a detectable level of a marker having the formula: ##STR4## where R is selected from a linear or branched C1 -C18 alkylcarboxy radical.
2. The composition according to claim 1 wherein said liquid product is a petroleum product.
3. The composition according to claim 1 wherein said marker is present at a level of at least about 0.25 ppm.
4. The composition according to claim 1 wherein R is selected from a linear or branched C5 -C10 alkylcarboxy radical.
5. The composition according to claim 1 wherein R is a branched C8 alkylcarboxy radical derived from 2-ethyl hexanoyl chloride or its corresponding acid.
6. The composition according to claim 1 wherein said marker is provided as a concentrated liquid solution which comprises about 20 wt. % or more marker and the balance petroleum-miscible liquid carrier.
7. The composition according to claim 6 wherein said liquid carrier is selected from the group consisting of ethoxylated nonyl phenols, aromatic hydrocarbons, and petroleum fractions.
8. The composition according to claim 1, wherein the marker is present at a level unobservable to the naked eye.
9. A method of marking a liquid product selected from the group consisting of paints, coatings, inks, and petroleum products, comprising adding to said liquid product a detectable level of a marker having the formula: ##STR5## where R is selected from a linear or branched C1 -C18 alkylcarboxy radical.
10. The method according to claim 9 wherein said liquid product is a petroleum product.
11. The method according to claim 9 wherein said marker is added at a level of at least about 0.25 ppm.
12. The method according to claim 9 wherein R is selected from a linear or branched C5 -C10 alkylcarboxy radical.
13. The method according to claim 9 wherein R is a branched C8 alkylcarboxy radical derived from 2-ethyl hexanoyl chloride or its corresponding acid.
14. The method according to claim 9 wherein said marker is added as a concentrated liquid solution comprising about 20 wt. % or more marker and the balance petroleum-miscible liquid carrier selected from the group consisting of ethoxylated nonyl phenols, aromatic hydrocarbons, and petroleum fractions.
15. The method according to claim 9, wherein said marker is added at a level unobservable to the naked eye.
16. A liquid marker solution, comprising a petroleum-miscible liquid carrier and a compound having the general formula: ##STR6## where R is selected from a linear or branched C1 -C18 alkylcarboxy radical.
17. The solution according to claim 16 wherein R is selected from a linear or branched C5 -C10 alkylcarboxy radical.
18. The solution according to claim 16 wherein said petroleum-miscible liquid carrier is selected from the group consisting of ethoxylated nonyl phenols, aromatic hydrocarbons, and petroleum fractions.
19. The solution according to claim 16 wherein said marker comprises about 20 wt. % or more of said solution and balance carrier.
20. A fluorescent marker composition having the formula: ##STR7##
21. A fluorescent marker composition comprising the reaction product of 7-hydroxy-4-methylcoumarin and 2-ethyl hexanoyl chloride or its corresponding acid.
22. A method of identifying a liquid product selected from the group consisting of paints, coatings, inks, and petroleum products, comprising: a) providing a liquid product selected from the group consisting of paints, coatings, inks, and petroleum products, having incorporated therein a detectable level of a marker having the formula: ##STR8## wherein R is selected from a linear or branched C1 -C18 alkylcarboxy radical; and,
b) subsequently identifying the so marked product by extracting said marker from said product with an alkaline aqueous extractant, and observing the fluorescence of said marker in said extractant under a suitable light source.
23. The method according to claim 22, wherein said liquid product is a petroleum product.
24. The method according to claim 22, wherein said marker is incorporated in said liquid product at a level unobservable to the naked eye.
US09/023,729 1998-02-13 1998-02-13 Silent fluorescent petroleum markers Expired - Fee Related US5980593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/023,729 US5980593A (en) 1998-02-13 1998-02-13 Silent fluorescent petroleum markers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/023,729 US5980593A (en) 1998-02-13 1998-02-13 Silent fluorescent petroleum markers

Publications (1)

Publication Number Publication Date
US5980593A true US5980593A (en) 1999-11-09

Family

ID=21816866

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/023,729 Expired - Fee Related US5980593A (en) 1998-02-13 1998-02-13 Silent fluorescent petroleum markers

Country Status (1)

Country Link
US (1) US5980593A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017784A1 (en) * 1999-09-06 2001-03-15 Inksure Ltd. Genuine printing refill and method
WO2002004431A1 (en) * 2000-07-12 2002-01-17 Sk Corporation Silent mark for oil product and detection method thereto
WO2002010724A1 (en) * 2000-07-31 2002-02-07 Kop-Coat, Inc. Method of analysis for the presence of wood treatment substances on wood
US6712894B2 (en) 2001-05-09 2004-03-30 Cabot Corporation Method of producing secure images using inks comprising modified pigment particles
US6808542B2 (en) 2001-12-26 2004-10-26 American Dye Source, Inc. Photoluminescent markers and methods for detection of such markers
US20050022311A1 (en) * 2002-04-22 2005-02-03 The Procter & Gamble Company Fabric article treating system and method
US20070042434A1 (en) * 2003-05-14 2007-02-22 Petra Von Stein Method for identifying tff2 regulating agents and agents identified using said method
WO2007037586A1 (en) * 2005-08-22 2007-04-05 Hyun-Ho Sim Fluorescent marker comprising double bond ester group and method for marking and detecting the same
WO2007140486A2 (en) 2006-05-31 2007-12-06 Cabot Corporation Reflective features with co-planar elements and processes for making them
US20070278422A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Printable reflective features formed from multiple inks and processes for making them
US20070281140A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Colored reflective features and inks and processes for making them
US20070281177A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Colored Reflective Features And Inks And Processes For Making Them
US20070281136A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Ink jet printed reflective features and processes and inks for making them
US20080233654A1 (en) * 2005-08-24 2008-09-25 Johnson Matthey Public Limited Company Tagging System
US20130179090A1 (en) * 2010-09-28 2013-07-11 Authentix, Inc. Determining the Quantity of a Taggant in a Liquid Sample
GB2505148A (en) * 2011-04-07 2014-02-26 Virdia Ltd Lignocellulose conversion processes and products
WO2014083145A1 (en) 2012-11-30 2014-06-05 Sicpa Holding Sa Marking of material, marked material and process of authentication or dilution determination
WO2014087360A1 (en) 2012-12-06 2014-06-12 Indian Oil Corporation Limited Method for detection of kerosene adulteration with extrinsic marker in gasoline, aviation turbine fuel and diesel
EP2821940A1 (en) 2013-07-03 2015-01-07 Lumiprobe GmbH Binary labeling
US9410216B2 (en) 2010-06-26 2016-08-09 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9533523B2 (en) 2006-05-31 2017-01-03 Sicpa Holding Sa Reflective features with co-planar elements and processes for making them
US9995681B2 (en) 2010-09-28 2018-06-12 Authentix, Inc. Determining the quantity of a taggant in a liquid sample
US10066186B2 (en) 2013-04-22 2018-09-04 Basf Se Lubricating oil compositions containing a halide seal compatibility additive and a second seal compatibility additive
US10088430B2 (en) * 2016-02-15 2018-10-02 Exxonmobil Research And Engineering Company Systems and methods for authenticating working fluids
US10106759B2 (en) 2013-04-22 2018-10-23 Basf Se Seal compatibility additive to improve fluoropolymer seal compatibility of lubricant compositions
RU2744458C1 (en) * 2020-06-08 2021-03-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Use of derivatives of phenylcyanocoumarin as a fluorescent marker in the marking and identification of rubber products
RU2745064C1 (en) * 2020-02-04 2021-03-18 Общество с ограниченной ответственностью Фирма "ОЛБО" Method of marking petroleum products

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2392620A (en) * 1942-08-20 1946-01-08 Standard Oil Co Identifying petroleum products
US2535058A (en) * 1947-03-03 1950-12-26 Universal Oil Prod Co Stabilization process
US2786065A (en) * 1953-05-18 1957-03-19 Wisconsin Alumni Res Found Esters of 4-hydroxycoumarin
US2843495A (en) * 1954-11-01 1958-07-15 Universal Oil Prod Co Stabilization of organic compounds
US4009008A (en) * 1972-12-08 1977-02-22 Morton-Norwich Products, Inc. Colored water immiscible organic liquid
US4209302A (en) * 1979-05-10 1980-06-24 Morton-Norwich Products, Inc. Marker for petroleum fuels
US4735631A (en) * 1983-12-16 1988-04-05 Morton Thiokol, Inc. Colored petroleum markers
WO1990012886A1 (en) * 1989-04-26 1990-11-01 Hayes Kenneth R Fluorescent aquatic bioassay and procedure
US5156653A (en) * 1991-04-18 1992-10-20 Morton International, Inc. Silent markers for petroleum, method of tagging, and method of detection
US5205840A (en) * 1991-09-30 1993-04-27 Morton International, Inc. Markers for petroleum, method of tagging, and method of detection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2392620A (en) * 1942-08-20 1946-01-08 Standard Oil Co Identifying petroleum products
US2535058A (en) * 1947-03-03 1950-12-26 Universal Oil Prod Co Stabilization process
US2786065A (en) * 1953-05-18 1957-03-19 Wisconsin Alumni Res Found Esters of 4-hydroxycoumarin
US2843495A (en) * 1954-11-01 1958-07-15 Universal Oil Prod Co Stabilization of organic compounds
US4009008A (en) * 1972-12-08 1977-02-22 Morton-Norwich Products, Inc. Colored water immiscible organic liquid
US4209302A (en) * 1979-05-10 1980-06-24 Morton-Norwich Products, Inc. Marker for petroleum fuels
US4735631A (en) * 1983-12-16 1988-04-05 Morton Thiokol, Inc. Colored petroleum markers
WO1990012886A1 (en) * 1989-04-26 1990-11-01 Hayes Kenneth R Fluorescent aquatic bioassay and procedure
US5156653A (en) * 1991-04-18 1992-10-20 Morton International, Inc. Silent markers for petroleum, method of tagging, and method of detection
US5205840A (en) * 1991-09-30 1993-04-27 Morton International, Inc. Markers for petroleum, method of tagging, and method of detection

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IP Standard Test Method 374, Determination of Coumarin Content of Kerosine, 374.1 374.4 (1992). *
IP Standard Test Method 374, Determination of Coumarin Content of Kerosine, 374.1-374.4 (1992).
Roberts, I.M., Hydrolysis of 4 Methylumbelliferyl Butyrate: A Convenient and Sensitive Fluorescent Assay for Lipase Activity, Lipids, vol. 20, No. 4, 243 247 (1985). *
Roberts, I.M., Hydrolysis of 4-Methylumbelliferyl Butyrate: A Convenient and Sensitive Fluorescent Assay for Lipase Activity, Lipids, vol. 20, No. 4, 243-247 (1985).

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017784A1 (en) * 1999-09-06 2001-03-15 Inksure Ltd. Genuine printing refill and method
US20040092738A1 (en) * 2000-07-12 2004-05-13 Hwan-Ho Park Silent mark for oil product and detection method thereto
WO2002004431A1 (en) * 2000-07-12 2002-01-17 Sk Corporation Silent mark for oil product and detection method thereto
US6991914B2 (en) 2000-07-12 2006-01-31 Sk Corporation Silent marker for an oil product and associated detection method
US6606155B1 (en) * 2000-07-31 2003-08-12 Kopcoat, Inc. Method analysis for the presence of wood treatment substances on wood
AU773379B2 (en) * 2000-07-31 2004-05-27 Kop-Coat, Inc. Method of analysis for the presence of wood treatment substances on wood
WO2002010724A1 (en) * 2000-07-31 2002-02-07 Kop-Coat, Inc. Method of analysis for the presence of wood treatment substances on wood
US6712894B2 (en) 2001-05-09 2004-03-30 Cabot Corporation Method of producing secure images using inks comprising modified pigment particles
US6808542B2 (en) 2001-12-26 2004-10-26 American Dye Source, Inc. Photoluminescent markers and methods for detection of such markers
US20050022311A1 (en) * 2002-04-22 2005-02-03 The Procter & Gamble Company Fabric article treating system and method
US20070042434A1 (en) * 2003-05-14 2007-02-22 Petra Von Stein Method for identifying tff2 regulating agents and agents identified using said method
WO2007037586A1 (en) * 2005-08-22 2007-04-05 Hyun-Ho Sim Fluorescent marker comprising double bond ester group and method for marking and detecting the same
US20090104711A1 (en) * 2005-08-22 2009-04-23 Hyun-Ho Sim Fluorescent marker comprising double bond ester group and method for marking and detecting the same
US20080233654A1 (en) * 2005-08-24 2008-09-25 Johnson Matthey Public Limited Company Tagging System
US9156707B2 (en) 2005-08-24 2015-10-13 Johnson Matthey Plc Tagging system
US8047575B2 (en) 2006-05-31 2011-11-01 Cabot Corporation Printable features formed from multiple inks and processes for making them
WO2007140486A2 (en) 2006-05-31 2007-12-06 Cabot Corporation Reflective features with co-planar elements and processes for making them
US20070281136A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Ink jet printed reflective features and processes and inks for making them
US20070281177A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Colored Reflective Features And Inks And Processes For Making Them
US20070281140A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Colored reflective features and inks and processes for making them
US20070278422A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Printable reflective features formed from multiple inks and processes for making them
US8070186B2 (en) 2006-05-31 2011-12-06 Cabot Corporation Printable reflective features formed from multiple inks and processes for making them
US20070279718A1 (en) * 2006-05-31 2007-12-06 Cabot Corporation Reflective features with co-planar elements and processes for making them
US9533523B2 (en) 2006-05-31 2017-01-03 Sicpa Holding Sa Reflective features with co-planar elements and processes for making them
US8790459B2 (en) 2006-05-31 2014-07-29 Cabot Corporation Colored reflective features and inks and processes for making them
US10752878B2 (en) 2010-06-26 2020-08-25 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9963673B2 (en) 2010-06-26 2018-05-08 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9410216B2 (en) 2010-06-26 2016-08-09 Virdia, Inc. Sugar mixtures and methods for production and use thereof
US9995681B2 (en) 2010-09-28 2018-06-12 Authentix, Inc. Determining the quantity of a taggant in a liquid sample
US20130179090A1 (en) * 2010-09-28 2013-07-11 Authentix, Inc. Determining the Quantity of a Taggant in a Liquid Sample
US11667981B2 (en) 2011-04-07 2023-06-06 Virdia, Llc Lignocellulosic conversion processes and products
US9512495B2 (en) 2011-04-07 2016-12-06 Virdia, Inc. Lignocellulose conversion processes and products
GB2505148B (en) * 2011-04-07 2015-07-01 Virdia Ltd Lignocellulose conversion processes and products
GB2505148A (en) * 2011-04-07 2014-02-26 Virdia Ltd Lignocellulose conversion processes and products
US10876178B2 (en) 2011-04-07 2020-12-29 Virdia, Inc. Lignocellulosic conversion processes and products
WO2014083145A1 (en) 2012-11-30 2014-06-05 Sicpa Holding Sa Marking of material, marked material and process of authentication or dilution determination
WO2014087360A1 (en) 2012-12-06 2014-06-12 Indian Oil Corporation Limited Method for detection of kerosene adulteration with extrinsic marker in gasoline, aviation turbine fuel and diesel
US10106759B2 (en) 2013-04-22 2018-10-23 Basf Se Seal compatibility additive to improve fluoropolymer seal compatibility of lubricant compositions
US10066186B2 (en) 2013-04-22 2018-09-04 Basf Se Lubricating oil compositions containing a halide seal compatibility additive and a second seal compatibility additive
EP2821940A1 (en) 2013-07-03 2015-01-07 Lumiprobe GmbH Binary labeling
US10088430B2 (en) * 2016-02-15 2018-10-02 Exxonmobil Research And Engineering Company Systems and methods for authenticating working fluids
RU2745064C1 (en) * 2020-02-04 2021-03-18 Общество с ограниченной ответственностью Фирма "ОЛБО" Method of marking petroleum products
RU2744458C1 (en) * 2020-06-08 2021-03-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Use of derivatives of phenylcyanocoumarin as a fluorescent marker in the marking and identification of rubber products

Similar Documents

Publication Publication Date Title
US5980593A (en) Silent fluorescent petroleum markers
CA2090818C (en) Markers for petroleum, method of tagging, and method of detection
CA2281213C (en) Method for invisibly tagging petroleum products using visible dyes
CA2210888C (en) Fluorescent petroleum markers
RU2187539C2 (en) Composition including petroleum product and thymol-phthaleine marker, method and solution for marking petroleum product, and a method for identification of petroleum product
US6482651B1 (en) Aromatic esters for marking or tagging petroleum products
EP0509818A1 (en) Silent markers for petroleum, method of tagging, and method of detection
JP5458461B2 (en) Organic solvent based molecular tag
US5252106A (en) Base extractable petroleum markers
AU662321B1 (en) Acid extractable petroleum fuel markers
US7825159B2 (en) Mixtures of aromatic esters for marking or tagging organic products, marker compositions comprising the same and manufacturing methods thereof
EP0310319B1 (en) Use of alkyl (c1-c4)-phenyl-ketone for marking oil products and organic solvents
EP0424886B1 (en) Marking and denaturing agent for water-soluble organic solvents
MXPA97005483A (en) Developers of petroleo fluorescen

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORTON INTERNATIONAL, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRISWELL, MICHAEL W.;ZIMIN, ALEJANDRO, SR.;CAPUTO, PETER A.;REEL/FRAME:008988/0169;SIGNING DATES FROM 19980211 TO 19980212

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ROHM AND HAAS CHEMICALS LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORTON INTERNATIONAL, INC.;REEL/FRAME:016480/0091

Effective date: 20050722

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20111109