US5938697A - Stent having variable properties - Google Patents

Stent having variable properties Download PDF

Info

Publication number
US5938697A
US5938697A US09/034,249 US3424998A US5938697A US 5938697 A US5938697 A US 5938697A US 3424998 A US3424998 A US 3424998A US 5938697 A US5938697 A US 5938697A
Authority
US
United States
Prior art keywords
stent
region
length
diameter
end region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/034,249
Inventor
Douglas P. Killion
James R. Lininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21875223&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5938697(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Priority to US09/034,249 priority Critical patent/US5938697A/en
Assigned to SCIMED LIFE SYSTEMS, INC. reassignment SCIMED LIFE SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LININGER, JAMES R., KILLION, DOUGLAS P.
Priority to DE69926219T priority patent/DE69926219T2/en
Priority to AT99908503T priority patent/ATE299681T1/en
Priority to AT05012953T priority patent/ATE471130T1/en
Priority to PCT/US1999/004198 priority patent/WO1999044540A2/en
Priority to EP99908503A priority patent/EP1059894B1/en
Priority to EP05012953A priority patent/EP1598031B1/en
Priority to DE69942512T priority patent/DE69942512D1/en
Priority to JP2000534148A priority patent/JP4261770B2/en
Priority to US09/314,658 priority patent/US6159238A/en
Assigned to SCIMED LIFE SYSTEMS, INC. reassignment SCIMED LIFE SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LININGER, JAMES R., KILLION, DOUGLAS P.
Publication of US5938697A publication Critical patent/US5938697A/en
Application granted granted Critical
Priority to US09/735,398 priority patent/US6485509B2/en
Priority to US10/301,983 priority patent/US6669723B2/en
Priority to US10/703,642 priority patent/US7060091B2/en
Priority to US11/356,750 priority patent/US7402169B2/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIMED LIFE SYSTEMS, INC.
Priority to US12/177,734 priority patent/US7780719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0048Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in mechanical expandability, e.g. in mechanical, self- or balloon expandability

Definitions

  • the invention relates generally to medical devices and their use. More specifically, the invention relates to stents for holding vessels such as arteries open to flow, particularly in the regions of bifurcations.
  • Stents are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. They have also been implanted in urinary tracts and bile ducts. They are used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding or expanded by an internal radial force, such as when mounted on a balloon.
  • Stents are generally tubular devices for insertion into tubular vessel regions.
  • Balloon expandable stents require mounting over a balloon, positioning, and inflation of the balloon to expand the stent radially outward.
  • Self-expanding stents expand into place when unconstrained, without requiring assistance from a balloon.
  • a self-expanding stent is biased so as to expand upon release from the delivery catheter.
  • a vessel having a stenosis may be viewed as an inwardly protruding arcuate addition of hardened material to a cylindrical vessel wall, where the stenosed region presents a somewhat rigid body attached along, and to, the elastic wall.
  • the stenosis presents resistance to any expansion of the vessel in the region bridged by the stenosis.
  • Stenoses vary in composition, for example, in the degree of calcification, and therefore vary in properties as well.
  • arcuate geometry of any stenoses present a variation in resistance along the vessel axis to stent outward radial force. Specifically, stenosed vessel resistance is often greatest toward the middle, lessening toward the ends, with a rapid decrease at the start of healthy vessel tissue.
  • the left and right common carotid arteries are typical of such vascular bifurcations. These arteries are the principal arteries of the head and neck. Both of the common carotid arteries are quite similar and divide at a carotid bifurcation or bulb into an external carotid artery and an internal carotid artery. In the region of the carotid bulb and the ostium of the internal carotid artery, stenoses present a particular problem for carotid stenting due to the large tapering of the vessel interior from the common carotid artery (both the left and the right) to the internal carotid artery.
  • the region of the carotid bifurcation or bulb happens to be where stenoses most often occur, particularly in the region of the ostium to the internal carotid artery in both of the carotid arteries.
  • Self-expanding stents are generally preferred for carotid stenting due to the anatomical location being subject to external compression.
  • a conventional self-expanding stent optimally has a length greater than the length of the stenosed region to be kept open.
  • Current stents present a substantially uniform outward radial force and a uniform resistance to compression along their length.
  • stents do not vary these forces to match vessel geometries or resistances.
  • a constant force stent, i.e., prior art stents, with sufficient force to maintain an open channel within a stenosed vessel and to resist compression, has greater force than necessary in the healthy vessel portion distal to the stenosis.
  • the stent end may thus flare outward, protruding into, and possibly irritating non-stenosed tissue.
  • Stenoses can occur in vessel regions having asymmetric geometry lying on either side of the stenosis.
  • One example of this is the ostium of an internal carotid artery, having a wide opening converging into a narrower artery.
  • a conventional stent placed in the region of the ostium would provide substantially uniform outward radial force over a non-uniform vessel diameter, that is, the force provided would be greater in a small diameter than in a larger diameter. If this force is properly matched for the smaller vessel region, it is likely less than optimal for the larger region. Conversely, if this force is properly matched for the larger vessel region, it is likely more than optimal for the smaller vessel region.
  • a tapered stent capable of providing sufficient force to keep a vessel open within a rebounding stenosis, while providing only necessary force against healthy, non-stenosed vessel regions.
  • a tapered stent providing necessary, but only necessary force (outward force and compression resistance) along a stenosis in a vessel region having non-uniform vessel diameter on either side of the stenosis.
  • This is provided by the tapered stents of this invention which exhibit differing radial force, cell size, geometry, flexibility and which provide substantially more constant metal to artery ratio (M/A) over their length.
  • M/A is the ratio of the metal surface area of a stent to the surface area of the vessel or the like that the stent is covering.
  • the present invention in a preferred embodiment, includes a self-expanding stent of shape-memory metal having a tubular or cylindrical shaped structure in the unexpanded condition and a tapered tubular or cylindrical structure in the expanded or memorized condition, and in which the radial force varies longitudinally along the length of the stent. Also, its resistance to compression varies with length. Additionally, the cell design making up the stent is closed where force and good plaque coverage and support is required and open where flexibility is required. Additionally, the metal to artery ratio is substantially more constant over the length of the stent when it is expanded.
  • One such stent is constructed of Nickel-Titanium alloy (nitinol). Other shape memory metals may be used.
  • the stent is constructed and arranged so that the outward radial force is greater in the center and lesser at both ends. In another embodiment, the stent is constructed and arranged so that the outward radial force is greater at one end and less at the opposite end.
  • Such stents are suitable for placement in stenosed and narrowing vessel regions such as the carotid bifurcation and the ostial area associated therewith.
  • the stents of the invention may achieve a variation in radial force along their length by including in the stent structural elements which intersect at connections having more metal in regions requiring more radial force and less metal in regions requiring less radial force.
  • the amount of intersection metal or strut member metal can be varied by varying the size of the intersection area or the size of the struts. Greater or fewer connectors actually are used to vary the flexibility along the length of the stent more than increasing radial force.
  • the stent structure is formed by laser cutting a Nitinol tube, leaving a greater strut width and shorter length in regions requiring greater outward radial force and compression resistance.
  • the struts of the invention are also characterized by the fact that they are constructed and arranged to present a substantially more constant metal to artery ratio over their length in the expanded condition, i.e., expanded to a tapered shape.
  • the stent structure in a preferred embodiment includes a series of serpentine annular segments which are aligned to provide a tubular structure.
  • the segments are interconnected longitudinally.
  • a desired radial force can be varied by varying the stent strut dimensions in this and other embodiments.
  • stent regions requiring greater radial force have wider and shorter struts than regions requiring less force.
  • the number of connectors between segments can also be varied for this purpose. It is also obtained by varying strut length and spacing and overall size.
  • Another control is cell design per se. Closed cells provide greater plaque coverage and support than open cells. Closed cells are generally connected to cells in adjoining segments of the stent whereas open cells are not so connected. These factors also provide control over properties such as flexibility and conformability.
  • closed cell geometry i.e., closed and open, is used to provide good plaque support in the region of the stenoses (closed) and less support (open) and more flexibility to either side of the stenoses.
  • closed cell structure may be used to bridge the origin of the external carotid artery or any other vessel side branch opening.
  • a stent of this invention with the aforementioned radial force which is variable over stent length in a predetermined arrangement; cell design which is closed in the area where the stent contacts plaque of a stenoses and more open where the stent contacts healthy vessel tissue; flexibility and conformability which is arranged to vary in a predetermined arrangement over the length of the stent, in both unexpanded and expanded condition.
  • Stents made in accordance with the present invention can provide an outward radial force more closely matching the local force requirements in a tapered vessel.
  • the stents provide greater force only where required at a stenosis, without providing too much force in the region of healthy tissue.
  • the stents provide an expanded geometry more closely tailored to the requirements of a tapering vessel region. They are preferably stiff and strong at the proximal large diameter end or middle and weak and more flexible at the distal smaller diameter end to provide strain relief and prevent kinking of the vessel distal to the stent.
  • the proximal end may also be flexible.
  • a stent of the invention with variable properties along its length also applies to balloon expandable stents that can be used across bifurcations with large diameter change by dilating with a smaller balloon distally and a larger balloon proximally.
  • This invention is also concerned with a method for treating stenoses in vessel bifurcation regions involving the use of a stent of the type described above.
  • FIG. 1 is a schematic showing of a scenario 1 for carotid stenting
  • FIG. 2a and 2b are plots of force versus length of improved stents for placement in FIGS. 1 and 7 respectively, i.e., an ostial stent and a bifurcation stent;
  • FIG. 3 is a schematic profile view of an expanded, tapered stent for use in the scenario 1 of FIG. 1;
  • FIG. 4 is a flat plan view in detail of an unexpanded stent of the type shown schematically in FIG. 3, including exemplary dimensions;
  • FIGS. 4a, 4b, 4c and 4d are detail showings of portions of FIG. 4;
  • FIG. 5 is an end view of the stent of FIG. 4;
  • FIG. 6 is a view showing the stent of FIG. 4 in the expanded condition
  • FIG. 7 is a schematic of a scenario 2 for carotid stenting
  • FIG. 8 is a schematic profile view of an expanded, tapered stent for use in the scenario 2 of FIG. 7;
  • FIG. 9 is a flat plan view in detail of an unexpanded stent of the type shown schematically in FIG. 8, including exemplary dimension, and
  • FIG. 10 is an end view of the stent of FIG. 9.
  • FIG. 1 illustrates a narrowing vessel 52, such as the internal carotid artery, having a wide region 56, a narrowed region 58, and a stenosis (not shown) somewhere in between, i.e., in the cross-hatched region.
  • the narrowing vessel of FIG. 1 illustrates the geometry as found in an ostium at the bifurcation of the left common carotid 57, where blood flows from the left common carotid artery 57 into the left internal carotid artery 59. The bifurcation also opens into the left external carotid artery 60.
  • An ordinary stent with sufficient force to hold open the wide region 56 would have greater force than necessary to hold open the narrowed region 58.
  • FIG. 2a illustrates a plot 66a of outward radial force F along a tapered, expanded stent length L for a stent embodying the present invention.
  • the stent has a greater force in end region 68a than at the opposite end region 70a.
  • a tapered stent having the force curve of FIG. 2a is suitable for bridging a stenosis as illustrated in FIG. 1, having sufficient force to hold open the wide region 56 of a vessel and less force in the narrow healthy tissue region 58 of the vessel, where less is required.
  • FIG. 3 illustrates in schematic fashion a preferred nitinol stent embodiment of the invention producing a force distribution as illustrated in FIG. 2.
  • Self-expanding stent 80 includes a conformable distal end 82 for contacting healthy vessel tissue, and a stiffer, closed-cell proximal region 88 for providing increased plaque support. It has upon expansion a tapered diameter as shown. For example, a 0.236 inch distal diameter and a 0.354 inch proximal diameter might be typical. These dimensions can be varied.
  • Stent 80 is positioned on the distal end of a delivery catheter, covered with a removable sheath, advanced to a stenosis to be crossed, and exposed for self-expansion by removal of the sheath. Stent 80 expands radially to its memorized tapered shape pushing against the stenosis and vessel wall.
  • FIG. 4 illustrates in more detail the nitinol unexpanded stent embodiment of FIG. 3 in flat plan view as a stent 100, having a middle region 104 and end regions 106 and 108.
  • Stent 100 has a tubular shape, shown in FIG. 5, 30 formed of several serpentine segments 105, 107, 109, 111 and 113, having a zig-zag pattern, each segment radially encircling a portion of stent 100.
  • segments 113 are longitudinally interconnected by connectors 110, whereas the serpentine segments 105, 107, 109 and 111 are all interconnected as shown in FIGS. 4a and 4b by direct connections 112.
  • a preferred material for constructing stent 100 is Nitinol.
  • the stent is formed by laser cutting a continuous-walled nitinol tube of diameter 0.081 inches having a wall thickness of 0.006 inches, leaving only the stent structure as shown. Typical dimensions of various elements of the stent are shown in the Figure by way of example.
  • nitinol is a shape memory metal it can be formed into the shape and size shown in FIG. 4, placed over a tapered tool and expanded to a desired enlarged 10 shape and size, such as the 0.236 inch distal diameter and 0.354 inch proximal diameter previously mentioned, heated to a high temperature such as 500° C. to give it the memorized size and shape on the tool.
  • the stent is then removed from the tool and can be compressed for mounting on the delivery catheter.
  • FIG. 7 similarly to FIG. 1, illustrates a narrowing vessel 52 having a wide region 56, a narrowed region 58, a branching vessel 55 and a stenosis (not 20 shown) somewhere in between regions 56 and 58, i.e., the cross hatched region.
  • narrowing vessel of FIG. 7 illustrates the geometry as found at the bifurcation of the left common carotid artery 57, where blood flows from the left common carotid artery 57 into the left internal carotid artery 59.
  • FIG. 2b illustrates a plot 66b of outward radial force F along a tapered, expandable stent length L for a stent embodying the present invention.
  • the stent has a greater force in its middle region 67b than at its end regions 68b and 70b.
  • a tapered stent having the force curve of FIG. 2b is suitable for bridging a stenosis as illustrated in FIG. 7, having sufficient force to hold open the wide region at the ostium of internal carotid 59 and less force in healthy tissue at wide end 56 and 30 narrow end 58.
  • a stent for use in this cross hatched region will have properties such as those to be described with reference to FIGS. 8 and 9, which will be different from the stent previously described with reference to FIGS. 1-6.
  • stent 80 includes a middle region 84 and end regions 86 and 87.
  • the amount of radial force exerted per unit length of stent is greater in regions having shorter and wider struts.
  • stent 80 has shorter and wider struts in center region 84 than in end regions 86 and 87.
  • stent 80 has a greater outward radial force and compression resistance in center region 84 than in end regions 86 and 87 making it particularly useful for stenting in the cross-hatched region of FIG. 7.
  • FIG. 9 illustrates in more detail the nitinol unexpanded stent embodiment of FIG. 8 in flat plan view as a stent 100 having a middle region 104 and end regions 106 and 108.
  • Stent 100 has a tubular shape, shown in FIG. 10, formed of several serpentine segments 105, 107, 109, 111 and 113, having a zig-zag pattern, each segment radially encircling a portion of stent 100.
  • Segments 111 and 113 are respectively longitudinally interconnected by several connectors 110 whereas serpentine segments 105, 107 and 109 are all interconnected as shown in detail in FIGS. 9a and 9b by direct connections 112.
  • This embodiment is also formed by laser cutting a continuous-walled nitinol tube of diameter 0.081 inches having a wall thickness of 0.006 inches, leaving only the stent structure as shown. Typical dimensions of various elements of the stent are shown in FIG. 9 by way of example.
  • the stent of FIG. 9 can be provided with a tapered memorized shape in the expanded condition.
  • the stent will exhibit all of the desirable proportions heretofore described, particularly as discussed with reference to FIG. 2b. All dimensions in FIG. 9 are in inches.
  • the present invention provides a stent which when expanded to its tapered configuration, provides a radial force varied along stent length for use in tapered anatomies.
  • the stent has been described, in use, as bridging stenosed vessel regions for illustrative purposes. Another use in maintaining open channels through otherwise restricted body conduits. Stents used for other purposes are explicitly within the scope of the invention.
  • balloon expandable stents can also include the variable radial force feature as described herein.
  • these forces in general will be less than are necessary to expand the stent and thus the balloon will be used as known to those skilled in the art to complete the expansion of the stent.
  • two balloons of different diameter may be used to expand each end of the stent.
  • balloon expandable stents may be advantageously deployed in areas of a vessel such as at an ostium where a stent having more rigid or heavy members is desirable in the region of the stenosis, and enhanced flexibility in the distal portion of the stent is desired.
  • a balloon expandable stent can be made of stainless steel to the design and dimensions shown in either FIG. 4 or FIG. 9. It should be understood therefore, that balloon expandable stents are also within the scope of the present invention.
  • a stent of the self-expanding type in unexpanded form, is placed on a delivery catheter and covered with a retractable sheath.
  • the catheter is introduced into a vessel and advanced to a region of bifurcation (ostium or bifurcation placement).
  • the sheath is retracted, typically by pulling it in the proximal direction, to expose the stent.
  • the stent then self-expands to contact the vessel wall and stenosis.
  • a self-expanding stent such as the nitinol type described herein, the stent expands to the tapered configuration upon being exposed and exhibits the desired proportion described hereinbefore.
  • a sheath is typically used for constraining a self-expanding stent.
  • a balloon expandable stent is typically crimped on to the balloon and not covered by a sheath.
  • a balloon or other radial force means is inflated within the stent to expand it.
  • two balloons may be used sequentially to accomplish this. For example, a small balloon may be used to expand the stent at the small diameter end of the tapered configuration. Then, a larger balloon may be used to expand the stents at the large end of the tapered configuration.
  • the catheter(s) are withdrawn, leaving the stent implanted in the vessel.
  • the method is adaptable depending on whether an ostial version or a bifurcation version of the stent is being implanted.

Abstract

A stent and method of its use, the stent in its expanded configuration, exhibiting varying outward radial force along its length. In use, the expanded stent is of a tapered configuration which provides greater force in vessel regions requiring greater force and less force in regions requiring less. In particular the stent is useful in the ostium regions and at areas of bifurcation in vessels. Varying force over the length of the stent is achieved by varying the number of elements, the density of elements, the thickness of the elements making up the stent body, and maintaining a substantially metal to artery ratio in the expanded stent over its length.

Description

FIELD OF THE INVENTION
The invention relates generally to medical devices and their use. More specifically, the invention relates to stents for holding vessels such as arteries open to flow, particularly in the regions of bifurcations.
BACKGROUND OF THE INVENTION
Stents are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. They have also been implanted in urinary tracts and bile ducts. They are used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding or expanded by an internal radial force, such as when mounted on a balloon.
Stents are generally tubular devices for insertion into tubular vessel regions. Balloon expandable stents require mounting over a balloon, positioning, and inflation of the balloon to expand the stent radially outward. Self-expanding stents expand into place when unconstrained, without requiring assistance from a balloon. A self-expanding stent is biased so as to expand upon release from the delivery catheter.
A vessel having a stenosis may be viewed as an inwardly protruding arcuate addition of hardened material to a cylindrical vessel wall, where the stenosed region presents a somewhat rigid body attached along, and to, the elastic wall. The stenosis presents resistance to any expansion of the vessel in the region bridged by the stenosis. Stenoses vary in composition, for example, in the degree of calcification, and therefore vary in properties as well.
The arcuate geometry of any stenoses present a variation in resistance along the vessel axis to stent outward radial force. Specifically, stenosed vessel resistance is often greatest toward the middle, lessening toward the ends, with a rapid decrease at the start of healthy vessel tissue.
In some instances, as in regions of bifurcation, stenoses are believed to be flow related phenomena, see Chapter 21 of the "Handbook of Bioengineering" (Richard Shaloh & Shu Chin, McGraw-Hill Book Company, 1987) which discusses atherosclerosis at vascular bifurcations.
The left and right common carotid arteries are typical of such vascular bifurcations. These arteries are the principal arteries of the head and neck. Both of the common carotid arteries are quite similar and divide at a carotid bifurcation or bulb into an external carotid artery and an internal carotid artery. In the region of the carotid bulb and the ostium of the internal carotid artery, stenoses present a particular problem for carotid stenting due to the large tapering of the vessel interior from the common carotid artery (both the left and the right) to the internal carotid artery. The region of the carotid bifurcation or bulb happens to be where stenoses most often occur, particularly in the region of the ostium to the internal carotid artery in both of the carotid arteries. Self-expanding stents are generally preferred for carotid stenting due to the anatomical location being subject to external compression.
A conventional self-expanding stent optimally has a length greater than the length of the stenosed region to be kept open. Current stents present a substantially uniform outward radial force and a uniform resistance to compression along their length. Currently, stents do not vary these forces to match vessel geometries or resistances. A constant force stent, i.e., prior art stents, with sufficient force to maintain an open channel within a stenosed vessel and to resist compression, has greater force than necessary in the healthy vessel portion distal to the stenosis. The stent end may thus flare outward, protruding into, and possibly irritating non-stenosed tissue.
Stenoses can occur in vessel regions having asymmetric geometry lying on either side of the stenosis. One example of this is the ostium of an internal carotid artery, having a wide opening converging into a narrower artery. A conventional stent placed in the region of the ostium would provide substantially uniform outward radial force over a non-uniform vessel diameter, that is, the force provided would be greater in a small diameter than in a larger diameter. If this force is properly matched for the smaller vessel region, it is likely less than optimal for the larger region. Conversely, if this force is properly matched for the larger vessel region, it is likely more than optimal for the smaller vessel region.
What would be desirable, and has not heretofore been provided, is a tapered stent capable of providing sufficient force to keep a vessel open within a rebounding stenosis, while providing only necessary force against healthy, non-stenosed vessel regions. What else has not been provided is a tapered stent providing necessary, but only necessary force (outward force and compression resistance) along a stenosis in a vessel region having non-uniform vessel diameter on either side of the stenosis. This is provided by the tapered stents of this invention which exhibit differing radial force, cell size, geometry, flexibility and which provide substantially more constant metal to artery ratio (M/A) over their length. M/A is the ratio of the metal surface area of a stent to the surface area of the vessel or the like that the stent is covering.
SUMMARY OF THE INVENTION
The present invention, in a preferred embodiment, includes a self-expanding stent of shape-memory metal having a tubular or cylindrical shaped structure in the unexpanded condition and a tapered tubular or cylindrical structure in the expanded or memorized condition, and in which the radial force varies longitudinally along the length of the stent. Also, its resistance to compression varies with length. Additionally, the cell design making up the stent is closed where force and good plaque coverage and support is required and open where flexibility is required. Additionally, the metal to artery ratio is substantially more constant over the length of the stent when it is expanded. One such stent is constructed of Nickel-Titanium alloy (nitinol). Other shape memory metals may be used. In one embodiment, the stent is constructed and arranged so that the outward radial force is greater in the center and lesser at both ends. In another embodiment, the stent is constructed and arranged so that the outward radial force is greater at one end and less at the opposite end. Such stents are suitable for placement in stenosed and narrowing vessel regions such as the carotid bifurcation and the ostial area associated therewith.
The stents of the invention may achieve a variation in radial force along their length by including in the stent structural elements which intersect at connections having more metal in regions requiring more radial force and less metal in regions requiring less radial force. The amount of intersection metal or strut member metal can be varied by varying the size of the intersection area or the size of the struts. Greater or fewer connectors actually are used to vary the flexibility along the length of the stent more than increasing radial force. In a preferred embodiment, the stent structure is formed by laser cutting a Nitinol tube, leaving a greater strut width and shorter length in regions requiring greater outward radial force and compression resistance.
The struts of the invention are also characterized by the fact that they are constructed and arranged to present a substantially more constant metal to artery ratio over their length in the expanded condition, i.e., expanded to a tapered shape.
The stent structure in a preferred embodiment includes a series of serpentine annular segments which are aligned to provide a tubular structure. The segments are interconnected longitudinally. A desired radial force can be varied by varying the stent strut dimensions in this and other embodiments. In one embodiment, stent regions requiring greater radial force have wider and shorter struts than regions requiring less force. The number of connectors between segments can also be varied for this purpose. It is also obtained by varying strut length and spacing and overall size. Another control is cell design per se. Closed cells provide greater plaque coverage and support than open cells. Closed cells are generally connected to cells in adjoining segments of the stent whereas open cells are not so connected. These factors also provide control over properties such as flexibility and conformability. Cell geometry, i.e., closed and open, is used to provide good plaque support in the region of the stenoses (closed) and less support (open) and more flexibility to either side of the stenoses. Also, closed cell structure may be used to bridge the origin of the external carotid artery or any other vessel side branch opening.
Generally speaking it is desirable to provide a stent of this invention with the aforementioned radial force which is variable over stent length in a predetermined arrangement; cell design which is closed in the area where the stent contacts plaque of a stenoses and more open where the stent contacts healthy vessel tissue; flexibility and conformability which is arranged to vary in a predetermined arrangement over the length of the stent, in both unexpanded and expanded condition.
Stents made in accordance with the present invention can provide an outward radial force more closely matching the local force requirements in a tapered vessel. In particular, the stents provide greater force only where required at a stenosis, without providing too much force in the region of healthy tissue. The stents provide an expanded geometry more closely tailored to the requirements of a tapering vessel region. They are preferably stiff and strong at the proximal large diameter end or middle and weak and more flexible at the distal smaller diameter end to provide strain relief and prevent kinking of the vessel distal to the stent. The proximal end may also be flexible.
A stent of the invention with variable properties along its length also applies to balloon expandable stents that can be used across bifurcations with large diameter change by dilating with a smaller balloon distally and a larger balloon proximally.
This invention is also concerned with a method for treating stenoses in vessel bifurcation regions involving the use of a stent of the type described above.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a schematic showing of a scenario 1 for carotid stenting;
FIG. 2a and 2b are plots of force versus length of improved stents for placement in FIGS. 1 and 7 respectively, i.e., an ostial stent and a bifurcation stent;
FIG. 3 is a schematic profile view of an expanded, tapered stent for use in the scenario 1 of FIG. 1;
FIG. 4 is a flat plan view in detail of an unexpanded stent of the type shown schematically in FIG. 3, including exemplary dimensions;
FIGS. 4a, 4b, 4c and 4d are detail showings of portions of FIG. 4;
FIG. 5 is an end view of the stent of FIG. 4;
FIG. 6 is a view showing the stent of FIG. 4 in the expanded condition;
FIG. 7 is a schematic of a scenario 2 for carotid stenting;
FIG. 8 is a schematic profile view of an expanded, tapered stent for use in the scenario 2 of FIG. 7;
FIG. 9 is a flat plan view in detail of an unexpanded stent of the type shown schematically in FIG. 8, including exemplary dimension, and
FIG. 10 is an end view of the stent of FIG. 9.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 illustrates a narrowing vessel 52, such as the internal carotid artery, having a wide region 56, a narrowed region 58, and a stenosis (not shown) somewhere in between, i.e., in the cross-hatched region. The narrowing vessel of FIG. 1 illustrates the geometry as found in an ostium at the bifurcation of the left common carotid 57, where blood flows from the left common carotid artery 57 into the left internal carotid artery 59. The bifurcation also opens into the left external carotid artery 60. An ordinary stent with sufficient force to hold open the wide region 56 would have greater force than necessary to hold open the narrowed region 58.
FIG. 2a illustrates a plot 66a of outward radial force F along a tapered, expanded stent length L for a stent embodying the present invention. The stent has a greater force in end region 68a than at the opposite end region 70a. A tapered stent having the force curve of FIG. 2a is suitable for bridging a stenosis as illustrated in FIG. 1, having sufficient force to hold open the wide region 56 of a vessel and less force in the narrow healthy tissue region 58 of the vessel, where less is required.
FIG. 3 illustrates in schematic fashion a preferred nitinol stent embodiment of the invention producing a force distribution as illustrated in FIG. 2. Self-expanding stent 80 includes a conformable distal end 82 for contacting healthy vessel tissue, and a stiffer, closed-cell proximal region 88 for providing increased plaque support. It has upon expansion a tapered diameter as shown. For example, a 0.236 inch distal diameter and a 0.354 inch proximal diameter might be typical. These dimensions can be varied. Stent 80 is positioned on the distal end of a delivery catheter, covered with a removable sheath, advanced to a stenosis to be crossed, and exposed for self-expansion by removal of the sheath. Stent 80 expands radially to its memorized tapered shape pushing against the stenosis and vessel wall.
FIG. 4 illustrates in more detail the nitinol unexpanded stent embodiment of FIG. 3 in flat plan view as a stent 100, having a middle region 104 and end regions 106 and 108. Stent 100 has a tubular shape, shown in FIG. 5, 30 formed of several serpentine segments 105, 107, 109, 111 and 113, having a zig-zag pattern, each segment radially encircling a portion of stent 100. Referring again to FIG. 4, segments 113 are longitudinally interconnected by connectors 110, whereas the serpentine segments 105, 107, 109 and 111 are all interconnected as shown in FIGS. 4a and 4b by direct connections 112. A preferred material for constructing stent 100 is Nitinol. In this embodiment, the stent is formed by laser cutting a continuous-walled nitinol tube of diameter 0.081 inches having a wall thickness of 0.006 inches, leaving only the stent structure as shown. Typical dimensions of various elements of the stent are shown in the Figure by way of example.
Referring now to FIG. 6, the stent of FIG. 4 is shown expanded and tapered. Since nitinol is a shape memory metal it can be formed into the shape and size shown in FIG. 4, placed over a tapered tool and expanded to a desired enlarged 10 shape and size, such as the 0.236 inch distal diameter and 0.354 inch proximal diameter previously mentioned, heated to a high temperature such as 500° C. to give it the memorized size and shape on the tool. The stent is then removed from the tool and can be compressed for mounting on the delivery catheter.
By starting with a stent of nitinol having the dimensions set forth in FIG. 4, the expanded condition provides a stent having the desirable properties described hereinbefore with reference to FIG. 3. All dimensions in the Figure are in inches. Of course, this is but one example of a stent according to the invention.
FIG. 7, similarly to FIG. 1, illustrates a narrowing vessel 52 having a wide region 56, a narrowed region 58, a branching vessel 55 and a stenosis (not 20 shown) somewhere in between regions 56 and 58, i.e., the cross hatched region. Again, narrowing vessel of FIG. 7 illustrates the geometry as found at the bifurcation of the left common carotid artery 57, where blood flows from the left common carotid artery 57 into the left internal carotid artery 59.
FIG. 2b illustrates a plot 66b of outward radial force F along a tapered, expandable stent length L for a stent embodying the present invention. The stent has a greater force in its middle region 67b than at its end regions 68b and 70b. A tapered stent having the force curve of FIG. 2b is suitable for bridging a stenosis as illustrated in FIG. 7, having sufficient force to hold open the wide region at the ostium of internal carotid 59 and less force in healthy tissue at wide end 56 and 30 narrow end 58.
A stent for use in this cross hatched region will have properties such as those to be described with reference to FIGS. 8 and 9, which will be different from the stent previously described with reference to FIGS. 1-6.
Referring now to the FIG. 8 schematic, stent 80 includes a middle region 84 and end regions 86 and 87. The amount of radial force exerted per unit length of stent is greater in regions having shorter and wider struts. As schematically illustrated in FIG. 8, stent 80 has shorter and wider struts in center region 84 than in end regions 86 and 87. Thus, stent 80 has a greater outward radial force and compression resistance in center region 84 than in end regions 86 and 87 making it particularly useful for stenting in the cross-hatched region of FIG. 7.
FIG. 9 illustrates in more detail the nitinol unexpanded stent embodiment of FIG. 8 in flat plan view as a stent 100 having a middle region 104 and end regions 106 and 108. Stent 100 has a tubular shape, shown in FIG. 10, formed of several serpentine segments 105, 107, 109, 111 and 113, having a zig-zag pattern, each segment radially encircling a portion of stent 100. Segments 111 and 113 are respectively longitudinally interconnected by several connectors 110 whereas serpentine segments 105, 107 and 109 are all interconnected as shown in detail in FIGS. 9a and 9b by direct connections 112. This embodiment is also formed by laser cutting a continuous-walled nitinol tube of diameter 0.081 inches having a wall thickness of 0.006 inches, leaving only the stent structure as shown. Typical dimensions of various elements of the stent are shown in FIG. 9 by way of example.
Similarly to the stent embodiment of FIG. 4 as expanded to a tapered shape shown in FIG. 6, the stent of FIG. 9 can be provided with a tapered memorized shape in the expanded condition. The stent will exhibit all of the desirable proportions heretofore described, particularly as discussed with reference to FIG. 2b. All dimensions in FIG. 9 are in inches.
The present invention provides a stent which when expanded to its tapered configuration, provides a radial force varied along stent length for use in tapered anatomies. The stent has been described, in use, as bridging stenosed vessel regions for illustrative purposes. Another use in maintaining open channels through otherwise restricted body conduits. Stents used for other purposes are explicitly within the scope of the invention.
It should be noted that although self-expanding stents have been shown herein to illustrate the present invention, so called balloon expandable stents can also include the variable radial force feature as described herein. In the case of balloon expandable stents, however, these forces in general will be less than are necessary to expand the stent and thus the balloon will be used as known to those skilled in the art to complete the expansion of the stent. To obtain the tapered shape, two balloons of different diameter may be used to expand each end of the stent. These balloon expandable stents may be advantageously deployed in areas of a vessel such as at an ostium where a stent having more rigid or heavy members is desirable in the region of the stenosis, and enhanced flexibility in the distal portion of the stent is desired. For example, a balloon expandable stent can be made of stainless steel to the design and dimensions shown in either FIG. 4 or FIG. 9. It should be understood therefore, that balloon expandable stents are also within the scope of the present invention.
In use, a stent of the self-expanding type, in unexpanded form, is placed on a delivery catheter and covered with a retractable sheath. The catheter is introduced into a vessel and advanced to a region of bifurcation (ostium or bifurcation placement). The sheath is retracted, typically by pulling it in the proximal direction, to expose the stent. The stent then self-expands to contact the vessel wall and stenosis. In the case of a self-expanding stent such as the nitinol type described herein, the stent expands to the tapered configuration upon being exposed and exhibits the desired proportion described hereinbefore. A sheath is typically used for constraining a self-expanding stent. A balloon expandable stent is typically crimped on to the balloon and not covered by a sheath. In the case of a non-self-expanding stent, a balloon or other radial force means is inflated within the stent to expand it. In the case of the stents described herein, two balloons may be used sequentially to accomplish this. For example, a small balloon may be used to expand the stent at the small diameter end of the tapered configuration. Then, a larger balloon may be used to expand the stents at the large end of the tapered configuration. The catheter(s) are withdrawn, leaving the stent implanted in the vessel. The method is adaptable depending on whether an ostial version or a bifurcation version of the stent is being implanted.
Numerous characteristics and advantages of the invention covered by this application have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many aspects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of parts and in materials without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims (12)

What is claimed is as follows:
1. A stent having an unexpanded configuration and an expanded configuration, the latter having a length and a varying diameter along said length, comprising in the expanded configuration:
a tapered tubular shaped metallic structure, said structure having a radially outward biased force and compression resistance, said force varying along said length in a predetermined manner, said tapered tubular structure having a first end region of largest diameter, a middle region of smaller diameter, and a second end region of smallest diameter, wherein said outward biased force is weaker in said first end region, stronger in said middle region than in said first region, and weaker in said second end region than in said middle region.
2. The stent of claim 1 including flexibility which varies along its length, the stent being stiffest in the region of stenosis contact and more flexible at the end regions.
3. The stent of claim 1 wherein the stent includes a relatively closed cell structure in the middle region compared to a more open cell structure at the end regions.
4. The stent of claim 1 wherein the strongest region of the stent is at the first end of larger diameter.
5. The stent of claim 4 including flexibility which varies along its length, the stent being stiffest in the region of stenosis contact and more flexible at the end of small diameter.
6. The stent of claim 4 wherein the stent includes a relatively closed cell structure at the first end region of largest diameter as compared to a more open cell structure at the other end region and the metal to artery ratio is substantially constant over the length of the stent in the expanded configuration.
7. The stent of claim 1 constructed and arranged as a self-expanding stent.
8. The stent of claim 1 constructed and arranged as a balloon expandable stent.
9. The stent of claim 1 wherein the stent structure is formed of a shape memory material so as to be self-expanding, the stent structure having an unexpanded configuration and an expanded memorized configuration, the unexpanded configuration having an average diameter less than that of the expanded configuration, the expanded configuration having a diameter which varies along the length of the stent from a first end region, to a middle region, and to a second end region, wherein the second configuration diameter is smaller in said first end region, larger in said middle region than in said first region, and largest in said second end region than in said middle region or said first end region.
10. The stent of claim 9 comprised of nitinol.
11. The stent of claim 9 wherein the stent includes relatively closed cell structure in the middle region compared to a more open cell structure at the end regions and the metal to artery ratio is substantially constant over the length of the stent in the expanded configuration.
12. The stent of claim 9 wherein the stent includes a relatively closed cell structure at the first end region of largest diameter as compared to a more open cell structure at the middle and other end region and the metal to artery ratio is substantially constant over the length of the stent in the expanded configuration.
US09/034,249 1998-03-04 1998-03-04 Stent having variable properties Expired - Lifetime US5938697A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US09/034,249 US5938697A (en) 1998-03-04 1998-03-04 Stent having variable properties
JP2000534148A JP4261770B2 (en) 1998-03-04 1999-02-25 Stent with changing properties
DE69926219T DE69926219T2 (en) 1998-03-04 1999-02-25 STENT WITH VARIABLE PROPERTIES
AT99908503T ATE299681T1 (en) 1998-03-04 1999-02-25 STENT WITH VARIABLE PROPERTIES
AT05012953T ATE471130T1 (en) 1998-03-04 1999-02-25 STENT WITH VARIABLE PROPERTIES
PCT/US1999/004198 WO1999044540A2 (en) 1998-03-04 1999-02-25 Stent having variable properties and method of its use
EP99908503A EP1059894B1 (en) 1998-03-04 1999-02-25 Stent having variable properties
EP05012953A EP1598031B1 (en) 1998-03-04 1999-02-25 Stent having variable properties
DE69942512T DE69942512D1 (en) 1998-03-04 1999-02-25 Stent with variable properties
US09/314,658 US6159238A (en) 1998-03-04 1999-05-19 Stent having variable properties and method of its use
US09/735,398 US6485509B2 (en) 1998-03-04 2000-12-12 Stent having variable properties and method of its use
US10/301,983 US6669723B2 (en) 1998-03-04 2002-11-22 Stent having variable properties and method of its use
US10/703,642 US7060091B2 (en) 1998-03-04 2003-11-07 Stent having variable properties and method of its use
US11/356,750 US7402169B2 (en) 1998-03-04 2006-02-17 Stent having variable properties and method of its use
US12/177,734 US7780719B2 (en) 1998-03-04 2008-07-22 Stent having variable properties and method of its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/034,249 US5938697A (en) 1998-03-04 1998-03-04 Stent having variable properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/314,658 Division US6159238A (en) 1998-03-04 1999-05-19 Stent having variable properties and method of its use

Publications (1)

Publication Number Publication Date
US5938697A true US5938697A (en) 1999-08-17

Family

ID=21875223

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/034,249 Expired - Lifetime US5938697A (en) 1998-03-04 1998-03-04 Stent having variable properties
US09/314,658 Expired - Lifetime US6159238A (en) 1998-03-04 1999-05-19 Stent having variable properties and method of its use
US09/735,398 Expired - Fee Related US6485509B2 (en) 1998-03-04 2000-12-12 Stent having variable properties and method of its use
US10/301,983 Expired - Lifetime US6669723B2 (en) 1998-03-04 2002-11-22 Stent having variable properties and method of its use
US10/703,642 Expired - Fee Related US7060091B2 (en) 1998-03-04 2003-11-07 Stent having variable properties and method of its use
US11/356,750 Expired - Fee Related US7402169B2 (en) 1998-03-04 2006-02-17 Stent having variable properties and method of its use
US12/177,734 Expired - Fee Related US7780719B2 (en) 1998-03-04 2008-07-22 Stent having variable properties and method of its use

Family Applications After (6)

Application Number Title Priority Date Filing Date
US09/314,658 Expired - Lifetime US6159238A (en) 1998-03-04 1999-05-19 Stent having variable properties and method of its use
US09/735,398 Expired - Fee Related US6485509B2 (en) 1998-03-04 2000-12-12 Stent having variable properties and method of its use
US10/301,983 Expired - Lifetime US6669723B2 (en) 1998-03-04 2002-11-22 Stent having variable properties and method of its use
US10/703,642 Expired - Fee Related US7060091B2 (en) 1998-03-04 2003-11-07 Stent having variable properties and method of its use
US11/356,750 Expired - Fee Related US7402169B2 (en) 1998-03-04 2006-02-17 Stent having variable properties and method of its use
US12/177,734 Expired - Fee Related US7780719B2 (en) 1998-03-04 2008-07-22 Stent having variable properties and method of its use

Country Status (6)

Country Link
US (7) US5938697A (en)
EP (2) EP1598031B1 (en)
JP (1) JP4261770B2 (en)
AT (2) ATE299681T1 (en)
DE (2) DE69926219T2 (en)
WO (1) WO1999044540A2 (en)

Cited By (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017365A (en) * 1997-05-20 2000-01-25 Jomed Implantate Gmbh Coronary stent
WO2000028922A1 (en) * 1998-11-12 2000-05-25 Advanced Cardiovascular Systems, Inc. Stent having non-uniform structure
EP1021140A1 (en) * 1997-09-11 2000-07-26 Wake Forest University School of Medicine Compliant intraluminal stents
WO2000049971A1 (en) * 1999-02-26 2000-08-31 Advanced Cardiovascular Systems, Inc. Stent with customized flexibility
US6146403A (en) * 1997-05-22 2000-11-14 Scimed Life Systems, Inc. Variable expansion force stent
WO2001006954A1 (en) * 1999-07-22 2001-02-01 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
WO2001041675A1 (en) 1999-12-07 2001-06-14 Edwards Lifesciences Corporation Novel enhanced flexible expandable stents
US6273910B1 (en) * 1999-03-11 2001-08-14 Advanced Cardiovascular Systems, Inc. Stent with varying strut geometry
US6273909B1 (en) * 1998-10-05 2001-08-14 Teramed Inc. Endovascular graft system
US6309414B1 (en) 1997-11-04 2001-10-30 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6312459B1 (en) * 1999-06-30 2001-11-06 Advanced Cardiovascular Systems, Inc. Stent design for use in small vessels
US20010044650A1 (en) * 2001-01-12 2001-11-22 Simso Eric J. Stent for in-stent restenosis
US6322585B1 (en) 1998-11-16 2001-11-27 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US6325820B1 (en) * 1998-11-16 2001-12-04 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with exo-skeleton
US6355058B1 (en) 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder
US20020042565A1 (en) * 1999-08-05 2002-04-11 Cooper Joel D. Conduits for maintaining openings in tissue
US6371982B2 (en) * 1997-10-09 2002-04-16 St. Jude Medical Cardiovascular Group, Inc. Graft structures with compliance gradients
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US6409754B1 (en) 1999-07-02 2002-06-25 Scimed Life Systems, Inc. Flexible segmented stent
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US20020116049A1 (en) * 2000-09-22 2002-08-22 Scimed Life Systems, Inc. Stent
US6451049B2 (en) 1998-04-29 2002-09-17 Sorin Biomedica Cardio, S.P.A. Stents for angioplasty
US20020138074A1 (en) * 1999-08-05 2002-09-26 Thomas Keast Devices for applying energy to tissue
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US6468302B2 (en) 1999-04-22 2002-10-22 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6471721B1 (en) 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same
US20020165600A1 (en) * 1999-11-19 2002-11-07 Advanced Bio Prosthetic Surfaces, Ltd. Guidewires and thin film catheter-sheaths and method of making same
US6485509B2 (en) * 1998-03-04 2002-11-26 Scimed Life Systems, Inc. Stent having variable properties and method of its use
US6485507B1 (en) * 1999-07-28 2002-11-26 Scimed Life Systems Multi-property nitinol by heat treatment
US20020193867A1 (en) * 2001-06-19 2002-12-19 Gladdish Bennie W. Low profile improved radiopacity intraluminal medical device
US20030028246A1 (en) * 1999-11-19 2003-02-06 Palmaz Julio C. Compliant implantable medical devices and methods of making same
WO2002015824A3 (en) * 2000-08-25 2003-02-13 Kensey Nash Corp Covered stents, systems for deploying covered stents
US20030032967A1 (en) * 2001-06-20 2003-02-13 Park Medical, Llc Anastomotic device
US6537311B1 (en) 1999-12-30 2003-03-25 Advanced Cardiovascular Systems, Inc. Stent designs for use in peripheral vessels
US6537310B1 (en) 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US6540774B1 (en) 1999-08-31 2003-04-01 Advanced Cardiovascular Systems, Inc. Stent design with end rings having enhanced strength and radiopacity
US6547818B1 (en) 2000-10-20 2003-04-15 Endotex Interventional Systems, Inc. Selectively thinned coiled-sheet stents and methods for making them
US6551351B2 (en) * 1999-07-02 2003-04-22 Scimed Life Systems Spiral wound stent
WO2003049642A1 (en) * 2001-12-05 2003-06-19 Endosystems, Llc Non-foreshortening stent
US20030120292A1 (en) * 2001-06-20 2003-06-26 Park Medical, Llc Anastomotic device
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6585753B2 (en) 2001-03-28 2003-07-01 Scimed Life Systems, Inc. Expandable coil stent
US20030135265A1 (en) * 2002-01-04 2003-07-17 Stinson Jonathan S. Prostheses implantable in enteral vessels
US20030144724A1 (en) * 2002-01-29 2003-07-31 Robert Murray Flared stent and method of use
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US6616689B1 (en) 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20030176914A1 (en) * 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6645237B2 (en) * 1999-02-26 2003-11-11 Vascular Architects, Inc. Expandable coiled endoluminal prosthesis
WO2003092549A2 (en) * 2002-05-06 2003-11-13 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
US6652576B1 (en) 2000-06-07 2003-11-25 Advanced Cardiovascular Systems, Inc. Variable stiffness stent
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20030225449A1 (en) * 2002-05-30 2003-12-04 Denison Andy E. Intravascular stents
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
EP1377421A2 (en) * 2001-03-20 2004-01-07 Nicast Ltd Polymer fiber tubular structure having improved kinking resistance
US20040030377A1 (en) * 2001-10-19 2004-02-12 Alexander Dubson Medicated polymer-coated stent assembly
US6695865B2 (en) 2000-03-20 2004-02-24 Advanced Bio Prosthetic Surfaces, Ltd. Embolic protection device
US20040054406A1 (en) * 2000-12-19 2004-03-18 Alexander Dubson Vascular prosthesis and method for production thereof
US6712812B2 (en) 1999-08-05 2004-03-30 Broncus Technologies, Inc. Devices for creating collateral channels
US20040088044A1 (en) * 1995-03-01 2004-05-06 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US6733513B2 (en) 1999-11-04 2004-05-11 Advanced Bioprosthetic Surfaces, Ltd. Balloon catheter having metal balloon and method of making same
US20040093073A1 (en) * 2002-05-08 2004-05-13 David Lowe Endoprosthesis having foot extensions
US6743252B1 (en) * 1998-12-18 2004-06-01 Cook Incorporated Cannula stent
US6746475B1 (en) 1999-04-15 2004-06-08 Scimed Life Systems, Inc. Stent with variable stiffness
US6749606B2 (en) 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
US20040127912A1 (en) * 2002-12-31 2004-07-01 Dmitry Rabkin Stent delivery system
US6764506B2 (en) 1997-02-07 2004-07-20 Endosystems Llc Non-foreshortening intraluminal prosthesis
US6796997B1 (en) * 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
EP1469791A2 (en) * 2001-12-03 2004-10-27 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
US20040243216A1 (en) * 2003-05-28 2004-12-02 Scimed Life Systems, Inc., Maple Grove, Mn Stent with tapered flexibility
US20040249439A1 (en) * 2001-03-13 2004-12-09 Yoram Richter Method and apparatus for stenting
US20040267350A1 (en) * 2002-10-30 2004-12-30 Roubin Gary S. Non-foreshortening intraluminal prosthesis
US6849085B2 (en) 1999-11-19 2005-02-01 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
WO2005011527A1 (en) 2003-07-30 2005-02-10 Jotec Gmbh Woven stent to be implanted in a blood vessel
US20050033399A1 (en) * 1998-12-03 2005-02-10 Jacob Richter Hybrid stent
US20050043751A1 (en) * 2001-09-04 2005-02-24 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US6881222B2 (en) 1999-10-13 2005-04-19 Endosystems Llc Non-foreshortening intraluminal prosthesis
US6890350B1 (en) 1999-07-28 2005-05-10 Scimed Life Systems, Inc. Combination self-expandable, balloon-expandable endoluminal device
US20050107865A1 (en) * 2003-05-06 2005-05-19 Anton Clifford Endoprosthesis having foot extensions
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US6899730B1 (en) * 1999-04-15 2005-05-31 Scimed Life Systems, Inc. Catheter-stent device
US20050125051A1 (en) * 2003-12-05 2005-06-09 Scimed Life Systems, Inc. Detachable segment stent
US20050131521A1 (en) * 2000-05-12 2005-06-16 Denes Marton Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US20050137680A1 (en) * 2003-12-22 2005-06-23 John Ortiz Variable density braid stent
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6942690B1 (en) 2000-04-11 2005-09-13 Endovascular Technologies, Inc. Single-piece endoprosthesis with high expansion ratios and atraumatic ends
US20050228492A1 (en) * 2003-03-10 2005-10-13 Desimone Joseph M Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
US20050283228A1 (en) * 1998-07-29 2005-12-22 Stanford Ulf H Expandable stent with relief holes capable of carrying medicines and other materials
US20060015173A1 (en) * 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
US20060052865A1 (en) * 2004-09-09 2006-03-09 Banas Christopher E Stents with metallic covers and methods of making same
US20060142842A1 (en) * 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for making same
US7090694B1 (en) * 2003-11-19 2006-08-15 Advanced Cardiovascular Systems, Inc. Portal design for stent for treating bifurcated vessels
US7112217B1 (en) 1998-03-16 2006-09-26 Cordis Corporation Biluminal endovascular graft system
US20070021834A1 (en) * 2003-05-06 2007-01-25 Eugene Young Endoprosthesis having foot extensions
US20070031607A1 (en) * 2000-12-19 2007-02-08 Alexander Dubson Method and apparatus for coating medical implants
WO2007024484A1 (en) * 2005-08-26 2007-03-01 Medlogics Device Corporation Lumen-supporting stents and methods for creating lumen-supporting stents with various open/closed designs
US20070055344A1 (en) * 1998-02-13 2007-03-08 Gittings Darin C Devices and methods for use in performing transmyocardial coronary bypass
US20070061003A1 (en) * 2005-09-15 2007-03-15 Cappella, Inc. Segmented ostial protection device
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US7226475B2 (en) 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
US7244272B2 (en) 2000-12-19 2007-07-17 Nicast Ltd. Vascular prosthesis and method for production thereof
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
US20070239261A1 (en) * 2006-04-07 2007-10-11 Arani Bose Aneurysm occlusion system and method
US7300457B2 (en) 1999-11-19 2007-11-27 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting metallic implantable grafts, compliant implantable medical devices and methods of making same
US20070276464A1 (en) * 2006-05-23 2007-11-29 Boston Scientific Scimed, Inc. Stent with variable crimping diameter
US20070276469A1 (en) * 2006-05-26 2007-11-29 Dirk Tenne Occlusion device combination of stent and mesh with diamond-shaped porosity
US20070276470A1 (en) * 2006-05-26 2007-11-29 Dirk Tenne Occlusion device combination of stent and mesh having offset parallelogram porosity
US20080065195A1 (en) * 2006-09-12 2008-03-13 Boston Scientific Scimed, Inc. Longitudinally Flexible Expandable Stent
US7344556B2 (en) 2000-05-30 2008-03-18 Devax, Inc. Noncylindrical drug eluting stent for treating vascular bifurcations
WO2008033632A1 (en) * 2006-09-13 2008-03-20 Medtronic Vascular Inc. Compliance-graded stent
US20080086194A1 (en) * 2006-10-06 2008-04-10 Advanced Cardiovascular Systems, Intravascular stent
EP1917931A2 (en) 2001-12-03 2008-05-07 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
US20080194939A1 (en) * 2004-09-08 2008-08-14 Advotek Medical Devices Ltd. Minimally Invasive Surgical Appartus and Methods
US20080200975A1 (en) * 2004-01-06 2008-08-21 Nicast Ltd. Vascular Prosthesis with Anastomotic Member
US20080215135A1 (en) * 2005-02-17 2008-09-04 Jacques Seguin Device Allowing the Treatment of Bodily Conduits at an Area of a Bifurcation
US20080281407A1 (en) * 1997-06-13 2008-11-13 Orbusneich Medical, Inc. Stent having helical elements
US20080288048A1 (en) * 1997-04-29 2008-11-20 Sorin Biomedica Cardio S.R.L. Stents for angioplasty
US20080294267A1 (en) * 2007-05-25 2008-11-27 C.R. Bard, Inc. Twisted stent
US20090132022A1 (en) * 1999-11-19 2009-05-21 Advanced Bio Prosthetic Surfaces, Ltd. Stents with metallic covers and methods of making same
US20090192589A1 (en) * 2001-06-11 2009-07-30 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7632303B1 (en) 2000-06-07 2009-12-15 Advanced Cardiovascular Systems, Inc. Variable stiffness medical devices
US20100076358A1 (en) * 2006-05-18 2010-03-25 Carolyn Anne Richardson Posture indicator
US20100094402A1 (en) * 2008-10-10 2010-04-15 Kevin Heraty Medical device suitable for location in a body lumen
US7704274B2 (en) 2002-09-26 2010-04-27 Advanced Bio Prothestic Surfaces, Ltd. Implantable graft and methods of making same
US20100114294A1 (en) * 2008-11-06 2010-05-06 William Cook Europe Aps Stent Member
US20100137974A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Stent with Graduated Stiffness
US7736687B2 (en) 2006-01-31 2010-06-15 Advance Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
US7763198B2 (en) 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US20100211157A1 (en) * 2009-02-19 2010-08-19 Kyong-Min Shin Partially biodegradable stent
US20100217380A1 (en) * 2009-02-02 2010-08-26 Ryan Donovan Flexible stent design
US7815590B2 (en) 1999-08-05 2010-10-19 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
WO2010128311A1 (en) 2009-05-08 2010-11-11 Veryan Medical Limited A medical device suitable for location in a body lumen
US20100286759A1 (en) * 2009-05-08 2010-11-11 Charles Taylor Medical device suitable for location in a body lumen
US7854760B2 (en) 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
US20100331947A1 (en) * 2005-02-17 2010-12-30 Alon Shalev Inflatable Medical Device
US20110022157A1 (en) * 2007-10-25 2011-01-27 Jacques Essinger Stents, Valved-Stents, and Methods and Systems for Delivery Thereof
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US8002740B2 (en) 2003-07-18 2011-08-23 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US8021414B2 (en) * 1996-04-26 2011-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US20110238156A1 (en) * 2010-03-29 2011-09-29 Boston Scientific Scimed, Inc. Flexible Stent Design
US20110251671A1 (en) * 2008-10-10 2011-10-13 Kevin Heraty Stent suitable for deployment in a blood vessel
US8043366B2 (en) 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US20110264195A1 (en) * 2010-04-27 2011-10-27 Medtronic Vascular, Inc. Helical Stent with Opposing and/or Alternating Pitch Angles
US20110288622A1 (en) * 2010-05-18 2011-11-24 Abbott Cardiovascular Systems, Inc. Expandable endoprostheses, systems, and methods for treating a bifurcated lumen
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8070792B2 (en) 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8147535B2 (en) 1998-12-11 2012-04-03 Endologix, Inc. Bifurcation graft deployment catheter
US20120109275A1 (en) * 2010-10-29 2012-05-03 Biotronik Ag Stent with radially asymmetric force distribution
US20120116496A1 (en) * 2010-11-05 2012-05-10 Chuter Timothy A Stent structures for use with valve replacements
US8231667B2 (en) 2002-11-08 2012-07-31 Jacques Séguin Endoprosthesis for vascular bifurcation
US8236041B2 (en) 2000-05-30 2012-08-07 Biosensors International Group, Ltd. Noncylindrical stent deployment system for treating vascular bifurcations
WO2012143731A1 (en) * 2011-04-20 2012-10-26 Arterius Limited A stent
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US8458879B2 (en) 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US20130178928A1 (en) * 2010-09-13 2013-07-11 Rajnikant Gandalal Vyas Stents with low strut thickness and variable strut geometry
US8512395B2 (en) 2010-12-30 2013-08-20 Boston Scientific Scimed, Inc. Stent with horseshoe shaped bridges
EP2444031A3 (en) * 2007-01-19 2013-09-11 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US20130261734A1 (en) * 2012-04-03 2013-10-03 Trivascular, Inc. Advanced kink resistant stent graft
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8623070B2 (en) 2007-03-08 2014-01-07 Thomas O. Bales Tapered helical stent and method for manufacturing the stent
US8632580B2 (en) 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8641754B2 (en) 2000-11-07 2014-02-04 Advanced Bio Prosthetic Surfaces, Ltd. a wholly owned subsidiary of Palmaz Scientific, Inc. Endoluminal stent, self-supporting endoluminal graft and methods of making same
CN103550017A (en) * 2013-08-16 2014-02-05 江苏大学 Intravascular stent applicable to conical blood vessel
US8663313B2 (en) 2011-03-03 2014-03-04 Boston Scientific Scimed, Inc. Low strain high strength stent
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
KR20140111963A (en) * 2013-03-12 2014-09-22 디퍼이 신테스 프로덕츠, 엘엘씨 Method of fabricating modifiable occlusion device
US8920489B2 (en) 2010-08-02 2014-12-30 Cordis Corporation Flexible stent having protruding hinges
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US8961590B2 (en) 2010-08-02 2015-02-24 Cordis Corporation Flexible helical stent having different helical regions
US8992592B2 (en) 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8998973B2 (en) * 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
WO2015059019A1 (en) * 2013-10-21 2015-04-30 Jotec Gmbh Vascular implant having portions of different radial force
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9101501B2 (en) 1996-06-06 2015-08-11 Biosensors International Group, Ltd. Bifurcation stent and method of positioning in a body lumen
US20150265437A1 (en) * 2014-03-18 2015-09-24 Boston Scientific Scimed, Inc. Reduced granulation and inflammation stent design
US9155644B2 (en) 2010-08-02 2015-10-13 Cordis Corporation Flexible helical stent having intermediate structural feature
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US20150290003A1 (en) * 2012-11-05 2015-10-15 Variomed Ag Stent
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9216082B2 (en) 2005-12-22 2015-12-22 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US20160000554A1 (en) * 2013-03-06 2016-01-07 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Apparatus and method for regeneration of ligaments and tendons
US9320623B2 (en) 2011-10-04 2016-04-26 Cook Medical Technologies Llc Reduced wire profile stent
WO2016074799A1 (en) * 2014-11-11 2016-05-19 medicut Stent Technology GmbH Stent prosthesis
US9345532B2 (en) 2011-05-13 2016-05-24 Broncus Medical Inc. Methods and devices for ablation of tissue
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
CN105853036A (en) * 2016-05-18 2016-08-17 周玉杰 Degradable individual non-column-shaped bionic medicine eluting coronary stent
US9526647B2 (en) 2013-04-23 2016-12-27 Medical Ingenuities, LLC Interconnection between selectively-expandable and self-expandable sections of an ostial stent
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
US9610179B2 (en) 2013-03-12 2017-04-04 Cook Medical Technologies Llc Atraumatic stent crowns
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
US20180092764A1 (en) * 2009-11-04 2018-04-05 Craig L. Bonsignore Alternating circumferential bridge stent design and methods for use thereof
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US10213287B2 (en) 2014-05-16 2019-02-26 Veosource Sa Implantable self-cleaning blood filters
US10231855B2 (en) 2010-08-02 2019-03-19 CARDINAL HEALTH SWITZERLAND 515 GmbH Flexible helical stent having intermediate non-helical region
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
US10258464B2 (en) 2012-03-22 2019-04-16 Symetis Sa Transcatheter stent-valves
US10272260B2 (en) 2011-11-23 2019-04-30 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US10376359B2 (en) 2009-11-02 2019-08-13 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
CN110573115A (en) * 2017-03-10 2019-12-13 和平医疗公司 method and system for delivering self-expanding stents to the venous sinus
US10543308B2 (en) 2017-04-10 2020-01-28 Limflow Gmbh Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature
US10568697B2 (en) * 2017-07-17 2020-02-25 International Business Machines Corporation Personalized coronary stent methods
US10702405B2 (en) 2016-03-31 2020-07-07 Vesper Medical, Inc. Intravascular implants
US10716662B2 (en) 2007-08-21 2020-07-21 Boston Scientific Limited Stent-valves for valve replacement and associated methods and systems for surgery
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US10722255B2 (en) 2008-12-23 2020-07-28 Covidien Lp Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US10806560B2 (en) 2015-05-18 2020-10-20 Pulmair Medical, Inc. Implantable artificial bronchus and use of an implantable artificial bronchus
USD902407S1 (en) * 2019-11-19 2020-11-17 Pulmair Medical, Inc. Implantable artificial bronchus
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US10881541B1 (en) 2020-05-01 2021-01-05 Krishna Rocha-Singh Systems and methods for treating venous compression/obstruction syndromes
US10966847B2 (en) 2008-10-10 2021-04-06 Veryan Medical Limited Medical device suitable for location in a body lumen
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US20210220178A1 (en) * 2016-09-26 2021-07-22 Doya Medical Ltd. Stent and stenting method
US11116943B2 (en) 2018-10-09 2021-09-14 Limflow Gmbh Methods for accessing pedal veins
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
USD954953S1 (en) 2020-11-03 2022-06-14 Pulmair Medical, Inc. Implantable artificial bronchus
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US11395736B2 (en) * 2014-01-27 2022-07-26 Medtronic Vascular Galway Stented prosthetic heart valve with variable stiffness and methods of use
US20220257393A1 (en) * 2021-02-16 2022-08-18 Olympus Corporation Stent
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11612397B2 (en) 2019-11-01 2023-03-28 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
US11819430B2 (en) 2017-11-03 2023-11-21 Ceroflo Limited Expandable stent and a method for promoting a natural intracranial angiogenesis process, and use of the expandable stent in the method for promoting a natural intracranial angiogenesis process
USD1014758S1 (en) 2023-04-19 2024-02-13 Pulmair Medical, Inc. Implantable artificial bronchus

Families Citing this family (519)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
US6599316B2 (en) 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6835203B1 (en) 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6325826B1 (en) * 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
EP0944366B1 (en) * 1996-11-04 2006-09-13 Advanced Stent Technologies, Inc. Extendible double stent
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US20040130599A1 (en) * 1997-07-15 2004-07-08 Silverbrook Research Pty Ltd Ink jet printhead with amorphous ceramic chamber
US6330884B1 (en) * 1997-11-14 2001-12-18 Transvascular, Inc. Deformable scaffolding multicellular stent
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6558415B2 (en) * 1998-03-27 2003-05-06 Intratherapeutics, Inc. Stent
WO1999056663A2 (en) * 1998-05-05 1999-11-11 Scimed Life Systems, Inc. Stent with smooth ends
US6740113B2 (en) * 1998-05-29 2004-05-25 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
GB2344053A (en) * 1998-11-30 2000-05-31 Imperial College Stents for blood vessels
US8257425B2 (en) 1999-01-13 2012-09-04 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
CA2360551C (en) * 1999-01-27 2009-12-22 Scimed Life Systems, Inc. Bifurcation stent delivery system
AU781306B2 (en) * 2000-05-02 2005-05-12 Cordis Corporation Bifurcated stent and stent delivery system
DE10040630A1 (en) 2000-08-16 2002-03-07 Thomas Hupp Stent for implantation in the carotid artery
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US8192484B2 (en) * 2000-12-12 2012-06-05 Cardiatis S.A. Stent for blood flow improvement
DE10065824B4 (en) * 2000-12-28 2018-10-31 Jotec Gmbh Endovascular stent for implantation in the ascending branch of the aorta
WO2002067653A2 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US6695877B2 (en) 2001-02-26 2004-02-24 Scimed Life Systems Bifurcated stent
US7799064B2 (en) 2001-02-26 2010-09-21 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US6749628B1 (en) 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
CA2452953A1 (en) * 2001-07-18 2003-01-30 The Research Foundation Of State University Of New York Stent vascular intervention device and method
DE60236093D1 (en) * 2001-07-26 2010-06-02 Merit Medical Systems Inc REMOVABLE STENT
US6675809B2 (en) 2001-08-27 2004-01-13 Richard S. Stack Satiation devices and methods
US7097665B2 (en) 2003-01-16 2006-08-29 Synecor, Llc Positioning tools and methods for implanting medical devices
US6845776B2 (en) 2001-08-27 2005-01-25 Richard S. Stack Satiation devices and methods
CN101810521B (en) 2001-08-27 2015-05-13 辛尼科有限责任公司 Satiation devices and methods
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US20030074051A1 (en) * 2001-10-16 2003-04-17 Kirsten Freislinger Luehrs Flexible stent
JP4043216B2 (en) * 2001-10-30 2008-02-06 オリンパス株式会社 Stent
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US7789903B2 (en) * 2002-04-04 2010-09-07 Boston Scientific Scimed, Inc. Stent-graft with adjustable length
US7146984B2 (en) 2002-04-08 2006-12-12 Synecor, Llc Method and apparatus for modifying the exit orifice of a satiation pouch
US7025777B2 (en) * 2002-07-31 2006-04-11 Unison Therapeutics, Inc. Flexible and conformable stent and method of forming same
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US9561123B2 (en) 2002-08-30 2017-02-07 C.R. Bard, Inc. Highly flexible stent and method of manufacture
GB0220340D0 (en) * 2002-09-02 2002-10-09 Anson Medical Ltd Flexible stent-graft
WO2004026112A2 (en) * 2002-09-17 2004-04-01 Tricardia, Llc Vascular compliance device and method of use
KR100893070B1 (en) * 2002-09-19 2009-04-17 엘지전자 주식회사 Method and apparatus for providing and receiving multicast service in a radio communication system
AU2003272682C1 (en) 2002-09-20 2009-07-16 Nellix, Inc. Stent-graft with positioning anchor
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7875068B2 (en) * 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7169178B1 (en) * 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US8282678B2 (en) * 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
US7001425B2 (en) * 2002-11-15 2006-02-21 Scimed Life Systems, Inc. Braided stent method for its manufacture
ITMO20020337A1 (en) * 2002-11-21 2004-05-22 G A M A H S Srl DEVICE FOR ANASTOMOSIS.
US7195628B2 (en) * 2002-12-11 2007-03-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Atrial fibrillation therapy with pulmonary vein support
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20040143342A1 (en) 2003-01-16 2004-07-22 Stack Richard S. Satiation pouches and methods of use
WO2004078065A2 (en) * 2003-03-03 2004-09-16 Sinus Rhythm Technologies, Inc. Electrical conduction block implant device
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US8109987B2 (en) 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7758630B2 (en) 2003-04-14 2010-07-20 Tryton Medical, Inc. Helical ostium support for treating vascular bifurcations
US7481834B2 (en) 2003-04-14 2009-01-27 Tryton Medical, Inc. Stent for placement at luminal os
US7717953B2 (en) 2004-10-13 2010-05-18 Tryton Medical, Inc. Delivery system for placement of prosthesis at luminal OS
US7972372B2 (en) 2003-04-14 2011-07-05 Tryton Medical, Inc. Kit for treating vascular bifurcations
US8083791B2 (en) 2003-04-14 2011-12-27 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7731747B2 (en) 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
JP2005021504A (en) * 2003-07-04 2005-01-27 Terumo Corp Stents for indwelling in living body
US7959665B2 (en) * 2003-07-31 2011-06-14 Abbott Cardiovascular Systems Inc. Intravascular stent with inverted end rings
US8298280B2 (en) 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US8206456B2 (en) 2003-10-10 2012-06-26 Barosense, Inc. Restrictive and/or obstructive implant system for inducing weight loss
US20050247320A1 (en) 2003-10-10 2005-11-10 Stack Richard S Devices and methods for retaining a gastro-esophageal implant
US7060090B2 (en) * 2003-10-15 2006-06-13 Medtronic Vascular, Inc. Stent with increased longitudinal flexibility and scaffolding
US7287115B2 (en) * 2003-10-30 2007-10-23 Kabushiki Kaisha Toshiba Multi-chip package type memory system
US8333798B2 (en) 2003-11-07 2012-12-18 Merlin Md Pte Ltd. Implantable medical devices with enhanced visibility, mechanical properties and biocompatability
US20050101968A1 (en) * 2003-11-12 2005-05-12 Dadourian Daniel G. Ostial locator device and methods for transluminal interventions
SE526861C2 (en) 2003-11-17 2005-11-15 Syntach Ag Tissue lesion creation device and a set of devices for the treatment of cardiac arrhythmia disorders
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
EP2526895B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8454676B1 (en) * 2004-01-20 2013-06-04 Advanced Cardiovascular Systems, Inc. Transition matching stent
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US20050177221A1 (en) * 2004-02-06 2005-08-11 Mustapha Jihad A. Ostial stent
US20070038283A1 (en) * 2004-02-06 2007-02-15 Mustapha Jihad A Ostial stent and balloon
US7479158B2 (en) * 2004-02-20 2009-01-20 Boston Scientific Scimed, Inc. Stent with nested flexible connectors for flexibility and crimpability
CA2599434C (en) * 2004-03-02 2016-09-13 Peter William Walsh A vessel or sac wall treatment and a cardiac assist device
US9398967B2 (en) 2004-03-02 2016-07-26 Syntach Ag Electrical conduction block implant device
US8007528B2 (en) 2004-03-17 2011-08-30 Boston Scientific Scimed, Inc. Bifurcated stent
US8500751B2 (en) 2004-03-31 2013-08-06 Merlin Md Pte Ltd Medical device
US8715340B2 (en) * 2004-03-31 2014-05-06 Merlin Md Pte Ltd. Endovascular device with membrane
US20050273150A1 (en) 2004-03-31 2005-12-08 Howell Douglas D Stent introducer system
WO2005094725A1 (en) 2004-03-31 2005-10-13 Merlin Md Pte Ltd A method for treating aneurysms
EP1740132B1 (en) 2004-04-26 2014-12-31 Synecor, LLC Restrictive and/or obstructive implant for inducing weight loss
EP1753369B1 (en) 2004-06-08 2013-05-29 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US7240516B2 (en) * 2004-08-03 2007-07-10 Medtronic Vascular, Inc. Flexible resheathable stent design
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
EP1789107B1 (en) 2004-08-30 2009-05-27 Interstitial Therapeutics Medical stent provided with inhibitors of atp synthesis
US20060074480A1 (en) 2004-09-01 2006-04-06 Pst, Llc Stent and method for manufacturing the stent
US20060060266A1 (en) * 2004-09-01 2006-03-23 Pst, Llc Stent and method for manufacturing the stent
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7887579B2 (en) 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US7914487B2 (en) * 2004-10-15 2011-03-29 Futurematrix Interventional, Inc. Non-compliant medical balloon having braided or knitted reinforcement
US7309324B2 (en) * 2004-10-15 2007-12-18 Futuremed Interventional, Inc. Non-compliant medical balloon having an integral woven fabric layer
US7682335B2 (en) * 2004-10-15 2010-03-23 Futurematrix Interventional, Inc. Non-compliant medical balloon having an integral non-woven fabric layer
US7354419B2 (en) * 2004-10-15 2008-04-08 Futuremed Interventional, Inc. Medical balloon having strengthening rods
US8262720B2 (en) * 2004-12-02 2012-09-11 Nitinol Development Corporation Prosthesis comprising dual tapered stent
US9427340B2 (en) 2004-12-14 2016-08-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US20070100321A1 (en) * 2004-12-22 2007-05-03 Leon Rudakov Medical device
US20070150051A1 (en) * 2005-01-10 2007-06-28 Duke Fiduciary, Llc Vascular implants and methods of fabricating the same
US8287583B2 (en) 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
JP2006262948A (en) * 2005-03-22 2006-10-05 National Cardiovascular Center Stent
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
US9034025B2 (en) 2005-05-23 2015-05-19 Ostial Corporation Balloon catheters and methods for use
JP5143342B2 (en) * 2005-05-23 2013-02-13 Necトーキン株式会社 Autonomous functional stent
US7862601B2 (en) * 2005-05-23 2011-01-04 Incept Llc Apparatus and methods for delivering a stent into an ostium
US20070021819A1 (en) * 2005-05-23 2007-01-25 Jeff Krolik Apparatus and Methods for Locating an Ostium of a Vessel
JP4737518B2 (en) * 2005-05-23 2011-08-03 Necトーキン株式会社 Ti-Ni-Nb alloy element
US8480728B2 (en) 2005-05-26 2013-07-09 Boston Scientific Scimed, Inc. Stent side branch deployment initiation geometry
US8317855B2 (en) 2005-05-26 2012-11-27 Boston Scientific Scimed, Inc. Crimpable and expandable side branch cell
US7500982B2 (en) 2005-06-22 2009-03-10 Futurematrix Interventional, Inc. Balloon dilation catheter having transition from coaxial lumens to non-coaxial multiple lumens
US7544201B2 (en) 2005-07-05 2009-06-09 Futurematrix Interventional, Inc. Rapid exchange balloon dilation catheter having reinforced multi-lumen distal portion
US20070010837A1 (en) * 2005-07-07 2007-01-11 Don Tanaka Magnetic frame for connecting hollow bodies
AU2006269419A1 (en) * 2005-07-07 2007-01-18 Nellix, Inc. Systems and methods for endovascular aneurysm treatment
US8862243B2 (en) 2005-07-25 2014-10-14 Rainbow Medical Ltd. Electrical stimulation of blood vessels
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US20070055358A1 (en) * 2005-08-22 2007-03-08 Krolik Jeffrey A Axially compressible flared stents and apparatus and methods for delivering them
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US7731741B2 (en) 2005-09-08 2010-06-08 Boston Scientific Scimed, Inc. Inflatable bifurcation stent
US8038706B2 (en) 2005-09-08 2011-10-18 Boston Scientific Scimed, Inc. Crown stent assembly
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
CA2626697A1 (en) * 2005-09-30 2007-04-05 Incept, Llc Apparatus for locating an ostium of a vessel
US9055942B2 (en) 2005-10-03 2015-06-16 Boston Scienctific Scimed, Inc. Endoscopic plication devices and methods
WO2007051183A1 (en) * 2005-10-28 2007-05-03 Incept, Llc Flared stents and apparatus and methods for delivering them
US20070112418A1 (en) 2005-11-14 2007-05-17 Boston Scientific Scimed, Inc. Stent with spiral side-branch support designs
US8343211B2 (en) 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US8435284B2 (en) 2005-12-14 2013-05-07 Boston Scientific Scimed, Inc. Telescoping bifurcated stent
US8518100B2 (en) * 2005-12-19 2013-08-27 Advanced Cardiovascular Systems, Inc. Drug eluting stent for the treatment of dialysis graft stenoses
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070142904A1 (en) * 2005-12-20 2007-06-21 Boston Scientific Scimed, Inc. Bifurcated stent with multiple locations for side branch access
US7540881B2 (en) 2005-12-22 2009-06-02 Boston Scientific Scimed, Inc. Bifurcation stent pattern
US20070156230A1 (en) 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US20090054966A1 (en) * 2006-02-13 2009-02-26 Merlin Md Pte Ltd. Endovascular device with membrane
WO2007095466A2 (en) 2006-02-14 2007-08-23 Angiomed Gmbh & Co. Medizintechnik Kg Highly flexible stent and method of manufacture
NZ569760A (en) * 2006-02-17 2011-01-28 Invatec Srl Endoluminal prosthesis
EP1991179B1 (en) * 2006-02-27 2013-03-20 William A. Cook Australia Pty. Ltd. Retention of stents
US7833264B2 (en) 2006-03-06 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent
US20070208415A1 (en) * 2006-03-06 2007-09-06 Kevin Grotheim Bifurcated stent with controlled drug delivery
US8298278B2 (en) 2006-03-07 2012-10-30 Boston Scientific Scimed, Inc. Bifurcated stent with improvement securement
US20070225798A1 (en) * 2006-03-23 2007-09-27 Daniel Gregorich Side branch stent
JP5487434B2 (en) * 2006-03-29 2014-05-07 クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニー Iliac leg extension stent graft
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US20130190676A1 (en) 2006-04-20 2013-07-25 Limflow Gmbh Devices and methods for fluid flow through body passages
GB0607761D0 (en) 2006-04-20 2006-05-31 Site Specific Therapies Ltd Variable density stent
US20070260304A1 (en) * 2006-05-02 2007-11-08 Daniel Gregorich Bifurcated stent with minimally circumferentially projected side branch
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US20130325104A1 (en) 2006-05-26 2013-12-05 Abbott Cardiovascular Systems Inc. Stents With Radiopaque Markers
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
EP2051673A2 (en) 2006-06-23 2009-04-29 Boston Scientific Limited Bifurcated stent with twisted hinges
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US8029558B2 (en) 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US8834554B2 (en) * 2006-08-22 2014-09-16 Abbott Cardiovascular Systems Inc. Intravascular stent
US20120277844A1 (en) * 2006-08-22 2012-11-01 Tim Wu Biodegradable Drug Eluting stent Pattern
US8882826B2 (en) * 2006-08-22 2014-11-11 Abbott Cardiovascular Systems Inc. Intravascular stent
US8252041B2 (en) * 2006-08-23 2012-08-28 Abbott Laboratories Stent designs for use in peripheral vessels
EP2572673B1 (en) 2006-09-02 2015-08-19 Boston Scientific Scimed, Inc. Intestinal sleeves and associated deployment systems and methods
US8216267B2 (en) 2006-09-12 2012-07-10 Boston Scientific Scimed, Inc. Multilayer balloon for bifurcated stent delivery and methods of making and using the same
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
WO2008033474A2 (en) 2006-09-15 2008-03-20 Synecor, Llc System for anchoring stomach implant
US7951191B2 (en) 2006-10-10 2011-05-31 Boston Scientific Scimed, Inc. Bifurcated stent with entire circumferential petal
KR100826664B1 (en) * 2006-11-01 2008-05-02 주식회사 엠아이텍 Stent and method of manufacturing the same
US8206429B2 (en) 2006-11-02 2012-06-26 Boston Scientific Scimed, Inc. Adjustable bifurcation catheter incorporating electroactive polymer and methods of making and using the same
US7842082B2 (en) 2006-11-16 2010-11-30 Boston Scientific Scimed, Inc. Bifurcated stent
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
JP4973173B2 (en) * 2006-12-15 2012-07-11 ニプロ株式会社 Stent delivery system
US7959668B2 (en) * 2007-01-16 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent
US9526642B2 (en) * 2007-02-09 2016-12-27 Taheri Laduca Llc Vascular implants and methods of fabricating the same
US8328865B2 (en) * 2007-02-12 2012-12-11 C. R. Bard, Inc. Highly flexible stent and method of manufacture
US8333799B2 (en) 2007-02-12 2012-12-18 C. R. Bard, Inc. Highly flexible stent and method of manufacture
US8062347B2 (en) * 2007-03-23 2011-11-22 Codman & Shurtleff, Inc. Implantable stents having a plurality of varying parallelogrammic cells and methods for manufacturing the same
US8118861B2 (en) 2007-03-28 2012-02-21 Boston Scientific Scimed, Inc. Bifurcation stent and balloon assemblies
US8647376B2 (en) 2007-03-30 2014-02-11 Boston Scientific Scimed, Inc. Balloon fold design for deployment of bifurcated stent petal architecture
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
EP1982658A1 (en) * 2007-04-16 2008-10-22 Corlife GbR Vessel connector and kit with applicator for surgery
US20080294247A1 (en) * 2007-05-25 2008-11-27 Medical Entrepreneurs Ii, Inc. Prosthetic Heart Valve
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
CN101827559B (en) 2007-07-18 2013-05-29 压力感应器公司 Endoscopic implant system
US20090030284A1 (en) 2007-07-18 2009-01-29 David Cole Overtube introducer for use in endoscopic bariatric surgery
US8002744B2 (en) 2007-08-06 2011-08-23 Bard Peripheral Vascular, Inc Non-compliant medical balloon
US8313601B2 (en) * 2007-08-06 2012-11-20 Bard Peripheral Vascular, Inc. Non-compliant medical balloon
JP5419875B2 (en) 2007-08-24 2014-02-19 セント ジュード メディカル インコーポレイテッド Artificial aortic heart valve
US7959669B2 (en) 2007-09-12 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent with open ended side branch support
EP4309627A2 (en) 2007-09-26 2024-01-24 St. Jude Medical, LLC Collapsible prosthetic heart valves
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8784481B2 (en) 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
AU2008308474B2 (en) 2007-10-04 2014-07-24 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US7833266B2 (en) 2007-11-28 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment
JP2011505201A (en) 2007-11-30 2011-02-24 クック・インコーポレイテッド Method and apparatus for vascular therapy
CN101902992B (en) * 2007-12-19 2012-11-28 因瓦泰克技术中心有限公司 Modular stent assembly
US8277501B2 (en) 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
US20090171383A1 (en) 2007-12-31 2009-07-02 David Cole Gastric space occupier systems and methods of use
US8747456B2 (en) 2007-12-31 2014-06-10 Boston Scientific Scimed, Inc. Bifurcation stent delivery system and methods
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
WO2009103011A1 (en) * 2008-02-13 2009-08-20 Nellix, Inc. Graft endoframe having axially variable characteristics
US8020741B2 (en) 2008-03-18 2011-09-20 Barosense, Inc. Endoscopic stapling devices and methods
JP5663471B2 (en) 2008-04-25 2015-02-04 ネリックス・インコーポレーテッド Stent / graft delivery system
US8932340B2 (en) 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
EP2299933A4 (en) * 2008-06-04 2015-07-29 Endologix Inc Docking apparatus and methods of use
JP2011522615A (en) * 2008-06-04 2011-08-04 ネリックス・インコーポレーテッド Sealing device and method of use
EP4119097A1 (en) 2008-06-06 2023-01-18 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8231686B2 (en) * 2008-06-11 2012-07-31 Eric Mangiardi Stent
JP5379852B2 (en) 2008-07-15 2013-12-25 セント ジュード メディカル インコーポレイテッド Collapsible and re-expandable prosthetic heart valve cuff design and complementary technology application
US9039756B2 (en) 2008-07-21 2015-05-26 Jenesis Surgical, Llc Repositionable endoluminal support structure and its applications
EP3878408A1 (en) 2008-07-21 2021-09-15 Jenesis Surgical, LLC Endoluminal support apparatus
US8262692B2 (en) * 2008-09-05 2012-09-11 Merlin Md Pte Ltd Endovascular device
JP5607639B2 (en) 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
EP2349129B1 (en) * 2008-10-10 2016-05-04 Veryan Medical Limited A stent suitable for deployment in a blood vessel
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US8734502B2 (en) 2008-12-17 2014-05-27 Cook Medical Technologies Llc Tapered stent and flexible prosthesis
JP2012513860A (en) * 2008-12-29 2012-06-21 インバテック テクノロジー センター ゲゼルシャフト ミット ベシュレンクテル ハフツング Endoluminal prosthesis
US8728110B2 (en) 2009-01-16 2014-05-20 Bard Peripheral Vascular, Inc. Balloon dilation catheter shaft having end transition
US8814899B2 (en) 2009-02-23 2014-08-26 Futurematrix Interventional, Inc. Balloon catheter pressure relief valve
US9259559B2 (en) 2009-02-23 2016-02-16 Futurematrix Interventional, Inc. Balloon catheter pressure relief valve
EP2400924B1 (en) 2009-02-27 2017-06-28 St. Jude Medical, Inc. Prosthetic heart valve
WO2010114941A1 (en) * 2009-03-31 2010-10-07 Medical Entrepreneurs Ii, Inc. Leaflet alignment fixture and methods therefor
CN102458314B (en) * 2009-04-10 2014-09-17 泰科保健集团有限合伙公司 Implants having high fatigue resistance, implant delivery systems, and methods of use
US8961539B2 (en) 2009-05-04 2015-02-24 Boston Scientific Scimed, Inc. Endoscopic implant system and method
CA3009244C (en) 2009-06-23 2020-04-28 Endospan Ltd. Vascular prostheses for treating aneurysms
US8382818B2 (en) 2009-07-02 2013-02-26 Tryton Medical, Inc. Ostium support for treating vascular bifurcations
CA2767596C (en) 2009-07-09 2015-11-24 Endospan Ltd. Apparatus for closure of a lumen and methods of using the same
US20110034998A1 (en) * 2009-08-07 2011-02-10 Kassem Ashe Annuloplasty tubes
US8221489B2 (en) * 2009-08-20 2012-07-17 Stentys Device and method for treating a body lumen
US9126022B2 (en) 2009-08-24 2015-09-08 Cook Medical Technologies Llc Textile-reinforced high-pressure balloon
US9211391B2 (en) * 2009-09-24 2015-12-15 Bard Peripheral Vascular, Inc. Balloon with variable pitch reinforcing fibers
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
EP3735937A1 (en) 2009-11-30 2020-11-11 Endospan Ltd. Multi-component stent-graft system for implantation in a blood vessel with multiple branches
WO2011070576A1 (en) 2009-12-08 2011-06-16 Endospan Ltd. Endovascular stent-graft system with fenestrated and crossing stent-grafts
GB2476479B (en) * 2009-12-22 2012-06-20 Cook Medical Technologies Llc Implantable device
US20110276078A1 (en) 2009-12-30 2011-11-10 Nellix, Inc. Filling structure for a graft system and methods of use
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
US9468517B2 (en) 2010-02-08 2016-10-18 Endospan Ltd. Thermal energy application for prevention and management of endoleaks in stent-grafts
US20110208289A1 (en) * 2010-02-25 2011-08-25 Endospan Ltd. Flexible Stent-Grafts
US9301864B2 (en) 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
US8864811B2 (en) 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
US8628554B2 (en) 2010-06-13 2014-01-14 Virender K. Sharma Intragastric device for treating obesity
US9795476B2 (en) 2010-06-17 2017-10-24 St. Jude Medical, Llc Collapsible heart valve with angled frame
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
EP2608741A2 (en) 2010-08-24 2013-07-03 St. Jude Medical, Inc. Staged deployment devices and methods for transcatheter heart valve delivery systems
EP2613737B2 (en) 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
AU2011302640B2 (en) 2010-09-17 2014-11-06 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
JP2013540484A (en) 2010-09-20 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Valve leaflet mounting device in foldable artificial valve
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
US9233014B2 (en) * 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
US9707108B2 (en) 2010-11-24 2017-07-18 Tryton Medical, Inc. Support for treating vascular bifurcations
US20120179238A1 (en) * 2011-01-10 2012-07-12 Peritec Biosciences, Ltd. Stent having variable stiffness
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US9717593B2 (en) 2011-02-01 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
US8597240B2 (en) 2011-02-02 2013-12-03 Futurematrix Interventional, Inc. Coaxial catheter shaft having balloon attachment feature with axial fluid path
US9526638B2 (en) 2011-02-03 2016-12-27 Endospan Ltd. Implantable medical devices constructed of shape memory material
WO2012111006A1 (en) 2011-02-17 2012-08-23 Endospan Ltd. Vascular bands and delivery systems therefor
US9486341B2 (en) 2011-03-02 2016-11-08 Endospan Ltd. Reduced-strain extra-vascular ring for treating aortic aneurysm
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9415195B2 (en) 2011-04-06 2016-08-16 Engologix, Inc. Method and system for treating aneurysms
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
US8574287B2 (en) 2011-06-14 2013-11-05 Endospan Ltd. Stents incorporating a plurality of strain-distribution locations
ES2568377T3 (en) 2011-06-21 2016-04-28 Endospan Ltd Endovascular system with circumferentially overlapping stents
EP2729095B1 (en) 2011-07-07 2016-10-26 Endospan Ltd. Stent fixation with reduced plastic deformation
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9060860B2 (en) 2011-08-18 2015-06-23 St. Jude Medical, Cardiology Division, Inc. Devices and methods for transcatheter heart valve delivery
US9839510B2 (en) 2011-08-28 2017-12-12 Endospan Ltd. Stent-grafts with post-deployment variable radial displacement
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US9427339B2 (en) 2011-10-30 2016-08-30 Endospan Ltd. Triple-collar stent-graft
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
WO2013074990A1 (en) * 2011-11-16 2013-05-23 Bolton Medical, Inc. Device and method for aortic branched vessel repair
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9597204B2 (en) 2011-12-04 2017-03-21 Endospan Ltd. Branched stent-graft system
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
ES2943709T3 (en) 2012-04-06 2023-06-15 Merlin Md Pte Ltd Devices to treat an aneurysm
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
EP2841024B1 (en) 2012-04-26 2017-05-03 Tryton Medical, Inc. Support for treating vascular bifurcations
NZ701992A (en) 2012-05-14 2016-03-31 Bard Inc C R Uniformly expandable stent
WO2013171730A1 (en) 2012-05-15 2013-11-21 Endospan Ltd. Stent-graft with fixation elements that are radially confined for delivery
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US9241791B2 (en) 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9808342B2 (en) 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US10524909B2 (en) 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
US9186238B2 (en) 2013-01-29 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Aortic great vessel protection
US9314163B2 (en) 2013-01-29 2016-04-19 St. Jude Medical, Cardiology Division, Inc. Tissue sensing device for sutureless valve selection
US9655719B2 (en) 2013-01-29 2017-05-23 St. Jude Medical, Cardiology Division, Inc. Surgical heart valve flexible stent frame stiffener
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US9480563B2 (en) 2013-03-08 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Valve holder with leaflet protection
EP2964161B1 (en) 2013-03-08 2019-05-01 LimFlow GmbH Systems for providing or maintaining fluid flow through body passages
US10835367B2 (en) 2013-03-08 2020-11-17 Limflow Gmbh Devices for fluid flow through body passages
EP2967830B1 (en) 2013-03-11 2017-11-01 Endospan Ltd. Multi-component stent-graft system for aortic dissections
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US10314698B2 (en) 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
USD723165S1 (en) 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
US9301860B2 (en) 2013-03-13 2016-04-05 Jenesis Surgical, Llc Articulated commissure valve stents and methods
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US10201638B2 (en) 2013-03-14 2019-02-12 Endologix, Inc. Systems and methods for forming materials in situ within a medical device
US10321991B2 (en) 2013-06-19 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Collapsible valve having paravalvular leak protection
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
DE102013107258B4 (en) * 2013-07-09 2015-06-25 Acandis Gmbh & Co. Kg Medical device for import into a hollow body organ
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
USD730520S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD730521S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US9867611B2 (en) 2013-09-05 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Anchoring studs for transcatheter valve implantation
EP3043745B1 (en) 2013-09-12 2020-10-21 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
CN105899166B (en) 2013-11-06 2018-07-06 伊诺佩斯生医有限公司 The intravascular electrode based on stent of radio-type
US9700409B2 (en) 2013-11-06 2017-07-11 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP3848004A1 (en) 2013-11-11 2021-07-14 Edwards Lifesciences CardiAQ LLC Valve stent frame
US9549818B2 (en) 2013-11-12 2017-01-24 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
WO2015075708A1 (en) 2013-11-19 2015-05-28 Endospan Ltd. Stent system with radial-expansion locking
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US10314693B2 (en) 2013-11-27 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Cuff stitching reinforcement
US9597185B2 (en) 2013-12-19 2017-03-21 St. Jude Medical, Cardiology Division, Inc. Leaflet-cuff attachments for prosthetic heart valve
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
EP2904967A1 (en) 2014-02-07 2015-08-12 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
WO2015126712A1 (en) 2014-02-18 2015-08-27 St. Jude Medical, Cardiology Division, Inc. Bowed runners for paravalvular leak protection
AU2015231788B2 (en) 2014-03-18 2019-05-16 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
EP2921140A1 (en) 2014-03-18 2015-09-23 St. Jude Medical, Cardiology Division, Inc. Percutaneous valve anchoring for a prosthetic aortic valve
US9610157B2 (en) 2014-03-21 2017-04-04 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
CA2941398C (en) 2014-03-26 2018-05-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
US10143551B2 (en) 2014-03-31 2018-12-04 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
US10226332B2 (en) 2014-04-14 2019-03-12 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
ES2795358T3 (en) 2014-05-16 2020-11-23 St Jude Medical Cardiology Div Inc Subannular sealing for paravalvular leak protection
EP3142605A1 (en) 2014-05-16 2017-03-22 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
EP3142604B1 (en) 2014-05-16 2024-01-10 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
EP3145450B1 (en) 2014-05-22 2019-07-17 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
EP2954875B1 (en) 2014-06-10 2017-11-15 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
KR101631492B1 (en) 2014-08-11 2016-06-17 주식회사 바이오알파 Vascular Stent
EP3182932B1 (en) 2014-08-18 2019-05-15 St. Jude Medical, Cardiology Division, Inc. Annuloplasty ring with sensor
WO2016028581A1 (en) 2014-08-18 2016-02-25 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart devices having diagnostic capabilities
EP3182930B1 (en) 2014-08-18 2020-09-23 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
CN107106310B (en) * 2014-10-22 2019-03-22 波士顿科学国际有限公司 Bracket with flexible hinge
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
EP3229736B1 (en) 2014-12-09 2024-01-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
WO2016098113A1 (en) 2014-12-18 2016-06-23 Endospan Ltd. Endovascular stent-graft with fatigue-resistant lateral tube
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
EP3273912A1 (en) 2015-03-23 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
US9962260B2 (en) 2015-03-24 2018-05-08 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
WO2016154172A2 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
EP3280359A1 (en) 2015-04-07 2018-02-14 St. Jude Medical, Cardiology Division, Inc. System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation
EP3294220B1 (en) 2015-05-14 2023-12-06 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
US9700443B2 (en) 2015-06-12 2017-07-11 Abbott Cardiovascular Systems Inc. Methods for attaching a radiopaque marker to a scaffold
EP3307207A1 (en) 2015-06-12 2018-04-18 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
JP6600068B2 (en) 2015-07-16 2019-10-30 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Non-sutured prosthetic heart valve
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
EP3334380B1 (en) 2015-08-12 2022-03-16 St. Jude Medical, Cardiology Division, Inc. Collapsible heart valve including stents with tapered struts
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US9968472B2 (en) 2015-10-27 2018-05-15 Contego Medical, Llc Transluminal angioplasty devices and methods of use
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
USD802765S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
USD802764S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
USD802766S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
EP3454785B1 (en) 2016-05-13 2021-11-17 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
CN106137484A (en) * 2016-08-01 2016-11-23 江苏大学 A kind of self-expansion type conical blood vessel support
EP3503846B1 (en) 2016-08-26 2021-12-01 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3512466B1 (en) 2016-09-15 2020-07-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
EP3531977A1 (en) 2016-10-28 2019-09-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10758352B2 (en) 2016-12-02 2020-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with two modes of actuation
EP3547964A1 (en) 2016-12-02 2019-10-09 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with transverse wheel actuation
EP3554613B1 (en) 2016-12-13 2024-02-28 Contego Medical, Inc. Therapeutic agent coated angioplasty balloon with embolic filter and protective cover
CR20190381A (en) 2017-01-23 2019-09-27 Cephea Valve Tech Inc Replacement mitral valves
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2018160790A1 (en) 2017-03-03 2018-09-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve design
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
EP3624739A1 (en) 2017-05-15 2020-03-25 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with wheel actuation
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
US11052224B2 (en) 2017-05-18 2021-07-06 Renovorx, Inc. Methods for treating cancerous tumors
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
EP3556323B1 (en) 2018-04-18 2023-07-19 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve
US11452625B2 (en) 2018-04-27 2022-09-27 Takao ITOI Stent
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
CN108836584A (en) * 2018-05-28 2018-11-20 上海长海医院 A kind of compound close web frame carotid stents of segmented
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
EP3852679A1 (en) 2018-09-20 2021-07-28 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
US11684498B2 (en) 2018-10-19 2023-06-27 Inspire M.D Ltd. Methods of using a self-adjusting stent assembly and kits including same
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
EP3893804A1 (en) 2018-12-10 2021-10-20 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
US11273030B2 (en) 2018-12-26 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
EP4003230A1 (en) 2019-07-31 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Alternate stent caf design for tavr
CA3225272A1 (en) * 2021-08-06 2023-02-09 Adam KADLEC Intraluminal stents for treating benign prostatic hyperplasia
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743251A (en) * 1983-12-08 1988-05-10 Henry Bocquee Vein prothesis and method for producing same
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
WO1994015548A1 (en) * 1993-01-14 1994-07-21 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
WO1996025124A1 (en) * 1995-02-14 1996-08-22 Corvita Corporation Endovascular stent with locking ring
US5683411A (en) * 1994-04-06 1997-11-04 William Cook Europe A/S Medical article for implantation into the vascular system of a patient
US5693086A (en) * 1994-02-09 1997-12-02 Boston Scientific Technology, Inc. Apparatus for delivering an endoluminal stent or prosthesis
US5725549A (en) * 1994-03-11 1998-03-10 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5755769A (en) * 1992-03-12 1998-05-26 Laboratoire Perouse Implant Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof
US5800514A (en) * 1996-05-24 1998-09-01 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US5824059A (en) * 1997-08-05 1998-10-20 Wijay; Bandula Flexible stent

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US610548A (en) * 1898-09-13 manny
US5192289A (en) * 1989-03-09 1993-03-09 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
DE3922765A1 (en) * 1989-07-11 1991-01-17 Babcock Werke Ag BURNING, ESPECIALLY FLUIDIZED BURNING
IL94138A (en) * 1990-04-19 1997-03-18 Instent Inc Device for the treatment of constricted fluid conducting ducts
US5222964A (en) * 1992-03-03 1993-06-29 Cooper William I Intraluminal stent
FR2689653B1 (en) * 1992-04-01 1994-05-20 Angenieux P Ets DEFLECTOMETER TYPE OPTICAL DEVICE, ESPECIALLY PHASE DETECTION, WITH LARGE MEASUREMENT AREA.
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
JP2660101B2 (en) * 1992-05-08 1997-10-08 シュナイダー・(ユーエスエイ)・インコーポレーテッド Esophageal stent and delivery device
DE4303181A1 (en) * 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
FR2702487B1 (en) 1993-03-08 1995-04-21 Essilor Int Thermosetting polysiloxane compositions for abrasion-resistant coatings, process for obtaining them and corresponding coated articles, in particular ophthalmic.
JP2703510B2 (en) * 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
FR2714815B1 (en) 1994-01-10 1996-03-08 Microfil Ind Sa Elastic prosthesis to widen a duct, in particular a blood vessel.
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US5817152A (en) * 1994-10-19 1998-10-06 Birdsall; Matthew Connected stent apparatus
DE69526857T2 (en) * 1995-11-27 2003-01-02 Schneider Europ Gmbh Buelach Stent for use in one pass
US5741133A (en) * 1995-12-07 1998-04-21 Gordils; Antonio Jose Apparatuses and process for parallel placement of bone-integrated cylindrical type implants in dentistry
WO1997025937A1 (en) * 1996-01-18 1997-07-24 Jang G David Programmable variably flexible modular stents
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5837331A (en) * 1996-03-13 1998-11-17 Motorola, Inc. Amorphous multi-layered structure and method of making the same
US5868780A (en) 1996-03-22 1999-02-09 Lashinski; Robert D. Stents for supporting lumens in living tissue
EP1006938A4 (en) 1996-04-08 2000-07-05 Iowa India Investments Company Multiple interconnected stents and method of coating stents
NZ331269A (en) * 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
DE19614160A1 (en) * 1996-04-10 1997-10-16 Variomed Ag Stent for transluminal implantation in hollow organs
US5776183A (en) 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5868781A (en) * 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US5776162A (en) * 1997-01-03 1998-07-07 Nitinol Medical Technologies, Inc. Vessel implantable shape memory appliance with superelastic hinged joint
US5827321A (en) * 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5868783A (en) * 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US5817136A (en) * 1997-05-02 1998-10-06 Pacesetter, Inc. Rate-responsive pacemaker with minute volume determination and EMI protection
DE29708689U1 (en) 1997-05-15 1997-07-17 Jomed Implantate Gmbh Coronary stent
DE29708879U1 (en) * 1997-05-20 1997-07-31 Jomed Implantate Gmbh Coronary stent
US5836966A (en) * 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US5913895A (en) * 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
US5843175A (en) * 1997-06-13 1998-12-01 Global Therapeutics, Inc. Enhanced flexibility surgical stent
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
ES2290995T3 (en) * 1997-09-24 2008-02-16 Med Institute, Inc. RADIALLY EXPANDABLE ENDOPROTESIS.
US6309414B1 (en) * 1997-11-04 2001-10-30 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6129754A (en) 1997-12-11 2000-10-10 Uni-Cath Inc. Stent for vessel with branch
US6503271B2 (en) * 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US6342067B1 (en) * 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6179867B1 (en) * 1998-01-16 2001-01-30 Advanced Cardiovascular Systems, Inc. Flexible stent and method of use
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6132461A (en) * 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent with dual support structure
US6019789A (en) 1998-04-01 2000-02-01 Quanam Medical Corporation Expandable unit cell and intraluminal stent
US6264687B1 (en) * 1998-04-20 2001-07-24 Cordis Corporation Multi-laminate stent having superelastic articulated sections
US6340366B2 (en) * 1998-12-08 2002-01-22 Bandula Wijay Stent with nested or overlapping rings
US6273910B1 (en) * 1999-03-11 2001-08-14 Advanced Cardiovascular Systems, Inc. Stent with varying strut geometry
GB2361193B (en) * 2000-04-12 2002-03-06 Lee Chin Tsun Exercise wheel
US6342057B1 (en) 2000-04-28 2002-01-29 Synthes (Usa) Remotely aligned surgical drill guide
US6599314B2 (en) * 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743251A (en) * 1983-12-08 1988-05-10 Henry Bocquee Vein prothesis and method for producing same
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5755769A (en) * 1992-03-12 1998-05-26 Laboratoire Perouse Implant Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof
WO1994015548A1 (en) * 1993-01-14 1994-07-21 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5693086A (en) * 1994-02-09 1997-12-02 Boston Scientific Technology, Inc. Apparatus for delivering an endoluminal stent or prosthesis
US5800508A (en) * 1994-02-09 1998-09-01 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5725549A (en) * 1994-03-11 1998-03-10 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5683411A (en) * 1994-04-06 1997-11-04 William Cook Europe A/S Medical article for implantation into the vascular system of a patient
US5575818A (en) * 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
WO1996025124A1 (en) * 1995-02-14 1996-08-22 Corvita Corporation Endovascular stent with locking ring
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5800514A (en) * 1996-05-24 1998-09-01 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US5824059A (en) * 1997-08-05 1998-10-20 Wijay; Bandula Flexible stent

Cited By (557)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20040088044A1 (en) * 1995-03-01 2004-05-06 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US8728147B2 (en) 1995-03-01 2014-05-20 Boston Scientific Limited Longitudinally flexible expandable stent
US8114146B2 (en) 1995-03-01 2012-02-14 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8801773B2 (en) 1995-03-01 2014-08-12 Boston Scientific Scimed, Inc. Flexible and expandable stent
US6776793B2 (en) 1995-03-01 2004-08-17 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US8142489B2 (en) 1995-03-01 2012-03-27 Boston Scientific Scimed, Inc. Flexible and expandable stent
US20120078345A1 (en) * 1995-03-01 2012-03-29 Brown Brian J Longitudinally flexible expandable stent
US7988717B2 (en) 1995-03-01 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6796997B1 (en) * 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
US9078778B2 (en) 1996-04-26 2015-07-14 Boston Scientific Scimed, Inc. Intravascular stent
US8021414B2 (en) * 1996-04-26 2011-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US9101501B2 (en) 1996-06-06 2015-08-11 Biosensors International Group, Ltd. Bifurcation stent and method of positioning in a body lumen
US8603157B2 (en) 1996-06-06 2013-12-10 Biosensors International Group, Ltd. Endoprosthesis deployment methods for treating vascular bifurcations
US8728143B2 (en) 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
US20070213808A1 (en) * 1997-02-07 2007-09-13 Endosystems Llc Non-foreshortening intraluminal prosthesis
US20070213806A1 (en) * 1997-02-07 2007-09-13 Endosystems Llc Non-foreshortening intraluminal prosthesis
US8882823B2 (en) 1997-02-07 2014-11-11 Endosystems Llc Non-foreshortening intraluminal prosthesis
US6764506B2 (en) 1997-02-07 2004-07-20 Endosystems Llc Non-foreshortening intraluminal prosthesis
US20070213807A1 (en) * 1997-02-07 2007-09-13 Endosystems Llc Non-foreshortening intraluminal prosthesis
US7273494B2 (en) 1997-04-29 2007-09-25 Sorin Biomedica Cardio S.R.L. Stents for angioplasty
US20020183831A1 (en) * 1997-04-29 2002-12-05 Sorin Biomedica Cardio S.P.A. Stents for angioplasty
US20080288048A1 (en) * 1997-04-29 2008-11-20 Sorin Biomedica Cardio S.R.L. Stents for angioplasty
US20100241216A1 (en) * 1997-04-29 2010-09-23 Sorin Biomedica Cardio S.R.L. Stents for angioplasty
US6017365A (en) * 1997-05-20 2000-01-25 Jomed Implantate Gmbh Coronary stent
US6423084B1 (en) 1997-05-22 2002-07-23 Scimed Life Systems, Inc Variable expansion force stent
US7485130B2 (en) 1997-05-22 2009-02-03 Boston Scientific Scimed, Inc. Variable expansion force stent
US6146403A (en) * 1997-05-22 2000-11-14 Scimed Life Systems, Inc. Variable expansion force stent
US6997945B2 (en) 1997-05-22 2006-02-14 Boston Scientific Scimed, Inc. Variable expansion force stent
US20080294243A1 (en) * 1997-06-13 2008-11-27 Orbusneich Medical, Inc. Stent having helical elements
US20080281407A1 (en) * 1997-06-13 2008-11-13 Orbusneich Medical, Inc. Stent having helical elements
US8372135B2 (en) 1997-06-13 2013-02-12 Orbusneich Medical, Inc. Stent having helical elements
US8968385B2 (en) 1997-06-13 2015-03-03 Orbusneich Medical, Inc. Stent having helical elements
US8382820B2 (en) 1997-06-13 2013-02-26 Orbusneich Medical, Inc. Stent having helical elements
US7942922B2 (en) 1997-06-13 2011-05-17 Orbusneich Medical, Inc. Stent having helical elements
US20100324662A1 (en) * 1997-06-13 2010-12-23 Orbusneich Medical, Inc. Stent having helical elements
US7967852B2 (en) 1997-06-13 2011-06-28 Orbusneich Medical, Inc. Stent having helical elements
US8486133B2 (en) 1997-06-13 2013-07-16 Orbusneich Medical, Inc. Stent having helical elements
US20080294244A1 (en) * 1997-06-13 2008-11-27 Orbusneich Medical, Inc. Stent having helical elements
US20080281406A1 (en) * 1997-06-13 2008-11-13 Orbusneich Medical, Inc. Stent having helical elements
US20080288052A1 (en) * 1997-06-13 2008-11-20 Orbusneich Medical, Inc. Stent having helical elements
US20080288053A1 (en) * 1997-06-13 2008-11-20 Orbusneich Medical, Inc. Stent having helical elements
US20080294241A1 (en) * 1997-06-13 2008-11-27 Orbusneich Medical, Inc. Stent having helical elements
US20080288050A1 (en) * 1997-06-13 2008-11-20 Orbusneich Medical, Inc. Stent having helical elements
US20080288051A1 (en) * 1997-06-13 2008-11-20 Orbusneich Medical, Inc. Stent having helical elements
US6572649B2 (en) 1997-09-11 2003-06-03 Wake Forest University Compliant intraluminal stents
EP1021140A4 (en) * 1997-09-11 2001-03-21 Univ Wake Forest Compliant intraluminal stents
EP1021140A1 (en) * 1997-09-11 2000-07-26 Wake Forest University School of Medicine Compliant intraluminal stents
US6371982B2 (en) * 1997-10-09 2002-04-16 St. Jude Medical Cardiovascular Group, Inc. Graft structures with compliance gradients
US8439965B2 (en) 1997-11-04 2013-05-14 Cid S.P.A. Angioplasty stents
US7267684B2 (en) 1997-11-04 2007-09-11 Sorin Biomedica Cardio S.R.L. Angioplasty stents
US20100004736A1 (en) * 1997-11-04 2010-01-07 Sorin Biomedica Cardio S.R.L. Angioplasty stents
US6896698B2 (en) 1997-11-04 2005-05-24 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US20050228485A1 (en) * 1997-11-04 2005-10-13 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6565602B2 (en) 1997-11-04 2003-05-20 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6309414B1 (en) 1997-11-04 2001-10-30 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US20110213457A1 (en) * 1997-11-04 2011-09-01 Sorin Biomedica Cardio S.R.L. Angioplasty stents
US20040153140A1 (en) * 1997-11-04 2004-08-05 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US20070191928A1 (en) * 1997-11-04 2007-08-16 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6616690B2 (en) 1997-11-04 2003-09-09 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US20070055344A1 (en) * 1998-02-13 2007-03-08 Gittings Darin C Devices and methods for use in performing transmyocardial coronary bypass
US20060142849A1 (en) * 1998-03-04 2006-06-29 Killion Douglas P Stent having variable properties and method of its use
US7402169B2 (en) * 1998-03-04 2008-07-22 Boston Scientific Scimed, Inc. Stent having variable properties and method of its use
US7060091B2 (en) * 1998-03-04 2006-06-13 Boston Scientific Scimed, Inc. Stent having variable properties and method of its use
US6669723B2 (en) * 1998-03-04 2003-12-30 Scimed Life Systems, Inc. Stent having variable properties and method of its use
US20080281397A1 (en) * 1998-03-04 2008-11-13 Boston Scientific Scimed, Inc. Stent having variable properties and method of its use
US7780719B2 (en) 1998-03-04 2010-08-24 Boston Scientific Scimed, Inc. Stent having variable properties and method of its use
US6485509B2 (en) * 1998-03-04 2002-11-26 Scimed Life Systems, Inc. Stent having variable properties and method of its use
US7112217B1 (en) 1998-03-16 2006-09-26 Cordis Corporation Biluminal endovascular graft system
US6451049B2 (en) 1998-04-29 2002-09-17 Sorin Biomedica Cardio, S.P.A. Stents for angioplasty
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US20050283228A1 (en) * 1998-07-29 2005-12-22 Stanford Ulf H Expandable stent with relief holes capable of carrying medicines and other materials
US6652572B2 (en) 1998-10-05 2003-11-25 Cordis Corporation Endovascular graft system
US20030065380A1 (en) * 1998-10-05 2003-04-03 Kugler Chad J. Endovascular graft system
US6273909B1 (en) * 1998-10-05 2001-08-14 Teramed Inc. Endovascular graft system
US20020052645A1 (en) * 1998-10-05 2002-05-02 Kugler Chad J. Endovascular graft system
US6939371B2 (en) 1998-10-05 2005-09-06 Cordis Corporation Endovascular graft system
WO2000028922A1 (en) * 1998-11-12 2000-05-25 Advanced Cardiovascular Systems, Inc. Stent having non-uniform structure
US20060142841A1 (en) * 1998-11-16 2006-06-29 Endotex Inteventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US6325820B1 (en) * 1998-11-16 2001-12-04 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with exo-skeleton
US7641683B2 (en) 1998-11-16 2010-01-05 Boston Scientific Scimed, Inc. Stretchable anti-buckling coiled-sheet stent
US7731743B2 (en) 1998-11-16 2010-06-08 Boston Scientific Cupertino Corp. Coiled-sheet stent-graft with slidable exo-skeleton
US7223284B2 (en) 1998-11-16 2007-05-29 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US20070135888A1 (en) * 1998-11-16 2007-06-14 Endotex Interventional Systems, Inc. Stretchable Anti-Buckling Coiled-Sheet Stent
US6322585B1 (en) 1998-11-16 2001-11-27 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US6635081B2 (en) 1998-11-16 2003-10-21 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US20050033399A1 (en) * 1998-12-03 2005-02-10 Jacob Richter Hybrid stent
US8147535B2 (en) 1998-12-11 2012-04-03 Endologix, Inc. Bifurcation graft deployment catheter
US6743252B1 (en) * 1998-12-18 2004-06-01 Cook Incorporated Cannula stent
US6645237B2 (en) * 1999-02-26 2003-11-11 Vascular Architects, Inc. Expandable coiled endoluminal prosthesis
US20040153142A1 (en) * 1999-02-26 2004-08-05 Vascular Architects, Inc., A Delaware Corporation Expandable coil endoluminal prosthesis
WO2000049971A1 (en) * 1999-02-26 2000-08-31 Advanced Cardiovascular Systems, Inc. Stent with customized flexibility
US6273910B1 (en) * 1999-03-11 2001-08-14 Advanced Cardiovascular Systems, Inc. Stent with varying strut geometry
US20050149164A1 (en) * 1999-04-15 2005-07-07 Rivelli Patrick Jr. Method for treating neurovascular aneurysms
US6899730B1 (en) * 1999-04-15 2005-05-31 Scimed Life Systems, Inc. Catheter-stent device
US7520893B2 (en) 1999-04-15 2009-04-21 Scimed Life Systems, Inc. Method for treating neurovascular aneurysms
US6746475B1 (en) 1999-04-15 2004-06-08 Scimed Life Systems, Inc. Stent with variable stiffness
US6860899B1 (en) 1999-04-15 2005-03-01 Boston Scientific Scimed, Inc. Method for treating neurovascular aneurysms
US6511505B2 (en) 1999-04-22 2003-01-28 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6468302B2 (en) 1999-04-22 2002-10-22 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6852124B2 (en) 1999-04-22 2005-02-08 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6602284B2 (en) 1999-04-22 2003-08-05 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6312459B1 (en) * 1999-06-30 2001-11-06 Advanced Cardiovascular Systems, Inc. Stent design for use in small vessels
US6409754B1 (en) 1999-07-02 2002-06-25 Scimed Life Systems, Inc. Flexible segmented stent
US6551351B2 (en) * 1999-07-02 2003-04-22 Scimed Life Systems Spiral wound stent
US20010010013A1 (en) * 1999-07-22 2001-07-26 Cox Daniel L. Tapered self-expanding stent
WO2001006954A1 (en) * 1999-07-22 2001-02-01 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
US6569193B1 (en) * 1999-07-22 2003-05-27 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
US20030109918A1 (en) * 1999-07-28 2003-06-12 Scimed Life Systems, Inc. Multi-property nitinol by heat treatment
US6997947B2 (en) * 1999-07-28 2006-02-14 Boston Scientific Scimed, Inc. Multi-property nitinol by heat treatment
US20060100693A1 (en) * 1999-07-28 2006-05-11 Walak Steven E Multi-property nitinol by heart treatment
US6485507B1 (en) * 1999-07-28 2002-11-26 Scimed Life Systems Multi-property nitinol by heat treatment
US6890350B1 (en) 1999-07-28 2005-05-10 Scimed Life Systems, Inc. Combination self-expandable, balloon-expandable endoluminal device
US20020042565A1 (en) * 1999-08-05 2002-04-11 Cooper Joel D. Conduits for maintaining openings in tissue
US6629951B2 (en) 1999-08-05 2003-10-07 Broncus Technologies, Inc. Devices for creating collateral in the lungs
US6749606B2 (en) 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US6692494B1 (en) 1999-08-05 2004-02-17 Broncus Technologies, Inc. Methods and devices for creating collateral channels in the lungs
US20020138074A1 (en) * 1999-08-05 2002-09-26 Thomas Keast Devices for applying energy to tissue
US6712812B2 (en) 1999-08-05 2004-03-30 Broncus Technologies, Inc. Devices for creating collateral channels
US7815590B2 (en) 1999-08-05 2010-10-19 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US20020042564A1 (en) * 1999-08-05 2002-04-11 Cooper Joel D. Devices for creating collateral channels in the lungs
US6540774B1 (en) 1999-08-31 2003-04-01 Advanced Cardiovascular Systems, Inc. Stent design with end rings having enhanced strength and radiopacity
US20050187610A1 (en) * 1999-10-13 2005-08-25 Endosystems Llc Non-foreshortening intraluminal prosthesis
US8721705B2 (en) 1999-10-13 2014-05-13 Endosystems Llc Non-foreshortening intraluminal prosthesis
US6881222B2 (en) 1999-10-13 2005-04-19 Endosystems Llc Non-foreshortening intraluminal prosthesis
US6733513B2 (en) 1999-11-04 2004-05-11 Advanced Bioprosthetic Surfaces, Ltd. Balloon catheter having metal balloon and method of making same
US7226475B2 (en) 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US20030149473A1 (en) * 1999-11-16 2003-08-07 Chouinard Paul F. Multi-section filamentary endoluminal stent
US7160319B2 (en) 1999-11-16 2007-01-09 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US7214241B2 (en) 1999-11-16 2007-05-08 Boston Scientific Scimed, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US7670367B1 (en) 1999-11-16 2010-03-02 Boston Scientific Scimed, Inc. Multi-section filamentary endoluminal stent
US7722664B2 (en) 1999-11-16 2010-05-25 Boston Scientific Scimed, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient
US20040106981A1 (en) * 1999-11-16 2004-06-03 Zarbatany David J. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6936066B2 (en) 1999-11-19 2005-08-30 Advanced Bio Prosthetic Surfaces, Ltd. Complaint implantable medical devices and methods of making same
US7641680B2 (en) 1999-11-19 2010-01-05 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable stent-grafts
US20060015175A1 (en) * 1999-11-19 2006-01-19 Advanced Bio Prosthetic Surfaces, Ltd. Compliant implantable medical devices and methods of making same
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US9662230B2 (en) 1999-11-19 2017-05-30 Vactronix Scientific, Inc. Implantable medical devices having controlled surface properties for improved healing response
US20020165600A1 (en) * 1999-11-19 2002-11-07 Advanced Bio Prosthetic Surfaces, Ltd. Guidewires and thin film catheter-sheaths and method of making same
US20030028246A1 (en) * 1999-11-19 2003-02-06 Palmaz Julio C. Compliant implantable medical devices and methods of making same
US20100191317A1 (en) * 1999-11-19 2010-07-29 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Endoluminal implantable stent-grafts
US6537310B1 (en) 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US20030074053A1 (en) * 1999-11-19 2003-04-17 Palmaz Julio C. Endoluminal implantable stent-grafts
US7641682B2 (en) 1999-11-19 2010-01-05 Advanced Bio Prosthetic Surfaces, Ltd. Compliant implantable medical devices and methods of making same
US20030130718A1 (en) * 1999-11-19 2003-07-10 Palmas Julio C. Endoluminal implantable stent-grafts
US9463305B2 (en) 1999-11-19 2016-10-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Balloon catheter having metal balloon and method of making same
US9375330B2 (en) 1999-11-19 2016-06-28 Advanced Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
US20090132022A1 (en) * 1999-11-19 2009-05-21 Advanced Bio Prosthetic Surfaces, Ltd. Stents with metallic covers and methods of making same
US7491226B2 (en) 1999-11-19 2009-02-17 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable stent-grafts
US9320626B2 (en) 1999-11-19 2016-04-26 Advanced Bio Prosthetic Surfaces, Ltd. Guidewires and thin film catheter-sheaths and method of making same
US9284637B2 (en) 1999-11-19 2016-03-15 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Implantable graft and methods of making same
US20150328025A1 (en) * 1999-11-19 2015-11-19 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Compliant implantable medical devices and methods of making same
US10874532B2 (en) 1999-11-19 2020-12-29 Vactronix Scientific, Llc Implantable medical devices having controlled surface properties for improved healing response
US8460333B2 (en) 1999-11-19 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd. Balloon catheter having metal balloon and method of making same
US10092390B2 (en) 1999-11-19 2018-10-09 Vactronix Scientific, Llc Method of making implantable medical devices having controlled surface properties
US10745799B2 (en) 1999-11-19 2020-08-18 Vactronix Scientific, Llc Compliant implantable medical devices and methods of making same
US20130334032A1 (en) * 1999-11-19 2013-12-19 Advanced Bio Prosthetic Surfaces, Ltd. a wholly owned subsidiary of Palmaz Scientific, Inc. Compliant implantable medical devices and methods of making same
US20080027388A1 (en) * 1999-11-19 2008-01-31 Advanced Bio Prosthetic Surfaces, Ltd. Guidewires and thin film catheter-sheaths and method of making same
US10106884B2 (en) * 1999-11-19 2018-10-23 Vactronix Scientific, Llc Compliant implantable medical devices and methods of making same
US8715335B2 (en) 1999-11-19 2014-05-06 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Endoluminal implantable stent-grafts
US10172730B2 (en) 1999-11-19 2019-01-08 Vactronix Scientific, Llc Stents with metallic covers and methods of making same
US8910363B2 (en) * 1999-11-19 2014-12-16 Advanced Bio Prosthetic Surfaces, Ltd. Compliant implantable medical devices and methods of making same
US10292849B2 (en) 1999-11-19 2019-05-21 Vactronix Scientific, Llc Balloon catheter having metal balloon and method of making same
US7300457B2 (en) 1999-11-19 2007-11-27 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting metallic implantable grafts, compliant implantable medical devices and methods of making same
US20040181252A1 (en) * 1999-11-19 2004-09-16 Boyle Christopher T. Balloon catheter having metal balloon and method of making same
US6849085B2 (en) 1999-11-19 2005-02-01 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
US7235092B2 (en) 1999-11-19 2007-06-26 Advanced Bio Prosthetic Surfaces, Ltd. Guidewires and thin film catheter-sheaths and method of making same
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6820676B2 (en) 1999-11-19 2004-11-23 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US10363125B2 (en) 1999-11-19 2019-07-30 Vactronix Scientific, Llc Method of making implantable medical devices having controlled surface properties
WO2001041675A1 (en) 1999-12-07 2001-06-14 Edwards Lifesciences Corporation Novel enhanced flexible expandable stents
US6537311B1 (en) 1999-12-30 2003-03-25 Advanced Cardiovascular Systems, Inc. Stent designs for use in peripheral vessels
US6471721B1 (en) 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same
US6355058B1 (en) 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder
US6814749B2 (en) 1999-12-30 2004-11-09 Advanced Cardiovascular Systems, Inc. Stent designs for use in peripheral vessels
US6695865B2 (en) 2000-03-20 2004-02-24 Advanced Bio Prosthetic Surfaces, Ltd. Embolic protection device
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US6942690B1 (en) 2000-04-11 2005-09-13 Endovascular Technologies, Inc. Single-piece endoprosthesis with high expansion ratios and atraumatic ends
US8382816B2 (en) 2000-04-11 2013-02-26 Abbott Vascular Solutions Inc. Single-piece endoprosthesis with high expansion ratios and atraumatic ends
US8449598B2 (en) 2000-05-03 2013-05-28 Abbott Cardiovascular Systems Inc. Intravascular stent
US7951188B2 (en) 2000-05-03 2011-05-31 Abbott Cardiovascular Systems Inc. Intravascular stent
US20030199968A1 (en) * 2000-05-03 2003-10-23 Ainsworth Stephen D. Intravascular stent
US6616689B1 (en) 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20050131521A1 (en) * 2000-05-12 2005-06-16 Denes Marton Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US10945828B2 (en) 2000-05-12 2021-03-16 Vactronix Scientific, Llc Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US10939991B2 (en) 2000-05-12 2021-03-09 Vactronix Scientific, Llc Monolithic biocompatible implantable laminated materials
US8845713B2 (en) 2000-05-12 2014-09-30 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US10357354B2 (en) 2000-05-12 2019-07-23 Vactronix Scientific, Llc Monolithic biocompatible implantable laminated materials
US9566148B2 (en) 2000-05-12 2017-02-14 Vactronix Scientific, Inc. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US10449030B2 (en) 2000-05-12 2019-10-22 Vactronix Scientific, Llc Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US8236041B2 (en) 2000-05-30 2012-08-07 Biosensors International Group, Ltd. Noncylindrical stent deployment system for treating vascular bifurcations
US7344556B2 (en) 2000-05-30 2008-03-18 Devax, Inc. Noncylindrical drug eluting stent for treating vascular bifurcations
US6652576B1 (en) 2000-06-07 2003-11-25 Advanced Cardiovascular Systems, Inc. Variable stiffness stent
US7632303B1 (en) 2000-06-07 2009-12-15 Advanced Cardiovascular Systems, Inc. Variable stiffness medical devices
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US20030074049A1 (en) * 2000-08-25 2003-04-17 Kensey Nash Corporation Covered stents and systems for deploying covered stents
WO2002015824A3 (en) * 2000-08-25 2003-02-13 Kensey Nash Corp Covered stents, systems for deploying covered stents
US9827120B2 (en) 2000-09-22 2017-11-28 Boston Scientific Scimed, Inc. Stent
US8070792B2 (en) 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US20020116049A1 (en) * 2000-09-22 2002-08-22 Scimed Life Systems, Inc. Stent
US20030135263A1 (en) * 2000-10-20 2003-07-17 Rourke Jonathan M. Selectively thinned coiled-sheet stents and methods for making them
US7122059B2 (en) 2000-10-20 2006-10-17 Endotex Interventional Systems, Inc. Selectively thinned coiled-sheet stents and methods for making them
US6547818B1 (en) 2000-10-20 2003-04-15 Endotex Interventional Systems, Inc. Selectively thinned coiled-sheet stents and methods for making them
US8641754B2 (en) 2000-11-07 2014-02-04 Advanced Bio Prosthetic Surfaces, Ltd. a wholly owned subsidiary of Palmaz Scientific, Inc. Endoluminal stent, self-supporting endoluminal graft and methods of making same
US20070031607A1 (en) * 2000-12-19 2007-02-08 Alexander Dubson Method and apparatus for coating medical implants
US7244272B2 (en) 2000-12-19 2007-07-17 Nicast Ltd. Vascular prosthesis and method for production thereof
US7276271B2 (en) 2000-12-19 2007-10-02 Nicast Ltd. Polymer fiber tubular structure having kinking resistance
US7115220B2 (en) 2000-12-19 2006-10-03 Nicast Ltd. Vascular prosthesis and method for production thereof
US7112293B2 (en) 2000-12-19 2006-09-26 Nicast Ltd. Method and apparatus for manufacturing polymer fiber shells via electrospinning
US20040096532A1 (en) * 2000-12-19 2004-05-20 Alexander Dubson Polymer fiber tubular structure having kinking resistance
US20040054406A1 (en) * 2000-12-19 2004-03-18 Alexander Dubson Vascular prosthesis and method for production thereof
US20040096533A1 (en) * 2000-12-19 2004-05-20 Alexander Dubson Method and apparatus of improving mechanical characteristics of nonwoven materials
US7244116B2 (en) 2000-12-19 2007-07-17 Nicast Ltd. Apparatus for improving mechanical characteristics of nonwoven materials
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20010044650A1 (en) * 2001-01-12 2001-11-22 Simso Eric J. Stent for in-stent restenosis
US20080288049A1 (en) * 2001-01-12 2008-11-20 Boston Scientific Scimed, Inc. Stent for In-Stent Restenosis
US20100042200A1 (en) * 2001-03-13 2010-02-18 Medinol, Ltd. Method and apparatus for stenting
US9492293B2 (en) 2001-03-13 2016-11-15 Medinol Ltd. Method and apparatus for stenting
AU2002252307B2 (en) * 2001-03-13 2007-07-05 Medinol, Ltd. Method and apparatus for stenting
US20040249439A1 (en) * 2001-03-13 2004-12-09 Yoram Richter Method and apparatus for stenting
US20040094873A1 (en) * 2001-03-20 2004-05-20 Alexander Dubson Portable electrospinning device
EP1377421A4 (en) * 2001-03-20 2004-05-26 Nicast Ltd Polymer fiber tubular structure having improved kinking resistance
EP1377421A2 (en) * 2001-03-20 2004-01-07 Nicast Ltd Polymer fiber tubular structure having improved kinking resistance
US7794219B2 (en) 2001-03-20 2010-09-14 Nicast Ltd. Portable electrospinning device
US20080097573A1 (en) * 2001-03-28 2008-04-24 Boston Scientific Scimed, Inc. Expandable Coil Stent
US20060129233A1 (en) * 2001-03-28 2006-06-15 Boston Scientific Scimed, Inc. Expandable coil stent
US6585753B2 (en) 2001-03-28 2003-07-01 Scimed Life Systems, Inc. Expandable coil stent
US7309352B2 (en) 2001-03-28 2007-12-18 Boston Scientific Scimed, Inc. Expandable coil stent
US7491229B2 (en) 2001-03-28 2009-02-17 Boston Scientific Scimed, Inc. Expandable coil stent
US7033385B2 (en) 2001-03-28 2006-04-25 Boston Scientific Scimed, Inc. Expandable coil stent
US6929657B2 (en) 2001-06-11 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20090192589A1 (en) * 2001-06-11 2009-07-30 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US8257426B2 (en) 2001-06-11 2012-09-04 Advanced Cardiovascular Systems, Inc. Intravascular stent with a plurality of first and second peaks
US20040039439A1 (en) * 2001-06-11 2004-02-26 Gomez Andreina P. Intravascular stent
US20020193867A1 (en) * 2001-06-19 2002-12-19 Gladdish Bennie W. Low profile improved radiopacity intraluminal medical device
US8197535B2 (en) * 2001-06-19 2012-06-12 Cordis Corporation Low profile improved radiopacity intraluminal medical device
US20120253455A1 (en) * 2001-06-19 2012-10-04 Cordis Corporation Low profile improved radiopacity intraluminal medical device
US8882829B2 (en) * 2001-06-19 2014-11-11 Cordis Corporation Low profile improved radiopacity intraluminal medical device
US20030032967A1 (en) * 2001-06-20 2003-02-13 Park Medical, Llc Anastomotic device
US20030120292A1 (en) * 2001-06-20 2003-06-26 Park Medical, Llc Anastomotic device
US7115136B2 (en) 2001-06-20 2006-10-03 Park Medical Llc Anastomotic device
US7780686B2 (en) 2001-06-20 2010-08-24 Park Medical, Llc Anastomotic device
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
US8458879B2 (en) 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US20050043751A1 (en) * 2001-09-04 2005-02-24 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US7708712B2 (en) 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20040030377A1 (en) * 2001-10-19 2004-02-12 Alexander Dubson Medicated polymer-coated stent assembly
EP1469791B1 (en) * 2001-12-03 2008-02-06 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
EP1917931A2 (en) 2001-12-03 2008-05-07 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
EP1469791A2 (en) * 2001-12-03 2004-10-27 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
WO2003049642A1 (en) * 2001-12-05 2003-06-19 Endosystems, Llc Non-foreshortening stent
US20030135265A1 (en) * 2002-01-04 2003-07-17 Stinson Jonathan S. Prostheses implantable in enteral vessels
US20060069421A1 (en) * 2002-01-29 2006-03-30 Medtronic Vascular, Inc. Flared stent and method for use
US20030144724A1 (en) * 2002-01-29 2003-07-31 Robert Murray Flared stent and method of use
US7867269B2 (en) 2002-01-29 2011-01-11 Medtronic Vascular, Inc. Flared stent and method for use
US6964681B2 (en) 2002-01-29 2005-11-15 Medtronic Vascular, Inc. Flared stent and method of use
US7637935B2 (en) 2002-05-06 2009-12-29 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
US20100063581A1 (en) * 2002-05-06 2010-03-11 Jeff Pappas Endoprosthesis For Controlled Contraction And Expansion
US8075610B2 (en) 2002-05-06 2011-12-13 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
WO2003092549A3 (en) * 2002-05-06 2004-04-08 Abbott Lab Endoprosthesis for controlled contraction and expansion
WO2003092549A2 (en) * 2002-05-06 2003-11-13 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
US20040093072A1 (en) * 2002-05-06 2004-05-13 Jeff Pappas Endoprosthesis for controlled contraction and expansion
US7985249B2 (en) 2002-05-08 2011-07-26 Abbott Laboratories Corporation Endoprosthesis having foot extensions
US20070021827A1 (en) * 2002-05-08 2007-01-25 David Lowe Endoprosthesis Having Foot Extensions
US7559947B2 (en) 2002-05-08 2009-07-14 Abbott Laboratories Endoprosthesis having foot extensions
US20060142844A1 (en) * 2002-05-08 2006-06-29 David Lowe Endoprosthesis having foot extensions
US7128756B2 (en) 2002-05-08 2006-10-31 Abbott Laboratories Endoprosthesis having foot extensions
US20040093073A1 (en) * 2002-05-08 2004-05-13 David Lowe Endoprosthesis having foot extensions
US7803179B2 (en) 2002-05-30 2010-09-28 Abbott Vascular Solutions Inc. Intravascular stents
US20030225449A1 (en) * 2002-05-30 2003-12-04 Denison Andy E. Intravascular stents
US20100324660A1 (en) * 2002-05-30 2010-12-23 Advanced Cardovascular Systems Inc. Intravascular stents
US8282679B2 (en) 2002-05-30 2012-10-09 Abbott Cardiovascular Systems Inc. Intravascular stents
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US10465274B2 (en) 2002-09-26 2019-11-05 Vactronix Scientific, Llc Implantable graft and methods of making same
US7704274B2 (en) 2002-09-26 2010-04-27 Advanced Bio Prothestic Surfaces, Ltd. Implantable graft and methods of making same
US20040267350A1 (en) * 2002-10-30 2004-12-30 Roubin Gary S. Non-foreshortening intraluminal prosthesis
US8231667B2 (en) 2002-11-08 2012-07-31 Jacques Séguin Endoprosthesis for vascular bifurcation
US8864817B2 (en) 2002-11-08 2014-10-21 Jacques Séguin Endoprosthesis for vascular bifurcation
US6849084B2 (en) * 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US20040127912A1 (en) * 2002-12-31 2004-07-01 Dmitry Rabkin Stent delivery system
US20030176914A1 (en) * 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
US20050228492A1 (en) * 2003-03-10 2005-10-13 Desimone Joseph M Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
US8906286B2 (en) 2003-03-10 2014-12-09 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
US20110169198A1 (en) * 2003-03-10 2011-07-14 Desimone Joseph M Intraluminal Prostheses Having Polymeric Material with Selectively Modified Crystallinity and Methods of Making Same
US7919162B2 (en) * 2003-03-10 2011-04-05 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
US20060015173A1 (en) * 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
US20050107865A1 (en) * 2003-05-06 2005-05-19 Anton Clifford Endoprosthesis having foot extensions
US7625398B2 (en) 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7625401B2 (en) 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US8915954B2 (en) 2003-05-06 2014-12-23 Abbott Laboratories Endoprosthesis having foot extensions
US8109991B2 (en) 2003-05-06 2012-02-07 Abbot Laboratories Endoprosthesis having foot extensions
US8048146B2 (en) 2003-05-06 2011-11-01 Abbott Laboratories Endoprosthesis having foot extensions
US20070021834A1 (en) * 2003-05-06 2007-01-25 Eugene Young Endoprosthesis having foot extensions
US20100049304A1 (en) * 2003-05-06 2010-02-25 Abbott Laboratories Endoprosthesis Having Foot Extensions
US20070010872A1 (en) * 2003-05-28 2007-01-11 Daniel Gregorich Stent with tapered flexibility
US7935142B2 (en) * 2003-05-28 2011-05-03 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US20040243216A1 (en) * 2003-05-28 2004-12-02 Scimed Life Systems, Inc., Maple Grove, Mn Stent with tapered flexibility
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US9456910B2 (en) 2003-06-27 2016-10-04 Medinol Ltd. Helical hybrid stent
US10363152B2 (en) 2003-06-27 2019-07-30 Medinol Ltd. Helical hybrid stent
US9603731B2 (en) 2003-06-27 2017-03-28 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US9533128B2 (en) 2003-07-18 2017-01-03 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US8002740B2 (en) 2003-07-18 2011-08-23 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US20060184238A1 (en) * 2003-07-30 2006-08-17 Ralf Kaufmann Braided stent to be implanted in a blood vessel
US20090216307A1 (en) * 2003-07-30 2009-08-27 Jotec Gmbh Braided stent to be implanted in a blood vessel
WO2005011527A1 (en) 2003-07-30 2005-02-10 Jotec Gmbh Woven stent to be implanted in a blood vessel
US8876886B2 (en) 2003-07-30 2014-11-04 Jotec Gmbh Braided stent to be implanted in a blood vessel
US7090694B1 (en) * 2003-11-19 2006-08-15 Advanced Cardiovascular Systems, Inc. Portal design for stent for treating bifurcated vessels
US8157855B2 (en) * 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
US20050125051A1 (en) * 2003-12-05 2005-06-09 Scimed Life Systems, Inc. Detachable segment stent
US8506619B2 (en) 2003-12-22 2013-08-13 Stryker Corporation Variable density braid stent
US20100280587A1 (en) * 2003-12-22 2010-11-04 Boston Sciencific Scimed, Inc. Variable density braid stent
US7763011B2 (en) 2003-12-22 2010-07-27 Boston Scientific Scimed, Inc. Variable density braid stent
US20050137680A1 (en) * 2003-12-22 2005-06-23 John Ortiz Variable density braid stent
US20080200975A1 (en) * 2004-01-06 2008-08-21 Nicast Ltd. Vascular Prosthesis with Anastomotic Member
US8998973B2 (en) * 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
WO2005118971A3 (en) * 2004-06-03 2006-06-22 Medinol Ltd Hybrid stent
US10369339B2 (en) 2004-07-19 2019-08-06 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US8784400B2 (en) 2004-07-19 2014-07-22 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US11357960B2 (en) 2004-07-19 2022-06-14 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US8608724B2 (en) 2004-07-19 2013-12-17 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US11446170B2 (en) 2004-09-08 2022-09-20 Limflow Gmbh Minimally invasive surgical apparatus and methods
US20080194939A1 (en) * 2004-09-08 2008-08-14 Advotek Medical Devices Ltd. Minimally Invasive Surgical Appartus and Methods
US10398580B2 (en) 2004-09-08 2019-09-03 Limflow Gmbh Minimally invasive surgical apparatus and methods
US20060052865A1 (en) * 2004-09-09 2006-03-09 Banas Christopher E Stents with metallic covers and methods of making same
US8632580B2 (en) 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US7901447B2 (en) 2004-12-29 2011-03-08 Boston Scientific Scimed, Inc. Medical devices including a metallic film and at least one filament
US8992592B2 (en) 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8864815B2 (en) 2004-12-29 2014-10-21 Boston Scientific Scimed, Inc. Medical devices including metallic film and at least one filament
US20060142842A1 (en) * 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for making same
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US9192492B2 (en) 2005-02-17 2015-11-24 Jacques Seguin Device allowing the treatment of bodily conduits at an area of a bifurcation
US20080215135A1 (en) * 2005-02-17 2008-09-04 Jacques Seguin Device Allowing the Treatment of Bodily Conduits at an Area of a Bifurcation
US20100331947A1 (en) * 2005-02-17 2010-12-30 Alon Shalev Inflatable Medical Device
US8221112B2 (en) 2005-04-12 2012-07-17 Abbott Cardiovascular Systems, Inc. Method for retaining a vascular stent on a catheter
US7763198B2 (en) 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US8152841B2 (en) 2005-05-16 2012-04-10 Boston Scientific Scimed, Inc. Medical devices including metallic films
US7854760B2 (en) 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
WO2007024484A1 (en) * 2005-08-26 2007-03-01 Medlogics Device Corporation Lumen-supporting stents and methods for creating lumen-supporting stents with various open/closed designs
US8043366B2 (en) 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US20070061003A1 (en) * 2005-09-15 2007-03-15 Cappella, Inc. Segmented ostial protection device
US9216082B2 (en) 2005-12-22 2015-12-22 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10299922B2 (en) 2005-12-22 2019-05-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9839515B2 (en) 2005-12-22 2017-12-12 Symetis, SA Stent-valves for valve replacement and associated methods and systems for surgery
US10314701B2 (en) 2005-12-22 2019-06-11 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10265167B2 (en) 2005-12-22 2019-04-23 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7736687B2 (en) 2006-01-31 2010-06-15 Advance Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
US8247020B2 (en) 2006-01-31 2012-08-21 Advanced Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
US8647700B2 (en) 2006-01-31 2014-02-11 Advanced Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
US20070239261A1 (en) * 2006-04-07 2007-10-11 Arani Bose Aneurysm occlusion system and method
US20100076358A1 (en) * 2006-05-18 2010-03-25 Carolyn Anne Richardson Posture indicator
US7537608B2 (en) 2006-05-23 2009-05-26 Boston Scientific Scimed, Inc. Stent with variable crimping diameter
US20070276464A1 (en) * 2006-05-23 2007-11-29 Boston Scientific Scimed, Inc. Stent with variable crimping diameter
US8118859B2 (en) 2006-05-26 2012-02-21 Codman & Shurtleff, Inc. Occlusion device combination of stent and mesh having offset parallelogram porosity
US20070276470A1 (en) * 2006-05-26 2007-11-29 Dirk Tenne Occlusion device combination of stent and mesh having offset parallelogram porosity
US20070276469A1 (en) * 2006-05-26 2007-11-29 Dirk Tenne Occlusion device combination of stent and mesh with diamond-shaped porosity
US8690938B2 (en) 2006-05-26 2014-04-08 DePuy Synthes Products, LLC Occlusion device combination of stent and mesh with diamond-shaped porosity
EP2387973B1 (en) 2006-09-07 2020-11-25 Symetis SA Stent-valve delivery system
US20080065195A1 (en) * 2006-09-12 2008-03-13 Boston Scientific Scimed, Inc. Longitudinally Flexible Expandable Stent
US7988720B2 (en) * 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
WO2008033632A1 (en) * 2006-09-13 2008-03-20 Medtronic Vascular Inc. Compliance-graded stent
US9913969B2 (en) 2006-10-05 2018-03-13 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US20080086194A1 (en) * 2006-10-06 2008-04-10 Advanced Cardiovascular Systems, Intravascular stent
US8778009B2 (en) 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
US11534295B2 (en) 2007-01-19 2022-12-27 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
EP2444031A3 (en) * 2007-01-19 2013-09-11 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
US10736737B2 (en) 2007-01-19 2020-08-11 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
US9510943B2 (en) 2007-01-19 2016-12-06 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
US8623070B2 (en) 2007-03-08 2014-01-07 Thomas O. Bales Tapered helical stent and method for manufacturing the stent
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US20080294267A1 (en) * 2007-05-25 2008-11-27 C.R. Bard, Inc. Twisted stent
US9265636B2 (en) 2007-05-25 2016-02-23 C. R. Bard, Inc. Twisted stent
WO2008148011A1 (en) * 2007-05-25 2008-12-04 C.R. Bard, Inc. Twisted stent
US10716662B2 (en) 2007-08-21 2020-07-21 Boston Scientific Limited Stent-valves for valve replacement and associated methods and systems for surgery
US8945143B2 (en) 2007-10-17 2015-02-03 Covidien Lp Expandable tip assembly for thrombus management
US11786254B2 (en) 2007-10-17 2023-10-17 Covidien Lp Methods of managing neurovascular obstructions
US10835257B2 (en) 2007-10-17 2020-11-17 Covidien Lp Methods of managing neurovascular obstructions
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US10016211B2 (en) 2007-10-17 2018-07-10 Covidien Lp Expandable tip assembly for thrombus management
US9387098B2 (en) 2007-10-17 2016-07-12 Covidien Lp Revascularization devices
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US8574262B2 (en) 2007-10-17 2013-11-05 Covidien Lp Revascularization devices
US10413310B2 (en) 2007-10-17 2019-09-17 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9320532B2 (en) 2007-10-17 2016-04-26 Covidien Lp Expandable tip assembly for thrombus management
US8197493B2 (en) 2007-10-17 2012-06-12 Mindframe, Inc. Method for providing progressive therapy for thrombus management
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8070791B2 (en) 2007-10-17 2011-12-06 Mindframe, Inc. Multiple layer embolus removal
US8945172B2 (en) 2007-10-17 2015-02-03 Covidien Lp Devices for restoring blood flow and clot removal during acute ischemic stroke
US10709557B2 (en) 2007-10-25 2020-07-14 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US8647381B2 (en) 2007-10-25 2014-02-11 Symetis Sa Stents, valved-stents, and methods and systems for delivery thereof
US11452598B2 (en) 2007-10-25 2022-09-27 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US10219897B2 (en) 2007-10-25 2019-03-05 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US20110022157A1 (en) * 2007-10-25 2011-01-27 Jacques Essinger Stents, Valved-Stents, and Methods and Systems for Delivery Thereof
US9839513B2 (en) 2007-10-25 2017-12-12 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US10456151B2 (en) 2008-02-22 2019-10-29 Covidien Lp Methods and apparatus for flow restoration
US8940003B2 (en) 2008-02-22 2015-01-27 Covidien Lp Methods and apparatus for flow restoration
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US11529156B2 (en) 2008-02-22 2022-12-20 Covidien Lp Methods and apparatus for flow restoration
US9161766B2 (en) 2008-02-22 2015-10-20 Covidien Lp Methods and apparatus for flow restoration
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US9539120B2 (en) 2008-10-10 2017-01-10 Veryan Medical Ltd. Medical device suitable for location in a body lumen
US9149377B2 (en) 2008-10-10 2015-10-06 Veryan Medical Ltd. Stent suitable for deployment in a blood vessel
US20100094402A1 (en) * 2008-10-10 2010-04-15 Kevin Heraty Medical device suitable for location in a body lumen
US10966847B2 (en) 2008-10-10 2021-04-06 Veryan Medical Limited Medical device suitable for location in a body lumen
US20110251671A1 (en) * 2008-10-10 2011-10-13 Kevin Heraty Stent suitable for deployment in a blood vessel
US9314353B2 (en) * 2008-10-10 2016-04-19 Veryan Medical Limited Stent suitable for deployment in a blood vessel
US8092516B2 (en) * 2008-11-06 2012-01-10 Cook Medical Technologies Llc Stent member
US20100114294A1 (en) * 2008-11-06 2010-05-06 William Cook Europe Aps Stent Member
US20100137974A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Stent with Graduated Stiffness
US10722255B2 (en) 2008-12-23 2020-07-28 Covidien Lp Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US9168161B2 (en) 2009-02-02 2015-10-27 Cordis Corporation Flexible stent design
US10376397B2 (en) 2009-02-02 2019-08-13 CARDINAL HEALTH SWITZERLAND 515 GmbH Flexible stent design
US20100217380A1 (en) * 2009-02-02 2010-08-26 Ryan Donovan Flexible stent design
US20100211157A1 (en) * 2009-02-19 2010-08-19 Kyong-Min Shin Partially biodegradable stent
US8814927B2 (en) * 2009-02-19 2014-08-26 Taewoong Medical Co., Ltd. Partially biodegradable stent
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US20100286759A1 (en) * 2009-05-08 2010-11-11 Charles Taylor Medical device suitable for location in a body lumen
US10456276B2 (en) 2009-05-08 2019-10-29 Veryan Medical Limited Medical device suitable for location in a body lumen
WO2010128311A1 (en) 2009-05-08 2010-11-11 Veryan Medical Limited A medical device suitable for location in a body lumen
US11839558B2 (en) 2009-05-08 2023-12-12 Veryan Medical Limited Medical device suitable for location in a body lumen
US10376359B2 (en) 2009-11-02 2019-08-13 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
US20180092764A1 (en) * 2009-11-04 2018-04-05 Craig L. Bonsignore Alternating circumferential bridge stent design and methods for use thereof
US10744012B2 (en) * 2009-11-04 2020-08-18 Boston Scientific Scimed, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
US20110238156A1 (en) * 2010-03-29 2011-09-29 Boston Scientific Scimed, Inc. Flexible Stent Design
US8348993B2 (en) 2010-03-29 2013-01-08 Boston Scientific Scimed, Inc. Flexible stent design
US8801775B2 (en) * 2010-04-27 2014-08-12 Medtronic Vascular, Inc. Helical stent with opposing and/or alternating pitch angles
US20110264195A1 (en) * 2010-04-27 2011-10-27 Medtronic Vascular, Inc. Helical Stent with Opposing and/or Alternating Pitch Angles
US9402754B2 (en) * 2010-05-18 2016-08-02 Abbott Cardiovascular Systems, Inc. Expandable endoprostheses, systems, and methods for treating a bifurcated lumen
US20110288622A1 (en) * 2010-05-18 2011-11-24 Abbott Cardiovascular Systems, Inc. Expandable endoprostheses, systems, and methods for treating a bifurcated lumen
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9155644B2 (en) 2010-08-02 2015-10-13 Cordis Corporation Flexible helical stent having intermediate structural feature
US8920489B2 (en) 2010-08-02 2014-12-30 Cordis Corporation Flexible stent having protruding hinges
US10231855B2 (en) 2010-08-02 2019-03-19 CARDINAL HEALTH SWITZERLAND 515 GmbH Flexible helical stent having intermediate non-helical region
US8961590B2 (en) 2010-08-02 2015-02-24 Cordis Corporation Flexible helical stent having different helical regions
US20130178928A1 (en) * 2010-09-13 2013-07-11 Rajnikant Gandalal Vyas Stents with low strut thickness and variable strut geometry
US20120109275A1 (en) * 2010-10-29 2012-05-03 Biotronik Ag Stent with radially asymmetric force distribution
US11602428B2 (en) 2010-11-05 2023-03-14 Cook Medical Technologies Llc Stent structures for use with valve replacements
US11554011B2 (en) 2010-11-05 2023-01-17 Cook Medical Technologies Llc Stent structures for use with valve replacements
US10695171B2 (en) 2010-11-05 2020-06-30 Cook Medical Technologies Llc Stent structures for use with valve replacements
EP2489331B1 (en) 2010-11-05 2017-06-28 Cook Medical Technologies LLC Stent structures for use with valve replacement
US11911270B2 (en) 2010-11-05 2024-02-27 Cook Medical Technologies Llc Stent structures for use with valve replacements
US20120116496A1 (en) * 2010-11-05 2012-05-10 Chuter Timothy A Stent structures for use with valve replacements
US8512395B2 (en) 2010-12-30 2013-08-20 Boston Scientific Scimed, Inc. Stent with horseshoe shaped bridges
US8663313B2 (en) 2011-03-03 2014-03-04 Boston Scientific Scimed, Inc. Low strain high strength stent
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
US9707109B2 (en) 2011-04-20 2017-07-18 Arterius Limited Stent with alternating amplitudes
AU2012246086B2 (en) * 2011-04-20 2014-05-15 Arterius Limited A stent
WO2012143731A1 (en) * 2011-04-20 2012-10-26 Arterius Limited A stent
US9271852B2 (en) 2011-04-20 2016-03-01 Arterius Limited Stent with alternating amplitudes
US9486229B2 (en) 2011-05-13 2016-11-08 Broncus Medical Inc. Methods and devices for excision of tissue
US9421070B2 (en) 2011-05-13 2016-08-23 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US10631938B2 (en) 2011-05-13 2020-04-28 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US8932316B2 (en) 2011-05-13 2015-01-13 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9345532B2 (en) 2011-05-13 2016-05-24 Broncus Medical Inc. Methods and devices for ablation of tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9993306B2 (en) 2011-05-13 2018-06-12 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9861506B2 (en) 2011-10-04 2018-01-09 Cook Medical Technologies Llc Reduced wire profile stent
US9320623B2 (en) 2011-10-04 2016-04-26 Cook Medical Technologies Llc Reduced wire profile stent
US10272260B2 (en) 2011-11-23 2019-04-30 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US10258464B2 (en) 2012-03-22 2019-04-16 Symetis Sa Transcatheter stent-valves
US10898321B2 (en) 2012-03-22 2021-01-26 Symetis Sa Transcatheter stent-valves
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
US11065097B2 (en) 2012-04-03 2021-07-20 Trivascular, Inc. Advanced kink-resistant stent graft
JP2015516844A (en) * 2012-04-03 2015-06-18 トリバスキュラー インコーポレイテッド Kink resistant stent graft
US20130261734A1 (en) * 2012-04-03 2013-10-03 Trivascular, Inc. Advanced kink resistant stent graft
US9993328B2 (en) * 2012-04-03 2018-06-12 Trivascular, Inc. Advanced kink resistant stent graft
US20150290003A1 (en) * 2012-11-05 2015-10-15 Variomed Ag Stent
US9498357B2 (en) * 2012-11-05 2016-11-22 Variomed Ag Stent
US20160000554A1 (en) * 2013-03-06 2016-01-07 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Apparatus and method for regeneration of ligaments and tendons
US9610179B2 (en) 2013-03-12 2017-04-04 Cook Medical Technologies Llc Atraumatic stent crowns
KR20140111963A (en) * 2013-03-12 2014-09-22 디퍼이 신테스 프로덕츠, 엘엘씨 Method of fabricating modifiable occlusion device
US9526647B2 (en) 2013-04-23 2016-12-27 Medical Ingenuities, LLC Interconnection between selectively-expandable and self-expandable sections of an ostial stent
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
CN103550017A (en) * 2013-08-16 2014-02-05 江苏大学 Intravascular stent applicable to conical blood vessel
CN103550017B (en) * 2013-08-16 2015-12-09 江苏大学 A kind of intravascular stent being applicable to conical blood vessel
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
WO2015059019A1 (en) * 2013-10-21 2015-04-30 Jotec Gmbh Vascular implant having portions of different radial force
US11395736B2 (en) * 2014-01-27 2022-07-26 Medtronic Vascular Galway Stented prosthetic heart valve with variable stiffness and methods of use
US11857413B2 (en) 2014-01-27 2024-01-02 Medtronic Vascular Galway Stented prosthetic heart valve with variable stiffness and methods of use
US20150265437A1 (en) * 2014-03-18 2015-09-24 Boston Scientific Scimed, Inc. Reduced granulation and inflammation stent design
US10117763B2 (en) * 2014-03-18 2018-11-06 Boston Scientific Scimed, Inc. Reduced granulation and inflammation stent design
US10213287B2 (en) 2014-05-16 2019-02-26 Veosource Sa Implantable self-cleaning blood filters
US10925707B2 (en) 2014-05-16 2021-02-23 Veosource Sa Implantable self-cleaning blood filters
US10966811B2 (en) 2014-05-16 2021-04-06 Veosource Sa Implantable self-cleaning blood filters
US10596356B2 (en) 2014-06-19 2020-03-24 Limflow Gmbh Methods for placing a stent-graft to cover collateral vessels in lower extremity vasculature
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
WO2016074799A1 (en) * 2014-11-11 2016-05-19 medicut Stent Technology GmbH Stent prosthesis
US11039945B2 (en) 2014-11-11 2021-06-22 medicut Stent Technology GmbH Stent prosthesis
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10806560B2 (en) 2015-05-18 2020-10-20 Pulmair Medical, Inc. Implantable artificial bronchus and use of an implantable artificial bronchus
US20210346144A1 (en) * 2015-05-18 2021-11-11 Pulmair Medical, Inc. Implantable Artificial Bronchus And Use Of An Implantable Artificial Bronchus
US11096773B2 (en) 2015-05-18 2021-08-24 Pulmair Medical, Inc. Implantable artificial bronchus and use of an implantable artificial bronchus
US10702405B2 (en) 2016-03-31 2020-07-07 Vesper Medical, Inc. Intravascular implants
US11484422B2 (en) 2016-03-31 2022-11-01 Vesper Medical, Inc. Intravascular implants
US10758381B2 (en) 2016-03-31 2020-09-01 Vesper Medical, Inc. Intravascular implants
US11628075B2 (en) 2016-03-31 2023-04-18 Vesper Medical, Inc. Intravascular implants
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
CN105853036A (en) * 2016-05-18 2016-08-17 周玉杰 Degradable individual non-column-shaped bionic medicine eluting coronary stent
US20210220178A1 (en) * 2016-09-26 2021-07-22 Doya Medical Ltd. Stent and stenting method
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
CN110573115B (en) * 2017-03-10 2022-05-10 和平医疗公司 Method and system for delivering self-expanding stents to the venous sinus
EP3592305A4 (en) * 2017-03-10 2021-01-06 Serenity Medical, Inc. Method and system for delivering a self-expanding stent to the venous sinuses
US11717430B2 (en) 2017-03-10 2023-08-08 Serenity Medical, Inc. Method and system for delivering a self-expanding stent to the venous sinuses
US10940030B2 (en) 2017-03-10 2021-03-09 Serenity Medical, Inc. Method and system for delivering a self-expanding stent to the venous sinuses
CN110573115A (en) * 2017-03-10 2019-12-13 和平医疗公司 method and system for delivering self-expanding stents to the venous sinus
US11826504B2 (en) 2017-04-10 2023-11-28 Limflow Gmbh Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature
US10543308B2 (en) 2017-04-10 2020-01-28 Limflow Gmbh Methods for routing a guidewire from a first vessel and through a second vessel in lower extremity vasculature
US11660141B2 (en) 2017-07-17 2023-05-30 International Business Machines Corporation Personalized coronary stents
US10568696B2 (en) 2017-07-17 2020-02-25 International Business Machines Corporation Apparatus for supporting personalized coronary stents
US10568697B2 (en) * 2017-07-17 2020-02-25 International Business Machines Corporation Personalized coronary stent methods
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US20190247208A1 (en) * 2017-09-08 2019-08-15 Vesper Medical, Inc. Hybrid stent
US10588764B2 (en) * 2017-09-08 2020-03-17 Vesper Medical, Inc. Hybrid stent
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
CN111093566A (en) * 2017-09-08 2020-05-01 维斯帕医疗公司 Hybrid stent
US10512556B2 (en) 2017-09-08 2019-12-24 Vesper Medical, Inc. Hybrid stent
US11376142B2 (en) 2017-09-08 2022-07-05 Vesper Medical, Inc. Hybrid stent
US11819430B2 (en) 2017-11-03 2023-11-21 Ceroflo Limited Expandable stent and a method for promoting a natural intracranial angiogenesis process, and use of the expandable stent in the method for promoting a natural intracranial angiogenesis process
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US11344439B2 (en) 2018-03-09 2022-05-31 Vesper Medical, Inc. Implantable stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
US11850379B2 (en) 2018-10-09 2023-12-26 Limflow Gmbh Devices and methods for catheter alignment
US11116943B2 (en) 2018-10-09 2021-09-14 Limflow Gmbh Methods for accessing pedal veins
US11129965B2 (en) 2018-10-09 2021-09-28 Limflow Gmbh Devices and methods for catheter alignment
US11311700B2 (en) 2018-10-09 2022-04-26 Limflow Gmbh Methods for accessing pedal veins
US11478614B2 (en) 2018-10-09 2022-10-25 Limflow Gmbh Method for accessing pedal veins for deep vein arterialization
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
US11612397B2 (en) 2019-11-01 2023-03-28 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
USD902407S1 (en) * 2019-11-19 2020-11-17 Pulmair Medical, Inc. Implantable artificial bronchus
US10881541B1 (en) 2020-05-01 2021-01-05 Krishna Rocha-Singh Systems and methods for treating venous compression/obstruction syndromes
USD954953S1 (en) 2020-11-03 2022-06-14 Pulmair Medical, Inc. Implantable artificial bronchus
US20220257393A1 (en) * 2021-02-16 2022-08-18 Olympus Corporation Stent
USD1014758S1 (en) 2023-04-19 2024-02-13 Pulmair Medical, Inc. Implantable artificial bronchus

Also Published As

Publication number Publication date
US20080281397A1 (en) 2008-11-13
US7780719B2 (en) 2010-08-24
US7402169B2 (en) 2008-07-22
US20010004705A1 (en) 2001-06-21
US7060091B2 (en) 2006-06-13
US6669723B2 (en) 2003-12-30
US6485509B2 (en) 2002-11-26
EP1598031A3 (en) 2005-11-30
US20060142849A1 (en) 2006-06-29
EP1598031B1 (en) 2010-06-16
US20030074056A1 (en) 2003-04-17
WO1999044540A2 (en) 1999-09-10
JP2002505149A (en) 2002-02-19
ATE299681T1 (en) 2005-08-15
WO1999044540A3 (en) 1999-10-28
US20040102838A1 (en) 2004-05-27
ATE471130T1 (en) 2010-07-15
EP1059894A2 (en) 2000-12-20
EP1598031A2 (en) 2005-11-23
US6159238A (en) 2000-12-12
DE69942512D1 (en) 2010-07-29
DE69926219D1 (en) 2005-08-25
DE69926219T2 (en) 2006-01-12
EP1059894B1 (en) 2005-07-20
JP4261770B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US5938697A (en) Stent having variable properties
JP3626097B2 (en) Improved stent configuration
US6409755B1 (en) Balloon expandable stent with a self-expanding portion
US7758634B2 (en) Bifurcated stent and delivery system
US6168621B1 (en) Balloon expandable stent with a self-expanding portion
EP0969777B1 (en) Coiled sheet stent having helical articulation and methods of use
US6740113B2 (en) Balloon expandable stent with a self-expanding portion
US5591223A (en) Re-expandable endoprosthesis
EP1286628B1 (en) Variable stiffness stent
US20020193873A1 (en) Bifurcated stent and delivery system
US20060287708A1 (en) Small vessel expandable stent and method for production of same
US8252041B2 (en) Stent designs for use in peripheral vessels
MXPA00003782A (en) Stent having non-uniform structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KILLION, DOUGLAS P.;LININGER, JAMES R.;REEL/FRAME:009392/0228;SIGNING DATES FROM 19980707 TO 19980709

AS Assignment

Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KILLION, DOUGLAS P.;LININGER, JAMES R.;REEL/FRAME:009971/0782;SIGNING DATES FROM 19980707 TO 19980709

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12