Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5856282 A
Publication typeGrant
Application numberUS 08/849,983
PCT numberPCT/US1995/016672
Publication date5 Jan 1999
Filing date13 Dec 1995
Priority date22 Dec 1994
Fee statusLapsed
Publication number08849983, 849983, PCT/1995/16672, PCT/US/1995/016672, PCT/US/1995/16672, PCT/US/95/016672, PCT/US/95/16672, PCT/US1995/016672, PCT/US1995/16672, PCT/US1995016672, PCT/US199516672, PCT/US95/016672, PCT/US95/16672, PCT/US95016672, PCT/US9516672, US 5856282 A, US 5856282A, US-A-5856282, US5856282 A, US5856282A
InventorsIain Allan Hughes
Original AssigneeThe Procter & Gamble Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Silicone compositions
US 5856282 A
Abstract
A bleach composition comprising an inorganic persalt bleaching agent, a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof, and a dimethicone copolyol selected from alkyl- and alkoxy-dimethicone copolyols having formula (I) wherein: X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C.sub.2 H.sub.4 O--).sub.x (C.sub.3 H.sub.6 O--).sub.y X is from about 50 to about 2000, and x and y are such that the weight ratio of oxyethylene: oxypropylene is from about 100:0 to about 0:100. The composition provides improved lipophile and bleach stability.
Images(8)
Previous page
Next page
Claims(11)
I claim:
1. A denture cleanser composition in tablet form comprising a dimethicone copolyol, an inorganic persalt bleaching agent and a lipophile selected from the group consisting of flavorants, antimicrobial agents and mixtures thereof, wherein the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I): ##STR6## wherein X is selected from the group consisting of hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from the group consisting of alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C.sub.2 H.sub.4 O--).sub.x (C.sub.3 H.sub.6 O--).sub.y X is from about 50 to about 2000, and x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100.
2. A composition according to claim 1 wherein the dimethicone copolyol is selected from the group consisting of C.sub.12 to C.sub.20 alkyl dimethicone copolyols and mixtures thereof.
3. A composition according to claim 2 wherein the dimethicone copolyol is cetyl dimethicone copolyol.
4. A composition according to claim 1 comprising from about 0.01% to about 25% by weight of the dimethicone copolyol.
5. A composition according to claim 1 comprising from about 0.1% to about 5% by weight of the dimethicone polyol.
6. A composition according to claim 1 wherein the inorganic persalt bleaching agent comprises one or more bleaching agents selected from the group consisting of alkali metal persulfates, alkali metal perborates and mixtures thereof.
7. A composition according to claim 1 wherein the flavorant comprises one or more flavor components selected from the group consisting of wintergreen oil, oregano oil, bay leaf oil, peppermint oil, spearmint oil, clove oil, sage oil, sassafras oil, lemon oil, orange oil, anise oil, benzaldehyde, bitter almond oil, camphor, cedar leaf oil, marjoram oil, citronella oil, lavendar oil, mustard oil, pine oil, pine needle oil, rosemary oil, thyme oil, cinnamon leaf oil, and mixtures thereof.
8. A composition according to claim 1 additionally comprising an effervescence generator.
9. A composition according to claim 1 additionally comprising an organic peroxyacid bleach precursor.
10. A composition according to claim 9 wherein the organic peroxyacid bleach precursor is selected from the group consisting of acylated polyalkyldiamines, and carboxylic esters having the general formula AcL wherein Ac is the acyl moiety or an organic carboxylic acid comprising an optionally substituted, linear or branched C.sub.6 -C.sub.20 alkyl or alkenyl moiety or a C.sub.6 -C.sub.20 alkyl-substituted aryl moiety and L is a leaving group, the conjugate acid of which has a pKa in the range from 4 to 13.
11. The composition of claim 10 wherein the peroxyacid precursor is tetraacetylethylenediamine.
Description
TECHNICAL FIELD

The present invention relates to silicone-containing compositions and to use thereof in various household products such as personal care products, laundry and household cleaners, bleaching compositions and the like. In particular, it relates to silicone-containing lipophilic compositions based on flavorants, perfumes, coolants or antimicrobial agents as lipophile and which display improved residuality, impact and/or efficacy on surfaces treated therewith, for example teeth, dentures, skin, hair, laundry, dishware, working surfaces and the like. In addition, it relates to silicone-containing bleach compositions which additionally contain bleach-sensitive ingredients such as perfumes, flavorants and the like and which display improved stability.

BACKGROUND

Lipophilic compositions such as flavor, perfume, coolant and disinfectant compositions are widely used either directly or in a variety of household products inclusive of cosmetics, oral and denture compositions, bleach, dishwashing, hard surface cleaning and laundry detergent products, etc. A common problem encountered with lipophilic compositions is that of improving surface substantivity or residuality of the lipophilic component. It would be desirable in many if not most household applications to enhance the surface residuality of the lipophile in order, for example, to provide increased flavor or perfume impact or increased antimicrobial efficacy.

Modern dental hygiene and denture preparations, for example, typically contain antiplaque and/or antitartar agents, as well as antimicrobial agents and flavorants. Antimicrobial action could affect plaque formation by either reducing the number of bacteria in the mouth/dentures or by killing those bacteria trapped in the film to prevent further growth and metabolism. Flavorants may alleviate the problem of bad breath via a deodorizing action. Some antimicrobial agents, e.g. menthol may, also serve as breath deodorizers. However, the efficacy of antimicrobial agents depends largely on their intraoral/denture retention, particularly their retention on the surface of the teeth or dentures where plaque is formed.

A typical disadvantage of known dental preparations is that only a relatively short time during which the teeth are being cleaned or the mouth is being rinsed is available for antimicrobial agents in the preparations to take effect. The problem is compounded by the fact that dentifrice preparations are used infrequently; most are used once or, perhaps, twice daily. Consequently, the long time period between brushings for a majority of the population provides optimum plaque forming conditions.

In many other personal and household applications, it would be desirable to provide enhanced surface substantivity. Laundry detergents, for example, would benefit by increasing perfume substantivity on fabrics so as to provide increased perfume impact on clothing after laundering or during use. Increased antimicrobial substantivity would also be beneficial from the viewpoint of reducing malodors associated with sweat or other soils. Enhanced perfume substantivity would also be valuable in fine fragrance and perfumed cosmetics. Enhanced coolant substantivity, on the other hand, would be beneficial in cough/cold products.

There has been a need, therefore, for developing lipophilic compositions which have improved surface residuality, impact and/or antimicrobial efficacy.

The use of lipophilic compounds such as perfumes, flavorants and the like in bleach-containing compositions can also raise a number of problems, especially loss of perfume or flavorant character or intensity as a result of interaction with the bleach. The efficacy of the bleaching agent can also be adversely effected. It would thus be desirable to improve the stability and effectiveness of bleach compositions containing bleach-sensitive ingredients.

It is known to include silicones in dentifrice compositions, allegedly to coat the teeth and prevent cavities and staining. For instance, GB-A- 689,679 discloses a mouthwash containing an organopolysiloxane for preventing adhesion of, or for removing tars, stains, tartar and food particles from the teeth. The mouthwash may include antiseptic compounds, such as thymol, and flavoring and perfuming agents. U.S. Pat. No. 2,806,814 discloses dental preparations including, in combination, a higher aliphatic acyl amide of an amino carboxylic acid compound as an active and a silicone compound. The patent notes that silicone compounds have been proposed for prevention of adhesion or to facilitate the removal of tars, stains, tartar and the like from teeth. The silicone compound is said to act as a synergist in improving the antibacterial and acid inhibiting activity of the active ingredient. Dimethyl polysiloxanes are said to be particularly effective. Flavoring oils and/or menthol may be included.

U.S. Pat. No. 3,624,120 discloses quaternary ammonium salts of cyclic siloxane polymers for use as cationic surfactants, bactericides and as anticariogenic agents.

Accordingly, the present invention provides a flavor, perfume, coolant, antimicrobial or other lipophilic composition having improved surface-substantivity, impact and/or efficacy.

The invention further provides a bleach composition comprising an inorganic persalt bleaching agent, and a lipophilic compound such as a flavorant and/or perfume and which has improved stability.

SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is provided a flavor, perfume, coolant, antimicrobial or other lipophilic composition comprising a dimethicone copolyol selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I): ##STR1## wherein X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C.sub.2 H.sub.4 O--).sub.x (C.sub.3 H.sub.6 O--).sub.y X is from about 50 to about 2000, preferably from about 250 to about 1000 and x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100, preferably from about 100:0 to about 20:80.

The invention also relates to the use of a dimethicone copolyol with a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof to provide improved surface residuality, wherein the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I).

According to a further aspect of the invention, there is provided a bleach composition comprising an inorganic persalt bleaching agent, a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof, and a dimethicone copolyol selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I): ##STR2## wherein X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C.sub.2 H.sub.4 O--).sub.x (C.sub.3 H.sub.6 O--).sub.y X is from about 50 to about 2000, and x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100.

The invention also relates to the use of a dimethicone copolyol with an inorganic persalt bleaching agent and a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof to provide improved lipophile stability, wherein the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I).

All percentages and ratios herein are by weight of total composition, unless otherwise indicated.

The compositions of the invention thus comprise a dimethicone copolyol antiplaque agent and a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof. Other compositions of the invention take the form of bleach and/or detergent compositions which comprise the dimethicone copolyol antiplaque agent and lipophile.

In general terms, the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I): ##STR3## wherein X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C.sub.2 H.sub.4 O--).sub.x (C.sub.3 H.sub.6 O--).sub.y X is from about 50 to about 2000, preferably from about 250 to about 1000 and x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100, preferably from about 100:0 to about 20:80.

In prefered embodiments, the dimethicone copolyol is selected from C.sub.12 to C.sub.20 alkyl dimethicone copolyols and mixtures thereof. Highly preferred is cetyl dimethicone copolyol marketed under the Trade Name Abil EM90. The dimethicone copolyol is generally present in a level of from about 0.01% to about 25%, preferably from about 0.1% to about 5%, more preferably from about 0.5% to about 1.5% by weight.

The compositions of the invention preferably also include a lipophilic compound. In general terms, lipophilic compounds suitable for use herein are oil-like materials which are soluble or solubilisable in the dimethicone copolyol, preferably at a level of at least about 1%, more preferably at least about 5% by weight at 25 lipophilic compounds are selected from flavorants, perfumes, physiological cooling agents and antimicrobial compounds. The dimethicone copolyol acts to enhance the substantivity of the lipophilic compound to a surface treated therewith, thereby providing enhanced and/or sustained flavor, perfume or coolant impact and/or antimicrobial efficacy.

Lipophilic flavorants suitable for use herein comprise one or more flavor components selected from wintergreen oil, oregano oil, bay leaf oil, peppermint oil, spearmint oil, clove oil, sage oil, sassafras oil, lemon oil, orange oil, anise oil, benzaldehyde, bitter almond oil, camphor, cedar leaf oil, marjoram oil, citronella oil, lavendar oil, mustard oil, pine oil, pine needle oil, rosemary oil, thyme oil, cinnamon leaf oil, and mixtures thereof.

Lipophilic perfumes suitable for use herein comprise one or more known perfume components inclusive of natural products such as essential oils, absolutes, resins, etc., and synthetic perfume components such as hydrocarbons, alcohols, aldehydes, ketones, ethers, acids, esters, acetals, ketals, nitrites etc., including saturated and unsaturated compounds, aliphatic, carboxylic and heterocyclic compounds. Examples of perfume materials suitable for use herein include geranyl acetate, linalyl acetate, citronellyl acetate, dihydromyrcenyl acetate, terpinyl acetate, tricyclodecenyl acetate, tricyclodecenyl propionate, 2-phenylethyl acetate, benzyl acetate, benzyl salicylate, benzyl benzoate, styrallyl acetate, amyl salicylate, methyl dihydrojasmonate, phenoxyethyl isobutyrate, neryl acetate, trichloromethyl-phenylcarbinyl acetate, p-tertiary butyl-cyclohexyl acetate, isononyl acetate, cedryl acetate, vetiveryl acetate, benzyl alcohol, 2-phenylethanol, linalool, tetrahydrolinalool, citronellol, dimethylbenzylcarbinol, dihydromyrcenol, tetrahydromyrcenol, terpineol, eugenol, geraniol, vetiverol, 3-isocamphyl-cyclohexanol, 2-methyl-3-(p-tertiary butylphenyl)-propanol, 2-methyl-3-(p-isopropylphenyl)-propanol, 3-(p-tertiary butylphenyl)-propanol, nerol, alpha-n-amylcinnamic aldehyde, alpha-hexyl-cinnamic aldehyde, 4-(4-hydroxy-4-methylpentyl)-3-cyclohexenecarbaldehyde, 4-(4-methyl-3-pentenyl)-3-cyclohexenecarbaldehyde, 4-acetoxy-3-pentyl-tetrahydropyran, 2-n-heptyl-cyclopentanone, 3-methyl-2-pentyl-cyclopentanone, n-decanal, n-dodecanal, hydroxycitronellal, phenylacetaldehyde dimethyl acetal, phenylacetaldehyde diethyl acetal, geranonitrile, citronellonitrile, cedryl methyl ether, isolongifolanone, aubepine nitrile, aubepine, heliotropine, coumarin, vanillin, diphenyl oxide, ionones, methyl ionones, isomethyl ionones, irones, cis-3-hexenol and esters thereof, indane musks, tetralin musks, isochroman musks, macrocyclic ketones, macrolactone musks, ethylene brassylate, aromatic nitromusks and mixtures thereof.

Lipophilic antimicrobial compounds suitable for use herein include thymol, menthol, triclosan, 4-hexylresorcinol, phenol, eucalyptol, benzoic acid, benzoyl peroxide, butyl paraben, methyl paraben, propyl paraben, salicylamides, and mixtures thereof.

Physiological cooling agent suitable for use herein include carboxamides, menthane esters and menthane ethers, and mixtures thereof.

Suitable menthane ethers for use herein are selected from those with the formula: ##STR4## where R.sub.5 is an optionally hydroxy substituted aliphatic radical containing up to 25 carbon atoms, preferably up to 5 carbon atoms, and where X is hydrogen or hydroxy, such as those commercially available under the trade name Takasago, from Takasago International Corporation. A particularly preferred cooling agent for use in the compositions of the present invention is Takasago 10 3-1-menthoxy propan-1,2-diol (MPD)!. MPD is a monoglycerin derivative of 1-menthol and has excellent cooling activity.

The carboxamides found most useful are those described in U.S. Pat. No. 4,136,163, Jan. 23, 1979 to Wason et al., and U.S. Pat. No. 4,230,688, Oct. 28, 1980 to Rawsell et al.

The level of lipophilic compound in the compositions of the invention is generally in the range from about 0.01% to about 10%, preferably from about 0.05% to about 5%, more preferably from about 0.1% to about 3% by weight.

The compositions of the invention optionally include one or more surfactants, these being especially preferred in lipophilic compositions of the invention for the purpose of solubilization of the lipophile and for providing improved efficacy. Suitable surfactants include non-soap anionic, nonionic, cationic, zwitterionic and amphoteric organic synthetic detergents. Many of these suitable agents are disclosed by Gieske et al. in U.S. Pat. No. 4,051,234, Sep. 27, 1977.

Examples of surfactants suitable for use herein include C.sub.6 -C.sub.18 alkyl sulfates and alkyl ether sulfates ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per mole; anionic sulfonates inclusive of C.sub.5 -C.sub.20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C.sub.6 -C.sub.22 primary or secondary alkane sulfonates, C.sub.6 -C.sub.24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, and mixtures thereof; anionic carboxylates inclusive of primary and secondary C.sub.6 to C.sub.18 alkyl carboxylate, ethoxy carboxylate and polyethoxy polycarboxylate surfactants having an average degree of ethoxylation of from about 0 to about 10; C.sub.5 -C.sub.17 sarcosinates such as sodium cocoylsarcosinate; sodium lauroyl sarcosinate (Hamposyl-95 ex W. R. Grace); condensation products of ethylene or propylene oxide with fatty acids, fatty alcohols, fatty amides, polyhydric alcohols (e.g. sorbitan monostearate, sorbitan oleate), alkyl phenols (e.g. Tergitol) and polypropyleneoxide or polyoxybutylene (e.g. Pluronics); alkylpolysaccharides as disclosed in U.S. Pat. No. 4,565,647; amine oxides such as dimethyl cocamine oxide, dimethyl lauryl amine oxide and cocoalkyldimethyl amine oxide (Aromox); polysorbates such as Tween 40 and Tween 80 (Hercules); sorbitan stearates, sorbitan monooleate, etc; cationic surfactants such as cetyl pyridinium chloride, cetyl trimethyl ammonium bromide, di-isobutyl phenoxy ethoxy ethyl-dimethyl benzyl ammonium chloride and coconut alkyl trimethyl ammonium nitrate.

Highly preferred herein from the view point of lipophile solubilization are the nonionic surfactants. One class of nonionic surfactant suitable for use herein are those having the general formula: ##STR5## in which R.sub.1 is an alk(en)yl or alk(en)yl phenyl group having 8 to 22, preferably 10 to 20 carbon atoms ion the alk(en)yl moiety and m and n represent weight-averages in the range 0-80 and 2-80 respectively. Shorter chain length alkyl groups are generally to be avoided for efficacy reasons and because unreacted fatty alcohol in such surfactants is a source of malodour and occasionally of skin irritation. It will be understood that surfactants of this type are usually mixtures of varying degrees of ethoxylation/propoxylation, accordingly m and n represent the respective weight-averages of the number of propoxylate and ethoxylate groups. Nonionic surfactants of the above general type include mixed alkoxylates in which m and n are both in the range from about 2 to about 80, with m preferably being in the range from about 2 to about 20, more preferably from about 3 to about 10 and with n preferably being in the range from about 2 to about 60, more preferably from about 5 to about 50. One such material is PPG-5-ceteth-20 (available from Croda Inc as Procetyl AWS), where m and n have the values 5 and 20 respectively. Other suitable nonionic surfactants include polyethoxylated surfactants, e.g. ethoxylated alkylphenol ethers, particularly octyl- and nonylphenol ethers containing 8-16 EO; ethoxylated aliphatic C.sub.8 -C.sub.20 alcohols, which may be linear or branched and contain 8-16, preferably 9-15 EO; and ethoxylated hydrogenated castor oils.

In general, the ratio of surfactant to the perfume, coolant or other oily material will be in the range of from about 50:1 to about 1:10, preferably from about 20:1 to about 1:2, more preferably from about 10:1 to about 1:1.

Bleaching compositions of the invention additionally include one or more bleaching agents optionally together with organic peroxyacid precursors, effervescence generators, chelating agents, etc.

The bleaching agent takes the form of an inorganic persalt and can be selected from any of the well-known bleaching agents known for use in household bleaches, detergents, denture cleansers and the like such as the alkali metal and ammonium persulfates, perborates inclusive of mono-and tetrahydrates, percarbonates (optionally coated as described in GB-A-1,466,799) and perphosphates and the alkali metal and alkaline earth metal peroxides. Examples of suitable bleaching agents include potassium, ammonium, sodium and lithium persulfates and perborate mono- and tetrahydrates, sodium pyrophosphate peroxyhydrate and magnesium, calcium, strontium and zinc peroxides. Of these, however, the alkali metal persulfates, perborates, percarbonates and mixtures thereof are prefered for use herein, highly preferred being the alkali metal perborates and percarbonates.

The amount of bleaching agent in the bleaching compositions of the invention is generally from about 5 to about 70% preferably from about 10% to about 50%.

The bleaching compositions can also incorporate an effervescence generator which in preferred embodiments takes the form of a solid base material which in the presence of water releases carbon dioxide or oxygen with effervescence. The effervescence generator can be selected from generators which are effective under acid, neutral or alkaline pH conditions, but preferably it consists of a combination of a generator which is effective or most effective under acid or neutral pH conditions and a generator which is effective or most effective under alkaline pH conditions. Effervescence generators which are effective under acid or neutral pH conditions include a combination of at least one alkali metal carbonate or bicarbonate, such as sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, potassium carbonate, potassium bicarbonate, or mixtures thereof, in admixture with at least one non-toxic, physiologically-acceptable organic acid, such as tartaric, fumaric, citric, malic, maleic, gluconic, succinic, salicylic, adipic or sulphamic acid, sodium fumarate, sodium or potassium acid phosphates, betaine hydrochloride or mixtures thereof. Of these, malic acid is preferred. Effervescence generators which are effective under alkaline pH conditions include persalts such as alkali and alkaline earth metal peroxoborates as well as perborates, persulphates, percarbonates, perphosphates and mixtures thereof as previously described, for example, a mixture of an alkali metal perborate (anhydrous, mono- or tetrahydrate) with a monopersulphate such as Caroat Co. and which is a 2:1:1 mixture of monopersulphate, potassium sulphate and potassium bisulphate and which has an active oxygen content of about 4.5%

In preferred bleaching compositions suitable for use as denture cleansers, the solid base material incorporates a (bi)carbonate/acid effervescent couple optionally in combination with a perborate/persulphate oxygen effervescence generator. The combination of generators is valuable for achieving optimum dissolution characteristics and pH conditions for achieving optimum cleaning and antimicrobial activity. The (bi)carbonate components generally comprise from about 5% to about 65%, preferably from about 25% to 55% of the total composition; the acid components generally comprise from about 5% to about 50%, preferably from about 10% to about 30% of the total composition.

The bleaching compositions of the invention can be supplemented by other known components of such formulations. An especially preferred additional component is an organic peroxyacid precursor, which in general terms can be defined as a conipound having a titre of at least 1.5 ml of 0.1N sodium thiosulfate in the following peracid formation test.

A test solution is prepared by dissolving the following materials in 1000 mls distilled water:

______________________________________sodium pyrophosphate   2.5    g(Na.sub.4 P.sub.2 O.sub.7.10H.sub.2 O)sodium perborateNaBO.sub.2.H.sub.2 O.sub.2.3H.sub.2 O) having                  0.615  g10.4% available oxygensodium dodecylbenzene  0.5    gsulphonate______________________________________

To this solution at 60 for each atom of available oxygen present one molecular equivalent of activator is introduced.

The mixture obtained by addition of the activator is vigorously stirred and maintained at 60 portion of the solution is withdrawn and immediately pipetted onto a mixture of 250 g cracked ice and 15 ml glacial acetic acid. Potassium iodide (0.4 g) is then added and the liberated iodine is immediately titrated with 0.1N sodium thiosulphate with starch as indicator until the first disappearance of the blue colour. The amount of sodium thiosulphate solution used in ml is the titre of the bleach activator.

The organic peracid precursors are typically compounds containing one or more acyl groups, which are susceptible to perhydrolysis. The preferred activators are those of the N-acyl or O-acyl compound type containing a acyl radical R--CO wherein R is a hydrocarbon or substituted hydrocarbon group having preferably from about 1 to about 20 carbon atoms. Examples of suitable peracid precursors include:

1) Acyl organoamides of the formula RCONR.sub.1 R.sub.2, where RCO is carboxylic acyl radical, R.sub.1 is an acyl radical and R.sub.2 is an organic radical, as disclosed in U.S. Pat. No. 3,117,148. Examples of compounds falling under this group include:

a) N,N-diacetylaniline and N-acetylphthalimide;

b) N-acylhydantoins, such as N,N'-diacetyl-5,5-dimethylhydantoin;

c) Polyacylated alkylene diamines, such as N,N,N'N'-tetraacetylethylenediamine (TAED) and the corresponding hexamethylenediamine (TAHD) derivatives, as disclosed in GB-A-907,356, GB-A-907,357 and GB-A-907,358;

d) Acylated glycolurils, such as tetraacetylglycoluril, as disclosed in GB-A-1,246,338, GB-A-1,246,339 and GB-A-1,247,429.

2) Acylated sulphonamides, such as N-methyl-N-benzoyl-menthane sulphonamide and N-phenyl-N-acetyl menthane sulphonamide, as disclosed in GB-A-3,183,266.

3) Carboxylic esters as disclosed in GB-A-836,988, GB-A-963,135 and GB-A-1,147,871. Examples of compounds of this type include phenyl acetate, sodium acetoxy benzene sulphonate, trichloroethylacetate, sorbitol hexaacetate, fructose pentaacetate, p-nitrobenzaldehyde diacetate, isopropeneyl acetate, acetyl aceto hydroxamic acid, and acetyl salicylic acid. Other examples are esters of a phenol or substituted phenol with an alpha-chlorinated lower aliphatic carboxylic acid, such as chloroacetylphenol and chloroacetylsalicylic acid, as disclosed in U.S. Pat. No. 3,130,165.

4) Carboxylic esters having the gernal formal Ac L wherein Ac is the acyl moiety of an organic carboxylic acid comprising an optionally substituted, linear or branched C.sub.6 -C.sub.20 alkyl or alkenyl moiety or a C.sub.6 -C.sub.20 alkyl-substituted aryl moiety and L is a leaving group, the conjugate acid of which has a pKa in the range from 4 to 13, for example oxybenzenesulfonate or oxybenzoate. Preferred compounds of this type are those wherein:

a) Ac is R.sub.3 --CO and R.sub.3 is a linear or branched alkyl group containing from 6 to 20, preferably 6 to 12, more preferably 7 to 9 carbon atoms and wherein the longest linear alkyl chain extending from and including the carbonyl carbon contains from 5 to 18, preferably 5 to 10 carbon atoms, R.sub.3 optionally being substituted (preferably alpha to the carbonyl moiety) by Cl, Br, OCH3 or OC.sub.2 H.sub.5. Examples of this class of material include sodium 3,5,5-trimethylhexanoyloxybenzene sulfonate, sodium 3,5,5-trimethylhexanoyloxybenzoate, sodium 2-ethylhexanoyl oxybenzenesulfonate, sodium nonanoyl oxybenzene sulfonate and sodium octanoyl oxybenezenesulfonate, the acyloxy group in each instance preferably being p-substituted;

b) Ac has the formula R.sub.3 (AO).sub.m XA wherein R.sub.3 is a linear or branched alkyl or alkylaryl group containing from 6 to 20, preferably from 6 to 15 carbon atoms in the alkyl moiety, R.sub.5 being optionally substituted by Cl, Br, OCH.sub.3, or OC.sub.2 H.sub.5, AO is oxyethylene or oxypropylene, m is from 0 to 100, X is O, NR.sub.4 or CO-NR.sub.4, and A is CO, CO--CO, R.sub.6 --CO, CO--R.sub.6 --CO, or CO--NR.sub.4 --R.sub.6 --CO wherein R.sub.4 is C.sub.1 -C.sub.4 alkyl and R.sub.6 is alkylene, alkenylene, arylene or alkarylene containing from 1 to 8 carbon atoms in the alkylene or alkenylene moiety. Bleach activator compounds of this type include carbonic acid derivatives of the formula R.sub.3 (AO).sub.m OCOL, succinic acid derivatives of the formula R.sub.3 OCO(CH.sub.2).sub.2 COL, glycollic acid derivatives of the formula R.sub.3 OCH.sub.2 COL, hydroxypropionic acid derivatives of the formula R.sub.3 OCH.sub.2 CH.sub.2 COL, oxalic acid derivatives of the formula R.sub.3 OCOCOL, maleic and fumaric acid derivatives of the formula R.sub.3 OCOCH═CHCOL, acyl aminocaproic acid derivatives of the formula R.sub.3 CONR.sub.1 (CH.sub.2).sub.6 COL, acyl glycine derivatives of the formula R.sub.3 CONR.sub.1 CH.sub.2 COL, and amino-6-oxocaproic acid derivatives of the formula R.sub.3 N(R.sub.1)CO(CH.sub.2).sub.4 COL. In the above, m is preferably from 0 to 10, and R3 is preferably C.sub.6 -C.sub.12, more preferably C.sub.6 -C.sub.10 alkyl when m is zero and C.sub.9 -C.sub.15 when m is non-zero. The leaving group L is as defined above.

5) Acyl-cyanurates, such as triacetyl- or tribenzoylcyanurates, as disclosed in U.S. Pat. No. 3,332,882.

6) Optionally substituted anhydrides of benzoic or phthalic acid, for example, benzoic anhydride, m-chlorobenzoic anhydride and phthalic anhydride.

7) N-acylated precursor compounds of the lactam class as disclosed generally in GB-A-855735, especially caprolactams and valerolactams such as benzoyl valerolactam, benzoyl caprolactam and their substituted benzoyl analogs such as the chloro, amino, alkyl, aryl and alkoxy derivatives.

Of all the above, preferred are organic peracid precursors of types 1(c), 4(a) and 7.

Where present, the level of peroxyacid bleach precursor by weight of the total composition is preferably from about 0.1% to about 10%, more preferably from about 0.5% to about 5% and is generally added in the form of a bleach precursor agglomerate.

The bleach precursor agglomerates preferred for use herein generally comprise a binder or agglomerating agent in a level of from about 5% to about 40%, more especially from about 10% to about 30% by weight thereof. Suitable agglomerating agents include polyvinylpyrrolidone, poly (oxyethylene) of molecular weight 20,000 to 500,000, polyethyleneglycols of molecular weight of from about 1000 to about 50,000, Carbowax having a molecular weight of from 4000 to 20,000, nonionic surfactants, fatty acids, sodium carboxymethyl cellulose, gelatin, fatty alcohols, phosphates and polyphosphates, clays, aluminosilicates and polymeric polycarboxylates. Of the above, polyethyleneglycols are highly preferred, especially those having molecular weight of from about 1,000 to about 30,000, preferably 2000 to about 10,000.

Preferred from the viewpoint of optimum dissolution and pH characteristics are bleach precursor agglomerates which comprise from about 10% to about 75%, preferably from about 20% to about 60% by weight thereof of peroxyacid bleach precursor, from about 5% to about 60% preferably from about 5% to about 50%, more preferably from about 10% to about 40% of a (bi) carbonate/acid effervescent couple, from about 0% to about 20% of a peroxoboroate, and from about 5% to about 40%, preferably from about 10% to about 30% of an agglomerating agent. The final bleach precursor granules desirably have an average particle size of from about 500 to about 1500, preferably from about 500 to about 1,000 μm, this being valuable from the viewpoint of optimum dissolution performance and aesthetics. The level of bleach precursor agglomerates, moreover, is preferably from about 1% to about 20%, more preferably from about 5% to about 15% by weight of composition.

The bleaching compositions of the invention can be in paste, tablet, granular or powder form. Compositions in tablet form can be single or multiple layered tablets.

Bleaching compositions of the invention can be supplemented by other usual components of such formulations, especially surfactants as generally described above, chelating agents, enzymes, dyestuffs, sweeteners, tablet binders and fillers, foam depressants such as dimethylpolysiloxanes, foam stabilizers such as the fatty acid sugar esters, preservatives, lubricants such as talc, magnesium stearate, finely divided amorphous pyrogenic silicas, etc.

Tablet binders and fillers suitable for use herein include polyvinylpyrrolidone, poly (oxyethylene) of molecular weight 20,000 to 500,000, polyethyleneglycols of molecular weight of from about 1000 to about 50,000, Carbowax having a molecular weight of from 4000 to 20,000, nonionic surfactants, fatty acids, sodium carboxymethyl cellulose, gelatin, fatty alcohols, clays, polymeric polycarboxylates, sodium carbonate, calcium carbonate, calcium hydroxide, magnesium oxide, magnesium hydroxide carbonate, sodium sulfate, proteins, cellulose ethers, cellulose esters, polyvinyl alcohol, alginic acid esters, vegetable fatty materials of a pseudocolloidal character. Of the above, polyethyleneglycols are highly preferred, especially those having molecular weight of from about 1,000 to about 30,000, preferably from about 12,000 to about 30,000.

Chelating agents beneficially aid cleaning and bleach stability by keeping metal ions, such as calcium, magnesium, and heavy metal cations in solution. Examples of suitable chelating agents include sodium tripolyphosphate, sodium acid pyrophosphate, tetrasodium pyrophosphate, aminopolycarboxylates such as nitrilotriacetic acid and ethylenediamine tetracetic acid and salts thereof, ethylenediamine-N,N'-disuccinic acid (EDDS) and salts thereof, and polyphosphonates and aminopolyphosphonates such as hydroxyethanediphosphonic acid, ethylenediamine tetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid and salts thereof. The chelating agent selected is not critical except that it must be compatible with the other ingredients of the denture cleanser when in the dry state and in aqueous solution. Advantageously, the chelating agent comprises between 0.1 and 60 percent by weight of the composition and preferably between 0.5 and 30 percent. Phosphonic acid chelating agents, however, preferably comprise from about 0.1 to about 1 percent, preferably from about 0.1% to about 0.5% by weight of composition.

Enzymes suitable for use herein are exemplified by proteases, alkalases, amylases, fungal and bacterial lipases, dextranases, mutanases, glucanases, esterases, cellulases, pectinases, lactases and peroxidases, etc. Suitable enzymes are discussed in U.S. Pat. No. 3,519,570 and U.S. Pat. No. 3,533,139.

The following Examples further describe and demonstrate the preferred embodiments within the scope of the present invention.

EXAMPLES I TO V

The following are representative denture cleansing tablets according to the invention. The percentages are by weight of the total tablet. The tablets are made by compressing a mixture of the granulated components in a punch and dye tabletting press at a pressure of about 10.sup.5 kPa.

______________________________________           I     II    III     IV  V______________________________________Malic Acid        12      10    15    --  14Citric Acid       --      10    --    15  --Sodium Carbonate  10      8     10    6   10Sulphamic Acid    5       --    --    3   3PEG 20,000        --      3     7     8   5PVP 40,000        6       3     --    --  --Sodium Bicarbonate             23      24    25    23  24Sodium Perborate Monohydrate             15      12    16    30  15Potassium Monopersulphate             15      18    13    --  14Pyrogenic Silica  --      3     1     1   --Talc              2       --    --    --  --EDTA              --      --    1     --  3EDTMP.sup.1       1       --    --    1   --Flavor.sup.5      2       1     2     1   2Abil EM90.sup.4   1       1.5   0.5   2   1Bleach Precursor Agglomerate             9       8     10    12  10Bleach Precursor AgglomerateTAED.sup.2        2       --    4     5   2.5TMHOS.sup.3       2       3     --    --  --Sulphamic Acid    2       2     2     2   3.5Sodium Bicarbonate             0.5     0.2   0.2   0.5 2PEG 6000          2.5     2     2.4   2.5 1.5Dye               --      0.8   1.4   2   0.5______________________________________ .sup.1 Ethylenediaminetetramethylenephosphonic acid .sup.2 Tetraacetylethylene diamine .sup.3 Sodium 3,5,5trimethylhexanoyloxybenzene sulfonate .sup.4 Cetyl dimethicone copolyol .sup.5 Peppermintbased flavor

In Examples I to V above, the overall tablet weight is 3 g; diameter 25 mm.

The denture cleansing tablets of Examples I to V display improved antiplaque,cleansing and anti-bacterial activity together with excellent cohesion and other physical and in-use performance characteristics.

EXAMPLES VI TO IX

The following are representative perfume, flavour, coolant and antimicrobial compositions according to the invention. The percentages are by weight of total composition.

______________________________________           VI  VII      VIII   IX______________________________________PPG-5-ceteth-20   3.0   3.0      4.5  3.0PEG-40 hydrogenated castor             --    1.8      4.5  3.0oilTrideceth-12      2.0   --       --   --Trideceth-9       --    2.0      --   3.0Flavor.sup.5      2.0                 3.0Perfume.sup.6     --    3.0      --   --Trimethyl butanamide             0.3   0.5      --   --Triclosan         --    --       1.0  0.5Abil EM90.sup.4   1.0   1.5      5.0  1.0Water             to 100%______________________________________ .sup.6 Perfume is a complex mixture of ingredients used primarily for olfactory purposes.

The perfume, flavor, coolant and/or antimicrobial compositions of Examples VI to IX display improved surface-substantivity, impact and/or efficacy.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2806814 *4 Oct 195417 Sep 1957Colgate Palmolive CoDental preparations
US3332882 *27 Dec 196525 Jul 1967Fmc CorpPeroxygen compositions
US3607759 *17 Apr 196921 Sep 1971Colgate Palmolive CoDenture soak tablet
US3624120 *22 Dec 196930 Nov 1971Procter & GambleQuaternary ammonium salts of cyclic siloxane polymers
US4051234 *29 Apr 197627 Sep 1977The Procter & Gamble CompanyOral compositions for plaque, caries, and calculus retardation with reduced staining tendencies
US4136163 *8 Jul 197423 Jan 1979Wilkinson Sword LimitedP-menthane carboxamides having a physiological cooling effect
US4155868 *2 Mar 197722 May 1979Johnson & JohnsonEnzyme and active oxygen containing denture cleanser tablet
US4230688 *7 May 197928 Oct 1980Wilkinson Sword LimitedAcyclic carboxamides having a physiological cooling effect
US4400288 *24 Jul 198123 Aug 1983The Procter & Gamble CompanyDetergent compositions and processes of making thereof
US4698178 *19 Sep 19856 Oct 1987Th. Goldschmidt AgUse of polyoxyalkylene-polysiloxane copolymers with silicon-linked, long-chain alkyl radicals as emulsifiers for the preparation of water/oil emulsions
US4906459 *27 Jun 19896 Mar 1990The Procter & Gamble CompanyHair care compositions
US4983383 *31 Oct 19898 Jan 1991The Procter & Gamble CompanyHair care compositions
US5055305 *2 Dec 19888 Oct 1991Richardson-Vicks, Inc.Cleansing compositions
US5169622 *8 Jan 19918 Dec 1992Isp Investments Inc.Hair and skin care compositions containing discrete microdroplets of an oil in water stabilized by in situ copolymerization of a water-soluble vinyl monomer and a water-soluble acryl comonomer
US5169623 *8 Jan 19918 Dec 1992Isp Investments Inc.Conditioning hair care compositions
US5217652 *4 Oct 19918 Jun 1993The Gillette CompanyConditioning shampoo
US5288423 *10 Jul 199122 Feb 1994Unilever Patent Holdings, B.V.Process for preparing perfumed detergent products
US5302375 *19 Nov 199212 Apr 1994Colgate-Palmolive CompanyOral composition having improved tooth whitening effect
US5403518 *2 Dec 19934 Apr 1995Copytele, Inc.Formulations for improved electrophoretic display suspensions and related methods
US5437809 *11 Dec 19911 Aug 1995The Gillette CompanyShampoo compositions with dimethicone copolyols
US5441667 *18 Apr 199415 Aug 1995Kao CorporationDetergent composition
US5556615 *9 May 199417 Sep 1996Helene Curtis, Inc.Clear conditioning composition
US5569465 *25 May 199529 Oct 1996L'orealAqueous cosmetic or dermo-pharmaceutical composition containing in suspension hydrated spheroids of a hydrophilic lipidic substance
US5589449 *22 Jul 199431 Dec 1996Dow Corning S.A.Particulate foam control agents
US5650383 *25 Apr 199522 Jul 1997L'orealComposition for washing and/or conditioning keratinous matter, containing a silicone and an amphoteric polymer derived from diallydialkylammonium and from an anionic monomer
US5759523 *13 Dec 19952 Jun 1998The Procter & Gamble CompanyDetergent compositions comprising a dimethicone copolyol
GB689679A * Title not available
GB836988A * Title not available
GB855735A * Title not available
GB907356A * Title not available
GB907357A * Title not available
GB907358A * Title not available
GB963135A * Title not available
GB1246338A * Title not available
GB1246339A * Title not available
GB1466799A * Title not available
GB2183266A * Title not available
ZA670492A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6004538 *20 Mar 199621 Dec 1999The Procter & Gamble CompanyOral compositions
US6129906 *25 Oct 199610 Oct 2000The Procter & Gamble CompanySilicone containing powders
US621793314 Jan 199817 Apr 2001The Procter & Gamble CompanyMethod for treating dentures
US6294154 *21 Nov 199525 Sep 2001Procter And Gamble CompanyOral compositions containing dimethicone copolyols
US6569408 *9 Jun 200027 May 2003The Procter & Gamble CompanyCompositions comprising organosiloxane resins for delivering oral care substances
US6589512 *9 Jun 20008 Jul 2003The Procter & Gamble CompanyCompositions comprising organosiloxane resins for delivering oral care substances
US66101499 Feb 200126 Aug 2003The Procter & Gamble CompanyApparatus for treating dentures
US6649147 *30 Jun 200018 Nov 2003The Procter & Gamble CompanyDelivery system for oral care compositions comprising organosiloxane resins using a removable backing strip
US6692727 *30 Jun 200017 Feb 2004The Procter & Gamble CompanySystems comprising organosiloxane resins for delivering oral care substances and for prolonging such delivery
US70259506 May 200311 Apr 2006The Procter & Gamble CompanyOral care compositions comprising dicarboxy functionalized polyorganosiloxanes
US71662356 May 200323 Jan 2007The Procter & Gamble CompanyCompositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
USRE42126 *30 Jun 20008 Feb 2011The Procter & Gamble CompanyDelivery system for oral care compositions comprising organosiloxane resins using a removable backing strip
WO2003095559A19 May 200320 Nov 2003Procter & GambleCompositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
WO2011059715A228 Oct 201019 May 2011The Procter & Gamble CompanyDenture care composition
Classifications
U.S. Classification510/117, 510/130, 510/446, 510/376, 510/116, 510/383, 510/466, 510/137, 510/122, 424/53, 424/49
International ClassificationA61K8/22, A61K8/86, C11D17/00, A61K8/42, A61K8/894, C11D3/39, C11D3/37, A61K8/898, A61Q11/02
Cooperative ClassificationA61K2800/222, A61Q11/02, A61K8/42, C11D17/0073, A61K8/894, A61K8/22, C11D3/3738, A61K8/86, C11D3/3942
European ClassificationA61K8/22, C11D3/37B12E, A61K8/894, A61K8/86, A61K8/42, C11D3/39D, C11D17/00H8T, A61Q11/02
Legal Events
DateCodeEventDescription
5 Oct 2010ASAssignment
Owner name: COOPERATIEVE CENTRALE RAIFFEISEN-BOERENLEENBANK B.
Effective date: 20100930
Free format text: SECURITY AGREEMENT;ASSIGNOR:WM. WRIGLEY JR. COMPANY;REEL/FRAME:025095/0013
7 Oct 2008ASAssignment
Owner name: GOLDMAN SACHS CREDIT PARTNERS L.P., AS COLLATERAL
Free format text: SECURITY AGREEMENT;ASSIGNOR:WM WRIGLEY JR. COMPANY;REEL/FRAME:021640/0451
Effective date: 20081006
4 Mar 2003FPExpired due to failure to pay maintenance fee
Effective date: 20030105
6 Jan 2003LAPSLapse for failure to pay maintenance fees
23 Jul 2002REMIMaintenance fee reminder mailed
25 Sep 1998ASAssignment
Owner name: PROCTER & GAMBLE COMPANY, THE, OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUGHES, IAIN ALLAN;REEL/FRAME:009477/0258
Effective date: 19970716